
SMA 2025

The Mobile-IoT Security Nexus

Lecture #11

The Mobile-IoT Security Nexus
When the Phone Becomes the Key to the Physical World

•	 Part 1: The Control Plane - Understanding the architecture of Mobile-IoT systems.
•	 Part 2: REST Foundations - Why the web's language is also the language of things.
•	 Part 3: Authentication Protocols - Moving beyond passwords to OAuth 2.0 and JWTs.
•	 Part 4: Message Integrity - HMACs, Signatures, and preventing Replay Attacks.
•	 Part 5: The Threat Landscape - How attackers pivot from the phone to the home.
•	 Part 6: Case Studies - Real-world examples of Mobile-IoT failures.

Today's Agenda

•	 Applied Crypto: We learned about AES, RSA, and ECC.
•	 Mobile Constraints: We discussed battery, CPU, and the need for hardware acceleration.
•	 TLS 1.3: We saw how the handshake works and why it's faster.
•	 Secure Storage: We covered the Keystore and File-Based Encryption.
Today's Link: Lecture 10 gave us the tools (encryption, keys). Lecture 11 gives us the system.
We will use those keys to authenticate API calls and sign commands sent to IoT devices.

Recap from Lecture 10

The Phone as the Universal Remote

Part 1: The Mobile Control Plane

•	 Old World: IoT devices had physical buttons, screens, or dedicated remotes.
•	 New World: The device is "headless" (no screen). The User Interface (UI) is entirely on the

smartphone app.
•	 Implication: If the app is insecure, the device is insecure. The app is the "Control Plane."

The Shift to "App-Centric" IoT

Phone <--> Device
•	 Protocols: Bluetooth Low Energy (BLE), Wi-Fi Direct, NFC.
•	 Use Case: Unlock a door, configure a device, stream audio.
•	 Security Challenge: Proximity-based attacks. The attacker must be physically near you.

Architecture Model 1: Direct Connection

Phone <--> Cloud <--> Device
•	 Protocols: HTTPS (Phone to Cloud), MQTT/WebSockets (Cloud to Device).
•	 Use Case: Turning on the heat while you are driving home. Viewing a security camera from

work.
•	 Security Challenge: The "Attack Surface" is massive. It includes the App, the API, the Cloud

Server, and the Device firmware.

Architecture Model 2: The Cloud Relay

•	 Concept: The app tries to connect locally first (for speed). If that fails, it falls back to the cloud.
•	 Complexity: You need TWO authentication mechanisms.

•	 One for the local network (e.g., a local token).
•	 One for the cloud API (e.g., an OAuth token).

Architecture Model 3: The Hybrid (Local + Cloud)

In all these models, the Mobile App is the Trusted Controller.
•	 The User authenticates to the App (Biometrics/PIN).
•	 The App authenticates to the Cloud/Device.
•	 Critical Assumption: The App is running on a secure, uncompromised phone.
•	 The Threat: If the phone is rooted or malware-infected, the "Trust" is broken.

The "Trusted Controller" Concept

The Language of the Internet of Things

Part 2: REST Foundations

•	 REpresentational State Transfer.
•	 Architectural Style: Not a strict protocol, but a set of constraints for building web services.
•	 Key Principles:

•	 Stateless: Each request contains all the information needed to process it. The server doesn't
remember the previous request.

•	 Resource-Based: Everything is a "Resource" (e.g., a Lightbulb, a Thermostat, a User).
•	 Standard Methods: Uses standard HTTP verbs (GET, POST, PUT, DELETE).

What is REST?

How do we map IoT actions to HTTP?
•	 GET: Read the state.
•	 -> Returns { "power": "on", "brightness": 80 }
•	 with body { "power": "off" } -> Turns the light off.
•	 -> Creates a new automation routine.
•	 -> Revokes access.

HTTP Verbs in IoT

•	 JavaScript Object Notation (JSON).
•	 Why it rules IoT:

•	 Human-readable.
•	 Lightweight (compared to XML).
•	 Easy to parse on mobile (native support in Swift/Kotlin).

JSON: The Data Format

•	 The IoT Scale Problem: A cloud server might manage millions of devices.
•	 Stateful Server: Keeping a connection open for every device is expensive (RAM/CPU).
•	 Stateless REST: The server handles a request and forgets it.
•	 Benefit: Infinite horizontal scaling. Just add more servers behind a Load Balancer.

Statelessness and Scalability

Securing the API

Part 3: Authentication Protocols

•	 Basic Auth (The Bad Old Days):
•	 Sending username:password in the header of every request.

