

Lehel Csato

Modelling Data Machine Learning Latent variable models

Estimation

Maximum Likelihood

Maximum a-posteriori

Unsupervised

General concepts
Principal Components
Independent Components

References

Probabilistic Data Mining

Lehel Csató

Faculty of Mathematics and Informatics Babeş–Bolyai University, Cluj-Napoca,

Matematika és Informatika Tanszék Babeş–Bolyai Tudományegyetem, Kolozsvár

March 2008

Table of Contents

Probabilistic Data Mining

Lehel Csa

Modelling Data Machine Learning Latent variable model

Estimation

Maximum Likelihood

Maximum a-posterior

Unsupervised

General concepts
Principal Components
Independent Components
Mixture Models

- Modelling Data
- Estimation methods
- Unsupervised Methods
- 4 References

Outline

Probabilistic Data Mining

Lehel Csa

Modelling Data

achine Learning Itent variable mode

Estimatio

Maximum Likelihood Maximum a-posterio Bayesian Estimation

Unsupervised

General concepts
Principal Components
Independent Componen
Mixture Models

Poforonoo

- Modelling Data
 - Machine Learning
 - Latent variable models
- Estimation methods
- 3 Unsupervised Methods
- 4 References

Machine learning

Probabilistic Data Mining

Lehel Csa

Modelling Dat

Machine Learning

Estimation

Maximum Likelihood

Maximum a-posterion

Bayesian Estimation

Unsupervised
General concepts
Principal Components
Independent Componen
Mixture Models

References

Historical background / Motivation:

 Huge amount of data, that should automatically be processed,

 Mathematics provides general solutions, solutions are i.e. not for a given problem,

 Need for "science", that uses mathematics machinery for solving practical problems.

Definitions for Machine Learning

Probabilistic Data Minina

Machine Learning

Machine learning

Collection of methods (from statistics, probability theory) to solve problems met in practice.

- noise filtering for
 - non-linear regression and/or
 - non-Gaussian noise
- Classification:
 - binary,
 - multiclass.
 - partially labelled
- Clustering,
- Inversion problems,
- density estimation, novelty detection.

Generally, we need to model the data,

Modelling Data

Probabilistic Data Mining

Lehel Csat

Modelling Data Machine Learning

Machine Learning Latent variable model

Estimation

Maximum Likelihood Maximum a-posterio Bayesian Estimation

Unsupervised

Principal Components
Independent Components
Mixture Models

Reference:

- Real world: there "is" a function y = f(x)
- Observation process: a corrupted datum is collected for a sample x_n:

$$t_n = y_n + \epsilon$$
 additive noise $t_n = h(y_n, \epsilon)$ h distortion function

• Problem: find function y = f(x)

Latent variable models

Probabilistic Data Mining

Lehel Csa

Modelling Data

Machine Learning

Latent variable models

Estimation

Maximum Likelihood

Maximum a-posterior

Bayesian Estimation

General concepts
Principal Components
Independent Componen

```
Inference
f^{*}(x) = \begin{cases} (x_{1}, y_{1}) \\ (x_{2}, y_{2}) \end{cases}
F = \text{function class} \\ \text{Observ. process} = (x_{N}, y_{N})
```

- Data set collected.
- Assume a function class.
 - polynomial,
 - Fourier expansion,
 - Wavelet;
- Observation process encodes the noise;
- Find the optimal function from the class.

Latent variable models II

Probabilistic Data Mining

Lehel Csate

Modelling Data Machine Learning Latent variable models

Estimation

Maximum Likelihood

Maximum a-posteriori

Bayesian Estimation

General concepts
Principal Components
Independent Components

Reference

- We have the **data set** $\mathcal{D} = \{(\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_N, \mathbf{y}_N)\}.$
- Consider a function class:

(1)
$$\mathcal{F} = \{ \mathbf{w}^T \mathbf{x} + b | \mathbf{w} \in \mathbb{R}^d, \ b \in \mathbb{R} \}$$

(2) $\mathcal{F} = \{ a_0 + \sum_{k=1}^K a_k \sin(2\pi kx) + \sum_{k=1}^K b_k \cos(2\pi kx) \}$
 $|\mathbf{a}, \mathbf{b} \in \mathbb{R}^K, \ a_0 \in \mathbb{R} \}$

Assume an observation process:

$$y_n = f(\mathbf{x}_n) + \epsilon \quad \text{with } \epsilon \sim N(0, \sigma^2).$$

Latent variable models III

Probabilistic Data Mining

Lehel Csat

Modelling Data

Machine Learning

Latent variable models

Estimation

Maximum Likelihood

Maximum a-posteriori

Rayesian Estimation

Unsupervised
General concepts
Principal Components
Independent Components
Mixture Models

References

1 The data set: $\mathcal{D} = \{(x_1, y_1), \dots, (x_N, y_N)\}.$

Assume a function class:

$$\mathcal{F} = \left\{ f(\mathbf{x}, \boldsymbol{\theta}) | \boldsymbol{\theta} \in \mathbb{R}^p \right\}$$

 \mathcal{F} – polynomial, etc.

Assume an observation process. Define a loss function:

$$L(y_n, f(\boldsymbol{x}_n, \boldsymbol{\theta}))$$

For the Gaussian noise:

$$L(y_n, f(\boldsymbol{x}_n, \boldsymbol{\theta})) = (y_n - f(\boldsymbol{x}_n, \boldsymbol{\theta}))^2.$$

Outline

Probabilistic Data Mining

Lehel Csat

Modelling Data

Machine Learning

Latent variable model

Estimation

Maximum Likelihood Maximum a-posterior Bayesian Estimation

Unsupervised

Principal Components
Independent Components
Mixture Models

- Modelling Data
- Estimation methods
 - Maximum Likelihood
 - Maximum a-posteriori
 - Bayesian Estimation
- Unsupervised Methods
- 4 References

Parameter estimation

Probabilistic Data Mining

Lehel Csat

Modelling Data

Machine Learning

Latent variable model

Estimation

Maximum Likelihood Maximum a-posterion Bayesian Estimation

Unsupervised

Principal Components
Independent Component
Mixture Models

Reference

Estimating parameters:

Finding the **optimal value to** θ :

$$\pmb{\theta}^* = \arg\min_{\pmb{\theta} \in \Omega} \textit{L}(\mathcal{D}, \pmb{\theta})$$

where

- \bullet Ω is the domain of the parameters.
- $L(\mathcal{D}, \theta)$ is a "loss function" for the data set. Example:

$$L(\mathcal{D}, \boldsymbol{\theta}) = \sum_{n=1}^{N} L(y_n, f(\boldsymbol{x}_n, \boldsymbol{\theta}))$$

Maximum Likelihood Estimation

Probabilistic Data Mining

Lehel Csat

Modelling Dat Machine Learning Latent variable mod

Maximum Likelihood

Maximum a-posterior

Maximum a-posteriori Bayesian Estimation

General concepts

Principal Components
Independent Components
Mixture Models

Reference:

 $L(\mathcal{D}, \boldsymbol{\theta})$ – (log)likelihood function.

Maximum likelihood estimation of the model:

$$oldsymbol{ heta}^* = \arg\min_{oldsymbol{ heta}} oldsymbol{L}(\mathcal{D}, oldsymbol{ heta})$$

Example – quadratic regression:

$$L(\mathcal{D}, \boldsymbol{\theta}) = \sum_{n=1}^{N} (y_n - f(\boldsymbol{x}_n, \boldsymbol{\theta}))^2$$
 - factorisation

Drawback: can produce perfect fit to the data – **over-fitting**.

