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•	 Part 1: Cryptographic Fundamentals - Symmetric vs. Asymmetric, Block Modes, and 
Hashing. 

•	 Part 2: The Mobile Constraint - Battery, CPU, and the need for Hardware Acceleration. 
•	 Part 3: Asymmetric Deep Dive - RSA vs. ECC and the importance of Key Exchange. 
•	 Part 4: Securing Data-in-Transit - TLS 1.3, Handshakes, and Certificate Pinning. 
•	 Part 5: Securing Data-at-Rest - File-Based Encryption, Keystores, and Biometrics. 
•	 Part 6: IoT Security - Bootstrapping, MQTT, and Secure Firmware Updates.

Today's Agenda



•	 Digital Forensics: We explored the science of recovering evidence from mobile devices. 
•	 Acquisition Methods: We learned about Logical, File System, and Physical acquisition. 
•	 Artifact Analysis: We saw how call logs, location data, and timestamps build a timeline of 

events. 
•	 The Challenge of Encryption: We discussed how modern encryption (FBE) makes forensic 

acquisition incredibly difficult.

Recap from Lecture 9



The Building Blocks of Security

Part 1: Cryptographic Fundamentals



•	 Concept: The same key is used for both encryption and decryption. 
•	 Analogy: A physical door key. If you have the key, you can lock the door (encrypt) and unlock it 

(decrypt). 
•	 Speed: Very fast. Designed for processing large amounts of data. 
•	 Primary Use: Encrypting files, databases, and the bulk of network traffic.

Category 1: Symmetric Encryption



•	 AES (Advanced Encryption Standard): 
•	 The global standard. Trusted by governments and industry. 
•	 Block size: 128 bits. 
•	 Key sizes: 128, 192, or 256 bits. 
•	 A modern stream cipher. 
•	 Designed to be fast in software, making it ideal for mobile devices without dedicated AES 

hardware. 
•	 Often paired with Poly1305 for authentication.

Common Symmetric Algorithms



AES encrypts data in fixed-size blocks (128 bits). But most files are larger than 128 bits. How do 
we encrypt the whole file? We use a "Mode of Operation." 
•	 ECB (Electronic Codebook): The naive approach. Encrypts each block independently. 

INSECURE. 
•	 CBC (Cipher Block Chaining): Each block depends on the previous one. Better, but hard to 

implement correctly. 
•	 GCM (Galois/Counter Mode): The modern standard. Provides both encryption and integrity 

(authentication).

Block Cipher Modes of Operation



•	 The Problem: In ECB mode, identical blocks of plaintext produce identical blocks of ciphertext. 
•	 The Result: Patterns in the data are preserved. An attacker can "see" the structure of the data 

even if they can't read the exact bytes.

Why ECB is Dangerous



•	 Confidentiality: Keeping data secret (Encryption). 
•	 Integrity: Ensuring data hasn't been tampered with (hashing/MAC). 
•	 AEAD (Authenticated Encryption with Associated Data): Combines both into a single, 

efficient operation. 
•	 AES-GCM: The most common AEAD mode. It ensures that if an attacker modifies even one bit 

of the encrypted file, the decryption will fail completely.

Authenticated Encryption (AEAD)



•	 Concept: A one-way mathematical function that takes any amount of data and produces a 
fixed-size string (the "digest" or "hash"). 

•	 Characteristics: 
•	 Deterministic: Same input always equals same output. 
•	 One-Way: You cannot reverse the hash to get the original data. 
•	 Collision Resistant: It should be impossible to find two different inputs that produce the 

same hash.

Category 2: Hash Functions



•	 MD5: Broken. Do not use. 
•	 SHA-1: Broken. Do not use. 
•	 SHA-2 (SHA-256): The current industry standard. Secure and widely supported. 
•	 SHA-3: The newest standard, built on a different mathematical structure.

Common Hash Algorithms



•	 Concept: Uses a pair of keys. 
•	 Public Key: Shared with the world. Used to encrypt messages or verify signatures. 
•	 Private Key: Kept secret. Used to decrypt messages or sign data.

Category 3: Asymmetric Cryptography



Why Crypto is Hard on Phones

Part 2: The Mobile Constraint



•	 Battery: 
•	 Crypto = Math. Math = CPU cycles. CPU cycles = Power drain. 
•	 A poorly written crypto loop can drain a battery in hours. 

•	 Mobile CPUs are powerful, but they throttle (slow down) when they get hot. 
•	 Heavy crypto can cause the UI to stutter or freeze. 
•	 IoT devices might have only kilobytes of RAM. 
•	 Some older algorithms require large memory tables, which is bad for these devices.

