# ICA model, decorrelation, non-Gaussianity, and FastICA

Jarmo Hurri

## Purpose of this lecture

Provide the audience with an understanding of

- the ICA data model
- why and how the model can be solved.

#### **Contents**

- 1. definition of ICA model
- 2. linear dependencies and whitening
- 3. non-Gaussianity as a solution principle
- 4. kurtosis as a measure of non-Gaussianity
- 5. other measures of non-Gaussianity
- 6. the FastICA algorithm family

### **ICA-model**

- observed data  $\mathbf{x} = [x_1 \ x_2 \ \cdots \ x_m]^T$  (random vector)
- independent latent variables  $\mathbf{s} = [s_1 \ s_2 \ \cdots \ s_n]^T$  (random vector),  $f_{\mathbf{s}}(\mathbf{s}) = \prod_{i=1}^n f_{s_i}(s_i)$
- $\mathbf{x} = \mathbf{A}\mathbf{s} = \sum_{i=1}^{n} \mathbf{a}_{i} s_{i}, \ \mathbf{A} = [\mathbf{a}_{1} \ \mathbf{a}_{2} \ \cdots \ \mathbf{a}_{n}]$
- we observe only a sample from x, we have to solve both A and s with as few assumptions as possible

# ICA-mixture — examples



#### Limitations of the ICA model

- in general, assume that at least as many observables and hidden components,  $m \ge n$  (but, Patrik Wed.)
- ullet assume that  ${f A}$  invertible,  ${f W}={f A}^{-1}$
- component ordering & scale / sign indeterminacy:
  - $\mathbf{x} = \sum_{i} (\mathbf{a_i} \lambda_i) (s_i / \lambda_i)$
  - **P** permutation matrix,  $\mathbf{\Lambda} = \mathbf{diag}\left(\lambda_1, \lambda_2, \dots, \lambda_n\right)$

• 
$$\mathbf{x} = \mathbf{A}\mathbf{P}^{-1}\mathbf{\Lambda}^{-1}\mathbf{A}\mathbf{P}\mathbf{S}$$
 $= \mathbf{A}_*$ 

# Linear correlations (1/3)





# Linear correlations (2/3)



$$\bullet$$
  $\mathbf{C}_{\mathbf{x}} = \mathbf{E} \mathbf{D} \mathbf{E}^T$ 

$$\bullet$$
  $\mathbf{z} = \mathbf{E}^T \mathbf{x}$ 

$$\bullet \ \mathbf{C}_{\mathbf{z}} = \mathsf{E}\left\{\mathbf{z}\mathbf{z}^{T}\right\} = \mathsf{E}\left\{\mathbf{E}^{T}\mathbf{x}\mathbf{x}^{T}\mathbf{E}\right\} = \mathbf{E}^{T}\mathbf{E}\mathbf{D}\mathbf{E}^{T}\mathbf{E} = \mathbf{D}$$

# Linear correlations (3/3)

uncorrelated multivariate Gaussian is independent

$$f_{\mathbf{z}}(\mathbf{z}) = K \exp\left(-\frac{1}{2}\mathbf{z}^{T}\mathbf{C}_{\mathbf{z}}^{-1}\mathbf{z}\right)$$

$$= K \exp\left(-\sum_{i=1}^{n} \left(\frac{z_{i}}{\sqrt{2}\sigma_{i}}\right)^{2}\right)$$

$$= \prod_{i=1}^{n} \sqrt[n]{K}e^{-\left(\frac{z_{i}}{\sqrt{2}\sigma_{i}}\right)^{2}} = \prod_{i=1}^{n} f_{z_{i}}(z_{i})$$

# Whitening (1/4)



• 
$$\mathbf{z} = \mathbf{D}^{-1/2} \mathbf{E}^T \mathbf{x}$$
,  $\mathsf{E} \left\{ \mathbf{z} \mathbf{z}^T \right\} = \mathbf{I}$ 

# Whitening (2/4)



- removes linear dependencies
- normalizes variance of projections
- new problem: search for orthonormal basis
- "whitening": frequency contents in a decorrelated signal