Lehel Csa

Modelling Dat

Estimation Maximum Likelihood Maximum a-posterior

Bayesian Estimation Unsupervised

General concepts
Principal Components
Independent Components
Mixture Models

- We want to fit a model to the data.
- Use linear model: $h = \theta_0 + \theta_1 w$
- Use log-linear model: $h = \theta_0 + \theta_1 \log(w)$
- Use higher order polynomials, *e.g.* :

$$h = \theta_0 + \theta_1 w + \theta_2 w^2 + \theta_3 w^3 + \dots$$

Lehel Csa

Machine Learning

Estimation

Maximum Likelihood

Maximum a-posterior

Bayesian Estimation

General concepts
Principal Components
Independent Components
Mixture Models

- We want to fit a model to the data.
- Use linear model: $h = \theta_0 + \theta_1 w$.
- Use log-linear model: $h = \theta_0 + \theta_1 \log(w)$.
- Use higher order polynomials, e.g. :

$$h = \theta_0 + \theta_1 w + \theta_2 w^2 + \theta_3 w^3 + \dots$$

Lehel Csa

Modelling Dat

Estimation

Maximum Likelihood

Maximum a-posterior

Bayesian Estimation

General concepts Principal Components Independent Components

- We want to fit a model to the data.
- Use linear model: $h = \theta_0 + \theta_1 w$.
- Use log-linear model: $h = \theta_0 + \theta_1 \log(w)$.
- Use higher order polynomials, e.g.:

$$h = \theta_0 + \theta_1 w + \theta_2 w^2 + \theta_3 w^3 + \dots$$

Lehel Csa

Machine Learning

Estimation

Maximum Likelihood

Maximum a-posterior

Bayesian Estimation

General concepts
Principal Components
Independent Components
Mixture Models

- We want to fit a model to the data.
- Use linear model: $h = \theta_0 + \theta_1 w$.
- Use log-linear model: $h = \theta_0 + \theta_1 \log(w)$.
- Use higher order polynomials, e.g. :

$$h = \theta_0 + \theta_1 w + \theta_2 w^2 + \theta_3 w^3 + \dots$$

M.L. for linear models

Probabilistic Data Mining

Lehel Csa

Modelling Data Machine Learning Latent variable mode

Estimation

Maximum Likelihood

Maximum a-posterior

Unsupervised

Principal Components
Independent Component
Mixture Models

References

Assume:

linear model for the $x \rightarrow y$ relation

$$f(\boldsymbol{x}_n|\boldsymbol{\theta}) = \sum_{\ell=1}^d \theta_\ell x_\ell$$

with
$$\mathbf{x} = [1, x, x^2, \log(x), ...]^T$$

quadratic loss for $\mathcal{D} = \{(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_N, h_N)\}$

$$E_2(\mathcal{D}|f) = \sum_{n=1}^{N} (y_n - f(\boldsymbol{x}_n|\boldsymbol{\theta}))^2$$

Lehel Csa

Modelling Data Machine Learning Latent variable model

Maximum Likelihood

Maximum Likelinood

Maximum a-posteriori

Bayesian Estimation

General concepts Principal Components

Independent Components
Mixture Models

Reference

Minimisation:

$$\sum_{n=1}^{N} (y_n - f(\mathbf{x}_n | \boldsymbol{\theta}))^2 = (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})$$
$$= \boldsymbol{\theta}^T \mathbf{X}^T \mathbf{X} \boldsymbol{\theta} - 2\boldsymbol{\theta}^T \mathbf{X}^T \mathbf{y} + \mathbf{y}^T \mathbf{y}$$

Solution:

$$0 = 2\mathbf{X}^{T}\mathbf{X}\boldsymbol{\theta} - 2\mathbf{X}^{T}\mathbf{y}$$
$$\boldsymbol{\theta} = \left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{X}^{T}\mathbf{y}$$

where $\mathbf{y} = [y_1, \dots, y_N]^T$ and $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_N]^T$ are the transformed data.

M.L. for linear models

Probabilistic Data Mining

Lehel Csat

Modelling Data Machine Learning Latent variable mode

Estimation

Maximum Likelihood

Maximum a-posterior

Bayesian Estimation

Unsupervised
General concepts
Principal Components
Independent Componen
Mixture Models

Reference

Generalised linear models:

- Use a *set of functions* $\Phi = [\phi_1(.), ..., \phi_M(.)]$.
- Project the inputs into the space spanned by $Im(\Phi)$.
- Have a parameter vector of length M: $\theta = [\theta_1, \dots, \theta_M]^T$.
- The model is $\Big\{ \sum_m \theta_m \phi_m(\mathbf{x}) \, | \, \theta_m \in \mathbb{R} \Big\}$.
- The optimal parameter vector is:

$$\theta^* = \left(\mathbf{\Phi}^T \mathbf{\Phi}\right)^{-1} \mathbf{\Phi}^T \mathbf{y}$$

Maximum Likelihood

Probabilistic Data Mining

Lehel Csa

Modelling Data Machine Learning Latent variable model

Maximum Likelihood

Maximum a-posterior

Bayesian Estimation

Unsupervised
General concepts
Principal Components
Independent Componer
Mixture Models

References

• There are many candidate model families:

- the degree of polynomials specifies a model family;
- the rank of a Fourier expansion;
- the mixture of {log, sin, cos, ...} also a *family*;
- Selecting the "best family" is a difficult modelling problem.
- In maximum likelihood there is no controll on how good a family is when processing a given data-set.

Smaller number of parameters than $\sqrt{\#data}$.

Maximum a-posteriori

Probabilistic Data Mining

Lehel Csa

Modelling Data Machine Learning Latent variable model

Estimation

Maximum Likelihood

Maximum a-posteriori

Bayesian Estimation

Unsupervised
General concepts
Principal Components
Independent Component

- Generalised linear model powerful it can be extremely complex;
- With no complexity control, overfitting problem.
- Aim: to include knowledge in the inference process.
- Our beliefs are reflected by the choice of the candidate functions.

Maximum a-posteriori

Probabilistic Data Mining

Lehel Csa

Modelling Dat Machine Learning Latent variable mod

ESTIMATION

Maximum Likelihood

Maximum a-posteriori

Bayesian Estimation

General concepts
Principal Components
Independent Component
Mixture Models

References

- Generalised linear model powerful it can be extremely complex;
 - With no complexity control, overfitting problem.
- Aim: to include knowledge in the inference process.
- Our beliefs are reflected by the choice of the candidate functions.

Goal:

- Prior knowledge specification using probabilities;
- Using probability theory for consistent estimation;
- Encode the observation noise in the model:

Maximum a-posteriori

Probabilistic Data Minina

Maximum a-posteriori

Probabilistic data description:

• How likely is that θ generated the data:

$$y = f(\mathbf{x}) \Leftrightarrow y - f(\mathbf{x}) \sim \delta_0$$

 $y = f(\mathbf{x}) + \epsilon \Leftrightarrow y - f(\mathbf{x}) \sim N_{\epsilon}$

• Gaussian noise: $y - f(x) \sim N(0, \sigma^2)$

$$P(y|f(\mathbf{x})) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(y - f(\mathbf{x}))^2}{2\sigma^2}\right]$$

Lehel Csa

Modelling Data Machine Learning Latent variable mode

ESTIMATION

Maximum Likelihood

Maximum a-posteriori

Bayesian Estimation

Unsupervised
General concepts
Principal Components
Independent Components
Mixture Models

Reference

William of Ockham (1285–1349) principle

Entities should not be multiplied beyond necessity.

Also known as (wiki...): "Principle of simplicity" – KISS, "When you hear hoofbeats, think horses, not zebras".

Simple models \approx small number of parameters. L_0 norm

 L_2 norm \leftarrow

Probabilistic representation:

$$p_0(oldsymbol{ heta}) \propto \exp\left[-rac{\|oldsymbol{ heta}\|_2^2}{2\sigma_0^2}
ight]$$

Lehel Csate

Modelling Data

Machine Learning

Latent variable model

Estimation

Maximum a-posteriori Bayesian Estimation

Unsupervised

General concepts
Principal Components
Independent Components
Mixture Models

Reference

M.A.P. – probabilities assigned to

• \mathcal{D} – via the log-likelihood function:

$$P(y_n|\boldsymbol{x}_n,\boldsymbol{\theta},\boldsymbol{\mathcal{F}}) \propto \exp\left[-L(y_n,f(\boldsymbol{x}_n,\boldsymbol{\theta}))\right]$$

• θ – prior probabilities:

$$p_0(\boldsymbol{\theta}) \propto \exp\left[-\frac{\|\boldsymbol{\theta}\|^2}{2\sigma_0^2}\right]$$

A-posteriori probability

$$p(m{ heta}|\mathcal{D},m{\mathcal{F}}) = rac{P(\mathcal{D}|m{ heta})p_0(m{ heta})}{p(\mathcal{D}|m{\mathcal{F}})}$$

Lehel Csate

Modelling Data

Machine Learning

Latent variable mode

Estimation

Maximum Likelihood Maximum a-posteriori Bayesian Estimation

Unsupervised

General concepts
Principal Components
Independent Component
Mixture Models

Reference

M.A.P. – probabilities assigned to

• \mathcal{D} – via the log-likelihood function:

$$P(y_n|\mathbf{x}_n, \boldsymbol{\theta}, \boldsymbol{\mathcal{F}}) \propto \exp\left[-L(y_n, f(\mathbf{x}_n, \boldsymbol{\theta}))\right]$$

