_ecture #3

Securing the App Ecosystem: Application
Stores, Vetting, and Sideloading

2222222

From Walled Gardens to the Wild West

Today's Agenda

« Part 1: A Tale of Two Philosophies - Apple's App Store vs. the Google Play Store.
« Part 2: The Vetting Process - How apps are reviewed before you see them.
 Part 3: The Dangers of Sideloading - Going outside the official stores.

 Part 4: The Evolution of Permissions - From "all or nothing" to granular control.

 Part 5: The Enterprise Challenge - Managing apps in a corporate environment

SMA 2025

Recap & A Question

e Lecture 1: Technical Threats (Malware, OS Flaws)

 Lecture 2: The Human Element (Phishing, Permissions)

« Hook: Have you ever been tempted to download a "free" version of a paid app from a random
website?

SMA 2025

Part 1: A Tale of Two Philosophies

* The App Store as a Gatekeeper

SMA 2025

Apple's App Store: The "Walled Garden”

 Philosophy: Strict control, curation, and a focus on providing a safe, consistent, and high-
quality user experience.

SMA 2025

The Walled Garden: Security Architecture

* Single Point of Entry: The App Store is the only legitimate way to install apps.

« Mandatory, Strict Review: Every app and every update is reviewed by both automated
systems and human reviewers.

 Developer Identity Verification: Apple requires developers to enroll in the Apple Developer
Program, which has a fee and requires identity verification.

 Strict App Sandboxing: As we've discussed, apps are heavily restricted and cannot access
data from other apps.

« Mandatory Code Sighing: Guarantees the integrity of the app. Your phone will not run an app
If 1ts sighature has been broken or tampered with.

SMA 2025

The Walled Garden: Pros & Cons

* Pros:
 Higher Trust & Safety: Significantly lower rates of malware compared to other platforms.
 Consistent Quality: Apps are held to a high standard for Ul and functionality.

 Simplified User Experience: Users don't have to worry as much about the security of the apps they download.

e Cons:

 Less Developer Freedom: Apple has the final say on what is and isn't allowed.
 Slower Review Process: Updates can be delayed by the review queue.

« Censorship Concerns: Apple can block apps for business or political reasons.

SMA 2025

Google Play Store: The "Open" Approach

-
N -

 Philosophy: Openness, developer freedom, and
rapid iInnovation across a vast and diverse hardware
ecosystem.

il
|7 Google Play

- ——— B ——

LN

-
“~dq i
. Nl

SMA 2025

The Open Market: Security Architecture

« More Open Submission: It's historically been faster and easier to get an app published on
Google Play.

 Automated Vetting: The primary line of defense is an automated scanner called Google Play
Protect, which scans billions of apps daily for malicious behavior.

« Human Review: Google has significantly increased its use of human reviewers, but the scale of
the Android ecosystem makes this a huge challenge.

« User Choice & Warnings: The system relies more on warning users about potentially harmful
apps and giving them the choice to proceed.

 Sideloading is an Option: Android officially allows users to install apps from outside the Play
Store, though it comes with strong warnings.

SMA 2025

The Open Market: Pros & Cons

* Pros:

 Greater App Variety: A wider range of applications, including those that might not be allowed on Apple's
platform.

 Faster Publishing: Developers can iterate and release updates more quickly.

 More Flexibility: Supports a huge variety of devices and allows for more customization.

e Cons:

 Historically More Malware: The open model has made it a more attractive target for attackers.
* Inconsistent Quality: The quality and security of apps can vary wildly.

* Fragmentation: Security features can depend on the version of Android and the device manufacturer.

SMA 2025

Follow the Money: Business Models & Security

 The stores' security philosophies are also a direct result of their business models.

* Apple App Store:

* Model: Takes a 15-30% commission on all sales. Sells hardware (iPhones) at a premium.

