
CARPATHIAN J. MATH.

20 (2004), No. 2, 149 - 154

Improving the Round Trip Time Estimation in
Internet Routers

DARIUS BUFNEA, ADRIAN STERCA, CLAUDIU COBÂRZAN, FLORIAN BOIAN

Abstract. We review in this paper the concept of TCP-friendliness and we debate one of
its weaknesses. Unfortunately, this weakness reduces the practical applicability of the TCP-
friendliness equation. For a very high percent of the Internet flows, the TCP-friendliness test may
have wrong results. We suggest in this paper a router algorithm that improves the efficiency of the

TCP-friendliness equation for some UDP flows. This algorithm uses the additional information
retrieved by the router from competing TCP flows in order to obtain a better approximation for
the round trip time as used in the TCP-friendliness test.

1. Introduction

The last decade has confirmed the expected growth rate of the Internet commu-
nity. Nowadays, this continuing evolving community is having new needs regarding
running Internet applications. New protocols have emerged to support these new
applications, mostly audio- and video-based. Also, these applications have lead to
an increase in the amount of traffic flowing in the current Internet. Unresponsive
or bad designed protocols, non-specialized users and the increased Internet traffic
are the main causes responsible for the appearance of an unwanted phenomenon,
known as congestion collapse.

Congestion occurs in a computer network when the number of packets delivered
to destination is significantly smaller than the number of packets injected into the
network. This situation is very common when the network load increases over
the links’ capacities, i.e. when the number of packets injected into the network
reaches or surpasses the network transport capacity. Routers in the middle of
the path from source to destination are constrained to discard a high number of
queued packets. These packets, before being discarded, had consumed precious
network resources such as link bandwidth, router memory and processor time.
More over, discarding packets leads to unwanted behavior for user applications.
For an overview about congestion control roots, preventing and treatment mea-
surements, the reader should consult [4] and [7]. Congestion control algorithms
fall into two classes, depending on where they are used. Router based algorithms
and techniques for congestion control [3] try to detect congestion in its incipient
phase, i.e. preventing it, or in the worst case, resolving the congestion situation
by discarding or marking packets. All this work is done at the communication
network level. Protocols based congestion control algorithms [1] try to resolve
congestion situations by using implicit or explicit feedback received by the sender

Received: 26.09.2004; In revised form: 12.01.2005

2000 Mathematics Subject Classification. 60K30, 68M10, 68M12.
Key words and phrases. congestion control, TCP friendly, TCP time stamp, UDP flows.

149



150 Darius Bufnea, Adrian Sterca, Claudiu Cobârzan, Florian Boian

from the communication network. These two classes of algorithms do not exclude
each other. Rather, they are complementary.
Contributions. We propose a new router based algorithm that can be used to
improve the detection process of non TCP-friendly UDP flows in some situations.
Our improvements are based on the additional information collected by routers
from TCP flows. We are especially interested in those TCP packets having the
same source or destination address as an UDP flow suspected not to be TCP-
friendly. Routers can use the time stamp information extracted from these packets
[5] in order to improve the estimated round trip time value used in the TCP-
friendliness equation. The round trip time value used in the TCP-friendliness
equation, as proposed in [2], is far too weak. This drastically reduces the number
of cases when the TCP-friendliness equation can be applied, or leads to wrong
conclusions if applied in improper network conditions.

The paper is organized as follows. The next section reviews the main concepts
used in this paper such as TCP-friendly flow and congestion aware protocol. It also
debates the TCP-friendly test equation and some of the disadvantages of using it
in certain situations. The algorithm for improving the round trip time estimation
in Internet routers is revealed in section 3. The paper ends with the results of our
experiments using the proposed algorithm, together with considerations of future
work and improvements of our mechanism.

2. The TCP-friendliness test

The data in Internet is currently carried over two types of protocols. Congestion
aware protocols, such as TCP, reduce their source output as congestion occurs.
Congestion occurrence is reported to its source either directly using ECN [6] or
indirectly by packet drops observation. As a response, the network load should
decrease and the congestion situation resolved.

