
10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

Last Time

• AI Overview

• State-machines for AI

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

Today

• AI
– Decision trees

– Rule-based systems

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

Classification

• Our aim is to decide which action to take given the world
state

• Convert this to a classification problem:
– The state of the world is a set of attributes (or features)

• Who I can see, how far away they are, how much energy, …

– Given any state, there is one appropriate action
• Extends to multiple actions at the same time

– The action is the class that a world state belongs to
• Low energy, see the enemy means I should be in the retreat state

• Classification problems are very well studied

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

Decision Trees

• Nodes represent attribute tests
– One child for each possible outcome of the test

• Leaves represent classifications
– Can have the same classification for several leaves

• Classify by descending from root to a leaf
– At each node perform the test and descend the appropriate branch

– When a leaf is reached return the classification (action) of that leaf

• Decision tree is a “disjunction of conjunctions of constraints on the
attribute values of an instance”
– Action if (A and B and C) or (A and ~B and D) or (…) …

– Retreat if (low health and see enemy) or (low health and hear enemy) or
(…) …

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

Decision Tree for Quake

• Just one tree
• Attributes: Enemy=<t,f>

Low=<t,f> Sound=<t,f>
Death=<t,f>

• Actions: Attack, Retreat, Chase,
Spawn, Wander

• Could add additional trees:
– If I’m attacking, which weapon

should I use?
– If I’m wandering, which way

should I go?
– Can be thought of as just extending

given tree (but easier to design)
– Or, can share pieces of tree, such as

a Retreat sub-tree

D?

Spawn E?

L? S?

WanderRetreat Attack L?

t

t t

f

f f

Retreat Chase

t f

ft

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

Compare and Contrast

Spawn
D

(-E,-S,-L)

Wander
-E,-D,-S,-L

E

-S
Attack-E
E,-D,-S,-L

E

Chase
-E,-D,S,-L

S

D

S

D

D

Retreat-E
E,-D,-S,L

L

-E

Retreat-S
-E,-D,S,L

Wander-L
-E,-D,-S,L

Retreat-ES
E,-D,S,L

Attack-ES
E,-D,S,-L

E

E
-E

-L

S

-S

L

-E E

L
-L

-L

-L

L

D

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

Different Trees – Same Decision

S?

L?

E? E?

Retreat

t

t t ff

ft

L?

Retreat

Chase

t f

E?

Attack

t f

D?

WanderSpawn

t f

D?

AttackSpawn

t f

D?

WanderSpawn

t f

f

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

Handling Simultaneous Actions

• Treat each output command as a separate classification
problem
– Given inputs should walk => <forward, backward, stop>
– Given inputs should turn => <left, right, none>
– Given inputs should run => <yes, no>
– Given inputs should weapon => <blaster, shotgun…>
– Given inputs should fire => <yes, no>

• Have a separate tree for each command

• If commands are not independent, two options:
– Have a general conflict resolution strategy
– Put dependent actions in one tree

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

Deciding on Actions

• Each time the AI is called:
– Poll each decision tree for current output

– Event driven - only call when state changes

• Need current value of each input attribute
– All sensor inputs describe the state of the world

• Store the state of the environment
– Most recent values for all sensor inputs

– Change state upon receipt of a message

– Or, check validity when AI is updated

– Or, a mix of both (polling and event driven)

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

Sense, Think, Act Cycle

• Sense
– Gather input sensor changes

– Update state with new values

• Think
– Poll each decision tree

• Act
– Execute any changes to actions

Sense

Think

Act

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

Building Decision Trees

• Decision trees can be constructed by hand
– Think of the questions you would ask to decide what to do

– For example: Tonight I can study, play games or sleep. How do I
make my decision?

• But, decision trees are typically learned:
– Provide examples: many sets of attribute values and resulting

actions

– Algorithm then constructs a tree from the examples

– Reasoning: We don’t know how to decide on an action, so let the
computer do the work

– Whose behavior would we wish to learn?

