_ecture #2

The Human Element
Social Engineering and User-Centric Security

SMA 2025

Why the User is Your Biggest Vulnerability
and Greatest Strength

Today's Agenda

 Part 1: The Psychology of Deception - Why social engineering works.
 Part 2: The Mobile Attack Surface - Common attack vectors.

 Part 3: User Behavior & Risky Habits - A look in the mirror.

« Part 4: Taking Control with Code - Managing permissions on i0OS & Android.
 Part 5: Proactive Defense - Building a "human firewall."

 Part 6: Secure Coding for Trust - Biometrics and secure storage.

SMA 2025

Part 1: The Psychology of Deception

 The "Weakest Link"

2222222

Recap from Lecture 1

 Technical Threats
 Malware (Pegasus)
 OS Vulnerabilities (Stagefright)

e Network Attacks (Man-in-the-Middle)

SMA 2025

Today's Threat: A Simple Phone Call

SMA 2025

The Scenario, Part 1

. Vishing (Voice Phishing)

 Attacker: "Hello, this is Alex from the fraud department at Bank of America. We've detected
a suspicious login attempt from a new device in a different country.”

SMA 2025

The Scenario, Part 2

 User: "Oh, really? That wasn't me."

 Attacker: "l didn't think so. To protect your account, | need to freeze it immediately. But first, |
must verify I'm speaking to the account owner. lI've just sent a verification code to your phone.
Can you please read it back to me?"

SMA 2025

The Attack

* The "verification code" is actually a password reset code.

* |f you read them the code, they can:
* 1. Reset your password.
2. Lock you out of your own account.

3. Gain complete control.

SMA 2025

What Was Exploited?

* Not a software bug.

e Not a hardware flaw.

« Human trust and our instinct to react to urgency were exploited.

SMA 2025

The Psychology of Social Engineering (Chapter 3)

 Why We Fall For It

 Attackers exploit fundamental human tendencies.

SMA 2025

Principle 1: Authority

* We are conditioned to comply with people we perceive as being in charge.

* A"bank manager"
A "police officer"
* An"IT administrator"

A "fraud investigator"

SMA 2025

Authority: Mobile Example

@ Apple Support

3 ‘ \ n
NOW

Apple Pay has been suspended
due suscicious activity.

A technician will be calling you shortly to
resolve this.

- Apple Support

SMA 2025

Principle 2: Urgency

1:33

5] USPS

USPS: Your package #4812A could not be delivered. You must
confirm your address within 2 hours or it will be returned to

sender. Link: [bit.ly/fake-usps-link]

Link: | bit.ly/fake-usps-link

e
-k -
')
Py 4
; ' g
/'_I
o -~
e
» "
."_.
R
% -
N T
o
o/)

SMA 2025

Principle 3: Likability / Deception

 Attackers can be friendly and build rapport to gain our trust. They might pretend to be:
* A colleague from another department.

* A new employee who needs help.

* A friend whose phone broke.

SMA 2025

Likability: Mobile Exam

+1 (555) 123-4667

e e e e e e e e BN,
Hey, it's Sarah. My phone fell in the pool and this is my ~
temporary number. | can't access my banking app. Could

you do me a huge favor and send $50 for a cab? I'll pay

you back as soon as | get home.

SMA 2025

Principle 4: Scarcity

 Creating the illusion of a limited-time opportunity.

 "Only 3 left in stock!"
 "This discount is for the first 100 callers only!"

 "You've won a prize! Claim it now!"

SMA 2025

Scarcity: Mobile Example

The new Air Jordans are 50% off for the
the next5 minutes ONLY. Tap here to buy
before they're gone!

v

-

SMA 2025

Part 2: The Mobile Attack Surface

e Common Social Engineering Vectors

SMA 2025

Vector 1: Smishing (SMS Ph

e The classic fake text with a malicious link.

i Bank Security

PRIZE NOTIFICATION &+

Congratuations! I'eve won a
SMA 2025 won a branw iPhone 15!
Claim your prize now
before to expires:

\
[winner.site/claim-now] \

Vector 2: Vishing (Voice Phishing)

* The phone call we discussed. Often uses Caller ID Spoofing to appear as if it's coming from a
legitimate source like your bank or the police.

Bank of America

SMA 2025

Vector 3: Quishing (QR Code Phishing)

 Replacing legitimate QR codes with malicious ones.

* On a parking meter.
e On a restaurant menu.

* |In a promotional flyer.