Congestion unaware protocols, such as UDP, are unresponsive to congestion.
This behavior can lead to the unfairness problem caused by unresponsive flows
that consume more bandwidth that a regular flow which obeys congestion control
policies. In this situation, when a misbehaved flow gets a larger amount of band-
width than a good behaved one, new network incentives are needed in order to
prevent such a behavior.

In [2], Floyd and Fall introduced the concept of TCP-friendly flow and gave
an equation serving to the identification of misbehaved UDP flows, i.e. not TCP-
friendly.
Definition: A flow is TCP-friendly if its arrival rate does not exceed the bandwidth
of a conformant competing TCP connection in the same network circumstances.

In order to determine if a flow is or not TCP-friendly, we can use the TCP-
friendliness test given in [2]. This test is based on the following equation, which
gives the maximum sending rate of a conformant TCP connection:

(2.1) T ≤ 1.5 ×
√

2/3 × B

R ×√
p

In the above equation, B is the packet size, p is the packet drop rate and R is the
round trip time estimated for the conformant TCP connection. The arrival rate



Improving the Round Trip Time Estimation in Internet Routers 151

of a TCP-friendly flow should not be higher than T bytes/sec. Any flow, with an

arrival rate T higher than
1.5×

√
2/3×B

R×
√

p will not be TCP-friendly and the router

should apply to this flow proper incentives, i.e. bandwidth restriction or packet
drops.

This equation is directly derived from the TCP additive increase, multiplicative
decrease (AIMD) congestion control algorithm [1]. The packet size B and the
packet drop rate p of a flow can be easily determined through direct observation
by the router. But, for estimating the round trip time value R, there is no simple
method, as the authors of [2] have admitted. They suggest setting R to twice the
one-way propagation delay of the attached link - i.e. the link where the packet
is being sent through. This approach reduces the practical usage of this test to
those routers having a significant propagation delay of the attached link in the
end-to-end delay of a connection’s path.

An average path length in the current Internet is around fifteen hops. The
propagation delay of every link of this path is contributing twice to the end-to-end
delay of a connection - once for a packet and once for its acknowledgement. If the
outgoing attached link’s delay is not a significant fraction of the end-to-end delay
of a connection’s path, the round trip time for this connection is underestimated
by a factor of thirty. Improper usage of this value in a TCP-friendliness test could
lead to an overestimated allowed sending rate. A misbehaved UDP flow can use in
these circumstances, thirty times more bandwidth than a conformant TCP flow,
without failing the TCP-friendliness test. For longer Internet paths, the allowed
overestimated sending rate could be fifty times higher than the sending rate of a
good behaved flow.

3. Improving the RTT approximation for some UDP flows using TCP

time stamps

The TCP protocol uses a time-stamp option in order to compute a connection’s
round-trip time [5]. Unfortunately, a similar approach for an UDP flow is inap-
propriate as the UDP protocol is not connection oriented. In this situation, an
application must rely on its own internal mechanism for computing the round trip
time. This round trip time information, even if present, it is meaningless for a
router process running at network or transport level.

We will use the following notations to present and explain our algorithm:
R - a router application or hardware implementing our algorithm or the Internet
address of this router;
F - an UDP flow suspected of not being TCP-friendly;
UDPaddrs and UDPaddrd - the source and the destination address of flow F , as
seen by router R;
P - a TCP packet forwarded by router R;
TCPaddrs and TCPaddrd - the source and the destination address of packet P ,
as seen by router R;
AP - the acknowledgment of packet P . AP will have TCPaddrd as the source
address and TCPaddrs as the destination address;
The time stamp option (TSV alue, TSEchoReply) - a TCP time stamp option
enclosed in a TCP packet as specified in [5]. The TSV alue is meaningful for us only



152 Darius Bufnea, Adrian Sterca, Claudiu Cobârzan, Florian Boian

in packet P , while the TSEchoReply is only meaningful in its acknowledgment
AP . Let (PTS , x) be the time stamp enclosed in P , and let (y, PTS) be the time
stamp enclosed in AP . The x and y element of the above tuples are meaningless
for our algorithm.