• θ – prior probabilities:

$$p_0(oldsymbol{ heta}) \propto \exp\left[-rac{\|oldsymbol{ heta}\|^2}{2\sigma_0^2}
ight]$$

A—posteriori probability

$$p(m{ heta}|\mathcal{D},m{\mathcal{F}}) = rac{P(\mathcal{D}|m{ heta})p_0(m{ heta})}{p(\mathcal{D}|m{\mathcal{F}})}$$

Lehel Csate

Modelling Data Machine Learning Latent variable model

Estimation

Maximum Likelihood Maximum a-posteriori Bayesian Estimation

Unsupervised

General concepts
Principal Components
Independent Component
Mixture Models

Reference

M.A.P. – probabilities assigned to

• \mathcal{D} – via the log-likelihood function:

$$P(y_n|\boldsymbol{x}_n,\boldsymbol{\theta},\boldsymbol{\mathcal{F}}) \propto \exp\left[-L(y_n,f(\boldsymbol{x}_n,\boldsymbol{\theta}))\right]$$

• θ – prior probabilities:

$$p_0(oldsymbol{ heta}) \propto \exp\left[-rac{\|oldsymbol{ heta}\|^2}{2\sigma_0^2}
ight]$$

A-posteriori probability:

$$p(\boldsymbol{\theta}|\mathcal{D}, \boldsymbol{\mathcal{F}}) = \frac{P(\mathcal{D}|\boldsymbol{\theta})p_0(\boldsymbol{\theta})}{p(\mathcal{D}|\boldsymbol{\mathcal{F}})}$$

 $p(\mathcal{D}|\mathcal{F})$ – probability of the data for a given family.

Lehel Csat

Modelling Data Machine Learning Latent variable mode

Estimation

Maximum Likelihood

Maximum a-posterio

Maximum a-posteriori Bayesian Estimation

General concepts
Principal Components
Independent Components

Reference

M.A.P. estimation – finds θ with largest probability:

$$m{ heta}_{MAP}^* = \arg\max_{m{ heta} \in \Omega} p(m{ heta} | \mathcal{D}, m{\mathcal{F}})$$

Example: with $L(y_n, f(\mathbf{x}_n, \boldsymbol{\theta}))$ and Gaussian prior:

$$\boldsymbol{\theta}_{MAP}^* = \operatorname*{argmax}_{\boldsymbol{\theta} \in \Omega} K - \frac{1}{2} \sum_{n} L(y_n, f(\boldsymbol{x}_n, \boldsymbol{\theta})) - \frac{\|\boldsymbol{\theta}\|^2}{2\sigma_0^2}$$

$$\sigma_0^2 = \infty \implies \text{maximum likelihood.}$$

after a change of sign and max → min

Lehel Csa

Modelling Data
Machine Learning

Estimation

Maximum Likelihood

Maximum a-posteriori

Bayesian Estimation
Unsupervised

Principal Components

Independent Components

Mixture Models

Mixture Models

Lehel Csa

Modelling Data

Machine Learning

Latent variable mode

Estimation

Maximum Likelihood

Maximum a-posteriori

Bayesian Estimation

Unsupervised
General concepts
Principal Components
Independent Components

5 (

Aim: test different levels of flexibility. $\Rightarrow p = 10$ Prior width:

Lehel Csa

Machine Learning

Estimation

Maximum Likelihood

Maximum a-posteriori

Bayesian Estimation

Unsupervised
General concepts
Principal Components
Independent Components

References

Aim: test different levels of flexibility. $\Rightarrow p = 10$

Prior width: $\sigma_0^2 = 10^6$

Lehel Csa

Modelling Data

Machine Learning

Latent variable mode

Estimation

Maximum Likelihood

Maximum a-posteriori

Bayesian Estimation

Unsupervised
General concepts
Principal Components
Independent Components

Deference

Aim: test different levels of flexibility. $\Rightarrow p = 10$

Prior width: $\sigma_0^2 = 10^6$ $\sigma_0^2 = 10^5$

Lehel Csa

Machine Learning

Estimation

Maximum Likelihood

Maximum a-posteriori

Bayesian Estimation

Unsupervised
General concepts
Principal Components
Independent Components

Deference

Aim: test different levels of flexibility. $\Rightarrow p = 10$

Prior width: $\sigma_0^2 = 10^6$ $\sigma_0^2 = 10^5$ $\sigma_0^2 = 10^4$

Lehel Csa

Machine Learning

Estimation

Maximum Likelihood

Maximum a-posteriori

Bayesian Estimation

Unsupervised
General concepts
Principal Components
Independent Components

References

Aim: test different levels of flexibility. $\Rightarrow p = 10$

Prior width:
$$\sigma_0^2 = 10^6$$
 $\sigma_0^2 = 10^5$ $\sigma_0^2 = 10^4$ $\sigma_0^2 = 10^3$

Lehel Csa

Machine Learning

Latent variable mode

Estimation

Maximum Likelihood

Maximum a-posteriori

Bayesian Estimation

Unsupervised
General concepts
Principal Components
Independent Component

References

Aim: test different levels of flexibility. $\Rightarrow p = 10$ Prior width: $\sigma_0^2 = 10^6$ $\sigma_0^2 = 10^5$ $\sigma_0^2 = 10^4$ $\sigma_0^2 = 10^3$ $\sigma_0^2 = 10^2$

Lehel Csa

Modelling Data

Machine Learning

Latent variable mode

Estimation

Maximum Likelihood

Maximum a-posteriori

Bayesian Estimation

Unsupervised
General concepts
Principal Components
Independent Components

Poforonco

Aim: test different levels of flexibility. $\Rightarrow p = 10$ Prior width: $\sigma_0^2 = 10^6$ $\sigma_0^2 = 10^5$ $\sigma_0^2 = 10^4$ $\sigma_0^2 = 10^3$ $\sigma_0^2 = 10^2$ $\sigma_0^2 = 10^1$

Lehel Csa

Modelling Data Machine Learning Latent variable mode

Estimation

Maximum Likelihood

Maximum a-posteriori

Bayesian Estimation

Unsupervised
General concepts
Principal Components
Independent Components

Defevences

Aim: test different levels of flexibility. $\Rightarrow p = 10$ Prior width: $\sigma_0^2 = 10^6$ $\sigma_0^2 = 10^5$ $\sigma_0^2 = 10^4$ $\sigma_0^2 = 10^3$ $\sigma_0^2 = 10^2$ $\sigma_0^2 = 10^1$ $\sigma_0^2 = 10^0$

Lehel Csate

Modelling Data

Machine Learning

Latent variable model

Estimation

Maximum Likelihood

Maximum a-posteriori

Bayesian Estimation

Unsupervised

Principal Components
Independent Components
Mixture Models

References

$$\boldsymbol{\theta}_{MAP}^* = \operatorname*{argmax}_{\boldsymbol{\theta} \in \Omega} K - \frac{1}{2} \sum_{n} E_2(y_n, f(\boldsymbol{x}_n, \boldsymbol{\theta})) - \frac{\|\boldsymbol{\theta}\|^2}{2\sigma_0^2}$$

Transform into vector notation:

$$oldsymbol{ heta}^*_{MAP} = rgmax_{oldsymbol{ heta} \in \Omega} K - rac{1}{2} \left(oldsymbol{y} - oldsymbol{X} oldsymbol{ heta}
ight)^T \left(oldsymbol{y} - oldsymbol{X} oldsymbol{ heta}
ight) - rac{oldsymbol{ heta}^T oldsymbol{ heta}}{2\sigma_0^2}$$

solve for θ by differentiation:

$$\boldsymbol{X}^{T}(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta}) - \frac{1}{\sigma_{0}^{2}}\boldsymbol{I}_{d}\boldsymbol{\theta} = 0$$

$$\boldsymbol{\theta}_{MAP}^* = \left(\boldsymbol{X}^T \boldsymbol{X} + \frac{1}{\sigma_0^2} \boldsymbol{I}_d \right)^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

Lehel Csa

Modelling Data Machine Learning

Estimation

Maximum Likelihood

Maximum a-posteriori

Revesion Estimation

Unsupervise

Principal Components
Independent Component

Deference

Mximum a-posteriori models:

Allow for the inclusion of prior knowledge;

May protect against overfitting;

Can measure the fitness of the family to the data;
 Procedure called M.L. type II.

