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2 TWO-PERSON GAMES

2.1 Two-Person Zero-Sum Games

2.1.1 Basic ideas

Definition 2.1. A game (in extensive form) is said to bezero-sumif and only if,
at each terminal vertex, the payoff vector(p1, . . ., pn) satisfies

∑n
i=1 pi = 0.

Two-person zero sum games innormal form. Here’s an example. . .

A =



−1 −3 −3 −2

0 1 −2 −1
2 −2 0 1




The rows represent the strategies of Player 1. The columns represent the strategies
of Player 2. The entriesaij represent the payoff vector(aij ,−aij). That is, if
Player 1 chooses rowi and Player 2 chooses columnj, then Player 1 winsaij and
Player 2 losesaij . If aij < 0, then Player 1 pays Player 2|aij |.
Note 2.1. We are using the termstrategyrather thanactionto describe the player’s
options. The reasons for this will become evident in the next chapter when we use
this formulation to analyze games in extensive form.

Note 2.2. Some authors (in particular, those in the field of control theory) prefer
to represent the outcome of a game in terms oflossesrather thanprofits. During
the semester, we will use both conventions.

1Department of Industrial Engineering, University at Buffalo, 301 Bell Hall, Buffalo, NY 14260-
2050 USA;E-mail: bialas@buffalo.edu;Web: http://www.acsu.buffalo.edu/˜bialas. Copyrightc©
MMV Wayne F. Bialas. All Rights Reserved. Duplication of this work is prohibited without written
permission. This document produced January 19, 2005 at 3:33 pm.
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How should each player behave? Player 1, for example, might want to place a
bound on his profits. Player 1 could ask “For each of my possible strategies, what
is the least desirable thing that Player 2 could do to minimize my profits?” For
each of Player 1’s strategiesi, compute

αi = min
j

aij

and then choose thati which produces maxi αi. Suppose this maximum is achieved
for i = i∗. In other words, Player 1 is guaranteed to get at least

V (A) = min
j

ai∗j ≥ min
j

aij i = 1, . . .,m

The valueV (A) is called thegain-floorfor the gameA.

In this caseV (A) = −2 with i∗ ∈ {2, 3}.
Player 2 could perform a similar analysis and find thatj∗ which yields

V (A) = max
i

aij∗ ≤ max
i

aij j = 1, . . ., n

The valueV (A) is called theloss-ceilingfor the gameA.

In this caseV (A) = 0 with j∗ = 3.

Now, consider the joint strategies(i∗, j∗). We immediately get the following:

Theorem 2.1. For every (finite) matrix gameA =
[
aij

]

1. The valuesV (A) andV (A) are unique.

2. There exists at least one security strategy for each player given by(i∗, j∗).

3. minj ai∗j = V (A) ≤ V (A) = maxi aij∗

Proof: (1) and (2) are easy. To prove (3) note that for anyk and`,

min
j

akj ≤ ak` ≤ max
i

ai`

and the result follows.
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2.1.2 Discussion

Let’s examine the decision-making philosophy that underlies the choice of(i∗, j∗).
For instance, Player 1 appears to be acting as if Player 2 is trying to do as much
harm to him as possible. This seems reasonable since this is a zero-sum game.
Whatever, Player 1 wins, Player 2 loses.

As we proceed through this presentation, note that this same reasoning is also used
in the field of statistical decision theory where Player 1 is the statistician, and Player
2 is “nature.” Is it reasonable to assume that “nature” is a malevolent opponent?

2.1.3 Stability

Consider another example

A =



−4 0 1

0 1 −3
−1 −2 −1




Player 1 should consideri∗ = 3 (V = −2) and Player 2 should considerj∗ = 1
(V = 0).

However, Player 2 can continue his analysis as follows

• Player 2 will choose strategy 1

• So Player 1 should choose strategy 2 rather than strategy 3

• But Player 2 would predict that and then prefer strategy 3

and so on.

Question 2.1. When do we have a stable choice of strategies?

The answer to the above question gives rise to some of the really important early
results in game theory and mathematical programming.

We can see that ifV (A) = V (A), then both Players will settle on(i∗, j∗) with

min
j

ai∗j = V (A) = V (A) = max
i

aij∗

Theorem 2.2. If V (A) = V (A) then

1. A has a saddle point

2-3



2. The saddle point corresponds to the security strategies for each player

3. Thevaluefor the game isV = V (A) = V (A)

Question 2.2. SupposeV (A) < V (A). What can we do? Can we establish a
“spy-proof” mechanism to implement a strategy?

