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Machine learning

Probabilistic Data . . . .
Mining Historical background / Motivation:
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Machine Learning

@ Huge amount of data, that should automatically be
processed,

@ Mathematics provides general solutions, solutions
are i.e. not for a given problem,

@ Need for “science”, that uses mathematics machinery
for solving practical problems.



Definitions for Machine Learning

Probabilistic Data
Mining

Machine learning
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Collection of methods (from statistics, probability theory)
to solve problems met in practice.

@ noise filtering for
@ non-linear regression and/or
e non-Gaussian noise

@ Classification:
e binary,
e multiclass,
o partially labelled

@ Clustering,
@ Inversion problems,
@ density estimation, novelty detection.

Generally, we need to model the data,



Modelling Data

Probabilistic Data
Mining (X1 Y1 )

Lehel Csato (X21 y2)
Observation

f(x :
(x) (x,y) °

(X W)

@ Real world: there “is” a function y = f(x)

@ Observation process: a corrupted datum is collected
for a sample x,:

In = Yn+e additive noise
th = h(Yn,e) h distortion function

@ Problem: find function y = f(x)



Latent variable models

Probabilistic Data
Mining (X1 Y1 )

Lehel Csatd (X21y2)
Inference

7(x) :

F — function class

Latent variable models

Observ. process (X e W)

@ Data set — collected.

@ Assume a function class.
e polynomial,
e Fourier expansion,
o Wavelet;

@ Observation process — encodes the noise;

@ Find the optimal function from the class.



Latent variable models Il

Probabilistic Data

Mining @ We have the data set D = {(x1,y1)....,(Xn,yn)}-
Lehel Csatd

@ Consider a function class:

(1) F={w'x+bwecR? beR}
K K
(2) F={a+)> aksin(2rkx)+ > bk cos(2mkx)
k=1 k=1
la,b € R¥, a5 € R}

@ Assume an observation process:

yn=f(xn) + ¢ with e~ N(O,0?).



Latent variable models IlI

Probabilistic Data

Mining © The dataset: D = {(x1,y1),...,(Xn, Vn)}-
Lehel Csato
@ Assume a function class:

F = {(x,0)0 € R}

JF — polynomial, etc.

© Assume an observation process. Define a loss
function:

L(yn, f(xn,0))

For the Gaussian noise:
L(Yn, f(Xn,0)) = (¥n — f(Xn,0))2.
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@ Estimation methods
Estimation @ Maximum Likelihood
@ Maximum a-posteriori
@ Bayesian Estimation



Parameter estimation

Probabilistic Data . .
Mining Estimating parameters:
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Finding the optimal value to 6:

*: H D
0 arggygL( ,0)

Estimation

where
@ Q is the domain of the parameters.
@ L(D,0) is a “loss function” for the data set.
Example:

N

L(D,6) = > L(Yn f(Xn,0))

n=1



Maximum Likelihood Estimation

Probabilistic Data

Mining L(D.#) — (log)likelihood function.

Lehel Csato
Maximum likelihood estimation of the model:

0" = arg min L(D,8)

Example — quadratic regression:

N
L(D,0)= > (yn—f(xn,0))° - factorisation

n=1

Drawback: can produce perfect fit to the data —
over-fitting.
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Maximum Likelihood

Example of an ML estimate
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@ We want to fit a model to the data.
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Example of an ML estimate Graphic
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@ We want to fit a model to the data.
@ Use linear model: h = 6y + 6y w.



Example of an ML estimate Graphic
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@ We want to fit a model to the data.

@ Use linear model: h = 6y + 6y w.
@ Use log-linear model: h = 6y + 61 log(w).



Example of an ML estimate Graphic
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Mining Y
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@ We want to fit a model to the data.

@ Use linear model: h = 6y + 6y w.

@ Use log-linear model: h = 6y + 61 log(w).
@ Use higher order polynomials, e.g. :

h =00+ 61w + ow? + 3w + . ...

