
Multi-way Divide and Conquer Parallel
Programming based on PLists

Virginia Niculescu
Computer Science Department

Babeş-Bolyai University
Cluj-Napoca, Romania

vniculescu@cs.ubbcluj.ro

Darius Bufnea
Computer Science Department

Babeş-Bolyai University
Cluj-Napoca, Romania

bufny@cs.ubbcluj.ro

Adrian Sterca
Computer Science Department

Babeş-Bolyai University
Cluj-Napoca, Romania

forest@cs.ubbcluj.ro

Robert Silimon
Frequentis Romania

Cluj-Napoca, Romania
Ioan-Robert.SILIMON@

frequentis.com

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Abstract—Divide and Conquer with all its variants represents
an important paradigm of parallel programming. In this paper
we present an implementation of PLists data structures and
functions, which is introduced as an extension of a Java parallel
programming framework – JPLF. The JPLF framework was
initially based on PowerLists and their associated theory. By
using functions defined on PLists, we may easily define programs
based on the multi-way Divide and Conquer paradigm. Also,
their definition allows the description of any kind of embarrass-
ingly parallel computation. By introducing PLists into the JPLF
framework, its application domain is very much enlarged, and
also the flexibility of choosing the best computation variants is
increased. The sizes of the data lists are not constrained any
more - as it is for PowerLists to a power of two – and the level
of parallelism could be much easier controlled. The experiments
done for several applications reveal important improvements of
the obtained performance.

Index Terms—parallel computation, divide&conquer, recursive
data structures, performance, framework

I. INTRODUCTION

Parallelism is now everywhere, in small handheld devices
like smartphones, in regular consumer notebooks and in high
performance computing clusters. But parallel programming
still remains a difficult and error-prone job, and writing correct
parallel programs from scratch is often a difficult goal. Power-
ful conceptual frameworks that could offer also flexibility are
required in order to ease the development of parallel programs.

Because of its strong multithreading support, synchroniza-
tion mechanisms and thread-safe data structures, Java repre-
sents an appealing programming language for writing parallel
programs.

PowerLists and PLists introduced by J. Misra [19] and J.
Kornerup [16] are data structures naturally built for exploiting
the power of Divide & Conquer (DC) programming paradigm.
They allow working at a high level of abstraction, especially
because the index notations are not used. Their advantage over
regular lists is that they provide two different views over the
underlying data, simplifying the design of algorithms working
on them. In order to support correctness verification of parallel
programs, algebras and induction principles are defined on
these special data structures.

In this paper we present an extension based on PLists of
a Java parallel programming framework JPLF [20], which

has been initially created to support only PowerLists. PLists
bring the advantages of allowing definitions of multi-way
divide&conquer programs, but also (when the arity list is
formed by only one number) definitions of embarrassingly
parallel programs. Together: PowerList, ParList, PList with
their multidimensional counterparts could be used as a foun-
dation for a general parallel programming model based on
domain decomposition [21]; this analysis was leaded by the
general characteristics that a model of parallel computation
should have [22].

The JPLF framework was implemented following object-
oriented design principles and based on design patterns [13]
in order to be flexible and extensible. The shared memory
execution environment is based on thread pools (the tested
implementation uses the ForkJoinPool executor, but others
could be used too) where the size of these pools depends on
the system where the execution takes place.

This paper is organized as follows. In section III we give
a general description of PLists, and a description of the JPLF
design and PList implementation is given in section IV. Sec-
tion V presents some use-cases and the practical experiments
related to them. Related work is presented in section II, the
conclusions together with future work being presented in the
last section (sec. VI).

II. RELATED WORKS

Divide&Conquer represents one of the most important al-
gorithmic skeletons. Algorithmic skeletons are considered the
foundation of an important approach in defining high level
parallel models [6]; they have been used for the development
of various systems providing the application programmer with
suitable abstractions, but also reliability.

Different approaches have been considered to facilitate
general and easy usage of Divide&Conquer pattern in par-
allel context [11], [14], [15]. For most of the problems
that could be solved using Divide and Conquer pattern, the
tasks(subproblems) creations is leaded by the domain decom-
position; PowerLists and PLists express very well this model.

