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2 TWO-PERSON GAMES
2.1 Two-Person Zero-Sum Games
2.1.1 Basicideas

Definition 2.1. A game (in extensive form) is said to Z&ro-sumif and only if,
at each terminal vertex, the payoff vectp, . . ., p,) satisfiesy ;" ; p; = 0.

Two-person zero sum gamesriormal form Here’s an example. . .

-1 -3 -8 -2
A= o 1 -2 -1
2 -2 0 1

The rows represent the strategies of Player 1. The columns represent the strategies
of Player 2. The entries;; represent the payoff vectdt;;, —a;;). That is, if

Player 1 chooses rowand Player 2 chooses coluninthen Player 1 wing;; and

Player 2 loses;;. If a;; < O, then Player 1 pays Playel@,;|.

Note 2.1. We are using the terstrategyrather tharactionto describe the player’s
options. The reasons for this will become evident in the next chapter when we use
this formulation to analyze games in extensive form.

Note 2.2. Some authors (in particular, those in the field of control theory) prefer
to represent the outcome of a game in terms$esather tharprofits. During
the semester, we will use both conventions.
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How should each player behave? Player 1, for example, might want to place a
bound on his profits. Player 1 could ask “For each of my possible strategies, what
is the least desirable thing that Player 2 could do to minimize my profits?” For
each of Player 1's strategiéscompute

o = mlin Qij
J

and then choose thatvhich produces maxy;. Suppose this maximum is achieved
for i = 7*. In other words, Player 1 is guaranteed to get at least

V(A) =minas; > mina;; i=1....m
J J

The valuel/(A) is called thegain-floorfor the gameA.
In this casé/ (A) = —2 withi* € {2, 3}.

Player 2 could perform a similar analysis and find tffatvhich yields

V(A) = Maxa;;- < Maxai; j=1,....n
The valueV (A) is called thdoss-ceilingfor the gameA.
In this caséd/(A) = 0 with j* = 3.
Now, consider the joint strategiés’, j*). We immediately get the following:
Theorem 2.1. For every (finite) matrix game = [a;;]
1. The valued/(A) andV (A) are unique.
2. There exists at least one security strategy for each player givéit by ).
3. minja;+; = V(A) < V(A) = max a;
Proof: (1) and (2) are easy. To prove (3) note that for &rand/,

mina; < age < MaXa
7 7

and the result followsa
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2.1.2 Discussion

Let's examine the decision-making philosophy that underlies the choigg,gf ).

For instance, Player 1 appears to be acting as if Player 2 is trying to do as much
harm to him as possible. This seems reasonable since this is a zero-sum game.
Whatever, Player 1 wins, Player 2 loses.

As we proceed through this presentation, note that this same reasoning is also used
in the field of statistical decision theory where Player 1 is the statistician, and Player
2 is “nature.” Is it reasonable to assume that “nature” is a malevolent opponent?

2.1.3 Stability

Consider another example

-4 0 1
A= 0O 1 -3
-1 -2 -1

Player 1 should considét = 3 (V = —2) and Player 2 should considgr = 1
(V =0).

However, Player 2 can continue his analysis as follows
e Player 2 will choose strategy 1
e So Player 1 should choose strategy 2 rather than strategy 3
e But Player 2 would predict that and then prefer strategy 3
and so on.
Question 2.1. When do we have a stable choice of strategies?

The answer to the above question gives rise to some of the really important early
results in game theory and mathematical programming.

We can see that it" (A) = V(A), then both Players will settle ofi*, j*) with

mina;+; = V(A) = V(A) = maxa;;«
J 7

Theorem 2.2. If V(A) =V (A) then
1. A has a saddle point
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2. The saddle point corresponds to the security strategies for each player
3. Thevaluefor the game id/ = V (A4) = V(A)

Question 2.2.  Supposé/(A4) < V(A). What can we do? Can we establish a
“spy-proof” mechanism to implement a strategy?

Question 2.3. Is it ever sensible to use expected loss (or profit) as a perfor-
mance criterion in determining strategies for “one-shot” (non-repeated) decision
problems?

2.1.4 Developing Mixed Strategies

Consider the following matrix game. ..