The Resource Triad



To solve the performance problem, we use special hardware. 
•	 AES-NI / ARMv8 Crypto Extensions: 

•	 Special CPU instructions designed just for encryption. 
•	 They run 10x-100x faster than software code. 
•	 They use significantly less battery.

Hardware Acceleration



•	 What is it? A secure area of the main processor. It runs a separate, secure operating system. 
•	 Android: TrustZone. 
•	 iOS: Secure Enclave. 
•	 Purpose: To perform sensitive operations (like unlocking the device or processing payments) in 

an isolated environment that even the main OS (Android/iOS) cannot tamper with.

Trusted Execution Environment (TEE)



•	 A dedicated hardware coprocessor. 
•	 Key Feature: It stores cryptographic keys that never leave the hardware. 
•	 How it works: 

•	 The App asks the Enclave to create a key. 
•	 The Enclave creates it and stores it internally. 
•	 The App asks the Enclave to sign a piece of data. 
•	 The Enclave signs it and returns the signature. 
•	 The App never sees the private key.

The Secure Enclave (Apple)



RSA vs. ECC: The Battle for Mobile

Part 3: Asymmetric Deep Dive



•	 The Old Guard: Invented in 1977. 
•	 Math: Based on the difficulty of factoring large prime numbers. 
•	 Key Size: Requires very large keys to be secure (2048 or 3072 bits). 
•	 Performance: Fast at verifying signatures, but slow at generating keys and signing.

RSA (Rivest–Shamir–Adleman)



•	 The Challenger: Gained popularity in the 2000s. 
•	 Math: Based on the algebraic structure of elliptic curves over finite fields. 
•	 Key Size: Tiny! A 256-bit ECC key is as strong as a 3072-bit RSA key. 
•	 Performance: Much faster at signing and key generation.

ECC (Elliptic Curve Cryptography)



•	 Smaller Keys: 
•	 Less storage space needed. 
•	 Less bandwidth needed to send certificates over the network. 
•	 Less CPU usage = Longer battery life. 
•	 Faster handshakes = App loads faster. 
•	 IoT devices with tiny memory can handle ECC but often choke on RSA.

Why ECC Wins on Mobile



•	 Goal: To prove authenticity and integrity. 
•	 Process: 

•	 Sender hashes the message (SHA-256). 
•	 Sender encrypts the hash with their Private Key. This is the "Signature". 
•	 Receiver decrypts the signature with the Sender's Public Key. 
•	 Receiver hashes the message themselves. 
•	 If the two hashes match, the signature is valid.

Digital Signatures



•	 The Problem: How do two strangers agree on a secret symmetric key over a public network 
without anyone else seeing it? 

•	 The Solution: ECDH (Elliptic Curve Diffie-Hellman). 
•	 The Analogy: Mixing paint. 

•	 Alice and Bob mix their secret colors with a public color. 
•	 They exchange the mixtures. 
•	 They add their secret color to the mixture they received. 
•	 They end up with the exact same final color (the shared key), but an eavesdropper can't figure 

it out.

Key Exchange (Diffie-Hellman)



TLS and Network Security

Part 4: Securing Data-in-Transit



•	 Transport Layer Security (TLS): The successor to SSL. 
•	 Function: It creates a secure, encrypted tunnel between the client (app) and the server. 
•	 Properties: 

•	 Confidentiality: Nobody can read the data. 
•	 Integrity: Nobody can modify the data. 
•	 Authentication: You know you are talking to the real server.

What is TLS?



•	 Client Hello: "Hi, I speak TLS 1.3 and I support these algorithms." 
•	 Server Hello: "Hi, let's use TLS 1.3 and AES-GCM. Here is my Certificate." 
•	 Key Exchange: The client and server perform ECDH to generate a shared session key. 
•	 Finished: "Let's switch to encryption." 
•	 Secure Data Transfer: All subsequent data is encrypted with the shared key.

The TLS Handshake (Simplified)



•	 Faster: 1-RTT (Round Trip Time) handshake. 
•	 Safer: Removed insecure algorithms (no more RSA key exchange, no more CBC mode). 
•	 0-RTT: If you've visited the site before, you can send data immediately (Zero Round Trip).

TLS 1.3 Improvements



•	 Certificate Authority (CA): A trusted organization (like DigiCert or Let's Encrypt) that issues 
digital certificates. 

