Lecture #11

The Mobile-loT Security Nexus

2222222

The Mobile-loT Security Nexus
When the Phone Becomes the Key to the Physical World

Today's Agenda

* Part 1: The Control Plane - Understanding the architecture of Mobile-loT systems.

* Part 2: REST Foundations - Why the web's language is also the language of things.
* Part 3: Authentication Protocols - Moving beyond passwords to OAuth 2.0 and JWTs.
* Part 4: Message Integrity - HMACSs, Signatures, and preventing Replay Attacks.
 Part 5: The Threat Landscape - How attackers pivot from the phone to the home.
* Part 6: Case Studies - Real-world examples of Mobile-loT failures.

Recap from Lecture 10

* Applied Crypto: We learned about AES, RSA, and ECC.

* Mobile Constraints: We discussed battery, CPU, and the need for hardware acceleration.
 TLS 1.3: We saw how the handshake works and why it's faster.

* Secure Storage: We covered the Keystore and File-Based Encryption.

Today's Link: Lecture 10 gave us the fools (encryption, keys). Lecture 11 gives us the system.
We will use those keys to authenticate API calls and sign commands sent to loT devices.

Part 1: The Mobile Control Plane

The Phone as the Universal Remote

The Shift to "App-Centric" loT

» Old World: IoT devices had physical buttons, screens, or dedicated remotes.

* New World: The device is "headless" (no screen). The User Interface (Ul) is entirely on the
smartphone app.

* Implication: If the app Is insecure, the device is insecure. The app is the "Control Plane.”

Architecture Model 1: Direct Connection

Phone <--> Device

* Protocols: Bluetooth Low Energy (BLE), Wi-Fi Direct, NFC.

* Use Case: Unlock a door, configure a device, stream audio.

* Security Challenge: Proximity-based attacks. The attacker must be physically near you.

Architecture Model 2: The Cloud Relay

Phone <--> Cloud <--> Device

* Protocols: HTTPS (Phone to Cloud), MQTT/WebSockets (Cloud to Device).

» Use Case: Turning on the heat while you are driving home. Viewing a security camera from
work.

» Security Challenge: The "Attack Surface” is massive. It includes the App, the API, the Cloud
Server, and the Device firmware.

Architecture Model 3: The Hybrid (Local + Cloud)

» Concept: The app tries to connect locally first (for speed). If that falls, it falls back to the cloud.
 Complexity: You need TWO authentication mechanisms.

* One for the local network (e.g., a local token).

* One for the cloud API (e.g., an OAuth token).

The "Trusted Controller” Concept

In all these models, the Mobile App is the Trusted Controller.

* The User authenticates to the App (Biometrics/PIN).

* The App authenticates to the Cloud/Device.

* Critical Assumption: The App is running on a secure, uncompromised phone.
 The Threat: If the phone is rooted or malware-infected, the "Trust" is broken.

Part 2: REST Foundations

The Language of the Internet of Things

Whatis REST?

 REpresentational State Transfer.
* Architectural Style: Not a strict protocol, but a set of constraints for building web services.
* Key Principles:

« Stateless: Each request contains all the information needed to process it. The server doesn't
remember the previous request.

 Resource-Based: Everything is a "Resource" (e.g., a Lightbulb, a Thermostat, a User).
+ Standard Methods: Uses standard HT TP verbs (GET, POST, PUT, DELETE).

HTTP VerbsinloT

How do we map loT actions to HT TP?

 GET: Read the state.

« -> Returns { "power": "on", "brightness": 80 }

» with body { "power”: "off" } -> Turns the light off.
« -> (Creates a new automation routine.

e -> Revokes access.

JSON: The Data Format

« JavaScript Object Notation (JSON).
 Why it rules loT:
 Human-readable.
 Lightweight (compared to XML).
» Easy to parse on mobile (native support in Swift/Kotlin).

Statelessness and Scalability

 The loT Scale Problem: A cloud server might manage millions of devices.

« Stateful Server: Keeping a connection open for every device is expensive (RAM/CPU).
» Stateless REST: The server handles a request and forgets it.

* Benefit: Infinite horizontal scaling. Just add more servers behind a Load Balancer.