* Incentive: The high commission and premium hardware price create a powerful incentive to ensure the App Store is perceived as
extremely safe, high-quality, and trustworthy. A major malware outbreak would damage the pristine brand image and hurt iPhone

sales.

 Google Play Store:
* Model: Also takes a commission, but Google's core business is advertising.

* Incentive: The primary goal is scale. More Android users, on more devices, from more manufacturers, means more data and
more opportunities for serving ads. An open model that encourages broad participation serves this goal.

SMA 2025

Case Study (Play Store): The "Joker" Malware

 The "Joker" family of malware is a perfect example of attackers exploiting the Play Store's scale and
automated review process.

 The Attack: These apps were typically harmless-looking utilities (scanners, messengers, photo editors).

* The Payload: Once installed, the app would secretly simulate user interaction with advertisement
websites and sign the user up for premium subscription services (WAP billing fraud).

 The Evasion: The malicious code was often downloaded after installation (a delayed payload) and was
heavily obfuscated to avoid detection by Google Play Protect. The apps would request access to
notifications to intercept the subscription confirmation messages.

 The Impact: Millions of users were affected, with attackers stealing small amounts of money from each,
adding up to huge profits. Google is in a constant battle, removing thousands of "Joker" variants.

SMA 2025

Case Study (App Store): XcodeGhost

* Even the Walled Garden isn't impenetrable. XcodeGhost was a major security incident that showed a
completely different attack vector.

* The Attack: Attackers didn't target the App Store review process. They targeted the developers.

* The Vector: They created a counterfeit version of Apple's official developer tool, Xcode, and uploaded it
to third-party file-sharing sites in China, where developers often downloaded it due to slow official servers.

 The Payload: This malicious version of Xcode automatically injected malware into every app that was
compiled with It.

 The Impact: Hundreds of legitimate, popular apps (including WeChat) were unknowingly infected and
uploaded to the App Store. The malware collected device and user information. Apple had to pull
thousands of apps and work with developers to recompile them using a clean version of Xcode.

SMA 2025

The Shifting Walls: Government Regulation

* The era of the stores making all the rules is ending. Governments are now forcing changes.

 The Digital Markets Act (DMA) in the European Union is the most significant example.

« Key Mandates for "Gatekeepers" (like Apple):
* 1. Must allow third-party app stores: Users must be able to install alternative marketplaces.
2. Must allow sideloading: Users must be able to download and install apps from the web.

3. Must allow alternative payment systems: Developers can't be forced to use the store's payment
system.

 The Security Implication: This fundamentally breaks Apple's "Walled Garden" model in the EU. Apple has
warned this will "'undermine the privacy and security protections" users expect.

SMA 2025

Apple's Response to the DMA

* Apple is complying, but with security measures they call "Notarization."

e Notarization for i0S: Even apps distributed outside the App Store must be submitted to Apple for a baseline security
check.

* |t includes:
 Automated scanning for malware.
* Checks for malicious functionality.
* It does NOT include:
 Checks for quality, content, or policy violations.

e The Goal: To prevent a massive malware outbreak while still complying with the law. It's a "lighter" version of their full
App Store review.

SMA 2025

Part 2: The Vetting Process

e How Apps Get Reviewed

SMA 2025

Layer 1: Static Analysis

o "Reading the Blueprint"

e What it is: Analyzing an app's code and resources without running it.
e What it looks for:
e Known Malware Signatures: Does the code match any known viruses®?

e Dangerous APIs: |Is the app using private, undocumented APIs that could be used for malicious
purposes?

e Suspicious Permissions: Does the 'AndroidManifest.xml or "Info.plist request a combination of
permissions that doesn't match the app's description? (e.g., a calculator asking for SMS access).

e Hardcoded Secrets: Are there passwords or API keys sitting in plain text in the code?

