
Measuring and Visualizing the Scrappiness Level of a Website

Darius BUFNEA
Department of Computer Science

Babeş-Bolyai University
Cluj-Napoca, Romania

Email: bufny@cs.ubbcluj.ro

Diana ŞOTROPA
Department of Computer Science

Babeş-Bolyai University
Cluj-Napoca, Romania

Email: diana.halita@ubbcluj.ro

c©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Abstract—Scraper sites are questionable quality sites that
copy their content partially or entirely from other websites
and sometimes gain more ranking and popularity to the
detriment of the original websites. This usually happens from
a search engine point of view. Misleading a user to a scraper
site almost always implies an unhappy, time consuming user
experience, the scraper site being an unnecessary link in the
user’s navigation path. In this paper we present a method
through which one can numerically measure and quantify the
scrappiness level of a website and also visually display this
level. In the same time, this paper wants to advert to the web
and research communities about this type of websites and to
urge actions against them.

Keywords-scraper site; scrappiness level; link spam; web
spam detection; content spam; document similarity; search
engine; web search.

I. INTRODUCTION

With the development of the Internet, the number of
websites has considerably increased. This can easily explain
the plenty of information that exists on the web and the
fact that search engines are amid the most accessed type
of websites if one wants to locate and access specific
information. Unfortunately, lately, both the user and the
search engine have to face an increased number of scrapers.

Scraper sites are questionable quality sites that copy
their content partially or entirely from other websites and
sometimes gain more ranking and popularity to the detriment
of the original websites. Content copying from other sources
is one of the cheapest method used by a scraper to get its
content. In fact, the content is one of the most precious
resources, creating original and valuable content implying
the most effort by the publishers or content providers.
Scrapers’ appearance is closely tied to more than one factor:

• financial factor and pursuing easy and rapid earnings
through displaying ads, i.e. web monetization [1];

• publishers / content providers migration towards web /
online platforms to the detriment of classical platforms
(newspapers, radio, television);

• a much higher availability of the web content, mostly
plain text, and a higher ability to get, store, modify and
display it by the means of relatively low investments;

• the appearance of online advertising platforms, i.e.
intermediate agents such as Google which are the link
between publishers / content providers and advertisers
[2]. Such platforms commission their share providing in
exchange through smart ads placement a much higher
targeting and conversion.

Scrapers can be classified as follows [3], [4]:

• sites that copy the entire content from another site,
without adding any original information that should
highlight the new page, and which publish the infor-
mation in the same form as it is harvested;

• sites that copy the content from other websites and post
them in a new form, automatically altering some words
of the content (for example by using synonyms);

• sites which reproduce information taken from RSS
feeds (Rich Site Summary) without adding relevant
information that are important to the site visitors. In
this category we can also include sites that aggregate
information from other sites (e.g. sites that aggregate
torrents files or products).

• sites that take multimedia files (images, movies or any
other type average) and provide them to the users
without additional information.

Through scraper one should think of a website that
presents an amalgam of content taken from other sources,
most often without permission. Such websites are usually
full of ads, and their goal is to be interposed between the
user and the website which really provides the information
that one may be looking for. Often, scraper sites outrank in
SERP the original websites (sites where the content is taken
from). Well positioned scrapers in SERP [5] decrease both
the search engine’s performance and the user’s navigation
experience satisfaction, as they operate as an additional step
in the user’s navigation path: user - search engine - scraper
- destination site. Considering this situation, search engines
generally disapprove this kind of sites, but often a search
engine tolerates or validates a scraper as a genuine publisher.

In this paper we present a method through which one can
numerically measure and quantify the scrappiness level of a
website and also visually display this level. In the same time,
our goal is to advert to the web and research communities



about this type of websites and to urge actions against them.

II. STATE OF ART AND PREVIOUS WORK

In the effort of identifying a scraper’s spam pages [3], [6],
[7] and omit their appearances within the SERP, different
methods were advanced by the research community and
search industry [8]. While paper [9] presents a link based
semi-supervised learning algorithms for web spam detection
and paper [10] presents a label propagation algorithm on
click-through bipartite graphs to detect web spam, paper [11]
provides a comparison of some algorithms to detect spam
link. However, the fact that such websites are still present in
a search engine results page [4], lead us to believe that, so
far, these research didn’t achieve the desired results, leaving
the door open for further advances in the field. From this
point of view, more is to be done in order to offer better
and more reliable search results to users.