B

For Player 1, we hav& (A) = 0 andi* = 2. For Player 2, we havE€(4) = 1 and
j* = 2. This game does not have a saddle point.

Let's try to create a “spy-proof” strategy. Let Player 1 randomize over higptwe
strategies.That is Player 1 will pick the vector of probabilities= (z1, x2) where
>; i = Landz; > 0 for all . He will then select strategywith probability x;.

Note 2.3. When we formalize this, we will call the probability vecteyamixed
strategy.

To determine the “best” choice af Player 1 analyzes the problem, as follows. . .
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1%, =1/5

Player 2 might do the same thing using probability veefor (y1,y2) where
> yi = 1andy; > 0 for alli.

Player 2
3 |
2 [
1 [
- - r 3/5
O /\
|
-1 -
1y, =2/5
yl = 0 yl = 1
y2 = 1 y2 = 0
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If Player 1 adopts mixed stratedy:1, z2) and Player 2 adopts mixed strategy
(y1,y2), we obtain an expected payoff of

V. = 3z +0(1—2z1)y1 — 22(1 - y1)
+(1-z1)(1—11)
= Sry1—y1—201+1

Suppose Player 1 use$ = £, then

(o2 (Y-

which doesn’t depend oyl Similarly, suppose Player 2 usg$ = % then

2 2 3
v=sn(z)-(z)-2m+1-7

which doesn’t depend anl

Each playeris solving a constrained optimization problem. For Player 1 the problem
is
max{v}
st: +3x1 + Oz
—1x1 + 1xo
T1+ 22
T

VIV IV
O c

which can be illustrated as follows:
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Player 1

37 I

27 I

17 L

o — \

1 — -
X, =0 X, =
X, =1 X =0

This problem is equivalent to

mwaxmin{(le + 0z2), (—x1 + x2)}

For Player 2 the problem is

min{v}

st +3y1 — 1yo
+0y1 + 1y2
Y1+ Y2
Yj

AVAR IR VARVAY
Orc c

A
which is equivalent to

minmax{(3y: — y2), (Oy1 + y2)}

We recognize these as dual linear programming problems.

Question 2.4. We now have a way to compute a “spy-proof” mixed strategy for
each player. Modify these two mathematical programming problems to produce
the puresecurity strategy for each player.
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In general, the players are solving the following pair of dual linear programming
problems:

max{v}
st: Ziai]—xi > v Vj
and _
min{v}
st: Zj Qaijy; < v Vi
> Vi =1
Yi > 0 Vy

Note 2.4. Consider, once again, the example game

e[

If Player 1 (the maximizer) uses mixed stratégy, (1 — z1)), and if Player 2 (the
minimizer) uses mixed stratedy1, (1 — y1)) we get

E(x,y) =5r1y1 —y1 — 211+ 1

and lettingz* = £ andy* = 2 we getE(z*,y) = E(z,y*) = 2 for anyx andy.
These choices far* andy™ make the expected value independent of the opposing
strategy. So, if Player 1 becomes a minimizer (or if Player 2 becomes a maximizer)
the resulting mixed strategies would be the same!

St

By “factoring” the expression foE (x, y), we can write

Note 2.5. Consider the game

E(z,y) = ziy1+3r1(1—y1) + 41— 21)y +2(1 — 21)(1 — 1)
= —dryyr+r1+ 2y +2

T 1 1
= —4(x1y1—zl—%+§)+2+é
1 1 5

= A+

It's now easy to see that; = 3, y; = 7 andv = 3.
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2.1.5 A more formal statement of the problem

Suppose we are given a matrix gamg, .,y = [a;;]. Each row ofA is a pure
strategy for Player 1. Each column dfis a pure strategy for Player 2. The value
of a;; is the payoff from Player 1 to Player 2 (it may be negative).

For Player 1 let
V(A) = maxmina;;
T g

For Player 2 let

V(A) = minmaxa;;
7 7

{Case I (Saddle Point Case whel& A) = V(4) = V)
Player 1 can assure himself of getting at Idagtom Player 2 by playing his
maximin strategy.

{Case 2 (Mixed Strategy Case whefé(A4) < V(A))
Player 1 uses probability vector

= (X1,...,Tm) inzl z; >0
i

Player 2 uses probability vector

y=(1..y) > yj=1 y; >0
j

If Player 1 uses and Player 2 uses strategythe expected payoff is
E(.%',]) = Zmiaij = .ZUAj

whereA; is columnj from matrix A.