SMA 2025

Static Analysis: A Red Flag

A simple game asking for permission to read your text messages is a huge red flag that static
analysis tools are designed to catch.

manifest
application
android:label
application

uses-permission android:name
uses-permission android:name

manifest

SMA 2025

Layer 2: Dynamic Analysis

¢ "Turning on the Plumbing"

« What it is: Running the app in a controlled, isolated environment (a sandbox or emulator) to observe its actual
behavior.

 What it looks for:

* Network Behavior: Does the app try to connect to known malicious servers or C&C (Command and Control)
centers?

* File System Access: Does it try to access or modify files outside of its own sandbox?
* Privilege Escalation: Does it attempt to exploit a vulnerability in the OS to gain root access?

 Data Exfiltration: Does it try to upload the user's contacts or location data to a remote server without
permission?

SMA 2025

Dynamic Analysis in Action

FILE ACCESS

o Jussrcotiiotax
o Juerdos oo ot
W s Coniiian
v Kepeceniiglon
W Japgr cordigion
W sopnrcontipk

SMA 2025

Static Analysis: Taint Analysis

* One advanced static analysis technique is Taint Analysis.

« Concept: It tracks the flow of data through an application from "sources" to "sinks."
A Source is where data enters the app (e.g., a password field, contact list, GPS location).

A Sink is a potentially dangerous function where data leaves the app or is used (e.g.,
sending data over the network, writing to a file, executing a command).

* The Goal: To detect if "tainted" (sensitive) data from a source reaches a dangerous sink
without being properly sanitized or authorized.

SMA 2025

Taint Analysis in Code (Pseudo-code)

* Thisis how a taint analysis tool "thinks" about your code.

e Code Snippet: // 1. The password from the input field 1s marked as "Tainted"
Tainted<String> password = passwordField.getText();

// 2. The username 1s not sensitive, so 1t 1S not tainted
String username = usernameField.getText();

// 3. This 1s a dangerous function, a "Sink"
Log.d("UserData", "User: " + username); // OK: Data is not tainted
Log.d("UserData", "Pass: " + password); / ALERT! Tainted data reached a logging sink!

/4. A "Sanitizer" function that cleanses the data
String hashedPass = BCrypt.hash(password.getValue()); // "hashedPass 1s no longer tainted

//'5.This 1s a "Sink" for sending data to the network
network.send(username, hashedPass); // OK: Tainted data was sanitized before reaching the sink
network.send(username, password); // ALERT! Tainted data reached a network sink!

SMA 2025

Dynamic Analysis: Sandbox Evasion

 Attackers know their apps will be run in a sandbox, so they build in evasion techniques. The malware tries
to answer the question: "Am | being watched?"

e Emulator Detection: Checks for files, properties, or device drivers specific to an emulator (e.g.,
‘gemu , BlueStacks).

e Root Detection: Checks if the device is rooted. Reviewer sandboxes are often rooted for
Instrumentation, while most user devices are not.

e Network Sniffing: Checks if its own network traffic is being routed through a proxy or monitoring tool.

e Timing Attacks / Delayed Execution: The most common technique. The malicious payload does
nothing for the first 10 minutes, or until the device is rebooted, long after the automated review has

finished.

SMA 2025

Human Review: Fighting "Fleeceware”

\;

* A major focus for human reviewers isn't just malware, but a category of ,
scam apps called "Fleeceware."

Unlock Premium
Features

* What it is: Apps that are not technically malware but use deceptive
practices to trick users into paying for exorbitant subscription fees.

e Common Tactics: @ Ad-free experience

» Offering a "free trial" that is very short (e.g., 3 days) and converts % Unlimited access
to a very expensive weekly or monthly subscription if not canceled.

* Using a confusing Ul to make the user think they are closing a

. . L w Exclusive content
dialog when they are actually approving a subscription.

 Hiding the price in small, hard-to-read text.

« Example: A simple QR code reader app that charges $9.99 per week.

Then $29.99/month unless canceled
Terms and Conditions apply

SMA 2025

Vetting the Developer, Not Just the App

 Security vetting extends to the developer account itself.