•	 Root Store: Your phone comes pre-installed with a list of trusted CAs (the "Root Store"). 
•	 Validation: 

•	 Server sends its certificate. 
•	 Phone checks: "Is this signed by a CA in my Root Store?" 
•	 If yes, the connection is trusted.

The Chain of Trust



•	 Too Many CAs: There are hundreds of trusted CAs. 
•	 The Risk: If any one of them is hacked or goes rogue, they can issue a fake certificate for 

google.com or your-bank.com. 
•	 The Result: A Man-in-the-Middle (MitM) attacker can intercept your traffic, and your phone will 

think it's secure.

The Weakness of the CA System



•	 The Solution: Don't trust the whole Root Store. Trust only one specific certificate (or public 
key). 

•	 How it works: You hardcode the hash of your server's public key inside your app. 
•	 The Check: When the app connects, it checks if the server's key matches the hardcoded hash. 

If not, it kills the connection.

Certificate Pinning



Android makes this easy with XML configuration. 

Implementing Pinning (Android)

<network-security-config>
    <domain-config>
        <domain includeSubdomains="true">api.myapp.com</domain>
        <pin-set expiration=“2026-01-01">
            <pin digest="SHA-256">7HIpactkIAq2Y49orFOOQKurWxmmSFZhBCoQYcRhJ3Y=</pin>
            <pin digest="SHA-256">fwza0LRMXouZHRC8Ei+4PyuldWDURappCnOgQWO9s1L=</pin>
        </pin-set>
    </domain-config>
</network-security-config>



On iOS, you can use Info.plist or a library like TrustKit.

Implementing Pinning (iOS)

let trustKitConfig = [
    kTSKSwizzleNetworkDelegates: true,
    kTSKPinnedDomains: [
        "api.myapp.com": [
            kTSKPublicKeyHashes: [
                "7HIpactkIAq2Y49orFOOQKurWxmmSFZhBCoQYcRhJ3Y=",
                "fwza0LRMXouZHRC8Ei+4PyuldWDURappCnOgQWO9s1L="
            ],
            kTSKEnforcePinning: true
        ]
    ]
]
TrustKit.initSharedInstance(withConfiguration: trustKitConfig)



Encryption on the Device

Part 5: Securing Data-at-Rest



•	 No Encryption: Early phones. If you lost it, anyone could read the data. 
•	 Full Disk Encryption (FDE): One key for the whole drive. 
•	 Problem: Phone is useless until unlocked after reboot.

Evolution of Mobile Storage Security



•	 Credential Encrypted Storage: Available only after the user unlocks the device. (e.g., User 
photos, emails). 

•	 Device Encrypted Storage: Available immediately on boot. (e.g., Alarm clock settings, 
incoming call handlers). 

•	 Keys: The keys for Credential Storage are derived from the user's passcode.

How FBE (File-Based Encryption) Works



Where do we store the keys that encrypt the data? We can't just put them in a text file. 
•	 Android Keystore System: A system service that stores cryptographic keys in the TEE 

(Trusted Execution Environment). 
•	 iOS Keychain: The Apple equivalent. 
•	 Benefit: The key material is never exposed to the application process. You ask the Keystore to 

"sign this data" or "decrypt this key," and it does it inside the secure hardware.

Storing Keys: The Keystore



Using the Android Keystore

KeyGenerator keyGenerator = KeyGenerator.getInstance(
        KeyProperties.KEY_ALGORITHM_AES, "AndroidKeyStore");

keyGenerator.init(new KeyGenParameterSpec.Builder("MyKeyAlias",
        KeyProperties.PURPOSE_ENCRYPT | KeyProperties.PURPOSE_DECRYPT)
        .setBlockModes(KeyProperties.BLOCK_MODE_GCM)
        .setEncryptionPaddings(KeyProperties.ENCRYPTION_PADDING_NONE)
        .build());

SecretKey key = keyGenerator.generateKey();



Using the iOS Keychain

let attributes: [String: Any] = [
    kSecClass as String: kSecClassGenericPassword,
    kSecAttrAccount as String: "MySecretKey",
    kSecValueData as String: secretData,
    kSecAttrAccessible as String: kSecAttrAccessibleWhenUnlockedThisDeviceOnly
]

SecItemAdd(attributes as CFDictionary, nil)



We can bind keys to biometrics. 
•	 Concept: The key in the Keystore is "locked" and can only be used if the user successfully 

authenticates with their fingerprint or face. 
•	 Flow: 

•	 App requests to use the key. 
•	 Keystore prompts user for Biometric. 
•	 User touches sensor. 
•	 Hardware verifies match. 
•	 Keystore unlocks key and performs operation.