Our algorithm tries to approximate the round-trip time on the UDPaddrs-
UDPaddrd path using at least one of the partially round-trip times UDPaddrs−R
or R−UDPaddrd. In order to achieve this, the router will scan for forwarded TCP
packets having the destination address TCPaddrd ∈ {UDPaddrs, UDPaddrd}.
These packets may belong to competing well-behaved TCP connection. Let P be
such a packet, having TCPaddrd = UDPaddrd. After processing packet P , the
router stores in a hash table the local time, keyed by the (TCPaddrs, TCPaddrd,
PTS) tuple. When packet P is acknowledged, the router looks in the hash ta-
ble after the ObservedT ime value referred by the (TCPaddrs, TCPaddrd, PTS)
key - all these tuple members can be retrieved from AP . If such a value is
found, a round trip time sample for the R − UDPaddrd path can be computed
as RouterLocalT ime − ObservedT ime. We will use this computed value as an
approximation for the round-trip time on the UDPaddrs − UDPaddrd path. If
round-trip times can be computed for both UDPaddrs − R and R − UDPaddrd

paths, we will use their sum instead.

Algorithm ComputeUDPFlowRTTApproximation is:

Input: A suspected misbehaved UDP flow F specified by source address

UDPaddrs and destination address UDPaddrd.

Output: The smooth round-trip time approximation SRTTUDPFlow for the

UDP flow F.

Begin

InterestedIPs = {UDPaddrs, UDPaddrd};
For a forwarded TCP packet P having the source address TCPaddrs,

destination address TCPaddrd and the enclosed time-stamp option

(PTS , x):
If TCPaddrd ∈ InterestedIPs then

ObservedT ime = RouterLocalT ime;

HashTableEntry (TCPaddrs,TCPaddrd,PTS) = ObservedT ime;

End If;

End For;

For a forwarded acknowledgement packet AP having the source address

TCPaddrd, destination address TCPaddrs, the enclosed time-stamp

option (y, PTS):
If TCPaddrd ∈ InterestedIPs then

ObservedT ime = GetHashTableEntry (TCPaddrs,TCPaddrd,PTS);

RemoveHashTableEntry (TCPaddrs, TCPaddrd, PTS);

MeasuredRTT = RouterLocalT ime − ObservedT ime;

Use MeasuredRTT to compute the smooth round trip SRTT

towards destination TCPaddrd as in [5];

RTTHashTableEntry (TCPaddrd) = SRTT;

End If;

End For;

SRTTUDPFlow = 0;
If UDPaddrs is a key in the hash table RTTHashTable then



Improving the Round Trip Time Estimation in Internet Routers 153

SRTTUDPFlow = RTTHashTableEntry(UDPaddrs);

End If;

If UDPaddrd is a key in the hash table RTTHashTable then

SRTTUDPFlow = SRTTUDPFlow + RTTHashTableEntry(UDPaddrd);

End If;

If SRTTUDPFlow = 0 then Compute SRTTUDPFlow as in [2];

End If;

End.

Figure 1. Our algorithm for improving the round trip time approximation

4. Results and Evaluation

Certain network conditions have to be met for successfully applying our algo-
rithm. In order to detect misbehaved UDP flows, a router running our algorithm
must forward TCP packets having the same destination address as the suspected
flow. Although the destination address of a forwarded packet is a completely ran-
dom variable, our experiments show that the proposed algorithm is suitable for an
acceptable number of UDP flows.

We placed our experiments at the border router R of our Intranet. Because
for any outgoing flow, the delay due to our Intranet links and routers is not a
significant fraction of the flow’s round-trip time, we were interested only in esti-
mating the flow’s round-trip time on the outside path of our Intranet: for a flow
F as defined above, having source address UDPaddrs in our Intranet, we tried to
compute the flow’s round trip time on the R−UDPaddrd path. The experiments
tried to determine the percent of UDP flows, for which our algorithm is suitable.