If Player 2 useg and Player 1 uses strategythe expected payoff is

E(i,y) =Y ajy; = A'y'
F

whereA? is rowi from matrix A.



Combined, if Player 1 usesand Player 2 useg the expected payoff is

E(x,y) = Z Z ziaijy; = vAy'

L)

The players are solving the following pair of dual linear programming prob-

lems:
max{v}
st: Ziaijxi > v Vj
> i T =1
and
min{v}
st: Ejaijyj < v Vi
> Yi =1
Yi > 0 Vj

The Minimax Theorenfvon Neumann, 1928) states that there exists mixed strate-
giesz* andy* for Players 1 and 2 which solve each of the above problems with
equal objective function values.

2.1.6 Proof of the Minimax Theorem

Note 2.6. (From Bagar and Olsder [2]) The theory of finite zero-sum games dates
back to Borel in the early 1920’s whose work on the subject was later translated
into English (Borel, 1953). Borel introduced the notion of a conflicting decision
situation that involves more than one decision maker, and the concepts of pure
and mixed strategies, but he did not really develop a complete theory of zero-sum
games. Borel even conjectured that the Minimax Theorem was false.

It was von Neumann who first came up with a proof of the Minimax Theorem,
and laid down the foundations of game theory as we know it today (von Neumann
1928, 1937).

We will provide two proofs of this important theorem. The first proof (Theorem 2.4)
uses only the Separating Hyperplane Theorem. The second proof (Theorem 2.5)
uses the similar, but more powerful, tool of duality from the theory linear program-
ming.
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Our first, and direct, proof of the Minimax Theorem is based on the proof by von
Neumann and Morgenstern [7]. It also appears in the book by Basar and Olsder [2].
It depends on the Separating Hyperplane Thedrem:

Theorem 2.3. (From [1]) Separating Hyperplane Theorem. Let .S and T be
two non-empty, convex setsiift with no interior point in common. Then there
exists a paif(p, c) with p € R™ # 0andc € R such that

i.e., there is a hyperplan# (p, c) = {z € R" | pz = ¢} that separates and T

Proof: DefineS — T = {z —y € R"|x € S,y € T}. S — T is convex. Then
0¢int(S—1T) (ifitwas, i.e., if 0€ int(S — T), then there is am € int(S) and
y € int(T") such thatr — y = 0, or simplyz = y, which would be a common
interior point). Thus, we can “separate” 0 fro$h— T, i.e., there existp € R"
wherep # 0 andc € R such thap - (z — y) > candp - 0 < ¢. But, this implies
that

p-0=0<c<p-(z—y)

which impliesp - (z — y) > 0. Hencepxz > py for all z € S and for ally € T.
That is, there must be@ac R such that

py<c<pr VeeSandVyeT

[
A version of Theorem 2.3 also appears in a paper by Gale [5] and a text by Boot [3].

Theorem 2.3 can be used to produce the following corollary that we will use to
prove the Minimax Theorem:

Corollary 2.1. Let A be an arbitrary(m x n)-dimensional matrix. Then either
(i) there exists a nonzero vectore R™, z > 0 such thatcA > O, or
(ii) there exists a nonzero vectgre R™, y > 0 such thatdy™ < 0.

Theorem 2.4. Minimax Theorem. Let A = [a;;] be anm x n matrix of real
numbers. LeE" denote the set of all-dimensional probability vectors, that is,

= — {0 € ¥ |Syo, — Lands, > 0}

1| must thank Yong Bao for his help in finding several errors in a previous version of these notes.
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We sometimes call” the probability simplex.

Letx € =™ andy € =". Define

Vin(A)

—m

Vi (A)

maxminz Ay’
x Yy

minmaxz Ay’
Yy X

ThenV,,(A) = V. (4).
Proof: First we will prove that
1) Vin(4) < Vin(4)

To do so, note thatAy", max, zAy™ and min, zAy" are all continuous functions
of (z,y), x andy, respectively. Any continuous, real-valued function on a compact
set has an extermum. Therefore, there exiStandy® such that

(A) = minz®AyT
y
Vi(A) = man$AyOT

Itis clear that
2) V.. (4)

Thus relation (1) is true.