* ldentity Verification: As mentioned, developers must enroll in paid programs, often requiring
government ID or business verification. This creates a paper tralil.

 Reputation Analysis: Is this developer account linked to previously banned accounts? Does it share an
IP address, credit card, or device fingerprint with known bad actors?

 Behavioral Analysis: Does this developer suddenly change their app from a simple game to a
cryptocurrency wallet? Does a developer with a history of simple apps suddenly upload a very complex
one with many permissions? Such changes are red flags.

* The Goal: To prevent attackers from simply creating a new account every time they get caught. The
platforms try to ban the person, not just the app.

SMA 2025

Case Study: The "FluBot" Malware

 FluBot was a widespread, dangerous piece of Android malware that spread exclusively through sideloading,
Initiated by SMS messages.

* The Lure: The user receives an SMS message: "You have a new voicemalil" or "Your package is scheduled for
delivery." The message contains a link.

« The Trick: The link leads to a webpage that looks like a legitimate brand (e.g., DHL, FedEXx). It instructs the
user to download and install a special app to track their package or listen to their voicemail.

 The Sideload: The user downloads the .apk file and bypasses Android's security warnings to install it.

* The Payload: Once installed, FluBot was a full-blown banking trojan and spyware. It would use its permissions
to create fake login screens over legitimate banking apps, steal passwords, intercept SMS messages (to
defeat 2FA), and send out thousands more SMS messages to the victim's contacts to spread itself further.

SMA 2025

Anatomy of a Sideloading Attack (1/4)

e Step 1: The Lure

* |t all starts with social engineering.
The attacker needs to convince you FREE DOWNLOAD
to leave the safety of the app store.

Grand GhaFao VI -
Full PC Game

DHL: Your parcel is on your way, track it
here: [fake-dhl-tracking-link.xyz

SMA 2025

Anatomy of a Sideloading Attack (2/4)

« Step 2: Bypassing the Warning

* When you try to install the downloaded .apk"
file, Android stops you with a clear warning.

* To proceed, the user must *manually* go into
their settings and grant permission to the ! Install unknown apps?
source (e.g., their web browser) to install
unknown apps. The attacker's website will often

' ' i : For your security, your phone is not
provide instructions on how to do this. y y, your p i

allowed to install unkown apps from this
source.

You change this in Settings.

CANCEL SETTINGS
SMA 2025

Anatomy of a Sldeloadmg Attack (3/4)

e Step 3: The Trojan Grant

* The app is installed. When you open it, It
doesn't function as advertised. Instead, it
iImmediately asks for dangerous permissions. Use Global Action Bar Service?
The most powerful of these is Accessibility Global Action Bar Service needs to:

Service access.

Observe your actions
Receive notifications when you're
interacting with an app.

Retrieve window content
Inspect the content of a window you're
interacting with.

Perform gestures
Can tap, swipe, pinch, and perform other
gestures.

CANCEL OK
SMA 2025

Anatomy of a Sideloading Attack (4/4)

e Step 4: The Payload

 With Accessibility Service permission, the malware can:
e Read your screen: |t can see the balance in your bank account, read your emails, and view your contacts.

e Perform actions for you: It can click buttons to approve transactions, grant itself other permissions, and
change your settings.

e Act as a keylogger: It can record everything you type, including passwords.

e Create overlay attacks: It can draw a fake login screen on top of your real banking app to steal your
credentials.

|t has become the new "root" access for malware.

SMA 2025

Accessibility Service Abuse: Code Example

 This is a simplified example of how malware uses the Accessibility Service to find and click a
button on the screen without the user's knowledge.