One common feature to almost all scraper sites is the
extreme search engine optimization performed within such
a website. This is also the main reason why a scraper is top
ranked within the SERP. However, one cannot rely only on
this characteristic to classify a website as a scraper or not:
such a feature is not exclusively common to scrapers, using
search engine optimization techniques is also a common
practice among webmasters of genuine websites for gaining
more traffic. The fact is that there is a large gray area
between ”ethical” search engine optimization, that is making
sure that a page can be found by search engines, and
”unethical” spamdexing [12] that is used by scraper for
deceiving search engines.

Some methods of identifying scraper sites were previously
suggested, but because of millions of new web pages are
being published every day, no method is proving good
enough. Most scraper sites are self-evident [13]. There are
some markers included in almost every scraper site: ads
everywhere, stolen content, pop-ups or suspected malicious
executable files offered for download. While these charac-
teristics of a scraper can be easily spotted and recognized
by a human user, there have to be found a general enough
numerical methods through which a website can be classified
as a scrapper by a computer program (for eg. by the search
engine’s crawler or by a browser plugin provided by an
Internet security suite installed on the user’s computer).

Some search engines announced in 2014 a policy to
identify scraper sites based on users experience [14] and
through their feedback. Moreover, Google wants to involve
webmasters community in order to qualify which sites
are scrapers and which are the original sources of certain
information [15]. Reported sites, once classified, are not au-
tomatically downgraded in SERP, the results obtained from
users classification are used in testing automatic algorithms
which will be able to decide if a site is scraper or not.
Such an algorithm implemented by the search engine will

generally look for known patterns in a site’s content and
structure in order to automatically classify it [1], [3].

The disapproval of scrapers by search engines is not
always firm. Some search engines also act as intermediate
agents in the web advertising industry, their duplicity being
the result of the profitability of this type of business. Some
search engines still tolerate scrapers’ existence, allowing
ads inside a scraper’s content (ads delivered through the
search engine’s API). It’s a win-win situation for everybody:
scrapers, search engines (by brokering ads delivery) and
advertisers to the detriment of the user’s free time spent
on consuming thin or low quality content.

Authors of [16] present a method through which one may
identify improper placed outgoing links such as ads or spam.
This method is based on studying the content similarity
between linked and original content. Scrapers identification
process may use a similarity based approach too.

The techniques of fighting and identifying web scrapers
can be implemented by different actors on the WWW scene.
Hence, we distinguish three main types of techniques:

• fighting and identifying scrapers at search engine’s level
- this would be the more natural method, since scrapers
in general rely on traffic coming from search engines.
All the above mentioned actions fall in this category.

• identifying web scrapers at genuine site’s level - these
are the most inefficient methods, consisting in different
techniques of limiting the scraper’s crawling process
using captcha or even actually forbidding its access.
These methods can be easily avoided by User-agent
spoofing and limiting the crawling rate or using a large
pool of IP addresses in the crawling process.

• identifying web scrapers by a third party (for example
by an Internet security suite provider or by an experi-
mental research project) exposed web API called by a
browser plugin that can highlight to the user, or even
completely hide, low quality websites before the user’s
actual visit to the scraper. For example, such a plugin
can provide an additional visual low mark for a scraper
in SERP. This last technique is the most suitable to be
implemented by the research community, including for
testing the method proposed in this paper.

Regardless of the method, the process of identifying
scraper sites seems to be a consistent job, the amount of
time and energy implied being in general very high [3].
Looking from a genuine website’s perspective, if one scraps
its content, the website’s owner has to deal in some ways
with the content scraper. Some techniques are based on
constructing some in-situ solutions, such as captcha, rate
limiting or IP blacklists, but all this techniques are not strong
enough and might be circumvented. Another solution may
be the use of some add-on modules which try to combat such
”attacks”. In general, due to the regularity of the provided
content, a scraper will crawl a website built over a content
management system rather than other sites. Such websites



dominate the web and have a common structure that can
be easily parsed, i.e. once the scraper wrote a parser for a
CMS based website, it can use that parser to crawl almost
every other website that was build based on the same CMS.
Depending on the CMS used for building a website, there
were developed some additional, reusable, CMS integrated
techniques in order to deal with content scrapers [17],
[18]. Although, a website built over a content management
system will be in a spotlight for content scrapers, it has
the advantage that, server side, its owner can use additional
modules developed in order to avoid content scrapers.