# Whitening (3/4)

- let  $\mathbf{w} = \begin{bmatrix} w_1 \ w_2 \ \cdots \ w_n \end{bmatrix}^T$ ,  $\|\mathbf{w}\| = 1$
- let  $y = \mathbf{w}^T \mathbf{z}$ ,  $\mathsf{E} \{ \mathbf{z} \} = \mathbf{0}$

$$\operatorname{var} \{y\} = \operatorname{E} \{y^2\}$$

$$= \operatorname{E} \{\mathbf{w}^T \mathbf{z} \mathbf{z}^T \mathbf{w}\}$$

$$= \mathbf{w}^T \operatorname{E} \{\mathbf{z} \mathbf{z}^T\} \mathbf{w} = \|\mathbf{w}\|^2 = 1$$

# Whitening (4/4)

- let  $\mathbf{A}^{-1} = \mathbf{W}$
- ullet  $\mathbf{z} = \mathbf{V}\mathbf{x} \Leftrightarrow \mathbf{x} = \mathbf{V}^{-1}\mathbf{z}$
- $\mathbf{s} = \mathbf{A}^{-1}\mathbf{x} = \mathbf{W}\mathbf{x} = \underbrace{\mathbf{W}\mathbf{V}^{-1}}_{=\mathbf{W}_*}\mathbf{z} = \mathbf{W}_*\mathbf{z}$
- $\begin{array}{l} \bullet \ \mathbf{I} = \mathsf{E} \left\{ \mathbf{s} \mathbf{s}^T \right\} = \mathsf{E} \left\{ \mathbf{W}_* \mathbf{z} \mathbf{z}^T \mathbf{W}_*^T \right\} = \mathbf{W}_* \underbrace{\mathsf{E} \left\{ \mathbf{z} \mathbf{z}^T \right\}}_{=\mathbf{I}} \mathbf{W}_*^T = \\ \mathbf{W}_* \mathbf{W}_*^T \end{array}$

# Non-Gaussianity (1/3)

• central limit theorem: the sum of independent r.v's approaches a Gaussian distribution when  $n \to \infty$ 



# Non-Gaussianity (2/3)

uniform distributions

# Non-Gaussianity (3/3)

- assume that at most one component of s has a normal distribution
- when components mixed, mixture "closer" to a Gaussian than the originals
- $\Rightarrow$  components can be found by searching for maximally non-Gaussian linear combinations of the observed data  ${\bf x}$

# Kurtosis (1/2)

- a measure of non-Gaussianity
- measures the peaknedness of a (unimodal) distribution

$$\kappa_4\left(y\right) = \mathsf{E}\left\{y^4\right\} - \underbrace{3\left(\mathsf{E}\left\{y^2\right\}\right)^2}_{=3 \text{ if } \mathsf{E}\left\{y\right\} = 0 \text{ and whitened} }$$



# Kurtosis (2/2)

- if  $y_1$  and  $y_2$  are statistically independent,  $\kappa_4 (\alpha_1 y_1 + \alpha_2 y_2) = \alpha_1^4 \kappa_4 (y_1) + \alpha_2^4 \kappa_4 (y_2)$
- solves the ICA problem when the model holds
- can be optimized with a number of different algorithms

# FastICA (1/6)

- whitened data z
- linear transformation  $y = \mathbf{w}^T \mathbf{z}$ ,  $\text{var}\{y\} = 1 \Leftrightarrow \|\mathbf{w}\| = 1$
- maximize kurtosis  $f(\mathbf{w}) = \kappa_4(y) = \mathsf{E}\left\{y^4\right\}$  with constraint  $h(\mathbf{w}) = \|\mathbf{w}\|^2 1 = 0$
- at optimum  $f'(\mathbf{w}) + \lambda h'(\mathbf{w}) = \mathbf{0}^T \Rightarrow 4\mathsf{E}\left\{\left(\mathbf{w}^T\mathbf{z}\right)^3\mathbf{z}\right\} + 2\lambda\mathbf{w} = \mathbf{0}$

