
IP Multihoming Throughput Maximization based on
Passive RTT Measurements

Adrian Sterca
Department of Computer Science

Babeş-Bolyai University
Cluj-Napoca, Romania

forest@cs.ubbcluj.ro

Darius Bufnea
Department of Computer Science

Babeş-Bolyai University
Cluj-Napoca, Romania

bufny@cs.ubbcluj.ro

Virginia Niculescu
Department of Computer Science

Babeş-Bolyai University
Cluj-Napoca, Romania

vniculescu@cs.ubbcluj.ro

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Abstract—We present a routing solution for multihoming sites
that maximizes the throughput of local flows. We consider the
problem of transferring data between two multihomed network
sites (i.e. network sites that have two or more uplinks to the
Internet). Our routing solution is deployed at the edges of both
multihomed sites and routes local flows dynamically through
several outgoing network paths/links depending on the load (i.e.
congestion level) on each path. If the load on a network path
increases, fewer local flows are routed through it. We measure
the load on a network path using passive RTT measurements.
We performed a significant number of experiments in order to
show that our multihoming solution performs better than an
ECMP-based (i.e. Equal-Cost Multipath) solution in terms of
total aggregated throughput and inter-flow fairness.

Index Terms—multihoming, multipath load-balancing, multi-
path routing, ECMP routing

I. INTRODUCTION

Nowadays, multihoming network setups have a strong pres-
ence in the industry, but they are beginning to be the status
quo for end users, too. It is quite common for a company to
have two or more network uplinks to different Internet service
providers (ISP). The multihoming networking setup we con-
sider in this paper has two network sites which are connected
to each other through the public Internet and each network
site is multihomed, having at least two uplink connections to
different ISPs. A typical, although simplistic, drawing of our
problem setup is depicted in Fig. 1. In this figure, Site A is
a local area network (LAN) that is connected to the Internet
through two different ISPs, ISP1 and ISP2 and similarly, Site
B is a LAN which has two uplink connections, one to ISP3 and
another to ISP4. Let’s assume there are two physical network
paths between Site A and Site B: one going through ISP1
and ISP3 and the other going through ISP2 and ISP4. Let’s
call the first physical network path Path0 and the latter Path1
and we assume the paths are independent (i.e. they do not
share any network segment). The edge router from Site A can
send packets coming from the local network over Path0 (i.e.
through ISP1) and over Path1 (i.e. through ISP2). Similarly,
Site B can send packets coming from B’s local network over
Path0 (i.e. through ISP3) and over Path1 (i.e. through ISP4).
We assume there are a number of TCP connections between
Site A and Site B. The goal of this paper is to find a routing

policy for packets sent from Site A to Site B over the multipath
network (i.e. to route packets either over Path0 or Path1) such
that: the total, aggregated throughput from site A to site B is
maximized and the throughput differences between flows sent
from Site A to Site B over Path0 and Path1 is minimized.

We want our routing decisions to be transparent to local
computers from site A and site B, so the solution comes in
the form of a virtual tunnel interface between Site A and
Site B; the tunnel interface is located on the edge routers of
Site A and Site B and splits data over Path0 and Path1. In
this paper we only deal with the routing algorithm, not the
technicalities of the tunneling interface. This routing policy
is actually a flow mapping policy meaning that rather than
individual packets, whole TCP flows are mapped on either
Path0 or Path1. This is because, by sending packets from the
same TCP flow through different network paths with different
capacity/delay properties, it is highly likely that packets get
reordered in the network and cause the transmission rate of
the TCP flow to be halved, thus reducing the throughput [3].

Path 0

Path 1

Fig. 1. The network setup of the multihoming problem

The aforementioned goals should be achieved in a context
of changing available bandwidth and delay for both network
paths, depending on the network load. For instance, if we have
N TCP flows going through the tunnel from Site A to Site
B and Path1 and Path2 have the same capacity of X Mbps,
N/2 flows should be mapped on Path1 and N/2 flows mapped
on Path2. If at some point, due to increased load/congestion
on Path1, the available bandwidth drops to X/2 Mbps, we
should remap flows on the other path so that Path1 carries
N/3 flows and Path2 carries 2N/3 flows. This way, a larger
aggregated throughput should be achieved by the N flows and
also the inter-flow (throughput) fairness of the N flows should
be increased.