Question 2.3. Is it ever sensible to use expected loss (or profit) as a perfor-
mance criterion in determining strategies for “one-shot” (non-repeated) decision
problems?

2.1.4 Developing Mixed Strategies

Consider the following matrix game. . .

A =

[
3 −1
0 1

]

For Player 1, we haveV (A) = 0 andi∗ = 2. For Player 2, we haveV (A) = 1 and
j∗ = 2. This game does not have a saddle point.

Let’s try to create a “spy-proof” strategy. Let Player 1 randomize over his twopure
strategies.That is Player 1 will pick the vector of probabilitiesx = (x1, x2) where∑

i xi = 1 andxi ≥ 0 for all i. He will then select strategyi with probabilityxi.

Note 2.3. When we formalize this, we will call the probability vectorx, amixed
strategy.

To determine the “best” choice ofx, Player 1 analyzes the problem, as follows. . .
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Player 2 might do the same thing using probability vectory = (y1, y2) where∑
i yi = 1 andyi ≥ 0 for all i.
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If Player 1 adopts mixed strategy(x1, x2) and Player 2 adopts mixed strategy
(y1, y2), we obtain an expected payoff of

V = 3x1y1 + 0(1− x1)y1 − x1(1− y1)
+(1− x1)(1− y1)

= 5x1y1 − y1 − 2x1 + 1

Suppose Player 1 usesx∗1 = 1
5, then

V = 5
(

1
5

)
y1 − y1 − 2

(
1
5

)
+ 1 =

3
5

which doesn’t depend ony! Similarly, suppose Player 2 usesy∗1 = 2
5, then

V = 5x1

(
2
5

)
−

(
2
5

)
− 2x1 + 1 =

3
5

which doesn’t depend onx!

Each player is solving a constrained optimization problem. For Player 1 the problem
is

max{v}
st: +3x1 + 0x2 ≥ v

−1x1 + 1x2 ≥ v
x1 + x2 = 1
xi ≥ 0 ∀ i

which can be illustrated as follows:
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This problem is equivalent to

max
x

min{(3x1 + 0x2), (−x1 + x2)}

For Player 2 the problem is

min{v}
st: +3y1 − 1y2 ≤ v

+0y1 + 1y2 ≤ v
y1 + y2 = 1
yj ≥ 0 ∀ j

which is equivalent to

min
y

max{(3y1 − y2), (0y1 + y2)}

We recognize these as dual linear programming problems.

Question 2.4. We now have a way to compute a “spy-proof” mixed strategy for
each player. Modify these two mathematical programming problems to produce
thepuresecurity strategy for each player.
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In general, the players are solving the following pair of dual linear programming
problems:

max{v}
st:

∑
i aijxi ≥ v ∀ j∑
i xi = 1

xi ≥ 0 ∀ i

and
min{v}

st:
∑

j aijyj ≤ v ∀ i∑
i yi = 1

yi ≥ 0 ∀ j

Note 2.4. Consider, once again, the example game

A =

[
3 −1
0 1

]

If Player 1 (the maximizer) uses mixed strategy(x1, (1− x1)), and if Player 2 (the
minimizer) uses mixed strategy(y1, (1− y1)) we get

E(x, y) = 5x1y1 − y1 − 2x1 + 1

and lettingx∗ = 1
5 andy∗ = 2

5 we getE(x∗, y) = E(x, y∗) = 3
5 for anyx andy.

These choices forx∗ andy∗ make the expected value independent of the opposing
strategy. So, if Player 1 becomes a minimizer (or if Player 2 becomes a maximizer)
the resulting mixed strategies would be the same!

Note 2.5. Consider the game

A =

[
1 3
4 2

]

By “factoring” the expression forE(x, y), we can write

E(x, y) = x1y1 + 3x1(1− y1) + 4(1− x1)y + 2(1− x1)(1− y1)
= −4x1y1 + x1 + 2y1 + 2

= −4(x1y1 − x1

4
− y1

2
+

1
8
) + 2 +

1
2

= −4(x1 − 1
2
)(y1 − 1

4
) +

5
2

It’s now easy to see thatx∗1 = 1
2, y∗1 = 1

4 andv = 5
2.
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2.1.5 A more formal statement of the problem

Suppose we are given a matrix gameA(m×n) ≡
[
aij

]
. Each row ofA is a pure

strategy for Player 1. Each column ofA is a pure strategy for Player 2. The value
of aij is the payoff from Player 1 to Player 2 (it may be negative).