&
><V y~——



M.L. for linear models

Probabilistic Data

Mining Assume:
linear model for the x — y relation

an Z QpX/

with x = [1, x, x2,log(x),...]”

quadratic loss for D = {(x1,y1),...,(Xn, hn)}

N

Ex(D|f) = (yn — f(Xn]0))?

n=1



M.L. for linear models

Probabilistic Data e e m .
Mining Minimisation:

Lehel Csato

N
> (Yo —f(x16))? = (v — X0)  (y — X6)
n=1
=0'X"X0—20"X"y +yTy
Solution:
0=2X"X0—-2XTy
1
9 — (xTx) XTy
where y = [y4,....yn]" and X = [x4,....xp]" are the

transformed data.



M.L. for linear models

Probabilistic Data

Mining Generalised linear models:
Leie! G @ Use a set of functions ® = [¢1(.), ..., om(.)]-

@ Project the inputs into the space spanned by Im(®).

@ Have a parameter vector of length M:
0=1[01,...,0M]".

@ The model is { Y m Omom(X) | 0m € R}.

@ The optimal parameter vector is:

o — (¢T¢)71 %



Maximum Likelihood Summary

Probabilistic Data . ays
Mining @ There are many candidate model families:

Lehel Csato
o the degree of polynomials specifies a model family;
e the rank of a Fourier expansion;

Maximum Likelihood

o the mixture of {log, sin, cos, ...} also a family;

@ Selecting the “best family” is a difficult modelling
problem.

@ In maximum likelihood there is no controll on how
good a family is when processing a given data-set.

Smaller number of parameters than ./ #data.



Maximum a—posteriori

Probabilistic Dat . . .
O Nlinng @ Generalised linear model powerful — it can be

Lehel Csato extremely complex;
e With no complexity control, overfitting problem.

@ Aim: to include knowledge in the inference process.

@ Our beliefs are reflected by the choice of the

e RGTEE candidate functions.



Maximum a—posteriori

Probabilistic Dat . . .
O Nlinng @ Generalised linear model powerful — it can be

Lehel Gsat6 extremely complex;
e With no complexity control, overfitting problem.

@ Aim: to include knowledge in the inference process.

@ Our beliefs are reflected by the choice of the

e candidate functions.

@ Prior knowledge specification using probabilities;
@ Using probability theory for consistent estimation;
@ Encode the observation noise in the model;




Maximum a—posteriori Data/noise

Probabilistic Data

Mining Probabilistic data description:

Lehel Csato
@ How likely is that & generated the data:

y = f(x) &y —f(x) ~do
y=f(x)+e < y—fFf(x)~N,




Maximum a—posteriori

Probabilistic Data
Mining

William of (1285-1349) principle
Entities should not be multiplied beyond necessity.

Lehel Csato

Also known as (wiki...): “Principle of simplicity” — KISS,
“When you hear hoofbeats, think horses, not zebras”.

Maximum a-posteriori

Simple models ~ small number of parameters.
Lo norm
Lo norm =

Probabilistic representation:

po(0)  oxp | - 1012
2(73



Inference

Probabilistic Data

Mining M.A.P. — probabilities assigned to
el Gsalo @ D —via the log-likelihood function:

P(yn\xn,O,}") x exp [_L(yna f(xn,0))]

Maximum a-posteriori



Inference

Probabilistic Data

Mining M.A.P. — probabilities assigned to
el Gsalo @ D —via the log-likelihood function:

P(yn\xn,O,}") x exp [_L(yna f(xn,0))]

Maximum a-posteriori

@ @ — prior probabilities:

po(6) o exp _loie
208



Inference

Probabilistic Data

Mining M.A.P. — probabilities assigned to
el Gsalo @ D —via the log-likelihood function:

P(yn\xn,O,}") x exp [_L(yna f(xn,0))]

@ @ — prior probabilities:

po(8) o exp _le
208
@ A—posteriori probability:

