Last Time

e« Al Overview

o State-machinesfor Al

10/28/03

CS679 - Fall 2003 - Copyright Univ. of Wisconsin

il Today

e Al
— Decision trees
— Rule-based systems

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

Classification

« Our aim isto decide which action to take given the world
state

e Convert thisto aclassification problem:
— The state of the world is a set of attributes (or features)
« Who | can see, how far away they are, how much energy, ...

— Given any state, there is one appropriate action
« Extendsto multiple actions at the same time

— The action isthe class that aworld state belongs to
« Low energy, see the enemy means | should bein theretreat state

e Classification problems are very well studied

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

Decision Trees

« Nodes represent attribute tests
— One child for each possible outcome of the test
« Leavesrepresent classifications
— Can have the same classification for several leaves
e Classify by descending from root to a leaf
— At each node perform the test and descend the appropriate branch
— When aleaf isreached return the classification (action) of that |eaf

e Decisiontreeisa“digunction of conjunctions of constraints on the
attribute values of an instance”
— Actionif (AandBandC)or (Aand~BandD) or (...) ...

— Retreat if (low health and see enemy) or (low health and hear enemy) or
(...)...

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

Decision Tree for Quake

e Just onetree

e Attributes: Enemy=<t,f>
Low=<t,f> Sound=<t,f>
Death=<t,f>

o Actions: Attack, Retreat, Chase,
Spawn, Wander

e« Could add additional trees:

10/28/03

If I’m attacking, which weapon
should | use?

If I’'m wandering, which way
should | go?

Can be thought of as just extending
given tree (but easier to design)

Or, can share pieces of tree, such as
a Retreat sub-tree

D?

Spawn

Retreat

Wander

Retreat

CS679 - Fall 2003 - Copyright Univ. of Wisconsin

10/28/03

4 4 . .
./ Different Trees— Same Decision
S?
t
f
P
AN L?
A .t f
Retreat | E? E? E7
N\ /N
t f
/ . / t
Attack Chase Retreat D? D? D?
~
t f
N ~ TN AT
Spawn Wander Spawn Attack Spawn Wander
10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

"d

./ Handling Simultaneous Actions

« Treat each output command as a separate classification
problem
— Given inputs should walk => <forward, backward, stop>
— Given inputs should turn => <|eft, right, none>
— Given inputs should run => <yes, no>
— Given inputs should weapon => <blaster, shotgun...>
— Given inputs should fire => <yes, no>
« Have aseparate tree for each command

 |If commands are not independent, two options:;
— Have agenera conflict resolution strategy
— Put dependent actionsin one tree

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

Deciding on Actions

« Eachtimethe Al iscalled:
— Poll each decision tree for current output
— Event driven - only call when state changes
« Need current value of each input attribute
— All sensor inputs describe the state of the world
« Storethe state of the environment
— Most recent values for all sensor inputs
— Change state upon receipt of a message

— Or, check validity when Al is updated
— Or, amix of both (polling and event driven)

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

e Sense

— Gather input sensor changes
— Update state with new values

e Think

— Poll each decision tree

e Act

— Execute any changesto actions

10/28/03

Sense, Think, Act Cycle

A 4

Sense

A 4

Think

CS679 - Fall 2003 - Copyright Univ. of Wisconsin

Act

| o AN |
__“__.] 4

Building Decision Trees

« Decision trees can be constructed by hand
— Think of the questions you would ask to decide what to do
— For example: Tonight | can study, play games or sleep. How do |
make my decision?
e But, decision treesaretypically learned:

— Provide examples: many sets of attribute values and resulting
actions

— Algorithm then constructs atree from the examples

— Reasoning: We don’'t know how to decide on an action, so let the
computer do the work

— Whose behavior would we wish to learn?

