
MPI Scaling Up for Powerlist Based Parallel
Programs

Virginia Niculescu∗†, Darius Bufnea ∗‡, Adrian Sterca ∗§
∗Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Cluj-Napoca, Romania

†vniculescu@cs.ubbcluj.ro, ‡bufny@cs.ubbcluj.ro, §forest@cs.ubbcluj.ro

c©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Abstract—
Powerlists are recursive data structures that together with

their associated algebraic theories could offer both a method-
ology to design parallel algorithms and parallel programming
abstractions to ease the development of parallel applications
This has been also proved by a concrete development of
such a framework that allows easy, efficient, and reliable
implementation of Java parallel programs on shared memory
systems.

The paper presents a highly scalable version of this frame-
work by extending it to distributed memory systems based
on an MPI implementation. Through this extension we may
use the framework to develop Java parallel programs also on
distributed memory systems such as clusters. The design of
the framework enables flexibility in defining the appropriate
execution type depending on the execution system and its
characteristics. Therefore, it is possible to choose MPI execution
(that also could be combined with multithreading) if the avail-
able system includes an MPI platform, or simple multithreading
execution.

Examples are given and performance experiments are con-
ducted. The performance analysis of these applications empha-
sises the utility and the efficiency of this framework extension.

Index Terms—parallel programming; scaling; recursive struc-
tures; Java; MPI; performance; models.

I. INTRODUCTION

Since nowadays Java could be accepted as an alternative
for High Performance Computing, Java parallel programming
frameworks could be developed to achieve very high levels of
performance and scalability. Such a framework is JPLF [11],
which is based on powerlist data structures and multithread-
ing programming. We present in this paper an MPI extension
of this framework in order to allow execution also on cluster
architectures. The multithreaded variant is based on using
thread pools (the tested implementation uses ForkJoinPool

executor, but others could be used too) where the size of these
pools are depended on the system on which it is executed.
By moving to a cluster type system, we may increase the
level of parallelization by involving many more processing
units into executing the same application.

In this paper we presents the design decisions on which
this MPI extension is based, together with applications and
experiments that emphasize the advantages introduced by this
extension.

The paper is organized as it follows. In section II we give
a general description of powerlists, and then some general
aspects about the framework design and implementation are
given in section III. Section IV presents the MPI extension

of the framework that supports Java implementations of
powerlists parallel programs. Section V presents some appli-
cations and the practical experiments related to them, together
with the associated performance analysis. Related work is
presented in section VI, and we present the conclusions
section VII.

II. POWERLIST THEORY

The powerlists data structures and their associated theory
have been introduced by J. Misra [10], and especially be-
cause the index notations are not used, they allow defining
divide&conquer programs at a high level of abstraction. The
functions on powerlists are defined recursively by splitting
their arguments based on two deconstruction operators. A
powerlist is a linear data structure with elements of the same
type, with the specific characteristic that the length of a
powerlist is always a power of two.

We denote by PL〈X,n〉 the type of a powerlist that has
2n elements each being of type X . A powerlist with a single
element a is called a singleton, and it is denoted by [a] . Two
powerlists are called similar if they have the same length and
elements of the same type.
Two similar powerlists can be combined into a new, double
length, powerlist data structure, in two different ways:

• using the operator tie, written p | q, the result containing
elements from p followed by elements from q,

• using the operator zip, written p \ q, the result containing
elements from p and q, alternatively taken.

Therefore, the constructor operators for powerlists are:

[.] : X → PL〈X, 0〉
.|. : PL〈X,n〉 × PL〈X,n〉 → PL〈X,n+ 1〉
.\. : PL〈X,n〉 × PL〈X,n〉 → PL〈X,n+ 1〉

(1)

Powerlist algebra is defined by these operators and by axioms
that assure the existence of a unique decomposition of a
powerlist, using one of tie or zip operators; and the fact
that the tie and zip operators commute. The proofs of
properties on powerlists are based on a structural induction
principle defined on powerlists, which consider a base case
(singletons), and two possible variants for the inductive step:
one based on the tie operator, and the other based on zip.

