
SMA 2025

Hands-on Mobile & IoT Penetration Testing

Lecture #13

Hands-on Mobile & IoT Penetration Testing
From Lab Setup to Exploitation

Title Slide

•	 Part 1: The Pentest Lab - Setting up your attack environment.
•	 Part 2: Static Analysis (SAST) - Finding bugs without running the app.
•	 Part 3: Dynamic Analysis (DAST) - Manipulating apps at runtime with Frida.
•	 Part 4: Network Interception - Breaking TLS with Burp Suite.
•	 Part 5: IoT Security Testing - Sniffing BLE and MQTT.
•	 Part 6: Reporting - How to write a vulnerability report.

Today's Agenda

Ethical Hacking Only
•	 The tools and techniques discussed today are for educational purposes only.
•	 Only test applications you own or have explicit written permission to test.
•	 Testing third-party apps without permission is illegal and can lead to prosecution.

Disclaimer

Building Your Arsenal

Part 1: The Pentest Lab

•	 Emulators (Genymotion, Android Studio AVD):
•	 Pros: Free, easy to root, snapshot capability (save state).
•	 Cons: No Bluetooth, no NFC, some ARM libraries won't run (x86 architecture).
•	 Pros: Real hardware (Bluetooth/NFC works), 100% app compatibility.
•	 Cons: Risk of bricking, expensive.

Emulator vs. Physical Device

•	 Why Root/Jailbreak?
•	 To access the app's private data (/data/data/com.app).
•	 To hook system functions (Frida).
•	 To bypass SSL Pinning.
•	 To intercept traffic.

The "Root" Requirement

•	 ADB (Android Debug Bridge): The command line tool to talk to Android.
•	 Frida: The dynamic instrumentation toolkit.

Essential Tools Installation

Reading the Blueprint

Part 2: Static Analysis (SAST)

•	 What it is: An automated tool that decompiles the app and scans for vulnerabilities.
•	 How to use:
•	 Drag and drop your APK or IPA file into the web interface.
•	 Wait for the scan to finish.
•	 Read the report.
•	 Hardcoded API keys.
•	 Insecure permissions.
•	 Weak crypto configurations.
•	 Firebase database misconfigurations.

MobSF: The Swiss Army Knife

•	 JADX: A GUI tool to decompile Android APKs to Java.
•	 Why use it? MobSF gives you a high-level overview, but JADX lets you read the logic.
•	 Workflow:
•	 Open APK in JADX-GUI.
•	 Search for strings like "password", "api_key", "token".
•	 Read the LoginActivity to see how authentication is handled.

Manual Reversing with JADX

•	 The Challenge: iOS apps are compiled to machine code (ARM64), not bytecode. They are
much harder to read.

•	 Tools:
•	 Ghidra: NSA's open-source reverse engineering suite.
•	 Hopper Disassembler: A paid but user-friendly Mac tool.

•	 Symbol names (function names) that give away logic.
•	 String constants.

iOS Reversing: Ghidra & Hopper

Manipulating Reality with Frida

Part 3: Dynamic Analysis (DAST)

•	 Concept: A dynamic instrumentation toolkit. It lets you inject JavaScript into a running app to
modify its behavior.

•	 Capabilities:
•	 Read/Write memory.
•	 Intercept function calls.
•	 Change return values (e.g., make isAdmin() return true).
•	 Bypass SSL Pinning.

What is Frida?

•	 Install Python bindings: pip install frida-tools
•	 Download Frida Server: Get the binary matching your device architecture (arm64) from

GitHub.
•	 Push to Device:adb push frida-server /data/local/tmp/ adb shell "chmod 755 /data/local/tmp/

frida-server" adb shell "/data/local/tmp/frida-server &"
•	 Verify: frida-ps -U (Lists running processes on USB device).

Setting up Frida

Goal: Bypass a function checkPin(String pin) that returns a boolean.