Lehel Csa

Modelling Data

Machine Learning

Latent variable mode

Estimation

Maximum Likelihood

Maximum a-posteriori

Bayesian Estimation

General concepts
Principal Components
Independent Components
Mixture Models

References

Idea: instead of computing the most probable value of θ , we can measure the fit of the model \mathcal{F} to the data \mathcal{D} .

$$\begin{split} P(\mathcal{D}|\mathcal{F}) &= \sum_{\boldsymbol{\theta}_{\ell} \in \Omega} p(\mathcal{D}, \boldsymbol{\theta}_{\ell}|\mathcal{F}) \\ &= \sum_{\boldsymbol{\theta}_{\ell} \in \Omega} p(\mathcal{D} | \boldsymbol{\theta}_{\ell}, \mathcal{F}) p_{0}(\boldsymbol{\theta}_{\ell}|\mathcal{F}) \end{split}$$

Gaussian noise and polynomial of order K:

$$\log(P(\mathcal{D}|\mathcal{F})) = \log\left(\int_{\Omega_{\boldsymbol{\theta}}} d\theta \frac{p(\mathcal{D}|\boldsymbol{\theta}, \mathcal{F})p_0(\boldsymbol{\theta}|\mathcal{F})}{p(\mathcal{D}|\mathcal{F})}\right) = \log\left(N(\boldsymbol{y}|0, \boldsymbol{\Sigma}_{\boldsymbol{X}})\right)$$
$$= -\frac{1}{2}\left(N\log(2\pi) + \log|\boldsymbol{\Sigma}_{\boldsymbol{X}}| + \boldsymbol{y}^{T}\boldsymbol{\Sigma}_{\boldsymbol{X}}^{-1}\boldsymbol{y}\right)$$

where

$$oldsymbol{\Sigma}_{oldsymbol{X}} = oldsymbol{I}_N \sigma_n^2 + oldsymbol{X} oldsymbol{\Sigma}_0 oldsymbol{X}^T \qquad ext{with} \qquad egin{array}{c} oldsymbol{X} = \left[oldsymbol{x}^0, oldsymbol{x}^1, \dots, oldsymbol{x}^K
ight] \\ oldsymbol{\Sigma}_0 = ext{diag}(\sigma_0^2, \sigma_1^2, \dots, \sigma_K^2) \end{array}$$

Lehel Csa

Modelling Data

Machine Learning

Estimation

Maximum Likelihood

Maximum a-posteriori

Bayesian Estimation

Unsupervised

Principal Components
Independent Components
Mixture Medale

Poforonco

Aim: test different models.

Polynomial families: k = 10 k = 9 k = 8.

Lehel Csa

Modelling Data

Machine Learning

Latent variable models

Estimation

Maximum Likelihood

Maximum a-posteriori

Bayesian Estimation

Unsupervised

Principal Components
Independent Components

Poforonoo

Aim: test different models.

Polynomial families: k = 9 k = 8 k = 7.

Lehel Csa

Modelling Data

Machine Learning

Latent variable models

Estimation

Maximum Likelihood

Maximum a-posteriori

Bayesian Estimation

Unsupervised

Principal Components
Independent Components
Mixture Models

Poforonco

Aim: test different models.

Polynomial families: k = 8 k = 7 k = 6.

Lehel Csa

Modelling Data

Machine Learning

Latent variable models

Estimation

Maximum Likelihood

Maximum a-posteriori

Bayesian Estimation

Unsupervised

Principal Components
Independent Components

Deference

Aim: test different models.

Polynomial families: k = 7 k = 6 k = 5.

M.A.P.

Probabilistic Data Mining

Lehel Csa

Modelling Data

Machine Learning

Estimation

Maximum Likelihood

Maximum a-posteriori

Bayesian Estimation

Unsupervised

Principal Components
Independent Components
Mixture Medale

Poforonco

Aim: test different models.

Polynomial families: k = 6 k = 5 k = 4.

Lehel Csa

Modelling Data

Machine Learning

Latent variable model

Estimation

Maximum Likelihood

Maximum a-posteriori

Bayesian Estimation

Unsupervised

Principal Components
Independent Components

Poforonoo

Aim: test different models.

Polynomial families: k = 5 k = 4 k = 3.

Lehel Csa

Modelling Data

Machine Learning

Latent variable models

Estimation

Maximum Likelihood

Maximum a-posteriori

Bayesian Estimation

Unsupervised

Principal Components
Independent Components
Mixture Models

Poforonco

Aim: test different models.

Polynomial families: k = 4 k = 3 k = 2.

Lehel Csa

Modelling Data

Machine Learning

Latent variable models

Estimation

Maximum Likelihood

Maximum a-posteriori

Bayesian Estimation

Unsupervised

Principal Components
Independent Components

Poforonoo

Aim: test different models.

Polynomial families: k = 3 k = 2 k = 1.

Lehel Csa

Modelling Data Machine Learning Latent variable mode

Maximum Likelihood Maximum a-posterio Bayesian Estimation

Unsupervised General concepts Principal Components Independent Component

Reference

- M.L. and M.A.P. estimates provide single solutions.
- Point estimates lack the assessment of un/certainty.
- Better solution: for a query x*, the system output is probabilistic:

$$x_* \Rightarrow \rho(y_*|\mathbf{x}_*, \mathbf{\mathcal{F}})$$

 Tool: go beyond the M.A.P. solution and use the a-posteriori distribution of the parameters.

Bayesian estimation

Probabilistic Data Mining

Lehel Csa

Modelling Da Machine Learning Latent variable model

Maximum Likelihood
Maximum a-posterio
Bayesian Estimation

General concepts
Principal Components
Independent Components
Mixture Models

References

We again use Bayes' rule:

and exploit the whole posterior distribution of the parameters.

A-posteriori parameter estimates

We operate with $p_{\text{post}}(\theta) \stackrel{\text{def}}{=} p(\theta|\mathcal{D}, \mathcal{F})$ and use the total probability rule:

$$p(y_*|\mathcal{D}, \mathcal{F}) = \sum_{oldsymbol{ heta}_\ell \in \Omega_{oldsymbol{a}}} p(y_*|oldsymbol{ heta}_\ell, \mathcal{F}) \, p_{ ext{post}}(oldsymbol{ heta}_\ell)$$

in assessing system output.

Lehel Csat

Modelling Data

Machine Learning

Latent variable model

Maximum Likelihood
Maximum a-posterior
Bayesian Estimation

Unsupervised
General concepts
Principal Components
Independent Compone
Mixture Models

References

Given the data $\mathcal{D} = \{(\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_N, \mathbf{y}_N)\}$ estimate the linear fit:

$$y = \theta_0 + \sum_{i=1}^d \theta_i x_i = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_d \end{bmatrix}^T \begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_d \end{bmatrix} \stackrel{\text{def}}{=} \boldsymbol{\theta}^T \boldsymbol{x}$$

Gaussian distributions noise and prior:

$$\epsilon = y_n - \boldsymbol{\theta}^T \boldsymbol{x}_n \sim \mathrm{N}(0, \sigma_n^2)$$

 $\boldsymbol{w} \sim \mathrm{N}(0, \boldsymbol{\Sigma}_0)$

Lehel Csa

Modelling Data Machine Learning Latent variable mode

Maximum Likelihood Maximum a-posterio Bayesian Estimation

Unsupervised

Principal Components
Independent Component
Mixture Models

Reference:

Goal: compute the posterior distribution $p_{post}(\theta)$.

$$p_{\text{post}}(\boldsymbol{\theta}) \propto p_0(\boldsymbol{\theta}) p(\mathcal{D}|\boldsymbol{\theta}, \mathcal{F}) = p_0(\boldsymbol{\theta}|\boldsymbol{\Sigma}_0) \prod_{n=1}^N P(y_n|\boldsymbol{\theta}^T \boldsymbol{x}_n)$$

$$-2\log(\rho_{\text{post}}(\boldsymbol{\theta})) = K_{\text{post}} + \frac{1}{\sigma_n^2} (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta})^T (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta}) + \boldsymbol{\theta}^T \boldsymbol{\Sigma}_0^{-1} \boldsymbol{\theta}$$

$$= \boldsymbol{\theta}^T \left(\frac{1}{\sigma_n^2} \boldsymbol{X}^T \boldsymbol{X} + \boldsymbol{\Sigma}_0^{-1} \right) \boldsymbol{\theta} - \frac{2}{\sigma_n^2} \boldsymbol{\theta}^T \boldsymbol{X}^T \boldsymbol{y} + K'_{\text{post}}$$

$$= (\boldsymbol{\theta} - \boldsymbol{\mu}_{\text{post}})^T \boldsymbol{\Sigma}_{\text{post}}^{-1} (\boldsymbol{\theta} - \boldsymbol{\mu}_{\text{post}}) + K''_{\text{post}}$$

and by identification

$$\mathbf{\Sigma}_{\mathrm{post}} = \left(\frac{1}{\sigma_{o}^{2}} \mathbf{X}^{T} \mathbf{X} + \mathbf{\Sigma}_{0}^{-1}\right)^{-1}$$
 and $\mathbf{\mu}_{\mathrm{post}} = \mathbf{\Sigma}_{\mathrm{post}} \frac{\mathbf{X}^{T} \mathbf{y}}{\sigma_{o}^{2}}$