SMA 2025

Quishing E

PAY HERE -
Scan to avoid fin:

SMA 2025

Vector 4: App-Based Manipulation

A malicious app using fake notifications or Ul elements to trick you.
-y A N '
A B*Re

” Apple ID Verification '
-

Enter your Apple AID password to continue
using iCloud and other services.

d Password
1

Continue

Cancel

SMA 2025

Part 3: User Behavior & Risky Habits

e A Look in the Mirror

2222222

Risky Habit 1: "Permission Fatigue”

 Granting all requested permissions to an app without thinking.

SMA 2025

Risky Habit 2: Weak Authentication

 Using simple, easy-to-guess passcodes |
("1234", "O0000"). _ - h

* No passcode at all.

A pattern lock that is easily smudged on
the screen.

SMA 2025

Risky Habit 3: Reusing Passwords

 Using the same password for your emalill,
banking, and social media apps.

SMA 2025

Risky Habit 4: Connecting to Open Wi-Fi

 Using "Free_Cafe_WiFi" without a VPN.

ATTACKER -
MONITORING TRAFFIC

Public W-Fi is NOT Secure

SMA 2025

Risky Habit 5: ignoring Udates

 Delaying OS and app updates.

SMA 2025

Part 4: Taking Control with Code

¢ Managing Permissions on iOS & Android

SMA 2025

The Principle of Least Privilege

 An app should only have access to the data and resources it
absolutely needs to function.

* A calculator app does not need your location.

A photo editing app does not need your contacts.

SMA 2025

Android Permissions: The Manifest

* You must declare all required permissions in

"AndroidManifest.xml’ | |
<!-- AndroidManifest.xml -->

<manifest ...>
<!-- Required for network access -->
<uses-permission android:name="android.permission.INTERNET" />

<!-- Required for accessing the camera -->
<uses-permission android:name="android.permission.CAMERA" />

<!-- Required for fine location -->
<uses-permission android:name="android.permission. ACCESS_FINE_LOCATION" />

<application ..>
</application>
</manifest>

SMA 2025

Android Permissions: Requesting at Runtime

// In your Activity or Fragment

 For dangerous val requestPermissionLauncher =
perm issions (like registerForActivityResult(ActivityResultContracts.RequestPermission()) { 1sGranted: Boolean ->

1f (1sGranted) {

Camera or Location), oY . . .
t t th // Permission 1s granted. Continue the action or workflow in your app.

you must reques _ em Log.d("Permission”, "Camera permission granted")

from the user while the Y else {

app Is running. // Explain to the user that the feature 1s unavailable because the

// features requires a permission that the user has denied.
Log.d("Permission"”, "Camera permission denied")

h
¥

/] ...

// When you need to use the camera

when {
ContextCompat.checkSeltPermission(
this,
Manifest.permission. CAMERA
) == PackageManager. PERMISSION_GRANTED -> {
SMA 2025 : ..
// You can use the API that requires the permission.

h

I Ve Y A A & YA YA Y A A A Y < Y U WY & sl B Y. UAN - '@

5y else 1
/L Explain.to.the user that the feature is. unavailable because.the
// features requires a permission that the user has denied.
Log.d("Permission"”, "Camera permission denied")

¥
¥

/] ...

// When you need to use the camera
when {
ContextCompat.checkSeltPermission(
this,
Manifest.permission. CAMERA
) == PackageManager PERMISSION_GRANTED -> {
// You can use the API that requires the permission.
¥
shouldShowRequestPermissionRationale(Manifest.permission.CAMERA) -> {
// Show a Ul to explain why you need the permission

h

else -> {
// Directly ask for the permission
requestPermissionLauncher.launch(Manifest.permission. CAMERA)

¥
¥

SMA 2025

Android: TheP

rivacy Dashboard

Microphone

Location

Location

Usead by S apps

Microphone

See other permissions

Body sensors, Calendar, and 10 mor2

SMA 2025

10S Permissions: Info.plist

* You must provide a "usage string" in your Info.plist file for
each permission. This is the message the user will see.