Functions are defined based on the same principle: As a
powerlist is either a singleton, or a combination of two pow-
erlists, a function on a powerlist can be defined recursively
by cases. For example, the high order function map, which

applies a scalar function to each element of a powerlist, is
defined as follows:

map(f, [a]) = [f(a)]
map(f, p | q) = map(f, p) |map(f, q)

(2)

For reduction with the ⊕ associative operator, we also have
a very simple powerlist definition:

red(⊕, [a]) = [a]
red(⊕, p | q) = red(⊕, p)⊕ (red(⊕, q)

(3)

For both these functions, alternative definitions based on the
zip operator could also be given.

There are functions where the existence of both operators
is essential. Function inv permutes the input list p such that
the element with the index b in p will be on the position
given by the reversal of the corresponding bit string of b:

inv : PL〈X,n〉 → PL〈X,n〉
inv([a]) = [a]
inv(p | q) = inv(p) \ inv(q)

(4)

Many other functions, for example the Fast Fourier Trans-
form (section V-C) benefit from the existence of the two
operators tie and zip.

The parallelism of the functions is implicit: each appli-
cation of a deconstruction operator (zip or tie) implies two
independent computations that may be performed in two
processes (programs) that could run in parallel.

The existence of the two decomposition operators dif-
ferentiates these theories from other list theories, and also
represents an important advantage in defining many parallel
algorithms.

III. THE POWERLIST JAVA FRAMEWORK

The JPLF framework provides general support imple-
mentations for computing powerlist functions in Java. The
design of this framework was guided by the types defined
in the powerlist theory and by their specific properties and
operations.

The two characteristic operations: tie and zip are used
to split a powerlist, but they could also be used as con-
structors. The theory considers that the powerlist functions
are defined by applying one deconstruction operator (for
divide operation) for each input powerlist, and a combining
function. If the result is also a powerlist, then the combining
function is based on a powerlist construction operator, too.
The differentiation between these two cases is done by
considering the following two types: PowerFunction and
PowerResultFunction.

The operator type used for splitting a powerlist is deter-
mined by the specific type of that powerlist that could be
either TiePowerList or ZipPowerList; and this enables poly-
morphic definitions of the splitting and combining operations.
The associated class diagram that corresponds to the list data
structure types is shown in Figure 1.

When a powerlist is split, the result is formed by two
similar sublists. In order to avoid element copy, the stor-
age of both sublists remains the same as that of the ini-
tial list, and only the storage information is updated. For

Fig. 1: The class diagram of the classes corresponding to lists
implementation.

each list l, the storage information SI(l) is formed of:
[base, start, end,incr] where base is the reference to the
storage container, start is the start index,end is the end
index, and incr the incrementation step, which is used for
list iteration.

From a given list with storage information SI(list) being
{base, start, end, incr}, tie and zip deconstruction oper-
ators each create two lists left_list and right_list that
have the same storage container – base, and correspondent
updated values for (start, end, incr).

The definition of the divide&conquer functions over pow-
erlists is done based on the template method design pat-
tern [7]. The PowerFunction class defines the template
method compute that implements the solving strategy. For
any new function, the user should provide implementa-
tions for the following methods: basic_case, combine,
create_left_function, and create_right_function.

An important advantage of the framework is the fact
that the execution is managed separately from the program
(powerlist function) definition. The executors definition is
based on the primitive operations: basic_case, combine,
create_left_function, and create_right_function, and
so, it is possible to define different execution variants for a
powerlist program: sequential, multithreading, or new others.

For the shared memory case, the framework’s efficiency
and usability are emphasized in detail in [11].

In order to offer a better scalability, another execution
type is proposed: a distributed execution based on MPI. This
improved scalability could be necessary in various situations.
The framework is oriented on applications that use regular
data sets of large sizes, and so, it should be possible to use
for execution multiple computational nodes.