For Player 1 let
V (A) = max

i
min

j
aij

For Player 2 let
V (A) = min

j
max

i
aij

{Case 1} (Saddle Point Case whereV (A) = V (A) = V )
Player 1 can assure himself of getting at leastV from Player 2 by playing his
maximin strategy.

{Case 2} (Mixed Strategy Case whereV (A) < V (A))
Player 1 uses probability vector

x = (x1, . . ., xm)
∑

i

xi = 1 xi ≥ 0

Player 2 uses probability vector

y = (y1, . . ., yn)
∑

j

yj = 1 yj ≥ 0

If Player 1 usesx and Player 2 uses strategyj, the expected payoff is

E(x, j) =
∑

i

xiaij = xAj

whereAj is columnj from matrixA.

If Player 2 usesy and Player 1 uses strategyi, the expected payoff is

E(i, y) =
∑

j

aijyj = AiyT

whereAi is row i from matrixA.
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Combined, if Player 1 usesx and Player 2 usesy, the expected payoff is

E(x, y) =
∑

i

∑

j

xiaijyj = xAyT

The players are solving the following pair of dual linear programming prob-
lems:

max{v}
st:

∑
i aijxi ≥ v ∀ j∑
i xi = 1

xi ≥ 0 ∀ i

and
min{v}

st:
∑

j aijyj ≤ v ∀ i∑
i yi = 1

yi ≥ 0 ∀ j

TheMinimax Theorem(von Neumann, 1928) states that there exists mixed strate-
giesx∗ andy∗ for Players 1 and 2 which solve each of the above problems with
equal objective function values.

2.1.6 Proof of the Minimax Theorem

Note 2.6. (From Başar and Olsder [2]) The theory of finite zero-sum games dates
back to Borel in the early 1920’s whose work on the subject was later translated
into English (Borel, 1953). Borel introduced the notion of a conflicting decision
situation that involves more than one decision maker, and the concepts of pure
and mixed strategies, but he did not really develop a complete theory of zero-sum
games. Borel even conjectured that the Minimax Theorem was false.

It was von Neumann who first came up with a proof of the Minimax Theorem,
and laid down the foundations of game theory as we know it today (von Neumann
1928, 1937).

We will provide two proofs of this important theorem. The first proof (Theorem 2.4)
uses only the Separating Hyperplane Theorem. The second proof (Theorem 2.5)
uses the similar, but more powerful, tool of duality from the theory linear program-
ming.
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Our first, and direct, proof of the Minimax Theorem is based on the proof by von
Neumann and Morgenstern [7]. It also appears in the book by Başar and Olsder [2].
It depends on the Separating Hyperplane Theorem:1

Theorem 2.3. (From [1]) Separating Hyperplane Theorem. Let S andT be
two non-empty, convex sets inRn with no interior point in common. Then there
exists a pair(p, c) with p ∈ Rn 6= 0 andc ∈ R such that

px ≥ c ∀x ∈ S

py ≤ c ∀y ∈ T

i.e., there is a hyperplaneH(p, c) = {x ∈ Rn | px = c} that separatesS andT .

Proof: DefineS − T = {x − y ∈ Rn |x ∈ S, y ∈ T}. S − T is convex. Then
0 /∈ int(S − T ) (if it was, i.e., if 0∈ int(S − T ), then there is anx ∈ int(S) and
y ∈ int(T ) such thatx − y = 0, or simplyx = y, which would be a common
interior point). Thus, we can “separate” 0 fromS − T , i.e., there existsp ∈ Rn

wherep 6= 0 andc ∈ R such thatp · (x − y) ≥ c andp · 0 ≤ c. But, this implies
that

p · 0 = 0≤ c ≤ p · (x− y)

which impliesp · (x − y) ≥ 0. Hence,px ≥ py for all x ∈ S and for ally ∈ T .
That is, there must be ac ∈ R such that

py ≤ c ≤ px ∀x ∈ S and∀y ∈ T

A version of Theorem 2.3 also appears in a paper by Gale [5] and a text by Boot [3].

