
SMA 2025

The Human Element
Social Engineering and User-Centric Security

Lecture #2

Why the User is Your Biggest Vulnerability
and Greatest Strength

SMA 2025

• Part 1: The Psychology of Deception - Why social engineering works.

• Part 2: The Mobile Attack Surface - Common attack vectors.

• Part 3: User Behavior & Risky Habits - A look in the mirror.

• Part 4: Taking Control with Code - Managing permissions on iOS & Android.

• Part 5: Proactive Defense - Building a "human firewall."

• Part 6: Secure Coding for Trust - Biometrics and secure storage.

Today's Agenda

SMA 2025

• The "Weakest Link"

Part 1: The Psychology of Deception

SMA 2025

• Technical Threats

• Malware (Pegasus)

• OS Vulnerabilities (Stagefright)

• Network Attacks (Man-in-the-Middle)

Recap from Lecture 1

SMA 2025

Today's Threat: A Simple Phone Call

SMA 2025

• Vishing (Voice Phishing)

• Attacker: "Hello, this is Alex from the fraud department at Bank of America. We've detected
a suspicious login attempt from a new device in a different country."

The Scenario, Part 1

SMA 2025

• User: "Oh, really? That wasn't me."

• Attacker: "I didn't think so. To protect your account, I need to freeze it immediately. But first, I
must verify I'm speaking to the account owner. I've just sent a verification code to your phone.
Can you please read it back to me?"

The Scenario, Part 2

SMA 2025

• The "verification code" is actually a password reset code.

• If you read them the code, they can:

• 1. Reset your password.

• 2. Lock you out of your own account.

• 3. Gain complete control.

The Attack

SMA 2025

• Not a software bug.

• Not a hardware flaw.

• Human trust and our instinct to react to urgency were exploited.

What Was Exploited?

SMA 2025

• Why We Fall For It

• Attackers exploit fundamental human tendencies.

The Psychology of Social Engineering (Chapter 3)

SMA 2025

• We are conditioned to comply with people we perceive as being in charge.

• A "bank manager"

• A "police officer"

• An "IT administrator"

• A "fraud investigator"

Principle 1: Authority

SMA 2025

Authority: Mobile Example

SMA 2025

 Principle 2: Urgency

SMA 2025

Principle 3: Likability / Deception

• Attackers can be friendly and build rapport to gain our trust. They might pretend to be:

• A colleague from another department.

• A new employee who needs help.

• A friend whose phone broke.

SMA 2025

Likability: Mobile Example

SMA 2025

Principle 4: Scarcity

• Creating the illusion of a limited-time opportunity.

• "Only 3 left in stock!"

• "This discount is for the first 100 callers only!"

• "You've won a prize! Claim it now!"

SMA 2025

Scarcity: Mobile Example

SMA 2025

Part 2: The Mobile Attack Surface

• Common Social Engineering Vectors

SMA 2025

Vector 1: Smishing (SMS Phishing)

• The classic fake text with a malicious link.

SMA 2025

Vector 2: Vishing (Voice Phishing)
• The phone call we discussed. Often uses Caller ID Spoofing to appear as if it's coming from a

legitimate source like your bank or the police.

SMA 2025

Vector 3: Quishing (QR Code Phishing)
• Replacing legitimate QR codes with malicious ones.

• On a parking meter.

• On a restaurant menu.

• In a promotional flyer.

SMA 2025

Quishing Example

SMA 2025

 Vector 4: App-Based Manipulation
• A malicious app using fake notifications or UI elements to trick you.

SMA 2025

Part 3: User Behavior & Risky Habits
• A Look in the Mirror

SMA 2025

Risky Habit 1: "Permission Fatigue"
• Granting all requested permissions to an app without thinking.

SMA 2025

Risky Habit 2: Weak Authentication
• Using simple, easy-to-guess passcodes

("1234", "0000").

• No passcode at all.

• A pattern lock that is easily smudged on
the screen.

SMA 2025

Risky Habit 3: Reusing Passwords
• Using the same password for your email,

banking, and social media apps.

SMA 2025

Risky Habit 4: Connecting to Open Wi-Fi
• Using "Free_Cafe_WiFi" without a VPN.

SMA 2025

 Risky Habit 5: Ignoring Updates
• Delaying OS and app updates.

SMA 2025

Part 4: Taking Control with Code
• Managing Permissions on iOS & Android

SMA 2025

The Principle of Least Privilege
• An app should only have access to the data and resources it

absolutely needs to function.

