Mixture Models and the EM Algorithm

Christopher M. Bishop

Microsoft Research, Cambridge

2006 Advanced Tutorial Lecture Series, CUED

Applications of Machine Learning

• Web search, email spam detection, collaborative filtering, game player ranking, video games, real-time stereo, protein folding, image editing, jet engine anomaly detection, fluorescence in-situ hybridisation, signature verification, satellite scatterometer, cervical smear screening, human genome analysis, compiler optimization, handwriting recognition, breast X-ray screening, fingerprint recognition, fast spectral analysis, one-touch microwave oven, monitoring of premature babies, text/graphics discrimination, event selection in high energy physics, electronic nose, real-time tokamak control, crash log analysis, QSAR, backgammon, sleep EEG staging, fMRI analysis, speech recognition, natural language processing, face detection, data visualization, computer Go, satellite track removal, iris recognition, ...

Three Important Developments

- 1. Adoption of a Bayesian framework
- 2. Probabilistic graphical models
- 3. Efficient techniques for approximate inference

Illustration: Bayesian Ranking

- Goal is to rank player skill from outcome of games
- Conventional approach: Elo (used in chess)
 - maintains a single strength value for each player
 - cannot handle team games, or more than 2 players

Bayesian Ranking: TrueSkill[™]

- Ralf Herbrich, Thore Graepel, Tom Minka
- Xbox 360 Live (November 2005)
 - millions of players
 - billions of service-hours
 - hundreds of thousands of game outcomes per day
- First "planet-scale" application of Bayesian methods?
- NIPS (2006) oral

Expectation Propagation on a Factor Graph

New Book

- Springer (2006)
- 738 pages, hardcover
- Full colour
- Low price
- 431 exercises + solutions
- Matlab software and companion text with lan Nabney

http://research.microsoft.com/~cmbishop/PRML

Mixture Models and EM

- K-means clustering
- Gaussian mixture model
- Maximum likelihood and EM
- Bayesian GMM and variational inference

Old Faithful

Old Faithful Data Set

K-means Algorithm

- Goal: represent a data set in terms of *K* clusters each of which is summarized by a prototype μ_k
- Initialize prototypes, then iterate between two phases:
 - E-step: assign each data point to nearest prototype
 - M-step: update prototypes to be the cluster means
- Simplest version is based on Euclidean distance
 - re-scale Old Faithful data

Responsibilities

• *Responsibilities* assign data points to clusters

$$r_{nk} \in \{\mathsf{0},\mathsf{1}\}$$

such that

$$\sum_{k} r_{nk} = \mathbf{1}$$

• Example: 5 data points and 3 clusters

$$(r_{nk}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

K-means Cost Function

Minimizing the Cost Function

• E-step: minimize J w.r.t. r_{nk}

$$J = \sum_{n \in \mathcal{N}} \sum_{n \in \mathcal{N}} \left\| \sum_{n \in \mathcal{N}} - M_n \right\|^2$$

• M-step: minimize J w.r.t
$$\mu_k$$

minimize J w.r.t
$$\mu_k$$

 $M_j = \sum_{n=1}^{N} r_{nj} \chi_n$
 $M_j = \sum_{n=1}^{N} r_{nj} \chi_n$
 $M_j = \sum_{n=1}^{N} r_{nj} \chi_n$

 Convergence guaranteed since there is a finite number of possible settings for the responsibilities

Probabilistic Clustering

- Represent the probability distribution of the data as a *mixture model*
 - captures uncertainty in cluster assignments
 - gives model for data distribution
 - Bayesian mixture model allows us to determine K
- Consider mixtures of *Gaussians*

The Gaussian Distribution

• Multivariate Gaussian

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{d/2}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$$

mean covariance

Likelihood Function

• Data set

$$D = {\mathbf{x}_n} \quad n = 1, \dots, N$$

- Consider first a single Gaussian
- Assume observed data points generated independently

$$p(D|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \prod_{n=1}^{N} \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}, \boldsymbol{\Sigma})$$

• Viewed as a function of the parameters, this is known as the *likelihood function*