Theorem 2.3 can be used to produce the following corollary that we will use to
prove the Minimax Theorem:

Corollary 2.1. LetA be an arbitrary(m× n)-dimensional matrix. Then either

(i) there exists a nonzero vectorx ∈ Rm, x ≥ 0 such thatxA ≥ 0, or

(ii) there exists a nonzero vectory ∈ Rn, y ≥ 0 such thatAyT ≤ 0.

Theorem 2.4. Minimax Theorem. Let A =
[
aij

]
be anm × n matrix of real

numbers. LetΞr denote the set of allr-dimensional probability vectors, that is,

Ξr = {x ∈ Rr |∑r
i=1 xi = 1 andxi ≥ 0}

1I must thank Yong Bao for his help in finding several errors in a previous version of these notes.
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We sometimes callΞr theprobability simplex.

Letx ∈ Ξm andy ∈ Ξn. Define

V m(A) ≡ max
x

min
y

xAyT

V m(A) ≡ min
y

max
x

xAyT

ThenV m(A) = V m(A).

Proof: First we will prove that

V m(A) ≤ V m(A)(1)

To do so, note thatxAyT, maxx xAyT and miny xAyT are all continuous functions
of (x, y), x andy, respectively. Any continuous, real-valued function on a compact
set has an extermum. Therefore, there existsx0 andy0 such that

V m(A) = min
y

x0AyT

V m(A) = max
x

xAy0T

It is clear that
V m(A) ≤ x0Ay0T ≤ V m(A)(2)

Thus relation (1) is true.

Now we will show that one of the following must be true:

V m(A) ≤ 0 or V m(A) ≥ 0(3)

Corollary 2.1 provides that, for any matrixA, one of the two conditions (i) or (ii)
in the corollary must be true. Suppose that condition (ii) is true. Then there exists
y0 ∈ Ξn such that2

Ay0T ≤ 0

⇒ xAy0T ≤ 0 ∀x ∈ Ξm

⇒ max
x

xAy0T ≤ 0

Hence
V m(A) = min

y
max

x
xAyT ≤ 0

2Corollary 2.1 says that there must exist such ay0 ∈ Rn. Why doesn’t it make a difference when
we useΞn rather thanRn?
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Alternatively, if (i) is true then we can similarly show that

V m(A) = max
x

min
y

xAyT ≥ 0

Define the(m× n) matrixB = [bij ] wherebij = aij − c for all (i, j) and wherec
is a constant. Note that

V m(B) = V m(A)− c and V m(B) = V m(A)− c

SinceA was an arbitrary matrix, the previous results also hold forB. Hence either

V m(B) = V m(A)− c ≤ 0 or

V m(B) = V m(A)− c ≥ 0

Thus, for any constantc, either

V m(A) ≤ c or

V m(A) ≥ c

Relation (1) guarantees that

V m(A) ≤ V m(A)

Therefore, there exists a∆ ≥ 0 such that

V m(A) + ∆ = V m(A).

Suppose∆ > 0. Choosec = ∆/2 and we have found ac such that both

V m(A) ≥ c and

V m(A) ≤ c

are true. This contradicts our previous result. Hence∆ = 0 andV m(A) = V m(A).

2.1.7 The Minimax Theorem and duality

The next version of the Minimax Theorem uses duality and provides several fun-
damental links between game theory and the theory of linear programming.3

Theorem 2.5. Consider the matrix gameA with mixed strategiesx and y for
Player 1 and Player 2, respectively. Then

3This theorem and proof is from my own notebook from a Game Theory course taught at Cornell
in the summer of 1972. The course was taught by Professors William Lucas and Louis Billera. I
believe, but I cannot be sure, that this particular proof is from Professor Billera.
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1. minimax statement

max
x

min
y

E(x, y) = min
y

max
x

E(x, y)

2. saddle point statement (mixed strategies)There existsx∗ andy∗ such that

E(x, y∗) ≤ E(x∗, y∗) ≤ E(x∗, y)

for all x andy.

2a. saddle point statement (pure strategies)Let E(i, y) denote the expected
value for the game if Player 1 uses pure strategyi and Player 2 uses mixed
strategyy. Let E(x, j) denote the expected value for the game if Player 1
uses mixed strategyx and Player 2 uses pure strategyj. There existsx∗ and
y∗ such that

E(i, y∗) ≤ E(x∗, y∗) ≤ E(x∗, j)

for all i andj.