// In a malicious AccessibilityService implementation
class EvilService : AccessibilityService() {

override fun onAccessibilityEvent(event: AccessibilityEvent) {
// Get the root node of the currently active window
val rootNode = rootInActiveWindow ?: return

// Find all nodes that have the text "Install" or "Confirm"
val targetNodes = rootNode.findAccessibilityNodeInfosByText("Install™)
targetNodes.addAll(rootNode.findAccessibilityNodeIntosByText("Confirm"))

for (node 1n targetNodes) {
// Check 1f the node 1s a clickable button
if (node.1sClickable && node.className == "android.widget.Button") {
Log.d("EvilService", "Found a target button! Clicking 1t now.")
// Perform the click action
SMA 2025 node.performAction(AccessibilityNodeInfo. ACTION_CLICK)

¥
¥

// In a malicious AccessibilityService implementation
class EvilService : AccessibilityService() {

override fun onAccessibilityEvent(event: AccessibilityEvent) {
// Get the root node of the currently active window
val rootNode = rootInActiveWindow ?: return

// Find all nodes that have the text "Install" or "Confirm"
val targetNodes = rootNode.findAccessibilityNodeIntosByText("Install")
targetNodes.addAll(rootNode.findAccessibilityNodelntosByText("Confirm"))

for (node 1n targetNodes) {
// Check 1f the node 1s a clickable button
if (node.1sClickable && node.className == "android.widget.Button") {
Log.d("EvilService", "Found a target button! Clicking 1t now.")
// Perform the click action

node.performAction(AccessibilityNodelnfo. ACTION_CLICK)

¥
h

rootNode.recycle()
J

// ... other required override functions
SMA 2025 j

The Threat of Repackaged Apps

« Many sideloaded apps aren't built from scratch.
They are legitimate apps that have been turned
iInto Trojans.

e 1. Decompile: The attacker takes the .apk’ Repackaging Tool

file of a popular, trusted app.

-)

-

e 2. Inject: They add their own malicious code Signal
to the app's source. @ @
e 3. Recompile: They package it back upintoa o cone b

new .apk file, signed with their own key.

e 4. Distribute: They upload this trojanized
version to a third-party store or website.

SMA 2025

Android: Explaining Why (The Rationale)

* |f a user has previously denied a permission, you shouldn't just ask again. You should first
show a Ul explaining why your app needs the permission. This is called showing the

“rationale."

// In your Activity or Fragment

when {
ContextCompat.checkSeltPermission(this, Manitest.permission.CAMERA) == PackageManager PERMISSION_GRANTED -> {

// Permission 1s already granted

¥
// This 1s the key part!

shouldShowRequestPermissionRationale(Manifest.permission. CAMERA) -> {
// Show a custom dialog or Ul explaining to the user
// why you need the camera.
// After they acknowledge it, then you can launch the permission request again.
showCameraRationaleDialog()

¥

else -> {
// First time asking, or user previously selected "Don't ask again”
requestPermissionLauncher.launch(Manifest.permission.CAMERA)

SMA 2025
}

"Permission-less” Tracking: Fingerprinting

 Even without asking for any permissions, apps can still gather a surprising amount of information to create a unique
"fingerprint” of your device.

* What data is used?
e Device model, screen resolution, OS version
* List of installed apps
e Network information (IP address, carrier)
 Device name, language, time zone

e The Goal: To combine these data points into a unique identifier that can be used to track you across different apps and
websites, even if you have disabled ad tracking.

 This is a major privacy concern and is actively being fought by both Apple and Google.

SMA 2025

The Future: Google's Privacy Sandbox

 Google's answer to the challenge of balancing user privacy with the needs of the advertising industry is the Privacy
Sandbox on Android.

* The Goal: To eliminate the need for cross-app identifiers (like the advertising ID) and covert tracking (like
fingerprinting).

* The Approach: Instead of giving developers raw data, the OS itself will provide new, privacy-preserving APIls for
common advertising functions.

 Topics API: The OS determines a user's general interests (e.g., "fitness," "travel") based on their app usage and
shares only those topics with advertisers, not the user's specific activity.