As practical examples, you can imagine Site A and Site B
to be two different buildings of the same company located far
apart. Or Site A and Site B can be two data centers belonging

to the same authority. Site A transfers/replicates data to site B
through a number of TCP connections and it wants to achieve
maximum throughput with the smallest transfer completion
time. We will give in the following sections a flow mapping
policy that adapts dynamically the number of flows on each
physical network path to reflect the load of that path. The load
on a path is estimated based on passive RTT (i.e. Round-Trip
Time) measurements.

II. RELATED WORK

Our work largely falls in the field of multipath data trans-
fer. This includes traffic engineering (TE), more specifically
multipath load-balancing, where the packets from a set of
flows need to be forwarded to the destination through a set
of multiple network paths). But it also includes Concurrent
Multipath Transfer (CMT) where the packets of a single flow
need to be transported to the destination over multiple network
paths concurrently. We can classify related work in this field
according to the level of the OSI network model the solution
functions at. For multipath load-balancing we can further
classify solutions depending on the granularity level they use
when performing the data split on multiple paths: a) flow-level,
b) packet-level or c) subflow-level .

At level 2, the Data Link level, there are several solutions
that split incoming traffic on multiple paths, most of them
being designed for data transfer inside data centers having
a Clos or fat-tree topology [1], [2]. All these solution are
designed to work inside data centers having a Clos or fat-
tree topology, so they would not work (at least not directly)
outside the data center network. There are many solutions
that perform multipath load-balancing at level 3 of the OSI
model, some of them do traffic engineering inside an AS
domain network (i.e. inside an ISP network) [4]–[9] and
others perform traffic engineering across AS domains for
BGP routing [10], [11]. The classical way of performing load
balancing across multiple paths is using Equal-Cost Multipath
routing (ECMP) [3], a feature supported by the main used
intra-domain routing protocols, OSPF and IS-IS. If there are
available several network paths with the same cost, this feature
maps each packet on a network path depending on a hash
function applied to the packet header fields (usually the IP
addresses), thus all the packets belonging to the same flow
follow the same network path and consequently, ECMP per-
forms load-balancing. This is referred to as oblivious routing
or oblivious traffic engineering because it does not take into
account past traffic patterns. Another TE solution in an ISP
network is predicted-based TE which uses traffic matrices that
represent the traffic demand in the ISP network across a large
time interval (e.g. months) and uses this estimation to spread
flows on multiple network paths [5]–[7]. A third TE solution
in an ISP network is online traffic engineering exemplified by
TeXCP [8]. TeXCP measures the path utilization at each router
by actively probing these routers and based on this feedback,
it adapts the load on each path.As opposed to TeXCP, our
technique does not rely on explicit feedback from routers in
the ISP network. It only uses information available at the edge

of the network, the customer site. All the above solutions try
to minimize the maximum link utilization in the ISP network,
while our mechanism strives to improve throughput and delay
metrics, but also inter-flow fairness, only for the flows sourced
at the multihoming site.

Concurrent Multipath Transfer was also approached at
transport-level, either by new transport-level protocols like
Multipath TCP [12] or SCTP [13], [14] or by changes to
classical TCP [15] All these protocols send a flow on several
network paths concurrently achieving a higher throughput at
flow level.

