
A Java Framework for High Level Parallel Programming using Powerlists

Virginia Niculescu∗†, Frédéric Loulergue¶, Darius Bufnea ∗‡, Adrian Sterca ∗§
∗Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Cluj-Napoca, Romania

†vniculescu@cs.ubbcluj.ro, ‡bufny@cs.ubbcluj.ro, §forest@cs.ubbcluj.ro
¶School of Informatics Computing and Cyber Systems, Northern Arizona University, USA, frederic.loulergue@nau.edu

c©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Abstract—Parallel programs based on the Divide&Conquer
paradigm could be successfully defined in a simple way using
powerlists. These parallel recursive data structures and their
algebraic theories offer both a methodology to design parallel
algorithms and parallel programming abstractions to ease the
development of parallel applications.

The paper presents how programs based on powerlists
can be implemented in Java using the JPLF framework we
developed. The design of this framework is based on powerlists
theory, but in the same time follows the object-oriented design
principles that provide flexibility and maintainability. Examples
are given and performance experiments are conducted. The re-
sults emphasise the utility and the efficiency of the framework.

Keywords-Parallel recursive structures; Parallel program-
ming; Java; Performance; Models; Framework.

I. INTRODUCTION

Parallel architectures are now mainstream, and span from
smartphones to supercomputers, yet parallel programming
remains difficult and error-prone. It is thus important not
only to provide software abstractions to ease the develop-
ment of parallel programs, but also conceptual frameworks
to ease the design of parallel algorithms.

The theory of lists [4] is such a conceptual framework.
Algorithmic skeletons [5] provide the software abstractions
needed to develop parallel applications using methodologies
based on the theory of lists. There are many skeleton
libraries, for e.g. [6], [7], and MapReduce [9] can also be
considered as a skeletal parallelism approach.

Other conceptual frameworks include parallel recursive
structures such as powerlists [15]. Powerlists are naturally
dealt with in a Divide & Conquer (DC) manner. DC is
an important programming paradigm and is also a parallel
programming pattern. The advantage of powerlists over lists
is that they provide two different views over the underlying
data, simplifying the design of the algorithms on powerlists.

However, unlike the theory of lists, there is currently no
framework for a mainstream programming language that
supports parallel programming with powerlists. The latest
development of Java, qualifies it to be used for applications
where the performance is a critical issue. From these, we
think that having a good Java framework that allows the
implementation of powerlists parallel programs is worth of
consideration.

The goal of the work presented in this paper was twofold:
first providing a Java framework to ease the development of
parallel programs by mainstream programmers, as well as
providing a flexible and maintainable architecture for paral-
lel programmers. In order to do so, our framework follows
object-oriented design principles. Powerlists could be easily
extended to more general structures that are not constraint
to a power of two length (as ParLists and PList [13]), but
which still preserve the powerlists advantages. The next step
of framework development would be to extend it to use also
these kinds of structures.

The paper is organised as follows. Related work is pre-
sented in section II. Next, we give a general description of
powerlists in section III, and then in section IV the JPLF
framework that supports Java implementations of powerlists
parallel programs is presented. Sections V-A and V-B present
some applications and the practical experiments related to
them. We conclude the paper with section VI, also revealing
the goals of our further work.

II. RELATED WORK

Powerlists are recursive data structures and they can be
successfully used for solving problems which are divide and
conquer in nature in a very simple manner. These qualify
them to be used in skeleton-based parallel programming
frameworks. In [1] Achatz and Shulte present transforma-
tion rules to parallelise divide-and-conquer (DC) algorithms
over powerlists. Their goal was to derive programs for the
massively data parallel model. Powerlists have been used
also in the design of a high level framework for scaling
linear algebra computations across a cluster of GPUs [3].
The method is illustrated by using powerlists for a matrix
multiplication example. Powerlists facilitate the partitioning
of data. An automated scheduling of the partitioned matrices
over a GPU cluster was obtained.

In [17] we showed that powerlists could be successfully
considered as a base for a high level model for parallel
computation that respects the general requirements of ab-
stractness, software development methodology, architecture
independence, cost measures, no preferred scale of granular-
ity, efficiently implementable, as these are specified in [18].