An effective and relatively easy to implement technique
would also be building a browser plugin through which one
can rank a site returned in SERP. The purpose of using such
a plugin is to gather visitors reviews (explicit feedback pro-
vided by visitors) or implicit feedback (by analyzing users’
behavior). These reviews are valuable assets leading to a
fair scrappiness / quality level of a website returned in SERP.
The main advantages of such a plugin is that its functionality
does not depend of any of the big actors involved on the web
scene (i.e. search engines or Internet security providers) and
it can be easily implemented and tested by small entities
such as research groups. Through its disadvantages are the
dependability of test subjects (users which opt to install the
plugin), the dependability of JavaScript (which can easily
be turned off in the client’s browser), or the fact that such a
plugin might partially mimic a spyware like behavior rising
user privacy concerns.

III. RESEARCH METHODOLOGY, EXPERIMENTS AND
RESULTS

Every site usually consists in multiple pages, every page
being integrated in the site’s general look and feel. Through
this, one can understand that every page use the same struc-
ture and design in order to properly present the information.
Therefore, every page presents general information which
can be found on every other page, such as menus, header,
footer or sidebars, i.e. the so-called master page template
and specific information related to the title of the page, i.e.
the so-called absolute content. To accomplish the intended
purpose we rely on the analysis of the absolute content
extracted from every page of the site in order to properly
classify it. The classification results obtained by absolute
content analysis can be validated using two heuristics.

The first heuristic is based on website’s traffic report
captured in Squid logs. Due to the entire amount of data
extracted from the captured logs we were able to identify
different user navigation patterns. The most interesting nav-
igation pattern shows that scrapers are only intermediate
agents between users and common websites (i.e. genuine
sites that are properly presenting information). One who
might follow this pattern, usually make an initial request
to a search engine using an initial query which is related
to a specific information that the user wants to find. In the

generated Search Engine Results Page (SERP) one may find
a site which seems to present the desired information (the
scraper site). After only a few seconds of visiting the scraper
site, the user find within the scraper’s thin content the link
to the page where the content was taken from, and follows it
in order to find the complete, original and accurate desired
information. We will rely on this heuristic later in the paper
in order to validate our results.

The second heuristic is based on the advertising strategy
adopted by a scraper site. Relying on ads for website and
business sustainability it’s a common practice for genuine
websites too, but a scraper’s volume of placed ads usually
is higher when compared with the quantity and quality of its
content. Therefore, it is an interesting approach to determine
for a scraper what kind of ads it delivers, their quantity and
their spread within the thin content of the website.

Next, we will present a method of numerically measure
and visualise the scrappiness level of a website. This method
is based on the similarity between the absolute content of
pages that are part of the suspected scraper site and their
corresponding source pages - i.e. pages where the content
was taken from. We are expected to find within a scraper site
backlinks to the original content. Because of the copyright
rules and laws [19], at least in UE, scraper sites usually
link back on each page to the corresponding source page
where the content was initially published. Thus, the process
of numerically measure and visualise the scrappiness level
of a website will consist in the following:

• crawling the tested website;
• comparing the content of every page with the content

that can be reached by following the external links
within that page (hyperlinks that point at any domain
other than the domain the link exists on); in order to
determine the absolute content of a web page we have
used a Java library named boilerpipe, which is able to
remove or extract full text from HTML pages;

• computing the similarity between those two contents;
we have used Cosine Similarity [20] measure;

• observing that for a scraper site the obtained similarity
is higher when the external links are placed in the
absolute content of a webpage, rather than when they
are placed in the site wide template.