IN

24T <V, (A)

Now we will show that one of the following must be true:
(3) Vim(A) <0 or V,(A)>0
Corollary 2.1 provides that, for any matrik, one of the two conditions (i) or (ii)

in the corollary must be true. Suppose that condition (ii) is true. Then there exists
y° € =" such that

AyOT < 0
= 24T < 0 Veez™
= maxzAy’T < 0
xT

Hence

Vin(A) = min maxzAy' <0

2Corollary 2.1 says that there must exist sua)? & R"™. Why doesn't it make a difference when
we use=" rather tharR"?
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Alternatively, if (i) is true then we can similarly show that
V., (A) = maxmin zAyT >0
Define the(m x n) matrix B = [b;;] whereb;; = a;; — c for all (i, ) and where:
is a constant. Note that
Vin(B) =V, (A)—c¢ and V, (B)=V,,(A) —c

SinceA was an arbitrary matrix, the previous results also holddoHence either

Vi(B)=Vy(A)—c < 0 or

Vo(B) =V, (A) —c > 0

Thus, for any constant either

IV IA

Relation (1) guarantees that
Vi (A) < Vin(A)
Therefore, there existsfa> 0 such that
V(A +A=V,(A).
Supposé\ > 0. Choose: = A/2 and we have found@such that both

V(A > ¢ and

V(4) < ¢
are true. This contradicts our previous result. Hehee 0 andV,,,(A) = V,,,(A).
[

2.1.7 The Minimax Theorem and duality

The next version of the Minimax Theorem uses duality and provides several fun-
damental links between game theory and the theory of linear prograniming.

Theorem 2.5. Consider the matrix gamd with mixed strategies and y for
Player 1 and Player 2, respectively. Then

3This theorem and proof is from my own notebook from a Game Theory course taught at Cornell
in the summer of 1972. The course was taught by Professors William Lucas and Louis Billera. |
believe, but | cannot be sure, that this particular proof is from Professor Billera.
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2a.

. minimax statement

maxmin E(x,y) = minmaxE(z, y)
T Yy Yy x

. saddle point statement (mixed strategiesyhere existg* andy* such that

E(z,y") < E(z",y") < E(z",y)

for all x andy.

saddle point statement (pure strategies)et E(i,y) denote the expected
value for the game if Player 1 uses pure stratégyd Player 2 uses mixed
strategyy. Let E(z, ;) denote the expected value for the game if Player 1
uses mixed strategyand Player 2 uses pure strategy There exists* and
y* such that

E(i,y") < E(z*,y") < E(2*, )

for all s andj.

. LP feasibility statement There existg:*, y*, andv’ = v” such that

2iaijr; = v V] Yojagy; < v Vi
Zxr =1 Zj y; =1
z; > 0 Vi y;k > 0 Vj

. LP duality statement The objective function values are the same for the

following two linear programming problems:

max{v} min{v}

st ) ;aizy = v Vj st D ay; < v Vi
i T =1 Zzy;k =1
o > 0 Vi v > 0 Vj

Proof: We will sketch the proof for the above results by showing that

and

4=0=02=0=03=0

(2) & (2q)
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{(4) = (3)} (3)isjusta special case of (4).
{(3) = (2)} Let 1, denote a column vector afones. Then (3) implies that there
existsz*, y*, andv’ = v” such that
A > V1,
s Ayt > J(LyT) =0 Yy

and
Ayt < W1,
cAyT < a1, = V" (21,) =" vV
Hence,
E(z*,y) >v =v"> E(x,y*) Va,y
and

{(2) = (2a)} (2a)is justa special case of (2) using mixed strategiegh x; = 1
andx, = 0 fork # 1.

{(2a) = (2)} Foreach, consider all convex combinations of vectaeraith z; =
1 andzy, = O for k # i. SinceE(i,y*) < v, we must haves(z*,y*) < v.