IV. MPI BASED EXTENSION

For the shared memory variant, the cost of splitting and
combining powerlist data structure is reduced to minimum
by eliminating the necessity of copying the elements of
the lists; only the characteristics of the list are changed
(start, end, incr).

For an MPI variant we have to work with distributed
memory, which is accessed from different processes, and so,

we had to treat the cost associated to splitting and combining
the list very carefully. It is well known that the associated
costs for transmitting data are much higher than the simple
computation costs. Because of this we have tried to eliminate
the transmission cost where it was possible.

In order to achieve this, we had to analyze the powerlist
function definition from the data point of view. Powerlist
functions are defined on list data structures and each time we
apply the recursive function definition, the data is split into
two new data structures. If we assume that the computation
associated to one of these structures will be computed on
another process, this splitting step implies also communica-
tion operations. Similarly, the combining stage could apply
operations on the corresponding results of the two recursive
calls, which also implies communication.

The analysis of powerlist function execution leads to the
following three phases:

1) Descending/splitting phase that considers the operations
needed to split the list arguments, and additional oper-
ations, if they exist.

2) Leaf phase that considers the operations executed on
singletons.

3) Ascending/combining phase that considers the opera-
tions needed to combine the list arguments, and addi-
tional operations, if they exist.

For functions such as map or reduce the descending
phase has only the role of distributing the input data to
the processing elements. The input data are not transformed
during this process. Even for Fast Fourier Transform (fft -
details in section V-C) we have the same case – only in the
ascending phase special operations need to be done.

There are in fact very few cases when the input is trans-
formed at the descending phase. Such cases involve some
additional computation on the sublists obtained at each step.
Also, there are many cases when function transformations
could be applied – such as tupling – in order to eliminate
these additional computations [12].

From this analysis, we may identify different classes of
powerlist functions:

1) splitting ≡ data_distribution
functions for which the splitting phase implies only data
distribution – examples: map, reduce, fft ;

2) splitting 6≡ data_distribution
functions for which the splitting phase involves also
additional computation besides the data distribution –
examples: f(p\q) = f(p+ q)\f(p− q);

3) combining ≡ data_composition
functions for which the combining phase implies only
the data composition based on construction operator
(tie, or zip) of the results obtained in the leaves –
examples: map;

4) combining 6≡ data_composition
functions for which the combining phase involves spe-
cific computation used in order to obtained the final
result – examples: reduce, fft.

As it can be noticed, these classes are not disjunctive,
and so, instead of defining different types of functions, we

split the function execution into three sections and we use
template method pattern [7] in order to let these parts vary
independently. Adding the corresponding case is done using
the decorator pattern [7].

For MPI execution, we need to specify different
computational tasks that should be executed for each
phase. This could be done by adding specific wrappings
such as: MPI_PowerCT_split, MPI_PowerCT_compose,
MPI_PowerResultCT_compose, MPI_PowerCT_read,
MPI_PowerCT_write.

Since for domain decomposition parallel applications, the
input/output data sizes are very large, usually these data are
stored into files. This introduces another variation in defining
the kind of partial operations that one function should define.
These variations are given by the way the input data are
taken, or/and how the result is given, in combination with
the previously described cases.

If the data are taken from a file, then:

• the case 1) implies concurrent file reads of the appro-
priate data done by each process;

• the case 2) implies a reading done by the process 0,
followed by an implementation of the decomposition
phase based on MPI communications.

The concurrent read for each input parameter of powerlist
type is possible since each process reads different data, and
these data depends on: the type of the input data –
TiePowerList or ZipPowerList; the total number of ele-
ments, the number of processes, the rank of each process,
and the data element size.

Decomposition based on tie operator is very simple and
direct – each process receives a filepointer from where
it starts reading the same number of data elements.

For zip decomposition, the file reading involves a little
bit more complex operations: each process also receives a
starting filepointer and a number of data elements that
should be read, but each new reading needs also a seek
operation which is based on a bit reverse operation applied
on the indices of the data elements.

