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Motivation for Data Mining

Probabilistic Data
Mining

Data Mining is not:
@ SQL and relational data-base application;
@ Storage technologies;

Lehel Csatd

@ Cloud Computing;

@ The extraction of knowledge or information from an
ever-growing collection of data.

@ “Advanced” search capability that enables one to
extract patterns useful in providing models for:

@ characterising;
@ prediction, and
@ exploiting the data.
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Data mining applications

Probabilistic Data
Mining @ Identifying targets for vouchers/frequent flier bonuses

Lehel Csat6 or in telecommunications.

@ “Basket analysis” — correlation—based analysis
leading to recommending new items — Amazon.com.

@ (semi)automated fraud/virus detection: use guards
that protect against procedural or other types of
misuse of a system.

@ Forecasting e.g. energy consumption of a region for
optimising coal/hydro-plants or planning;

@ Exploiting textual databases — the Google business:

e to answer user queries;
e to put content-sensitive ads: Google AdSense



The need for data mining

Probahazlr:?;i; Data “Computers have promised us a fountain of wisdom
but delivered a flood of data.”

“The amount of information in the world doubles every

20 months.”

Mottion (Frawley, Piatetsky-Shapiro, Matheus, 1991)

Lehel Csato

@ A competitive market environment requires
sophisticated — and useful — algorithms.

@ Data aquisition and storage is ubiquotuous.
Algorithms are required to exploit them.

@ The algorithms that exploit the data-rich environment
are coming usually from the machine learning
domain.



Machine learning

Probabilistic Data . . . .
Mining Historical background / Motivation:

Lehel

@ Huge amount of data, that should automatically be
processed,

@ Mathematics provides general solutions, solutions
are i.e. not for a given problem,

@ Need for “science”, that uses mathematics machinery
for solving practical problems.



Definitions for Machine Learning
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Mining

Machine learning
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Collection of methods (from statistics, probability theory)
to solve problems met in practice.

@ noise filtering for
@ non-linear regression and/or
e non-Gaussian noise

@ Classification:
@ binary,
e multiclass,
o partially labelled

@ Clustering,
@ Inversion problems,
@ density estimation, novelty detection.

Generally, we need to model the data,



Modelling Data

Probabilistic Data
Mining (X1 Y1 )

Lehel Csato (X2, Y2)
Observation

f(x :
(x) (x,y) °

(X W)

@ Real world: there “is” a function y = f(x)

@ Observation process: a corrupted datum is collected
for a sample x,:

th = Ynte additive noise
th = h(yne€) h distortion function

@ Problem: find function y = f(x)



Latent variable models

Probabilistic Data
Mining (X1 Y1 )
Lehel Csat6 (Xz,Y2)
Inference
*
f (x) =
L
Latent variable models F — function class
Observ. process (X e W)

@ Data set — collected.

@ Assume a function class.
@ polynomial,
e Fourier expansion,
o Wavelet;

@ Observation process — encodes the noise;

@ Find the optimal function from the class.



Latent variable models Il

Probabilistic Data

Mining @ We have the data set D = {(x1, y1),..., (Xn, Yn) -
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@ Consider a function class:

(1) F={w/x+bwecR% becR}
K K

(2) F={ap+) axsin(2mkx)+ ) by cos(2mkx)
k=1 k=1

la,b € R¥, a € R}

@ Assume an observation process:

Vo= f(x,)+ e with e ~ N(0, 0?).



Latent variable models IlI

Probabilistic Data

Mining @ Thedataset: D = {(x1,y1),..., (XN, yn)}
Lehel Csato
@ Assume a function class:
F = {f(x,e)le € Rp}

JF — polynomial, etc.