•	 Risk: If you can intercept one request, you have the user's password forever.
•	 A long random string sent in the header.

•	 Risk: Hard to rotate. If stolen, the attacker has access until you manually regenerate it.
•	 OAuth 2.0 and JWTs.

The Evolution of API Auth

•	 Concept: Delegation of Authorization.
•	 Roles:

•	 Resource Owner: You (the User).
•	 Client: The Mobile App.
•	 Authorization Server: The Cloud Identity Provider.
•	 Resource Server: The IoT Cloud API.

OAuth 2.0: The Gold Standard

•	 What is it? A digital key card.
•	 Properties:

•	 Short-lived: Expires in 1 hour (usually).
•	 Scoped: Valid only for specific actions.
•	 Revocable: Can be cancelled by the server.

The Access Token

•	 Problem: If the Access Token expires every hour, does the user have to log in again?
•	 Solution: The Refresh Token.

•	 A long-lived token used only to get new Access Tokens.
•	 Stored securely in the Keystore/Keychain.

The Refresh Token

•	 Format: Header.Payload.Signature
•	 Stateless Auth: The token contains the user's identity. The server doesn't need to look up the

user in a database. It just verifies the signature.
•	 Efficiency: Perfect for high-scale IoT.

JWT (JSON Web Tokens)

•	 Header: Algorithm used (e.g., HS256 or RS256).
•	 Payload (Claims):

•	 User ID (12345).
•	 Expiration time.
•	 "read:lights write:locks".

Anatomy of a JWT

When the IoT Cloud receives a request:
•	 Check Signature: Does the signature match the content? (Proves integrity).
•	 Check Expiration: Is now < exp? (Proves validity).
•	 Check Scope: Does the token have the write:locks permission? (Proves authorization).

Validating a JWT

•	 "None" Algorithm: Attacker changes header to {"alg": "none"} and removes signature. Poorly
written servers might accept it.

•	 Secret Key Leak: If the signing key is weak or leaked, attackers can forge their own tokens.
•	 Lack of Expiration: Tokens that last forever are a security nightmare.

Common JWT Vulnerabilities

Protecting the Command

Part 4: Message Integrity & Security

•	 Scenario:
•	 User sends "Unlock Door" command via App.
•	 Attacker records the encrypted network packet.
•	 User leaves.
•	 Attacker re-sends (replays) the exact same packet.
•	 Door unlocks.

The Replay Attack

•	 Mechanism: Include the current time in the message.
•	 Validation: Server checks: Is MessageTime within 5 seconds of ServerTime?
•	 Pros: Simple.
•	 Cons: Requires clock synchronization. If the device clock drifts, valid commands are rejected.

Defense 1: Timestamps

•	 Nonce: "Number used ONCE."
•	 Mechanism:

•	 App generates a random number.
•	 Includes it in the message.
•	 Server remembers "I have seen Nonce X".
•	 If Nonce X appears again, reject it.

Defense 2: Nonces

•	 Goal: Ensure the message hasn't been tampered with.
•	 Mechanism: HMAC(Message, SecretKey).
•	 Difference from Hash: Uses a secret key. Only someone with the key can generate the valid

HMAC.
•	 Usage: App sends Message + HMAC. Server calculates HMAC and compares.

HMAC (Hash-Based Message Authentication Code)

•	 Scenario: "Unlock Smart Lock" or "Disable Alarm".
•	 Requirement: Non-repudiation. We need to prove exactly who sent the command.
•	 Mechanism:

•	 App signs the command payload with the User's Private Key (stored in Secure Enclave).
•	 Server verifies with User's Public Key.

Digital Signatures for High-Value Commands

Request Signing Implementation
// The Payload

{

 "command": "unlock",

 "device_id": "lock-123",

 "timestamp": 1678892000,

 "nonce": "a1b2c3d4"

}

// The Signature

Signature = Sign(SHA256(Payload), UserPrivateKey)

// The Header

Authorization: Bearer <AccessToken>

X-Signature: <Base64Signature>

Attacking the Home via the Phone

Part 5: The Threat Landscape

•	 Concept: The phone is dual-homed. It is connected to the Internet (Cellular) and the Home
Network (Wi-Fi).

•	 The Attack:
•	 User installs a malicious "Flashlight App".
•	 App requests "Local Network" permission.
•	 App scans the Wi-Fi for vulnerable IoT devices (e.g., unpatched router, default password

camera).
•	 App sends commands to those devices.
•	 App exfiltrates data back to the attacker via Cellular.