Maximum Likelihood
Maximum a-posterior
Bayesian Estimation

General concepts
Principal Components
Independent Components
Mixture Models

Reference

Bayesian linear model

The posterior distribution for the parameters is a Gaussian with parameters

$$\mathbf{\Sigma}_{\mathrm{post}} = \left(\frac{1}{\sigma_n^2} \mathbf{X}^T \mathbf{X} + \mathbf{\Sigma}_0^{-1}\right)^{-1}$$
 and $\mathbf{\mu}_{\mathrm{post}} = \mathbf{\Sigma}_{\mathrm{post}} \frac{\mathbf{X}^T \mathbf{y}}{\sigma_n^2}$

Point estimates from keeping:

- \bullet M.L. if we take $\Sigma_0 \to \infty$ and considering only $\pmb{\mu}_{post}.$
- M.A.P if we approximate the distribution with a single value at the maximum, *i.e.* μ_{post} .

Lehel Csat

Modelling Data
Machine Learning

Maximum Likelihood
Maximum a-posterior
Bayesian Estimation

Unsupervised

Principal Components Independent Components Mixture Models

Reference

Prediction for new values x_* :

- use the likelihood $P(y_*|\mathbf{x}_*, \boldsymbol{\theta}, \boldsymbol{\mathcal{F}})$,
- and the posterior for θ
- and Bayes' rule.

The steps:

$$p(y_*|\mathbf{x}_*, \mathcal{D}, \mathbf{F}) = \int_{\Omega_{\boldsymbol{\theta}}} d\theta \ p(y_*|\mathbf{x}_*, \boldsymbol{\theta}, \mathbf{F}) p_{\text{post}}(\boldsymbol{\theta} \mid \mathcal{D}, \mathbf{F})$$

$$= \int_{\Omega_{\boldsymbol{\theta}}} d\theta \ \exp\left[-\frac{1}{2}\left(K_* + \frac{(y_* - \boldsymbol{\theta}^T \mathbf{x}_*)^2}{\sigma_n^2} + (\boldsymbol{\theta} - \boldsymbol{\mu}_{\text{post}})^T \boldsymbol{\Sigma}_{\text{post}}^{-1}(\boldsymbol{\theta} - \boldsymbol{\mu}_{\text{post}})\right)\right]$$

$$= \int_{\Omega_{\boldsymbol{\theta}}} d\theta \ \exp\left[-\frac{1}{2}\left(K_* + \frac{y_*^2}{\sigma_n^2} - \boldsymbol{a}^T \boldsymbol{C}^{-1} \boldsymbol{a} + Q(\boldsymbol{\theta})\right)\right]$$

where

$$m{a} = rac{m{x}_* m{y}_*}{\sigma_n^2} + m{\Sigma}_{
m post}^{-1} m{\mu}_{
m post} \qquad m{C} = rac{m{x}_* m{x}_*^T}{\sigma_n^2} + m{\Sigma}_{
m post}$$

Modelling Da Machine Learning Latent variable mo

Maximum Likelihood Maximum a-posterior Bayesian Estimation

Unsupervised

General concepts
Principal Components
Independent Componer
Mixture Models

References

Integrating out the quadratic in θ :

Predictive distribution at x.

$$p(y_*|\mathbf{X}_*, \mathcal{D}, \mathbf{\mathcal{F}}) = \exp\left[-\frac{1}{2}\left(K_* + \frac{(y_* - \mathbf{X}_*\boldsymbol{\mu}_{\text{post}})^2}{\sigma_n^2 + \mathbf{X}_*^T\boldsymbol{\Sigma}_{\text{post}}^{-1}\mathbf{X}_*}\right)\right]$$

$$= \mathrm{N}\left(\boldsymbol{y}_* \mid \boldsymbol{x}_*^T \boldsymbol{\mu}_{\mathrm{post}} \;,\; \boldsymbol{\sigma}_n^2 + \boldsymbol{x}_*^T \boldsymbol{\Sigma}_{\mathrm{post}} \boldsymbol{x}_* \right)$$

With the predictive distribution we:

- measure the variance of the prediction for each point: $\sigma_*^2 = \sigma_n^2 + \mathbf{x}_*^T \mathbf{\Sigma}_{\text{nost}} \mathbf{x}_*;$
- sample from the parameters and plot the candidate predictors.

Lehel Cs

Machine Learning

Estimation

Maximum Likelihoo

Maximum a-posterio

Bayesian Estimation

Unsupervised
General concepts

Principal Components Independent Componer Mixture Models

Deference

Bayesian example

Predictive samples

Probabilistic Data Mining

Lehel Cs

Modelling Data Machine Learning Latent variable mod

Estimation

Maximum Likelihoo

Maximum a-posterio Bayesian Estimation

General concepts

Independent Component Mixture Models

Reference

Third order polynomials are used to approximate the data.

Lehel Csa

Modelling Dat Machine Learning Latent variable mod

Maximum Likelihood Maximum a-posterio Bayesian Estimation

Unsupervised

Principal Components
Independent Components
Mixture Models

References

When computing $p_{\text{post}}(\theta|\mathcal{D}, \mathcal{F})$ we assumed that the posterior can be represented analytically.

This is not the case.

Approximations are needed for the

- posterior distribution
- predictive distribution

In Bayesian modelling an important issue is how we approximate the posterior distribution.

Bayesian estimation

Summary

Probabilistic Data Mining

Lehel Csa

Modelling Date

Machine Learning

Latent variable mod

ESTIMATION

Maximum Likelihood

Maximum a-posterio

Bayesian Estimation

Unsupervised
General concepts
Principal Components
Independent Componen
Mixture Models

Complete specification of the model

Can include prior beliefs about the model.

Accurate predictions

Can include prior beliefs about the model.

Computational cost

Using models for prediction can be difficult and expensive in time and memory.

Bayesian estimation

Summary

Probabilistic Data Mining

Lehel Csa

Modelling Da Machine Learning Latent variable mo

Maximum Likelihood Maximum a-posterio Bayesian Estimation

Independent Comp Mixture Models References

Complete specification of the model

Can include prior beliefs about the model.

Accurate predictions

Can include prior beliefs about the model.

Computational cost

Using models for prediction can be difficult and expensive in time and memory.

Bayesian models

Flexible and accurate – **if** priors about the model are used.

It can be expensive.

Outline

Probabilistic Data Mining

Lehel Csat

Modelling Data Machine Learning Latent variable mode

Estimation

Maximum Likelihood

Maximum a-posterior

Unsupervised

Principal Components
Independent Component
Mixture Models

References

- Modelling Data
- Estimation methods
- Unsupervised Methods
 - General concepts
 - Principal Components
 - Independent Components
 - Mixture Models
- 4 References

Unsupervised setting

Probabilistic Data Mining

Lehel Csa

Modelling Data

Machine Learning

Latent variable model

Estimation

Maximum Likelihood

Maximum a-posterior

Bayesian Estimation

Unsupervised
General concepts
Principal Components
Independent Component
Mixture Models

References

 Data can be unlabeled, i.e. no values y are associated to an input x.

We want to "extract" information from

$$\mathcal{D} = \{\boldsymbol{x}_1, \dots, \boldsymbol{x}_N\}.$$

- We assume that the data although high-dimensional – spans a manifold of a much smaller dimension.
- Task is to find the subspace corresponding to the data span.

Models in unsupervised learning

Probabilistic Data Mining

Lehel Csa

Modelling Dat

Machine Learning

Latent variable mod

Estimation

Maximum Likelihood

Maximum a-posterio

Bayesian Estimation

Unsupervised
General concepts
Principal Components
Independent Component

Reference

It is again important the **model of the data**:

Principal Components;

Independent Components;

• Mixture models:

The PCA model

Probabilistic Data Mining

Lehel Csa

Modelling Data
Machine Learning
Latent variable models

Maximum Likelihood

Maximum a-posterior

Bayesian Estimation

Unsupervised

Principal Components
Independent Component
Mixture Models

Reference

- Spherical cluster that is:
 - translated;
 - scaled;
 - rotated.

We aim to find the principal directions of the data spread.

Principal direction:

the direction \boldsymbol{u} along which the data preserves most of its variance.