To reach the goal of this article, we analyzed several test
sites that are frequently updated. Using a web crawler we
indexed all pages of these sites, and then, using the collected
information we identified the absolute content of every page
along with the source where its content was taken from. For
each test site, after the crawling step, we observed that a
large data set was created. In order to avoid a large data set
and to speed up the entire process, we will test and present in
a future paper how feasible is to use only a subset of pages,
i.e. we will compare only a subset of absolute contents
with their sources. By applying the steps of the algorithm



Figure 1: Common website C1

Figure 2: Common website C2

presented below, there were generated triplets (internal link,
external source link, similarity). These triples are the primary
data used in the scraper sites identification process.

In this paper we describe the scraper identification and
visualisation processes using a generic similarity measure.
Our tests were performed using a simple similarity measure,
the Cosine similarity. Generally, for scraper site classi-
fication, different types of similarity functions might be
used. Future evaluation of different text similarity functions
such as character based similarity functions or term based
similarity functions [21] should be performed in order to
check how they perform and fit in this scenario. Also, one
can choose a similarity measure from geometric similarity
functions or from semantic similarity functions category.
Regarding Cosine, even if it is a character based similarity,
it presents a series of advantages. It is well appreciated as a
string similarity measure especially because it gives a good
complexity over a large data set and because if offers quick
answers regarding matching the pairs.

The idea of discovering a scraper site using numerical
methods can be split into two parts:

(i) Firstly, we are looking to the statistically reports
obtained by comparing absolute contents from a website
with their corresponding sources. The statistical tool used
in order to generate these reports is the arithmetical mean,
i.e. the sum of all similarity measurements divided by the
number of pairs of links in the data set.

mean =

∑n
k=1 simk

n
, (1)

where n is the number of pair of links considered for the
analysis. We will call the above mean the scrappiness score
of a website and we will denote it by SSsite through the
rest of this paper.

Generally, while analyzing websites, we expect three
different types of behaviour:

• data is spread out more to the right, which corresponds
to a scraper site. This will be supported by a relatively
high value of the scrappiness score;

• data tends to be around the mean value and it gets close
to a normal distribution, which corresponds to common
genuine websites;

• data is spread out more to the left, which corresponds
to a website whose content is poorly similar with
the external linked content. This behaviour will be
supported by a relatively low value of the scrappiness
score. A site full of ads unrelated to its content or a
parked domain might fall in this category.

Any of the extreme cases - either a high value of the
SSsite, either a low one - would indicate a problem with that
site’s content. A high value of the scrappiness score indicates
a scraper site behaviour and the lack of original content,
while a low value indicates improper placed outgoing links
whose content it’s not related with the linking content within
the website (i.e. possible ads or other forms of links selling).

(ii) Secondly, using the obtained numerical results, one
may want to visually recognize scraper or regular sites. To
better observe a scraper site’s behaviour we will graphically
represent all the points obtained in a cartesian system,



Figure 3: Scraper website S1

Figure 4: Scraper website S2

following the model:

• the x-axis represents the similarity between the two
links; we use the similarity measure to compare the
two pages’ absolute contents;

• the y-axis will represent a number directly proportional
with the number of occurrences, which means the
number of pairs (internal link, external source link)
which have a similarity that is in the confidence interval
of the abscissa of the considered point. Through a con-
fidence interval of a number s we understand an interval
[s − ε, s + ε], where ε is a threshold which we have
experimentally chosen. The experiments we performed
involved different values for ε ∈ {0.05, 0.005, 0.0005},
different values might provide a better visualization of
data. The number of occurrences grows inverse pro-
portionally with ε, but the mean value (the scrappiness
score of a website) is not affected by the chosen ε.
That said, we want to observe from this analysis how
many pages from the test site have almost the same
similarity with their cited sources. This number which
will be represented on the y-axis is the double of the
normalized value with respect to the maximum number
of occurrences for the analyzed site - we chose this
approach only from data visualization considerations.

For every point on the graphical representation, we rep-
resent a circle having its center in the considered point and
the radius equally with half of the point’s ordinate. The
entire purpose of this strategy is to highlight the number
of pairs for which we obtained very high similarity between

the content found at the internal link and the one found at
the external link. For each pair P (x0, y0) we represent in
the XOY system the circle of equation:

C : (x− x0)2 + (y − y0)2 = (
y0
2

)2 (2)

Listing Algorithm 1 contains the pseudocode for measur-
ing and visualizing the scrappiness level of a website. In this
algorithm we intentionally choose not to use thresholds to
judge a site either a scraper or a common one because these
thresholds would be similarity dependent. Additionally, we
plan further research on a large websites data set in order
to properly fine tune such thresholds.

