Agile and Cyclic Learning in Teaching Parallel and Distributed
Computing

Virginia Niculescu
Adrian Sterca

Darius Bufnea
vniculescu@cs.ubbcluj.ro
forest@cs.ubbcluj.ro
bufny@cs.ubbcluj.ro
Faculty of Mathematics and Computer Science, Babeg-Bolyai University
Cluj-Napoca, Romania

ABSTRACT

Agile and cyclic learning are methodologies that have been
recently proposed to be used in teaching Computer Science.
This paper investigates their usage for the undergraduate
studies on parallel and distributed computing (PDC). The
aim of this analysis is to evaluate their effectiveness, and also
to evaluate to which extent we have to go with the knowledge
related to PDC at the undergraduate level. Also, we intended
to find out the pace in which agile and cyclic learning enforces
the best knowledge transfer of PDC concepts. The analysis
takes into consideration several courses spread on the entire
curricula, students auto-evaluation based on questionnaires,
and grade results. The analysis emphasizes the fact that the
tendency is to introduce more and more information and this
is facilitated by an agile approach, but in the same time this
should be moderated if the final goal is to assure also a good
and deep understanding of associated knowledge.

CCS CONCEPTS

e Applied computing — Collaborative learning; « Comput-
ing methodologies — Parallel computing methodologies; «
Software and its engineering — Agile software development.

KEYWORDS

agile methodologies, cyclic learning, knowledge levels, under-
graduate studies, parallel and distributed computing

1 INTRODUCTION

The ACM/IEEE Curricula 2013 Report [7] and the NSF /IEEE-
TCPP Curriculum Initiative on Parallel and Distributed
Computing [13] emphasized the clear need for the undergrad-
uate computer science education to be aware of the role that
parallel and distributed computing plays in the computing
landscape.

These recommendations led to the decision of our fac-
ulty to introduce much more topics about Parallel and Dis-
tributed Computing (PDC) even from early courses taught
for Computer-Science specialization. This was a process that
transformed the curricula, step by step, using an agile ap-
proach. Before this processes started, parallel and distributed
computing topics have been studied at our faculty especially
at master level programs. The PDC concepts are now spread

across several courses, and these transformations applied to
the courses led implicitly to a cyclic learning driven approach
combined with an agile approach for teaching PDC. It has
been a collective effort and the method has been improved
each year.

Through cyclic learning a concept is introduced starting
from a basic definition of it, considering a particular use-case,
and then by returning iteratively, it arrives to the general
definition or application, when that concept is supposed to be
well understood at a high level of generalization; this has been
proved to be very efficient in computer science teaching[4].

Agile methodology is derived from the IT business industry
[1, 2]. In universities, using this is not only about assisting
the learning process, it can also be used to manage an entire
course either in respect to its content (curricula) or in respect
to the people and processes involved in teaching that course.

This paper presents an investigation conducted in order
to analyse the effectiveness of using cyclic learning combined
with agile methodologies for PDC teaching, and also to anal-
yse in this context to which extend new and more complex
PDC knowledge could be introduced to the undergraduate
students.

The paper is organized as follows: The next section briefly
describes the cyclic and agile learning approaches, and the
research objective is specified in the following section. Section
4 presents how the teaching of PDC is spread on several
courses in the curricula of our faculty, and Section 5 describes
the conducted analysis, and the corresponding results. The
conclusions are emphasized in the last section.

2 AGILE AND CYCLIC LEARNING

Very important and useful tools in developing learning objec-
tives and assessing student attainment are represented by the
educational taxonomies. Bloom’s taxonomy [3] is the most
widely cited in the literature. The initial Bloom’s taxonomy
had six categories, where each category builds on the lower
ones: Knowledge, Comprehension, Application, Analysis, Syn-
thesis, and Evaluation. Bloom’s taxonomy has been revised
by Anderson et al [8, 10], which changed the nouns listed
in the Bloom’s model into verbs, reversing the order of the
highest two levels. The revised Bloom’s classification defines

REMEMBER—

—_EVALUATE

e S
APPLY ———} —ANALYSE

Figure 1: The spiral teaching process inspired by Bloom’s tax-
onomy (image taken from [4]).

the following six categories: Remember, Understand, Apply,
Analyze, Evaluate, Create.

