_ecture #13

Hands-on Mobile & loT Penetration Testing

2222222



Title Slide

Hands-on Mobile & loT Penetration Testing
From Lab Setup to Exploitation



Today's Agenda

* Part 1: The Pentest Lab - Setting up your attack environment.

» Part 2: Static Analysis (SAST) - Finding bugs without running the app.

* Part 3: Dynamic Analysis (DAST) - Manipulating apps at runtime with Frida.
* Part 4: Network Interception - Breaking TLS with Burp Suite.

* Part 5: loT Security Testing - Sniffing BLE and MQTT.
* Part 6: Reporting - How to write a vulnerability report.



Disclaimer

Ethical Hacking Only

* The tools and techniques discussed today are for educational purposes only.

* Only test applications you own or have explicit written permission to test.

» Jesting third-party apps without permission is illegal and can lead to prosecution.



Part1: The Pentest Lab

Building Your Arsenal



Emulator vs. Physical Device

 Emulators (Genymotion, Android Studio AVD):

* Pros: Free, easy to root, snapshot capability (save state).

* Cons: No Bluetooth, no NFC, some ARM libraries won't run (x86 architecture).
* Pros: Real hardware (Bluetooth/NFC works), 100% app compatibility.

* Cons: Risk of bricking, expensive.



The "Root" Requirement

 Why Root/Jailbreak?

* To access the app's private data (/data/data/com.app).
* To hook system functions (Frida).

* To bypass SSL Pinning.

* To intercept traffic.



Essential Tools Installation

 ADB (Android Debug Bridge): The command line tool to talk to Android.
* Frida: The dynamic instrumentation toolkit.



Part 2: Static Analysis (SAST)

Reading the Blueprint



MobSF: The Swiss Army Knife

 What it is: An automated tool that decompiles the app and scans for vulnerabilities.
 How to use:

* Drag and drop your APK or IPA file into the web interface.

» Wait for the scan to finish.

* Read the report.

* Hardcoded API keys.

* |nsecure permissions.

* Weak crypto configurations.

* Firebase database misconfigurations.



Manual Reversing with JADX

 JADX: A GUI tool to decompile Android APKs to Java.

 Why use it? MobSF gives you a high-level overview, but JADX lets you read the logic.
* Workflow:

 Open APK in JADX-GUI.
» Search for strings like "password”, "api_key", "token".
* Read the LoginActivity to see how authentication is handled.



10S Reversing: Ghidra & Hopper

 The Challenge: i0OS apps are compiled to machine code (ARM64), not bytecode. They are
much harder to read.

* Tools:
* Ghidra: NSA's open-source reverse engineering suite.
 Hopper Disassembler: A paid but user-friendly Mac tool.
* Symbol names (function names) that give away logic.
» String constants.



Part 3: Dynamic Analysis (DAST)

Manipulating Reality with Frida



What s Frida?

* Concept: A dynamic instrumentation toolkit. It lets you inject JavaScript into a running app to
modify its behavior.

« Capabilities:
* Read/Write memory.
* |Intercept function calls.
* Change return values (e.g., make isAdmin() return true).
» Bypass SSL Pinning.



Setting up Frida

 Install Python bindings: pip install frida-tools

 Download Frida Server: Get the binary matching your device architecture (arm64) from
GitHub.

* Push to Device:adb push frida-server /data/local/tmp/ adb shell "chmod 755 /data/local/tmp/
frida-server" adb shell "/data/local/tmp/frida-server &"

» Verify: frida-ps -U (Lists running processes on USB device).



Frida Scripting: The Basics

Goal: Bypass a function checkPin(String pin) that returns a boolean.

Java.perform(function() {
/' 1. Get a reference to the class
var MainActivity = Java.use("com.example.app.MainActivity");

// 2. Hook the method
MainActivity.checkPin.implementation = function(pin) {
console.log("Intercepted PIN check for: " + pin);

// 3. Force return true
return true;
}3
};



Objection: Frida without Scripting

 What it is: Acommand-line tool that automates common Frida tasks.
 Key Commands:

* android sslpinning disable: Automatically bypasses pinning.

* android root disable: Hides root from the app.

 i0os keychain dump: Dumps the iIOS Keychain.

 memory search "password". Searches RAM for strings.



Part 4: Network Interception

Breaking TLS with Burp Suite



The Setup: Proxying Traffic

* Burp Suite: Start the Proxy listener on All Interfaces.

* Phone: Go to Wi-Fi Settings -> Advanced -> Proxy -> Manual.
* Host: Your Laptop's IP.

* Port: 8080.

* Visit http://burp on the phone browser.

* Download the CA Certificate.

* Install it as a "Trusted Root" in Android/IOS settings.



Bypassing SSL Pinning

 The Problem: Even with the cert installed, secure apps will reject it because they "pin" the real
server cert.

* The Fix: Use Frida/Objection to disable the pinning check logic in the app.

« Command: objection --gadget com.app.name explore --startup-command "android sslpinning
disable”



Analyzing API Traffic

« What to look for:

* IDOR (Insecure Direct Object Reference): Change user i1d=100 to user_id=101. Can you
see someone else's data?