• A calculator app does not need your location.

• A photo editing app does not need your contacts.

SMA 2025

Android Permissions: The Manifest
• You must declare all required permissions in

`AndroidManifest.xml`
<!-- AndroidManifest.xml -->
<manifest ...>
 <!-- Required for network access -->
 <uses-permission android:name="android.permission.INTERNET" />

 <!-- Required for accessing the camera -->
 <uses-permission android:name="android.permission.CAMERA" />

 <!-- Required for fine location -->
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

 <application ...>
 </application>
</manifest>

SMA 2025

Android Permissions: Requesting at Runtime
• For dangerous

permissions (like
Camera or Location),
you must request them
from the user while the
app is running.

// In your Activity or Fragment
val requestPermissionLauncher =
 registerForActivityResult(ActivityResultContracts.RequestPermission()) { isGranted: Boolean ->
 if (isGranted) {
 // Permission is granted. Continue the action or workflow in your app.
 Log.d("Permission", "Camera permission granted")
 } else {
 // Explain to the user that the feature is unavailable because the
 // features requires a permission that the user has denied.
 Log.d("Permission", "Camera permission denied")
 }
 }

// ...

// When you need to use the camera
when {
 ContextCompat.checkSelfPermission(
 this,
 Manifest.permission.CAMERA
) == PackageManager.PERMISSION_GRANTED -> {
 // You can use the API that requires the permission.
 }
 shouldShowRequestPermissionRationale(Manifest.permission.CAMERA) -> {

SMA 2025

 } else {
 // Explain to the user that the feature is unavailable because the
 // features requires a permission that the user has denied.
 Log.d("Permission", "Camera permission denied")
 }
 }

// ...

// When you need to use the camera
when {
 ContextCompat.checkSelfPermission(
 this,
 Manifest.permission.CAMERA
) == PackageManager.PERMISSION_GRANTED -> {
 // You can use the API that requires the permission.
 }
 shouldShowRequestPermissionRationale(Manifest.permission.CAMERA) -> {
 // Show a UI to explain why you need the permission
 }
 else -> {
 // Directly ask for the permission
 requestPermissionLauncher.launch(Manifest.permission.CAMERA)
 }
}

SMA 2025

Android: The Privacy Dashboard

SMA 2025

iOS Permissions: Info.plist
• You must provide a "usage string" in your `Info.plist` file for

each permission. This is the message the user will see.

<!-- Info.plist -->
<key>NSLocationWhenInUseUsageDescription</key>
<string>We need your location to show you nearby restaurants.</string>
<key>NSCameraUsageDescription</key>
<string>We need access to your camera to scan QR codes.</string>
<key>NSPhotoLibraryUsageDescription</key>
<string>We need access to your photo library so you can share photos.</string>

SMA 2025

iOS Permissions: Requesting at Runtime
• You use specific

frameworks to request
permissions.

import SwiftUI
import CoreLocation

class LocationManager: NSObject, ObservableObject, CLLocationManagerDelegate {
 private let manager = CLLocationManager()
 @Published var status: CLAuthorizationStatus = .notDetermined

 override init() {
 super.init()
 manager.delegate = self
 }

 func requestPermission() {
 manager.requestWhenInUseAuthorization()
 }

 func locationManagerDidChangeAuthorization(_ manager: CLLocationManager) {
 status = manager.authorizationStatus
 if status == .authorizedWhenInUse || status == .authorizedAlways {
 // Permission granted, you can start using location
 print("Location permission granted")
 } else {
 // Permission denied
 print("Location permission denied")

SMA 2025

import CoreLocation

class LocationManager: NSObject, ObservableObject, CLLocationManagerDelegate {
 private let manager = CLLocationManager()
 @Published var status: CLAuthorizationStatus = .notDetermined

 override init() {
 super.init()
 manager.delegate = self
 }

 func requestPermission() {
 manager.requestWhenInUseAuthorization()
 }

 func locationManagerDidChangeAuthorization(_ manager: CLLocationManager) {
 status = manager.authorizationStatus
 if status == .authorizedWhenInUse || status == .authorizedAlways {
 // Permission granted, you can start using location
 print("Location permission granted")
 } else {
 // Permission denied
 print("Location permission denied")
 }
 }
}

// In your SwiftUI View
struct ContentView: View {
 @StateObject private var locationManager = LocationManager()