These taxonomies do not define a sequence of instructions,
but define levels of performance that might be expected for
any given content element. This is very important when we
are interested in evaluating abilities in creating products - as
it is the case of software development. Simplified variants of
Bloom’s taxonomy have been considered, either by grouping
each two neighbor levels into one [14], or by extracting the
most influential three categories -[6]. This last variant is also
in direct correlation to the ACM classification of the level of
knowledge E] .

(1) K = Know the term (-ACM: Familiarity);

(2) € = Comprehend so as to illustrate (. ACM: Usage);

(3) A = Apply it in new context (. ACM: Assessment).

2.1 Cyclic learning — CL

Cyclic learning defines a way of teaching which is very similar
to the spiral process of teaching which is described in [4]
(Figure 1) in correlation to Bloom’s taxonomy. This implies
that more than one iteration is needed in order to attain the
highest level, and as stated in [4], this approach is considered
appropriate for Computer Science teaching.

In essence, the cyclic learning approach presents the ad-
vantage of the fact that students return to previously learned
concepts with regularity, in different contexts, and each time
they have the opportunity to extend and deepen their knowl-
edge related to them.

2.2 Agile learning — AL

Agile learning (AL) as a methodology is relatively new and
has been only recently introduced in the academic area, being
derived from the IT business industry [5, 12]. An adaptation
of the main principles emphasized in the Agile Manifesto
[1] ([https://www.agilealliance.org/agile101/the-agile-manifesto/])
is given in Table 1. As in the IT business case, the course
holder should also assume the role of a course manager (i.e.
project manager), managing also all the course activities and
not only teaching it.

AL as a teaching methodology uses incremental steps
and completing work through an iterative design process to
meet a desired curriculum. The increments that add new
functionality in short cycles correspond to the continuous

increase in trainees’ abilities in the agile learning/teaching
process. This method is also based on working in teams and
on continuous tracking of progress. AL imposes that learning
objectives are modular, incremental and easily adaptable
to changes [9]. But, agile instructional design could refer to
any approach of training development that focuses on speed,
flexibility, and collaboration.

Table 1: Agile software development = Agile learning
Principles

o Working in teams
Individuals and . .
. . Collaborative analysis of the results
interactions
P1 - students evaluate other students,
over
- group analysis,

rocesses and tools
p Enhanced student-professor interaction

Orientation on practical skills

Working software Allow software development based on
over frameworks/APIs/components that are!
comprehensive not yet fully understood,
documentation but could provide fast practical

results (products)

P2

- Collaborate with students
- Change/adapt the requirements
if needed

Responding to change
P3 over
following a plan

Allow course adaptation and changes
after the syllabus delivery

(e.g. change the order in which

the subjects are presented)

Customer collaboration
P4 over
contract negotiation

The CL and AL approaches have several similarities:

e build knowledge using several iterations;
e adding new functionalities/knowledge at each iteration.

Still they have their particularities:

e AL is more oriented on:
— working in teams and encouraging cooperation,
— producing results very fast,
— abilities to build concrete products.
e CL is more oriented on:
— achieving certain levels of knowledge (Bloom);
— reiterate the same concept in order to deep the un-
derstanding.

They do not exclude each other, rather they are complemen-
tary, cycling learning being enhanced through agile method-
ologies.

3 RESEARCH OBJECTIVE

Our objective was to study the impact of applying cyclic
and agile learning on teaching PDC topics, and to determine
the amount of new information that should be introduced at
each stage.

From an educational point of view, related to PDC teach-
ing, we established three research questions:

Research Question 1: What is the pace in which cyclic
learning enforces the best knowledge transfer?

Research Question 2: In which measure applying agile
methods help the knowledge transfer?

Research Question 3: To which extent should we introduce
PDC topics at the undergraduate level?

The first two questions are directly connected to each other
referring to the same output, but they are also connected

to the third because if the answer to the first questions
emphasises an accelerating knowledge transfer pace, this
would imply the answer to the third one: — new, and more
complex PDC knowledge could be introduced.