Part 3: Authentication Protocols

Securing the API

The Evolution of APl Auth

» Basic Auth (The Bad Old Days):
* Sending username:password in the header of every request.
* Risk: If you can intercept one request, you have the user's password forever.
* Along random string sent in the header.
* Risk: Hard to rotate. If stolen, the attacker has access until you manually regenerate fit.
* OAuth 2.0 and JWTs.

OAuth 2.0: The Gold Standard

* Concept: Delegation of Authorization.
* Roles:
 Resource Owner: You (the User).
» Client: The Mobile App.
* Authorization Server: The Cloud Identity Provider.
 Resource Server: The loT Cloud API.

The Access Token

 What is it? A digital key card.

* Properties:
» Short-lived: Expires in 1 hour (usually).
« Scoped: Valid only for specific actions.
 Revocable: Can be cancelled by the server.

The Refresh Token

* Problem: If the Access Token expires every hour, does the user have to log in again?
* Solution: The Refresh Token.

* Along-lived token used only to get new Access Tokens.

« Stored securely in the Keystore/Keychain.

JWT (JSON Web Tokens)

 Format: Header.Payload.Signature

» Stateless Auth: The token contains the user's identity. The server doesn't need to look up the
user in a database. It just verifies the signature.

» Efficiency: Perfect for high-scale loT.

Anatomyofa JWT

* Header: Algorithm used (e.g., HS256 or RS2506).
» Payload (Claims):

» User ID (12345).

* Expiration time.

* "read:lights write:locks".

Validatinga JWT

When the loT Cloud receives a request:

» Check Signature: Does the signature match the content”? (Proves integrity).
* Check Expiration: Is now < exp? (Proves validity).

* Check Scope: Does the token have the write:locks permission”? (Proves authorization).

Common JWT Vulnerabilities

* "None" Algorithm: Attacker changes header to {"alg”: "none"} and removes signature. Poorly
written servers might accept It.

» Secret Key Leak: If the signing key is weak or leaked, attackers can forge their own tokens.
» Lack of Expiration: Tokens that last forever are a security nightmare.

Part 4: Message Integrity & Security

Protecting the Command

The Replay Attack

* Scenario:
» User sends "Unlock Door" command via App.
» Attacker records the encrypted network packet.
* User leaves.
» Attacker re-sends (replays) the exact same packet.
* Door unlocks.

Defense 1: Timestamps

 Mechanism: Include the current time in the message.

» Validation: Server checks: Is Message Time within 6 seconds of ServerTime?

* Pros: Simple.

» Cons: Requires clock synchronization. If the device clock drifts, valid commands are rejected.

Defense 2: Nonces

* Nonce: "Number used ONCE."
 Mechanism:
* App generates a random number.
* |Includes it in the message.
« Server remembers "l have seen Nonce X".
 If Nonce X appears again, reject it.

HMAC (Hash-Based Message Authentication Code)

* Goal: Ensure the message hasn't been tampered with.
 Mechanism: HMAC(Message, SecretKey).

* Difference from Hash: Uses a secret key. Only someone with the key can generate the valid
HMAC.

» Usage: App sends Message + HMAC. Server calculates HMAC and compares.

Digital Signatures for High-Value Commands

 Scenario: "Unlock Smart Lock" or "Disable Alarm".

 Requirement: Non-repudiation. We need to prove exactly who sent the command.
 Mechanism:

* App signs the command payload with the User's Private Key (stored in Secure Enclave).
» Server verifies with User's Public Key.

Request Signing Implementation

// The Payload
{

"command": "unlock"”,
"device_id": "lock-123",
"timestamp”: 1678892000,
"nonce": "alb2c3d4"”

}

// The Signature
Signature = Sign(SHA256(Payload), UserPrivateKey)

// The Header
Authorization: Bearer <Accessloken>
X-Signhature: <Base64Signature>

Part 5: The Threat Landscape

Attacking the Home via the Phone

The "Pivot” Attack

* Concept: The phone is dual-homed. It is connected to the Internet (Cellular) and the Home
Network (Wi-Fi).

* The Attack:
* User installs a malicious "Flashlight App".
* App requests "Local Network"” permission.

* App scans the Wi-Fi for vulnerable loT devices (e.g., unpatched router, default password
camera).

* App sends commands to those devices.
* App exfiltrates data back to the attacker via Cellular.

Malicious Apps & Permissions

* Android/iOS Permission: "Access Local Network".
« Why it's dangerous: It allows an app to talk to any device on your Wi-Fi.