Lehel Csa

Modelling Data Machine Learning Latent variable model

Estimation

Maximum Likelihood Maximum a-posterior Bayesian Estimation

Unsupervised

Principal Components
Independent Components
Mixture Models

References

Principal direction:

$$\mathbf{u} = \underset{\|\mathbf{u}\|=1}{\operatorname{argmax}} \frac{1}{2N} \sum_{n=1}^{N} (\mathbf{u}^{T} \mathbf{x}_{n} - \mathbf{u} \overline{\mathbf{x}})^{2}$$

we pre-process: $\overline{x} = 0$. Replacing the empirical covariance with Σ_x :

$$\mathbf{u} = \underset{\|\mathbf{u}\|=1}{\operatorname{argmax}} \frac{1}{2N} \sum_{n=1}^{N} (\mathbf{u}^{T} \mathbf{x}_{n} - \mathbf{u} \overline{\mathbf{x}})^{2}$$
$$= \underset{\mathbf{u}}{\operatorname{argmax}} \frac{1}{2} \mathbf{u}^{T} \mathbf{\Sigma}_{\mathbf{x}} \mathbf{u} - \lambda (\|\mathbf{u}\|^{2} - 1)$$

with λ the Lagrange multiplier. Differentiating w.r.t \boldsymbol{u} :

$$\Sigma_{\mathbf{v}}\mathbf{u} - \lambda \mathbf{u} = \mathbf{0}$$

Lehel Csa

Machine Learning

Estimation

Maximum Likelihood

Maximum a-posterior

Bayesian Estimation

Unsupervised

Principal Components
Independent Components
Mixture Models

References

The optimum solution **must obey**:

$$\Sigma_{x}u = \lambda u$$

The **eigendecomposition** of the covariance matrix.

 $(\lambda_*, \boldsymbol{u}_*)$ is an eigenvalue, eigenvector of the system.

If we replace back, the value of the expression is λ_* .

Optimal solution when $\lambda_* = \lambda_{max}$.

Principal direction:

The eigenvector \mathbf{u}_{max} corresponding to the largest eigenvalue of the system.

Lehel Csa

Modelling Dat

Machine Learning

Latent variable mod

Estimation

Maximum Likelihood

Maximum a-posterior

Bayesian Estimation

Unsupervised

Principal Components
Independent Componen
Mixture Models

Reference

How is this used in data mining?

Assume that data is:

jointly Gaussian:

$$\mathbf{x} = \mathrm{N}(\mathbf{m}_{\mathbf{x}}, \mathbf{\Sigma}_{\mathbf{x}}),$$

- high-dimensional;
- only few (2) directions are relevant.

Lehel Csa

Modelling Dat

Machine Learning

Latent variable mod

Estimation

Maximum Likelihood

Maximum a-posterior

Bayesian Estimation

Unsupervised

Principal Components
Independent Component

Reference

How is this used in data mining?

- Subtracting mean.
- Eigendecomposition.
- Selecting the K eigenvectors corresponding to the K largest values.
- Computing the K projections: $\mathbf{z}_{n\ell} = \mathbf{x}_n^T \mathbf{u}_{\ell}$.

The projection using matrix
$$P \stackrel{\text{def}}{=} [\boldsymbol{u}_1, \dots, \boldsymbol{u}_K]^T$$
:

$$Z = XP$$

and z_n can is used as a compact representation of x_n .

Lehel Csat

Modelling Data

Machine Learning

Latent variable mode

Estimatio

Maximum Likelihood Maximum a-posterion Bayesian Estimation

Unsupervised

Principal Components
Independent Components
Mixture Models

Reference

Reconstruction:

$$m{x}_n' = \sum_{\ell=1}^K z_{n\ell} m{u}_{\ell}$$
 or, with matrix notation: $m{X}' = m{Z} m{P}^T$

PCA projection analysis:

$$E_{PCA} = \frac{1}{N^2} \sum_{n=1}^{N} (\mathbf{x}_n - \mathbf{x}'_n)^2 = \frac{1}{N^2} \operatorname{tr} \left[(\mathbf{X} - \mathbf{X}')^T (\mathbf{X} - \mathbf{X}') \right]$$

$$= \operatorname{tr} \left[\mathbf{\Sigma}_{\mathbf{X}} - \mathbf{P}^T \mathbf{\Sigma}_{\mathbf{Z}} \mathbf{P} \right]$$

$$= \operatorname{tr} \left[\mathbf{U} \left(\operatorname{diag}(\lambda_1, \dots, \lambda_d) - \operatorname{diag}(\lambda_1, \dots, \lambda_K, 0, \dots) \right) \mathbf{U}^T \right]$$

$$= \operatorname{tr} \left[\mathbf{U}^T \mathbf{U} \operatorname{diag}(0, \dots, 0, \lambda_{K+1}, \dots, \lambda_d) \right]$$

$$= \sum_{d=K}^{d-K} \lambda_{K+\ell}$$

Lehel Csa

Machine Learning

Estimation

Maximum Likelihood Maximum a-posterior Bayesian Estimation

Unsupervised

Principal Components
Independent Components
Mixture Models

References

PCA reconstruction error:

The error made using the PCA directions:

$$\textit{E}_{\textit{PCA}} = \sum_{\ell=1}^{d-K} \lambda_{K+\ell}$$

PCA properties:

- PCA system orthonormal: $\mathbf{u}_{\ell}^{\mathsf{T}}\mathbf{u}_{\ell} = \delta_{\ell-\ell}$
- Reconstruction fast.
- Spherical assumption critical.

Principal Components

USPS digits – testbed for several models.

サフチサフ

Lehel Csat

Machine Learning

Latent variable mod

Maximum Likelihood
Maximum a-posterior

Unsupervised

Principal Components Independent Component Mixture Models

References

USPS characteristics:

- handwritten data centered and scaled;
- $\bullet \approx$ 10.000 items of 16 \times 16 grayscale images;

We plot $k_r = \sum_{\ell=1}^r \lambda_\ell$ -normalised

Conclusion for the USPS set:

- The normalised $\lambda_1 = 0.24 \Rightarrow \mathbf{u}_1$ accounts for 24% of the data.
- at \approx 10 more than 70% of variance is explained.
- at \approx 50 more than 98%

>

50 numbers instead of 256.

Lehel Csa

Modelling Da

Estimation

Maximum Likelihood

Maximum a-posterior

Unsupervised
General concepts
Principal Components

Independent Compon Mixture Models

References

Visualisation application:

Visualisation along the first two eigendirections.

PCA application

Probabilistic Data Mining

Lehel Csa

Modelling Da

Machine Learning

Latent variable mo

Estimation

Maximum Likelihood

Maximum a-posterior

Rayesian Estimation

Unsupervised

Principal Components Independent Componen Mixture Models

References

Visualisation application:

Detail.

The ICA model

Probabilistic Data Mining

Lehel Csa

Machine Learning

Latent variable mod

Estimation

Maximum Likelihood

Maximum a-posterior

Bayesian Estimation

General concepts
Principal Components
Independent Components
Mixture Models

Reference

Start from the PCA:

$$x = Pz$$

is a **generative model** for the data.

We assumed that

- ⇒ x are not independent;
- ⇒

z are Gaussian sources;

In most of real data:

- Sources are not Gaussian.
- But sources are independent.
- We exploit that!.

The ICA model

Probabilistic Data Mining

Lehel Csa

Modelling Dat Machine Learning Latent variable mod

Estimation

Maximum Likelihood

Maximum a-posterio

Unsupervised General concepts Principal Components

Independent Components Mixture Models

Reference

The following model assumption:

$$x = As$$

where

- z independent sources;
- A linear mixing matrix;

Looking for matrix B that recovers the sources:

$$oldsymbol{s}' \stackrel{ ext{def}}{=} oldsymbol{B} oldsymbol{x} = oldsymbol{B} oldsymbol{A} oldsymbol{s} = oldsymbol{B} oldsymbol{A} oldsymbol{s}$$

i.e. (*BA*) is a permutation and scaling but retains **independence**.

Lehel Csa

Modelling Dat Machine Learning Latent variable mod

Estimation

Maximum Likelihood

Maximum a-posterior

Bayesian Estimation

General concepts
Principal Components
Independent Components
Mixture Models

References

In practice:

$$s' \stackrel{\text{def}}{=} Bx$$

with $\mathbf{s} = [s_1, \dots, s_K]$ all independent sources. Independence test: the KL-divergence between the joint distribution and the marginals

$$\mathbf{B} = \underset{\mathbf{B} \in SO_d}{\operatorname{argmin}} \operatorname{KL} \left(p(s_1, s_2) || p(s_1) p(s_2) \right)$$

where SO_d is the group of matrices with |B| = 1.