SMA 2025

 }

 func locationManagerDidChangeAuthorization(_ manager: CLLocationManager) {
 status = manager.authorizationStatus
 if status == .authorizedWhenInUse || status == .authorizedAlways {
 // Permission granted, you can start using location
 print("Location permission granted")
 } else {
 // Permission denied
 print("Location permission denied")
 }
 }
}

// In your SwiftUI View
struct ContentView: View {
 @StateObject private var locationManager = LocationManager()

 var body: some View {
 VStack {
 Button("Request Location Permission") {
 locationManager.requestPermission()
 }
 }
 }
}

SMA 2025

 iOS: App Tracking Transparency
• Since iOS 14.5, you must ask for permission to track users

across apps and websites.
import AppTrackingTransparency
import AdSupport

// ... in your app's initialization logic, e.g., AppDelegate or first View

func requestTrackingPermission() {
 ATTrackingManager.requestTrackingAuthorization { status in
 switch status {
 case .authorized:
 // Tracking authorization dialog was shown and we are authorized
 print("Authorized to track")
 // Get the IDFA
 print(ASIdentifierManager.shared().advertisingIdentifier)
 case .denied:
 // Tracking authorization dialog was shown and permission is denied
 print("Denied tracking")
 case .notDetermined:
 // Tracking authorization dialog has not been shown
 print("Tracking not determined")
 case .restricted:
 // The user is restricted from granting permission (e.g., parental controls)

SMA 2025

import AppTrackingTransparency
import AdSupport

// ... in your app's initialization logic, e.g., AppDelegate or first View

func requestTrackingPermission() {
 ATTrackingManager.requestTrackingAuthorization { status in
 switch status {
 case .authorized:
 // Tracking authorization dialog was shown and we are authorized
 print("Authorized to track")
 // Get the IDFA
 print(ASIdentifierManager.shared().advertisingIdentifier)
 case .denied:
 // Tracking authorization dialog was shown and permission is denied
 print("Denied tracking")
 case .notDetermined:
 // Tracking authorization dialog has not been shown
 print("Tracking not determined")
 case .restricted:
 // The user is restricted from granting permission (e.g., parental controls)
 print("Tracking restricted")
 @unknown default:
 fatalError()
 }
 }
}

SMA 2025

iOS: The App Privacy Report

SMA 2025

Part 5: Proactive Defense

• A concept from criminology: Instead of just reacting, we change the environment to make
the "crime" (the attack) harder, riskier, and less rewarding.

SMA 2025

 Goal 1: Increase the Effort
• Make it harder for the attacker to succeed.

SMA 2025

 How to Increase Effort: MFA
• Multi-Factor Authentication (MFA) is

the single most effective way to do this.

• Even if an attacker steals your password,
they can't log in without your second
factor.

SMA 2025

How to Increase Effort: Biometrics
• Using Face ID or a Fingerprint scanner is

much harder to bypass than a passcode.

SMA 2025

How to Increase Effort: Password Managers
• Allows you to have a unique, complex

password for every single service without
needing to memorize them.

SMA 2025

Goal 2: Increase the Risks
• Make it more likely the attacker will be

caught or blocked.

SMA 2025

 How to Increase Risks: Warning Banners
• Modern apps now warn you about

suspicious activity. These are designed to
break the spell of urgency.

SMA 2025

How to Increase Risks: App Store Vetting

• The review processes for the Apple App
Store and Google Play are designed to
identify and remove malicious apps before
they ever reach you.

• Automated static/dynamic analysis.

• Human reviewers.

SMA 2025

Goal 3: Reduce the Rewards
• Make the data they steal useless.

SMA 2025

How to Reduce Rewards: Encryption
• End-to-End Encryption (E2EE): Apps

like Signal and WhatsApp. The messages
are unreadable to anyone except the
sender and receiver.

• On-Device Encryption: Modern iOS and
Android devices are encrypted by default.
A stolen, locked phone is a brick in terms
of data access.

SMA 2025

How to Reduce Rewards: App Sandboxing
• An OS-level defense. Every app runs in its

own isolated "sandbox," unable to access
the data of other apps.