There have been previous works that try to facilitate the
definition of formal and efficient parallel programs based on
the PowerList theory.
A representative example is the work presented in [1] where

transformation rules over PowerLists functions are introduced,
in order to adapt the PowerLists programs for the massively
data parallel model.
A functional implementation of PowerList functions has been
done in BSML (Bulk Synchronous Parallel ML) [18].
Also PowerLists have also been used to capture parallelism
and recursion succinctly for GPU computing [3].

Lately, there has been registered an increase in the use
of Java in High Performance Computing area [23], and Java
has been used as a support language for defining structured
parallel programming environments based on skeletons, too.
Some representative examples are those described in: Lithium
[2], Calcium [8] and Skandium [17].

An important role in enabling functional programming in
Java is played by Java Streams, which are also based on algo-
rithmic skeletons. In [20] a more detailed comparison between
the performance of selected algorithms’ implementations using
Java parallel streams and the JPLF Powerlist implementation
is done. In comparison with them, the JPLF framework has
the asset of contributing with additional support for applica-
tions that need more complicated data decomposition as that
represented by the zip operator (e.g. Fast Fourier Transform).

In addition, with the PLists extension, the performance is
improved while the domain of the applications that could be
defined inside the framework is enlarged.

III. PLIST DATA STRUCTURES

The PList data structure was introduced in order to develop
programs for the recursive problems which can be divided
into any number of subproblems, numbers that could be
different from one level to another [16]. It is a generalization
of the PowerList data structure and it has three constructors
for creating Plists: one that creates singletons from simple
elements, one based on concatenation of two lists, and the
other based on alternative combining of two lists.

The corresponding operators are < .>, (n-way |), and (n-
way \); for a positive n, the (n-way |) takes n similar PList
and returns their concatenation, and the (n-way \) returns their
interleaving.

In PList algebra, square brackets are used to denote ordered
quantification. The expression

[| i : i ∈ n : p.i]

is a closed form for the application of the n-way operator |,
on the PLists p.i, i ∈ n in order. The range i ∈ n means that
the terms of the expression are written from 0 trough n − 1
in the numeric order.

For example, if we have p.i = [i∗3, i∗3+1, i∗3+2] then
we have:

[| i : i ∈ 3 : p.i] = [0, 1, 2, 3, 4, 5, 6, 7, 8]
[\ i : i ∈ 3 : p.i] = [0, 3, 6, 1, 4, 7, 2, 5, 8]

Formally, the PList constructors have the following types:

< . > : X → PList.X.1
[| i : i ∈ n : .] : (PList.X.n)n → PList.X.(n ∗m)
[\ i : i ∈ n : .] : (PList.X.n)n → PList.X.(n ∗m)

(1)

where m is the length of the arguments, which are n similar
Plist.

The PList axioms also define the existence of the unique
decomposition of PList using constructors operators [16].

Functions over PList are defined using two arguments. The
first argument is a list of arities: PosList, and the second is the
PList argument (if there is more than one PList argument they
all must have the same length). Functions over PList are only
defined for certain pairs of these input values; to express the
valid pairs, it is required that the specification of the function
defines the predicate:

defined : ((PosList×PList)→ X)×PosList×PList→ Bool (2)

to characterize where the function is defined.
Usually the arity list is formed of the prime factors obtained

through the decomposition of the list length into prime factors.
Still, we may combine these factors, if we find it convenient.

We illustrate functions’ definitions with two examples:
reduction and integration through repeated rectangle formula.

Reduction

This function computes the reduction of all elements of a
PList using an associative binary operator ⊕ :

defined.red(⊕).l.p ≡ prod.l = length.p
red(⊕).[]. < a > = a
red(⊕).(x . l).[|i : i ∈ x : p.i] = (⊕i : 0 ≤ i < x : red(⊕).l.(p.i))

(3)
where prod.l computes the product of the elements of list l,
length.p is the length of p, [] denotes the empty list, and .
denotes cons operator on simple lists. The function could also
be defined using \ operator.