P(D|6)po(6)
p(D|F)

p(D|F) — probability of the data for a given family.

p6ID,F) =



Inference I

Probabilistic Data

Mining M.A.P. estimation — finds 6 with largest probability:
Lehel Csatd

Omap = argmax p(8|D, F)
0cQ

Maximum a-posteriori

Example: with L(y,. f(x,,0)) and Gaussian prior:

0 = argma K_,g L f(x,,0)) — —=
MAP gg X 2 . (}/m ( n, )) D) (2)

o5 =00 = maximum likelihood.

after a change of sign and max — min



Example |
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Mining

——N. Dev =102
------ True function

© Training data
mimiiN. Dev =102

Lehel Csato

Maximum a-posteriori




Linear models |
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Maximum a-posteriori

70 80 90 100

Aim: test different levels of flexibility. = p =10
Prior width:



Linear models |

Probabilistic Data
Mining

Lehel Csato

Maximum a-posteriori

50 60 70 80 90 100

Aim: test different levels of flexibility. = p =10
Prior width: o5 = 10°



Linear models |
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Maximum a-posteriori

50 60 70 80 90 100

Aim: test different levels of flexibility. = p =10
Prior width: o5 = 10° o = 10°



Linear models |
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Maximum a-posteriori

50 60 70 80 90 100

Aim: test different levels of flexibility. = p =10
Prior width: O'g =106 O'S =10° O‘S =10*



Linear models |
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Mining

Maximum a-posteriori

90 100 110

Aim: test different levels of flexibility. = p =10
Prior width: US =108 0(2) =10° 0(2) =104 o'g =103



Linear models |

Probabilistic Data
Mining

Maximum a-posteriori

90 100 110

Aim: test different levels of flexibility. = p =10

Prior width: US =108 0(2) =10° 0(2) =104 o'g =103
2 _ 102

%0



Linear models |

Probabilistic Data
Mining

Maximum a-posteriori

W

60 70 80 90 100 110

Aim: test different levels of flexibility. = p =10
Prior width: US =108 O'S =10° US =104 o'g =103
08 =102 0(2) =10'



Linear models |

Probabilistic Data
Mining
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Maximum a-posteriori

%0 100
Aim: test different levels of flexibility. = p =10
Prior width: 0§ = 10° of =10° of =10% 0§ =10°
08 =102 0(2) =10 O’S =100



Linear models Il
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161>

Orap = argmax K-~ Z Ex(yn, f(xn,0)) —

208
Transform into vector notatlon.
076
Mesimum st Ohap = argmax K — — ( y—X0)" (y — X6) — -]
0eQ 200

solve for @ by differentiation:
X" (y — X6) — lzldo =0
%

—1
”

MAP = <XTX+2/d> Xy
%0

again M.L. for 03 = oo



Summary

Probabilistic Data . - .
Mining Mximum a—posteriori models:

Lehel Csato

@ Allow for the inclusion of prior knowledge;

Maximum a-posteriori

@ May protect against overfitting;

@ Can measure the fitness of the family to the data;
Procedure called M.L. type II.



M.A.P. application

g el |dea: instead of computing the most probable value of 6,

ohel Centt we can measure the fit of the model F to the data D.
P(DIF) = > p(D,0:| F)
6,0
= Y p(D|6c, F)po(0c| F)
6,eQ

Maximum a-posteriori

Gaussian noise and polynomial of order K:

log(P(D|F)) = log ( S;de pw'ﬁ’(g)";gg”'ﬂ) — log (N(¥[0, £x))

1
5 (Nlog(27r) + log |Zx| +yTZ;1y)

where

X = [xo.,x',...,xK]
Yx = INU,2,+XZOXT with 5 o
3 :diag(ao,m,...,(ri)



M.A.P.
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Maximum a-posteriori

Aim: test different models.
Polynomial families: k =10 k=9 k =8.



M.A.P.
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Maximum a-posteriori

Aim: test different models.
Polynomial families: k =9k =8k =7.