Analysed courses

The teaching of PDC topics are spread on courses of all the
three years of study, and the mandatory courses from our
curricula that include these topics are enumerated in Table2.

Table 2: Undergraduate courses addressing PDC topics

‘ Hours per week

‘ Semester

Course name ECTS| (course,seminar,lab)
Operating Systems (OS) 2 5 2,1,2

Computer Networks (CN) 3 6 2,0,2

Advanced Programming Methods | 3 6 2,2,2

(APM)

Systems for Design and Imple- | 4 6 2,1,1

mentation (SDI)

Web Programming (WP) 4 6 2,1,1

Parallel and Distributed Pro- | 5 6 2,1,2

gramming (PDP)

4 CYCLIC AND AGILE INTEGRATION

The global structure of PDC teaching is directed by cyclic

learning approach. Concepts are introduced in different courses,
most of them being reiterated in order to give a deeper under-

standing, and various usage contexts. At the courses’ level,

agile oriented techniques are applied in order to improve the

knowledge transfer.

4.1 Cyclic learning aspects

The OS course introduces classical PDC concepts like Unix
IPC (Inter Process Communication) for concurrent processes:
pipe channels, named pipes (i.e. FIFO channels) and com-
munication between processes using shared memory. Then
the course moves to POSIX synchronization mechanisms
for concurrent processes and threads, as: semaphores criti-
cal sections, conditional variables, or Read-Write locks. The
OS course also briefly touches deadlock detection and pre-
vention. All the programming examples are developed in C
programming language under Linux.

Following, the CN class reviews concurrent processes and
threads from the concurrent network server perspective: a
TCP or UDP server serves remote clients concurrently and
all client handlers are processes or threads sharing a com-
mon global state. The programming is still done in C/C++
programming language.

The APM course introduces more advanced PDC concepts,
mainly in Java and some in C#. Here the asynchronous tasks
are introduced using futures, callable, and executors, and
then it moves to usage of some synchronization mechanisms
for Java threads. They are discussed in the context of creating
efficient applications of medium complexity, and the students
are more oriented on using the mechanisms and not so much
on their understanding.

SDI course introduces frameworks and APIs that facilitates
distributed and web applications development. It discusses
RPC, RMI, Protocol buffers & gRPC, Spring Remoting, and
Restful web services.

The WP course also briefly touches asynchronous program-
ming in Javascript covering Timeouts, Intervals, callbacks,
AJAX calls and Promises.

Finally, the PDP course introduces new topics as: MPI,
OpenMP and CUDA, but also reinforces, theoretically and
practically, the knowledge related to threads, synchronization
through semaphores, conditional variables, monitors and
barriers; asynchronous tasks through futures and promises.
Task partitioning with performance evaluation are discussed,
analysed and applied in practical assignments. A view on the
main parallel and distributed patterns is presented, too.

In the paper [11] we presented the estimation of the levels
attained for many PDC items at each discussed courses. Since
the interest in using PDC in different areas increased, then
the focus on the related items also increased on each of these
courses. Through the present analysis we intend to see also
the improvement obtained by applying agile techniques.

4.2 Agile learning aspects

Various agile learning techniques are applied, especially at
the micro-level, during all enumerated courses.

In general, at the laboratory classes students receive differ-
ent projects or homework having a two-week deadline. This
time interval can be ideally mapped to a sprint, each sprint
ending with a retrospective in which students’ projects or/and
homework are evaluated. Based on the students results at
the current assignment and on the professors’ feedback, new
decisions are taken regarding the next assignments (which
can be adapted based on this feedback) or team up students
in a different way. This corresponds to applying P1 and P3
principles from Table 1.

In what it follows, we will emphasize other several concrete
use-cases in order to provide an overall view. Working with
tasks, futures and executors is introduced at APM without
discussing before about concepts such: threads pools, asyn-
chronous tasks, futures and promises, etc. The students di-
rectly start to use their high level implementations, in order to
improve the performance of their applications. Similarly, the
students use Java parallel streams without discussing about
the mechanism through which the parallelism is achieved
in this case. When the associated concepts are introduced
and discussed at PDP course, the fact that the students are
already familiar with their potential usage and advantages,
facilitates a lot the conceptual understanding.