Algorithmic skeletons [5] have been used for the de-
velopment of various systems providing the application
programmer with suitable abstractions. They initially came

from the functional programming world, but in time, they
have been taken by the other programming paradigms too.
Efficient skeleton based parallel programming frameworks
have been developed targeting multi-core hardware, possibly
equipped with GPUs, as well as distributed clusters [10],
[11].

Java has been used before as support for defining struc-
tured parallel programming environments based on skele-
tons. Lithium [2] is implemented as a Java package and
represents both the first skeleton based programming en-
vironment in Java and the first complete skeleton based
Java environment exploiting macro-data flow implementa-
tion techniques. Calcium [6] and Skandium [14] are two
other Java skeleton frameworks. Java 8 Streams are playing
an important role in bringing functional programming to
Java, and they are also based on algorithmic skeletons.

III. POWERLIST THEORY

Powerlists have been introduced by J. Misra [15]. They
allow working at a high level of abstraction, especially
because the index notations of arrays are not used. Instead
functions on powerlists are defined recursively by splitting
their arguments. A powerlist is a linear data structure whose
elements are all of the same type. The length of a powerlist
is a power of two.

To help the design of parallel programs using powerlists,
an algebra (that allows program transformation) and several
induction principles are defined on these data structures.
Besides powerlists, similar theories such as ParLists and
PLists were defined [13], in order to cover also lists with
non power-of-two length, and divide and conquer functions
that split the problem in different numbers of subproblems.
In this paper we focus on powerlists.

In this section, we write PL〈X,n〉 for the type of a
powerlist that has 2n elements each being of type X . A
powerlist with a single element a is called a singleton, and
is denoted by [a] . If two powerlists have the same length
and elements of the same type, they are called similar.

Two similar powerlists can be combined into a powerlist
data structure with double length, in two different ways:

• using the operator tie, written p | q, the result contains
elements from p followed by elements from q,

• using the operator zip, written p \ q, the result contains
elements from p and q, alternatively taken.

Therefore, the constructor operators for powerlists are:

[.] : X → PL〈X, 0〉
.|. : PL〈X,n〉 × PL〈X,n〉 → PL〈X,n + 1〉
.\. : PL〈X,n〉 × PL〈X,n〉 → PL〈X,n + 1〉

(1)

Powerlist algebra is defined by these operators and by
axioms that assure the existence of a unique decomposition
of a powerlist, using one of tie or zip operators; and the
fact that tie and zip operators commute. The proofs of
properties on powerlists are based on a structural induction

principle defined on powerlists, which consider a base case,
and two possible variants for the inductive step: one based
on operator tie, and the other based on zip.

Functions are defined based on the same principle. As a
powerlist is either a singleton, or the combination of two
powerlists using either zip or tie, a function on a powerlist
can be defined recursively by case: In the base case, the
powerlist is a singleton, otherwise it is the combination of
two powerlists on which some possibly recursive calls are
done. For example, the high order function map, which
applies a scalar function to each element of a powerlist is
defined as follows:

map : (X → Z)× PL〈X,n〉 → PL〈Z, n〉
map(f, [a]) = [f(a)]
map(f, p | q) = map(f, p) |map(f, q)

(2)

For reduction with ⊕ associative operator, we also have a
very simple powerlist definition:

red : (X ×X → X)× PL〈X,n〉 → X
red(⊕, [a]) = [a]
red(⊕, p | q) = red(⊕, p)⊕ (red(⊕, q)

(3)

For both these functions, alternative definitions based on the
zip operator could be given.

There are functions where the existence of the both
operators is essential. Function inv permutes the input list
p such that the element with index b in p will be on the
position given by the reversal of bit string b in p:

inv : PL〈X,n〉 → PL〈X,n〉
inv([a]) = [f(a)]
inv(p | q) = inv(p) \ inv(q)

(4)

The parallelism of the functions is implicit: each application
of a deconstruction operator (zip or tie) means that we may
achieve two processes (programs) that could run in parallel.
So, we obtain a tree decomposition, which is specific to
divide&conquer programs. Having two decomposition oper-
ators eases the definition of different programs (as can be
noticed from inv definition), but in the same time induces
some problems when these high-level programs have to be
implemented on concrete parallel machines.