© Assume an observation process. Define a loss
function:

L (yn, f(xn,0))

For the Gaussian noise:
L(Yn, (X, 0)) = (yn — f(x5,0))2.
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Estimation e Estimation methods
@ Maximum Likelihood
@ Maximum a-posteriori
@ Bayesian Estimation



Parameter estimation

Probabilistic Data . .
Mining Estimating parameters:
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Finding the optimal value to 0:
0* =argmin L(D,0)
Estimation 0cQ
where
@ O is the domain of the parameters.
@ L(D,0) is a “loss function” for the data set.
Example:

N
L(D,8) = Y L(yn,f(Xn,0))

n=1



Maximum Likelihood Estimation

Probabilistic Data

Mining L(D) e)

Lehel Csato

— (log)likelihood function.

Maximum likelihood estimation of the model:

0" =argminL(D,0
g min (D,0)

Example — quadratic regression:

N
L(D,0)= > (yn—f(x,,0))° - factorisation

n=1

Drawback: can produce perfect fit to the data —
over-fitting.
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@ We want to fit a model to the data.
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@ We want to fit a model to the data.
@ Use linear model: h =0y + 01 w.
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@ We want to fit a model to the data.

@ Use linear model: h =0y + 01 w.
@ Use log-linear model: h = 0 + 64 log(w).



Example of an ML estimate Graphic
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@ We want to fit a model to the data.

@ Use linear model: h =0y + 01 w.

@ Use log-linear model: h = 0 + 64 log(w).
@ Use higher order polynomials, e.g. :

h:90+91W+92W2+93W3+....

&
><V y~——



M.L. for linear models

Probabilistic Data

Mining Assume:
eneGea linear model for the x — y relation

Xn‘e Z OeXp

with x = [1, x, x2, log(x),...]"

Maximum Likelihood

quadratic loss for D = {(x1, y1),..., (Xn, hn)}

N

E2(DIf) = ) (yn—f(x,16))?

n=1




M.L. for linear models

Probabilistic Data e e m .
Mining Minimisation:
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N
> (yn—f(x418))% = (y — X8)" (y — X6)
n=1
—07X"X0-20"X"y +yTy
Solution:

0=2X"X0—2X"y
—1
0= (xTx) XTy

where y = [y1,...,yn)" and X = [x4,...,xy]" are the
transformed data.



M.L. for linear models

Probabilistic Data

Mining Generalised linear models:
Lehel Csatd Py Use a set Of functions O = [(I)1 (), ceey d)M()]

@ Project the inputs into the space spanned by Im(®).

@ Have a parameter vector of length M:
0 =1[01,...,0".

Maximum Likelihood

@ The model is { > mOmdm(x)[0m € R}.
@ The optimal parameter vector is:

0* = ((I)TCD)_1 @y



Maximum Likelihood Summary

Probabilistic Data . ays
Mining @ There are many candidate model families:

Lehel Csato

e the degree of polynomials specifies a model family;
e the rank of a Fourier expansion;

Maximum Likelihood

e the mixture of {log, sin, cos, ...} also a family;

@ Selecting the “best family” is a difficult modelling
problem.

@ In maximum likelihood there is no controll on how
good a family is when processing a given data-set.

Smaller number of parameters than «/#data.



Maximum a—posteriori

Probabilistic Dat . . .
O Nlinng @ Generalised linear model powerful — it can be

Lehel Csato extremely complex;
e With no complexity control, overfitting problem.

@ Aim: to include knowledge in the inference process.

@ Our beliefs are reflected by the choice of the
candidate functions.

Maximum a-posteriori



Maximum a—posteriori

Probabilistic Dat . . .
O Nlinng @ Generalised linear model powerful — it can be

Lehel Gsat6 extremely complex;
e With no complexity control, overfitting problem.

@ Aim: to include knowledge in the inference process.

@ Our beliefs are reflected by the choice of the
candidate functions.

@ Prior knowledge specification using probabilities;
@ Using probability theory for consistent estimation;
@ Encode the observation noise in the model;




Maximum a—posteriori Data/noise

Probabilistic Data

Mining Probabilistic data description:

Lehel Csato
@ How likely is that 6 generated the data:

y = f(x) & y—1f(x)~0
y=f(x)+e & y—1f(x)~N;

@ Gaussian noise: y — f(x) ~ N(0, 0?)