SMA 2025

Secure Coding for Trust
• Biometrics and Secure Storage in Code

SMA 2025

Android Biometrics
• Use `BiometricPrompt` for a system-managed authentication dialog.

private fun showBiometricPrompt() {
 val promptInfo = BiometricPrompt.PromptInfo.Builder()
 .setTitle("Biometric login for my app")
 .setSubtitle("Log in using your biometric credential")
 .setNegativeButtonText("Use account password")
 .build()

 val biometricPrompt = BiometricPrompt(this, ContextCompat.getMainExecutor(this),
 object : BiometricPrompt.AuthenticationCallback() {
 override fun onAuthenticationError(errorCode: Int, errString: CharSequence) {
 super.onAuthenticationError(errorCode, errString)
 Toast.makeText(applicationContext, "Authentication error: $errString", Toast.LENGTH_SHORT).show()
 }

 override fun onAuthenticationSucceeded(result: BiometricPrompt.AuthenticationResult) {
 super.onAuthenticationSucceeded(result)
 Toast.makeText(applicationContext, "Authentication succeeded!", Toast.LENGTH_SHORT).show()
 // Proceed with authenticated action
 }

 override fun onAuthenticationFailed() {

SMA 2025

private fun showBiometricPrompt() {
 val promptInfo = BiometricPrompt.PromptInfo.Builder()
 .setTitle("Biometric login for my app")
 .setSubtitle("Log in using your biometric credential")
 .setNegativeButtonText("Use account password")
 .build()

 val biometricPrompt = BiometricPrompt(this, ContextCompat.getMainExecutor(this),
 object : BiometricPrompt.AuthenticationCallback() {
 override fun onAuthenticationError(errorCode: Int, errString: CharSequence) {
 super.onAuthenticationError(errorCode, errString)
 Toast.makeText(applicationContext, "Authentication error: $errString", Toast.LENGTH_SHORT).show()
 }

 override fun onAuthenticationSucceeded(result: BiometricPrompt.AuthenticationResult) {
 super.onAuthenticationSucceeded(result)
 Toast.makeText(applicationContext, "Authentication succeeded!", Toast.LENGTH_SHORT).show()
 // Proceed with authenticated action
 }

 override fun onAuthenticationFailed() {
 super.onAuthenticationFailed()
 Toast.makeText(applicationContext, "Authentication failed", Toast.LENGTH_SHORT).show()
 }
 })

 biometricPrompt.authenticate(promptInfo)
}

SMA 2025

iOS Biometrics
• Use `LAContext` (Local Authentication) to evaluate a policy.

import LocalAuthentication

func authenticateUser() {
 let context = LAContext()
 var error: NSError?

 if context.canEvaluatePolicy(.deviceOwnerAuthenticationWithBiometrics, error: &error) {
 let reason = "Identify yourself!"

 context.evaluatePolicy(.deviceOwnerAuthenticationWithBiometrics, localizedReason: reason) { success, authenticationError in
 DispatchQueue.main.async {
 if success {
 // User authenticated successfully
 print("Authentication successful!")
 } else {
 // User did not authenticate successfully
 print("Authentication failed: \(authenticationError?.localizedDescription ?? "No error")")
 }
 }
 }
 } else {
 // No biometrics available

SMA 2025

import LocalAuthentication

func authenticateUser() {
 let context = LAContext()
 var error: NSError?

 if context.canEvaluatePolicy(.deviceOwnerAuthenticationWithBiometrics, error: &error) {
 let reason = "Identify yourself!"

 context.evaluatePolicy(.deviceOwnerAuthenticationWithBiometrics, localizedReason: reason) { success, authenticationError in
 DispatchQueue.main.async {
 if success {
 // User authenticated successfully
 print("Authentication successful!")
 } else {
 // User did not authenticate successfully
 print("Authentication failed: \(authenticationError?.localizedDescription ?? "No error")")
 }
 }
 }
 } else {
 // No biometrics available
 print("Biometrics not available: \(error?.localizedDescription ?? "No error")")
 }
}

SMA 2025

Secure Storage: The Problem
• Never store sensitive data like passwords,

tokens, or API keys in `SharedPreferences` or
`UserDefaults`. They are stored in plain text.