* User Behavior: Users often grant this without thinking, especially for apps that claim to need it
for "casting" or "setup".

DNS Rebinding

* Goal: Allow a malicious website to attack local loT devices.
 Mechanism:
« User visits attacker.com.
* resolves to areal IP (1.2.3.4) initially.
* Browser loads page and JavaScript.
* DNS record changes (rebinding) to point attacker.com to 192.168.1.1 (Your Router).
» JavaScript sends AJAX requests to attacker.com, which the browser now sends to your router.

Side-Channel Attacks vialoT

* Scenario: Smart Bulb.

« Attack:
* Malware on phone monitors the status of the smart bulb.
* |If the bulb turns ON, the user is likely home/awake.
* If the bulb turns OFF, the user is asleep/away.

The "Sleepy" Device Problem

* Issue: Battery-powered devices (sensors) sleep 99% of the time to save power.

» Security Impact: They cannot receive security updates immediately.

» Attack: Attacker exploits a vulnerability. Manufacturer releases a patch. Device is asleep.
Attacker attacks before device wakes up to patch.

Part 6: Case Studies

Learning from Failure

Case Study 1: The Smart Aquarium

» Target: A Casino in Las Vegas.
* Entry Point: A smart thermometer in the lobby aquarium.
* Vulnerability: Default credentials, connected to the main corporate network.

* The Pivot: Attackers compromised the thermometer, pivoted to the network, and stole the High
Roller database.

* Lesson: loT devices must be isolated on a separate VLAN (Guest Network).

Case Study 2: Ring Camera Hacks

* Incident: Strangers talking to children through Ring cameras.

» Cause: Credential Stuffing (Users reusing passwords). Not a hack of Ring's servers.
* Failure: Lack of mandatory Multi-Factor Authentication (MFA).

* Lesson: MFA is mandatory for loT security.

Case Study 3: Jeep Cherokee Hack (2015)

» Target: Connected Car.
* Entry Point: The Cellular connection to the Infotainment System (Uconnect).

* The Pivot: Attackers moved from the Infotainment system (Music/Maps) to the CAN Bus
(Steering/Brakes).

* Impact: Remote control of the vehicle on a highway.
* Lesson: Network segmentation is life-critical.

Best Practices for Developers (1/3)

 Enforce MFA: Mandatory for all loT accounts.
* Use Standard Auth: OAuth 2.0/ OIDC. Do not invent your own token system.
» Validate Inputs: Sanitize every JSON field sent to the device.

Best Practices for Developers (2/3)

» Least Privilege: The App should only ask for permissions it needs. The Token should only have

scopes It needs.
* Secure Storage: Store Refresh Tokens in Keystore/Keychain.

» Certificate Pinning: Pin the connection between App and Cloud.

Best Practices for Developers (3/3)

* Network Isolation: Advise users to put loT devices on a Guest Wi-Fi network.
 Regular Audits: Pentest the App AND the Device hardware.
* Secure Defaults: No default passwords. Random passwords printed on the sticker.

Future Trends: Matter Protocol

 What is it? A new unified standard for Smart Home (Apple, Google, Amazon).
* Security: Built-in.
 Mandatory encryption.

* Device attestation (Blockchain-style ledger of valid devices).
» Local control (works without cloud).

Future Trends: 5G and Edge Computing

* 5G: Massive density of devices.
 Edge: Processing data closer to the device (not sending everything to the cloud).

* Security: Privacy improves (data stays local), but physical security of the Edge node becomes
critical.

Appendix: OAuth 2.0 Flows

* Authorization Code Flow: Best for Mobile Apps.
» Uses a browser redirect.

» Securely exchanges code for token.

* Returns token in URL. Unsafe.

Appendix: MQTT QoS Levels

* QoS 0: At most once (Fire and forget).

* QoS 1: At least once (Guaranteed delivery, maybe duplicates).
* QoS 2: Exactly once (Slowest, most reliable).

« Security: QoS doesn't imply security, only reliability.

Appendix: BLE Pairing Modes

» Just Works: No user interaction. Unsecure against MitM.
 Passkey Entry: User types 6-digit code. Secure.
 Numeric Comparison: User compares numbers. Secure.
 OOB (Out of Band): NFC tap. Very secure.