III. THE MULTIHOMING ROUTING ALGORITHM

In order to distribute a set of flows over multihoming
links/paths depending on the links’ properties (i.e. bandwidth
capacity, delay) and on their current network load (i.e. con-
gestion level), our multihoming routing algorithm requires two
components:

• the network load estimation policy (estimates the network
load on each path)

• the mapping function of local flows on outgoing links.
The second component, i.e. algorithm for mapping

flows on the outgoing links, is depicted in Listing 1. The
FlowRemapping algorithm is executed whenever the network
load estimation policy decides that the conditions have
changed in the network. The network load is estimated
by the estimation policy and converted to weights (i.e.
positive numbers normalized to the interval [0, 1]) which
are assigned to each network path. A weight dictates
how many local multihoming flows are mapped/sent on
that path. The sum of all the weights equals 1. When
entering the algorithm, Pathi has old weighti · N local
multihoming flows mapped on it and after the algorithm is
executed, Pathi will have weighti · N local multihoming
flows mapped on it, where N is the total number of local
multihoming flows passing through the gateway. The first
For loop (i.e. lines 2-8) computes all the flows that need
to be moved from their current network path (due to a
drop in the path’s weight) and adds them to the set R.
The function SortByRemappingT ime(Flows(Pathi))
sorts the set of flows currently mapped on Pathi

descending by the last remapping time and the function
GetF lowsForRemap(Flows(Pathi), f lows to remap)
removes and returns the set of first flows to remap flows
from the Flows(Pathi) set (i.e. the first flows to remap
flows that were most recently remapped from another path
to Pathi). The second For loop (i.e. lines 9-16) takes each
flow from the R set and assigns them to the new path. So,
while the first For loop considers paths that lose flows in the
next epoch, the second For loop works with the paths that
acquire new flows in the next epoch. We considered several
alternatives for choosing the flows that should be removed
from a network path when that path’s weight decreases: 1)
random choice of flows, 2) the flows that were most recently
remapped on this path (i.e. youngest flows on this path) and
3) the oldest flows on the path. After initial tests performed

with all three alternatives, we went with 2) the youngest flows
on this path which achieved better results in terms of total
throughput of multihoming flows.
Algorithm 1 The FlowRemapping algorithm is executed
whenever a path’s weight has changed:
Input:
Pathi: the i-th network path; i ∈ [1,m]
N : the number of local multihoming flows
old weighti: the current weight of Pathi; i ∈ [1,m]
weighti: the new weight for Pathi; i ∈ [1,m]
Flows(Pathi): the set of local multihoming flows currently mapped
on Pathi

The FlowRemapping algorithm is:
1: R = {}
2: for i = 1 to m do
3: flows to remap = bold weighti ·Nc − bweighti ·Nc
4: if flows to remap > 0 then
5: SortByRemappingTime(Flows(Pathi))
6: R = R+GetFlowsForRemap(Flows(Pathi),

flows to remap)
7: end if
8: end for
9: for i = 1 to m do

10: flows to remap = bweighti ·Nc − bold weighti ·Nc
11: if flows to remap > 0 then
12: for flow in GetFlowsForRemap(R, flows to remap) do
13: flow.path = i // assign flow to Pathi

14: end for
15: end if
16: end for

The first component, i.e. the network load estimation policy,
measures the load using passive RTT measurements. If we
measure the RTT of a set of TCP flows passing through the
same network path in normal conditions we would see that the
array of these RTT samples will have an oscillating shape; the
RTT metric will increase until it reaches a maximum value and
than start decreasing until it reaches a minimum value and then
start increasing again and so on. This corresponds to the TCP
- router’s queue operating regime: TCP increases congestion
window, queue forms in the router, thus the RTT increases,
then queue overflows, TCP decreases the congestion window,
thus RTT decreases and the cycle restarts. The intuition behind
the RTT-based network load estimation policy is that as
the network gets significantly more congested, the average
RTT measured by flows should experience a constant and
consistent increase. We want to filter out these cycles from
the RTT samples array so we pass this array through a two-
stages smoothing process: 1) first a mixed equal+exponential
weighted average on windows of 16 RTT samples in order to
remove tiny-scale fluctuations and reduce the amplitude of the
fluctuations and then, 2) we divide the RTT array into cycles
and compute the average of RTT values in a cycle to remove
small-scale fluctuations.