In ICA we are looking for matrix **B** that minimises:

$$\sum_{\ell} \int_{\Omega_{\ell}} ds_{\ell} \log p(s_{\ell}) - \int_{\Omega_{\ell}} ds \log(p(s_{1}, \dots, s_{d}))$$

Lehel Csa

Modelling Data Machine Learning Latent variable mode

Estimation

Maximum Likelihood

Maximum a-posterior

Bayesian Estimation

Unsupervised
General concepts
Principal Components
Independent Components

Reference

Kullback-Leibler divergence

$$KL(p||q) = \sum_{x} p(x) \log \frac{p(x)}{q(x)}$$

- is zero only and only if p = q,
- is not a measure of distance (but cloooose to it!),
- Efficient when exponential families are used.

Short proof:

$$0 = \log 1 = \log \left(\sum_{x} q(x) \right) = \log \left(\sum_{x} p(x) \frac{q(x)}{p(x)} \right)$$
$$\geq \sum_{x} p(x) \log \left(\frac{q(x)}{p(x)} \right) = -KL(p||q)$$

$$\Rightarrow$$
 KL($p||q) \ge 0$

Lehel Csa

Modelling Data
Machine Learning
Latent variable mode

Estimation

Maximum Likelihood

Maximum a-posterio

Bayesian Estimation

Unsupervised
General concepts
Principal Components
Independent Components
Mixture Models

Reference

Separation of source signals:

Mixture

m2 m4

m1 m3

m3 m4

Independent Components

Results of separation:

m2 m4

m1 m3

m3 m4

FastICA package

Applications of ICA

Probabilistic Data Mining

Lehel Csat

Modelling Data

Machine Learning

Latent variable model

Estimation

Maximum Likelihood

Maximum a-posterior

Bayesian Estimation

Unsupervised
General concepts
Principal Components
Independent Components
Mixture Models

References

Applications:

- Coctail party problem;
 Separates noisy and multiple sources from multiple observations.
- Fetus ECG;
 Separation of the ECG signal of a fetus from its mother's ECG.
- MEG recordings;
 Separation of MEG "sources".
- Financial data;
 Finding hidden factors in financial data.
- Noise reduction;
 Noise reduction in natural images.
- Interference removal;
 Interference removal from CDMA Code-division multiple access communication systems.

Lehel Csa

Modelling Date
Machine Learning
Latent variable mod

Estimation

Maximum Likelihood

Maximum a-posterior

Bayesian Estimation

Unsupervised
General concepts
Principal Components
Independent Componen
Mixture Models

Reference

The data structure is more complex.

 More than a single source for data.

The mixture model:

$$P(\mathbf{x}|\mathbf{\Sigma}) = \sum_{k=1}^{K} \pi_k \, \rho_k(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \tag{1}$$

where:

 π_1, \ldots, π_K – mixing components.

 $\rho_k(\mathbf{x}|\boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k)$ – density of a component.

The components are usually called clusters.

Data generation

Probabilistic Data Mining

Lehel Csa

Machine Learning

Estimation

Maximum Likelihood

Maximum a-posterio

Bayesian Estimation

Unsupervised
General concepts
Principal Components
Independent Componen
Mixture Models

Reference

The generation process reflects the assumptions about the model.

The data generation:

- first we select from which component,
- then we sample from the component's density function.

When modelling data we do not know:

- Which point belongs to which cluster.
- What are the parameters for each density function.

Example I

Probabilistic Data Mining

Lehel Csat

Machine Learning

Estimation

Maximum Likelihood Maximum a-posterior Bayesian Estimation

Unsupervised

Principal Components
Independent Components

Mixture Models

References

Old Faithful geyser in the Yellowstone National park. Characterised by:

- intense eruptions;
- differing times between them.

Rule:

Duration is 1.5 to 5 minutes.

The length of eruption helps determine the interval.

If an eruption lasts less than 2 minutes the interval will be around 55 minutes. If the eruption last 4.5 minutes the interval may be around 88 minutes.

Lehel Csa

Modelling Data Machine Learning Latent variable mode

Estimation

Maximum Likelihood

Maximum a-posterior

Bayesian Estimation

Unsupervised General concepts Principal Components

Mixture Models

References

- The longer the duration, the longer the interval.
- The linear relation $I = \theta_0 + \theta_1 d$ is not the best.
- There are only a very few eruptions lasting \approx 3 minutes.

Probabilistic Data Mining

Lehel Csa

Modelling Data Machine Learning Latent variable mode

Maximum Likelihood
Maximum a-posterior
Bayesian Estimation

General concepts
Principal Components
Independent Component
Mixture Models

Reference

Assumptions:

We know the family of individual density functions:
 These density functions are parametrised with a few parameters.

The densities are easily identifiable:
 If we knew which data belongs to which cluster, the density function is easily identifiable.

Gaussian densities are often used – fulfill both "conditions".

Probabilistic Data Mining

Lehel Csat

Modelling Dat Machine Learning Latent variable mod

Estimation

Maximum Likelihood

Maximum a-posterior

Bayesian Estimation

Unsupervised
General concepts
Principal Components
Independent Components
Mixture Models

References

The Gaussian mixture model:

$$p(\mathbf{x}) = \pi_1 N_1(\mathbf{x}|\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1) + \pi_2 N_2(\mathbf{x}|\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2)$$

for **known** densities (centres and ellipses):

$$p(\mathbf{x}_n|k) = \frac{N_k(\mathbf{x}_n|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) p(k)}{\sum_{\ell} N_\ell(\mathbf{x}_n|\boldsymbol{\mu}_\ell, \boldsymbol{\Sigma}_\ell) p(\ell)}$$

i.e. we know the **probability** that data comes from cluster *k* (shades from red to green).

For \mathcal{D} :

X	p(x 1)	p(x 2)
X ₁	γ ₁₁	γ_{12}
:	:	:
XN	γ_{N1}	$\gamma_{\it N2}$

 $\gamma_{n\ell}$ – responsibility of \mathbf{x}_n in cluster ℓ .

Probabilistic Data Minina

Mixture Models

When $\gamma_{n\ell}$ known, the parameters are computed using the data weighted by their responsibilities:

$$(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = \underset{\boldsymbol{\mu}, \boldsymbol{\Sigma}}{\operatorname{argmax}} \prod_{n=1}^{N} (N_k(\boldsymbol{x}_n | \boldsymbol{\mu}, \boldsymbol{\Sigma}))^{\gamma_{nk}}$$

for all k. This means:

$$(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \Leftarrow \sum_n \gamma_{nk} \log N(\boldsymbol{x}_n | \boldsymbol{\mu}, \boldsymbol{\Sigma})$$

When making inference

Have to find the responsibility vector and the parameters of the mixture.

Probabilistic Data Minina

Mixture Models

When $\gamma_{n\ell}$ known, the parameters are computed using the data weighted by their responsibilities:

$$(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = \operatorname*{argmax}_{\boldsymbol{\mu}, \boldsymbol{\Sigma}} \prod_{n=1}^N \left(\mathrm{N}_k(\boldsymbol{x}_n | \boldsymbol{\mu}, \boldsymbol{\Sigma}) \right)^{\gamma_{nk}}$$

for all k. This means:

$$(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \Leftarrow \sum_n \gamma_{nk} \log N(\boldsymbol{x}_n | \boldsymbol{\mu}, \boldsymbol{\Sigma})$$

When making inference

Have to find the responsibility vector and the parameters of the mixture.

Given data \mathcal{D} :

Re-estimate resp.s:

x ₁	γ_{11}	γ_{12}
:	:	:
XN	γ_{N1}	$\gamma_{\it N2}$

Re-estimate parameters:

$$\Rightarrow (\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1), \dots, (\boldsymbol{\mu}_K, \boldsymbol{\Sigma}_K))$$

Probabilistic Data Mining

Lehel Csa

Machine Learning

Estimation

Maximum Likelihood

Maximum a-posterio

Bayesian Estimation

Unsupervised

Principal Components
Independent Component
Mixture Models

References

Responsibilities

The additional **latent** variables needed to help computation.

In the mixture model:

- goal is to fit model to data;
- which submodel gets a particular data;

Achieved by the maximisation of the log-likelihood function.