1 (y — f(x))?
\/Zwexp {_ 202 }

Pylf(x)) =



Maximum a—posteriori

Probabilistic Data
Mining

William of (1285-1349) principle
Entities should not be multiplied beyond necessity.

Lehel Csatd

Also known as (wiki...): “Principle of simplicity” — KISS,
“When you hear hoofbeats, think horses, not zebras”.

Maximum a-posteriori

Simple models ~ small number of parameters.
Lo norm
Lo norm S5

Probabilistic representation:

1613

Po(8) o exp [—20(%]
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Inference

Probabilistic Data

Mining M.A.P. — probabilities assigned to
el Gsalo @ D —via the log-likelihood function:

P(ynlXn,0,F) o< exp [—L(yn, f(Xn,0))]

@ 0 — prior probabilities:

po(8) o exp | 18I
203

@ A—posteriori probability:

P(DI6)po(0)
p(D|F)

p(D|F) — probability of the data for a given family.

p(6[D, F) =



Inference I

Probabilistic Data

Mining M.A.P. estimation — finds 0 with largest probability:
Lehel Csato

Oap = argmaxp(0|D, F)
0cQ

Example: with L(y,, f(x,,0)) and Gaussian prior:

|le]®
Orap = argmax K — — L(yn, f(xn,0)) —
MAP ggg z (Yn, f(Xn, 202

05 =co = maximum likelihood.

after a change of sign and max — min



Example |
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——N. Dev =102
------ True function

© Training data

mimiiN. Dev =102

Maximum a-posteriori




Linear models |
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Maximum a-posteriori
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Aim: test different levels of flexibility. = p =10
Prior width:
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Maximum a-posteriori
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Aim: test different levels of flexibility. = p =10
Prior width: 0‘8 =106 O‘S =10° cr% =10*



Linear models |
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Maximum a-posteriori

Wi

&
IASS

90 100

110

Aim: test different levels of flexibility. = p =10

Prior width: o = 10® 03 =10° 03 =10* o5 =10°



Linear models |
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Maximum a-posteriori

90 100 110

Aim: test different levels of flexibility. = p =10
Prior width: crg =106 cr% =10° GS =104 cyg =103
02 = 102

0



Linear models |

Probabilistic Data
Mining

Maximum a-posteriori

W

60 70 80 %0 100 110
Aim: test different levels of flexibility. = p =10

Prior width: cr(‘z):106 062105 032104 082103
0'61102 08:101



Linear models |

Probabilistic Data
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Maximum a-posteriori

%0 100
Aim: test different levels of flexibility. = p =10
Prior width: 0(2) =106 cr% =10° GS =104 (yg =103
O'S =102 Gg =10 O'g =100



Linear models Il

Probabilistic Data

Mining
[l
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0} _argmaxK—— Eo(yn, f(Xn,0)) — —5
MAP bca Z n n 20_8

Transform into vector notation:
0’0

Oap = argmaxK— —(y—X0)" (y—Xe)——
0cO 2(70

solve for 6 by differentiation:

XT(y—XB)—lzIdB =0
%0

1
0, — <x7x+12/d> Xy
0o

again M.L. for 05 = oo



Summary

Probabilistic Data . - .
Mining Mximum a—posteriori models:

Lehel Csato

@ Allow for the inclusion of prior knowledge;

@ May protect against overfitting;

@ Can measure the fitness of the family to the data;
Procedure called M.L. type II.