3. LP feasibility statementThere existsx∗, y∗, andv′ = v′′ such that

∑
i aijx

∗
i ≥ v′ ∀ j∑

i x∗i = 1
x∗i ≥ 0 ∀ i

∑
j aijy

∗
j ≤ v′′ ∀ i∑

j y∗j = 1
y∗j ≥ 0 ∀ j

4. LP duality statement The objective function values are the same for the
following two linear programming problems:

max{v}
st:

∑
i aijx

∗
i ≥ v ∀ j∑

i x∗i = 1
x∗i ≥ 0 ∀ i

min{v}
st:

∑
j aijy

∗
j ≤ v ∀ i∑

i y∗j = 1
y∗j ≥ 0 ∀ j

Proof: We will sketch the proof for the above results by showing that

(4) ⇒ (3) ⇒ (2) ⇒ (1) ⇒ (3) ⇒ (4)

and
(2) ⇔ (2a)

.
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{(4) ⇒ (3)} (3) is just a special case of (4).

{(3) ⇒ (2)} Let 1n denote a column vector ofn ones. Then (3) implies that there
existsx∗, y∗, andv′ = v′′ such that

x∗A ≥ v′1n

x∗AyT ≥ v′(1nyT) = v′ ∀ y

and

Ay∗T ≤ v′′1m

xAy∗T ≤ xv′′1m = v′′(x1m) = v′′ ∀ x

Hence,
E(x∗, y) ≥ v′ = v′′ ≥ E(x, y∗) ∀x, y

and
E(x∗, y∗) = v′ = v′′ = E(x∗, y∗)

{(2) ⇒ (2a)} (2a) is just a special case of (2) using mixed strategiesx with xi = 1
andxk = 0 for k 6= i.

{(2a) ⇒ (2)} For eachi, consider all convex combinations of vectorsx with xi =
1 andxk = 0 for k 6= i. SinceE(i, y∗) ≤ v, we must haveE(x∗, y∗) ≤ v.

{(2) ⇒ (1)}
• {Case≥}

E(x, y∗) ≤ E(x∗, y) ∀ x, y

max
x

E(x, y∗) ≤ E(x∗, y) ∀ y

max
x

E(x, y∗) ≤ min
y

E(x∗, y)

min
y

max
x

E(x, y) ≤ max
x

E(x, y∗) ≤ min
y

E(x∗, y) ≤ max
x

min
y

E(x, y)

• {Case≤}
min

y
E(x, y) ≤ E(x, y) ∀ x, y

max
x

[
min

y
E(x, y)

]
≤ max

x
E(x, y) ∀ y

max
x

[
min

y
E(x, y)

]
≤ min

y

[
max

x
E(x, y)

]
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{(1) ⇒ (3)}

max
x

[
min

y
E(x, y)

]
= min

y

[
max

x
E(x, y)

]

Let f(x) = miny E(x, y). From calculus, there existsx∗ such that
f(x) attains its maximum value atx∗. Hence

min
y

E(x∗, y) = max
x

[
min

y
E(x, y)

]

{(3) ⇒ (4)} This is direct from the duality theorem of LP. (See Chapter 13 of
Dantzig’s text.)

Question 2.5. Can the LP problem in section (4) of Theorem 2.5 have alternate
optimal solutions. If so, how does that affect the choice of(x∗, y∗)?4

2.2 Two-Person General-Sum Games

2.2.1 Basic ideas

Two-person general-sum games(sometimes called “bi-matrix games”) can be rep-
resented by two(m × n) matricesA =

[
aij

]
and B =

[
bij

]
whereaij is the

“payoff” to Player 1 andbij is the “payoff” to Player 2. IfA = −B then we get a
two-person zero-sum game,A.

Note 2.7. These are non-cooperative games with no side payments.

Definition 2.2. The (pure) strategy(i∗, j∗) is aNash equilibrium solution to the
game(A,B) if

ai∗,j∗ ≥ ai,j∗ ∀ i

bi∗,j∗ ≥ bi∗,j ∀ j

Note 2.8. If both players are placed on their respective Nash equilibrium strategies
(i∗, j∗), then each player cannot unilaterally move away from that strategy and
improve his payoff.

4Thanks to Esra E. Aleisa for this question.
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Question 2.6. Show that ifA = −B (zero-sum case), the above definition of a
Nash solution corresponds to our previous definition of a saddle point.

