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NEW DATA MINING TECHNIQUES FOR MACROFLOWS
DELIMITATION IN CONGESTION CONTROL MANAGEMENT

DARIUS BUFNEA (1)

Abstract. State of the art approaches in Internet congestion control suggest the
collaboration between streams in a so called macroflow, instead of the current
approach, where streams compete with each other for scarce bandwidth. How-
ever, the macroflows granularity follows a simple approach, a macroflow being
constructed on host pair bases. This paper presents new data mining techniques
for grouping flows into macroflows based on their similar behavior over time.

1. Introduction

We are proposing in this paper a new method for grouping flows into macroflows
based on their similar behavior. This paper generalizes and puts in a common tem-
plate the methods suggested by the author in [2] and in [3], revealing that most state
variables maintained inside the TCP/IP stack of a sender can be used in a similar
fashion for macroflows identification. Also, we complement from a sender’s perspec-
tive, the method designed to be implemented inside a receiver stack suggested in [4].
The advantage is a finer macroflow granularity which can be extended to all flows
that share the same source LAN and the same destination LAN or even to the flows
that share the same network bottleneck.

2. Formal Models

Our model is built around a highly accessed upload server (TCP sender) that
maintains continuous data flows towards its clients. The goal is to infer in the incom-
ing connection subsets containing connections having a similar behavior over time. A
Congestion Manager running inside the TCP/IP stack of our upload server will treat
such an inferred subset as a macroflow. We denote by S the upload server itself or
its Internet IP address. Each incoming connection from a client is identified by a pair
(CIP :Cport) where CIP is the client IP’s address and Cport is the client used port
for the outgoing connection. During a connection life time, server S will periodically
measure and store values of some state variables such as the congestion window’s size
or the round trip time.
Round Trip Time Vectors. From the point of view of the upload server S, the
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incoming connection f = (CIP : Cport) during the time interval (tb, te) is described by
the Round Trip Time (RTT) vector V = (r1, r2, . . . , rk) where: (tb, te) ⊆ (CIP : Cport)
connection’s life time; ∆t is the interval between two consecutive measurements;
k = (te − tb)/∆t; ri is the RTT value measured at the tb + ∆t ∗ (i− 1) time moment.
We say that the RTT vector associated to a connection describes the connection’s
behavior. For two connections f1 and f2 coming from the same client or LAN the
RTT values measured at the same moment in time are quasi-identical. Therefore,
their associated RTT vectors during the same time interval are also quasi-identical.
This means that f1 and f2 manifest a similar behavior, which justifies their placement
in the same macroflow.
Congestion Window Size Vectors. From the point of view of the upload server S,
the incoming connection f=(CIP : Cport) during the time interval (tb, te) is described
by the Congestion Window Size (CWnd) vector V = (r1, r2, . . . , rk) where: (tb, te) ∈
(CIP : Cport) connection’s life time; ∆t is a fixed time interval; k = (te − tb)/∆t;
ri = 0 if the congestion window size decreased at least once during the time interval
Ti = [tb+∆t∗(i−1), tb+∆t∗i), and ri = 1 otherwise (e.g. the congestion window size
increased or remained constant during that time interval), 1 ≤ i ≤ k. For a connec-
tion f , the congestion window size represents its own estimation about the network’s
available transport capacity. A decrease of the congestion window size occurs when a
congestion situation appears along the network path from S towards the destination
host. If, during a larger time interval, the congestion window size decreases for two
connections f1 and f2 in approximately the same time this means that congestion
happens for both of them together, in the same moments. So it is very likely that
these two connections share a bottleneck. For this reasons, it is justified to place f1

and f2 in the same macroflow.
Similarity and Distance Measures in the RTT Vector Space. We associated
to a connection an RTT vector describing its behavior. The RTT vector reflects the
RTT temporal evolution of that flow. Two connections will be considered more simi-
lar as they are more linearly correlated. A statistical measure for the linear correlation
of two vectors is the Pearson coefficient. Given two connections, f1 = (C1

IP : C1
port)

and f2 = (C2
IP : C2

port) measured during the time interval (tb, te) and their associated
RTT vectors V1 = (r11, r12, . . . , r1k) and V2 = (r21, r22, . . . , r2k), the Pearson correla-

tion coefficient of f1 and f2 is defined as: P (V1, V2) =

k∑
i=1

(r1i−r1)·(r2i−r2)

√√√√
(

k∑
i=1

(r1i−r1)2

)(
k∑

i=1
(r2i−r2)2

) ,

where r1 and r2 are the mean values of V1 and V2. The similarity measure we use for
comparing connections will be: P (V1, V2) = P (V1,V2)+1

2 . For differentiating connec-
tions the distance function is defined by: dP (V1, V2) = 1− P (V1, V2).
Similarity and Distance Measures in the CWnd Vector Space. This sec-
tion will reveal the distance and the similarity measures used in clustering pro-
cess in the CWnd vector space. A Cwnd vector reflects the Cwnd timely evolu-
tion of that flow. Two connections will be considered more similar as they meet
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congestion together more often. We express next the similarity of two given con-
nections, f1 = (C1

IP : C1
port) and f2 = (C2

IP : C2
port) measured during the time

interval (tb, te), in terms of their associated CWnd vectors V1 = (r11, r12, . . . , r1k) and
V2 = (r21, r22, . . . , r2k).