The addition of numbers is the most popular example of
reduction; we denote sum = red(+).

Map

Map function applies on each element of a PList a unary
function f :

defined.map(f).l.p ≡ prod.l = length.p
map(f).[]. < a > = a
map(f).(x . l).[|i : i ∈ x : p.i] = (f(i) : 0 ≤ i < x : map(f).l.(p.i))

(4)
where prod.l, length.p, [], and . have the same meaning as

for the reduce function. Similar to reduce, this function could
also be defined using \ operator.

Numerical Integration with the Rectangle Formula

For a function f : [a, b] → R, the integral I =
∫ b

a
f.xdx

can be approximate by the following recursion [10]:

QD0
.f = (b− a)f((a+ b)/2)

QDk
.f = 1

3
QDk−1

.f + h
∑2m

i=1 f.xi, ∀k > 0
(5)

where h = b−a
3k

, m = 3k−1, and the xi values are computed
by the following formulas:

x1 = a+ h
2

x2 = a+ 5
2
h

x2j+1 = x1 + 2jh
x2j+2 = x2 + 2jh, 1 ≤ j < 3k−1.

(6)

The formula considers at each step a division into 3 equal
parts, and the values of the function in three points of each
interval.

We will define a PList function drept, that computes
(QDk

.f), for a given k.
If we consider a division on interval [a, b] with n = 3k

points:

[x0, . . . , xn−1] = [a0, a0 + h
3k

, . . . , a0 + 3k−1
3k

h],

where a0 = a+ h
2
.

(7)

It can be noticed that at the combine stage 3k−1 points are
used for computation of (QDk−1

.f) and 2 ∗ 3k−1 intervene
in computation of the second term of the sum that computes
(QDk

.f).
The function

drept : Real × PosList× PList.Real.n→ Real (8)

defined by:

defined.sum.l.p ≡ prod.l = length.p
drept.[]. < x >= hk ∗ x
drept.hk.(3 . l).[\i : i ∈ 3 : p.i] =

1
3
∗ drept.(3 ∗ hk).l.(p.1) + hk ∗ sum.(2 . l).(p.0 \ p.2),

(9)

has three arguments; the first hk = b−a
3k

is the division step,
the second is a list form by k values equal to 3, and the third
is the PList that contains the function values in the specified
points.

IV. Plist IMPLEMENTATION IN JPLF FRAMEWORK

The JPLF framework provides general support in Java for
computing PowerList functions and starting from now also
PList functions.

The framework has several important components with
different, but yet interconnected, responsibilities. Their respon-
sibilities are for:

• structures implementations,
• functions implementations,
• functions executors.

This separation of concerns allows us to modify them inde-
pendently, offering the possibility of extension by providing
new or improved ways for execution, for storage, or allowing
other data structures to be included.

IBasicList is a type used for working with simple basic
lists and it is also used as a unitary supertype of the specific
types. They are also used for defining sequential nonrecursive
functions, which will be specializations of BasicListFunction
or BasicListResultFunction. They facilitate the definition of
functions on lists that are based on iterations.

A. PList Implementations

When a PList is decomposed, the result is formed of a set
of similar sublists. In order to avoid element copy, the storage
of all sublists remains the same as that of the initial list, and
only the storage information is updated. For each list l, the
storage information SI(l) is composed of:

• reference to the storage container base,

• the start index start (inclusive),
• the end index end (inclusive),
• the incrementation step incr.

From a given list with storage information SI(list) being
{base, start, end, incr}, the tie and zip deconstruction
operators create a number of lists that have the same stor-
age container – base and correspondent updated values for
(start, end, incr). For example if we split a PList into 3
sublists (provided that its length is divisible by 3), these are
characterized by the following storage information:

Op. Sublist SI
tie left base,start, (start+end)/3,incr

middle base,(start+end)/3,2/3(start+end),incr
right base,2/3(start+end),end,incr

zip left base,start, end-2*incr,incr*3
middle base,start+incr,end-incr,incr*3
right base,start+2*incr,end,incr*3

As for PowerLists, there are two specializations of the PList

type: TiePList and ZipPList. The operator type used for
splitting a PList is determined by the specific type of that
PList which could be either TiePList or ZipPList, and this
enables polymorphic definitions of the splitting and combining
operations.

