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Abstract—Since they were introduced, Java streams were
very fast embraced by the industry, being currently used
at a large scale. The parallelism enabled by them is very
easy to achieve, but it is constrained either by the used
parallelism model (in some cases), or by the set of operations
that could be specified using streams. We investigate in this
paper the possibility to enhance the computation types that
could be defined using the Java streams API by introducing into
this infrastructure the PowerList theory based computation.
Powerlists are recursive data structures that together with their
associated algebraic theory offer both abstractions in order
to ease the development of parallel applications, and also a
methodology to design parallel algorithms. The Java streaming
infrastructure could be adapted to support them in a great
measure. We present here such an adaptation, and we analyse
and discuss the advantages and constraints. This analysis is
exemplified by application examples.

Keywords-parallel programming; streams; recursive struc-
tures; Java; performance; models.

I. INTRODUCTION

An increasing interest in Java for High Performance
Computing (HPC) has been registered based on the appeal-
ing features of this language for programming multi-core
cluster architectures, particularly multithreading support, the
built-in networking, and also the continuous increase of
the performance of the Java Virtual Machine (JVM). It
didn’t attain yet a similar level as C, C++, and Fortran
on the mainstream HPC community, but still the latest
developments are promising.

An important approach in defining high level parallel
models is based on algorithmic skeletons [10]; they have
been used for the development of various systems providing
the application programmer with suitable abstractions.

Java 8 Streams is playing an important role in bringing
functional programming to Java, and the streams are also
based on algorithmic skeletons. One of the most important
features of Java 8 is the integration of lambda expressions
in the language. Lambda expressions can be combined with
an almost functional interface API (Streams). Although it
is not fully functional programming, because the way of
introducing arrays and objects in Java Streams is via side
effects, it is close to functional programming style.

In the same time, the Java stream library provides the
ability to do parallelisation easily, and in a reliable manner.
It is actually quite simple to use in the sense that the user

only has to invoke a few methods and the rest is managed
by the Streams API.

Powerlists and their associated theories offer a skeleton
based approach in construction of parallel programming
models. Powerlist theory [18] allows formal definitions of
a broad class of parallel programs based on the divide-and-
conquer paradigm.

We developed a Java framework – JPLF – that enables
the definition, and different types of parallel execution
of PowerList functions. During this development process
several comparisons have been done with Java Stream com-
putations, and from these emerged the idea to try to include
the PowerList specific computations directly into the Java
Streams API.

The purpose of this work is to investigate if the computa-
tions defined based on PowerList theory could be specified
using the Java Streams infrastructure, and to which extent.

The paper is organized as follows. In section II we give
a general description of PowerLists and of their associated
theories, and then some general aspects about the already
developed framework - JPLF - are given in section III.
Section IV presents the proposed adaptation of the Java
streams to accept PowerList functions. An analysis of the
advantages and the constraints of our approach is given in
Section V. Related work is presented in section VI, and then
section VII presents some conclusions.

II. POWERLIST THEORY

The theory of powerlists data structures has been intro-
duced by J. Misra [18], and especially because the index
notations are not used, it offers an elegant way for defining
divide-and-conquer programs at a high level of abstraction.
The functions on PowerLists are defined recursively by split-
ting their arguments based on two deconstruction operators.
A PowerList is a linear data structure with elements of the
same type, with the specific characteristic that the length of
a PowerList is always a power of two.

In order to allow reasoning about the correctness of
the parallel programs using PowerLists, an algebra (that
allows also program transformation) and several induction
principles are defined on these data structures. Other similar
theories such as ParLists and PLists were defined [16], for
working also with lists with non power-of-two lengths, and
divide-and-conquer functions that split the problem in a



number of subproblems. They extend the set of computation
skeletons that could be defined using these data structures.

The main advantage and specificity of the PowerList is the
fact that there are two constructors (and correspondingly two
desconstructors) that could be used: two similar powerlists
(with the same length and type) can be combined into a
new, double length, power list data structure, in two different
ways:

• using the operator tie, written p | q, the result containing
elements from p followed by elements from q,

• using the operator zip, written p \ q, the result contain-
ing elements from p and q, alternatively taken.

The proofs of properties on PowerLists are based on a
structural induction principle defined on PowerLists, which
consider a base case (for singletons), and two possible
variants for the inductive step: one based on the tie operator,
and the other based on zip.