Note 2.9. Not every game has a Nash solution using pure strategies.

Note 2.10. A Nash solution need not be the best solution, or even a reasonable
solution for a game. It’s merely a stable solution against unilateral moves by a
single player. For example, consider the game

(A,B) =

[
(4, 0) (4, 1)
(5, 3) (3, 2)

]

This game has two Nash equilibrium strategies,(4, 1) and(5, 3). Note that both
players prefer(5, 3) when compared with(4, 1).

Question 2.7. What is the solution to the following simple modification of the
above game:5

(A,B) =

[
(4, 0) (4, 1)
(4, 2) (3, 2)

]

Example 2.1. (Prisoner’s Dilemma) Two suspects in a crime have been picked up
by police and placed in separate rooms. If both confess (C), each will be sentenced
to 3 years in prison. If only one confesses, he will be set free and the other (who
didn’t confess (NC)) will be sent to prison for 4 years. If neither confesses, they
will both go to prison for 1 year.

This game can be represented in strategic form, as follows:

C NC

C (-3,-3) (0,-4)
NC (-4,0) (-1,-1)

This game has one Nash equilibrium strategy,(−3,−3). When compared with the
other solutions, note that it represents one of the worst outcomes for both players.

2.2.2 Properties of Nash strategies

5Thanks to Esra E. Aleisa for this question.
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Definition 2.3. The pure strategy pair(i1, j1) weakly dominates(i2, j2) if and
only if

ai1,j1 ≥ ai2,j2

bi1,j1 ≥ bi2,j2

and one of the above inequalities is strict.

Definition 2.4. The pure strategy pair(i1, j1) strongly dominates(i2, j2) if and
only if

ai1,j1 > ai2,j2

bi1,j1 > bi2,j2

Definition 2.5. (Weiss [8])The pure strategy pair(i, j) is inadmissible if there
exists some strategy pair(i′, j′) that weakly dominates(i, j).

Definition 2.6. (Weiss [8])The pure strategy pair(i, j) is admissibleif it is not
inadmissible.

Example 2.2. Consider again the game

(A,B) =

[
(4, 0) (4, 1)
(5, 3) (3, 2)

]

With Nash equilibrium strategies,(4, 1) and(5, 3). Only (5, 3) is admissible.

Note 2.11. If there exists multiple admissible Nash equilibria, then side-payments
(with collusion) may yield a “better” solution for all players.

Definition 2.7. Two bi-matrix games(A.B) and(C,D) arestrategically equiv-
alent if there existsα1 > 0, α2 > 0 and scalarsβ1, β2 such that

aij = α1cij + β1 ∀ i, j

bij = α2dij + β2 ∀ i, j

Theorem 2.6. If bi-matrix games(A.B) and(C,D) are strategically equivalent
and(i∗, j∗) is a Nash strategy for(A,B), then(i∗, j∗) is also a Nash strategy for
(C,D).

Note 2.12. This was used to modify the original matrices for the Prisoners’
Dilemma problem in Example 2.1.
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2.2.3 Nash equilibria using mixed strategies

Sometimes the bi-matrix game(A,B) does not have a Nash strategy using pure
strategies. As before, we can use mixed strategies for such games.

Definition 2.8. The (mixed) strategy(x∗, y∗) is a Nash equilibrium solution to
the game(A,B) if

x∗Ay∗T ≥ xAy∗T ∀ x ∈ Ξm

x∗By∗T ≥ x∗ByT ∀ y ∈ Ξn

whereΞr is ther-dimensional probability simplex.

Question 2.8. Consider the game

(A,B) =

[
(−2,−4) (0,−3)

(−3, 0) (1,−1)

]

Can we find mixed strategies(x∗, y∗) that provide a Nash solution as defined
above?

Theorem 2.7. Every bi-matrix game has at least one Nash equilibrium solution
in mixed strategies.

Proof: (This is the sketch provided by the text for Proposition 33.1; see Chapter 3
for a complete proofs forN ≥ 2 players.)

