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Purpose of this lecture

Provide the audience with an understanding of

e the ICA data model

e why and how the model can be solved.



Contents

. definition of ICA model

. linear dependencies and whitening

. non-Gaussianity as a solution principle

. kurtosis as a measure of non-Gaussianity
. other measures of non-Gaussianity

. the FastlCA algorithm family



ICA-model

o observed data x = [z1 23 --- 2]  (random vector)

e independent latent variables s = [s; o -+ s,]"
(random vector), fs(s) =[] fs, (si)

ex=As=> " as;, A=[a;a - a,

e we observe only a sample from x, we have to solve
both A and s with as few assumptions as possible




ICA-mixture — examples
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Limitations of the ICA model

e Iin general, assume that at least as many observables
and hidden components, m > n (but, Patrik Wed.)

e assume that A invertible W = A~!

e component ordering & scale / sign indeterminacy:

x =) (@) (si/ )
P permutation matrix, A = diag (A1, Ao, ..., \p)

X = ,AP‘lA‘l,w



Linear correlations (1/3)
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Linear correlations (2/3)

e C, = EDE!
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Linear correlations (3/3)

e uncorrelated multivariate Gaussian is independent

fa(z) = Kexp (—%ZTCZ1Z>
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Whitening (1/4)




Whitening (2/4)

e removes linear depen-
dencies

e normalizes variance of
projections

e new problem: search for
orthonormal basis

e “whitening": frequency contents in a decorrelated signal



Whitening (3/4)

o let w=[w wy --- wy), ||w| =1

oelety=wlz E{z} =0

var{y} = E{y’}
— E{WTZZTW}

= w E{zz'} w = |w|* =1



Whitening (4/4)

elet A1 =W
ez=Vx<ex=Vig

es=Ax=Wx=WV'lz=W.z
=W,

I =E{ss’"! = E{W,zz"WI! = W, E{zz' | WT =
o 1= E{ss"} = E{W.2z' W'} () !

W, W7



Non-Gaussianity (1/3)

e central limit theorem: the sum of independent r.v's
approaches a Gaussian distribution when n — oo
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Non-Gaussianity (2/3)

uniform distributions



Non-Gaussianity (3/3)

e assume that at most one component of s has a normal
distribution

e when components mixed, mixture “closer” to a Gaussian
than the originals

e = components can be found by searching for
maximally non-Gaussian linear combinations of the ob-

served data x



Kurtosis (1/2)

e 2 measure of non-Gaussianity

e measures the peaknedness of a (unimodal) distribution

eri(y)=E{y'}—  3(E{y})
= 3 if E{y} = 0 and whitened

raly) = —15 ka(y) =0 ke (y) =12
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Kurtosis (2/2)

e if Y1 and y, are statistically independent,
ka (C1y1 + aya) = o ke (Y1) + s kg (y2)

e solves the ICA problem when the model holds

e can be optimized with a number of different algorithms



FastiICA (1/6)

e whitened data z

T

e linear transformation y = w'z,var{y} =1 < ||w| =1

e maximize kurtosis f(w) = k4 (y) = E{y*} with con-
straint h(w) = [|w||° —1 =0

e at optimum f'(w) + AW/ (w) = 01 = 4E { (WTZ)BZ} +
22w =0



FastiICA (2/6)

o\, = —% = AW = E{(WTZ)SZ}

e = direction of w fixed under iteration

w(k+1) = E{ (w(k)'2)" 2}
e additional twist needed for fast convergence:

w(k+1)=E {(w(k)TZ)3 z} — 3w(k)



FastICA (3/6)

e summary of FastICA:




FastiICA (4/6)

e kurtosis E {y4} sensitive to outliers

e FastICA for a general nonlinearity g(y) = G'(y), G
non-quadratic:

wi(k+1)=E{g(w(k)'z)z} —E{¢ (w'z)} w

e for example, g(y) = tanh(ay)



FastICA (5/6)

e multiple components: deflation or symmetric algorithm

e deflation: intermediate Gram-Schmidt orthogonaliza-
tion (W — [Wl W9 - Wg_l]T)

wolk+1) = E {(Wg(k)TZ)SZ} — 3w(k)

won(k +1) = wy — W Wwy,
Wg,”(k T 1)
[wen(k + 1)

Wg(/{ -+ 1) —




FastICA (6/6)

e symmetric algorithm: simultaneous updates / orthogo-
nalization

wii(k+1) = E{(wi(k)"z)’z} — 3wi(k),
{=1,...,n

W(k+1) = Wilk+ 1T (Wik+ )Wk +1)7) "



Summary

linear model x = As, components of s statistically
independent

observe x, solve A and s (except multiplier, order)
whitening decorrelates and unifies variance

after whitening solve for orthogonal basis by maximizing
non-Gaussianity

a family of fixed-point algorithms (FastICA)



What else...

e today: exercises and handouts

e tomorrow: Patrik