This corresponds to applying P2 principle from Table 1.

For the WP class students team up in group of 3 or 4
in order to deliver their assignments. After each sprint, an
individual evaluation of student’s knowledge is performed
alongside with the evaluation of the group assignment. This
double evaluation allows to properly identify student’s indi-
vidual knowledge level and his/her contribution to the group

assignment. Students with lower results have to repeat cer-
tain assignments in future sprints, while teams with lower
results are broken, being reconsidered in such a way that at
least two students with good results team up together with
one with lower results. This assures a long time horizontal
knowledge transfer and sharing between students within the
same team, alongside with the teacher to student transfer.
Since student’s working time doesn’t represent such a con-
straint as in a software production environment, the delay
due to the repetition of certain assignments by some students
could be overcame by teams and requirements adaptation.
This corresponds to applying P1 and P3 principles from
Tablel.

Changing the order of the topics presentation is not very
common in university courses, but it could emphasize the
fact that sometimes, what the professor could consider as a
natural order it is not always the best from the students point
of view. In the initial PDP setting, MPI(Message Passing
Interface) presentation was scheduled after talking about
multithreading (concurrency, synchronous vs. asyncronous,
etc), and also after OpenMP and CUDA (which are also
based on multithreading). In the last year, we decided to
change the order and start with MPI, then discuss more
details about multithreading, and then introducing OpenMP
and CUDA. This proved to be a better choice, this being
emphasized by the students’ feedback. This corresponds to
applying P4 principle from Table 1.

In order to facilitate learning CUDA programming, that
could rise many difficulties also because of the specific ar-
chitecture and programming constraints, the associated lab-
oratory work was set to be done in teams. The feedback
was extremely positive, students managing to overcome the
difficulties by working together. This corresponds to applying
P1 principle from Table 1.

At PDP course students were also encouraged to follow an
alternative evaluation path. The implicit path includes, be-
sides the practical assignments, a theoretical written exam at
the end of the semester. A project-based learning alternative
is proposed, too. It relies on solving a ‘challenging’ problem,
to implement a solution, but also analyse it theoretically
from the design decisions and also performance points of
view. Still, the students are allowed to return to the classical
exam is they don’t succeed with this challenging project. This
corresponds to applying P3 and P4 principles from Table 1.

5 ANALYSIS

The goal of the conducted investigation was to evaluate the
outcomes obtained at the end of the educational stream, and
this is why the evaluation has been done mainly during the
PDP course, which is the last in this stream. The analysis
was quantitative but also qualitative, based on questionnaires
and grades evaluation.

Analysed Items: We focus our investigation on the items
that are introduced during the cyclic learning stream, with
the help of agile methods. These items were presented in
several courses in different contexts and use cases:

e Threads and processes — general knowledge.

Processes-BEFORE
Threads-BEFORE

. ||||I|
2 3 4 5

Knowledge level

mProcesses-AFTER
m Threads-AFTER

Student percenatge
O N N - |
o ©o © o ©6 © o

o

Figure 2: The before/after knowledge levels for general use of
threads and processes; based on students auto-evaluation

Synchronisation — race conditions, deadlock, etc.
Asynchronous computation.

Client-Server applications.
MPI/OpenMP/CUDA programming.

5.1 Questionnaire based investigation

In order to have a reliable feedback from the students we
invited them to fill up a questionnaire in Google forms (the
complete results could be consulted at:
[http://www.cs.ubbcluj.ro/~vniculescu/PPDquiz.pdf]). It repre-
sents students’ auto-evaluation and open feedback.

We considered 6 levels of knowledge, the first specifying the
state of not knowing anything about the concept under the
analysis. The other 5 levels correspond to Bloom’s revisited
taxonomy, where the last two levels are grouped together.