Functions are defined based on the same principle. As
a PowerList is either a singleton (a list with one element),
or a combination of two PowerLists, a PowerList function
can be defined recursively by cases. For example, the high
order function map, which applies a scalar function to each
element of a PowerList is defined as follows:

map(f, [a]) = [f(a)]
map(f, p | q) = map(f, p) |map(f, q)

(1)

The classical reduce function could be defined in a
similar manner.

For both map and reduce, alternative definitions based on
the zip operator could also be given. These could be useful
if - depending on the memory allocation, and access – one
could be more efficient than the other.

Still, there are functions where the existence of both
operators is essential. Function inv permutes the input list
p such that the element with the index b in p will be on the
position given by the reversal of the corresponding bit string
representation of b:

inv([a]) = [a]
inv(p | q) = inv(p) \ inv(q)

(2)

Many other functions, for example the Fast Fourier Trans-
form, benefit from the existence of the two operators tie and
zip.

The Fast Fourier Transform algorithm defined by Cooley
and Tukey [12] has a very simple PowerList representation,
which has been proved in [18]:{

fft([a]) = [a]
fft(p \ q) = (P + u×Q) |(P − u×Q)

(3)

where P = fft(p), Q = fft(q) and u = powers(p).
The result of the function powers(p) is the PowerList
(w0, w1, .., wn−1) where n is the length of p and w is the
(2× n)th principal root of 1.

The operators + and × used in the fft definition are
extension of the binary addition and multiplication operators

on PowerLists. They have simple definitions that consider
as an input two similar PowerLists, and specify that the
elements on the similar positions are combined using the
corresponding scalar operator.

The parallelism of the functions is implicit: each appli-
cation of a deconstruction operator (zip or tie) implies two
independent computations that may be performed in two pro-
cesses (programs) that could run in parallel. So, we obtain a
tree decomposition, which is specific to divide-and-conquer
programs, and having two decomposition operators eases the
definition of different programs, but at the same time may
induce some problems when these high-level programs have
to be implemented on concrete parallel machines.

The PList data structure was introduced in order to
develop programs for the recursive problems which can
be divided into any number of subproblems, numbers that
could be different from one level to another [16]. It is a
generalisation of the PowerList data structure and it has three
constructors for creating Plists: one that creates singletons
from simple elements, one based on concatenation of several
lists, and the other based on alternative combining of the
lists. The corresponding operators are [ . ], (n-way |), and (n-
way \); for a positive n, the (n-way |) takes n similar PList
and returns their concatenation, and the (n-way \) returns
their interleaving.

In PList algebra, ordered quantifications are needed to
express the lists’ construction. The expression

[ | i : i ∈ n : p.i]

is a closed form for the application of the n-way operator
|, on the PLists p.i, i ∈ n in order. The range i ∈ n means
that the terms of the expression are written from 0 trough
n−1 in the numeric order.

For example, if we have p.i = [i ∗ 3, i ∗ 3 + 1, i ∗ 3 + 2]
then we have:

[ | i : i ∈ 3 : p.i] = [0, 1, 2, 3, 4, 5, 6, 7, 8]
[ \ i : i ∈ 3 : p.i] = [0, 3, 6, 1, 4, 7, 2, 5, 8]

The existence of the two decomposition operators dif-
ferentiates these theories from other list theories, and also
represents an important advantage in defining many parallel
algorithms.

III. JPLF FRAMEWORK

A Java framework – JPLF – for parallel computation
defined based on PowerList theory has been developed and
details about it can be found in [19], [20] and [21]. The
framework provides general support implementations for
computing Powerlist functions; it facilitates multithreading
parallel programming, and since Java can be accepted as
an alternative for HPC programming, the framework was
extended for supporting the execution also on cluster ar-
chitectures, based on a Java MPI binding (such as [24]) in
combination with the multithreading facilities.



We shortly present it here just to emphasize to which
extent we may define similar PowerList theory based com-
putations using only Java Streams.

The multithreading computation facilitated by JPLF is
based on using thread pools and the tested implementation
uses the ForkJoinPool executor [25], as is the parallelisation
of Java Streams. The MPI implementation needs more com-
plex execution, but it could be mixed with multithreading.

The design of this framework was guided by the types de-
fined in the PowerList theory, and by their specific properties
and operations.

The two characteristic operations: tie and zip are used to
split a PowerList, but they could also be used as constructors.
The theory considers that the PowerList functions are defined
by applying one deconstruction operator (for divide opera-
tion) for each input PowerList, and a combining function. If
the result is also a PowerList, then the combining function
is based on a PowerList construction operator, too.