Maximum Likelihood

- Set the parameters by maximizing the likelihood function
- Equivalently maximize the log likelihood

$$\ln p(D|\mu, \Sigma) = -\frac{N}{2} \ln |\Sigma| - \frac{Nd}{2} \ln(2\pi)$$
$$-\frac{1}{2} \sum_{n=1}^{N} (\mathbf{x}_n - \mu)^{\mathsf{T}} \Sigma^{-1} (\mathbf{x}_n - \mu)$$
$$O = \sum_{h=1}^{N} (\underline{\mathbf{x}}_n - \underline{\mathbf{x}}) \implies (\underline{\mu} = \frac{1}{N} \sum_{n=1}^{N} \underline{\mathbf{x}}_n)$$

Maximum Likelihood Solution

• Maximizing w.r.t. the mean gives the sample mean

$$\boldsymbol{\mu}_{\mathsf{ML}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n$$

• Maximizing w.r.t covariance gives the sample covariance

$$\Sigma_{\mathsf{ML}} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \boldsymbol{\mu}_{\mathsf{ML}}) (\mathbf{x}_n - \boldsymbol{\mu}_{\mathsf{ML}})^{\mathsf{T}}$$

Gaussian Mixtures

• Linear super-position of Gaussians

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

\$GC)

• Normalization and positivity require

$$\sum_{k=1}^{K} \pi_k = 1 \qquad 0 \leqslant \pi_k \leqslant 1$$

• Can interpret the mixing coefficients as prior probabilities

$$p(\mathbf{x}) = \sum_{k=1}^{K} p(k)p(\mathbf{x}|k)$$

Example: Mixture of 3 Gaussians

Contours of Probability Distribution

Surface Plot

Sampling from the Gaussian

- To generate a data point:
 - first pick one of the components with probability π_k
 - then draw a sample \mathbf{x}_n from that component
- Repeat these two steps for each new data point

Synthetic Data Set

Fitting the Gaussian Mixture

- We wish to invert this process given the data set, find the corresponding parameters:
 - mixing coefficients
 - means
 - covariances
- If we knew which component generated each data point, the maximum likelihood solution would involve fitting each component to the corresponding cluster
- Problem: the data set is unlabelled
- We shall refer to the labels as *latent* (= hidden) variables

Synthetic Data Set Without Labels

Posterior Probabilities

- We can think of the mixing coefficients as prior probabilities for the components
- For a given value of x we can evaluate the corresponding posterior probabilities, called *responsibilities*
- These are given from Bayes' theorem by

$$\gamma_k(\mathbf{x}) \equiv p(k|\mathbf{x}) = \frac{p(k)p(\mathbf{x}|k)}{p(\mathbf{x})}$$

$$= \frac{\pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

Posterior Probabilities (colour coded)

Latent Variables

Maximum Likelihood for the GMM

• The log likelihood function takes the form

$$\ln p(D|\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right\}$$

- Note: sum over components appears *inside* the log
- There is no closed form solution for maximum likelihood

Over-fitting in Gaussian Mixture Models

 Singularities in likelihood function when a component 'collapses' onto a data point:

$$\mathcal{N}(\mathbf{x}_n | \mathbf{x}_n, \sigma_j^2 \mathbf{I}) = \frac{1}{(2\pi)^{1/2}} \frac{1}{\sigma_j}$$

then consider $\sigma_j \to 0$

つく

- Likelihood function gets larger as we add more components (and hence parameters) to the model
 - not clear how to choose the number *K* of components

Problems and Solutions

- How to maximize the log likelihood
 - solved by expectation-maximization (EM) algorithm
- How to avoid singularities in the likelihood function
 - solved by a Bayesian treatment
- How to choose number *K* of components
 - also solved by a Bayesian treatment

EM Algorithm – Informal Derivation

 Let us proceed by simply differentiating the log likelihood $lnp(D|M,T,Z) = \sum_{n=1}^{N} ln \left\{ \sum_{k=1}^{K} T_k N_{nk} \right\} \qquad N_{nk} = N(X_n|Z_k, \Xi_k)$ $\frac{\pi_j N_{nj}}{\sum_{k \in k} \pi_k N_{nk}} = \frac{\sum_{i=1}^{n} \pi_i}{\sum_{k \in k} \pi_i}$ $O = \sum_{n=1}^{n}$ (×n-~;) Ni (X) Mj Zsjn