B. PList Functions

A PList function expresses the specific computation by
using tie or zip deconstruction operators for splitting the PList
arguments, and its definition is directed by the two specific
cases – the base case (for singletons) and the inductive case
(for non-singleton lists). The correctness of the functions is
proved using the associated structural induction principle.

All PList functions specify how the PList arguments are split
and also, if it is the case, how a PList result is constructed from
similar PLists (combine function). This specification is based
on a sequence of deconstruction/construction operators that is
an ordered list op_args with values from the set {tie, zip}.

We consider functions for which a certain PList argument
is always split by using the same operator (and so it preserves
its type – a TiePowerList or a ZipPowerList). Also, if the
result is a PList, this is constructed at each step by using the
same operator. Based on this assumption, in the framework,
the construction and deconstruction operators are not explicitly
specified for each function; instead they are implied by the
PList types – if they are TiePLists, the tie operator is used,
and if the type is ZipPLists then the zip operator is used.
So, it is very important when a specific function is called, to
prepare it in such a way that the types of the arguments are
the types implied by the specific op_args sequence. The PList

class provides two methods toTiePList and toZipPList that
transforms a general PList into a specific one which has
specific implementation for splitting and construction.

The result of a PList function could be a simple ob-
ject or a PList data structure. The differentiation between
these two cases is done by considering the following two
types: PFunction (functions that return simple objects) and
PResultFunction(functions that return PLists).

The PFunction class defines the template method compute

that implements the divide&conquer solving strategy. The fol-
lowing code snippet (Code 1) shows the code of the template
method compute defined for PFunction:

public Object compute() {
if (test_basic_case()) {
this.result = basic_case();

}
else {
split_arg();
List<PFunction<T>> sublists_functions =

create_sublists_function();
List<Object> res_sublist =

new ArrayList<Object>();
for (int i=0; i<sublists_functions.size();i++)
{
res_sublist.add(

sublists_functions.get(i).compute());
}

this.result = combine(res_sublist);
return this.result;
}

Code 1: The code of the template method compute of the class
PFunction.

For a new function, the user should provide implementations
for the following methods:

• basic_case,
• combine,
• create_sublists_function().
Still, it is not mandatory to provide implementations for all

of them, their implicit definitions could be used. For example,
for map (the function that applies an atomic function on
each element of the list) we have to give a definition only
for basic_case(), while for reduce we have to provide an
implementation only for combine().

Using this design, new PList functions could be defined by
extending the PFunction or PResultFunction classes.

C. Multithreading Executors

The sequential execution of a PList function is done simply
by invoking the corresponding compute method.

The parallel execution is based on executors, and this allows
modifications or specializations.

For PList specialized executor classes are created –
FJ_PFunctionExecutor and FJ_PFunctionComputationTask

The class FJ_PowerFunctionExecutor provides now an
implementation based on the ForkJoinPool Java executor
(others could be considered too).

The implementation of the compute method of the
FJ_PFunctionComputationTask class relies on the fact that the
PLists functions are defined based on the Template Method
pattern [13]. Its implementation follows the same skeleton
as that used by the compute method defined for any PList
function.

A special attribute recursion_depth is used by
FJ_PFunctionComputationTask to control the creation
of the parallel tasks – at each level after new tasks are forked
to be executed in parallel, this parameter is decreased and

when it is equal to 0 sequential computation is called (the
compute method of the function).

D. List Transformer

The parallelism could be also bounded by transforming
the argument lists into lists of sublists. If the sublists are
BasicLists then for them sequential computation is done.

How the sublists are considered depends on which of the
two operators, tie and zip, is applied. The transformation
preserves the same storage of the elements, and only lists
information is changed.