Frida Scripting: The Basics

Java.perform(function() {
 // 1. Get a reference to the class
 var MainActivity = Java.use("com.example.app.MainActivity");

 // 2. Hook the method
 MainActivity.checkPin.implementation = function(pin) {
 console.log("Intercepted PIN check for: " + pin);

 // 3. Force return true
 return true;
 };
});

•	 What it is: A command-line tool that automates common Frida tasks.
•	 Key Commands:

•	 android sslpinning disable: Automatically bypasses pinning.
•	 android root disable: Hides root from the app.
•	 ios keychain dump: Dumps the iOS Keychain.
•	 memory search "password": Searches RAM for strings.

Objection: Frida without Scripting

Breaking TLS with Burp Suite

Part 4: Network Interception

•	 Burp Suite: Start the Proxy listener on All Interfaces.
•	 Phone: Go to Wi-Fi Settings -> Advanced -> Proxy -> Manual.
•	 Host: Your Laptop's IP.
•	 Port: 8080.
•	 Visit http://burp on the phone browser.
•	 Download the CA Certificate.
•	 Install it as a "Trusted Root" in Android/iOS settings.

The Setup: Proxying Traffic

•	 The Problem: Even with the cert installed, secure apps will reject it because they "pin" the real
server cert.

•	 The Fix: Use Frida/Objection to disable the pinning check logic in the app.
•	 Command: objection --gadget com.app.name explore --startup-command "android sslpinning

disable"

Bypassing SSL Pinning

•	 What to look for:
•	 IDOR (Insecure Direct Object Reference): Change user_id=100 to user_id=101. Can you

see someone else's data?
•	 Excessive Data Exposure: Does the API return the full user object (including password

hash) even if the UI only shows the name?
•	 Broken Auth: Can you reuse an old token?

Analyzing API Traffic

Hacking the Hardware Connection

Part 5: IoT Security Testing

•	 GATT (Generic Attribute Profile): The architecture of BLE data.
•	 Services: Collections of characteristics (e.g., "Heart Rate Service").
•	 Characteristics: The actual data points (e.g., "Heart Rate Measurement").
•	 Can be Read, Written, or Notified (Updates).

Bluetooth Low Energy (BLE) Basics

•	 nRF Connect (Mobile App): The best tool for exploring BLE devices. It lets you scan, connect,
and read/write characteristics.

•	 Bettercap (Linux): A powerful tool for BLE sniffing and spoofing.
•	 Ubertooth One: Hardware sniffer for capturing BLE packets in the air.

Tools for BLE Hacking

•	 Scenario: A smart lock opens when you press "Unlock" in the app.
•	 Attack:

•	 Capture the "Unlock" packet using a sniffer (Ubertooth).
•	 Wait for the owner to leave.
•	 Replay the exact same packet.

BLE Attack: Replay

•	 MQTT: The messaging protocol for IoT (Publish/Subscribe).
•	 The Vulnerability: Open brokers.

•	 Many developers leave the MQTT broker exposed to the internet with no password.
•	 The # wildcard subscribes to EVERYTHING.

MQTT Hacking

Turning Hacks into Fixes

Part 6: Reporting

•	 Title: Concise description (e.g., "Hardcoded AWS Credentials in strings.xml").
•	 Severity: Critical, High, Medium, Low (use CVSS score).
•	 Description: What is the bug?
•	 Steps to Reproduce: Step-by-step guide so the developer can see it.
•	 Impact: What can an attacker do? (e.g., "Steal all user data").
•	 Remediation: How to fix it (e.g., "Use EncryptedSharedPreferences").

Elements of a Good Report

•	 The Industry Standard: A calculator to determine severity.
•	 Metrics:

•	 Attack Vector: Network vs. Physical.
•	 Complexity: Low vs. High.
•	 Privileges Required: None vs. Admin.
•	 Impact: Confidentiality, Integrity, Availability.

CVSS (Common Vulnerability Scoring System)

Applying This to Your Project

Part 7: Final Project Workshop Guidelines

•	 The Goal: Build a secure mobile app OR analyze an insecure one.
•	 Option A (Builder): Build an app that implements:

•	 Secure Storage (EncryptedSharedPreferences).
•	 Certificate Pinning.
•	 Biometric Auth.
•	 Find 5 vulnerabilities.
•	 Demonstrate them with Frida/Burp.
•	 Propose fixes.