EM Algorithm – Informal Derivation

• Similarly for the covariances

$$\Sigma_j = \frac{\sum_{n=1}^N \gamma_j(\mathbf{x}_n)(\mathbf{x}_n - \boldsymbol{\mu}_j)(\mathbf{x}_n - \boldsymbol{\mu}_j)^{\mathsf{T}}}{\sum_{n=1}^N \gamma_j(\mathbf{x}_n)}$$

• For mixing coefficients use a Lagrange multiplier to give

$$\pi_j = \frac{1}{N} \sum_{n=1}^N \gamma_j(\mathbf{x}_n)$$

EM Algorithm – Informal Derivation

- The solutions are not closed form since they are coupled
- Suggests an iterative scheme for solving them:
 - make initial guesses for the parameters
 - alternate between the following two stages:
 - 1. E-step: evaluate responsibilities
 - 2. M-step: update parameters using ML results
- Each EM cycle guaranteed not to decrease the likelihood

Relation to K-means

- Consider GMM with common covariances
- Take limit $\epsilon \to 0$
- Responsibilities become binary

$$\gamma_i(\mathbf{x}_n) = \frac{\pi_i \exp\left\{-\|\mathbf{x}_n - \boldsymbol{\mu}_i\|^2 / 2\epsilon\right\}}{\sum_j \pi_j \exp\left\{-\|\mathbf{x}_n - \boldsymbol{\mu}_j\|^2 / 2\epsilon\right\}} \to r_{ni} \in \{0, 1\}$$

 $\in \underline{\top}$

• EM algorithm is precisely equivalent to K-means

Bayesian Mixture of Gaussians

- Include prior distribution over parameters lacksquare $\sum_{i=1}^{n} = \sum_{i=1}^{n}$
- Make predictions by *marginalizing* over parameters \bullet - c.f. point estimate from maximum likelihood

 $p(\boldsymbol{\mu}, \boldsymbol{\Lambda}, \boldsymbol{\pi})$

Bayesian Mixture of Gaussians

- Conjugate priors for the parameters:
 - Dirichlet prior for mixing coefficients

$$p(\boldsymbol{\pi}) = C(\boldsymbol{\alpha}_0) \prod_{k=1}^K \pi_k^{\alpha_0 - 1}$$

Normal-Wishart prior for means and precisions

$$p(\boldsymbol{\mu}, \boldsymbol{\Lambda}) = \prod_{k=1}^{K} \mathcal{N}(\boldsymbol{\mu}_{k} | \mathbf{m}_{0}, \beta_{0}^{-1} \boldsymbol{\Lambda}_{k}^{-1}) \mathcal{W}(\boldsymbol{\Lambda}_{k} | \mathbf{W}_{0}, \nu_{0})$$

where the Wishart distribution is given by

$$\mathcal{W}(\Lambda|\mathbf{W},\nu) \propto |\Lambda|^{(\nu-d-1)/2} \exp\left(-\frac{1}{2}\mathsf{Tr}(\mathbf{W}^{-1}\Lambda)
ight)$$

 $\Lambda = \Sigma^{-1}$

Variational Inference

- Exact solution is intractable
- Variational inference:
 - extension of EM
 - alternate between updating posterior over parameters and posterior over latent variables
 - again convergence is guaranteed

Illustration: a single Gaussian

• Convenient to work with precision

$$\tau = 1/\sigma^2$$

• Likelihood function

$$p(D|\mu,\tau) = \left(\frac{\tau}{2\pi}\right)^{N/2} \exp\left\{-\frac{\tau}{2}\sum_{n=1}^{N}(x_n-\mu)^2\right\}$$

• Prior over parameters

$$p(\mu, au)$$

Variational Inference

$$p(p) = \int p(p(r,\tau)p(r,\tau) dr d\tau$$

• Goal is to find true posterior distribution

$$p(\mu,\tau|D) = \frac{p(D|\mu,\tau)p(\mu,\tau)}{p(D)}$$

• Factorized approximation

$$q(\mu, \tau) = q(\mu)q(\tau)$$

• Alternately update each factor to minimize a measure of closeness between the true and approximate distributions