A similar situation is encountered for the combining phase
together with the results writing. Concurrent writing is possi-
ble if the output file is already created and each process will
write values on different positions that are computed based
on the operator type, element data size, and the process rank.

Since all the framework’s classes are generic and also
almost all MPI Java implementations need simple data types
to be used in communication operations, we have used byte
array transformation of the data through serialization. This
implies specific operations that serialize/deserialize specific
data types. This also helps the reading/writing mechanism
that is defined at the byte level.

The MPI execution of a powerlist function is very simple:
in order to have an MPI execution of an powerlist function,
it is not necessary to define specific MPI functions for each
particular function, but just to specify if the function needs a
split operation or a simple read operation, and a compose

operation or a write operation, etc.

The next code snippet shows the construction of the MPI
computational tasks for map, when the input data are read
from a file, and the result is also written into a file.
sizes[0] = n;
elem_sizes[0] = elem_size;
files[0] = "matrix.in";
I_MPI_CTOperations<Matrix> exec =

new MPI_PowerResultCT_write<Matrix>(
new MPI_PowerCT_read<Matrix>(
new MPI_PowerResultFunctionCT<Matrix>(
new Map<Matrix>(f, rlist.toTiePowerList(),

list.toTiePowerList()), files, sizes,
elem_sizes), "matrix.out");

The operations read, write, compose, etc. are generic
because they are based on the template method operations
defined for each powerlist function. Also, they are dependent
on the total number of processes and the rank of each process.

V. APPLICATIONS AND EXPERIMENTS

In order to evaluate the usability of the MPI extension, we
consider three classical problems – Map, Reduce, and Fast
Fourier Transform – for which we evaluate the performance
of their implementations developed using the presented MPI
extension. We will also discuss the performance implications
of the execution parameters by conducting some experiments
for these problems, considering different input sizes and
different computing solutions.

All the experiments presented in this paper have been
executed on a IBM NextScale cluster with a connectivity
of 56 Gb/s (Infiniband Mellanox FDR switch SX6512 with
216 ports, 1:1 subscription rate). Each node is equipped with
two Intel(R) Xeon(R) CPU E5-2660 v3 @ 2.60GHz, and
each of these two processors has 10 physical computing cores
and 128 GB RAM memory. The machine was running Red
Hat Enterprise Linux Server release 7.0 (Maipo) on 64bit
and Java 8. The MPI library used was Intel(R) MPI Library
for Linux* OS, Version 2018 Update 1 which contains a
Java MPI binding. We have used 4 nodes, and all the
experiments have been repeated three times, average time
being considered.

In general we considered three cases for the evaluation:
sequential execution, multithreaded execution based on the
usage of the executor constructed over ForkJoinPool Java
executor, and MPI execution combined with multithreaded
execution. For MPI execution we have considered different
variants based on the total number of MPI processes (proc),
and based on the spreading of these processes on the con-
sidered physical nodes of the cluster (ppn = the numbers of
processes per cluster-node). Each MPI process executes the
leaf computation using a multithreaded executor (based on
ForkJoinPool).

In the performance graphics presented in this section, we
have considered the data size expressed as powers of two, so
only the corresponding powers are represented, and the time
is expressed in nanoseconds. Visibility reasons determined
different maximum sizes represented in the graphics.

A. Map
The representation of the powerlist map computation is

given in Section II. The definition of function map could be

 0

 2x10
9

 4x10
9

 6x10
9

 8x10
9

 1x10
10

 1.2x10
10

 1.4x10
10

 1.6x10
10

 1.8x10
10

 10 10.5 11 11.5 12 12.5 13 13.5 14

ti
m

e

data size

execution time [sequential]
execution time [multithreading]

execution time [MPI: proc=4, ppn=1]
execution time [MPI: proc=8, ppn=2]

execution time [MPI: proc=64, ppn=16]

Fig. 2: The execution time of map on a list of real numbers, applying
square – when the input file reading and output file writing times
are included.