M.A.P.

Probabilistic Data
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Maximum a-posteriori

Aim: test different models.
Polynomial families: k =8 k =7 k = 6.



M.A.P.

Probabilistic Data
Mining

Maximum a-posteriori

Aim: test different models.
Polynomial families: k =7k =6 k =5.



M.A.P.

Probabilistic Data
Mining

Maximum a-posteriori

Aim: test different models.
Polynomial families: k =6 k =5 k = 4.



M.A.P.
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Maximum a-posteriori

Aim: test different models.
Polynomial families: k =5k =4 k = 3.



M.A.P.
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Maximum a-posteriori

Aim: test different models.
Polynomial families: k =4 k =3 k = 2.



M.A.P.
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Maximum a-posteriori

Aim: test different models.
Polynomial families: k =3 k=2 k = 1.



Bayesian estimation

Probabilistic Data

Mining @ M.L. and M.A.P. estimates provide single solutions.

Lehel Csato

@ Point estimates lack the assessment of un/certainty.

@ Better solution:
for a query x., the system output is probabilistic:

e = p(y*‘x*vj:)

@ Tool:
go beyond the M.A.P. solution and use the
a—posteriori distribution of the parameters.



Bayesian estimation

Probabilistic Data . y
Mining We again use Bayes’ rule:

Lehel Csatd
P(D|6)po(6)
p(DIF)

p(|D,F) = with p(DLF) = [do P(D)oo(6).

and exploit the whole posterior distribution of the
parameters.

A-posteriori parameter estimates

We operate with p,.«(8) &£ p(6|D, F) and use the total
probability rule:

.y*‘D *7: Z P y*|0€> ppost(oﬂ)
95699

in assessing system output.




Bayesian estimation Example |

Probabilistic Data

Mining Giventhedata D = {(x1,y1),...,(Xn, ¥n)} estimate the

Lehel Csato linear fit:
) 0] " [ 1
y =00+ 0ix= 9:1 X:1 “07x
i=1 9-d X.d

Gaussian distributions noise and prior:

€ = yn - eTXn ~ N(0,0’%)
W ~ N(0,0)



Bayesian estimation Example I

Probabilistic Data

Mining Goal: compute the posterior distribution pos ().

N
Pros(8) o< po(6) P(DI6.F) = po(6[Zo) [T P(ynl6"xn)

n=1

1 _
—2109 (pox(6)) Koosi + — (¥ — X6)T (v — X0) + 07,6
n

Bayesian Estimation g
1 N 2 ,
= 0 (7x7x + X, 1) - ?oTxTy + Kot

n n
T ——
- (0 - F’pnst) zpo;t (0 - )u‘post) + Kp/(l)sl
and by identification

1 ) X’
Zposl = <7XTX + 20 1) and I"’posl - zp°5[?2y
n

On



Bayesian estimation Example Il

Probabilistic Data

Minii 5 .
e Bayesian linear model
Lehel Csato

The posterior distribution for the parameters is a
Gaussian with parameters

1 —1 XT
i = (szTx + >:O1> and oy = zposta—zy

n n

Point estimates from keeping :

@ M.L. if we take >y — oo and considering only s ..

@ M.A.P if we approximate the distribution with a single
value at the maximum, i.e. i,



Bayesian estimation Example IV

Probabilistic Data .
Mining Prediction for new values x..:

S @ use the likelihood P(y.|x..,0,F),
@ and the posterior for @

@ and Bayes’ rule.
The steps:

Bayesian Estimation

p(y*lx*7D7'7:) = [do p(y*|x*107]:)p1305l(0|D7f)
. Qs

1 . —07x.)? ,
ol exp |:77 (K* + u + (0 - p’p()st)rzpﬂlt(e - l‘l‘post)>:|

Qg On
o oxp |- (K. +2 Y oacas oo
Qg
where
X Y —1 X XTI
a= + zposlll‘pnst C = + zpost

on On



Bayesian estimation Example V

Probabilistic Data

Mining Integrating out the quadratic in 6:

Lehel Csatd

Predictive distribution at

1 (y* — X ost)2
X, D.F)=exp |—= | K, + — P22

T 2 3
=N (y* ‘ X*,u'post y On +X* ZpostX>~<)

With the predictive distribution we:
@ measure the variance of the prediction for each point:
02 = 0,2, + X*T):postx*;
@ sample from the parameters and plot the candidate
predictors.