The EM algorithm

Probabilistic Data Mining

Lehel Csa

Machine Learning

Latent variable mode

Estimation

Maximum Likelihood

Maximum a-posterior

Bayesian Estimation

General concepts Principal Components

Mixture Models

References

$$(\boldsymbol{\pi}, \boldsymbol{\Theta}) = \operatorname{argmax} \sum_{n} \log \left[\sum_{\ell} \pi_{\ell} N_{\ell}(\boldsymbol{x}_{n} | \boldsymbol{\mu}_{\ell}, \boldsymbol{\Sigma}_{\ell}) \right]$$

 $\Theta = [\mu_1, \Sigma_1, \dots, \mu_K, \Sigma_K]$ is the vector of parameters; $\pi = [\pi_1, \dots, \pi_K]$ the shares of the factors;

Problem with optimisation:

The parameters are not separable due to the sum within the logarithm.

Solution:

Use an approximation.

The EM algorithm

Probabilistic Data Mining

Lehel Csat

Modelling Data

Machine Learning

Latent variable models

Estimation

Maximum Likelihood

Maximum a-posteriori

Bayesian Estimation

Unsupervised General concepts Principal Components Independent Componen Mixture Models

Reference:

$$\log P(\mathcal{D}|\boldsymbol{\pi}, \boldsymbol{\Theta}) = \sum_{n} \log \left[\sum_{\ell} \pi_{\ell} N_{\ell}(\boldsymbol{x}_{n}|\boldsymbol{\mu}_{\ell}, \boldsymbol{\Sigma}_{\ell}) \right]$$
$$= \sum_{n} \log \left[\sum_{\ell} p_{\ell}(\boldsymbol{x}_{n}, \ell) \right]$$

Use Jensen's inequality:

$$egin{aligned} \log\left(\sum_{\ell}\; p_{\ell}(oldsymbol{x}_n,\ell| heta_{\ell})
ight) &= \log\left(\sum_{\ell}\; q_{n}(\ell)\, rac{p_{\ell}(oldsymbol{x}_n,\ell| heta_{\ell})}{q_{n}(\ell)}
ight) \ &\geq \sum_{\ell}\; q_{n}(\ell) \log\left(rac{p_{\ell}(oldsymbol{x}_n,\ell)}{q_{n}(\ell)}
ight) \end{aligned}$$

for **any** $[q_n(1), ..., q_n(\ell)]$.

Lehel Csat

Modelling Data

Machine Learning

Latent variable mode

Maximum Likelihoo

Maximum Likelihood Maximum a-posterior Bayesian Estimation

General concepts Principal Components

Independent Compon

Reference

Jensen's Inequality

For any concave f(z), any z_1 and z_2 , and any $\gamma_1, \gamma_2 > 0$ such that $\gamma_1 + \gamma_2 = 1$:

$$f(\gamma_1 z_1 + \gamma_2 z_2) \ge \gamma_1 f(z_1) + \gamma_2 f(z_2)$$

The EM algorithm

Probabilistic Data Mining

Lehel Csat

Machine Learning

Estimation

Maximum Likelihood

Maximum a-posteriori

Bayesian Estimation

Unsupervised

General concepts

Principal Components
Independent Component
Mixture Models

References

$$\log\left(\sum_{\ell} \ p_{\ell}(\boldsymbol{x}_n, \ell | \theta_{\ell})\right) \geq \sum_{\ell} \ q_n(\ell) \log\left(\frac{p_{\ell}(\boldsymbol{x}_n, \ell)}{q_n(\ell)}\right)$$

for any distribution $q_n(\cdot)$.

Replacing with the right-hand side, we have:

$$egin{aligned} \log P(\mathcal{D}|m{\pi},m{\Theta}) &\geq \sum_{n} \sum_{\ell} q_n(\ell) \, \log rac{p_{\ell}(m{x}_n|m{ heta}_\ell)}{q_n(\ell)} \ &\geq \sum_{\ell} \left[\sum_{n} q_n(\ell) \, \log rac{p_{\ell}(m{x}_n|m{ heta}_\ell)}{q_n(\ell)}
ight] = \mathcal{L} \end{aligned}$$

and therefore the optimisation w.r.to cluster parameters separate.

$$\partial_{\ell} \quad \Rightarrow \quad 0 = \sum_{n} q_{n}(\ell) \frac{\partial \log p_{\ell}(\mathbf{x}_{n}|\boldsymbol{\theta}_{\ell})}{\partial \boldsymbol{\theta}_{\ell}}$$

For distributions from exponential family optimisation is easy.

Lehel Csa

Modelling Dat

Machine Learning

Latent variable mod

Estimation

Maximum Likelihood

Maximum a-posteriori

Bayesian Estimation

Unsupervised
General concepts
Principal Components
Independent Components
Mixture Models

References

- any set of distributions $q_1(\ell), \ldots, q_N(\ell)$ provides a lower bound to the log-likelihood.
- We should choose the distributions so that they are the closest to the current parameter set.

We assume the parameters have the value θ_0 .

Want to minimise the difference:

$$\begin{split} \log P(\boldsymbol{x}_n, \ell | \boldsymbol{\theta}_{\ell}^0) - \mathcal{L} &= \sum_{\ell} q_n(\ell) \log P(\boldsymbol{x}_n, \ell | \boldsymbol{\theta}_{\ell}^0) - \sum_{\ell} q_n(\ell) \log \frac{p_{\ell}(\boldsymbol{x}_n, \ell | \boldsymbol{\theta}_{\ell}^0)}{q_n(\ell)} \\ &\qquad \qquad \sum_{\ell} q_n(\ell) \log \frac{P(\boldsymbol{x}_n, \ell | \boldsymbol{\theta}_{\ell}^0) q_n(\ell)}{p_{\ell}(\boldsymbol{x}_n, \ell | \boldsymbol{\theta}_{\ell}^0)} \end{split}$$

and observe that by setting

$$q_n(\ell) = \frac{p_\ell(\boldsymbol{x}_n | \boldsymbol{\theta}_\ell^0)}{P(\boldsymbol{x}_n, \ell | \boldsymbol{\theta}_\ell^0)}$$

we have $\sum_{\ell} q_n(\ell) 0 = 0$.

The EM algorithm

Probabilistic Data Mining

Lehel Csa

Modelling Data Machine Learning Latent variable mode

Estimation

Maximum Likelihood

Maximum a-posterior

Bayesian Estimation

General concepts Principal Components Independent Componen

Mixture Models
References

The EM algorithm:

Init – initialise model parameters;

E step – compute the responsibilities $\gamma_{n\ell} = q_n(\ell)$;

M step − for each k optimize

$$0 = \sum_{n} q_{n}(\ell) \frac{\partial \log p_{\ell}(\mathbf{x}_{n}|\boldsymbol{\theta}_{\ell})}{\partial \boldsymbol{\theta}_{\ell}}$$

repeat - goto the E step.

EM application

Probabilistic Data Mining

Lehel Csa

Modelling Data Machine Learning

Estimation

Maximum Likelihood Maximum a-posterio Bayesian Estimation

Unsupervised

Principal Components
Independent Componer
Mixture Models

References

Old faithful:

EM application

Probabilistic Data Mining

Lehel Csa

Modelling Data Machine Learning

Estimation

Maximum Likelihood

Maximum a-posteriori

Bayesian Estimation

Unsupervised

Principal Components Independent Component Mixture Models

References

EM application

Probabilistic Data Mining

Lehel Csa

Modelling Data Machine Learning Latent variable mode

Estimation

Maximum Likelihood

Maximum a-posterior

Bayesian Estimation

General concepts

Independent Componer
Mixture Models

Reference

Lehel Csati

Modelling Data Machine Learning Latent variable model

Estimation

Maximum Likelihood Maximum a-posterior Bayesian Estimation

Unsupervised

General concepts
Principal Components
Independent Componen
Mixture Models

References

References

Probabilistic Data Mining

Lehel Csat

Machine Learning

Latent variable mode

Maximum Likelihood Maximum a-posterior

Unsupervised
General concepts
Principal Components

References

J. M. Bernardo and A. F. Smith. Bayesian Theory.

John Wiley & Sons, 1994.

C. M. Bishop.

Pattern Recognition and Machine Learning.

Springer Verlag, New York, N.Y., 2006.

T. M. Cover and J. A. Thomas.

Elements of Information Theory.

John Wiley & Sons, 1991.

A. P. Dempster, N. M. Laird, and D. B. Rubin.

Maximum likelihood from incomplete data via the EM algorithm.

Journal of the Royal Statistical Society series B, 39:1–38, 1977.

T. Hastie, R. Tibshirani, és J. Friedman.

The Elements of Statistical Learning: Data Mining, Inference, and Prediction.

Springer Verlag, 2001.