Figure 1, 2, 3 and 4 depict our test results. We applied
our method on two obvious scraper sites denoted by S1 and
S2 (scrapers built based on the RSS feeds of some genuine
online newspapers) and, also, on two common websites,
denoted by C1 and C2, one of them being the website of
our university.

From our test results, we concluded that for a scraper site
data is spread out more to the right (the obtained graphical
representation is right shifted). This is supported mathemati-
cally by the numerical interpretation of the scrappiness level
of a website, i.e its scrappiness score, defined by using the
arithmetic mean in Equation 1. In the case of a scraper
site, the similarities of the pairs (internal link, external
source link) are high, but without using a confidence interval
to represent their occurrences, most of the ordinates will
overlap. In the confidence interval of a similarity there will
be located all the pairs having almost identical similarities



Algorithm 1: Algorithm for measuring and visualizing
the scrappiness level of a website

1 for each analyzed site do
2 Discover and read all web pages on the

website;
3 for each internalLink do
4 for each externalLink do
5 • Compute the similarity between the

content on the internalLink and the
content found on the externalLink;

6 We denote it by:
sim[internalLink][externalLink];

7 • Compute the number of occurrences
in the confidence interval;

8 We denote it by:
occurrences[internalLink][externalLink];

9 • Set the maximum number of
occurrences;

10 We denote it by:
maxOccurences[internalLink];

11 for each internalLink do
12 for each externalLink do
13 • The x coordinate equals the

previous found similarity;
14 Be that:

x0 = sim[internalLink][externalLink];
15 • The y coordinate equals the double

of the previous found number of
occurrences divided by the maximum
y-value obtained;Be that:

16 y0 =

2 ∗
occurrences[internalLink][externalLink]

maxOccurences[internalLink]
;

17 • The radius equals half of the y
coordinate;

18 Be that: r0 =
y0

2
;

19 • Plot the circle:
C : (x− x0)2 + (y − y0)2 = r20 ;

20 Compute the scrappiness score of the
website: SSsite.

21 Observe the pattern of the graphical
representation using the following
conditions:

22 if SSsite is close to 1 then
23 the website is a scraper site;
24 else if SSsite is close to 0 then
25 the website’s content is poorly similar

with the external linked content;
26 else
27 the website is a common website;

(based on the chosen ε). The graphical representation of
these pairs should reflect the amplitude of the phenomenon
(i.e. their number). Mainly, this is why we chose to use
circles with different radius in the graphical representation.
If we had given up to this type of graphical representation,
then many of the points would overlap, especially due
to the very small differences between their corresponding
similarity. In addition to that, the shifting effect to the right
would have been considerably reduced.

Albeit not in the main scope of this paper, we tested a
poor quality website (a parked domain) full of ads not related

with its thin content, expecting a left shift behaviour. Unfor-
tunately, the Cosine similarity did not perform very well in
this scenario, other similarities offering better results. Figure
5 shows how Cosine and Bigrams similarities performed in
this situation. Bigrams similarity led to a more left shifted
result sustained by a lower mean. This similarity is more
sensitive to the context but it has his own disadvantages: it
fails when strings are very much alike, but the bigrams sets
are disjoint or when strings are not alike at all and still their
bigrams sets are the same [22].