The definition of the divide-and-conquer functions over
PowerLists is done based on the template method design
pattern [15]. The PowerFunction class defines the template
method compute that implements the solving strategy. For
any new function, the user should provide implementations
for the following methods:

• basic_case

• combine

• create_left_function, create_right_function
An important advantage of the framework is the fact

that the execution is managed separately from the Pow-
erList function definition. The executors definition is
based on the primitive operations: basic_case, combine,
create_left_function, and create_right_function, and
so, it is possible to define different execution variants for
a PowerList program: sequential, multithreading, MPI or
others.

The class of PowerList functions allowed by the JPLF
framework is characterized by the fact that these functions
could be computed recursively based on their values on
the split argument lists (obtained using a decomposition
operator). This includes a broad class of functions as it
has been proved in [18] and [16]: Fast Fourier Transform,
Batcher sort, Bitonic sort, Prefix sum, Gray codes, etc.

We may emphasise the following three phases of a Pow-
erList function execution:

1) Descending/splitting phase that considers the opera-
tions needed to split the list arguments, and additional
operations, if they exist.

2) Leaf phase that considers the operations executed on
singletons.

3) Ascending/combining phase that considers the opera-
tions needed to combine the list arguments, and addi-
tional operations, if they exist.

For functions such as map or reduce the descending
phase has only the role of distributing the input data to

the processing elements. The input data are not transformed
during this process. Even for Fast Fourier Transform (fft)
we have the same case – only in the ascending phase special
operations need to be done.

There are in fact very few cases when the input is trans-
formed at the descending phase, or additional operations
are necessary at this phase. Such cases could involve some
additional computations on the sublists obtained at each
step. A very simple example is computing the value of a
polynomial in a given point:

vp([a], x) = [a]
vp((p#q), x) = vp(p, x2) + (x · vp(q, x2))
where (x · p) means that every element of the list p is

multiplied with x (it could be considered a map function)
(4)

Also, at each decomposition step the square of the point
value – x – should be computed.

These additional operations at the descending phase could
be encountered for functions which are based on the tie
operator, too.

f([a]) = [a]
f(p|q) = f.(p⊕ q)|f.(p⊗ q)

(5)

where ⊕ and ⊗ are some extended binary operators.
Also, there are many cases when function transformations

could be applied – such as tupling – in order to eliminate
these additional computations [22].

In [19] a comparison between the performance of some
algorithms’ implementations using Java parallel streams and
using the JPLF framework with multithreading execution
is done, and it emphasizes that for applications based on
simple concatenation, the performance results are similar,
but this framework has the advantage of the additional
support for applications that need more complicated data
decomposition as those that involves additional operations
at the decomposition phase or those that need the zip
operator (as fft). The MPI executors facilitates a much
larger scalability and so better performance. The JPLF also
includes PList functions, that express multi-way divide-and-
conquer computations [21]. The JPLF framework could be
promoted as a Java package, too.

IV. JAVA STREAM ADAPTATION TO POWERLIST

The adaptation is inspired by the implementation of the
JPLF framework and by the common Java stream applica-
tions.

Since Java streams are now a well-known feature of the
language, we didn’t introduce a special section for explain-
ing them. The official Oracle documentation ([26]) and some
other excellent technical articles ([27], [28]) contain many
explanations and examples.

Briefly, we can say that a Java stream is a sequence of
objects represented as a conduit of data. Usually it has a
source where the data are stored and a destination where



they are transmitted. A stream is not a repository, but it
operates on a data source such as an array or a collection.

More formally, we may consider the streams as being
monads, which is a structure that represents computations
defined as sequences of steps. A type with a monad structure
defines what it means to chain operations, or nest functions
of that type together.

There are many already implemented operations that
could be sent to a stream, the most common being map,
filter, or reduce.

The collect template method
A more general operation is defined by the function

collect with the following definition:

collect(Supplier<R> supplier,
BiConsumer<R,? super T> accumulator,
BiConsumer<R,R> combiner)

This performs a mutable reduction operation on the elements
of the calling stream.

A mutable reduction is one in which the reduced value
is a mutable result container, such as an ArrayList, and
elements are incorporated by updating the state of the result
rather than by replacing the result.

The arguments have the following responsibilities:
• supplier: a function that creates a new mutable result

container; in a parallel execution, this function may be
called multiple times and must return a fresh value each
time.