If tie is the operator used to transform a PList of n elements
into a PList of p BasicLists then it is not mandatory to have
p|n, but for zip this condition is required.

V. APPLICATIONS AND EXPERIMENTS

In order to evaluate the usability of the PLists implementa-
tion we consider the applications – Reduce, Map and Repeated
Rectangle Formula – for which we evaluate the performance.

In general we have considered three cases for the evaluation:
1) sequential execution;
2) unbounded parallel execution – multithreading execution

for which parallel tasks are created until the base cases
are attained;

3) bounded parallel execution – multithreading execution for
which the number of parallel tasks is bounded through
one of the following two mechanisms:

a) the initial list is transformed into a list of BasicLists
b) the parallel recursion depth is set to a lower value than

the maximal recursion depth.

A. Reduce

The PowerList representation of the reduce computation is
given in Sec. III. The definition of function red could be done
either using tie or zip operator.

The Reduce class overrides the method combine that applies
the associative operator on the results of the recursive calls on
the sublists. The method basic_case() is overridden just to
include also the case when the argument is a list of sublists,
in which case the base case uses a sequential Reduce function
on BasicLists.

For Reduce we conducted two experiments:
• PLists of random 10 × 10 matrices of real numbers, the

length of the PLists are multiples of 5000 (Fig. 1);
• PLists of random 100 × 100 matrices of real numbers,

the length of the PLists are powers of 2 (Fig. 2).
The figures emphasize the obtained speedups, which

are computed as: speedup = Tsequential/Tparallel, where
Tsequential is the execution time of the sequential computation,
and Tparallel is the execution time of parallel computation.

Since for matrix addition the sequential computation is more
efficient if an iterative (non-recursive) variant is considered,
the bounded parallelism in this case was based on transforming
the initial list of matrices into a Plist of BasicLists of
matrices.

 3

 4

 5

 6

 7

 8

 9

 10

 0 10000 20000 30000 40000 50000 60000 70000

S
p

e
e
d

u
p

List length

speedup_t
speedup_61
speedup_64
speedup_90

speedup_100

Fig. 1. Reduce - matrix addition: 10×10 matrices. speedup_t corresponds to
unbounded parallelism variant, speedup_n correspond to bounded parallelism
variant with PList with n elements of type BasicList.

 5

 10

 15

 20

 25

 30

 10 11 12 13 14 15 16

S
p

e
e
d

u
p

List length - power of two

speedup_t
speedup_61
speedup_64
speedup_90

speedup_100

Fig. 2. Reduce - matrix addition: 100 × 100 matrices. speedup_t corre-
sponds to unbounded parallelism variant, speedup_n correspond to bounded
parallelism variant with PList with n elements of type BasicList.

For bounded parallelism, the best choice for the number of
elements of type BasicList depends on:

• the initial list length,
• the possibility to obtain balanced length sublists,
• the decomposition into prime factors of the length of

resulted Plist – the resulted arity list;
• the correlation between the maximal number of parallel

recursive tasks and the number of the hardware cores.
For example:

- if the number of BasicLists inside the PList argument is
equal to 61 the arity list is equal to [611], and so 61
parallel tasks are split from the first level. Each task will
compute sequentially the corresponding sum.

- if the number of BasicLists inside the PList argument is
equal to 64 the arity list is equal to [26], and then the
PList will be split as a PowerList.

- if the number of BasicLists inside the PList argument is
equal to 100 the arity list is equal to [22, 52], and then
there will be 2 levels that do the splitting into two equal

 0

 2

 4

 6

 8

 10

 12

 14

 10 11 12 13 14 15 16

S
p

e
e
d

u
p

List length - power of two

speedup_t
speedup_61
speedup_64
speedup_90

speedup_100

Fig. 3. Map – applying squaring on each element of a list of 100× 100 ma-
trices. speedup_t corresponds to unbounded parallelism variant, speedup_n
correspond to bounded parallelism variant with PList with n elements of type
BasicList.

size lists, and other two levels with a splitting operations
into five sublists.