This questionnaire was sent to the students from Computer
Science specialization, which is formed of about 200 students;
the number of students that filled up the questionnaire was
162. Since we were interested in cyclic learning evaluation
of the knowledge associated to the analysed items, we asked
them to evaluate their knowledge of each studied PDC item
"Before" attending the PDP course and "After’. The reason
for this was to evaluate not only the progress but also the
previous level of knowledge — based on the students self-
assessment. This facilitated the answer to the first and the
third research questions.

We plot in Figure 2 the detailed results based on stu-
dents auto-evaluation for threads and processes general un-
derstanding and usage, and in Figure 3 the understanding of
theoretical concepts of semaphores and monitors. Figure 4
summarizes the results for more topics, but showing only the
average of the auto-evaluation. It can be seen that, for each
topic, the students specified that a pre-existent knowledge
existed (obtained through previous iterations), which has
been improved (as it was expected).

During the PDP course the students were asked to deliver
5 laboratory works (practical assignments) on the following
themes:

Semaphores: BEFORE = Semaphores: AFTER
Monitors: BEFORE mMonitors: AFTER

80
70 =
o 60 |
[=]
m
£ 50 |
@
8
8 40 | |
530 | | |
=l
n 20 u |
SO S
0 m 0
0 1 2 3 4 5

Knowledge level

Figure 3: The before/after knowledge levels for general use of
semaphores and monitors; based on students auto-evaluation

The before/after average knowledge levels of the items under cyclic learning analysis
W Before WM After

Figure 4: The before/after average knowledge levels of differ-
ent topics under cyclic learning analysis; based on students
auto-evaluation

(1) Multithreading: Adding and multiplying big numbers.

(2) MPI: Adding and multiplying big numbers.

(3) Adding large size polynomials represented using linked-

list - different variants.

(4) Client-Server project with asynchronous tasks.

(5) CUDA project.

The students have been asked to specify the most difficult
assignment (based on their personal opinion), and the results
are given in Figure 5.

It is interesting to notice the fact that most of the students
considered the assignment 4 - Client-server application to
be the most difficult one. Client-server applications were dis-
cussed before PDP at several courses (CN - low level context,
SDI and WP at a higher level context) and from this auto-
evaluation we may deduce that the acquisition level before
PDP course is at most at "Applying/Analysing" level. At
the PDP course the "Client-Server" was only specified in the
general discussion about patterns of distributed computing,

but it was included into the assignments in order to follow
the cyclic learning stream.

The first laboratory involves multithreading knowledge
that was previously introduced in several iterations (algorith-
mic thinking was involved, too), but still there were 10% of
the students that considered it the most difficult one .

Laboratories dificulty

Lab 1 Lab 2 Lab 3 Lab 4 Lab 5

N w
A S

N
S

=)

students percentage
=]

3

Figure 5: The students auto-evaluation regarding the most
difficult laboratory theme.

Informal qualitative feedback: From free informal answers
we found out that CUDA enjoys a large interest from students,
but also MPI and OpenMP. This is promising since initially
(when the course was introduced in 2015) the interest for
MPI and OpenMP was not so high [11]. Also, MPI proves
to be helpful also for deepening some more understanding of
processes.

Some students expressed the fact that the PDC topics are
difficult to understand, while very few others expressed their
opinion that there is unnecessary repetition of some items.

5.2 Grade analysis

The evaluation for the PDP course is calculated as a weighted
average between grades obtained on:

e Laboratory works (as describes in section 5.1);

e Theoretical written exam.
The theoretical written exam evaluates the understanding of
the main synchronisation concepts and mechanisms together
with the connected possible problems (deadlock, livelock,...),
asynchronism through futures and promises, theoretical eval-
uation of the performance and task partitioning, parallel and
distributed patterns.

It should be specified that the results for theoretical exam
are lower than those that evaluates code interpretation or
practical skills. Figure 6 emphasises these results.

Client-server applications is still considered difficult, even if
it passed through several iterations. Beside the questionnaire
answers, also the grade results emphasizes this - Figure7. A
solution would be to apply the agile method of working in
teams - similarly to the approach applied for CUDA labora-
tory (for this the results are also shown in Figure 7).

We have also analysed the grade results of MPI laboratory
in two successive years: 2018 vs. 2019. The difference was
that in 2019 the MPI presentation was done at the beginning

20

15

10

Students (percents)

Grades

Figure 6: The grade results for the written exam.