Error bars

Probabilistic Data
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Bayesian Estimation

0
The errors are the symmetric thin lines.




Bayesian example Predictive samples

Probabilistic Data
Mining

Third order polynomials are used to approximate the data.



Bayesian estimation Problems

Probabilistic Data

Mining When computing p,.si(0|D, F) we assumed that the
Lehel Csat6 posterior can be represented analytically.

This is not the case.

Approximations are needed for the
@ posterior distribution
@ predictive distribution

In Bayesian modelling an important issue is how we
approximate the posterior distribution.



Bayesian estimation Summary

Probabilistic Data

' ’Mi‘"icng Complete specification of the model
ene sato
Can include prior beliefs about the model.

Accurate predictions
Can include prior beliefs about the model.

Computational cost

Using models for prediction can be difficult and expensive
in time and memory.




Bayesian estimation Summary

Probabilistic Data
. ,Ml‘n:gtv Complete specification of the model
Can include prior beliefs about the model.

Accurate predictions
Can include prior beliefs about the model.

Computational cost

Using models for prediction can be difficult and expensive
in time and memory.

Bayesian models

Flexible and accurate — if priors about the model are
used.
It can be expensive.
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e Unsupervised Methods
@ General concepts

@ Principal Components

@ Independent Components
@ Mixture Models

Unsupervised



Unsupervised setting

Probabilistic Data .
Mining @ Data can be unlabeled, i.e. no values y are

Lehel Csat6 associated to an input x.

@ We want to “extract” information from
D={x1,...,XN}-

@ We assume that the data — although
high-dimensional — spans a manifold of a much
smaller dimension.

@ Task is to find the subspace corresponding to the
data span.



Models in unsupervised learning

Probabilistic Data

Mining It is again important the model of the data:

Lehel Csat6

@ Principal Components;

@ Independent Components;

General concepts

@ Mixture models; Xo

Ax

o = N W

X1
i 2 3
A X
3
2
1 X4
o 1 2 3
7
X1

R

Y



The PCA model

Probabilistic Data
Mining
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@ Simple data structure.
@ Spherical cluster that is:

e translated;
e scaled;
e rotated.

o = N Ww

oot St We aim to find the principal directions of the data spread.

Principal direction:

the direction u along which the data preserves most of its
variance.




Probabilistic Data

Mining

Lehel Csato

we pre-process: X = 0. Replacmg the empirical
covariance with X :

Principal Components u = argmaX Z U Xn UX
lul|=1
1
= argmax -u'Eu— \(||u|]® - 1)
u 2

with A\ the Lagrange multiplier. Differentiating w.r.t u:



The PCA model

Probabilistic Data . .
VT The optimum solution must obey:

Lehel Csatd

qu — )\U
The eigendecomposition of the covariance matrix.
(A, u.) is an eigenvalue, eigenvector of the system.

If we replace back, the value of the expression is ..
=
Optimal solution when A\, = \ax.

Principal Components

Principal direction:

The eigenvector u,,;x corresponding to the largest
eigenvalue of the system.




The PCA model Data mining |

Probabilistic Data . . . ..
Mining How is this used in data mining?

Lehel Csaté Assume that data is:
@ jointly Gaussian:

X = N(mx7zx),

@ high-dimensional;
@ only few (2) directions are relevant.

Principal Components




The PCA model Data mining I

Probabilistic Data . . . ..
Mining How is this used in data mining?

Lehel Csato
@ Subtracting mean.