M.A.P. application

g el |dea: instead of computing the most probable value of 6,

ohel Centt we can measure the fit of the model F to the data D.
P(DIF) = > p(D,6:F)
08,c0
= D p(DI6F)po(8el F)
0,€Q

Maximum a-posteriori

Gaussian noise ase and polynomial of order K:

(D16, F)po(6|F)
p(D|F)

log(P(DIF)) = log (J do P
C

) = log (N(y[0,Zx))
2o

_ ret

= -3 <Nlog(2ﬂ) +1log|Ex| + ¥y Ex y>
where
X = [xo,x‘,...,xK]
Tx = Ino2+XZo X  with

L= diag(()%) 0%»- () U%() = Uf)IK+1



M.A.P.
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Maximum a-posteriori

Aim: test different models.
Polynomial families: k =10 k =9 k = 8.
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Maximum a-posteriori

Aim: test different models.
Polynomial families: k =9 k=8 k =7.
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Maximum a-posteriori

Aim: test different models.
Polynomial families: k =8 k =7 k =6.
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Maximum a-posteriori

Aim: test different models.
Polynomial families: k =7 k=6 k=5
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Maximum a-posteriori

Aim: test different models.
Polynomial families: k =6 k =5k =4 .
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Maximum a-posteriori

Aim: test different models.
Polynomial families: k =5k =4 k=3.



M.A.P.
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Maximum a-posteriori

Aim: test different models.
Polynomial families: k =4 k =3 k=2



M.A.P.
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Maximum a-posteriori

Aim: test different models.
Polynomial families: k =3 k =2k =1.



Bayesian estimation

Probabilistic Data

Mining @ M.L. and M.A.P. estimates provide single solutions.
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@ Point estimates lack the assessment of un/certainty.

@ Better solution:
for a query x., the system output is probabilistic:

X = pYelXs, F)

@ Tool:
go beyond the M.A.P. solution and use the
a—posteriori distribution of the parameters.



Bayesian estimation

Probabilistic Data . y
Mining We again use Bayes’ rule:

Lehel Csatd
P(DI8)po(6)

plOiD, F) = —

with p(DIF) = J d® P(DI8)ps(0).
Q

and exploit the whole posterior distribution of the
parameters.

A-posteriori parameter estimates

We operate with p,.«(0) = p(6|D, F) and use the total
probability rule:

y*|D ]: Z P y*|9€> ppost(ee)

0,€Qp

in assessing system output.




Example |

Probabilistic Data

Mining Given the data D = {(x1, y1), ..., (Xn, ¥n)} €stimate the

Lehel Csat6 linear fit:
) R
y=00+) 0x= 6.1 X:1 “o’x
. 04 X'd

Gaussian distributions noise and prior:

€ =y,—0"x,~N(0,02)
w ~ N(0,%,)



Bayesian estimation Example I

Probabilistic Data
Minng Goal: compute the posterior distribution p,..(0).
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N
Pros(8) o< po(0) p(DIB, F) = po(81Z0) | | P(y»l6xn)
n=1
1 -
—2log (Ppos(0)) = Koot + (y—X0) (y—Xe)+e'z,'0
n
Bayesian Estimation 1 ,
- o <7X7x + 7_51) 0— %eTxTy + Koy

= (e - l"l'pusl) ! z}?oll (e - up()sl) + Kp/olsl

and by identification

1 B !
Lpost = (?XTX + Za1> and -, = ZPOS‘Q

2
n On



Bayesian estimation Example Il

Probabilistic Data

Mini 5 .
o Bayesian linear model
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The posterior distribution for the parameters is a
Gaussian with parameters

1 - X'
zpost = <2XTX + z01> and Hpost = zpostizy
o On

n

Bayesian Estimation

Point estimates from keeping :

@ M.L. if we take o — oo and considering only ;.

@ M.A.P if we approximate the distribution with a single
value at the maximum, i.e. p, .