SMA 2025

Android Secure Storage: EncryptedSharedPreferences

• The Jetpack Security library provides a secure, encrypted alternative.
import androidx.security.crypto.EncryptedSharedPreferences
import androidx.security.crypto.MasterKeys

// Step 1: Create or retrieve the master key
val masterKeyAlias = MasterKeys.getOrCreate(MasterKeys.AES256_GCM_SPEC)

// Step 2: Create the EncryptedSharedPreferences instance
val sharedPreferences = EncryptedSharedPreferences.create(
 "secret_shared_prefs",
 masterKeyAlias,
 applicationContext,
 EncryptedSharedPreferences.PrefKeyEncryptionScheme.AES256_SIV,
 EncryptedSharedPreferences.PrefValueEncryptionScheme.AES256_GCM
)

// Step 3: Use it like regular SharedPreferences
with(sharedPreferences.edit()) {
 putString("auth_token", "your_super_secret_auth_token")
 apply()
}

// Reading the value

SMA 2025

import androidx.security.crypto.EncryptedSharedPreferences
import androidx.security.crypto.MasterKeys

// Step 1: Create or retrieve the master key
val masterKeyAlias = MasterKeys.getOrCreate(MasterKeys.AES256_GCM_SPEC)

// Step 2: Create the EncryptedSharedPreferences instance
val sharedPreferences = EncryptedSharedPreferences.create(
 "secret_shared_prefs",
 masterKeyAlias,
 applicationContext,
 EncryptedSharedPreferences.PrefKeyEncryptionScheme.AES256_SIV,
 EncryptedSharedPreferences.PrefValueEncryptionScheme.AES256_GCM
)

// Step 3: Use it like regular SharedPreferences
with(sharedPreferences.edit()) {
 putString("auth_token", "your_super_secret_auth_token")
 apply()
}

// Reading the value
val token = sharedPreferences.getString("auth_token", null)

SMA 2025

iOS Secure Storage: The Keychain
• The Keychain is the system-level, secure enclave for storing small pieces of sensitive data.

func saveToken(token: String) {
 let query: [String: Any] = [
 kSecClass as String: kSecClassGenericPassword,
 kSecAttrAccount as String: "com.yourapp.authtoken",
 kSecValueData as String: token.data(using: .utf8)!,
 kSecAttrAccessible as String: kSecAttrAccessibleWhenUnlockedThisDeviceOnly
]

 // Delete any existing item
 SecItemDelete(query as CFDictionary)

 // Add the new item
 let status = SecItemAdd(query as CFDictionary, nil)
 guard status == errSecSuccess else {
 print("Error saving to Keychain: \(status)")
 return
 }
 print("Successfully saved token to Keychain.")
}

func loadToken() -> String? {
 let query: [String: Any] = [

SMA 2025

 let status = SecItemAdd(query as CFDictionary, nil)
 guard status == errSecSuccess else {
 print("Error saving to Keychain: \(status)")
 return
 }
 print("Successfully saved token to Keychain.")
}

func loadToken() -> String? {
 let query: [String: Any] = [
 kSecClass as String: kSecClassGenericPassword,
 kSecAttrAccount as String: "com.yourapp.authtoken",
 kSecReturnData as String: kCFBooleanTrue!,
 kSecMatchLimit as String: kSecMatchLimitOne
]

 var dataTypeRef: AnyObject?
 let status = SecItemCopyMatching(query as CFDictionary, &dataTypeRef)

 if status == errSecSuccess {
 if let data = dataTypeRef as? Data, let token = String(data: data, encoding: .utf8) {
 return token
 }
 }
 return nil
}

SMA 2025

Training and Awareness
• The Human Firewall

SMA 2025

For Corporate Users
• Regular, mandatory security training.

• Simulated phishing campaigns to test and educate.

• Clear policies on BYOD (Bring Your Own Device).

SMA 2025

 For Individual Users
• "Stop, Think, Connect"

• A simple mantra before clicking any link or responding to an urgent request.

SMA 2025

 Stop

SMA 2025

 Think
• Does this make sense?

• Did I expect this message?

• Is this person who they say they are?

SMA 2025

 Connect
• Only after you have stopped and thought, should you decide to proceed. If in doubt, contact

the person or company through a separate, trusted channel (e.g., call the number on the
back of your bank card, not the one in the email).

SMA 2025

 Key Takeaways (1/3)
• Attackers Target People, Not Just Phones

• Social engineering exploits human psychology (Authority, Urgency).

SMA 2025

Key Takeaways (2/3)
• Your Habits & Your Code Matter

• Permission fatigue and poor password hygiene are major user vulnerabilities.

• As developers, we must use the Principle of Least Privilege and secure APIs
(BiometricPrompt, Keychain).

SMA 2025

 Key Takeaways (3/3)
• Build a Human Firewall

• Think Like a Criminologist: Make attacks harder (MFA), riskier (warnings), and less
rewarding (encryption).

• "Stop, Think, Connect" is your most powerful tool.

SMA 2025

Q&A
• Questions?