 Excessive Data Exposure: Does the API return the full user object (including password
hash) even if the Ul only shows the name?

* Broken Auth: Can you reuse an old token?



Part 5:loT Security Testing

Hacking the Hardware Connection



Bluetooth Low Energy (BLE) Basics

 GATT (Generic Attribute Profile): The architecture of BLE data.
» Services: Collections of characteristics (e.g., "Heart Rate Service").

* Characteristics: The actual data points (e.g., "Heart Rate Measurement").
* Can be Read, Written, or Notified (Updates).



Tools for BLE Hacking

 nRF Connect (Mobile App): The best tool for exploring BLE devices. It lets you scan, connect,
and read/write characteristics.

» Bettercap (Linux): A powerful tool for BLE sniffing and spoofing.
* Ubertooth One: Hardware sniffer for capturing BLE packets in the air.



BLE Attack: Replay

* Scenario: A smart lock opens when you press "Unlock" in the app.
« Attack:

» Capture the "Unlock" packet using a sniffer (Ubertooth).
» Wait for the owner to leave.

* Replay the exact same packet.



MQTT Hacking

 MQTT: The messaging protocol for loT (Publish/Subscribe).

* The Vulnerability: Open brokers.
 Many developers leave the MQTT broker exposed to the internet with no password.

* The # wildcard subscribes to EVERYTHING.




Part 6: Reporting

Turning Hacks into Fixes



Elements of a Good Report

* Title: Concise description (e.g., "Hardcoded AWS Credentials in strings.xml").
» Severity: Critical, High, Medium, Low (use CVSS score).

* Description: What is the bug?

» Steps to Reproduce: Step-by-step guide so the developer can see it.

* Impact: What can an attacker do? (e.g., "Steal all user data").
 Remediation: How to fix it (e.g., "Use EncryptedSharedPreferences").



CVSS (Common Vulnerability Scoring System)

* The Industry Standard: A calculator to determine severity.
* Metrics:

» Attack Vector: Network vs. Physical.

 Complexity: Low vs. High.

* Privileges Required: None vs. Admin.

* Impact: Confidentiality, Integrity, Availability.



Part 7: Final Project Workshop Guidelines

Applying This to Your Project



Project Requirements

 The Goal: Build a secure mobile app OR analyze an insecure one.
* Option A (Builder): Build an app that implements:

» Secure Storage (EncryptedSharedPreferences).

 Certificate Pinning.

* Biometric Auth.

* Find 5 vulnerabilities.

 Demonstrate them with Frida/Burp.

* Propose fixes.



Peer Review Session

* Pair Up: Find a partner.

 Exchange APKs: If you are a builder, give your APK to a breaker.
 The Challenge: Can the breaker bypass your security?

» Can they find the API key?

» Can they bypass your pinning?



Lab Exercise 1: Setting up MobSF

[Activity]

* Pull the MobSF Docker image.

* Run it.

* Download the "InsecureBankv2.apk"” (provided in LMS).

* Upload it to MobSF.

* Question: What is the package name? What permissions are dangerous?



Lab Exercise 2: JADX Hunting

[Activity]

* Open "InsecureBankv2.apk” in JADX.

» Search for "LoginActivity".

* Find the login() function.

* Question: Is the username/password hardcoded? Or where is it sent?



Lab Exercise 3: Frida Hooking

[Activity]

 |nstall the "Root Detection™ demo app.

* Run it. It says "Device is Rooted!" and closes.

* \Write a Frida script to hook isRooted() and return false.
* Run the script: frida -U -f com.demo.root -I script.s.

* Result: The app should open normally.



Lab Exercise 4: Burp Interception

[Activity]

» Configure phone proxy to your laptop.

* Open the browser on the phone and go to google.com.

» Check Burp Suite "Proxy" tab.

* Question: Do you see the request? If not, did you install the CA cert?



Common Pitfalls in Testing

 Emulator Issues: Some apps crash on x86 emulators. Use an ARM translation tool or a
physical device.

* Network Isolation: Ensure your laptop and phone are on the same Wi-Fi network for Burp to
work.

» Certificate Trust: On Android 7+, user certs are not trusted by apps. You must move the Burp
cert to the System store (requires root).



Advanced Frida: Native Hooking

» Java vs. Native: We hooked Java methods. But what if the logic is in C++ (.so file)?

* Interceptor: Frida can hook native functions too.
« Code:

Interceptor.attach(Module.findExportByName("libnative.so", "check_license"), {
onlLeave: function(retval) {

retval.replace(1); // Return True

}
});



Automating with Python

* You can drive Frida from Python to automate attacks.
 Example: Brute-forcing a PIN.

* Python script calls checkPin("0000").

* Checks result.

» Calls checkPin("0001").

* Repeats until success.



loT Lab: Simulating a BLE Device

* Tool: LightBlue (iI0S/Mac) or nRF Connect (Android).
* Action: Create a "Virtual Peripheral”.

* Add a service "Smart Lock".

* Add a characteristic "Lock State".



loT Lab: MQTT Shiffing

» Target: test. mosquitto.org (Public test broker).
* Action: Subscribe to # (everything).