 0

 10

 20

 30

 40

 50

 60

 70

 10 11 12 13 14 15 16 17

s
p
e
e
d
-u

p

data size

Speed-up [multithreading]
Speed-up [MPI: proc=4, ppn=1]

Speed-up [MPI: proc=8, ppn=2]
Speed-up [MPI: proc=64, ppn=16]

Fig. 3: The speed-up of map computation on a list of 100 × 100
matrices, applying square – when the input file reading and output
file writing times are not included.

done either using tie or zip operator (in the experiments the
tie variant was used).

Since the result of a map computation is a pow-
erlist, the corresponding class Map<T> extends the class
PowerResultFunction<T>. Some details about the MPI defi-
nition for this class were given in the previous section.

The comparative analysis considers the sequential exe-
cution which is based on the type BasicList that implies
an iterative application on the function argument of map on
each list element, instead of the sequential execution of the
powerlist variant that involves recursion which could increase
the computation time.

For map, both input reading and the result writing could be
done in parallel by each process, as described in the previous
section. This leads to a very good performance even when
map is tested for simple lists of real numbers with square
operation – Figure 2. It can be noticed that, in this case, the
multithreaded variant is not better than the sequential one;
this is due to the fact that the improvement obtained through
the parallelization is covered by the added time due to the
involved recursion, and task creation.

Still, we wanted to evaluate also the performance brought
by MPI for the computation phase only. For this purpose,
some experiments with matrices of different orders have been
conducted. Here we presents only the results for matrices

 0

 5

 10

 15

 20

 25

 10 11 12 13 14 15 16 17

s
p
e
e
d
-u

p

data size

Speed-up [multithreading]
Speed-up [MPI: proc=4, ppn=1]
Speed-up [MPI: proc=8, ppn=2]

Speed-up [MPI: proc=64, ppn=16]

Fig. 4: The speed-up of reduce computation on a list of 100 ×
100 matrices, applying addition – when the file reading time is not
included.

 0

 1x10
11

 2x10
11

 3x10
11

 4x10
11

 5x10
11

 6x10
11

 7x10
11

 8x10
11

 9x10
11

 15 16 17 18 19 20 21 22

ti
m

e

data size

execution time [sequential]
execution time [multithreading]

execution time [MPI: proc=4, ppn=1]
execution time [MPI: proc=4, ppn=2]
execution time [MPI: proc=8, ppn=2]

execution time [MPI: proc=16, ppn=4]

Fig. 5: The execution time of FFT computation for different data
sizes when the reading time of the input data is included.

of order 100 × 100, but it should be mentioned that the
peformance is improved as the order of matrices and the
data size increase.
B. Reduce

As for map, the powerlist representation of the reduce

computation is given in Section II.
Corresponding to this definition, since reduce returns a

single value and not a powerlist, a class Reduce<T> that
extends the class PowerFunction<T> is used.

For reduce we have done several experiments, and we
present here the performance obtained for adding matrices
of order 100 considering the analysis that does not include
the time for reading the input data – Figure 4. The speed-up
increases with the data size, and the performance obtained
by using MPI variant is much better than the one that uses
only multithreading.
C. Fast Fourier Transform

For a polynomial p with complex coefficients, Fourier
Transform could be obtained by evaluating p on a specific
sequence of points: (W p). If the polynomial is given as
a powerlist of its coefficients, the points where the val-
ues should be computed form also a powerlist (W p) =
(ω0, ω1, . . . , ωn−1), where n is the length of p and w is the
nth principal root of1.

Since (W p) contains powers of the nth principal root of
1, and since they have special relations with the roots of 1 of

lower order, the Fourier Transform can be recursively com-
puted in O(n log n) steps, using the well known Fast Fourier
Transform algorithm [6]. The powerlist representation of this
algorithm, proved in [10], is:{

fft([a]) = [a]
fft(p \ q) = (P + u×Q) |(P − u×Q)

(5)

where P = fft(p), Q = fft(q) and u = powers(p).
The result of the function powers(p) is the powerlist

(w0, w1, .., wn−1) where n is the length of p and w is the
(2× n)th principal root of 1.