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

Learning Decision Trees

« Decision trees are usually learned by induction
— Generalize from examples
— Induction doesn’t guarantee correct decision trees

« Biastowardssmaller decision trees
— Occam’s Razor: Prefer ssimplest theory that fits the data
— Too expensive to find the very smallest decision tree

e Learning is non-incremental
— Need to store all the examples

e ID3isthebasic learning algorithm
— C4.5isan updated and extended version

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

| nduction

 If Xistrueinevery examplethat resultsin action A, then X
must always be true for action A
— More examples are better

— Errorsin examples cause difficulty
e If X istruein most examples X must always be true
« |D3 doesagood job of handling errors (noise) in examples

— Note that induction can result in errors
|t may just be coincidence that X istruein all the examples
« Typica decision tree learning determines what tests are
always true for each action

— Assumesthat if those things are true again, then the same action
should result

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

Learning Algorithms

e Recursive algorithms
— Find an attribute test that separates the actions
— Divide the examples based on the test
— Recurse on the subsets

« What does it mean to separate?

— ldedlly, there are no actions that have examples in both sets
— Failing that, most actions have most examples in one set

— Thethingsto measure is entropy - the degree of homogeneity (or
lack of it) in aset

« Entropy isalso important for compression

« What have we seen before that tries to separate sets?
— Why isthis different?

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

Induction requires Examples

e Where do examples come from?
— Programmer/designer provides examples
= Clapture an expert player’s actions, and the game state, while they
play
« # of examples needed depends on difficulty of concept
— Difficulty: Number of tests needed to determine the action
— Moreis aways better
e Traning set vs. Testing set
— Train on most (75%) of the examples

— Usetherest to validate the learned decision trees by estimating how
well the tree does on examplesit hasn’t seen

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

Decision Tree Advantages

« Simpler, more compact representation

« Stateisrecorded in a memory
— Create “internal sensors’ — Enemy-Recently-Sensed

« Easy to create and understand
— Can also be represented as rules

e Decision trees can be learned

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

Decision Tree Disadvantages

« Decision tree engine requires more coding than FSM
— Eachtreeis*“unique’ sequence of tests, so little common structure

« Need as many examples as possible
« Higher CPU cost - but not much higher
« Learned decision trees may contain errors

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

“"-H.

References

« Mitchell: Machine Learning, McGraw Hill, 1997

« Russdll and Norvig: Artificial Intelligence: A Modern
Approach, Prentice Hall, 1995

« Quinlan: Induction of decision trees, Machine Learning
1:81-106, 1986

« Quinlan: Combining instance-based and model-based
learning,10th International Conference on Machine
Learning, 1993

— Thisiscoincidental - | took an Al course from Quinlan in 1993

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

Rule-Based Systems

o Decision trees can be converted into rules
— Just test the digunction of conjunctions for each |eaf
« Moregeneral rule-based systems let you write the rules
explicitly
« System consists of:
— A rule set - therulesto evaluate
— A working memory - stores state
— A matching scheme - decides which rules are applicable

— A conflict resolution scheme - if more than one rule is applicable,
decides how to proceed

« What types of games make the most extensive use of rules?

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

[Jf/

Rule-Based Systems Structure

'hr Af
Match
Conflict
Act Resolution
10/28/03

Rule Memory

[
>

[
>

[
>

[
>

[
>

Working Memory

CS679 - Fall 2003 - Copyright Univ. of Wisconsin

Program

Procedural
Knowledge

L ong-term
Knowledge

Data

Declarative
Knowledge

Short-term
Knowledge

Al Cycle

Sensing

Game

Actions

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

Age of Kings
- The Al W1l attack once at 1100 seconds and then agai n

, every 1400 sec, provided it has enough defense sol diers.

-
=]

(defrule

(ganme-tine > 1100) < Rule
=>

(attack- now)

(enabl e-tiner 7 1400)) Action
(defrul e

(timer-triggered 7)
(def end-sol di er-count >= 12)

(att ack- now)
(di sable-tiner 7)
(enable-tiner 7 1400))

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

Age of Kings

(defo"(et) What isit doing?
Fue

=>
(enabl e-tinmer 4 3600)
(di sabl e-sel f))

(defrul e
(timer-triggered 4)

=>
(cc-add-resource food 700)
(cc-add-resource wood 700)
(cc-add-resource gold 700)
(di sable-tiner 4)
(enabl e-tinmer 4 2700)

(di sabl e-sel f))

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

77

./ Implementing Rule-Based Systems

U

]
|

e Where does the time go?
— 90-95% goes to Match

« Matching all rules against all of
working memory each cycle isway

Memory Match

too slow
« Key observation _
- Conflict
— # of changes to working memory each Act _
cycleis small Resolution

— If conditions, and hence rules, can be
associated with changes, then we can
make things fast (event driven)

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

Lir‘”J Efficient Special Case

I..;'I,.