<!-- Info.plist -->

<key>NSLocationWhenInUseUsageDescription</key>

<string>We need your location to show you nearby restaurants.</string>
<key>NSCameraUsageDescription</key>

<string>We need access to your camera to scan QR codes.</string>
<key>NSPhotoLibraryUsageDescription</key>

<string>We need access to your photo library so you can share photos.</string>

SMA 2025

10S Permissions: Requesting at Runtime

import SwiftUI

e You use s pe cific import CorelLocation

frameworks to request class LocationManager: NSObject, ObservableObject, CLLocationManagerDelegate {

permissions. private let manager = CLLocationManager()
@ Published var status: CLAuthorizationStatus = .notDetermined

override nit() {
super.init()
manager.delegate = self

h

func requestPermission() {
manager.requestWhenInUse Authorization()

h

func locationManagerDidChange Authorization(_ manager: CLLocationManager) {
status = manager.authorizationStatus
if status == .authorizedWhenInUse |l status == .authorizedAlways {
// Permission granted, you can start using location
print("Locatiron permisston granted")
SMA 2025 Y else §

// Permission denied
nrint("T ocation nermis<ion denied")

HIIpPoIt L oIcL.ocationl

class LocationManager: NSObject, ObservableObject, CLLocationManagerDelegate {
private let manager = CLLocationManager()
@Published var status: CLAuthorizationStatus = .notDetermined

override mit() {
super.init()
manager.delegate = self

¥

func requestPermission() {
manager.requestWhenInUse Authorization()

¥

func locationManagerDidChange Authorization(_ manager: CLLocationManager) {
status = manager.authorizationStatus
if status == .authorizedWhenInUse [l status == .authorizedAlways {
// Permission granted, you can start using location
print("Location permission granted")
}else {
// Permission denied
print("Location permission denied")

¥
¥
¥

SMA 2025 // In your SwiftUI View
struct ContentView: View {

() Qtatal) YVhiert nrivate var lancationNManaocer — | acatinn N aoanaoatr)

S

func locationManagerDidChange Authorization(_ manager: CLLocationManager) {
status = manager.authorizationStatus
if status == .authorizedWhenInUse [l status == .authorizedAlways {
// Permission granted, you can start using location
print("Location permission granted")
} else {
// Permission denied
print("Location permission denied")

¥
¥
¥

// In your SwiftUI View
struct ContentView: View {
@StateObject private var locationManager = LocationManager()

var body: some View {
VStack {
Button("Request Location Permission") {
locationManager.requestPermission()

¥
¥
¥
¥

SMA 2025

10S: App Tracking Transparency

 Since 1I0S 14.5, you must ask for permission to track users

across apps and websites.

SMA 2025

import AppTrackingTransparency
import AdSupport

// ... 1n your app's initialization logic, e.g., AppDelegate or first View

func requestTrackingPermission() {
AT TrackingManager.requestTrackingAuthorization { status in
switch status {
case .authorized:
// Tracking authorization dialog was shown and we are authorized
print("Authorized to track")
// Get the IDFA
print(ASIdentifierManager.shared().advertisingldentifier)
case .denied:
// Tracking authorization dialog was shown and permission 1s denied
print("Denied tracking")
case .notDetermined:
// Tracking authorization dialog has not been shown
print("Tracking not determined")
case .restricted:

T L] L] L] L]

import AppTrackingTransparency
import AdSupport

// ... 1n your app's initialization logic, e.g., AppDelegate or first View

func requestTrackingPermission() {
ATTrackingManager.requestTracking Authorization { status in
switch status {
case .authorized:
// Tracking authorization dialog was shown and we are authorized
print(" Authorized to track")
// Get the IDFA
print(ASIdentifierManager.shared().advertisingldentifier)
case .denied:
// Tracking authorization dialog was shown and permission is denied
print("Denied tracking")
case .notDetermined:
// Tracking authorization dialog has not been shown
print("Tracking not determined")
case .restricted:
// The user 1s restricted from granting permission (e.g., parental controls)
print("Tracking restricted")

@unknown default:
fatalError()

SMA 2025 ;

¥
¥

SMA 2025

10S: The App Privacy Report

11:10 Mon Nov 15

Settings

E}B General

8 Control Center
Display & Brightness
g Home Screen & Dock
Accessibility
Wallpaper

n Siri & Search

Apple Pencil

(il Touch ID & Passcode

) Battery

App Store

@ Wallet & Apple Pay

g Passwords

Mail

{ Privacy App Privacy Report

App Privacy Report records data and sensaor
access, app and website network activity, and the
most frequently contacted domains. Learn more...

DATA & SENSOR ACCESS

Messages
11 min. ago - Contacts and Photos

Photos

12 hr. ago - Contacts, Media Library and 1...

Find My

16 hr. ago « Contacts and Location

17 hr. ago - Contacts

Mail

19 hr. ago - Contacts

&
S
App Store ;

Show All >

These apps accessed your data or sensors in the
past 7 days.