Bayesian estimation Example IV

Probabilistic Data . e
Mining Prediction for new values x..:

el Gsalo @ use the likelihood P(y,|x.,0,F),
@ and the posterior for 0

@ and Bayes’ rule.
The steps:

Bayesian Estimation p(y* IX*, D,.F) = J de p(y* |X*, e, ]:)pposl(e ‘ Daf)
Qe
:J do exp {—
Qe

:J do exp {—
Qg

N —

. —07x.)? -
(K* + % + (06— upogl)TXP"lt(e - HPUS‘)):|
n

N —

(K* + vi —a'c'a+ o(e))}

o

T
XoVe XX
a= :)_2 + Zposlu’p()s[ C = 0_2 . + ZP()51

n n




Bayesian estimation Example V

Probabilistic Data

Mining Integrating out the quadratic in 6:

Lehel Csatd

Predictive distribution at

_ 2
P(y*|X*,D,.7:) = exp [; <K* L W)]

=i
0—% + )(Iz'postxﬂ<

Bayesian Estimation

T 2 T
=N (y* ‘ Xy Hpost s Op 1+ Xy zpostx*)

With the predictive distribution we:
@ measure the variance of the prediction for each point:
02 = 02+ X] posiXs;
@ sample from the parameters and plot the candidate
predictors.



Error bars
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0
The errors are the symmetric thin lines.




Probabilistic Data
Mining

Third order polynomials are used to approximate the data.



Bayesian estimation Problems

Probabilistic Data

VT When computing p,.. (6D, F) we assumed that the
Lehel Csat6 posterior can be represented analytically.

This is not the case.

Approximations are needed for the
@ posterior distribution
@ predictive distribution

In Bayesian modelling an important issue is how we
approximate the posterior distribution.



Bayesian estimation Summary

Probabilistic Data

' ’Mi‘”:grtv Complete specification of the model
Can include prior beliefs about the model.

Accurate predictions

Can compute the posterior probabilities for each test
location.

Computational cost

Using models for prediction can be difficult and expensive
in time and memory.




Bayesian estimation Summary

Probabilistic Data
Mining

Complete specification of the model
Can include prior beliefs about the model.

Lehel Csatd

—

Accurate predictions

Can compute the posterior probabilities for each test
Bayesin Estmatn location.

Computational cost

Using models for prediction can be difficult and expensive
in time and memory.

Bayesian models

Flexible and accurate — if priors about the model are
used.




Outline
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© Unsupervised Methods
@ General concepts
@ Principal Components
@ Independent Components
@ Mixture Models

Unsupervised



Unsupervised setting

Probabilistic Data .
Mining @ Data can be unlabeled, i.e. no values y are

Lehel Csat6 associated to an input x.

@ We want to “extract” information from
D ={X1,y..., XN}

Ceners concepe @ We assume that the data — although
high-dimensional — span a much smaller
dimensional manifold.

@ Task is to find the subspace corresponding to the
data span.



Models in unsupervised learning

Probabilistic Data

Y

Mining It is again important the model of the data:
Lehel Csat6
@ Principal Components; Ax
3
2
1 X1
o 1t 2 3
@ Independent Components; Ax
3
General concepts
2
1 X4
o 1 2 3
@ Mixture models; X2 T,
3
2
1 Lé/ Xq
0o 1




The PCA model

Probabilistic Data
Mining
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@ Simple data structure.
@ Spherical cluster that is:

e translated;
e scaled;
e rotated.

o = N W

We aim to find the principal directions of the data spread.

Principal Components

Principal direction:

the direction u along which the data preserves most of its
variance.




The PCA model

Probabilistic Data . . . .
Mining Principal direction:
Lehel Csato

N

— argmax (ux, — ux)?

]| =1 2NZ1

we pre-process: X = 0. Replacing the empirical
covariance with :

N
1
u = argmax-—— Y (u'x,—
juj=1 2N g

1
= argmax §uT):xu —AJJul®—=1)
u

with A the Lagrange multiplier. Differentiating w.r.t u:



The PCA model

Probabilistic Data . .
Mining The optimum solution must obey:

Lehel Csatd

Z)(u - 7\U
The eigendecomposition of the covariance matrix.
(As, uy) is an eigenvalue, eigenvector of the system.

If we replace back, the value of the expression is A..

Principal Components :>

Optimal solution when A, = Apax.