{2 = (1)}

e {Case>}
E(x,y") < E@y) Vay
manE(m, y) < E(z%y) Yy
mIaXE(a:,y*) < rTLinE(a:*,y)
rr;jn mzaxE(:p,y) < mmaxE(x,y*) < rrgnE(x*,y) < mxaxmyinE(:c,y)

e {Case<}

minE(z,y) < B(zy) Vay

max [myinE(a;,y)] < manE(x,y) Yy

xT

max[rTLinE(x,y)] < mJn[meE(%y)}

xT
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max [myln E(x, y)} = min [mmaxE(a;, y)}
Let f(xz) = min, E(z,y). From calculus, there exists" such that

f(z) attains its maximum value at'. Hence

min E(z*,y) = max {min E(x, y)}
Y T Y

{(3) = (4)} This is direct from the duality theorem of LP. (See Chapter 13 of
Dantzig’s text.)

]
Question 2.5. Can the LP problem in section (4) of Theorem 2.5 have alternate

optimal solutions. If so, how does that affect the choicédt 3*)?*

2.2 Two-Person General-Sum Games
2.2.1 Basicideas

Two-person general-sum ganm@emetimes called “bi-matrix games”) can be rep-
resented by twdm x n) matricesA = [a;;] and B = [b;;] wherea;; is the
“payoff” to Player 1 and;; is the “payoff” to Player 2. [fA = —B then we get a
two-person zero-sum gama,

Note 2.7. These are non-cooperative games with no side payments.

Definition 2.2. The (pure) strategyi*, 7*) is aNash equilibrium solution to the
game(A, B) if

am-* Vi
bix vV

ai*,j*

AVARLYS

bix =

Note 2.8. If both players are placed on their respective Nash equilibrium strategies
(i*,7%), then each player cannot unilaterally move away from that strategy and
improve his payoff.

“Thanks to Esra E. Aleisa for this question.

2-16



Question 2.6. Show that ifA = — B (zero-sum case), the above definition of a
Nash solution corresponds to our previous definition of a saddle point.

Note 2.9. Not every game has a Nash solution using pure strategies.

Note 2.10. A Nash solution need not be the best solution, or even a reasonable
solution for a game. It's merely a stable solution against unilateral moves by a
single player. For example, consider the game

(4, B) = [ (53) (3,2

This game has two Nash equilibrium strategigs,1) and(5,3). Note that both
players prefe(5, 3) when compared witi@4, 1).

Question 2.7. What is the solution to the following simple modification of the
above gamé:

(4,B) = [ (4,2) (3,2)

Example 2.1. (Prisoner’s Dilemma) Two suspects in a crime have been picked up
by police and placed in separate rooms. If both conf€$sdach will be sentenced

to 3 years in prison. If only one confesses, he will be set free and the other (who
didn’t confess (VC)) will be sent to prison for 4 years. If neither confesses, they
will both go to prison for 1 year.

This game can be represented in strategic form, as follows:

L[ ¢ | NC ]
C | (-3-3)] (0,-4)
NC || (-4,0) | (-1,1)

This game has one Nash equilibrium stratéens, —3). When compared with the
other solutions, note that it represents one of the worst outcomes for both players.

2.2.2 Properties of Nash strategies

5Thanks to Esra E. Aleisa for this question.
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Definition 2.3. The pure strategy paifii, j1) weakly dominates(iz, j») if and
only if
Qig,j1 > Qiz,j2
bilJl > biz,jz
and one of the above inequalities is strict.
Definition 2.4. The pure strategy paifi1, j1) strongly dominates(iy, j2) if and
only if
Qi > Qiggp
bilJi > biz,jz

Definition 2.5. (Weiss [8]) The pure strategy paifi, j) is inadmissibleif there
exists some strategy pdji;, j,) that weakly dominateg, j).

Definition 2.6. (Weiss [8])The pure strategy paifi, j) is admissibleif it is not
inadmissible

Example 2.2. Consider again the game

(4,0) (4,1)
(4, B) = [ (5,3) (3,2) ]

With Nash equilibrium strategie$4, 1) and(5, 3). Only (5, 3) is admissible.

Note 2.11. Ifthere exists multiple admissible Nash equilibria, then side-payments
(with collusion) may vyield a “better” solution for all players.