The "Pivot" Attack

•	 Android/iOS Permission: "Access Local Network".
•	 Why it's dangerous: It allows an app to talk to any device on your Wi-Fi.
•	 User Behavior: Users often grant this without thinking, especially for apps that claim to need it

for "casting" or "setup".

Malicious Apps & Permissions

•	 Goal: Allow a malicious website to attack local IoT devices.
•	 Mechanism:

•	 User visits attacker.com.
•	 resolves to a real IP (1.2.3.4) initially.
•	 Browser loads page and JavaScript.
•	 DNS record changes (rebinding) to point attacker.com to 192.168.1.1 (Your Router).
•	 JavaScript sends AJAX requests to attacker.com, which the browser now sends to your router.

DNS Rebinding

•	 Scenario: Smart Bulb.
•	 Attack:

•	 Malware on phone monitors the status of the smart bulb.
•	 If the bulb turns ON, the user is likely home/awake.
•	 If the bulb turns OFF, the user is asleep/away.

Side-Channel Attacks via IoT

•	 Issue: Battery-powered devices (sensors) sleep 99% of the time to save power.
•	 Security Impact: They cannot receive security updates immediately.
•	 Attack: Attacker exploits a vulnerability. Manufacturer releases a patch. Device is asleep.

Attacker attacks before device wakes up to patch.

The "Sleepy" Device Problem

Learning from Failure

Part 6: Case Studies

•	 Target: A Casino in Las Vegas.
•	 Entry Point: A smart thermometer in the lobby aquarium.
•	 Vulnerability: Default credentials, connected to the main corporate network.
•	 The Pivot: Attackers compromised the thermometer, pivoted to the network, and stole the High

Roller database.
•	 Lesson: IoT devices must be isolated on a separate VLAN (Guest Network).

Case Study 1: The Smart Aquarium

•	 Incident: Strangers talking to children through Ring cameras.
•	 Cause: Credential Stuffing (Users reusing passwords). Not a hack of Ring's servers.
•	 Failure: Lack of mandatory Multi-Factor Authentication (MFA).
•	 Lesson: MFA is mandatory for IoT security.

Case Study 2: Ring Camera Hacks

•	 Target: Connected Car.
•	 Entry Point: The Cellular connection to the Infotainment System (Uconnect).
•	 The Pivot: Attackers moved from the Infotainment system (Music/Maps) to the CAN Bus

(Steering/Brakes).
•	 Impact: Remote control of the vehicle on a highway.
•	 Lesson: Network segmentation is life-critical.

Case Study 3: Jeep Cherokee Hack (2015)

•	 Enforce MFA: Mandatory for all IoT accounts.
•	 Use Standard Auth: OAuth 2.0 / OIDC. Do not invent your own token system.
•	 Validate Inputs: Sanitize every JSON field sent to the device.

Best Practices for Developers (1/3)

•	 Least Privilege: The App should only ask for permissions it needs. The Token should only have
scopes it needs.

•	 Secure Storage: Store Refresh Tokens in Keystore/Keychain.
•	 Certificate Pinning: Pin the connection between App and Cloud.

Best Practices for Developers (2/3)

•	 Network Isolation: Advise users to put IoT devices on a Guest Wi-Fi network.
•	 Regular Audits: Pentest the App AND the Device hardware.
•	 Secure Defaults: No default passwords. Random passwords printed on the sticker.

Best Practices for Developers (3/3)

•	 What is it? A new unified standard for Smart Home (Apple, Google, Amazon).
•	 Security: Built-in.
•	 Mandatory encryption.
•	 Device attestation (Blockchain-style ledger of valid devices).
•	 Local control (works without cloud).

Future Trends: Matter Protocol

•	 5G: Massive density of devices.
•	 Edge: Processing data closer to the device (not sending everything to the cloud).
•	 Security: Privacy improves (data stays local), but physical security of the Edge node becomes

critical.

Future Trends: 5G and Edge Computing

•	 Authorization Code Flow: Best for Mobile Apps.
•	 Uses a browser redirect.
•	 Securely exchanges code for token.
•	 Returns token in URL. Unsafe.

Appendix: OAuth 2.0 Flows

•	 QoS 0: At most once (Fire and forget).
•	 QoS 1: At least once (Guaranteed delivery, maybe duplicates).
•	 QoS 2: Exactly once (Slowest, most reliable).
•	 Security: QoS doesn't imply security, only reliability.

Appendix: MQTT QoS Levels

•	 Just Works: No user interaction. Unsecure against MitM.
•	 Passkey Entry: User types 6-digit code. Secure.
•	 Numeric Comparison: User compares numbers. Secure.
•	 OOB (Out of Band): NFC tap. Very secure.