Principal direction:

The eigenvector u,; corresponding to the largest
eigenvalue of the system.




The PCA model Data mining |

Probabilistic Data . . . ..
Mining How is this used in data mining?

Lehel Csaté Assume that data is:
@ jointly Gaussian:

X = N(mm)-_-x)»

@ high-dimensional;
@ only few (2) directions are relevant.

Principal Components




The PCA model Data mining I

Probabilistic Data . . . ..
Mining How is this used in data mining?

Lehel Csato
@ Subtracting mean.

@ Eigendecomposition.
X

@ Selecting the K eigenvectors corresponding
to the K largest values.

o . = N W
. §§5

Y

@ Computing the K projections: z, = x] u,.

Principal Components

The projection using matrix P & [uy, ..., uxl":
Z=XP

and z, can is used as a compact representation of x,.



The PCA model

Data mining Il

Probabilistic Data

Mining Reconstruction:
Lehel Csato K

X, =Y zuu, or, with matrix notation: X' =ZP’
1

PCA projection analysis:

N
Eron = D (X0 —x2)° = pztr [(X = X') (X = X")]
Principal Components n=1
= tr [Zx — PTL.P]

U (diag(Ai,. .., Ag) —diag(Ai, ..., Ak, 0, .. ))UT]
U U diag(0, ,o,xm,...,xd)}



The PCA model Data mining IV

Probabilistic Data
Mining

PCA reconstruction error:

The error made using the PCA directions:

Lehel Csatd

d—K

Epca = Z MK+t
=

Principal Components PCA properties:

@ PCA system orthonormal: ulu, = 5, ,
@ Reconstruction fast.

@ Spherical assumption critical.
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PCA application USPS I

Probabilistic Data

Mining USPS characteristics:
el Gsalo @ handwritten data centered and scaled;
@ ~ 10.000 items of 16 x 16 grayscale images;

M%)
We plot 100
ke = 22:1 Ae %0 i
80 t t t t >
[ f 20 40 60 80

Conclusion for the USPS set:

@ The normalised A = 0.24 = u4 accounts for
24% of the data.

@ at ~ 10 more than 70% of variance is explained.

@ at ~ 50 more than 98%
= 50 numbers instead of 256.



USPS Il

Probabilistic Data
Mining
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Principal Components

Visualisation along the first two eigendirections.



USPS IV

Mining

Lehel Csatd




The ICA model

Probabilistic Data

Mining Start from the PCA:

o x=Pz 2
is a generative model for the data. 10 " >3 X1:
We assumed that
@ zi.i.d. Gaussian random variables z ~ N(0, diag(A¢));
@ = x are not independent;
[« JIE z are Gaussian sources;

Independent Components

In most of real data:
@ Sources are not Gaussian.
@ But sources are independent.
@ We exploit that!.



The ICA model

Probabilistic Data . .
Mining The following model assumption:

Lehel Csato

X =As

where
@ z independent sources;
@ Alinear mixing matrix;

Looking for matrix B that recovers the sources:

Independent Components s/ déf BX — B (As) — (BA) s

i.e. (BA) is unity up to a permutation and scaling
but retains independence.



The ICA model

Probabilistic Data

Mining In practice:
Lehel Csaté s/ d:ef BX

with s = [sq, ..., sk] all independent sources.
Independence test: the KL-divergence between the
joint distribution and the marginals

B = argminKL (p(s1, s2)||p(s1)p(s2))
BESOd

PR  where SOy is the group of matrices with |B| = 1.

In ICA we are looking for matrix B that minimises:

ZJ d (s«)logp(Sz)—J dp(s)log(p(st, . -, Sq)

) Q@ Q@




The KL-divergence Detour

Probabilistic Data . .
Mining Kullback-Leibler divergence

_ px)
KL(pllq) = ;P(X) log )

Lehel Csato

@ is zeroonly and only if p = q,
@ is not a measure of distance (but cloooose to it!),
@ Efficient when exponential families are used.