Definition 2.7. Two bi-matrix games§A.B) and(C, D) are strategically equiv-
alent if there existsv; > 0, ap > 0 and scalars3i, 82 such that

a;; = ouc;+ B Vi, j
bij = oodij+ B2 Vi, j

Theorem 2.6. If bi-matrix gameg A.B) and(C, D) are strategically equivalent
and(i*, j*) is a Nash strategy fofA, B), then(i*, ;%) is also a Nash strategy for
(C, D).

Note 2.12. This was used to modify the original matrices for the Prisoners’
Dilemma problem in Example 2.1.
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2.2.3 Nash equilibria using mixed strategies

Sometimes the bi-matrix gamel, B) does not have a Nash strategy using pure
strategies. As before, we can use mixed strategies for such games.

Definition 2.8. The (mixed) strategfx™, y*) is aNash equilibrium solution to
the gamg A, B) if
z* Ay*T zAy*T VeezZ"

>
#*By*T > z*By' VyeZz"

where=" is ther-dimensional probability simplex.
Question 2.8. Consider the game
(_370) (17_1)
Can we find mixed strategies*, y*) that provide a Nash solution as defined
above?

(A7B) =

Theorem 2.7. Every bi-matrix game has at least one Nash equilibrium solution
in mixed strategies.

Proof: (This is the sketch provided by the text for Proposition 33.1; see Chapter 3
for a complete proofs fol > 2 players.)

Consider the setS™ and="" consisting of the mixed strategies for Player 1 and
Player 2, respectively. Note that® x =™ is non-empty, convex and compact.
Since the expected payoff functiongly™ andzBy" are linear in(z, y), the result
follows using Brouwer’s fixed point theorem,

2.2.4 Finding Nash mixed strategies

Consider again the game

(-2,—4) (0,-3)

(4,B) = (=3,0) (1,-1)

For Player 1

zAy" = —2r1y1 - 31— w1y + (1 - 1) (1 - y1)
= 2ny1—r1—4y+1
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For Player 2

aBy' = —2vy1— 211+ -1

In order for(z*, y*) to be a Nash equilibrium, we must have for alkQr; < 1

zAy*T VeezZ"
z*By" VyeZz"

For Player 1 this means that we wdnt, y*) so that for allx,

2riy7 — 21—yl +1 > 2my; — a1 —dyp +1
2riy; —xy > 2x1y7 — 21

Let's try y; = 3. We get

1 1
2] <2> -] 2r1 <2) -1

0 >0

v

Therefore, ify* = (%, %) then anyz* can be chosen and condition (4) will be
satisfied.

Note that only condition (4) and Player 1's matrixwas used to get Player 2’s
strategyy*.

For Player 2 the same thing happens if we u§e= % and condition (5). That is,
forall0<y; <1

—2ziy; — 201+ yi —1 > —2wqy] —2z1+y; —1
—2riy1 +y7 > —2r197 + %1
afduies > o
2 )1 Yy = 2 Y1 T Y1
0 >0

How can we get the values ¢f*, y*) that will work? One suggested approach
from (Basar and Olsder [2]) uses the following:
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Theorem 2.8. Any mixed Nash equilibrium solutigix*, y*) in the interior of
=™ x =" must satisfy

(6) Zy] a;j—ay) = 0 Vi#£1l
7 sz‘(bz-rbm = 0 Vj#l
i=1

Proof: Recall that

m n
E(l‘,y):ﬂE‘AyT = Zzﬂfiyjaij

i=1j=1

= Z Z TiY;ais

j=1li=1

3
3

Sincex; =1- ", x;, we have

m m
> wiyjai + (1 - Z%) yjalj‘|
Li=2 =2

m
yja; +y; Y wilag — alj)‘|
I i—2

zAy’ =

.M:I

<
Il
NN

<
Il
NN

Il I

<
Il
iR

Y;a1; + Z Ty Z yg Ai5 — A5 ]

=2 j=1

If (z*,y*) is an interior maximum (or minimum) then

0
Ox;

Zyj (aij —a1;) =0 fori=2,...,m
j=1

Which provide the Equations 6.
The derivation of Equations 7 is simila.

Note 2.13. In the proof we have the equation

xAy = Zyjal] "‘sz [Z Yj az] a1; ]
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Any Nash solution(z*, y*) in the interior of=" x =" has
n

Zy}‘(aij—alj):O Vl#l
j=1

So this choice ofj* produces
Ayt = yjay;+ > 2 [0]
j=1 i=2
making this expression independentof

Note 2.14. Equations 6 and 7 only provide necessary (not sufficient) conditions,
and only characterize solutions on the interior of the probability simplex (i.e., where
every component of andy are strictly positive).