APP NETWORK ACTIVITY

u Messages
49

Kindl
E Inale i

u High Rise
28

Part 5: Proactive Defense

* A concept from criminology: Instead of just reacting, we change the environment to make
the "crime" (the attack) harder, riskier, and less rewarding.

SMA 2025

Goal 1: Increase the Effort

e Make it harder for the attacker to succeed.

WEAK SECURITY STRONG SECURITY

SMA 2025

How to Increase Effort: MFA

 Multi-Factor Authentication (MFA) is
the single most effective way to do this.

 Even if an attacker steals your password,
they can't log in without your second

factor.

Password Authenticate Secured access

SMA 2025

How to Increase Effort: Biometrics

 Using Face ID or a Fingerprint scanner is
much harder to bypass than a passcode.

SMA 2025

How to Increase Effort: Password Managers

* Allows you to have a unigue, complex
password for every single service without

needing to memorize them.
OIPassword Product v Resources v Support v Pricing Sign in Talk to sales

G.eam about passkeys in 1Password))

EL) All kems °

More than a password Sp——

manager. -) o Q-

0

QEFSSSERC LWy O e a lesead@gmall.com
Protect yourself, your family, or your global workforce @ oo | ¢ tumema | 9w G Googe N
with simple security, easy secret sharing, and actionable S — S o oo
insight reports. @ Fovorkes v L [Emeaccom '

wem AMpzon N
4 35V 100 PL0 ntos floavn: v/ ‘
! Amazon ps/paypal.conysignen

o PayPa s p0iese e DoOMallCo
JANUARY Security Questions
Get started Schedule a demo > ! Meacal Record |
*— Driver Licanse halls . Maiden NSMe
m :'vg.j”t':‘_"ylc ¥ OD10TSOTIT2NES T seesesssas

—

= . Home Wi-Fi
e Home Wi-F

- 2 M shopping
Checking Account i’ r.cm'cwork Plan

+ New ltem

w. Medical Record ? last modified on 18 Ma:

b

N a8 A R Credit Card

SMA 2025

Goal 2: Increase the Risks

e Make it more likely the attacker will be
caught or blocked.

SMA 2025

How to Increase Risks: Warning Banners

* Modern apps now warn you about

suspicious activity. These are designed to P ——
break the spell of urgency. i e

URGENT: Your account is on held!

IMessage

The sender nest in your contact list.
Report Jank

Hey it's mel I'm in trouble
can you send money?

& () & NotScure | scam.site/legin

SMA 2025 Your connection not

private

Attackers might trying to steal your information
=Y rmnni)4 '‘fell0 T A5 ® el

How to Increase Risks: App Store Vetting

* The review processes for the Apple App
Store and Google Play are designed to
identify and remove malicious apps before
they ever reach you.

 Automated static/dynamic analysis.

 Human reviewers.

SMA 2025

The \pp Store Review

Process
y o T
/" SUBMITTING REJECT ;
. YOURAPP | REASONS . CONCLUSION |
S 4 - o
....................... e T

RESUBMITING
YOUR APP

Goal 3: Reduce the Rewards

e Make the data they steal useless.

SMA 2025

How to Reduce Rewards: Encryption

e End-to-End Encryption (E2EE): Apps
like Sighal and WhatsApp. The messages
are unreadable to anyone except the
sender and receiver.

e On-Device Encryption: Modern iOS and 218208885 iosieson 2l
i] 1DD319 :-31bb371795bb :o '
Android devices are enc_:r*ypte.d b_y default. ,3_bnmmowi;;:ggi,g
A stolen, locked phone is a brick in terms ‘ “‘fjgiffg;j;;‘;goi‘, S
of data access. 21cC :1fb220172mso BH

SMA 2025

How to Reduce Rewards: App Sandboxing

* An OS-level defense. Every app runs in its
own Isolated "sandbox," unable to access
the data of other apps.