Biometric Authentication



How do we know the OS itself hasn't been hacked? 
•	 Chain of Trust: 

•	 Boot ROM: Burned into the chip at the factory. Cannot be changed. Verifies the Bootloader. 
•	 Bootloader: Verifies the Kernel. 
•	 Kernel: Verifies the OS System Partition.

Secure Boot



The Wild West of Cryptography

Part 6: IoT Security



•	 Scenario: You buy a smart lightbulb. It has no screen, no keyboard, and no internet connection. 
•	 Goal: Connect it to your home Wi-Fi. 
•	 Challenge: How do you tell it the Wi-Fi password securely?

The "Headless" Problem



•	 How it works: The device creates its own Wi-Fi network (e.g., "Bulb-Setup"). You connect your 
phone to it. 

•	 The Flaw: This connection is often unencrypted HTTP. 
•	 The Attack: An attacker nearby can sniff the traffic and steal your home Wi-Fi password as you 

send it to the bulb.

Bootstrapping Method 1: SoftAP



•	 How it works: The phone connects to the device via BLE. 
•	 The Advantage: BLE supports pairing and encryption protocols. 
•	 The Flow: 

•	 Phone pairs with Bulb via BLE. 
•	 Phone sends Wi-Fi credentials over encrypted BLE channel. 
•	 Bulb connects to Wi-Fi.

Bootstrapping Method 2: BLE (Bluetooth Low Energy)



•	 HTTP: Good for web pages, heavy for IoT. 
•	 MQTT (Message Queuing Telemetry Transport): 

•	 Lightweight publish/subscribe protocol. 
•	 Perfect for unreliable networks and low-power devices.

IoT Protocols: MQTT



•	 Standard TLS: Client verifies Server. 
•	 Mutual TLS: Client verifies Server AND Server verifies Client. 
•	 IoT Use Case: 

•	 Every lightbulb has a unique client certificate burned in at the factory. 
•	 The cloud server refuses to talk to any device that doesn't present a valid certificate signed by 

the manufacturer.

IoT Authentication: Mutual TLS (mTLS)



•	 The Risk: If an attacker can push a malicious firmware update, they own the device forever. 
•	 The Defense: Digital Signatures. 
•	 Manufacturer signs the firmware update with their Private Key. 
•	 Device has the Manufacturer's Public Key stored in Read-Only Memory. 
•	 Device verifies the signature before installing the update.

Firmware Updates (OTA)



•	 What happened: In 2016, millions of IoT devices (cameras, routers) were hacked. 
•	 The Vulnerability: Default passwords (admin/admin) and open telnet ports. 
•	 The Impact: The botnet launched massive DDoS attacks, taking down major parts of the 

internet. 
•	 Lesson: IoT security affects everyone.

The Mirai Botnet



Let's design a secure smart lock system. 
•	 Components: Lock (BLE), Gateway (Wi-Fi), Cloud, Mobile App. 
•	 Threat Model: 

•	 Attacker sniffing Bluetooth. 
•	 Attacker hacking the Cloud. 
•	 Attacker stealing the Phone.

Case Study: Smart Lock Security



•	 Challenge: Replay Attacks. An attacker records the "unlock" signal and plays it back later. 
•	 Solution: Challenge-Response or Rolling Codes. 
•	 Lock sends a random number (Nonce). 
•	 Phone signs the Nonce with a shared key. 
•	 Lock verifies signature. 
•	 The "unlock" command is unique every time.

Smart Lock: BLE Security



•	 Scenario: You want to let a guest in for one hour. 
•	 Mechanism: Ephemeral Keys. 
•	 App generates a temporary key valid for 1 hour. 
•	 App sends key to Guest's phone. 
•	 Guest uses key to unlock. 
•	 Lock enforces the time limit.

Smart Lock: Guest Access



•	 Problem: RSA-2048 is too slow for a cheap microcontroller. 
•	 Solution: Use Curve25519 (ECC). 

•	 Extremely fast. 
•	 Small code size. 
•	 High security.

Performance Tuning for IoT



•	 The Hidden Danger: Cryptography relies on good randomness. 
•	 IoT Issue: Cheap devices often lack a good source of entropy (randomness). 
•	 Result: Predictable keys. If the RNG is predictable, the crypto is broken. 
•	 Fix: Use hardware True Random Number Generators (TRNG) built into modern 

microcontrollers.