Project Requirements

•	 Pair Up: Find a partner.
•	 Exchange APKs: If you are a builder, give your APK to a breaker.
•	 The Challenge: Can the breaker bypass your security?
•	 Can they find the API key?
•	 Can they bypass your pinning?

Peer Review Session

[Activity]
•	 Pull the MobSF Docker image.
•	 Run it.
•	 Download the "InsecureBankv2.apk" (provided in LMS).
•	 Upload it to MobSF.
•	 Question: What is the package name? What permissions are dangerous?

Lab Exercise 1: Setting up MobSF

[Activity]
•	 Open "InsecureBankv2.apk" in JADX.
•	 Search for "LoginActivity".
•	 Find the login() function.
•	 Question: Is the username/password hardcoded? Or where is it sent?

Lab Exercise 2: JADX Hunting

[Activity]
•	 Install the "Root Detection" demo app.
•	 Run it. It says "Device is Rooted!" and closes.
•	 Write a Frida script to hook isRooted() and return false.
•	 Run the script: frida -U -f com.demo.root -l script.js.
•	 Result: The app should open normally.

Lab Exercise 3: Frida Hooking

[Activity]
•	 Configure phone proxy to your laptop.
•	 Open the browser on the phone and go to google.com.
•	 Check Burp Suite "Proxy" tab.
•	 Question: Do you see the request? If not, did you install the CA cert?

Lab Exercise 4: Burp Interception

•	 Emulator Issues: Some apps crash on x86 emulators. Use an ARM translation tool or a
physical device.

•	 Network Isolation: Ensure your laptop and phone are on the same Wi-Fi network for Burp to
work.

•	 Certificate Trust: On Android 7+, user certs are not trusted by apps. You must move the Burp
cert to the System store (requires root).

Common Pitfalls in Testing

•	 Java vs. Native: We hooked Java methods. But what if the logic is in C++ (.so file)?
•	 Interceptor: Frida can hook native functions too.
•	 Code:

Advanced Frida: Native Hooking

Interceptor.attach(Module.findExportByName("libnative.so", "check_license"), {
 onLeave: function(retval) {
 retval.replace(1); // Return True
 }
});

•	 You can drive Frida from Python to automate attacks.
•	 Example: Brute-forcing a PIN.
•	 Python script calls checkPin("0000").
•	 Checks result.
•	 Calls checkPin("0001").
•	 Repeats until success.

Automating with Python

•	 Tool: LightBlue (iOS/Mac) or nRF Connect (Android).
•	 Action: Create a "Virtual Peripheral".
•	 Add a service "Smart Lock".
•	 Add a characteristic "Lock State".

IoT Lab: Simulating a BLE Device

•	 Target: test.mosquitto.org (Public test broker).
•	 Action: Subscribe to # (everything).
•	 Observation: Watch the chaos. You will see people's temperature sensors, lights, and test

messages from all over the world.
•	 Warning: Do not interact with anything. Just look.

IoT Lab: MQTT Sniffing

•	 Audience: Management (Non-technical).
•	 Content:
•	 "We tested App X."
•	 "We found 3 Critical issues."
•	 "The app is currently unsafe for production."

Writing the Report: The Executive Summary

•	 Audience: Developers.
•	 Content:
•	 HTTP Request/Response logs.
•	 Screenshots of code.
•	 Video of the exploit.

Writing the Report: Technical Details

•	 Don't just fix the bug. Fix the process.
•	 Example: If you found a hardcoded key:
•	 Remove the key.
•	 Rotate the key (invalidate the old one).
•	 Add a pre-commit hook to scan for keys so it doesn't happen again.

Remediation: Defense in Depth

•	 Checkra1n: Hardware exploit (Bootrom) for iPhone X and older. Unpatchable.
•	 Palera1n: For newer iOS versions.
•	 Cydia / Sileo: The "App Store" for jailbroken apps (install Frida, SSH, Filza).

