
Basic Prolog LP&ZT 2005

An Introduction to Prolog Programming

Ulle Endriss

Institute for Logic, Language and Computation

University of Amsterdam

Ulle Endriss (ulle@illc.uva.nl) 1



Basic Prolog LP&ZT 2005

What is Prolog?

• Prolog (programming in log ic) is a logic-based programming
language: programs correspond to sets of logical formulas and
the Prolog interpreter uses logical methods to resolve queries.

• Prolog is a declarative language: you specify what problem you
want to solve rather than how to solve it.

• Prolog is very useful in some problem areas, such as artificial
intelligence, natural language processing, databases, . . . , but
pretty useless in others, such as for instance graphics or
numerical algorithms.

• The objective of this first lecture is to introduce you to the
most basic concepts of the Prolog programming language.

Ulle Endriss (ulle@illc.uva.nl) 2



Basic Prolog LP&ZT 2005

Facts

A little Prolog program consisting of four facts:

bigger(elephant, horse).

bigger(horse, donkey).

bigger(donkey, dog).

bigger(donkey, monkey).

Ulle Endriss (ulle@illc.uva.nl) 3



Basic Prolog LP&ZT 2005

Queries

After compilation we can query the Prolog system:

?- bigger(donkey, dog).

Yes

?- bigger(monkey, elephant).

No

Ulle Endriss (ulle@illc.uva.nl) 4



Basic Prolog LP&ZT 2005

A Problem

The following query does not succeed!

?- bigger(elephant, monkey).

No

The predicate bigger/2 apparently is not quite what we want.

What we’d really like is the transitive closure of bigger/2. In
other words: a predicate that succeeds whenever it is possible to go
from the first animal to the second by iterating the previously
defined facts.

Ulle Endriss (ulle@illc.uva.nl) 5



Basic Prolog LP&ZT 2005

Rules

The following two rules define is bigger/2 as the transitive
closure of bigger/2 (via recursion):

is_bigger(X, Y) :- bigger(X, Y).

is_bigger(X, Y) :- bigger(X, Z), is_bigger(Z, Y).

↑ ↑

“if” “and”

Ulle Endriss (ulle@illc.uva.nl) 6



Basic Prolog LP&ZT 2005

Now it works

?- is_bigger(elephant, monkey).

Yes

Even better, we can use the variable X:

?- is_bigger(X, donkey).

X = horse ;

X = elephant ;

No

Press ; (semicolon) to find alternative solutions. No at the end
indicates that there are no further solutions.

Ulle Endriss (ulle@illc.uva.nl) 7



Basic Prolog LP&ZT 2005

Another Example

Are there any animals which are both smaller than a donkey and
bigger than a monkey?

?- is_bigger(donkey, X), is_bigger(X, monkey).

No

Ulle Endriss (ulle@illc.uva.nl) 8



Basic Prolog LP&ZT 2005

Terms

Prolog terms are either numbers, atoms, variables, or compound
terms.

Atoms start with a lowercase letter or are enclosed in single quotes:

elephant, xYZ, a_123, ’Another pint please’

Variables start with a capital letter or the underscore:

X, Elephant, _G177, MyVariable, _

Ulle Endriss (ulle@illc.uva.nl) 9



Basic Prolog LP&ZT 2005

Terms (cont.)

Compound terms have a functor (an atom) and a number of
arguments (terms):

is_bigger(horse, X)

f(g(Alpha, _), 7)

’My Functor’(dog)

Atoms and numbers are called atomic terms.

Atoms and compound terms are called predicates.

Terms without variables are called ground terms.

Ulle Endriss (ulle@illc.uva.nl) 10



Basic Prolog LP&ZT 2005

Facts and Rules

Facts are predicates followed by a dot. Facts are used to define
something as being unconditionally true.

bigger(elephant, horse).

parent(john, mary).

Rules consist of a head and a body separated by :-. The head of a
rule is true if all predicates in the body can be proved to be true.

grandfather(X, Y) :-

father(X, Z),

parent(Z, Y).

Ulle Endriss (ulle@illc.uva.nl) 11



Basic Prolog LP&ZT 2005

Programs and Queries

Programs: Facts and rules are called clauses. A Prolog program is
a list of clauses.

Queries are predicates (or sequences of predicates) followed by a
dot. They are typed in at the Prolog prompt and cause the system
to reply.

?- is_bigger(horse, X), is_bigger(X, dog).

X = donkey

Yes

Ulle Endriss (ulle@illc.uva.nl) 12



Basic Prolog LP&ZT 2005

Built-in Predicates

• Compiling a program file:

?- consult(’big-animals.pl’).

Yes

• Writing terms on the screen:

?- write(’Hello World!’), nl.

Hello World!

Yes

Ulle Endriss (ulle@illc.uva.nl) 13



Basic Prolog LP&ZT 2005

Matching

Two terms match if they are either identical or if they can be made
identical by substituting their variables with suitable ground terms.