Protects Data From Malicious Apps

SMA 2025

Secure Coding for Trust

 Biometrics and Secure Storage in Code

Biometric Data and Template Encryption

Clockedlne

SMA 2025

Android Biometrics

« Use BiometricPrompt for a system-managed authentication dialog.

private fun showBiometricPrompt() {
val promptInfo = BiometricPrompt.PromptInfo.Builder()
setTitle("Biometric login for my app")
setSubtitle("Log 1n using your biometric credential")

setNegativeButtonText("Use account password")
build()

val biometricPrompt = BiometricPrompt(this, ContextCompat.getMainExecutor(this),
object : BiometricPrompt.AuthenticationCallback() {
override fun onAuthenticationError(errorCode: Int, errString: CharSequence) {
super.onAuthenticationError(errorCode, errString)
Toast.makeText(applicationContext, "Authentication error: $errString", Toast. LENGTH_SHORT).show()

b

override fun onAuthenticationSucceeded(result: BiometricPrompt.AuthenticationResult) {
super.onAuthenticationSucceeded(result)
Toast.makeText(applicationContext, "Authentication succeeded!", Toast. LENGTH_SHORT).show()
SMA 2025 // Proceed with authenticated action

private fun showBiometricPrompt() {
val promptInfo = BiometricPrompt.PromptInfo.Builder()
setTitle("Biometric login for my app")
setSubtitle("Log 1n using your biometric credential")
setNegativeButtonText("Use account password")

build()

val biometricPrompt = BiometricPrompt(this, ContextCompat.getMainExecutor(this),
object : BiometricPrompt.AuthenticationCallback() {
override fun onAuthenticationError(errorCode: Int, errString: CharSequence) {
super.onAuthenticationError(errorCode, errString)
Toast.makeText(applicationContext, "Authentication error: $errString", Toast. LENGTH_SHORT).show()

¥

override fun onAuthenticationSucceeded(result: BiometricPrompt.AuthenticationResult) {
super.onAuthenticationSucceeded(result)
Toast.makeText(applicationContext, "Authentication succeeded!", Toast. LENGTH_SHORT).show()
// Proceed with authenticated action

¥

override fun onAuthenticationFailed() {

super.onAuthenticationFailed()
Toast.makeText(applicationContext, "Authentication failed", Toast. LENGTH_SHORT).show()

¥
¥)

SMA 2025 biometricPrompt.authenticate(promptInfo)
}

10S Biometrics

« Use LAContext (Local Authentication) to evaluate a policy.
import LocalAuthentication

func authenticateUser() {
let context = LAContext()
var error: NSError?

if context.canEvaluatePolicy(.deviceOwnerAuthenticationWithBiometrics, error: &error) {
let reason = "Identify yourself!"

context.evaluatePolicy(.deviceOwnerAuthenticationWithBiometrics, localizedReason: reason) { success, authenticationError in
DispatchQueue.main.async {

1f success {
// User authenticated successfully
print(" Authentication successful!")

}else {
// User did not authenticate successfully
print(" Authentication failed: \(authenticationError?.localizedDescription ?? "No error")")

h

SMA 2025 b
¥

}else {

import LocalAuthentication

func authenticateUser() {
let context = LAContext()
var error: NSError?

if context.canEvaluatePolicy(.deviceOwnerAuthenticationWithBiometrics, error: &error) {
let reason = "Identify yourself!"

context.evaluatePolicy(.deviceOwnerAuthenticationWithBiometrics, localizedReason: reason) { success, authenticationError 1n
DispatchQueue.main.async {

1f success {
// User authenticated successtully
print(" Authentication successful!")

}else {
// User did not authenticate successfully
print(" Authentication failed: \(authenticationError?.localizedDescription ?? "No error")")

¥
¥

}
}else {

// No biometrics available
print("Biometrics not available: \(error?.localizedDescription ?? "No error")")

¥
SMA 2025

Secure Storage: The Problem

* Never store sensitive data like passwords,
tokens, or APl keys in 'SharedPreferences’ or
"UserDefaults . They are stored in plain text.

INSECURE DATA STORAGE

SMA 2025

Android Secure Storage: EncryptedSharedPreferences

 The Jetpack Security library provides a secure, encrypted alternative.

import androidx.security.crypto.EncryptedSharedPreferences
import androidx.security.crypto.MasterKeys

// Step 1: Create or retrieve the master key
val masterKeyAlias = MasterKeys.getOrCreate(MasterKeys. AES256_GCM_SPEC)

// Step 2: Create the EncryptedSharedPreferences instance

val sharedPreferences = EncryptedSharedPreferences.create(
"secret_shared_prefs",
masterKeyAlias,
applicationContext,
EncryptedSharedPreterences.PrefKeyEncryptionScheme . AES256_SI1V,
EncryptedSharedPreferences.Pref ValueEncryptionScheme . AES256_GCM

)

// Step 3: Use it like regular SharedPreferences
with(sharedPreferences.edit()) {

n n

putString("auth_token","your_super_secret_auth_token")
SMA 2025 apply()

¥

import androidx.security.crypto.EncryptedSharedPreferences
import androidx.security.crypto.MasterKeys