For grouping UDP packets in flows, we used a simple heuristic approach. We
group in a flow UDP packets having the same source and destination addresses
and the same source and destination ports. For eliminating stray UDP packets, we
required that any outgoing UDP flow has a sending rate higher than ρ. We chose
ρ = 1 packet/second. We also eliminated known good behaved traffic generated
in our Intranet on 111, 53, 137-139 UDP ports (portmap, nameserver netbios
services).

We ran our experiment ten times, in different weekdays, at different hours with
our network running at different loads. For any detected outgoing UDP flow F ,
we looked for TCP packets and for theirs acknowledgements, going to and coming
from UDPaddrd of flow F . For an average of about 6% of UDP flows we were
able to detect such TCP packets.

We use for demonstrating the strength of our algorithm a simple simulation
network and the following scenario. A non TCP-friendly UDP flow F , from
UDPaddrs to UDPaddrd, does not obey congestion control policies despite the
packet drops incentives imposed by both routers R1 and R2. Using the approach
from [2], the round trip time of flow F is estimated to twice the one-way delay
of the R1 − R2 path. On a 10 Mbps path, using 1500 bytes packets, this value is
around 55 milliseconds.

For successfully applying our algorithm, a competing, good-behaved TCP con-
nection must use the bottleneck R1 − UDPaddrd path. In these circumstances,



154 Darius Bufnea, Adrian Sterca, Claudiu Cobârzan, Florian Boian

router R1 will successfully estimate the round trip time of this connection to
110 milliseconds, twice as the one estimated above. This value, used in a TCP-
friendliness test for flow F inside the R1 router, will adjust the sending rate of
flow F to half of the sending rate allowed in the above conditions. If not properly
adjusted inside the R1 router, the sending rate of flow F will be eventually halved
later, inside the R2 router. It is better, for saving bandwidth, to drop packets of
a flow earlier in the network, closer to it’s source.

Figure 2. Simulation network

We consider that these results justify further research in this area, aiming the
improvement of the percent of UDP flows that might benefit from our algorithm,
or the improvement of the estimated round-trip time of an UDP flow.

5. Conclusion and Future Work

We suggest in this paper an algorithm that improves the estimated round-trip
time for a reasonable number of UDP flows. As a future work we suggest running
our experiments in a core router of a transit AS. Many routing algorithms use
delay as one of the metrics used for computing a path costs. We also suggest, for
further investigations, the use of this additional delays information retrieved from
the network level for improving the estimated round-trip time of a non-TCP flow.

References

[1] Allman, M., Paxson, V. and Stevens, W., TCP Congestion Control, IETF RFC 2581, April
1999

[2] Floyd, S. and Fall, K., Promoting the Use of End-to-End Congestion Control in the Internet,
IEEE/ACM Transactions on Networking, no. 4, 7(1999), 458-472

[3] Floyd, S. and Jacobson, V., Random Early Detection Gateways for Congestion Avoidance,
IEEE/ACM Trans. Net., Aug. 1993, 1, no. 4, 397-413

[4] Floyd, S., A Report on Some Recent Developments in TCP Congestion Control, IEEE

Communication Magazine, April 2001
[5] Jacobson, V., Braden, R. and Borman, D., TCP Extensions for High Performance, IETF

RFC 1323, May 1992
[6] Ramakrishnan, K., Floyd, S. and Black, S., The Addition of Explicit Congestion Notification

(ECN) to IP, RFC 3168, September 2001
[7] Ryu, S., Rump, C. and Qiao, C., Advances in Internet Congestion Control, IEEE Commu-

nications Surveys and Tutorials, Third Quarter 2003, 5, No. 1, 28-39

”Babeş-Bolyai” University of Cluj-Napoca

Department of Computer Science

Mihail Kogalniceanu, No 1, Cluj-Napoca, Romania

E-mail address: {bufny, forest, claudiu, florin}@cs.ubbcluj.ro