B. Map

Map emphasizes simple parallel computation, and the cor-
respondent PList function has been defined in Sec. III. The
example considers matrices of size 100 × 100 for which we
apply square operation (power of two) for each element. Fig.
3 emphasizes the results obtained for the executions with
unbounded parallelism and with different levels of bounded
parallelism – the initial lists being transformed into a PList

with different numbers of BasicList elements.
By analysing the reduce and map examples, we can notice

that for large data sets, or if the basic_case and/or the
combine functions are computational intensive the difference
between bounded and unbounded parallelism variants are not
significant.

C. Repeated Rectangle Formula

As we have seen in Sec. III we have a simple PList
function definition that approximates an integral using the
repeated rectangle formula (eq. 8-9). This example emphasizes
a multi-way divide&conquer program where the division has
to be done always in 3 parts (subproblems). For this case
the basic_case and combine functions are not computational
intensive (this is important because in parallel cases we have
to consider the overhead time of task creation, that we try to
keep it lower than elementary operations).

The results of the experiments done for this example are
illustrated in the Fig. 4.

The variant that considers bounded parallelism is based on
the limitation of the recursion depth. For the presented test the
recursion_ level has been set to 4 levels.

We may notice that for large sets of data the bounded
parallelism variant becomes better since the overhead due to
the task creation is limited.

Remark. The experiments have been performed on an IBM
x3750 M4 machine, running CentOS 7, 64 bit kernel, Java

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 7 8 9 10 11 12 13 14

Ti
m

e
 (

se
c)

List length - power of three

Secv
Bound_Par

Par

Fig. 4. Repeated Rectangle Formula: execution time –
Sequential execution vs Parallel execution vs. Bounded Parallel execution

8 and equipped with 4 Intel Xeon E5-4610 v2 @ 2.30GHz
CPUs (8 cores per CPU) and 64 gigabytes of RAM. Each
test has been repeated 5 times, average execution time being
considered.

VI. CONCLUSIONS

The PList notation is very rich – it includes the PowerList
theory as a special case. While this generality is not always
needed in order to describe parallel computations, it may be
useful when the problem is stated in a different radix than 2
(e.g. repeated rectangle formula III), or in a mixed radix as it is
for example the case of Fast Fourier Transform with arbitrary
factors (N = r1, r2...rm) [5]. Together with other examples
this will be the focus of the associated further work.

The existence of the two different constructor operators
differentiates PList data structures from other list data struc-
tures which are based on simple concatenation. In addition,
the possibility to split at each step in a different number of
sublists (and so subproblems) introduces an important level
of flexibility that is useful also in order to choose the most
performant partition of the problem. In extremis, the arity list
could be considered as being formed of only one number equal
to the size of list. This introduces the possibility to define
any computation that fits into the ”embarrassingly parallel”
paradigm.

The ability to control the parallel recursion level and so to
control the number of tasks that are going to be executed in
parallel increases the ability to improve the practical perfor-
mance.

An important advantage is brought by the possibility to
work with lists of lists that allows us to combine the paradigms
- e.g. a PList (or a PowerList) of BasicLists elements allows
PAR-SEQ computation. Vice-versa is also possible - SEQ-PAR
computation if BasicLists of PLists or PowerLists are used.
The types of the lists imply the types of the combination and of
execution. The combination could be done on multiple levels,
and so the possibility to express different types of computation
increases.

REFERENCES

[1] K. Achatz and W. Schulte, “Architecture independent massive paral-
lelization of divide-and-conquer algorithms,” Fakultaet fuer Informatik,
Universitaet Ulm, 1995.

[2] M. Aldinucci, M. Danelutto, and P. Teti, “An advanced environment
supporting structured parallel programming in Java,” Future Generation
Computer Systems, vol. 19, pp. 611–626, 2003.

[3] A. S. Anand and R. K. Shyamasundarn, “Scaling computation on GPUs
using powerlists,” in Proceedings of the 22nd International Conference
on High Performance Computing Workshops (HiPCW). Oakland: IEEE,
2015, pp. 34–43.