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

Learning Decision Trees

• Decision trees are usually learned by induction
– Generalize from examples

– Induction doesn’t guarantee correct decision trees

• Bias towards smaller decision trees
– Occam’s Razor: Prefer simplest theory that fits the data

– Too expensive to find the very smallest decision tree

• Learning is non-incremental
– Need to store all the examples

• ID3 is the basic learning algorithm
– C4.5 is an updated and extended version

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

Induction

• If X is true in every example that results in action A, then X
must always be true for action A
– More examples are better
– Errors in examples cause difficulty

• If X is true in most examples X must always be true
• ID3 does a good job of handling errors (noise) in examples

– Note that induction can result in errors
• It may just be coincidence that X is true in all the examples

• Typical decision tree learning determines what tests are
always true for each action
– Assumes that if those things are true again, then the same action

should result

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

Learning Algorithms

• Recursive algorithms
– Find an attribute test that separates the actions
– Divide the examples based on the test
– Recurse on the subsets

• What does it mean to separate?
– Ideally, there are no actions that have examples in both sets
– Failing that, most actions have most examples in one set
– The things to measure is entropy - the degree of homogeneity (or

lack of it) in a set
• Entropy is also important for compression

• What have we seen before that tries to separate sets?
– Why is this different?

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

Induction requires Examples

• Where do examples come from?
– Programmer/designer provides examples
– Capture an expert player’s actions, and the game state, while they

play

• # of examples needed depends on difficulty of concept
– Difficulty: Number of tests needed to determine the action
– More is always better

• Training set vs. Testing set
– Train on most (75%) of the examples
– Use the rest to validate the learned decision trees by estimating how

well the tree does on examples it hasn’t seen

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

Decision Tree Advantages

• Simpler, more compact representation

• State is recorded in a memory
– Create “internal sensors” – Enemy-Recently-Sensed

• Easy to create and understand
– Can also be represented as rules

• Decision trees can be learned

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

Decision Tree Disadvantages

• Decision tree engine requires more coding than FSM
– Each tree is “unique” sequence of tests, so little common structure

• Need as many examples as possible

• Higher CPU cost - but not much higher

• Learned decision trees may contain errors

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

References

• Mitchell: Machine Learning, McGraw Hill, 1997

• Russell and Norvig: Artificial Intelligence: A Modern
Approach, Prentice Hall, 1995

• Quinlan: Induction of decision trees, Machine Learning
1:81-106, 1986

• Quinlan: Combining instance-based and model-based
learning,10th International Conference on Machine
Learning, 1993
– This is coincidental - I took an AI course from Quinlan in 1993

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

Rule-Based Systems

• Decision trees can be converted into rules
– Just test the disjunction of conjunctions for each leaf

• More general rule-based systems let you write the rules
explicitly

• System consists of:
– A rule set - the rules to evaluate
– A working memory - stores state
– A matching scheme - decides which rules are applicable
– A conflict resolution scheme - if more than one rule is applicable,

decides how to proceed

• What types of games make the most extensive use of rules?

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

Rule-Based Systems Structure

Rule Memory

Working Memory

Program

Procedural
Knowledge

Long-term
Knowledge

Data

Declarative
Knowledge

Short-term
Knowledge

Match

Conflict
Resolution

Act

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

AI Cycle

Match

Conflict
Resolution

Act

Rule instantiations that
match working memory

Selected
Rule

Changes to
Working Memory

Memory

Actions

Sensing

Game

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

Age of Kings
; The AI will attack once at 1100 seconds and then again ; The AI will attack once at 1100 seconds and then again
; every 1400 sec, provided it has enough defense soldiers.; every 1400 sec, provided it has enough defense soldiers.

(defrule(defrule

(game-time > 1100)(game-time > 1100)
=>=>

(attack-now)(attack-now)
(enable-timer 7 1400)(enable-timer 7 1400)))

(defrule(defrule

(timer-triggered 7)(timer-triggered 7)
(defend-soldier-count >= 12)(defend-soldier-count >= 12)

=>=>
(attack-now)(attack-now)
(disable-timer 7)(disable-timer 7)
(enable-timer 7 1400)(enable-timer 7 1400)))

Rule

Action

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

Age of Kings

• What is it doing?(defrule(defrule
(true)(true)

=>=>
(enable-timer 4 3600)(enable-timer 4 3600)
(disable-self))(disable-self))

(defrule(defrule

(timer-triggered 4)(timer-triggered 4)
=>=>

(cc-add-resource food 700)(cc-add-resource food 700)
(cc-add-resource wood 700)(cc-add-resource wood 700)
(cc-add-resource gold 700)(cc-add-resource gold 700)
(disable-timer 4)(disable-timer 4)
(enable-timer 4 2700)(enable-timer 4 2700)

(disable-self)(disable-self)))