 Attribution API: Allows advertisers to measure campaign success without being able to track an individual user
across apps.

 Thisis a long-term, ongoing initiative to redesign how advertising works on mobile.

SMA 2025

Part 5: The Enterprise Challenge

e Managing "Approved Applications"

SMA 2025

The Challenge: BYOD and Corporate Data

e BYOD (Bring Your Own Device): Employees use their personal phones for work tasks (emaiil,
messaging, etc.).

e The Risk: Corporate data (sensitive emails, client lists, internal documents) is now sitting on a
personal device, next to personal apps, games, and photos. How do you protect the corporate
data without invading the employee's privacy?

SMA 2025

Strategy 1: MDM vs. MAM

* There are two main approaches to managing devices:

* Mobile Device Management (MDM):
* Manages the entire device.
 Can enforce device-level policies like passcodes, encryption, and remote wipe of the whole device.

* Best suited for corporate-owned devices.

e Mobile Application Management (MAM):
e Manages only specific corporate applications.
* Policies are applied to the apps themselves (e.g., require a PIN to open Outlook, prevent copy-paste from a work app).
« Can remotely wipe just the corporate apps and data.

 Seen as more privacy-friendly and better suited for BYOD scenarios.

SMA 2025

Strategy 2: The Corporate App Store

 Using MDM/MAM, a company can create a curated list of "approved applications."

* Allow-listing: Employees can only install apps from this pre-approved list. This is very secure
but restrictive.

* Block-listing: Employees can install anything except for apps on a known-bad list (e.g., social
media, games with poor security records). This is more flexible but less secure.

e Companies can also create their own private, internal app store to distribute proprietary
business apps to employees.

SMA 2025

Strategy 3: Containerization

« What it is: Creating a secure, encrypted "work profile" or container on the device that is
completely separate from the user's personal space.

e Key Features:

 Data Isolation: Work apps and data are encrypted and isolated. Personal apps cannot access
them.

 Data Leakage Prevention (DLP): Policies can prevent copy-pasting from a work app into a
personal app.

 Selective Wipe: If an employee leaves the company, IT can wipe the secure work container
without touching any of the user's personal photos, messages, or apps.

SMA 2025

Coding for the Enterprise: Detecting a Work Profile

* For apps intended for corporate use, it can be useful to know if the app Is running inside a
managed work profile. Android provides APIs to check this.import android.content.Context

import android.os.UserManager

fun 1sRunningInWorkProfile(context: Context): Boolean {
val userManager = context.getSystemService(Context. USER_SERVICE) as UserManager
// The “1sManagedProfile” method returns true it the app 1s running
// 1n a container managed by a device policy controller.
return userManager.isManagedProfile

¥

// Usage 1n your app:

if (iIsRunningInWorkProfile(this)) {
// Apply enterprise-specific policies
// e.g., disable certain features, enforce stricter logging
Log.1("EnterpriseCheck", "App 1s running in a managed work profile.")

}else {
// App 18 running in a personal profile
SMA 2025 Log.1("EnterpriseCheck", "App 1s running in a personal profile.")

¥

The Goal: A Zero Trust Architecture

 The Principle: Never trust, always verify. Assume that the network is hostile. Assume that any device
could be compromised.

 Application to Mobile: A device is not granted access to corporate resources just because it has the
right password. Access Is a temporary privilege that must be continuously earned.

« Continuous Verification: Every time an app tries to access a corporate resource, the system re-
evaluates the device's security posture:

* |s the device jailbroken or rooted?
* |s the OS up-to-date?
* |s there any known malware on the device?

* |s the user's location unusual?

SMA 2025

Zero Trust: A Code-Level View

 |In a Zero Trust model, every API| request from the mobile app must be accompanied by proof of
the device's current security posture.