IV. RESULTS VALIDATION

After we analyzed the absolute content for the chosen test
sites, we managed to confirm each site either as a common
(genuine) or as a scraper one. In order to prove our method,
we further studied proxy logs containing anonymous traffic
data, looking for predictable web access patterns in users’
behaviour. The proxy logs were obtained from the proxy
server of our university which is running Squid, the most
popular proxy server in the Internet [23]. Squid is able to
generate logs containing details about every request made
by a user who is connected to the Internet through it. Some
interesting data from our perspective recorded in these logs
are: timestamp, referrer, URL or client IP. These data can
also be collected from other sources, such as a browser
plugin provided by an Internet security suite installed on
the user’s computer or analytics data gathered by the big
actors on the WWW scene (such as Google, Facebook, etc).
Each of these data collectors could easily implement similar
techniques, having the benefit of a bigger data set. From the
analyzed logs we determined the set of IPs corresponding to
clients that visited a scraper site as indicated by our previous
method. The pattern observed in most situations revealed, as
expected, that scrapers are only intermediate agents between
users and common sites that properly present information, as
depicted in Figure 27. Most visits, as extracted from Squid
logs, were following the same pattern. Initially, one makes
a request to a search engine using a search term which is
related with a specific information that the user is interested
in. After submitting the query, the visitor is offered the
appropriate results page that contains a small set of results
that match the query. Based on the fact that Squid logs
contain timestamps of each request, we observed (Figure
7) that the user spends a short amount of time reading the
SERP (or at least the first entries from SERP). We denoted
by ∆t << the short time period that the user spends on a
page, usually a few seconds. The next entry in the client visit
list, as revealed by the logs, is the request for a scraper site
hosted web page. Within the scraper, the user finds the link
to a page hosted on the original source site and follows it in
order to access the complete and accurate information he or
she is interested in. The transition to the new website is also
a quick step - usually the amount of time spent to transit
the scraper is much shorter (corresponding to the scraper’s



Figure 5: Parked domain P1 Figure 6: Path of a user transiting a scraper

Figure 7: Patterns of scraper transiting sessions

thin content) than the time spent accessing the last requested
resource in this chain (i.e. the genuine website).

Another approach to test our proposed mechanism is
reversing the original process. Instead of analyzing known
scrapers’ right shift and look for expected traffic patterns in
users’ behaviour, we search for the aforementioned pattern
in Squid logs for a suspected transit site accessed via SERP
having ∆t32 <<. Then, we test the suspected transit site’s
content similarity against external referred genuine content.
Besides previously already known scraper sites, we were
able to detect from a relatively small Squid data set a new
scraper, its scrappiness level depicted in Figure 8 also being
right shifted and supported by a mean value of 0.96337.

V. CONCLUSIONS AND FUTURE WORK

Scraping, as one of the most frequent form of web
spamming, is a challenging to combat phenomenon, making
further advances in the field absolute necessarily. Content
stealing on the web is quickly proliferating and it is becom-
ing more profitable while affecting content providers and
publishers. The challenge comes from studying how to avoid
content scrapers through enough general methods that can be
widely deployed and easily adapted to new types of scrapers.

We have presented in this paper a method through which
one can numerically measure and quantify the scrappiness
level of a website and also visually display this level.
The basic insight of this paper is that we have succeeded

in validating our results by reversing the process used in
analyzing known scrapers, also proving the effectiveness of
this method. Our work attempts to formalize the scraping
identification problem and to present a numerical method
through which search engines or any other third party can
be assisted in the detection of web spam.

As a future work we plan to create an experimental
browser plugin through which a web client can be notified
about the scrappiness level of a dubitable quality website.
Such a plugin could easily and automatically route the
user directly to the genuine website, avoiding precious time
to be wasted, or can gather anonymous data based on
user behaviour, that can be used to further fine tune the
scraper identification mechanism. Also, considering other
text based or semantic similarity functions and testing how
they perform and fit in this scenario is a must in order to
increase the quality of the process. Further research is to be
done in order to speed up the scraper identification process,
considering that it is a time consuming logic that requires
high data availability. Any other proposed similarity function
should be tested regarding its performance (processing time
vs. data volume) and how it performs when it is used to test
different type of websites (genuine websites, scrapers or left
shifted sites).

Possible false positives and false negatives cases should
also be investigated, together with possible methods that
might be used by an adversary in order to evade the
scrappiness score.

REFERENCES

[1] C. Castillo et al., “A reference collection for web spam,” in
ACM Sigir Forum, vol. 40, no. 2. ACM, 2006, pp. 11–24.

[2] D. S. Evans, “The online advertising industry: Economics,
evolution, and privacy,” The journal of economic perspectives,
vol. 23, no. 3, pp. 37–60, 2009.

[3] M. Najork, “Web spam detection,” in Encyclopedia of
Database Systems. Springer, 2009, pp. 3520–3523.

[4] N. Spirin and J. Han, “Survey on web spam detection: princi-
ples and algorithms,” ACM SIGKDD Explorations Newsletter,
vol. 13, no. 2, pp. 50–64, 2012.