@ Eigendecomposition.
X

@ Selecting the K eigenvectors corresponding
to the K largest values.

Y

o . = N W
A\

@ Computing the K projections: z, = x [ u,.

Principal Components

The projection using matrix P [uy, ... uk]’:
Z=XP

and z, can is used as a compact representation of x,.



The PCA model

Data mining Il

Probabilistic Data
Mining

Reconstruction:
K

X, =Y Zpu, or, with matrix notation: X' =ZPT
=1

PCA projection analysis:

N
1 ’ / /
Eron = 1 > (xn = x)° = e [(X = X)T (X = X")]
Principal Components n—1
=1r |:zx — PTZzP:|
=t [U(diag(% ; Ag) — diag(

d—K
= Z AKye
=1



The PCA model Data mining IV

Probabilistic Data
Mining

PCA reconstruction error:

The error made using the PCA directions:

Lehel Csatd

d—K

Epca = Z AK+e
=1

Principal Components

PCA properties:

@ PCA system orthonormal: u/u, = é,_,
@ Reconstruction fast.

@ Spherical assumption critical.
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2] PCA application

Modelling Data



PCA application USPS I

Probabilistic Data

Mining USPS characteristics:
el Gsalo @ handwritten data centered and scaled;
@ ~ 10.000 items of 16 x 16 grayscale images;

We plot A

_ r 0.95
kr - Zf:1 )‘Z -
normalised 0.85 :
Principal Components 0.75 | 1 1 1 } I:

20 40 60 80
Conclusion for the USPS set:

@ The normalised \y = 0.24 = u4 accounts for
24% of the data.

@ at ~ 10 more than 70% of variance is explained.

@ at ~ 50 more than 98%
= 50 numbers instead of 256.




PCA application USPS Il

Probabilistic Data

Mining Visualisation application:

Lehel Csatd

Principal Components

Visualisation along the first two eigendirections.



PCA application USPS IV

Probabilistic Data

Mining Visualisation application:

Lehel Csatd

Detail.



The ICA model

Probabilistic Data

Mining Start from the PCA:

3
x =Pz 2
. ) 1 X4
is a generative model for the data. o " =
We assumed that
@ zi.i.d. Gaussian random variables z ~ N(0, diag(\¢));
@ = x are not independent;
o = z are Gaussian sources;

Independent Components

In most of real data:
@ Sources are not Gaussian.
@ But sources are independent.
@ We exploit that!.



The ICA model

Probabilistic Data . .
Mining The following model assumption:

Lehel Csato

X =As

where
@ z independent sources;
@ Alinear mixing matrix;

Looking for matrix B that recovers the sources:

Independent Components

s' € Bx = B(As) = (BA)s

i.e. (BA) is a permutation and scaling
but retains independence.



The ICA model

Probabilistic Data

Mining In practice:
Lehel Csaté S, d:ef BX

with s = [s1, ..., sk] all independent sources.
Independence test: the KL-divergence between the
joint distribution and the marginals

B = argmin KL (p(s1, %) [0(s1)(s2))
BESOd

where SOy is the group of matrices with |B| = 1.

In ICA we are looking for matrix B that minimises:

>~ [dsilogp(s) - [dslog(p(s:.....sa)
r S Q




The KL-divergence Detour

Probabilistic Data . .
Mining Kullback-Leibler divergence

L(pllq) = Zp i)

Lehel Csato

@ is zero only and only if p = g,
@ is not a measure of distance (but cloooose to it!),
@ Efficient when exponential families are used.