Random Number Generation (RNG)



•	 Concept: Attacking the implementation, not the math. 
•	 Power Analysis: Monitoring the power consumption of the device to guess the key bits. 
•	 Timing Attacks: Measuring how long an operation takes to guess the key. 
•	 Defense: Constant-time algorithms (code that takes the exact same time regardless of the 

input).

Side-Channel Attacks



•	 The Future: Quantum computers could theoretically break RSA and ECC. 
•	 Timeline: Unclear (10-30 years?). 
•	 Post-Quantum Cryptography (PQC): New algorithms (Lattice-based) that are resistant to 

quantum attacks. 
•	 Relevance: "Store Now, Decrypt Later" attacks. Encrypted data stolen today could be 

decrypted in 20 years.

Quantum Computing Threat



•	 Don't Roll Your Own Crypto: Use standard libraries (Bouncy Castle, Sodium, OS APIs). 
•	 Use Hardware Acceleration: AES-NI, ARM Crypto Extensions. 
•	 Secure Key Storage: Use the TEE / Secure Enclave. Never store keys in code or shared 

preferences.

Best Practices Checklist (1/3)



•	 Use TLS 1.3: Enforce it on your servers. 
•	 Pin Certificates: For high-security apps. 
•	 Encrypt Data at Rest: Use FBE / EncryptedSharedPreferences.

Best Practices Checklist (2/3)



•	 Authenticate Everything: mTLS for IoT, OAuth for Apps. 
•	 Sign Firmware: Secure Boot and Secure OTA. 
•	 Plan for Updates: Crypto agility. Be able to swap algorithms if one breaks.

Best Practices Checklist (3/3)



•	 Wireshark: Analyze network traffic. 
•	 mitmproxy: Intercept and inspect TLS traffic (useful for debugging). 
•	 MobSF (Mobile Security Framework): Static analysis of Android/iOS apps to find crypto 

issues. 
•	 OpenSSL: Command line tool for generating keys and testing connections.

Tools for Testing



Implementing Crypto on Android and iOS

Part 7: Practical Code Examples



Android: EncryptedSharedPreferences (Kotlin)
// The Master Key (stored in Keystore)
val masterKey = MasterKey.Builder(context)
    .setKeyScheme(MasterKey.KeyScheme.AES256_GCM)
    .build()

// The Encrypted Shared Preferences
val sharedPreferences = EncryptedSharedPreferences.create(
    context,
    "secret_shared_prefs",
    masterKey,
    EncryptedSharedPreferences.PrefKeyEncryptionScheme.AES256_SIV,
    EncryptedSharedPreferences.PrefValueEncryptionScheme.AES256_GCM
)

// Usage is identical to standard SharedPreferences
sharedPreferences.edit().putString("auth_token", "xyz123").apply()



iOS: Signing with Secure Enclave (Swift)
import CryptoKit

// 1. Generate a Private Key in the Secure Enclave
let privateKey = try SecureEnclave.P256.Signing.PrivateKey()

// 2. The Public Key (safe to send to server)
let publicKeyData = privateKey.publicKey.compactRepresentation!

// 3. Sign some data
let dataToSign = "Unlock Door".data(using: .utf8)!
let signature = try privateKey.signature(for: dataToSign)

print("Signature: \(signature)")



Android: Hashing Data (Kotlin)
import java.security.MessageDigest

fun hashString(input: String): String {
    val bytes = input.toByteArray()
    val md = MessageDigest.getInstance("SHA-256")
    val digest = md.digest(bytes)

    // Convert byte array to hex string
    return digest.fold("") { str, it -> str + "%02x".format(it) }
}

val hash = hashString("password123")



•	 Applied Crypto is Engineering: It's about constraints, trade-offs, and implementation details. 
•	 Mobile is Special: Battery and UI responsiveness drive our choices (ECC > RSA). 
•	 IoT is Dangerous: The physical world brings new threats (Side-channels, bad RNG). 
•	 The Goal: To build systems that are secure by design and resilient to attack.

Lecture Wrap-Up



Lecture 11: Network Security and Traffic Analysis 
•	 We will take the tools we learned today (Wireshark, TLS) and use them to analyze real-world 

traffic. 
•	 We will learn how to spot malicious traffic patterns. 
•	 We will discuss VPNs, Proxies, and Tor.

Next Lecture Preview



•	 Book: "Serious Cryptography" by Jean-Philippe Aumasson. 
•	 Standard: NIST Digital Identity Guidelines. 
•	 Docs: Android Keystore System Training. 
•	 Docs: Apple CryptoKit Documentation.

Additional Resources



Questions?

Q&A