Definition 1. Given a radius step, which is an integer number, 0 ≤ step ≤ k, and a
time interval Ti = [tb + ∆t ∗ (i− 1), tb + ∆t ∗ i), 1 ≤ i ≤ k we call f1 and f2:
a) Congestion Neighbors on interval Ti iif either: r1i = r2i = 0, which means that
during Ti both streams faced congestion or r1i 6= r2i and ∃d ∈ {1, 2} so that rdi = 0
and ∃j, max{1, i− step} ≤ j ≤ min{k, i + step} so that r3−d,j = 0.
b) Congestion Disassociated on interval Ti iif r1i 6= r2i and rdi = 0, d ∈ {0, 1} and
not ∃ j, max{1, i− step} ≤ j ≤ min{k, i + step} so that r1−d,j = 0.

Definition 2. Given a radius step, which is an integer number, 0 ≤ step << k we
define for f1 and f2 the following sets:
a) CN(V1, V2) = {i | f1 and f2 are Congestion Neighbors on Ti, i = 1..k};
b) CD(V1, V2) = {i | f1 and f2 are Congestion Disassociated on Ti, i = 1..k}.
Given a radius step, 0 ≤ step << k, the congestion similarity coefficient of f1 and f2

is CS(V1, V2) =

{
|CN(V1,V2)|−|CD(V1,V2)|
|CN(V1,V2)|+|CD(V1,V2)| , if |CN(V1, V2)|+ |CD(V1, V2)| ≥ 0,

0, otherwise
. For

differentiating connections the congestion distance function is defined by: dC(V1, V2) =
1−CS(V1,V2)

2 .

3. Macroflows identification using clustering techniques

Let F = {f1, f2, . . . , fn} be the set of all incoming concurrent connections served
by S. For the (tb, te) time interval, the server will take samples of the state variables
values that we choose to describe a flow’s behavior. Function of the chosen state vari-
ables, we will use the corresponding distance and similarity measures. For the (tb, te)
time interval, we consider the measured RTT or CWnd vectors V = {V1, V2, . . . , Vn},
where Vi is the vector associated to the fi connection, fi = (Ci

IP : Ci
port), Vi =

(ri1, ri2, . . . , rik), i = 1..n. We use an agglomerative hierarchical clustering algorithm
[1] for grouping in macroflows the concurrent connections described by similar cwnd
vectors. This bottom-up strategy starts by placing each connection in its own clus-
ter (macroflow) and then merges these atomic clusters into larger and larger clusters
(macroflows) until a termination condition is satisfied. At each iteration, the closest
two clusters (macroflows) are identified. The distance between two clusters Mi and
Mj is considered to be the maximum distance of any pair of objects in the cartezian
product Mi×Mj . If the distance between these two closest clusters does not exceed a
given threshold thr max dist, we merge them and the algorithm continues by a new
iteration. Otherwise, the algorithm stops.

Algorithm MacroflowIdentification is:
Input: n, the number of concurrent connection at server S;

F = {f1, f2, . . . , fn} the set of concurrent connection at S;
V = {V1, V2, . . . , Vn}, Vi = (ri1, ri2, . . . , rik), i = 1..n, the vectors associated to the connections;
thr max dist, the maximal distance threshold for two connections to be admitted in the same
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macroflow.
Output: m, the number of macroflows inferred in the concurrent connections set;

M = {M1, . . . , Mm}, the inferred macroflows, where

Mi 6= φ, i = 1..m,
m⋃

i=1
Mi = F , Mi ∩Mj = φ, i, j = 1..m, i 6= j.

m := n; M := φ;
For i:= 1 to m do Mi := {fi}; M := M ∪ {Mi}; End For;
While (m > 1) and ( Continue (M , thr max dist, Mmerge1, Mmerge2) == true) do
Mnew := Mmerge1 ∪Mmerge2;
M := M − {Mmerge1, Mmerge2} ∪ {Mnew};
m := m-1;

End While;
End Algorithm.
Function Continue (M the set of current macroflows, thr max dist, out Mmerge1, out Mmerge2):boolean
is

min dist := ∞;
For each Mi ∈ M

For each Mj ∈ M, Mj 6= Mi

dist(Mi, Mj) = max{d(vr, vt)|fr ∈ Mi, ft ∈ Mj};
If dist(Mi, Mj) < min dist

min dist := dist(Mi, Mj); Mmerge1 := Mi; Mmerge2 := Mj ;
End If;

End For;
End For;
If min dist < thr max dist Return True; Else Return False; End If;

End Function.

Function Continue determines the closest two clusters from the clusters set M .
It will return true if these clusters are closer than thr max dist and false otherwise.
For d(vr, vt) we will use either dC(vr, vt) or dP (vr, vt), function of the chosen state
variable.

4. Conclusions and Future Work

We suggested in this paper a data model for extending the macroflow granularity
outside of the host-pair approach. Our method will prove its advantages in a Con-
gestion Manager framework. As future work we plan to explore the use of different
similarity measures and other state variables to compare the timely evolution of the
connections being analyzed.
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