For the first smoothing stage we take groups of 16 consec-
utive RTT samples and apply a weighted average on them.
The most recent 8 RTT samples have the weight 1 and then,
the weights start decreasing exponentially giving less weight
on older samples. This way, the RTT values are smoothed, but

the most recent RTT samples have a larger contribution in this
average. The weights used are the following [16]:

wi = 1 for i = 0, 7

wi = 1− i+ 1−mid

mid+ 1
for mid = 8 and i = 8, 15

After the first smoothing function is applied, ideally, the
RTT array only contains small-scale fluctuations and possibly
large-scale fluctuations. Because we do not want to perform
flow remapping too often (since moving a flow from one link
to another usually implies packet reorderings for this flow
and thus, TCP throughput drop), we filter out small-scale
fluctuations by considering an average value for a RTT cycle.
The effect of the first and second smoothing function applied
on measured RTT samples obtained through simulations is
visible in Fig. 2. The line labeled ’RTT samples’ presents
real RTT measurements taken from a set of flows passing
through a network path that has a low load/congestion level
between seconds 20-50 and 160-300 and becomes severely
congested between seconds 50-160 (a significant number of
new flows enters the network). The line labeled ’RTT averaged
over a 16-window’ is the result of applying the first smoothing
function on the RTT samples string. We can see this line is
smoother than the line of raw RTT samples. Finally, the red
line labeled ’RTT cycle average’ shows the average points of
each RTT cycle connected by a line. We can see that this line
remains relatively constant in each of the two periods, low
congestion in seconds 20-50 and 160-300 and, respectively,
high congestion in seconds 50-160, while the value of this
average remains consistently higher in the period of high
congestion compared to that of the low congestion period.

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

R
T

T

Time (seconds)

RTT samples
RTT averaged over a 16-window

RTT cycle average

Fig. 2. The two-stages smoothing performed on RTT samples

The UpdateRTTState algorithm depicted in listing 2 is the
RTT-based network load estimation policy. It is executed
whenever a new return packet (i.e. TCP acknowledgment
packet) arrives at the multihoming sender router. The algo-
rithm updates the RTT state of the respective network path and
when the state changes significantly, it computes new weights
for each network path and calls the FlowRemapping algorithm
from listing 1 to perform flow remapping. The current RTT
sample for this packet is computed in line 1, by subtracting
the TS Echo Reply field of the Timestamps Option in the
TCP header from the current time (i.e. now). After that, it
updates the minimum and maximum RTT in lines 3-8. Line 2
computes the srtt (i.e. exponentially smoothed RTT) which is
used in line 9 for deciding to consider or not this RTT sample

in the RTT state. When computing the RTT cycles and path
weights (i.e. lines 9-24) we use only one RTT measurement
per srtt in order to reduce computations. The 16 window
equal+exponential average (i.e. first smoothing function) is
computed first in line 10 by function UpdateRTTWindow.
Then, if the function UpdateRTTCycle detects the start of a
new cycle, we compute the new weights for each network path
in lines 14-21 and then call the FlowRemapping algorithm to
perform flow remapping. The weight for a path specifies how
many flows should be mapped on this path and is used in the
algorithm FlowRemapping. The weight of a path is computed
as an inverse linear mapping of cycle.average rtt from the in-
terval [min cycle avgrtt, max rtt] to the interval [0, 1], where
cycle.average rtt is the average RTT for the current cycle,
min cycle avgrtt is the minimum cycle.average rtt recorded
out of all RTT cycles and max rtt is the maximum RTT ever
recorded (for that specific network path). The justification for
this formula is omitted here due to space constraints and the
reader is referred to the longer version of this paper [16].

The UpdateRTTCycle algorithm checks if a new RTT cycle
has completed and computes the average RTT value per RTT
cycle. It is omitted here due to space constraints, but the reader
can find the complete algorithm in [16]. A RTT cycle is just
a sequence of RTT values from the RTT samples array that
include an ascending phase and a descending phase; or in case
of persistent congestion, a RTT cycle is a sequence of RTT
samples with similar values, but the length of the sequence is
above a threshold.