// Step 1: Create or retrieve the master key
val masterKeyAlias = MasterKeys.getOrCreate(MasterKeys.AES256_ GCM_SPEC)

// Step 2: Create the EncryptedSharedPreferences instance

val sharedPreferences = EncryptedSharedPreferences.create(
"secret_shared_prefs",
masterKeyAlias,
applicationContext,
EncryptedSharedPreterences.PrefKeyEncryptionScheme . AES256_SIV,
EncryptedSharedPreferences.Pref ValueEncryptionScheme AES256_GCM

)

// Step 3: Use it like regular SharedPreferences
with(sharedPreferences.edit()) {

nn

putString("auth_token", "your_super_secret_auth_token")

apply()
}

// Reading the value
val token = sharedPreferences.getString("auth_token", null)

SMA 2025

10S Secure Storage: The Keychain

« The Keychain is the system-level, secure enclave for storing small pieces of sensitive data.

func saveToken(token: String) {
let query: [String: Any] = [
kSecClass as String: kSecClassGenericPassword,
kSecAttrAccount as String: "com.yourapp.authtoken",
kSecValueData as String: token.data(using: .utf8)!,
kSecAttrAccessible as String: kSecAttrAccessibleWhenUnlockedThisDeviceOnly

]

// Delete any existing item
SecltemDelete(query as CFDictionary)

// Add the new item
let status = SecltemAdd(query as CFDictionary, nil)
guard status == errSecSuccess else {
print("Error saving to Keychain: \(status)")
return

h

print("Successfully saved token to Keychain.")
SMA 2025 1

func loadToken() -> String? {

T N " e T/

guard status == errSecSuccess else {
print("Error saving to Keychain: \(status)")
refurn

h

print("Successfully saved token to Keychain.")

¥

func loadToken() -> String? {
let query: [String: Any] = [
kSecClass as String: kSecClassGenericPassword,
kSecAttrAccount as String: "com.yourapp.authtoken",
kSecReturnData as String: kKCFBooleanTrue!,
kSecMatchLimit as String: kSecMatchLimitOne

]

var dataTypeRef: AnyObject?
let status = SecltemCopyMatching(query as CFDictionary, &dataTypeRet)

1f status == errSecSuccess {
if let data = dataTypeRet as? Data, let token = String(data: data, encoding: .utf8) {
return token

h
¥

return nil

SMA 2025

Training and Awareness

e The Human Firewall

SMA 2025

For Corporate Users

 Regular, mandatory security training.
 Simulated phishing campaigns to test and educate.

* Clear policies on BYOD (Bring Your Own Device).

Internal Communications

Geniagit Jop tiatty
& [tbont r uii Mis
| .

b > - " Company u 3:_1pi:'-'1-_1
() 1 M F
o ~ 1 2 T
0 > 4 9 0N
g »‘ Dear SecureCo Employee 2 14 o
o Immediate Action Required: All Employee SRR
8 - Password Reset =

Due Nue a recent sacurity incident, all employees are required to reset corporde
immediattely Fallure ta sso ta 24 hours will result to aceount suspension.

RESET PASSWORD NOW

a TS IS TRAINING FYERCISE Mxs nnl click Bels ios bapio s sarodx Lison o abaut phishing

SMA 2025 SecureCce T Security Team

For Individual Users

e "Stop, Think, Connect"

* A simple mantra before clicking any link or responding to an urgent request.

SMA 2025

2222222

Think

e Does this make sense?

 Did | expect this message?

* |s this person who they say they are?

SMA 2025

Connect

 Only after you have stopped and thought, should you decide to proceed. If in doubt, contact
the person or company through a separate, trusted channel (e.g., call the number on the
back of your bank card, not the one in the email).

7R

SMA 2025

Key Takeaways (1/3)

e Attackers Target People, Not Just Phones

e Social engineering exploits human psychology (Authority, Urgency).

SMA 2025

Key Takeaways (2/3)

e Your Habits & Your Code Matter
 Permission fatigue and poor password hygiene are major user vulnerabilities.

* As developers, we must use the Principle of Least Privilege and secure APls
(BiometricPrompt, Keychain).

SMA 2025

Key Takeaways (3/3)

e Build a Human Firewall

 Think Like a Criminologist: Make attacks harder (MFA), riskier (warnings), and less
rewarding (encryption).

* "Stop, Think, Connect" is your most powerful tool.

SMA 2025

Q&A

¢ Questions?

SMA 2025