Consider the setsΞn andΞm consisting of the mixed strategies for Player 1 and
Player 2, respectively. Note thatΞn × Ξm is non-empty, convex and compact.
Since the expected payoff functionsxAyT andxByT are linear in(x, y), the result
follows using Brouwer’s fixed point theorem,

2.2.4 Finding Nash mixed strategies

Consider again the game

(A,B) =

[
(−2,−4) (0,−3)

(−3, 0) (1,−1)

]

For Player 1

xAyT = −2x1y1 − 3(1− x1)y1 + (1− x1)(1− y1)
= 2x1y1 − x1 − 4y1 + 1
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For Player 2

xByT = −2x1y1 − 2x1 + y1 − 1

In order for(x∗, y∗) to be a Nash equilibrium, we must have for all 0≤ x1 ≤ 1

x∗Ay∗T ≥ xAy∗T ∀ x ∈ Ξm(4)

x∗By∗T ≥ x∗ByT ∀ y ∈ Ξn(5)

For Player 1 this means that we want(x∗, y∗) so that for allx1

2x∗1y
∗
1 − x∗1 − 4y∗1 + 1 ≥ 2x1y

∗
1 − x1 − 4y∗1 + 1

2x∗1y
∗
1 − x∗1 ≥ 2x1y

∗
1 − x1

Let’s try y∗1 = 1
2. We get

2x∗1

(
1
2

)
− x∗1 ≥ 2x1

(
1
2

)
− x1

0 ≥ 0

Therefore, ify∗ = (1
2, 1

2) then anyx∗ can be chosen and condition (4) will be
satisfied.

Note that only condition (4) and Player 1’s matrixA was used to get Player 2’s
strategyy∗.

For Player 2 the same thing happens if we usex∗1 = 1
2 and condition (5). That is,

for all 0≤ y1 ≤ 1

−2x∗1y
∗
1 − 2x∗1 + y∗1 − 1 ≥ −2x1y

∗
1 − 2x1 + y∗1 − 1

−2x∗1y
∗
1 + y∗1 ≥ −2x1y

∗
1 + y1

−2
(

1
2

)
y∗1 + y∗1 ≥ −2

(
1
2

)
y∗1 + y1

0 ≥ 0

How can we get the values of(x∗, y∗) that will work? One suggested approach
from (Başar and Olsder [2]) uses the following:
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Theorem 2.8. Any mixed Nash equilibrium solution(x∗, y∗) in the interior of
Ξm × Ξn must satisfy

n∑

j=1

y∗j (aij − a1j) = 0 ∀ i 6= 1(6)

m∑

i=1

x∗i (bij − bi1) = 0 ∀ j 6= 1(7)

Proof: Recall that

E(x, y) = xAyT =
m∑

i=1

n∑

j=1

xiyjaij

=
n∑

j=1

m∑

i=1

xiyjaij

Sincex1 = 1−∑m
i=2 xi, we have

xAyT =
n∑

j=1

[
m∑

i=2

xiyjaij +

(
1−

m∑

i=2

xi

)
yja1j

]

=
n∑

j=1

[
yja1j + yj

m∑

i=2

xi(aij − a1j)

]

=
n∑

j=1


yja1j +

m∑

i=2

xi

n∑

j=1

yj(aij − a1j)




If (x∗, y∗) is an interior maximum (or minimum) then

∂

∂xi
xAyT =

n∑

j=1

yj(aij − a1j) = 0 for i = 2, . . .,m

Which provide the Equations 6.

The derivation of Equations 7 is similar.

Note 2.13. In the proof we have the equation

xAyT =
n∑

j=1

yja1j +
m∑

i=2

xi




n∑

j=1

yj(aij − a1j)



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Any Nash solution(x∗, y∗) in the interior ofΞm × Ξn has

n∑

j=1

y∗j (aij − a1j) = 0 ∀ i 6= 1

So this choice ofy∗ produces

xAyT =
n∑

j=1

yja1j +
m∑

i=2

xi [0]

making this expression independent ofx.

Note 2.14. Equations 6 and 7 only provide necessary (not sufficient) conditions,
and only characterize solutions on the interior of the probability simplex (i.e., where
every component ofx andy are strictly positive).

For our example, these equations produce

y∗1(a21− a11) + y∗2(a22− a12) = 0

x∗1(b12− b11) + x∗2(b22− b21) = 0

Sincex∗2 = 1− x∗1 andy∗2 = 1− y∗1, we get

y∗1(−3− (−2)) + (1− y∗1)(1− 0) = 0

−y∗1 + (1− y∗1) = 0

y∗1 =
1
2

x∗1(−3− (−4)) + (1− x∗1)(−1− 0) = 0

x∗1 − (1− x∗1) = 0

x∗1 =
1
2

But, in addition, one must check thatx∗1 = 1
2 and y∗1 = 1

2 are actually Nash
solutions.