Results for CUDA and Client-Server laboratories

60 mCUDA = Client-Server

(4]
o

S
o

N
o

Students percentage
w
o

-
o

o

1 2 3 4 5 6 7 8 9 10
Grades

Figure 7: The grade results for CUDA and Client-Server lab-
oratories.

Results for MPI in 2 succesive years
40

u2018 m2019

'
a
2
S 15
3
& 10
. I | I.
3 4 5 6 7 8 9 10

1 2
Grades

Figure 8: The grade results for MPI laboratory on 2 successive
years (2018 vs 2019).

of the course — as explained in section 4.2. We noticed an
improvement of the results, and the explanation could rely
on the fact that starting with MPI that is a completely new
topic (multithreading is there at the third iteration) increases
the students’ interest.

5.3 Results’ interpretation

Based on the presented analysis we can answer to the research
questions.

Response for Research Question 1. Since for PDC the
knowledge acquisition needs repeated reinforcements, cyclic
learning proved to be an effective and efficient method to
be applied for teaching corresponding topics. This is due to
the fact that the concepts and mechanisms of PDC are not
very easy to be completely understood and assimilated (one
course wouldn’t be enough).

Response for Research Question 2. The analysis of the used
agile methods shows a very good improvement in knowledge
transfer, and also an increase of the students’ interest in
learning. These approaches should be used even much more
in concrete use-cases.

Response for Research Question 3. The response to the first
research question, even in the context of the positive answer
of the second one, implies that we cannot increase very much
the pace of introducing PDC topics at the undergraduate
level. We have to assure the fact that the fundamentals are
well understood and assimilated. Still, the elective courses
could enlarge very much this knowledge for the students that
have a special interest in this domain.

6 CONCLUSIONS

We have analyzed the need and the impact of using the
cyclic and agile learning approaches in teaching PDC in the
undergraduate Computer Science studies.

Several courses that form an interconnected chain of learn-
ing programming were transformed recently based on the
new recommendations (ACM/IEEE and NSF/IEEE-TCPP)
by introducing more information related to PDC topics. The
correlation and well integration between these courses to-
gether with applying agile learning techniques are essential
in assuring a good knowledge transfer.

Besides the quantitative analysis, the qualitative analy-
sis is also important since it emphasizes some advantages
and disadvantages that are directly connected to the courses
content and their impact on the students’ implication and
interest. This lead to some important educational research
questions that could imply improvements of the educational
process. We have conducted an analysis based on question-
naires and grade evaluation for more than 150 students, and
the results show that PDC topics are considered difficult, and
for teaching them it is appropriate to use the cyclic learning
approach that is enhanced with agile leaning methods.

REFERENCES //doi.org/10.1207 /s15430421tip4104_ 2

[1] Agile Alliance. 2001. Manifesto for Agile Software Development. (o1 J. Ijongmuﬁ, B.P. Héhne, S Bré’}ltigam’ A. Oberlé,nder‘, and F.
(2001). http://agilemanifesto.org/ Schindler. 2016. Agile learning: Bridging the gap between industry
(2] Scott William Ambler and Mark Lines. 2017. An Ezecutive’s and university. A model approach to embedded learning and

competence development for the future workforce. In Proceedings

Guide to Disciplined Agile: Winning the Race to Business Agility. v
44th SEFI Conference. Tampere, Finland. Conference date: 12-15

CreateSpace Independent Publishing Platform. 225 pages.

[3] Benjamin S. Bloom, Max D. Engelhart, Edward J. Furst, Walker H. September 2016. . .
Hill, and David R. Krathwohl. 1956. Tazonomy of Educational [101 A.nderson Lw, KljathWOhl DR, Airasian PW,.Crulkshank KA,
Objectives: The Classification of Educational Goals. Handbook Richard Mayer, Pmtrlch PR, J. Raths, and Wltt,rOCk MC. ?0,01'
I: Cognitive Domain. David McKay Company, New York. A Tazonomy for Learning, Teacfleg, and' As§esszng: A Revision
[4] Ursula Fuller, Colin G. Johnson, Tuukka Ahoniemi, Diana Cukier- gf Bkloom s Tazonomy of Educational Objectives. Longman, New
ork.