Appendix: JSON Web Encryption (JWE)

 JWT: Signed (Integrity). Content is visible (Base64).
 JWE: Encrypted (Confidentiality). Content is hidden.
» Use Case: Passing sensitive data (PlI) in a token.

Appendix: APl Rate Limiting

* Defense: Prevent DoS attacks.
 Mechanism: "User X can only make 100 calls per minute."
* Implementation: APl Gateway (Kong, AWS API| Gateway).

Appendix: Zero TrustforloT

* Principle: Never trust, always verify.
* Network: Micro-segmentation.
* ldentity: Every device has a unique identity.

Appendix: Supply Chain Security

* Risk: Compromised libraries or hardware components.
« SBOM: Software Bill of Materials. Knowing what is in your code.

Appendix: Regulatory Landscape

* loT Cybersecurity Improvement Act (USA).
 ETSI EN 303 645 (Europe).
* Key Requirement: No default passwords.

Appendix: Privacy by Design

« Data Minimization: Don't collect what you don't need.
» Local Processing: Process voice/video on the device, not the cloud.

Appendix: Responsible Disclosure

 Bug Bounties: Paying researchers to find bugs.
* Policy: How to report a vulnerability safely.

Appendix: Tools for loT Hacking

* KillerBee: Zigbee analysis.
* Ubertooth: Bluetooth sniffing.
* Binwalk: Firmware analysis.

Part 7: Practical Code Examples

Talking to the Things

Android: Signed Request (OkHttp)

// Create the payload

val payload = JSONODbject().apply {
put("command”, "unlock")
put("timestamp”, System.currentTimeMillis())

}

// Sign the payload (using our Crypto helper from Lecture 10)
val signature = signData(payload.toString().toByteArray())

// Build the request

val request = Request.Builder()
url("https://api.smart-home.com/devices/lock-123")
.post(payload.toString().toRequestBody(JSON))
.addHeader("Authorization", "Bearer $accessToken")
.addHeader("X-Signature", signature) // Attach signature
Juild()

// Send it
client.newCall(request).execute()

10S: Sighed Request (URLSession)

var request = URLRequest(url: URL(string: "https://api.smart-home.com/devices/lock-123")!)
request.httpMethod = "POST"

// Create Payload

let payload = ["command"”: "unlock”, "timestamp"”: Date().timelntervalSince1970] as [String : Any]
let jsonData = try! JSONSerialization.data(withJSONODbject: payload)

request.httpBody = jsonData

// Sign Payload (using CryptoKit)
let signature = try! privateKey.signature(for: jsonData)
let signatureString = signhature.base64EncodedString()

// Attach Headers
request.setValue("Bearer \(accessToken)", forHTTPHeaderField: "Authorization”)
request.setValue(signatureString, forHT TPHeaderField: "X-Signature”)

URLSession.shared.dataTask(with: request).resume()

Android: MQTT Connect (Paho)

val clientld = MqttClient.generateClientld()
val client = MqgttAndroidClient(context, "ssl://broker.nivemqg.com:8883", clientld)

val options = MqgttConnectOptions().apply {
userName = "myUser”
password = "myPassword".toCharArray()
socketFactory = getSocketFactoryWithPinnedCert() // Important!

}

client.connect(options, null, object : IMqgttActionListener {
override fun onSuccess(asyncActionToken: IMgttToken?) {
Log.d("loT", "Connected to MQTT Broker")
client.subscribe("home/livingroom/light", 1) // QoS 1
}
override fun onFailure(asyncActionToken: IMgttToken?, exception: Throwable?) {
Log.e("loT", "Failed to connect")

J
)

Summary of Lecture 11

 The Nexus: Mobile and loT are inseparable. The phone is the controller.
 REST is King: Web standards (HTTP, JSON, OAuth) run the loT world.

* Auth Matters: Tokens (JWTs) must be handled with extreme care.

* Trust No One: Verify signatures, check timestamps, and isolate networks.

Next Lecture Preview

Lecture 12: Mobile Application Pentesting

* We switch from "Builder” to "Breaker".

» Setting up a Pentest Lab (Genymotion, Corellium).
» Static Analysis (decompiling APKs).

* Dynamic Analysis (hooking with Frida).

» Bypassing SSL Pinning.

Q&A

Questions?