• accumulator: an associative, non-interfering, stateless
function that must fold an element into a result con-
tainer.

• combiner: an associative, non-interfering, stateless
function that accepts two partial result containers and
merges them, which must be compatible with the accu-
mulator function. The combiner function must fold the
elements from the second result container into the first
result container.

The following example shows how the words in a given
list could be concatenated, including a comma between each
pair of two words.

List<String> list = Arrays.asList("Ana", "Lia", "
Dan");

String result = list.parallelStream()
.collect(
StringBuilder::new, //the supplier
(response, element) ->
response.append(" ").append(element),
//the accumulator

(response1, response2) ->
response1.append(",").append(response2.

toString()))
// the combiner

.toString();

The combiner function is specific to the parallel execution
of the collect method: if the stream hadn’t been parallel,
the combiner would not be used and so the comma wouldn’t
be added.

With this definition, the function collect qualifies for
the role of a template method to be used for implementing
a structural divide-and-conquer skeleton based operations.
Our adaptation of Java Streams for accepting PowerList type
computation will use it with this purpose.

For the splitting phase we will analyze the iterators used
by the Stream API.

The supplier will help creating places for the result of the
base case - the leaves into the divide-and-conquer associated
computation tree, the accumulator will be used to set the
values on leaves, and the combiner to compute the values
of the interior nodes.

A. Spliterator specialisation

The parallel computation of the streams is directed by the
existence of a special type of iterator – Spliterator – and
by the usage of the ForkJoinPool executor. It is known that
the ForkJoinPool executor is specialized in the computation
of the recursive tasks, and so it is appropriate for the divide-
and-conquer computational model.

The Spliterator interface defines several methods, and
we mention here only the trySplit operation that partitions
off some of its elements as another Spliterator, to be used
in possibly-parallel operations.

By default, the partitioning is performed linearly, in
“segments”, which is somehow similar to the operator tie
from PowerLists.

In order to control the partitioning, new implementa-
tions for the Spliterator interface should be provided
- TieSpliterator and ZipSpliterator. The UML class
diagram for these classes is presented in Figure 1

A source split using a ZipSpliterator could not be
recreated by using simple concatenation, so we need to
provide operations for the tie and zip constructor operators,
too. This could be achieved by defining a class PowerList

that extends a list (more specifically an ArrayList – but any
RandomAccess collection could also fit); the class provides
tieAll and zipAll methods, which append the elements of
a collection argument, accordingly (Figure 2).

The SpliteratorPower2 defines a specific characteristic
POWER2 that expresses the fact that the number of the
elements of the stream is a power of two. This is necessary
in order to verify that we work with a stream on which we
may apply PowerList functions.

B. PowerFunction definition

Based on the previous definitions, we may now define
a simple computation of PowerList functions using Java
Stream. The driving force is represented by the specialized



Figure 1: The class diagram of classes TieSpliterator and ZipSpliterator.

spliterators, which are going to be used together with the
collect function.

The first example is the definition of an identity function,
meant to verify the correct decomposition and combining.
The following code snippet shows spliterator instantiating,
the creation of the stream based on this spliterator, and
then the call of the collect method with the appropriate
arguments.

List<Double> list_int = //... some data

//create the ZipSpliterator
ZipSpliterator<Double> sp_it =
new ZipSpliterator<Double>

(list_int,0,list_int.size()-1);

//create the stream based on ZipSpliterator
instance

Stream<Double> myStream =
StreamSupport.stream(sp_it, true);

//define a specialisation of the collect function
List<Double> li = myStream.collect(
PowerList<Double>::new,
PowerList<Double>::add,
PowerList<Double>::zipAll );

It can be noticed that the stream was created using the
specialized spliterator – ZipSpliterator – this is the way

we force the decomposition based on this specific spliterator.
The class StreamSupport facilitates the creation of a parallel
stream starting from an iterator (if the second argument is
equal to true, a parallel stream is created).

Figure 2: The diagram of the PowerArray class.

When executing the collect function, the stream is
decomposed using the same ZipSpliterator instance, and
then recomposed based on the function zipAll of the class
PowerList.

If instead of providing as the accumulator a simple add

function, we give a function that first applies an operation
(Function<Double,Double> f) and then adds the value, a
map definition is obtained.

(list, d) -> { d= f(d); list.add(d);}



The function collect has also a definition that receives
as an argument a Collector. Collector is an interface
that provides a wrapper for the supplier, accumulator, and
combiner objects.