Initial Configuration

After Updating $q(\mu)$

After Updating $q(\tau)$

Converged Solution

Variational Equations for GMM

$$q^{\star}(\mathbf{z}) = \prod_{n=1}^{N} \prod_{k=1}^{K} r_{nk}^{z_{nk}}$$

$$r_{nk} \propto \tilde{\pi}_{k} \tilde{\Lambda}_{k}^{1/2} \exp\left\{-\frac{d}{2\beta_{k}} - \frac{\nu_{k}}{2} (\mathbf{x}_{n} - \mathbf{m}_{k})^{\mathrm{T}} \mathbf{W}_{k} (\mathbf{x}_{n} - \mathbf{m}_{k})\right\}$$

$$\ln \tilde{\Lambda}_{k} = \sum_{i=1}^{d} \psi\left(\frac{\nu_{k} + 1 - i}{2}\right) + d \ln 2 - \ln |\mathbf{W}_{k}|$$

$$\ln \tilde{\pi}_{k} = \psi(\alpha_{k}) - \psi(\bar{\alpha})$$

$$q^{\star}(\pi) = \mathcal{D}(\pi | \alpha) \qquad \alpha_{k} = \alpha_{0} + N_{k} \qquad \nu_{k} = \nu_{0} + N_{k}$$

$$q^{\star}(\boldsymbol{\mu}_{k}, \boldsymbol{\Lambda}_{k}) = \mathcal{N}(\boldsymbol{\mu}_{k} | \mathbf{m}_{k}, \beta_{k}^{-1} \boldsymbol{\Lambda}_{k}^{-1}) \mathcal{W}(\boldsymbol{\Lambda}_{k} | \mathbf{W}_{k}, \nu_{k})$$

$$\mathbf{m}_{k} = \frac{1}{\beta_{k}} \left(\beta_{0} \mathbf{m}_{0} + N_{k} \overline{\mathbf{x}}_{k}\right) \qquad \beta_{k} = \beta_{0} + N_{k}$$

$$\mathbf{W}_{k}^{-1} = \mathbf{W}_{0}^{-1} + N_{k} \mathbf{S}_{k} + \frac{\beta_{0} N_{k}}{\beta_{0} + N_{k}} (\overline{\mathbf{x}}_{k} - \mathbf{m}_{0}) (\overline{\mathbf{x}}_{k} - \mathbf{m}_{0})^{\mathrm{T}}$$

Sufficient Statistics

$$N_{k} = \sum_{n=1}^{N} \langle z_{nk} \rangle$$

$$\overline{\mathbf{x}}_{k} = \frac{1}{N_{k}} \sum_{n=1}^{N} \langle z_{nk} \rangle \mathbf{x}_{n}$$

$$\mathbf{S}_{k} = \frac{1}{N_{k}} \sum_{n=1}^{N} \langle z_{nk} \rangle (\mathbf{x}_{n} - \overline{\mathbf{x}}_{k}) (\mathbf{x}_{n} - \overline{\mathbf{x}}_{k})^{\mathsf{T}}$$

 Small computational overhead compared to maximum likelihood EM

Bayesian Model Comparison

• Multiple models (e.g. different values of *K*) with priors

 $p(\mathcal{M}_i)$

• Posterior probabilities

```
p(\mathcal{M}_i|D) \propto p(D|\mathcal{M}_i)p(\mathcal{M}_i)
```

- For equal priors, models are compared using evidence $p(D|\mathcal{M}_i)$
- Variational inference maximizes lower bound on $p(D|\mathcal{M}_i)$

Evidence vs. *K* for Old Faithful

Bayesian Model Complexity

Take-home Messages

- Maximum likelihood gives severe over-fitting
 - singularities
 - favours ever larger numbers of components
- Bayesian mixture of Gaussians
 - no singularities
 - determines optimal number of components
- Variational inference
 - effective solution for Bayesian GMM
 - little computational overhead compared to EM

Viewgraphs, tutorials and publications available from:

http://research.microsoft.com/~cmbishop

Λ