IV. EVALUATION

This section presents a subset of the experiments we have
performed in order to validate our multihoming routing al-
gorithm. We can not present all the experiments here due to
space constraints, but all the details of the experiments and
additional experiments not shown here are given in the longer
version of this paper [16]. We implemented our bandwidth
aggregation mechanism as a multihoming router in the ns-3
network simulator.

The network setup of our experiments is presented in Fig.
3. The multihoming local network is behind router R1 and
is formed by the source nodes: s1 .. sn. The multihoming
receiver network is behind router R4 and is formed by the
destination nodes: d1 .. dn. We have one multihoming TCP
flow between each (si, di) node pair. Router R1 is a multi-
homing sender router that splits incoming multihoming flows
on the two outgoing network paths: Path0=R1−R2−R4 and
Path1=R1 − R3 − R4. Router R4 is a multihoming receiver
router that maps reverse TCP packets (i.e. ACK packets) on
the same link/path the original data packets came through.
The capacity of the access links of source and destination
nodes is always 1 Gbps and the transmission delay is randomly
distributed between 1 ms and 10 ms. The transmission delay
of the all inter-router links is always set to 40 ms, except
the transmission delay of link R2 −R4 which changes across
experiments. Similarly, during an experiment, the network
capacities of the inter-router links R1 − R2, R1 − R3 and

Algorithm 2 The RTT-based network load estimation policy
Input:
p : an ACK packet received on path Pathk

m : the number of network paths
min rttk : minimum RTT value ever recorded for Pathk

max rttk : maximum RTT value ever recorded for Pathk

srttk : smoothed RTT for Pathk

last rtt updatek : last time the RTT state was updated for Pathk

now : the current time

The UpdateRTTState algorithm is:
1: curr rtt = now − p.TSecr
2: srttk = 0.8 · srttk + 0.2 · curr rtt
3: if curr rtt < min rttk then
4: min rttk = curr rtt
5: end if
6: if curr rtt > max rttk then
7: max rttk = curr rtt
8: end if
9: if last rtt updatek < (now − srttk) then

10: avg rtt window = UpdateRTTWindow(Pathk, curr rtt)
11: last rtt updatek = now
12: if (UpdateRTTCycle(Pathk, avg rtt window) = 1) then
13: { compute the weight for each Path }
14: sum = 0
15: for i = 1 to m do
16: weighti = cycle.average rtti−min cycle avgrtti

max rtti−min cycle avgrtti
17: sum = sum+ weighti
18: end for
19: for i = 1 to m do
20: weighti = 1− weighti / sum
21: end for
22: FlowRemapping()
23: end if
24: end if

R3 − R4 are always equal, but the link R2 − R4 can have,
depending on the experiment, a different network capacity.
The router queue is always set to the bandwidth-delay product
for that link, for all routers. We have used two queue drop
policies for routers in our experiments: DropTail queuing
and Random Early Detection (RED). We have 64 TCP flows
originating in the multihoming local network (i.e. source nodes
si, i = 1..64) and going to the destination nodes di, i = 1..64.
These flows start in the beginning of the simulation at random
times to remove phase effects and last until the simulation
completes. Each simulation lasts 600 seconds. We have chosen
this duration for a simulation so that a simulation lasts long
enough for us to observe a steady-state behavior. Additional
512 TCP flows attached to source nodes connected to the
R2 router and destination nodes connected to the R4 router
(these nodes are not depicted in Fig. 3) add network load
on Path0. 64 of these flows start in the beginning of the
simulation and last until the end of the simulation creating
a steady-state load on Path0. The remaining 448 flows start
at random times between seconds 40-50 of the simulation and
they finish at random times between seconds 320 and 400
of the simulation. These additional 448 TCP flows create an
increased load on Path0 between seconds 40 and 400 of the
simulation, thus forcing our multihoming sender router R1 to

R
1

R
2

R
3

R
4

S
1

S
2

S
n

D
1

D
2

D
n

.

.

.
.
.
.