Independent Components Short P roof:

0=log1 = log (Z q(x)) = log (Z p(x)péf(i)

> () 1oa (353 ) = ~KL(ello)

=  KL(pllg) =0



ICA Application

Probabilistic Data . .
Mining Separation of source signals:

Lehel Csatd Mixture

m2 m4 m3 m4

Independent Components




ICA Application Results

Probabilistic Data

Mining Results of separation:

Lehel Csato6 Source

Independent Components

FastiCA package



http://en.wikipedia.org/wiki/FastICA

Applications of ICA

Probabilistic Data

Mining Applications:
el Gsale @ Coctail party problem;
Separates noisy and multiple sources from multiple
observations.
@ Fetus ECG;
Separation of the ECG signal of a fetus from its mother's ECG.
@ MEG recordings;
Separation of MEG “sources”.
@ Financial data;
Finding hidden factors in financial data.
@ Noise reduction;
Noise reduction in natural images.
@ Interference removal;
Interference removal from CDMA — Code-division multiple
access — communication systems.

Independent Components



Probabilistic Data
Mining

Lehel Csato

Mixture Models

The mixture model Introduction

@ The data structure is
more complex.

o = N w

@ More than a single il
source for data. 45 6
The mixture model:
K
P(X|Z) = mk pr(X|pk Zg) (1)
k=1
where:
T,..., Tk — mixing components.

Pk (X|py, Xx) —density of a component.

The components are usually called clusters.



The mixture model Data generation

Probabilistic Data

Mining The generation process reflects the assumptions about
Lehel Csato the mOdeI

The data generation:
@ first we select from which component,

@ then we sample from the component’s density
function.

Mixture Models

When modelling data we do not know:
@ Which point belongs to which cluster.
@ What are the parameters for each density function.



The mixture model Example |

Probabilistic Data

Mining Old Faithful geyser in
the Yellowstone National park.

Characterised by:
@ intense eruptions;

@ differing times between them.

Rule:

Duration is 1.5 to 5 minutes.

ixture Models The length of eruption helps determine
the interval.
If an eruption lasts less than 2 minutes the
interval will be around 55 minutes. If the
eruption last 4.5 minutes the interval may
be around 88 minutes.



The mixture model Example Il
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Leh

Interval between durations

®,
X 2

Mixture Models [ J

sof Soo ]

Y
*
®
4973 2 2.5 3 3.5 a 4.5 5 5.5

Durétion
@ The longer the duration, the longer the interval.

@ The linear relation / = 6y + 01d is not the best.
@ There are only a very few eruptions lasting ~ 3 minutes.



The mixture model

Probabilistic Data .
Mining Assumptions:

Lehel Csat6

@ We know the family of individual density functions:
These density functions are parametrised with a few parameters.

@ The densities are easily identifiable:
If we knew which data belongs to which cluster, the density
function is easily identifiable.

Mixture Models

Gaussian densities are often used — fulfill both “conditions”.
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Mixture Models

The mixture model

The Gaussian mixture model:
p(X) = N1 (X |y, X1)+m2Na(X |, X2)

for known densities
(centres and ellipses):

Nk (Xn|pi, X)) P(K)
Xnlk) =
PO = 5 NGl 22 p(0)
i.e. we know the probability that data

comes from cluster k
(shades from red to green).

For D:
x_|| p(x|1) | p(x]2)
X4 Y11 Y12
XN YN1 YN2

vne — responsibility of x,, in cluster 2.

100




The mixture model

F‘mbahtﬂ’;'r'ﬁ:; BLel  When +,, known, the parameters
are computed using the data
weighted by their responsibilities:

Lehel Csato

N
(144> £x) = argmax [ | (Ne(Xo |, T)) ™
L0 —
for all k.
This means:

(. Zx) <= > Yok log N(Xa|p, X)

n
Mixture Models

When making inference

Have to find the responsibility
vector and the parameters of the
mixture.




The mixture model

Given data D:

F‘mbahtﬂ’:'riﬁ:; BLel  When +,, known, the parameters
are computed using the data

weighted by their responsibilities: Initial guess:
= ()u'1vz1)7-~~7(/"'K:zK))

Leh

N
(145> k) = argmax [ | (Ni(Xn|ps, £)) ™
wE 5

Re-estimate resp.s:
for_all k. X1 T e
This means:
(e Zk) = Z“/nk log N(Xn|p, X) XN || YNt N2

n

Mixture Models

When making inference

Have to find the responsibility
vector and the parameters of the
mixture.