« If only simpletestsin conditions, compile rules into a match net
— Simple means. Can map changes in state to rules that must be reevaluated

e Process changes to working memory
« Associate changes with tests
o EXxpected cost: Linear in the number of changes to working memory

Test A Test B Test C Test D

Rules: Bit vectors store
which tests are true

Rules with all tests true
go in conflict set

Conflict Set

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

Rl: If AL B, C then ...
R2: If AL B, D then ...

General Case

e Rulescan bearbitrarily complex
— Inparticular: function calls in conditions and actions

« If we have arbitrary function callsin conditions:
— Can’'t hash based on changes
— Run through rules one at atime and test conditions
— Pick the first one that matches (or do something else)

— Time to match depends on:
« Number of rules
« Complexity of conditions
« Number of rulesthat don’'t match

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

Baulders Gate

| F
Hear d([PC] , UNDER ATTACK)
'l nParty(Last Attacker O (Last Hear dBy(Mysel f)))
Range(Last Att acker O (Last Hear dBy(Mysel f)), 5)
| St at eCheck(Last Attacker O (Last HeardBy(Mysel f)),
STATE_PANI O
I C ass(Mysel f, Fl GHTER _MAGE _THI EF)
THEN
RESPONSE #100
Equi pMost Damagi ngMel ee()
At t ackReeval uat e(Last Att acker O (Last Hear dBy(Mysel f)), 30)
END

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

.I .'I
o
__“__.] 4

Research Rule-based Systems

« Allow complex conditions with multiple variables
— Function callsin conditions and actions
— Can compute many relations using rules

o Examples:
— OPS5, OPS83, CLIPS, ART, ECLIPS, ...

« Laird: “Might be overkill for most of today’ s computer
gameAls’

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

., Contlict Resolution Strategies

« What do we do if multiple rules match?

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

| o AN |
__“__.] 4

Conflict Resolution Strategies

« What do we do if multiple rules match?
e Ruleorder — pick the first rule that matches

Makes order of loading important — not good for big systems

« Rule specificity - pick the most specific rule

« Rule importance — pick rule with highest priority
— When aruleisdefined, giveit apriority number

10/28/03

Forces atotal order on the rules —is right 80% of the time
Decide Rule 4 [80] is better than Rule 7 [70]

Decide Rule 6 [85] is better than Rule 5 [75]

Now have ordering between all of them —even if wrong

CS679 - Fall 2003 - Copyright Univ. of Wisconsin

Basic |dea of Efficient Matching

« How do we reduce the cost of matching?

« Saveintermediate match information (RETE)
— Share intermediate match information between rules
— Recompute intermediate information for changes
— Requires extramemory for intermediate match information
— Scalesweéll to large rule sets

« Recompute match for rules affected by change (TREAT)

— Check changes against rules in conflict set
— Lessmemory than Rete
— Doesn't scale aswell to large rule sets

« Make extensive use of hashing (mapping between memory
and tests/rules)

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

e

” Rule-based System: Good and Bad

i
1
|
1
B
i

« Advantages
— Corresponds to way people often think of knowledge
— Very expressive
— Modular knowledge
« Easy to write and debug compared to decision trees
« More concise than FSM
« Disadvantages
— Can be memory intensive
— Can be computationally intensive
— Sometimes difficult to debug

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

References

« RETE:

— Forgy, C. L. Rete: A fast algorithm for the many pattern/many
object pattern match problem. Artificial Intelligence, 19(1) 1982,
pp. 17-37

« TREAT:

— Miranker, D. TREAT: A new and efficient match algorithm for Al
production systems. Pittman/Morgan Kaufman, 1989

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

7
Ve Todo

I..;'l,.

« By Monday, Nov 3, Stage 3 demo

e ThursNov 6, Midterm
— Everything up to and including lecture 15

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