Short proof:

Independent Components

0=log1 = log (Z q(x)

> Zp ) log (M) = —KL(p||q)

N—
Il
g
™
o
2
T|Q
55
N——

= KL(plq) >0



ICA Application

Probabilistic Data . .
Mining Separation of source signals:

Lehel Csatd Mixture

Independent Components




ICA Application Results

Probabilistic Data

Mining Results of separation:

Lehel Csato6 Source

m2 m4 m1 m3

Independent Components

FastiCA package



http://en.wikipedia.org/wiki/FastICA

Applications of ICA

Probabilistic Data

Mining Applications:
el Gsale @ Coctail party problem;
Separates noisy and multiple sources from multiple
observations.
@ Fetus ECG;
Separation of the ECG signal of a fetus from its mother's ECG.
@ MEG recordings;
Separation of MEG “sources”.
e @ Financial data;
Finding hidden factors in financial data.
@ Noise reduction;
Noise reduction in natural images.
@ Interference removal;
Interference removal from CDMA — Code-division multiple
access — communication systems.




The mixture model Introduction

Probab!ligtic Data
Mining @ The data structure is

Lehel Csato more CompleX

4\

@ More than a single X
source for data. 2 3 4 5 6
The mixture model:
K
P(XIZ) = > 7k pr(Xlte, Zg) (1)
k=1

Mixture Models

where:
m,...,Tx — Mixing components.
Pr (X, L) — density of a component.

The components are usually called clusters.



The mixture model Data generation

Probabilistic Data

Mining The generation process reflects the assumptions about
Lehel Csato the mOdeI

The data generation:
@ first we select from which component,

@ then we sample from the component’s density
function.

Mixture Models

When modelling data we do not know:
@ Which point belongs to which cluster.
@ What are the parameters for each density function.
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Mixture Models

The mixture model

Old Faithful geyser in
the Yellowstone National park.

Characterised by:
@ intense eruptions;

@ differing times between them.

Rule:

Duration is 1.5 to 5 minutes.

The length of eruption helps determine
the interval.

If an eruption lasts less than 2 minutes the
interval will be around 55 minutes. If the
eruption last 4.5 minutes the interval may
be around 88 minutes.

Example |



The mixture model Example Il
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Leh

Interval between durations

[ )
2. °
[ J
Mixture Models 50F Joo i
[ J
*
[ J
40
1.5 2 2.5 3 3.5 a4 4.5 5 5.5

Durétion
@ The longer the duration, the longer the ininterval.

@ The linear relation / = 6 + 01d is not the best.
@ There are only a very few eruptions lasting ~ 3 minutes.



The mixture model

Probabilistic Data .
Mining Assumptions:

Lehel Csato

@ We know the family of individual density functions:
These density functions are parametrised with a few parameters.

@ The densities are easily identifiable:
it it If we knew which data belongs to which cluster, the density
function is easily identifiable.

Gaussian densities are often used — fulfill both “conditions”.



Probabilistic Data
Mining

Lehel Csato

Mixture Models

The mixture model

The Gaussian mixture model:
p(x) = 4Ny X[y, Z1) + maNa(X|p,, Z2)

for known densities
(centres and ellipses):

_ Nu(Xnlwy, i) p(K)
PXnlK) = =N by Z0) (0

i.e. we know the probability that data
comes from cluster k
(shades from red to green).

For D:
x || px|1) | p(x]2)
X1 Y11 Yi2
XN YN1 YN2

Yne — responsibility of x, in cluster £.

100




The mixture model

F‘mbahtﬂ’:'ri?:; BLel  When v, known, the parameters
are computed using the data
weighted by their responsibilities:

Lehel Csat6

N
(o Zx) = argmax | [ (Ne(xalp, £))7
mE n=1
for all k.
This means:

(ukazk] = Z’Ynk lOgN(Xn“‘L»ZJ

Mixture Models

When making inference

Have to find the responsibility
vector and the parameters of the
mixture.