Figure 8: Scraper website S3

[5] R. Patel, Z. Qiu, and C. T. Kwok, “Classifying sites as low
quality sites,” Apr. 7 2015, uS Patent 9,002,832.

[6] Z. Gyöngyi, H. Garcia-Molina, and J. Pedersen, “Combating
web spam with trustrank,” in Proceedings of the Thirtieth
international conference on Very large data bases-Volume 30.
VLDB Endowment, 2004, pp. 576–587.

[7] M. Erdélyi, A. Garzó, and A. A. Benczúr, “Web spam
classification: a few features worth more,” in Proceedings of
the 2011 Joint WICOW/AIRWeb Workshop on Web Quality.
ACM, 2011, pp. 27–34.

[8] M. Daiyan, S. K. Tiwari, and M. A. Alam, “Mining prod-
uct reviews for spam detection using supervised technique,”
International Journal of Emerging Technology and Advanced
Engineering, vol. 4, no. 8, pp. 619–623, 2014.

[9] G.-G. Geng, Q. Li, and X. Zhang, “Link based small sample
learning for web spam detection,” in Proceedings of the 18th
international conference on World wide web. ACM, 2009,
pp. 1185–1186.

[10] C. Wei et al., “Fighting against web spam: a novel propaga-
tion method based on click-through data,” in Proceedings of
the 35th international ACM SIGIR conference on Research
and development in information retrieval. ACM, 2012, pp.
395–404.

[11] C. P. Bharatbhai and K. M. Patel, “Analysis of spam link de-
tection algorithm based on hyperlinks,” IFRSA International
Journal of Data Warehousing & Mining, vol. 4, pp. 67–72,
2014.

[12] L. Araujo and J. Martinez-Romo, “Web spam detection:
new classification features based on qualified link analysis
and language models,” IEEE Transactions on Information
Forensics and Security, vol. 5, no. 3, pp. 581–590, 2010.

[13] D. Fetterly, M. Manasse, and M. Najork, “Spam, damn
spam, and statistics: Using statistical analysis to locate spam
web pages,” in Proceedings of the 7th International Work-
shop on the Web and Databases: colocated with ACM SIG-
MOD/PODS 2004. ACM, 2004, pp. 1–6.

[14] Y. Liu et al., “Identifying web spam with the wisdom of the
crowds,” ACM Transactions on the Web (TWEB), vol. 6, no. 1,
pp. 2:1–2:30, 2012.

[15] J. Beel and B. Gipp, “On the robustness of google scholar
against spam,” in Proceedings of the 21st ACM Conference
on Hypertext and Hypermedia. ACM, 2010, pp. 297–298.

[16] D. Haliţă and D. Bufnea, “A study regarding inter domain
linked documents similarity and their consequent bounce
rate,” Studia Universitatis Babeş-Bolyai, Informatica, vol. 59,
no. 1, 2014.

[17] N. Poggi, J. L. Berral, T. Moreno, R. Gavalda, and J. Torres,
“Automatic detection and banning of content stealing bots for
e-commerce,” in NIPS 2007 workshop on machine learning
in adversarial environments for computer security, 2007.

[18] A. Ntoulas, M. Najork, M. Manasse, and D. Fetterly, “Detect-
ing spam web pages through content analysis,” in Proceedings
of the 15th international conference on World Wide Web.
ACM, 2006, pp. 83–92.

[19] D. S. Market, “The eu copyright legislation,” https://ec.
europa.eu/digital-single-market/en/eu-copyright-legislation,
Last visited on 25.05.2017.

[20] G. Gan, C. Ma, and J. Wu, Data clustering: theory, algo-
rithms, and applications. Siam, 2007, vol. 20.

[21] W. H. Gomaa and A. A. Fahmy, “A survey of text similarity
approaches,” International Journal of Computer Applications,
vol. 68, no. 13, 2013.

[22] G. Kondrak, “N-gram similarity and distance,” in Inter-
national Symposium on String Processing and Information
Retrieval. Springer, 2005, pp. 115–126.

[23] “Squid: Optimising web delivery,” http://www.squid-cache.
org/, Last visited on 25.05.2017.