Fig. 3. The network setup used in the experiments

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600

N
u

m
b

e
r

o
f

fl
o

w
s
 p

e
r

n
e

tw
o

rk
 p

a
th

Time (seconds)

Path 0
Path 1

Fig. 4. The number of multihoming flows mapped on each path by the
multihoming routing algorithm; DropTail queuing and 100Mbps capacity

send more flows on the other network path, Path1. Similarly,
64 TCP flows attached to source nodes connected to the R3

router and destination nodes connected to the R4 router (these
nodes are also not depicted in Fig. 3) create a steady-state
load on Path1, for the duration of the entire simulation. In
addition, there are 32 TCP flows on the reverse link R4 −R2

and other 32 TCP flows on the reverse link R4 − R3 for an
increased network dynamics. For the TCP flows used in our
simulation, either the multihoming flows or the load flows, we
used a mixture of TCP Linux Cubic, Sack and NewReno.

We compared our multihoming routing algorithm that maps
multihoming flows on the two outgoing paths dynamically
with an ECMP (Equal-Cost Multipath routing [3]) routing
solution that splits multihoming flows equally between the
two outgoing network paths. We will use two metrics for this
comparison:

• AVGT(Average throughput per flow) = the average flow
throughput of the 64 multihoming flows

• STD(Standard deviation of the flow throughput values) =
the standard deviation of the 64 throughput values

The flow throughput used in the above metrics is the through-
put computed for each multihoming flow during the increase
load period of the simulation (i.e. seconds 40-400).

First, we considered three diverse network capacities of
100 Mbps, 500Mbps and 1Gbps and a 40 ms transmission
delay for each inter-router link. The queuing policy at routers
was either DropTail or RED. For each (network capacity -
queuing policy) combination we ran 2 experiments: one when
an ECMP routing mechanism was used at router R1 and other
when our multihoming routing algorithm was used for router
R1. Each experiment consisted of a simulation being run 10
times with different, randomly generated, flow starting and
ending times (for all TCP flows) and access links delays. In
the end, we computed for each experiment an average of the
aforementioned metrics across all 10 simulations performed

TABLE I
DROPTAIL QUEUING; SYMMETRICAL BANDWIDTH, DELAY

Network capacity
100Mbps 500Mbps 1Gbps

ECMP mapping STD: 44018.7
AVGT: 61591

STD: 371675
AVGT: 435682

STD: 836406
AVGT: 974754

RTT-based map-
ping (%)

STD: 34.02
AVGT: 26.53

STD: 31.73
AVGT: 13.86

STD: 44.07
AVGT: 10.28

TABLE II
RED QUEUING; SYMMETRICAL BANDWIDTH, DELAY

Network capacity
100Mbps 500Mbps 1Gbps

ECMP mapping STD: 45748.9
AVGT: 62136

STD: 348482
AVGT: 430274

STD: 818536
AVGT: 1004900

RTT-based map-
ping (%)

STD: 36.34
AVGT: 21.04

STD: 31.74
AVGT: 9.96

STD: 40.94
AVGT: 5.57

for the same experiment. The obtained results are depicted in
Table I for the DropTail queuing discipline and, respectively,
in Table II for the RED queuing discipline. For ECMP routing
we show the absolute values for the two metrics used, but for
our multihoming routing algorithm (i.e. RTT-based mapping)
we show percentage improvement values for the metrics with
respect to the corresponding metric used in ECMP mapping.
We can see that our multihoming routing algorithm improved
all three metrics with respect to ECMP routing, in all tested
network capacities and queuing disciplines. The throughput
gain when using our multihoming routing algorithm is be-
tween 5% and 27%, while the STD gains are much higher,
sometimes more than 68%. In Fig. 4 we can see that during
the increased load period our multihoming routing solution
mapped more local flows on Path1 than on Path0.