Tools for iOS Jailbreaking

•	 The Cat and Mouse Game: Apps check for Cydia/Frida files.
•	 The Bypass: Use "Shadow" or "Liberty Lite" (Tweaks).
•	 Frida Script:

iOS: Bypassing Jailbreak Detection

// Hook file existence check
var access = new NativeFunction(Module.findExportByName(null, 'access'), 'int', ['pointer', 'int']);
Interceptor.replace(access, new NativeCallback(function(pathPtr, mode) {
 var path = Memory.readUtf8String(pathPtr);
 if (path.indexOf("Cydia") >= 0) {
 return -1; // File not found
 }
 return access(pathPtr, mode);
}, 'int', ['pointer', 'int']));

•	 SafetyNet / Play Integrity API: Google's advanced root detection.
•	 The Bypass: MagiskHide / Zygisk.
•	 Universal SafetyNet Fix: A Magisk module that spoofs the device fingerprint to look like a

certified, unrooted device.

Android: Bypassing Root Detection

•	 ProGuard/R8: Renames classes to a.b.c.
•	 The Fix:
•	 Look for strings (they usually aren't obfuscated).
•	 Look for API calls (Android APIs can't be renamed).
•	 Use JADX "Deobfuscation" mode (renames a to Class001 for clarity).

Deobfuscation

•	 Scenario: You can't hook the function, or you want to make the change permanent.
•	 Tool: apktool.
•	 (Disassemble to Smali).
•	 Edit the .smali file (Assembly).
•	 (Rebuild).
•	 (Sign with your own key).
•	 Install.

Patching the APK

•	 Registers: v0, v1, p0 (parameter).
•	 Opcodes:
•	 (If v0 == v1, jump).

Smali: The Assembly of Android

•	 Modern Apps: Many use GraphQL instead of REST.
•	 Introspection: The feature that lets you ask the API "What queries do you support?"
•	 Attack: If Introspection is enabled, you can dump the entire database schema.
•	 Tool: GraphQL Voyager / Burp Suite GraphQL Raider.

Testing GraphQL Endpoints

•	 Firebase: A Backend-as-a-Service.
•	 Misconfiguration: "Allow read/write: if true;"
•	 Tool: baserunner or manual checking.
•	 Impact: Anyone can delete the entire database.

Testing Firebase Security Rules

•	 Deep Links: app://reset_password?token=123.
•	 Attack:

•	 Create a malicious page.
•	 User clicks link.
•	 Link triggers the app's exported Activity.
•	 App performs sensitive action (e.g., changes password) without checking origin.

Deep Link Exploitation

•	 WebView: A browser inside the app.
•	 Risk: XSS (Cross-Site Scripting).
•	 Attack: If setJavaScriptEnabled(true) is on, and the app loads a malicious URL, the attacker

can steal cookies or bridge to Java.
•	 Bridge: addJavascriptInterface allows JS to call Java functions. RCE risk!

WebViews: The Hidden Browser

•	 The Leak: Developers logging sensitive info for debugging.

Side Channel: Logcat

•	 The Leak: User copies password from password manager. Malicious app reads clipboard.
•	 Android 12+ Fix: Toast message "App X pasted from your clipboard."
•	 Defense: Mark sensitive fields so they cannot be copied, or clear clipboard on background.

Side Channel: Clipboard

•	 The Leak: OS takes a screenshot when app goes to background (for the "Recent Apps"
switcher).

•	 Risk: Sensitive data (credit card, medical info) is saved to disk as an image.
•	 Fix: FLAG_SECURE. Prevents screenshots and screen recording.

Side Channel: Screenshots

•	 Executive Summary: High level.
•	 Scope: What was tested.
•	 Methodology: Tools used.
•	 Findings:

•	 Vulnerability Name.
•	 CVSS Score.
•	 Proof of Concept (Screenshots/Code).
•	 Recommendation.

Final Project: The "Breaker" Report Template

•	 Architecture: How you designed security.
•	 Threat Model: What you are protecting against.
•	 Implementation:

•	 Show your EncryptedSharedPreferences code.
•	 Show your Pinning configuration.
•	 Show your ProGuard rules.

Final Project: The "Builder" Defense Document

•	 OWASP MSTG Hacking Playground: A set of vulnerable apps.
•	 DVIA (Damn Vulnerable iOS App): The standard for iOS.
•	 InsecureBankv2: Great for Android.
•	 GoatDroid: Another classic.

Resources for Practice

Questions?

Q&A