We can explicitly ask Prolog whether two given terms match by
using the equality-predicate = (written as an infix operator).

?- born(mary, yorkshire) = born(mary, X).

X = yorkshire

Yes

The variable instantiations are reported in Prolog’s answer.

Ulle Endriss (ulle@illc.uva.nl) 14



Basic Prolog LP&ZT 2005

Matching (cont.)

?- f(a, g(X, Y)) = f(X, Z), Z = g(W, h(X)).

X = a

Y = h(a)

Z = g(a, h(a))

W = a

Yes

?- p(X, 2, 2) = p(1, Y, X).

No

Ulle Endriss (ulle@illc.uva.nl) 15



Basic Prolog LP&ZT 2005

The Anonymous Variable

The variable _ (underscore) is called the anonymous variable.
Every occurrence of _ represents a different variable (which is why
instantiations are not being reported).

?- p(_, 2, 2) = p(1, Y, _).

Y = 2

Yes

Ulle Endriss (ulle@illc.uva.nl) 16



Basic Prolog LP&ZT 2005

Answering Queries

Answering a query means proving that the goal represented by that
query can be satisfied (according to the programs currently in
memory).

Recall: Programs are lists of facts and rules. A fact declares
something as being true. A rule states conditions for a statement
being true.

Ulle Endriss (ulle@illc.uva.nl) 17



Basic Prolog LP&ZT 2005

Answering Queries (cont.)

• If a goal matches with a fact, then it is satisfied.

• If a goal matches the head of a rule, then it is satisfied if the
goal represented by the rule’s body is satisfied.

• If a goal consists of several subgoals separated by commas, then
it is satisfied if all its subgoals are satisfied.

• When trying to satisfy goals with built-in predicates like
write/1 Prolog also performs the associated action (e.g.
writing on the screen).

Ulle Endriss (ulle@illc.uva.nl) 18



Basic Prolog LP&ZT 2005

Example: Mortal Philosophers

Consider the following argument:

All men are mortal.

Socrates is a man.

Hence, Socrates is mortal.

It has two premises and a conclusion.

Ulle Endriss (ulle@illc.uva.nl) 19



Basic Prolog LP&ZT 2005

Translating it into Prolog

The two premises can be expressed as a little Prolog program:

mortal(X) :- man(X).

man(socrates).

The conclusion can then be formulated as a query:

?- mortal(socrates).

Yes

Ulle Endriss (ulle@illc.uva.nl) 20



Basic Prolog LP&ZT 2005

Goal Execution

(1) The query mortal(socrates) is made the initial goal.

(2) Prolog looks for the first matching fact or head of rule and
finds mortal(X). Variable instantiation: X = socrates.

(3) This variable instantiation is extended to the rule’s body, i.e.
man(X) becomes man(socrates).

(4) New goal: man(socrates).

(5) Success, because man(socrates) is a fact itself.

(6) Therefore, also the initial goal succeeds.

Ulle Endriss (ulle@illc.uva.nl) 21



Basic Prolog LP&ZT 2005

Programming Style

It is extremely important that you write programs that are easily
understood by others! Some guidelines:

• Use comments to explain what you are doing:

/* This is a long comment, stretching over several

lines, which explains in detail how I have implemented

the aunt/2 predicate ... */

aunt(X, Z) :-

sister(X, Y), % This is a short comment.

parent(Y, Z).

Ulle Endriss (ulle@illc.uva.nl) 22



Basic Prolog LP&ZT 2005

Programming Style (cont.)

• Separate clauses by one or more blank lines.

• Write only one predicate per line and use indentation:

blond(X) :-

father(Father, X),

blond(Father),

mother(Mother, X),

blond(Mother).

(Very short clauses may also be written in a single line.)

• Insert a space after every comma inside a compound term:

born(mary, yorkshire, ’01/01/1980’)

• Write short clauses with bodies consisting of only a few goals.
If necessary, split into shorter sub-clauses.

• Choose meaningful names for your variables and atoms.

Ulle Endriss (ulle@illc.uva.nl) 23



Basic Prolog LP&ZT 2005

Summary: Syntax

• All Prolog expression are made up from terms (numbers,
atoms, variables, or compound terms).

• Atoms start with lowercase letters or are enclosed in single
quotes; variables start with capital letters or the underscore.

• Prolog programs are lists of facts and rules (clauses).

• Queries are submitted to the system to initiate a computation.

• Some built-in predicates have special meaning.

Ulle Endriss (ulle@illc.uva.nl) 24



Basic Prolog LP&ZT 2005

Summary: Answering Queries

• When answering a query, Prolog tries to prove that the
corresponding goal is satisfiable (can be made true). This is
done using the rules and facts given in a program.

• A goal is executed by matching it with the first possible fact or
head of a rule. In the latter case the rule’s body becomes the
new goal.

• The variable instantiations made during matching are carried
along throughout the computation and reported at the end.

• Only the anonymous variable _ can be instantiated differently
whenever it occurs.

Ulle Endriss (ulle@illc.uva.nl) 25