For our example, these equations produce

y1(az1 — a11) +yz(az2 —a1z) = 0
x1(b12 — b11) + 25(bo2 —b21) = O
Sincex; = 1 — 2z andy; = 1 — y7, we get
y1(=3—-(-2)+(1-y1)(1-0 = 0
—y1+(1-y1) = 0
}
2

|
NI~ O O

But, in addition, one must check that = 3 andy; = 3 are actually Nash
solutions.

2.2.5 The Lemke-Howson algorithm
Lemke and Howson [6] developed a quadratic programming technigue for finding

mixed Nash strategies for two-person general sum garheB) in strategic form.
Their method is based on the following fact, provided in their paper:
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Lete,, denote a column vector éfones, and let andy be row vectors of dimension
m andn, respectively. Lep andg denote scalars. We will also assume tHadnd
B are matrices, each with, rows andn columns.

A mixed strategy is defined by a pdit, y) such that
(8) reqm =ye, =1 and >0,y >0

with expected payoffs
(9) zAy" and zBy'.

A Nash equilibrium solution is a paitz, y) satisfying (8) such that for allc, y)
satisfying (8),
(10) zAy' <zAy' and zBy' < zBy'.

But this implies that
(11) Ay’ <zAy'e, and B < zBye/.

Conversely, suppose (11) holds far, y) satisfying (8). Now choose an arbitrary
(z,y) satisfying (8). Multiply the first expression in (11) on the left byand
second expression in (11) on the rightglyto get (10). Hence, (8) and (11) are,
together, equivalent to (8) and (10).

This serves as the foundation for the proof of the following theorem:

Theorem 2.9. Any mixed strategyz*, y*) for bi-matrix game(A, B) is a Nash
equilibrium solution if and only it*, y*, p* and¢* solve problem (LH):

(LH): ma)(yc,w,,(l{J:AyT + 2By —p— q}

st: AyT" < pem
BTxT < gen
xT; > 0 Vi
Yj > 0 Vj
Yitgwi = 1
?:1 yg = 1

Proof: (=)
Every feasible solutiofz, y, p, ¢) to problem (LH) must satisfy the constraints
AyT

xB

bem

T
qe,,.-

VANVA
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Multiply both sides of the first constraint on the left byand multiply the second
constraint on the right by'. As a result, we see that a feasille y, p, ¢) must
satisfy

IN A

p
q.

Hence, for any feasiblér, y, p, ¢). the objective function must satisfy
zAy" + 2By —p—q<O.
Supposéz*, y*) is any Nash solution fofA, B). Let

*

pt = Ay
q* — a:*By*T.

*T

Because of (10) and (11), this implies
Ay'T < 2*Ay*Te,, = pem

*B < 2*ByTe]l = q*el.

So this choice ofz*, y*, p*, ¢*) is feasible, and results in the objective function
equal to zero. Hence it's an optimal solution to problem (LH)
(<)

Suppos€z, y, p, q) solves problem (LH). From Theorem 2.7, there is at least one
Nash solution(z*, y*). Using the above argumentz*, y*) must be an optimal
solution to (LH) with an objective function value of zero. Sinaey, p,q) is an
optimal solution to (LH), we must then have

(12) TAy + 2By —p—q=0
with (z, y, p, ¢) satisfying the constraints

Pem

(13) Ayt
3 Gen-

(14) B

IA N

Now multiply (13) on the left by: and multiply (14) on the right by™ to get

(15) TAy'
(16) zBy'

IA A
QT
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Then (12), (15), and (16) together imply
TAy =
Byl =

QT

So (13), and (14) can now be rewritten as
17) Ayt < zAyTe,
(18) B < zBy'e,.

Choose an arbitraryr, y) € =™ x =" and, this time, multiply (17) on the left by
« and multiply (18) on the right by" to get

(19) cAyt < TAY
(20) zBy' < IBy'

forall (z,y) € =™ x =". Hence(z, y) is a Nash equilibrium solutiors
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