The operators used in the fft definition are extension of
the addition, substraction, and multiplication operators on
powerlists. They have simple definitions that consider as an
input two similar powerlists, and specify that the elements on
the similar positions are combined using the corresponding
scalar operator. The theoretical parallel time-complexity of
fft computation using this powerlist definition is O(log n)
parallel steps using O(n) processors.

In order to have Fast Fourier Transform also for the
sequential case, the sequential implementation that has been
tested it is also based on PowerLists, but without using any
parallel executor. A sequential variant based on BasicList

does not correspond to Fast Fourier Transform.
For FFT, we need to apply compose operation between the

intermediary results of each process; in this way the final
result – even if it is a powerlist – is obtained in one process,
and so the time for writing the result cannot be parallelized
as for the map case.

Figure 5 shows the obtained performance when the input
file reading time is included into the total execution time.
For fft the impact of including the file reading into the per-
formance analysis is not so predominant especially because
the reading is a zip type reading that implies a skip operation
before each reading, and this diminishes the performance (not
contiguous block reading).

The experiments described here prove that the MPI exten-
sion of the framework brings important improvements over
the multithreaded variant.

From all the experiments, we have noticed that the variant
with a number of MPI processes equal to the physical
processors number, and these processes evenly distributed on
the nodes was the best choice for almost all the cases.

We have done also experiments with more processes
distributed on one node (so for pairs [proc, ppn] equal
to - [8, 4], [16, 8], . . . etc.) but they did not proved to be
better. In these cases the number of threads used by the
ForkJoinExecutor was set smaller than the implicit value
given by ForkJoinExecutor.commonPool() that depends on
the number of cores of the processor. These results are also
theoretically confirmed by the fact that in a shared memory
context it is more efficient to use threads, instead of MPI
processes.

VI. RELATED WORK

An important approach in defining high level parallel
models is based on algorithmic skeletons [4]; they have been

used for the development of various systems providing the
application programmer with suitable abstractions. Powerlists
and their theory also offer a skeleton based approach in
construction of parallel programming models.

The powerlist theory has been used in other works that
try to facilitate the definition of formal and efficient parallel
programs. For example, in [1] transformation rules to par-
allelize divide-and-conquer (DC) algorithms over powerlists
are presented. The goal of this work was to derive programs
for the massively data parallel model. In [3] powerlists are
used to capture both parallelism and recursion succinctly,
and automatically schedule partitioned matrices over a GPU
cluster.

Lithium [2] is implemented as a Java package and repre-
sents both the first skeleton based programming environment
in Java, and the first complete skeleton based Java environ-
ment exploiting macro-data flow implementation techniques.
Calcium [5] and Skandium [9] are two others Java skeleton
frameworks.

Java 8 Streams are playing an important role in bringing
functional programming to Java, and they are also based
on algorithmic skeletons. In [11] a comparison between the
performance of some algorithms’ implementations in Java
parallel streams and in the presented analyzed framework is
done.

Also there are studies that emphasize that Java could also
be a good candidate for MPI implementation. There are
several reasonably good Java implementation of MPI: Java
Intel MPI [14], Java OpenMPI [13], or MPJ Express [8].
Each of these could be used for the presented scaling up,
even if there are few syntactic differences between these
Java MPI implementations. We have also used MPJ Express
in few experiments, and the results have been similar to
those obtained based on Intel Java MPI. The expected further
improvements of these Java MPI bindings will implicitly lead
to improvements of the presented framework.

VII. CONCLUSIONS AND FUTURE WORK

We have presented an MPI extension for distributed
memory system execution of a Java parallel programming
framework based on powerlists.

The framework design is based on design patterns that
provide easy definition of the new concrete programs, but
also the possibility to extend the framework to accept other
similar data structures (such as ParList and PList), and also
other execution models – these will be the focus of the
associated further work.