2.2.5 The Lemke-Howson algorithm

Lemke and Howson [6] developed a quadratic programming technique for finding
mixed Nash strategies for two-person general sum games(A,B) in strategic form.
Their method is based on the following fact, provided in their paper:
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Letek denote a column vector ofk ones, and letx andy be row vectors of dimension
m andn, respectively. Letp andq denote scalars. We will also assume thatA and
B are matrices, each withm rows andn columns.

A mixed strategy is defined by a pair(x, y) such that

xem = yen = 1, and x ≥ 0, y ≥ 0(8)

with expected payoffs
xAyT and xByT.(9)

A Nash equilibrium solution is a pair(x̄, ȳ) satisfying (8) such that for all(x, y)
satisfying (8),

xAȳT ≤ x̄AȳT and x̄ByT ≤ x̄BȳT.(10)

But this implies that

AȳT ≤ x̄AȳTem and x̄B ≤ x̄BȳTeT
n.(11)

Conversely, suppose (11) holds for(x̄, ȳ) satisfying (8). Now choose an arbitrary
(x, y) satisfying (8). Multiply the first expression in (11) on the left byx and
second expression in (11) on the right byyT to get (10). Hence, (8) and (11) are,
together, equivalent to (8) and (10).

This serves as the foundation for the proof of the following theorem:

Theorem 2.9. Any mixed strategy(x∗, y∗) for bi-matrix game(A,B) is a Nash
equilibrium solution if and only ifx∗, y∗, p∗ andq∗ solve problem (LH):

(LH): maxx,y,p,q{xAyT + xByT − p− q}
st: AyT ≤ pem

BTxT ≤ qen

xi ≥ 0 ∀ i
yj ≥ 0 ∀ j∑m

i=1 xi = 1∑n
j=1 yj = 1

Proof: (⇒)

Every feasible solution(x, y, p, q) to problem (LH) must satisfy the constraints

AyT ≤ pem

xB ≤ qeT
n.
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Multiply both sides of the first constraint on the left byx and multiply the second
constraint on the right byyT. As a result, we see that a feasible(x, y, p, q) must
satisfy

xAyT ≤ p

xByT ≤ q.

Hence, for any feasible(x, y, p, q). the objective function must satisfy

xAyT + xByT − p− q ≤ 0.

Suppose(x∗, y∗) is any Nash solution for(A, B). Let

p∗ = x∗Ay∗T

q∗ = x∗By∗T.

Because of (10) and (11), this implies

Ay∗T ≤ x∗Ay∗Tem = p∗em

x∗B ≤ x∗By∗TeT
n = q∗eT

n.

So this choice of(x∗, y∗, p∗, q∗) is feasible, and results in the objective function
equal to zero. Hence it’s an optimal solution to problem (LH)

(⇐)

Suppose(x̄, ȳ, p̄, q̄) solves problem (LH). From Theorem 2.7, there is at least one
Nash solution(x∗, y∗). Using the above argument,(x∗, y∗) must be an optimal
solution to (LH) with an objective function value of zero. Since(x̄, ȳ, p̄, q̄) is an
optimal solution to (LH), we must then have

x̄AȳT + x̄BȳT − p̄− q̄ = 0(12)

with (x̄, ȳ, p̄, q̄) satisfying the constraints

AȳT ≤ p̄em(13)

x̄B ≤ q̄eT
n.(14)

Now multiply (13) on the left by ¯x and multiply (14) on the right by ¯yT to get

x̄AȳT ≤ p̄(15)

x̄BȳT ≤ q̄.(16)
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Then (12), (15), and (16) together imply

x̄AȳT = p̄

x̄BȳT = q̄.

So (13), and (14) can now be rewritten as

AȳT ≤ x̄AȳTem(17)

x̄B ≤ x̄BȳTen.(18)

Choose an arbitrary(x, y) ∈ Ξm × Ξn and, this time, multiply (17) on the left by
x and multiply (18) on the right byyT to get

xAȳT ≤ x̄AȳT(19)

x̄ByT ≤ x̄BȳT(20)

for all (x, y) ∈ Ξm × Ξn. Hence(x̄, ȳ) is a Nash equilibrium solution.
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