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

Implementing Rule-Based Systems

• Where does the time go?
– 90-95% goes to Match

• Matching all rules against all of
working memory each cycle is way
too slow

• Key observation
– # of changes to working memory each

cycle is small

– If conditions, and hence rules, can be
associated with changes, then we can
make things fast (event driven)

Match

Conflict
Resolution

Act

Memory

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

Efficient Special Case

• If only simple tests in conditions, compile rules into a match net
– Simple means: Can map changes in state to rules that must be reevaluated

• Process changes to working memory
• Associate changes with tests
• Expected cost: Linear in the number of changes to working memory

R1: If A, B, C, then …

Test A Test B Test C

R1

Conflict Set

R2: If A, B, D, then …

Test D

R2
Rules: Bit vectors store
which tests are true

Rules with all tests true
go in conflict set

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

General Case

• Rules can be arbitrarily complex
– In particular: function calls in conditions and actions

• If we have arbitrary function calls in conditions:
– Can’t hash based on changes
– Run through rules one at a time and test conditions

– Pick the first one that matches (or do something else)
– Time to match depends on:

• Number of rules

• Complexity of conditions
• Number of rules that don’t match

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

Baulders Gate

IFIF
 Heard([PC],UNDER_ATTACK)Heard([PC],UNDER_ATTACK)
 !InParty(LastAttackerOf(LastHeardBy(Myself)))!InParty(LastAttackerOf(LastHeardBy(Myself)))
 Range(LastAttackerOf(LastHeardBy(Myself)),5) Range(LastAttackerOf(LastHeardBy(Myself)),5)
 !StateCheck(LastAttackerOf(LastHeardBy(Myself)),!StateCheck(LastAttackerOf(LastHeardBy(Myself)),
 STATE_PANIC)STATE_PANIC)
 !Class(Myself,FIGHTER_MAGE_THIEF)!Class(Myself,FIGHTER_MAGE_THIEF)
THENTHEN
 RESPONSE #100RESPONSE #100
 EquipMostDamagingMelee()EquipMostDamagingMelee()
 AttackReevaluate(LastAttackerOf(LastHeardBy(Myself)),30)AttackReevaluate(LastAttackerOf(LastHeardBy(Myself)),30)
ENDEND

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

Research Rule-based Systems

• Allow complex conditions with multiple variables
– Function calls in conditions and actions

– Can compute many relations using rules

• Examples:
– OPS5, OPS83, CLIPS, ART, ECLIPS, …

• Laird: “Might be overkill for most of today’s computer
game AIs”

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

Conflict Resolution Strategies

• What do we do if multiple rules match?

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

Conflict Resolution Strategies

• What do we do if multiple rules match?

• Rule order – pick the first rule that matches
– Makes order of loading important – not good for big systems

• Rule specificity - pick the most specific rule

• Rule importance – pick rule with highest priority
– When a rule is defined, give it a priority number

– Forces a total order on the rules – is right 80% of the time

– Decide Rule 4 [80] is better than Rule 7 [70]

– Decide Rule 6 [85] is better than Rule 5 [75]

– Now have ordering between all of them – even if wrong

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

Basic Idea of Efficient Matching

• How do we reduce the cost of matching?
• Save intermediate match information (RETE)

– Share intermediate match information between rules
– Recompute intermediate information for changes
– Requires extra memory for intermediate match information
– Scales well to large rule sets

• Recompute match for rules affected by change (TREAT)
– Check changes against rules in conflict set
– Less memory than Rete
– Doesn’t scale as well to large rule sets

• Make extensive use of hashing (mapping between memory
and tests/rules)

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

Rule-based System: Good and Bad

• Advantages
– Corresponds to way people often think of knowledge
– Very expressive

– Modular knowledge
• Easy to write and debug compared to decision trees

• More concise than FSM

• Disadvantages
– Can be memory intensive

– Can be computationally intensive
– Sometimes difficult to debug

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

References

• RETE:
– Forgy, C. L. Rete: A fast algorithm for the many pattern/many

object pattern match problem. Artificial Intelligence, 19(1) 1982,
pp. 17-37

• TREAT:
– Miranker, D. TREAT: A new and efficient match algorithm for AI

production systems. Pittman/Morgan Kaufman, 1989

10/28/03 CS679 - Fall 2003 - Copyright Univ. of Wisconsin

Todo

• By Monday, Nov 3, Stage 3 demo

• Thurs Nov 6, Midterm
– Everything up to and including lecture 15