* Observation: Watch the chaos. You will see people's temperature sensors, lights, and test
messages from all over the world.

 Warning: Do not interact with anything. Just look.



Writing the Report: The Executive Summary

* Audience: Management (Non-technical).
» Content:

* "We tested App X."
* "We found 3 Critical issues.”
* "The app is currently unsafe for production.”



Writing the Report: Technical Details

* Audience: Developers.

« Content:

 HTTP Request/Response logs.
» Screenshots of code.

* Video of the exploait.



Remediation: Defense in Depth

* Don't just fix the bug. Fix the process.

 Example: If you found a hardcoded key:

 Remove the key.

* Rotate the key (invalidate the old one).

* Add a pre-commit hook to scan for keys so it doesn't happen again.



Tools for 10S Jailbreaking

* Checkraln: Hardware exploit (Bootrom) for iPhone X and older. Unpatchable.
* Palera1n: For newer iIOS versions.
» Cydia/ Sileo: The "App Store" for jailbroken apps (install Frida, SSH, Filza).



10S: Bypassing Jailbreak Detection

 The Cat and Mouse Game: Apps check for Cydia/Frida files.
 The Bypass: Use "Shadow" or "Liberty Lite" (Tweaks).

* Frida Script:
// Hook file existence check

var access = new NativeFunction(Module.findExportByName(null, 'access'), 'int', ['pointer’, 'int']);
Interceptor.replace(access, new NativeCallback(function(pathPtr, mode) {

var path = Memory.readUtt8String(pathPtr);

if (path.indexOf("Cydia") >=0) {

return -1; // File not found

¥

return access(pathPtr, mode);
}, 'mt', ['pointer’, 'int']));



Android: Bypassing Root Detection

» SafetyNet / Play Integrity APIl: Google's advanced root detection.
 The Bypass: MagiskHide / Zyqisk.

* Universal SafetyNet Fix: A Magisk module that spoofs the device fingerprint to look like a
certified, unrooted device.



Deobfuscation

 ProGuard/R8: Renames classes to a.b.c.

* The Fix:

* Look for strings (they usually aren't obfuscated).

* Look for API calls (Android APls can't be renamed).

* Use JADX "Deobfuscation” mode (renames a to Class001 for clarity).



Patching the APK

* Scenario: You can't hook the function, or you want to make the change permanent.
* Tool: apktool.

» (Disassemble to Smali).

» Edit the .smali file (Assembly).

* (Rebuild).

* (Sign with your own key).

* |nstall.



Smali: The Assembly of Android

* Registers: v0, v1, p0 (parameter).
 Opcodes:
o (If vO ==v1, jJump).



Testing GraphQL Endpoints

 Modern Apps: Many use GraphQL instead of REST.
* Introspection: The feature that lets you ask the AP| "What queries do you support?”

» Attack: If Introspection is enabled, you can dump the entire database schema.
» Tool: GraphQL Voyager / Burp Suite GraphQL Raider.



Testing Firebase Security Rules

* Firebase: A Backend-as-a-Service.

* Misconfiguration: "Allow read/write: if true;"

* Tool: baserunner or manual checking.

* Impact: Anyone can delete the entire database.



Deep Link Exploitation

* Deep Links: app.//reset password?token=123.
» Attack:
» Create a malicious page.
» User clicks link.
* Link triggers the app's exported Activity.
* App performs sensitive action (e.g., changes password) without checking origin.



WebViews: The Hidden Browser

 WebView: A browser inside the app.
* Risk: XSS (Cross-Site Scripting).

» Attack: If setJavaScriptEnabled(true) is on, and the app loads a malicious URL, the attacker
can steal cookies or bridge to Java.

* Bridge: addJavascriptinterface allows JS to call Java functions. RCE risk!



Side Channel: Logcat

 The Leak: Developers logging sensitive info for debugging.



Side Channel: Clipboard

 The Leak: User copies password from password manager. Malicious app reads clipboard.
* Android 12+ Fix: Toast message "App X pasted from your clipboard."
* Defense: Mark sensitive fields so they cannot be copied, or clear clipboard on background.



Side Channel: Screenshots

 The Leak: OS takes a screenshot when app goes to background (for the "Recent Apps"”
switcher).

* Risk: Sensitive data (credit card, medical info) is saved to disk as an image.
* Fix: FLAG_SECURE. Prevents screenshots and screen recording.



Final Project: The "Breaker” Report Template

« Executive Summary: High level.
 Scope: \What was tested.
 Methodology: Tools used.
* Findings:
* Vulnerability Name.
 CVSS Score.
* Proof of Concept (Screenshots/Code).
« Recommendation.



Final Project: The "Builder” Defense Document

* Architecture: How you designed security.
 Threat Model: What you are protecting against.
* Implementation:

» Show your EncryptedSharedPreferences code.

* Show your Pinning configuration.

* Show your ProGuard rules.



Resources for Practice

« OWASP MSTG Hacking Playground: A set of vulnerable apps.
 DVIA (Damn Vulnerable iOS App): The standard for iOS.

* InsecureBankv2: Great for Android.

» GoatDroid: Another classic.



Q&A

Questions?