In the next phase, we tried to see whether an asymmetric
RTT on the two network paths would influence our results.
We performed the same experiment as before, but this time,
in all simulations, the transmission delay of link R2−R4 was
80ms, while the transmission delay of all other links remained
unchanged to 40ms. This led to a RTT on Path0 that was more
than 1.5 times the RTT on Path1.As usual, for each (network
capacity - queuing policy) combination we ran 3 experiments:
one where ECMP routing was used at router R1 and other
when our multihoming routing was used for router R1; one
experiment consists of 10 simulations. The obtained results
are depicted in Tables III and IV for the DropTail and
RED queue policy, respectively. We can see here the same
improvements for all three metrics when the multihoming
routing algorithm was employed at router R1, similar to what
we have seen in the symmetrical RTT-bandwidth experiments
(i.e. Tables I and II). Although, the AV GT improvements of
the multihoming routing algorithm are now smaller than the
improvements obtained for the symmetrical RTT-bandwidth
experiments; this is especially true for 1Gbps, RED queuing.

Then we tried to see whether our mechanism works on a
setup with asymmetric network capacity paths. We performed
the same experiment as before, but this time, in all simulations,

TABLE III
DROPTAIL QUEUING; ASYMMETRICAL DELAY

Network capacity
100Mbps 500Mbps 1Gbps

ECMP mapping STD: 48457.2
AVGT: 69607

STD: 463800
AVGT: 503196

STD: 1272350
AVGT: 1267670

RTT-based map-
ping (%)

STD: 38.37
AVGT: 22.98

STD: 35.29
AVGT: 15.13

STD: 39.77
AVGT: 7.00

TABLE IV
RED QUEUING; ASYMMETRICAL DELAY

Network capacity
100Mbps 500Mbps 1Gbps

ECMP mapping STD: 42211.7
AVGT: 64897

STD: 340308
AVGT: 458444

STD: 848286
AVGT: 1092360

RTT-based map-
ping (%)

STD: 33.24
AVGT: 15.56

STD: 37.06
AVGT: 4.79

STD: 39.75
AVGT: 2.61

the network capacity on all links from Path0 were double the
network capacity of links from Path1. The obtained results are
depicted in Tables V and VI for the DropTail and RED queue
policy, respectively. Please note that for these asymmetrical
network capacity experiments, we had to slightly modify
the RTT-based mapping algorithm (i.e. the UpdateRTTState
algorithm depicted in listing 2) so that after the weights for
both network paths are computed we further scaled these
weights as following: we scaled the weight of Path0 by 66%
and scaled the weight of Path1 by 33% (because the network
capacity of Path0 is double the capacity of Path1). At the
same time, in order to facilitate fair competition we modified
the ECMP mapping for these experiments so that the ECMP
multihoming router R1 always maps 66% of the multihoming
flows on Path0 and 33% of the flows on Path1.

TABLE V
DROPTAIL QUEUING; ASYMMETRICAL BANDWIDTH

Network capacity
200Mbps/
100Mbps

250Mbps/
500Mbps

500Mbps/
1Gbps

ECMP mapping STD: 48448.3
AVGT: 69483

STD: 167787
AVGT: 196564

STD: 436776
AVGT: 480950

RTT-based map-
ping (%)

STD: 22.49
AVGT: 23.57

STD: 29.18
AVGT: 20.09

STD: 38.32
AVGT: 11.99

TABLE VI
RED QUEUING; ASYMMETRICAL BANDWIDTH

Network capacity
200Mbps/
100Mbps

250Mbps/
500Mbps

500Mbps/
1Gbps

ECMP mapping STD: 41387.5
AVGT: 63080

STD: 134089
AVGT: 183640

STD: 327732
AVGT: 425396

RTT-based map-
ping (%)

STD: 24.16
AVGT: 17.33

STD: 24.33
AVGT: 11.82

STD: 29.30
AVGT: 8.93

V. CONCLUSIONS AND FUTURE WORK

We have presented in the previous sections a multihoming
routing solution for throughput maximization. Our solution
comes in the form of a virtual tunnel that connects two sites
through multiple independent or quasi-independent network

paths. Our routing solution maps local multihoming flows on
the possible outgoing network paths so that these flows use
a larger aggregated available bandwidth in changing network
conditions. The routing solution dynamically adapts the flow
mappings on the outgoing network paths so that a path with
a higher load receives fewer local multihoming flows than a
network path with a light load. We estimated the load on a
network path using passive RTT measurements. We applied
a 2-step smoothing process on the RTT sample array and
then used these values to compute paths’ weights. We have
tested our bandwidth aggregation mechanism in a simulated
network and showed that it performs better than ECMP routing
in terms of total aggregated throughput and fairness between
multihoming flows.