Collector<T,A,R>

where the type Parameters have the following significance:
• T - the type of input elements;
• A - the mutable accumulation type;
• R - the result type.
This variant is more convenient to be used for PowerList

functions, because for each specific function – APowerFunc-
tion, a class APowerFunction that implements the Collector

interface could be defined, and then for its execution we
just need to invoke the collect function with an argument,
which is an instance of that class.

For a function that doesn’t impose any additional compu-
tation at the splitting phase, the definition is straightforward:
just the implementation for the three specific functions
(supplier, accumulator, and combiner) should be provided.

We will consider the example of computing the value of
a polynomial in a point, that has a very simple parallel Pow-
erList definition, but which also involves some operations at
the splitting phase.

The PowerList definition of it was given in Equation 4.
The definition imposes the propagation at the splitting

phase of the square of x value, while still preserving the
previous value of x to be used at the combining phase.

The class PolynomialValue implements the
Collector< Double, PolynomialValue, PolynomialValue>

interface, the result being stored inside an instance of type
PolynomialValue.

The value of a polynomial in the point x is computed from
the values of other two polynomials (resulted by partitioning
the coefficient list) but in a point equal to x2.

The class defines three attributes: the value x, the value
of the polynomial val, and the degree of the value x.

class PolynomialValue implements Collector< Double
, PolynomialValue, PolynomialValue>{

private double x;
private double val = 0;
private int x_degree = 1;
public PolynomialValue(double x){

this.x = x;
}
public PolynomialValue(PolynomialValue pv){
this.x_degree = pv.x_degree;
this.x = pv.x ;
this.val = pv.val;

}
@Override
public Supplier<PolynomialValue> supplier () {

return () -> {
return new PolynomialValue(this);

};
}
@Override

public
BiConsumer<PolynomialValue,Double> accumulator()
{ return (pv1, d) ->
{pv1.val= pv1.val*Math.pow(pv1.x, pv1.x_degree) +

d;};
}
@Override
public BinaryOperator<PolynomialValue> combiner ()

{
return (pv1, pv2) -> {
pv1.x_degree/=2;
pv1.val =

pv1.val*Math.pow(this.x, pv1.x_degree)+pv2.
val;

return pv1;
};

}

For the polynomials resulted from the first split (first level)
the x_degree is equal to 2, for those from the second level
x_degree is equal to 22, and so on. This means that when
a splitting operation is done, the value of x_degree should
be modified.

This could be solved by defining a specialisation of
ZipSpliterator, defined as an inner class inside the class
PolynomialValue. In this way, all the instances of the inner
class will have access to the instance of the outer class –
PolynomialValue.this.

class PZipSpliterator
extends SpliteratorPower2.ZipSpliterator<Double

> {
protected int x_degree=1; //local attribute
public PZipSpliterator(

List<Double> list, int start, int end, int
incr, int x_degree) {

super(list,start,end, incr);
this.x_degree = x_degree;

}
public PZipSpliterator trySplit() {
int lo = start;
int step = incr;
if (start + step <= end) {
x_degree*=2; // !!!!! updating the exponent
synchronized(PolynomialValue.this)
{
if (PolynomialValue.this.x_degree < x_degree

)
PolynomialValue.this.x_degree = x_degree;

}
incr *= 2;
start += step;
return PolynomialValue.this.new
PZipSpliterator(list, lo, end-step, incr,

x_degree);
}
else // too small to split
return null;

}

Splitting operations are executing into tasks which are
executed in parallel and if all of them access the same
resource, this should be protected through a synchronized
block.

Each time the trySplit function is called, the exponent



of x is doubled (for the next level polynomials), but the
global exponent is updated only if its value is less than the
local iterator value. The reason for this verification is due
to the non-determinism of parallel task execution.

The supplier provides a new instance of
PolynomialValue, but one that it is created as a copy
of the initial PolynomialValue instance, which also has to
be the one through which the initial spliterator was created.

The reason for this is the need for a connection between
the different phases of the computation – splitting, leaf(basic
case), combining.

The following code snippet presents the
execution of the function PolynomialValue. First
an instance of the PolynomialValue type is created
– refered to pv. Through this, an instance of type
PolynomialValue.PZipSpliterator is created over the
list of the given coefficients; for this spliterator we verify
that it has the Power2 characteristics. Then the associated
parallel stream is created using the class StreamSupport.
The execution of the function is done by invoking the
collect function on the stream with an argument equal to
the PolynomialValue object – pv.