man, Isidoro Hernéan-Losada, Jana Jackova, Essi Lahtinen, Tracy L.
Lewis, Donna McGee Thompson, Charles Riedesel, and Errol
Thompson. 2007. Developing a Computer Science-Specific Learn-

[11] Virginia Niculescu and Darius Bufnea. 2018. Experience with
Teaching PDC Topics into Babeg-Bolyai University’s CS Courses.

ing Taxonomy. SIGCSE Bull. 39, 4 (Dec. 2007), 152-170. In Euro-Par 2017: Parallel Processing Workshops. Springer In-
https://doi.org/10.1145/1345375.1345438 ternational' Publishing, Santiago de Compostela, Spain, 240-251.
[5] Poul H. Kyvsgird Hansen, Manuel Fradinho, Bjgrn Andersen, and http:s://dmnrg/l0.1007/978—3—319-75178-8720 . i
Paul Lefrere. 2009. Changing the Way We Learn: Towards Agile [12] Ingrid Noguera, .Ana-l*.llena G\.Jerr.ero-Rf)ldan, f"nd Ricard Masé.
Learning and Cooperation. In 15th International Workshop of the 2918. C.ollabor.atlvc agile lcarn.lng in onhr{c environments: Strate-
IFIP WG 5.7 SIG. Eidgenéssische Technische Hochschule Ziirich, gies for improving team regulation and project management. Com-
Laboratorium fiir Lebensmittel-Verfahrenstechnik, 151-160. puters & Education 116 (2018), 110 — 129. https://doi.org/10.

1016/j.compedu.2017.09.008

[13] Sushil K. Prasad et al. 2012. NSF/IEEE-TCPP Curriculum on
Parallel and Distributed Computing - Core Topics for Undergrad-
uates - Version I. http://cs.gsu.edu/~tcpp/curriculum/ Accessed:

[6] William Huitt. 2011. Bloom et al’s taxonomy of the cognitive
domain. Educational Psychology Interactive (2011).

[7] Association for Computing Machinery (ACM) Joint Task Force on
Computing Curricula and IEEE Computer Society. 2013. Com-

puter Science Curricula 2013: Curriculum Guidelines for Un- 15-Apr-2020. . X .
dergraduate Degree Programs in Computer Science. Association (14] Henry E. Schaffer, Karen R Young, .Emll}’ W. Ligon, f‘nd Diane D.
for Computing Machinery, New York, NY, USA. 144-154 pages. Chapman. 2017. Automating I.nd1v1duahzed Formative Feedb.ack
https://doi.org/10.1145 /2534860 in Large Classes Based on a Directed Concept Graph. Frontiers

[8] David R. Krathwohl. 2002. A Revision of Bloom’s Taxonomy: An in Psychology 8 (2017), 1-11. https://doi.org/10.3389/fpsyg.
Overview. Theory Into Practice 41, 4 (2002), 212-218. https: 2017.00260

http://agilemanifesto.org/
https://doi.org/10.1145/1345375.1345438
https://doi.org/10.1145/2534860
https://doi.org/10.1207/s15430421tip4104_2
https://doi.org/10.1207/s15430421tip4104_2
https://doi.org/10.1007/978-3-319-75178-8_20
https://doi.org/10.1016/j.compedu.2017.09.008
https://doi.org/10.1016/j.compedu.2017.09.008
http://cs.gsu.edu/~tcpp/curriculum/
https://doi.org/10.3389/fpsyg.2017.00260
https://doi.org/10.3389/fpsyg.2017.00260

	Abstract
	1 Introduction
	2 Agile and Cyclic learning
	2.1 Cyclic learning – CL
	2.2 Agile learning – AL

	3 Research objective
	4 Cyclic and Agile integration
	4.1 Cyclic learning aspects
	4.2 Agile learning aspects

	5 Analysis
	5.1 Questionnaire based investigation
	5.2 Grade analysis
	5.3 Results' interpretation

	6 Conclusions
	References