REFERENCES

[1] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu, A.
Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav, and G. Varghese,
CONGA: Distributed Congestion-aware Load Balancing for Datacen-
ters, ACM Conference on SIGCOMM, 2014, pp.503-514.

[2] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and A. Akella, Presto:
Edge-based Load Balancing for Fast Datacenter Networks, 2015 ACM
Conference on SIGCOMM, New York, USA, 2015, pp.465-478.

[3] D. Thaler, C. Hopps, Multipath Issues in Unicast and Multicast Next-
Hop Selection, RFC 2991, IETF, November 2000.

[4] P. Merindol, J.J. Pansiot, S. Cateloin, Improving Load Balancing with
Multipath Routing, 17th International Conference on Computer Com-
munications and Networks, Virgin Islands, USA, 2008, pp.54-61.

[5] H. Wang, H. Xie, L. Qiu, Y. R. Yang, Y. Zhang, and A. Greenberg,
COPE: traffic engineering in dynamic networks, 2006 ACM Conference
on SIGCOMM, New York, USA, 2006, pp.99-110.

[6] D. Applegate and E. Cohen, Making intra-domain routing robust to
changing and uncertain traffic demands: understanding fundamental
tradeoffs, 2003 ACM Conference on SIGCOMM, New York, USA,
2003, pp.313-324.

[7] B. Fortz, J. Rexford, and M. Thorup, Traffic engineering with traditional
IP routing protocols, IEEE Communications Magazine, Vol. 40, Issue
10, pp.118-124, October, 2002.

[8] S. Kandula, D. Katabi, B. Davie, and A. Charny, Walking the tightrope:
responsive yet stable traffic engineering, 2005 ACM Conference on
SIGCOMM, New York, USA, 2005, pp.253-264.

[9] E. Keller, M. Schapira, and J. Rexford, Rehoming edge links for better
traffic engineering, SIGCOMM Computer Communications Review, Vol.
42, Issue 2, pp.65-71, March, 2012.

[10] J. Wu, C. Yuen, B. Cheng, Y. Shang, and J. Chen, Goodput-Aware
Load Distribution for Real-time Traffic over Multipath Networks, IEEE
Transactions on Parallel and Distributed Systems, Vol. 26 , Issue 8, pp.
2286-2299, August, 2015.

[11] Y. Li, Y. Zhang, L. L. Qiu, and S. Lam, SmartTunnel: Achieving
Reliability in the Internet, 2007 IEEE Conference on Computer Com-
munications, Washington, USA, 2007, pp.830-838.

[12] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley, Improving datacenter performance and robustness with
multipath TCP, 2011 ACM Conference on SIGCOMM, New York, USA,
2011, pp.266-277.

[13] J. R. Iyengar, P. D. Amer, and R. Stewart, Concurrent multipath
transfer using SCTP multihoming over independent end-to-end paths,
IEEE/ACM Transactions on Networking, Vol. 14, Issue 5, pp.951-964,
October, 2006.

[14] W. Yang, H. Li, F. Li, Q. Wu, and J. Wu, RPS: range-based path
selection method for concurrent multipath transfer, 6th International
Wireless Communications and Mobile Computing Conference, New
York, USA, 2010, pp.944-948.

[15] J. Wang, J. Liao, and T. Li, OSIA: Out-of-order Scheduling for In-
order Arriving in concurrent multi-path transfer, Journal of Network
and Computer Applications, Vol. 35, Issue 2, pp.633-643, March, 2012.

[16] A. Sterca, D. Bufnea, V. Niculescu, Bandwidth Ag-
gregation over Multihoming Links, Technical Report,
http://www.cs.ubbcluj.ro/forest/research/papers/ip-multihoming-
techrep.pdf, 2019.