// Pseudo-code for a Zero Trust-aware API client
class SecureApiClient {

private DeviceHealthChecker healthChecker;

public void postData(String data) {
// 1. Gather device health signals before making the request
DevicePosture posture = healthChecker.getDevicePosture();

// 2. Create a short-lived token from the posture signals
String postureToken = createJwt(posture);

// 3. Attach the token to the API request header
HttpRequest request = new HttpRequest("https://api.mycorp.com/data");
request.addHeader("X-Device-Posture-Token", postureToken);
request.setBody(data);

SMA 2025 // 4. Send the request
httpClient.send(request);

// Pseudo-code for a Zero Trust-aware API client
class SecureApiClient {

private DeviceHealthChecker healthChecker;

public void postData(String data) {
// 1. Gather device health signals before making the request
DevicePosture posture = healthChecker.getDevicePosture();

// 2. Create a short-lived token from the posture signals
String postureToken = createJwt(posture);

// 3. Attach the token to the API request header

HttpRequest request = new HttpRequest("https://api.mycorp.com/data");
request.addHeader(" X-Device-Posture-Token", postureToken);
request.setBody(data);

// 4. Send the request
httpClient.send(request);

¥
¥

class DeviceHealthChecker {
DevicePosture getDevicePosture() {
// Gathers real-time signals from the device
SMA 2025 return new DevicePosture(
1SRooted: RootDetector.isDeviceRooted(),
osVersion: Build. VERSION.RELEASE,

/[.2..Create.a.short-lived.token from.the posture.signals
String postureToken = createJwt(posture);

// 3. Attach the token to the API request header

HttpRequest request = new HttpRequest("https://api.mycorp.com/data");
request.addHeader(" X-Device-Posture-Token", postureToken);
request.setBody(data);

// 4. Send the request
httpClient.send(request);

¥
¥

class DeviceHealthChecker {
DevicePosture getDevicePosture() {
// Gathers real-time signals from the device
return new DevicePosture(
1SRooted: RootDetector.isDeviceRooted(),
osVersion: Build. VERSION .RELEASE,
hasScreenLock: KeyguardManager.isDeviceSecure(),
malwareScanResult: MalwareScanner.getLastResult()
);
J
}

SMA 2025

Case Study: Corporate Breach via Mobile

 Even high-level executives can be targets.

 The Target: In 2019-2020, it was widely reported that the personal phone of Jeff Bezos was
compromised by a sophisticated piece of spyware.

* The Vector: The attack allegedly began with a malicious video file sent via WhatsApp from a trusted
contact.

* The Payload: The spyware, likely a variant of something like Pegasus, was able to exfiltrate huge
amounts of data from the phone over a period of months.

* The Lesson: No one is immune. If a personal device is used for work communication, a compromise of
that device can lead to a massive corporate data breach. This is why high-security organizations often
require their executives to use separate, locked-down devices exclusively for work.

SMA 2025

Key Takeaways (1/2)

 App Stores are Gatekeepers: Apple's "Walled Garden" prioritizes security, while Google's
"Open Market" prioritizes choice. Both have pros and cons.

 Vetting is Multi-Layered: Apps are checked via static, dynamic, and human analysis, but
determined attackers can still get through.

 Sideloading is Dangerous: When you install an app from an unofficial source, you bypass all
security checks and become the sole person responsible for your device's safety.

SMA 2025

Key Takeaways (2/2)

* Permissions Have Evolved: The shift to runtime, contextual permissions has rightly given
users more control. As developers, we must respect that control.

 Enterprises Need Control: In a corporate setting, Zero Trust, MDM, and containerization are
essential tools for managing app risk and protecting sensitive data on employee devices.

SMA 2025

Key Takeaways (2/2)

* Permissions Have Evolved: The shift to runtime, contextual permissions has rightly given
users more control. As developers, we must respect that control.

 Enterprises Need Control: In a corporate setting, Zero Trust, MDM, and containerization are
essential tools for managing app risk and protecting sensitive data on employee devices.

SMA 2025

Q&A

¢ Questions?

SMA 2025