## FastICA (2/6)

$$ullet \lambda_* = -rac{\lambda}{2} \Rightarrow \lambda_* \mathbf{w} = \mathsf{E}\left\{ \left(\mathbf{w}^T \mathbf{z}\right)^3 \mathbf{z} \right\}$$

ullet  $\Rightarrow$  <u>direction</u> of **w** fixed under iteration

$$\mathbf{w}(k+1) = \mathsf{E}\left\{\left(\mathbf{w}(k)^T\mathbf{z}\right)^3\mathbf{z}\right\}$$

additional twist needed for fast convergence:

$$\mathbf{w}(k+1) = \mathsf{E}\left\{\left(\mathbf{w}(k)^T\mathbf{z}\right)^3\mathbf{z}\right\} - 3\mathbf{w}(k)$$

# FastICA (3/6)

• summary of FastICA:

$$\mathbf{w}_{\mathsf{I}}(k+1) = \mathsf{E}\left\{\left(\mathbf{w}(k)^{T}\mathbf{z}\right)^{3}\mathbf{z}\right\} - 3\mathbf{w}(k)$$

$$\mathbf{w}(k+1) = \frac{\mathbf{w}_{\mathsf{I}}(k+1)}{\|\mathbf{w}_{\mathsf{I}}(k+1)\|}$$

# FastICA (4/6)

- ullet kurtosis  $\mathbf{E}\left\{y^4\right\}$  sensitive to outliers
- FastICA for a general nonlinearity  $g(y) = G'(y), \ G$  non-quadratic:

$$\mathbf{w}_{\mathsf{I}}(k+1) = \mathsf{E}\left\{g\left(\mathbf{w}(k)^{T}\mathbf{z}\right)\mathbf{z}\right\} - \mathsf{E}\left\{g'\left(\mathbf{w}^{T}\mathbf{z}\right)\right\}\mathbf{w}$$

• for example,  $g(y) = \tanh(\alpha y)$ 

# **FastICA** (5/6)

- multiple components: deflation or symmetric algorithm
- deflation: intermediate Gram-Schmidt orthogonalization ( $\mathbf{W} = [\mathbf{w}_1 \ \mathbf{w}_2 \ \cdots \ \mathbf{w}_{\ell-1}]^T$ )

$$\mathbf{w}_{\ell,\mathsf{I}}(k+1) = \mathsf{E}\left\{\left(\mathbf{w}_{\ell}(k)^{T}\mathbf{z}\right)^{3}\mathbf{z}\right\} - 3\mathbf{w}_{\ell}(k)$$

$$\mathbf{w}_{\ell,\mathsf{II}}(k+1) = \mathbf{w}_{\ell,\mathsf{I}} - \mathbf{W}^{T}\mathbf{W}\mathbf{w}_{\ell,\mathsf{I}}$$

$$\mathbf{w}_{\ell}(k+1) = \frac{\mathbf{w}_{\ell,\mathsf{II}}(k+1)}{\|\mathbf{w}_{\ell,\mathsf{II}}(k+1)\|}$$

# **FastICA** (6/6)

 symmetric algorithm: simultaneous updates / orthogonalization

$$\mathbf{w}_{\ell,\mathsf{I}}(k+1) = \mathsf{E}\left\{\left(\mathbf{w}_{\ell}(k)^{T}\mathbf{z}\right)^{3}\mathbf{z}\right\} - 3\mathbf{w}_{\ell}(k),$$

$$\ell = 1, \dots, n$$

$$\mathbf{W}(k+1) = \mathbf{W}_{\mathsf{I}}(k+1)^{T}\left(\mathbf{W}_{\mathsf{I}}(k+1)\mathbf{W}_{\mathsf{I}}(k+1)^{T}\right)^{-1/2}$$

## **Summary**

- ullet linear model  ${f x}={f As},$  components of  ${f s}$  statistically independent
- observe x, solve A and s (except multiplier, order)
- whitening decorrelates and unifies variance
- after whitening solve for orthogonal basis by maximizing non-Gaussianity
- a family of fixed-point algorithms (FastICA)

#### What else...

• today: exercises and handouts

• tomorrow: Patrik