[4] R. Bird, “An introduction to the theory of lists,” in Logic of Programming
and Calculi of Discrete Design, M. Broy, Ed., Springer, 1987, pp. 5–42.

[5] I E. Oran Brigham. “The fast Fourier transform and its applications,”
Prentice-Hall, 1998.

[6] M. Cole, Algorithmic Skeletons: Structured Management of Parallel
Computation. MIT Press, 1989.

[7] J. W.Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex fourier series,” Math. Comput., vol. 19, p. 297–301, 1965.

[8] D. Caromel and M. Leyton, “A transparent non-invasive file data model
for algorithmic skeletons,” in Parallel and Distributed Processing, 2008.
IPDPS 2008. IEEE International Symposium on, 2008, pp. 1–10.

[9] P. Ciechanowicz and H. Kuchen, “Enhancing Muesli’s Data Parallel
Skeletons for Multi-core Computer Architectures,” in IEEE International
Conference on High Performance Computing and Communications
(HPCC), 2010, pp. 108–113.

[10] Gh. Coman, Numerical Analysis, Editura Libris, Cluj-Napoca, 1995 (in
Romanian).

[11] M. Danelutto, T. De Matteis, G. Mencagli, and M. Torquati. “A Divide-
and-Conquer Parallel Pattern Implementation for Multicores,” In The
Third International Workshop on Software Engineering for Parallel
Systems (SEPS 2016) co-located with SPLASH 2016. Amsterdam, 2016,
ACM, pp. 10-19.

[12] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters,” in OSDI. USENIX Association, 2004, pp. 137–150.

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design patterns:
elements of reusable object-oriented software,” Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1995.

[14] C. H. Gonzalez and B. B. Fraguela. “A generic algorithm template
for divide-and-conquer in multicore systems,” In 12th International
Conference on High Performance Computing and Communications,
HPCC ’10, Washington, DC, USA, 2010. IEEE Computer Society, pp.
79–88.

[15] C. A. Herrmann and C. Lengauer. ‘A higher-order language for divide-
and-conquer,” Parallel Processing Letters, 10(02n03): 239–250, 2000.

[16] J. Kornerup, “Data structures for parallel recursion,” Ph.D. dissertation,
University of Texas, 1997.

[17] M. Leyton and J. M. Piquer, “Skandium: Multi-core Programming with
Algorithmic Skeletons,” In PDP: Parallel, Distributed, and Network-
Based Processing. IEEE Computer Society, 2010, pp. 289–296.

[18] Frédéric Loulergue, Virginia Niculescu, Julien Tesson. “Implementing
powerlists with Bulk Synchronous Parallel ML,”. In 16th International
Symposium on Symbolic and Numeric Algorithms for Scientific Com-
puting (SYNASC2014), Timisoara, Romania, 22-25 sept. 2014, IEEE
Computer Society, 2014, pp 325-332

[19] J. Misra, “Powerlist: A structure for parallel recursion,” ACM Trans.
Program. Lang. Syst., vol. 16, no. 6, pp. 1737–1767, November 1994.

[20] V. Niculescu, F. Loulergue, D. Bufnea, A. Sterca, “A Java Framework
for High Level Parallel Programming using Powerlists”. In 18th Interna-
tional Conference on Parallel and Distributed Computing, Applications
and Technologies (PDCAT) 18-20 Dec. 2017, pp.255-262.

[21] V. Niculescu, “PARES – A Model for Parallel Recursive Programs,”
Romanian Journal of Information Science and Technology (ROMJIST),
vol. 14, no. 2, pp. 159–182, 2011.

[22] D. Skillicorn and D. Talia, “Models and languages for parallel compu-
tation,” Computing Surveys, vol. 30, no. 2, pp. 123–169, June 1998.

[23] G. L. Taboada and S. Ramos and R. R. Expósito and J. Touriño and
R.Doallo, “Java in the High Performance Computing arena: Research,
practice and experience,”. Science of Comput. Program., vol. 78, no 5,
pp. 425–444, 2013.