Appendix: BLE Pairing Modes

•	 JWT: Signed (Integrity). Content is visible (Base64).
•	 JWE: Encrypted (Confidentiality). Content is hidden.
•	 Use Case: Passing sensitive data (PII) in a token.

Appendix: JSON Web Encryption (JWE)

•	 Defense: Prevent DoS attacks.
•	 Mechanism: "User X can only make 100 calls per minute."
•	 Implementation: API Gateway (Kong, AWS API Gateway).

Appendix: API Rate Limiting

•	 Principle: Never trust, always verify.
•	 Network: Micro-segmentation.
•	 Identity: Every device has a unique identity.

Appendix: Zero Trust for IoT

•	 Risk: Compromised libraries or hardware components.
•	 SBOM: Software Bill of Materials. Knowing what is in your code.

Appendix: Supply Chain Security

•	 IoT Cybersecurity Improvement Act (USA).
•	 ETSI EN 303 645 (Europe).
•	 Key Requirement: No default passwords.

Appendix: Regulatory Landscape

•	 Data Minimization: Don't collect what you don't need.
•	 Local Processing: Process voice/video on the device, not the cloud.

Appendix: Privacy by Design

•	 Bug Bounties: Paying researchers to find bugs.
•	 Policy: How to report a vulnerability safely.

Appendix: Responsible Disclosure

•	 KillerBee: Zigbee analysis.
•	 Ubertooth: Bluetooth sniffing.
•	 Binwalk: Firmware analysis.

Appendix: Tools for IoT Hacking

Talking to the Things

Part 7: Practical Code Examples

Android: Signed Request (OkHttp)
// Create the payload

val payload = JSONObject().apply {

 put("command", "unlock")

 put("timestamp", System.currentTimeMillis())

}

// Sign the payload (using our Crypto helper from Lecture 10)

val signature = signData(payload.toString().toByteArray())

// Build the request

val request = Request.Builder()

 .url("https://api.smart-home.com/devices/lock-123")

 .post(payload.toString().toRequestBody(JSON))

 .addHeader("Authorization", "Bearer $accessToken")

 .addHeader("X-Signature", signature) // Attach signature

 .build()

// Send it

client.newCall(request).execute()

iOS: Signed Request (URLSession)
var request = URLRequest(url: URL(string: "https://api.smart-home.com/devices/lock-123")!)

request.httpMethod = "POST"

// Create Payload

let payload = ["command": "unlock", "timestamp": Date().timeIntervalSince1970] as [String : Any]

let jsonData = try! JSONSerialization.data(withJSONObject: payload)

request.httpBody = jsonData

// Sign Payload (using CryptoKit)

let signature = try! privateKey.signature(for: jsonData)

let signatureString = signature.base64EncodedString()

// Attach Headers

request.setValue("Bearer \(accessToken)", forHTTPHeaderField: "Authorization")

request.setValue(signatureString, forHTTPHeaderField: "X-Signature")

URLSession.shared.dataTask(with: request).resume()

Android: MQTT Connect (Paho)
val clientId = MqttClient.generateClientId()

val client = MqttAndroidClient(context, "ssl://broker.hivemq.com:8883", clientId)

val options = MqttConnectOptions().apply {

 userName = "myUser"

 password = "myPassword".toCharArray()

 socketFactory = getSocketFactoryWithPinnedCert() // Important!

}

client.connect(options, null, object : IMqttActionListener {

 override fun onSuccess(asyncActionToken: IMqttToken?) {

 Log.d("IoT", "Connected to MQTT Broker")

 client.subscribe("home/livingroom/light", 1) // QoS 1

 }

 override fun onFailure(asyncActionToken: IMqttToken?, exception: Throwable?) {

 Log.e("IoT", "Failed to connect")

 }

})

•	 The Nexus: Mobile and IoT are inseparable. The phone is the controller.
•	 REST is King: Web standards (HTTP, JSON, OAuth) run the IoT world.
•	 Auth Matters: Tokens (JWTs) must be handled with extreme care.
•	 Trust No One: Verify signatures, check timestamps, and isolate networks.

Summary of Lecture 11

Lecture 12: Mobile Application Pentesting
•	 We switch from "Builder" to "Breaker".
•	 Setting up a Pentest Lab (Genymotion, Corellium).
•	 Static Analysis (decompiling APKs).
•	 Dynamic Analysis (hooking with Frida).
•	 Bypassing SSL Pinning.

Next Lecture Preview

Questions?

Q&A