List<Double> list_int = //...the coeffients list
PolynomialValue pv = new PolynomialValue(x);
PolynomialValue.PZipSpliterator sp_it =

pv.new PZipSpliterator
(list_int,0,list_int.size()-1,1);

if (sp_it.hasCharacteristics(
SpliteratorPower2.POWER2)) {

System.out.println(" characteristic POWER");
Stream<Double> myStream =

StreamSupport.stream(sp_it, true);
PolynomialValue valp =

myStream.collect(pv);
}

V. ANALYSIS AND DISCUSSION

In the JPLF framework the definition of the powerlist
classes and functions were oriented on avoiding the need
to copy the elements from one container to another. This
was possible for multithreading implementation and it was
based on updating only the data structure information, which
contains: the reference to the storage, and the access pattern
to the elements (start, end, increment).

For the Java streams adaptation this was not possible
since the collect function has been used as a template
method and assumes the creation of new containers that are
combined in several steps.

The greatest difficulty in adapting Java Streams API to
accept PowerList computation was the lack of communica-
tion between computation phases: splitting and composing.
Splitting phase is directed by the Spliterator instance,
which is not directly connected to the computation defined
by the collect template method. The solution was to
define a specialised spliterator as an inner class inside the

Collector class that defines the PowerList function. The
specialised spliterators allow the definition of some specific
operations to be done at the splitting phase, but in addition,
since the inner class instances are intrinsically connected to
the outer class object, they are allowed to modify the state
of that outer object and so have access to a global shared
state.

This was essential for the definition of the function
that computes the value of a polynomial in a point. The
solution for the stream implementation of this case was
not so straightforward, and relies on the fact that all the
decompositions are done until the same layer.

There are similar cases when the solutions could be
simpler. For example, if we consider the PowerList function
defined in the equation 5, in the overridden implementation
of the trySplit method, the elements should be updated
correspondingly, before the new Spliterator instance is
created. But in this case there is no need for updating a
global state, and some optimisations could be tried (e.g.
parallelize the application of the ⊕ and 	 operators).

Still, it is possible that for some other, very special
functions, this kind of solutions could not be found.

A general mechanism of communication between these
two computation phases could be defined as:

• define a specialised spliterator as an inner class of the
Collector class that defines the PowerList function.

• allow the spliterator instance to modify/update the
state of the outer class instance (we denote it by
functionObject).

• create the new container defined by the supplier by
copying the functionObject.

• create the initial spliterator (which is also used to create
the input stream) by using the same functionObject.

In general, the Spliterator method

void forEachRemaining(Consumer<? super T> action)

is also important for parallel execution since the splitting
is automatically stopped when a limit that depends on the
system is attained. This means that the basic case is, in
many situations, applied to sublists (PowerLists) that are not
singletons, but with a length greater than 1. The implicit
implementation applies the accumulator for each element.
The computation on these sublists is done sequentially
and the computation could be specialised by overriding
this function. For example, for the Fast Fourier Transform,
the computation on these sublists could be defined as a
sequential computation of a polynomial in a given point.

This overriding should be provided in a specialisation
of spliterator (either ZipSpliterator or TieSpliterator)
which has to be defined inside the class that defines the
PowerList function.

Definitions of the existing stream function - as map or
reduce based on a ZipSpliterator could make sense in



some performance tests where different memory access
patterns for the elements could give some differences;
depending on the system (caches, etc.) properties or data
representation, linear or cyclic data distributions could lead
to better performance.

Since the definition of the Spliterator interface offers
only the possibility to split the data in two parts (each
time), the possibility to include also the PList extension,
and so multi-way divide-and-conquer is not possible (yet).
If the definition of the Spliterator would be extended with
a trySplit method that returns a set of Spliterators that
all together cover all the elements of the source, than the
adaptation to PList would become possible.

Performance Analysis

We conducted some experiments to assess the perfor-
mance of the proposed implementation. The considered
example was the computation of the value of a polynomial
in a given point. The polynomial was represented through
the list of its coefficients, and the tests were done for
different polynomial degrees, from 220 to 226. The sequen-
tial implementation was based on a simple stream based
computation, and for the parallel execution we have used
the implementation that we have analysed in the previous
section.