The mixture model

F‘mbahtﬂ’:'ri?:; BLel  When v, known, the parameters Given data D:
are computed using the data

weighted by their responsibilities: Initial guess:
= (u1>z1)a---7(uK)zK”

Leh

N
(o Zx) = argmax | [ (Ne(xalp, £))7
wx n=1
Re-estimate resps:
for_all k. X1 Vi1 Y12
This means: } .
(Mo Zk) < ) Yok log N(Xalw, E) Xn | Yni Ywe
n

Mixture Models

When making inference

Re-estimate parameters:
Have to find the responsibility = (1, Z1)y- 00, (K Zk)
vector and the parameters of the (701, k)
mixture.




The mixture model Summary
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Responsibilities
The additional latent variables needed to help
computation.

Lehel Csatd

In the mixture model:
@ goal is to fit model to data;
@ which submodel gets a particular data;

Achieved by the maximisation of the log-likelihood function.



The EM algorithm
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(m,0) = argmaXZIog [Z TN (Xnlkg, Z¢)
n ¢

O = [uq,Zq,...,uk, Lkl is the vector of parameters;
7 = [m,..., 7] the shares of the factors;

Problem with optimisation:
The parameters are not separable due to the sum within
the logarithm.

Mixture Models

Solution:
Use an approximation.



The EM algorithm
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Mining

log P(D|m, ©) Z log [Z TN Xn|w>£e)]

— ) log [Z pe(xn,f)]
n {

Use Jensen’s inequality:

log >~ pe(xn,€180) | = log anmw
t gn(€)

for any [gn(1),...,gn(0)].



Jensen Inequality Detour
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(Y1Z1 + Y22Z2)

Lehel Csatd

concave f(z)

»
>

z vs =075 22

Jensen’s Inequality

For any concave f(z), any z; and z,, and any y,y> > 0
such that v +vy» = 1:

flv1z1 +v222) > v1f(21) +v2f(22)




The EM algorithm
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Lehel Csat6 |Og (Z Prz(Xn>f|9€)> 2
4

for any distribution g, (-).
Replacing with the right-hand side, we have:

Pe(XnlB¢)
an()

> Z {Z gn(0) log PcXnlBe) X&L?Z)

and therefore the optimisation w.r.to cluster parameters separate.

log P(Dmt,®) >ZZq,, log —="——

=L

Mixture Models

alo (xnl0®
ae = O*ZQn 7ggleé | 6)

For distributions from exponentlal family optimisation is easy.



The EM algorithm

Pmbaﬂ:';:?:; ot @ any set of distributions g; (¢), ..

the log-likelihood.

., gn() provides a lower bound to

Lehel Csato

@ We should choose the distributions so that they are the closest to
the current parameter set.

We assume the parameters have the value 6.
Want to minimise the difference:

Xn, {0
log P(Xn, 0162) — £ = Z Gn(0) 10g P(Xn, 169) — 3~ gn(t p“qim‘”
¢ n
P(xn, e‘eL)Qn(O
Mixture Models n |O
2 9n(t)log ==t o)

and observe that by setting

P = b ix,, 060)

we have 3, gn(¢) 0 = 0.



The EM algorithm

Probabilistic Data

Mining The EM algorithm:
Lehel Csato
Init —initialise model parameters;

E step — compute the responsibilities v, = gn({);

M step — for each k optimize

Mixture Models

a log pe(Xs|0¢)
0=2 @055~

repeat — goto the E step.



EM application
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100

90 4
2
& 80f A
<
=
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g ®
g 7o ° |
| [ J
S
— [ J ®
. el

CJ L
Mixture Models = e e 6o
£t Bis -
®* %
® 8o
50 <
®
%
[ J
40
1.5 2 25 3 3.5 4 4.5 5 5.5

Duration
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Mixture Models




EM application
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Lehel Csat6

100
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Mixture Models

50F
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EM application
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Mixture Models
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