It was important to identify and to analyze the computation
phases of a powerlist function: descend, leaf, and ascend,
for which correspondent generic classes have been defined.
These allow efficient MPI execution of the powerlist func-
tions by wrapping their computation with specific operations
depending on the functions’ characteristics: read, split,
compose, etc.

The set of analyzed examples includes: map, reduce, and
Fast Fourier Transform, and the experiments shows that the

obtained performance inside the JPLF framework is very
much improved using the MPI execution.

MPI based execution could be combined with multi-
threading computation, and the right way of choosing the
parameters (MPI number of processes, number of process on
each node, number of threads used by each process) depends
on the architecture specific characteristic. More concretely,
the experiments emphasize that the best choice is to consider
a number of MPI processes equal to the double of the number
of physical nodes and these processes to be evenly distributed
over the nodes.

From all the examples, the comparison between the parallel
execution based only on multithreading and the one which
also involves distributed parallel computation based on MPI,
emphasizes that, if the corresponding architecture is avail-
able, we can gain important advantages by using MPI.

REFERENCES

[1] K. Achatz and W. Schulte, “Architecture independent massive
parallelization of divide-and-conquer algorithms,” Fakultaet
fuer Informatik, Universitaet Ulm, 1995.

[2] M. Aldinucci, M. Danelutto, P. Teti, “An advanced environ-
ment supporting structured parallel programming in Java,”
Future Gen. Computer Systems, vol. 19, pp. 611–626, 2003.

[3] A. S. Anand and R. K. Shyamasundarn, “Scaling computation
on GPUs using powerlists,” in Proceedings of the 22nd Interna-
tional Conference on High Performance Computing Workshops
(HiPCW). Oakland: IEEE, 2015, pp. 34–43.

[4] M. Cole, Algorithmic Skeletons: Structured Management of
Parallel Computation. MIT Press, 1989.

[5] D. Caromel and M. Leyton, “Fine Tuning Algorithmic Skele-
tons” Euro-ParParallel Processing, 13th International Euro-Par
Conference, Rennes, France, pp. 28-31, 2007.

[6] J. W. Cooley and J. W. Tukey, “An algorithm for the machine
calculation of complex Fourier series,” Math. Comput., vol. 19,
pp. 297–301, 1965.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design pat-
terns: elements of reusable object-oriented software. Addison-
Wesley, 1995.

[8] A. Javed, B. Qamar, M. Jameel, A. Shafi and B. Carpenter.
“Towards Scalable Java HPC with Hybrid and Native Com-
munication Devices in MPJ Express,” International Journal of
Parallel Programming (IJPP) 2015 - Springer.

[9] M. Leyton and J. M. Piquer. “Skandium: Multi-core Program-
ming with Algorithmic Skeletons,” in 18th Euromicro Confer-
ence on Parallel, Distributed and Network-based Processing.
IEEE, 2010, pp. 289–296.

[10] J. Misra. “Powerlist: A structure for parallel recursion,” ACM
Trans. Program. Lang. Syst. vol. 16, no. 6, pp. 1737–1767,
1994.

[11] V. Niculescu, F. Loulergue, D. Bufnea, and A. Sterca. “A Java
Framework for High Level Parallel Programming using Pow-
erlists,” in Parallel and Distributed Computing, Applications
and Technologies (PDCAT). IEEE, Taipei, Taiwan. 2017, pp.
255-262.

[12] V. Niculescu, F. Loulergue. “Transforming powerlist based
divide&conquer programs for an improved execution model,”
in High Level Parallel Programming and Applications (HLPP),
Orleans, France, 2018.

[13] O. Vega-Gisbert, J.E. Roman, J.M. Squyres. “Design and
implementation of Java bindings in Open MPI,” Parallel Com-
puting 59, pp. 1-20 (2016).

[14] “Intel MPI Library Developer Reference for Linux
OS: Java Bindings for MPI-2 Routines,” [Online]
https://software.intel.com/en-us/mpi-developer-reference-
linux-java-bindings-for-mpi-2-routines, accessed: 2018-05-10.