The experiments were run on an 8 CPU core machine and
are depicted in Figure 3 and Figure 4. For each list length
value we performed 5 runs of tests and we averaged the
obtained results over these 5 runs of experiments.

The first figure shows the speed-up of parallel execution
(sequential_execution_time over parallel_execution_time).
We can notice here that the speed-up is very good in most of
the considered cases, attaining for some of them almost the
maximum value 8, which is the number of cores. We also
notice there is a dropout in speed-up for the list length of 224.
This is very probable due to some automatic optimisation of
the sequential execution that Java Virtual Machine managed
to do for this special case. This explanation seems plausible
because the sequential execution time for the value 224 is
almost 3 times less than the sequential execution time for
223, as it can be noticed in Figure 4.

Figure 4 shows the average execution times expressed in
milliseconds for the considered polynomial degrees.

VI. RELATED WORK

Java Streams were influenced in their development by
many formalisms, especially from functional programming
settings. Bird-Meertens formalism (BMF) is such an exam-
ple that facilitates a calculus for deriving programs from
specifications [5]. In the functional programming setting,
the skeleton based approach enjoyed a big success, since
functional programming concepts allow simple representa-
tion of the skeletons. Skeletons have been incorporated into
parallel functional languages either as syntactic extensions
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(e.g. Eden [6]), or as high-order functions within existing
languages such as Haskell [7] or ML [8]. Homomorphisms
(in particular on join lists [9]) represent a special kind of
functions that are very efficient for simple representation of
parallel programs that follow the divide-and-conquer struc-
ture. They allow representations as compositions between
map and reduce functionals.

The PowerList theory has been used in other works that
try to facilitate the definition of formal and efficient parallel
programs. For example, in [1] transformation rules to paral-
lelise divide-and-conquer (DC) algorithms over PowerLists
are presented. The goal of this work was to derive programs
for the massively data parallel model. In [3] PowerLists are
used to capture both parallelism and recursion succinctly,
and automatically schedule partitioned matrices over a GPU
cluster. They are also used as proving mechanisms – in [4]
adder circuits specified using PowerLists are proved correct
with respect to addition on the natural numbers.

Other works consider the possibility to boost Java perfor-
mance using different hardware types. In [13] an experimen-
tal framework – Jacc – which allows developers to program
GPGPUs directly from Java is described. The goal of Jacc,
is to allow developers to benefit from using heterogeneous



hardware whilst minimising the amount of code refactoring
required. Another similar paper [14] presents a framework
that enables Java applications to be deployed across a variety
of heterogeneous systems while exploiting any available
multi- or many-core processor. Java applications are com-
piled and optimized for the hardware at run-time.

Java has been used lately in High Performance Computing
area [23] and also as support language for defining structured
parallel programming environments based on skeletons.
Such examples are Lithium [2] which is implemented as a
Java package, Calcium [11] and Skandium [17].

VII. CONCLUSIONS

We have presented an adaptation of the Java Stream API
to allow the definition and execution of the functions defined
based on the PowerList theory.

Powerlists are naturally dealt within a divide-and-conquer
manner. Divide-and-conquer is an important programming
paradigm and it is also a parallel programming pattern/skele-
ton. The advantage of Powerlists over general lists is that
they provide two different views over the underlying data,
simplifying the design of the algorithms on Powerlists.

The adaptation uses the collect function as a tem-
plate method for defining the Divide-and-Conquer PowerList
skeletons. The basic case – the trivial sub_problems – are
solved using the supplier and the accumulator arguments
of the collect method, and for combining two sub_results
the combiner argument is used. The PowerList functions
are defined as classes implementing the Collector inter-
face, and so it wraps the three arguments used in the
collect function. This also facilitates the specialisation of
the splitting phase. The splitting phase is defined by using
Spliterator specialisations.

The analysed examples emphasise the fact that for a
large majority of PowerList functions, the definition inside
Java Stream API could be done without difficulty based on
the proposed adaptation. The basic cases should be treated
carefully since we don’t have control over the level at
which parallel decomposition stops. The functions for which
additional operations are needed at the splitting phase could
become more difficult but there are mechanisms that can
lead to solutions.

The performance obtained for the parallel execution of
these functions proved to be very good, as our experiments
for computing the value of a polynomial in a given point,
shows.

Java Stream API is very popular nowadays, and so if some
powerful parallel programming skeletons could be adopted
to be executed inside this API, then they will be easily
popularized while the expressiveness of the Java Stream API
increases.
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