Re-estimate parameters:
= (“1721)7-“7(“!(:2}())




The mixture model Summary

Probabilistic Data
Mining

Responsibilities
The additional latent variables needed to help
computation.

Lehel Csat6

In the mixture model:
@ goal is to fit model to data;
@ which submodel gets a particular data;

Mixture Models

Achieved by the maximisation of the log-likelihood function.



The EM algorithm
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(r,0) = argmax ¥ log lz 7No(Xnlp, Eo)
l

n

© = [py, X4, ..., uk, Xg] is the vector of parameters;
m = [mq,..., 7] the shares of the factors;

Problem with optimisation:
Mture Models The parameters are not separable due to the sum within
the logarithm.

Solution:
Use an approximation.



The EM algorithm

Probabilistic Data
Mining

log P(D|r,0) = Zlog [Z TNy (Xl o)

= log [Z pe(xn,ﬂ)]
n 4

Use Jensen’s inequality:

log <Z p@(Xn,ZQ[)) — log (Z an(0) W)
¢ n

l

pg(Xn,g)
23 @ (255)

forany [gn(1), ..., gn(0)].
> skip Jensen



Jensen Inequality Detour

Probabilistic Data

Mining f Y121+ 7222)

Lehel Csatd

concave f(z)

»
>

Z1 2 =0.75 Z>

Jensen’s Inequality

For any concave f(z), any z; and z,, and any 1,72 > 0
such that vy + v = 1:

Mixture Models

f(v1z1+7222) > f(z1) + 72 f(2)




The EM algorithm
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Lehel Csatd |Og <Z ,Oz(Xn,ZGz)> Z () |Og (pfcgnx(ne)‘g))

¢

for any distribution g,(-).
Replacing with the right-hand side, we have:

log P(Dlr,©) > 3 Z n(?) log pé(x(”")”)

Pe(Xn|0¢)
>E [Z an(0) log =7

and therefore the optimisation w.r.to cluster parameters separate.

=L

Mixture Models

dlo (xn|@
&% = 0= Z 79?0/ 9)

For distributions from exponentlal family optimisation is easy.



The EM algorithm

Pmbaﬂ:';:?:; ot @ any set of distributions g (¢), ..., gn

to the log-likelihood.

(¢) provides a lower bound

Lehel Csato
@ We should choose the distributions so that they are the closest to
the current parameter set.

We assume the parameters have the value 6.
Want to minimise the difference:

Xn, 0|0
log P(X, £62) — £ = Z Gn(¢) log P(xn, £]67) — > an(¢ pfi(@m
a
Mixture Models Xn €|04)QH(€)
an(¢) log
Z  pu(xnl6?)
and observe that by setting
Xn|6°
an(4) = M
P(xn, £)67)

we have >, gn(¢) 0 = 0.



The EM algorithm

Probabilistic Data

Mining The EM algorithm:
Lehel Csato
Init —initialise model parameters;

E step — compute the responsibilities v,, = gn(/);

M step — for each k optimize

Mixture Models

3 log p¢(Xr|0;)
0=2 a5,

repeat — goto the E step.
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100

90 1
2
S 80 1
s
=
=l
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g 7of ° .
] [ J
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—= [ ] [ J

ixture M S L J
Mixture Models g ® o .‘. Py
2 o g 1
P %
° 8o
50 1
[ ]
%
[ ]
40
1.5 2 2.5 3 3.5 4 4.5 5 5.5

Duration



EM application
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" Mining Old faithful:
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100} )

Mixture Models




EM application
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Mining Oid faithful;

Lehe

100 7
jelo] 4 7
80 7

70F \ 4

Mixture Models

so} 1
so} 1
4o} 1




EM application

Probabilistic Data

Mining Oid faithful;

Lehe

100} |
90} |
so} |
7o} @ .

Mixture Models

60

40} .
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