Next, we consider the class of all powerlist functions that
could be defined with several powerlists as input arguments,
and the result could be either a scalar or, in turn, a powerlist;
and such a function respects the following proposition:

Proposition 1. A powerlist function f could have several
similar powerlist arguments p1, p2, . . . , pk and the result
could be also a powerlist (in this case ⊕ below is a powerlist
operator, otherwise it is a scalar operator).

If the decomposition operators of the arguments are
�1, . . . ,�k (where �i could be | or \) then the function

f could be written as:

f([a1], [a2], . . . , [ak]) = Υ(a1, a2, . . . , ak)
f(pl1 �1 p

r
1, pl2 �2 p

r
2, . . . , plk �k prk) =

Φ(pl1, p
r
1, p

l
2, p

r
2, . . . , p

l
k, p

r
k)

⊕ Ψ(pl1, p
r
1, p

l
2, p

r
2, . . . , p

l
k, p

r
k)

(5)

where Υ is a function on scalars, Φ and Ψ are functions on
powerlists, which contain – in their definitions – calls of f
on powerlists of size equal to half of the size of the input
lists pi.

IV. POWERLISTS FRAMEWORK IN JAVA

In order to allow easy definition of powerlists functions
in Java we have built a framework that provides general
support implementations. The design of the JPLF framework
is guided by the types defined in the theory and by their
specific properties and operations.

IBasicList is a type used to allow working with simple
basic lists, and which it is also used as a unitary supertype
of the specific types defined inside the powerlist theory.
Also, this prepares the extension of the framework with
types that correspond to PList and ParList data structures.
Its implementation BasicList is based on an ArrayList as
a storage container, but other types for the storage could be
provided in the future.

The list types defined in our framework respect a property
defined by the following design choice:
Design choice 1. We assume that a list has all its elements
stored into the same container object – the storage – but
two neighbour list elements are not necessarily stored into
neighbour locations of the storage: some distance could be
between them.

A. The Powerlist Data-Structure in Java

Since the powerlist is the main type that sustains the
powerlist theory, we need a good and efficient representation
of it in Java. The interface IPowerList defines the type and
PowerList class provide an implementation of it.

The two operations tie and zip are used to split a powerlist,
but they also can be used as constructors. The theory consid-
ers that the powerlist functions are defined by considering
one deconstruction operator (for divide operation) for each
input powerlist, and a combining function. If the result is
also a powerlist, then the combining function is based on a
powerlist construction operator, too.

To force this definition, the subtypes ITiePowerList

and IZipPowerList are defined. ITiePowerList is the type
of all powerlists for which we implicitly apply tie op-
erator – as construction/deconstruction operator. Similarly,
IZipPowerList is the type of all the powerlists for which we
implicitly apply zip operator – as construction/deconstruc-
tion operator. This helps us defining polymorphic functions
for splitting and combining operations.

When a powerlist is divided, the result is formed by two
similar sublists. In order to avoid element copy, the storage
is preserved for both and only the storage information is
updated. For each listl, the storage information SI(l) is
formed of:

• reference to the storage container base,
• the start index start,
• the end index end,
• the incrementation step incr.
From a given list with storage information SI(list)

being {base, start, end, incr}, tie and zip deconstruction
operators create two lists left_list and right_list as
follows:

Op. Side SI
tie left {base, start, (start+end)/2, incr}

right {base, (start+end)/2, end, incr}
zip left {base, start, end-incr, incr*2}

right {base, start+incr, end, incr*2}
Note: In our implementation, the storage information
contains also a variable offset that it is usually equal to 0.
A non zero offset means that the first element of the list
is stored at the position start+offset*incr. This is only
used for shifting and rotating operations.

The associated class diagram that corresponds to the data
structure types is shown in Figure 1.

Figure 1: The class diagram of classes corresponding to lists
implementation.

B. Framework Design

The framework has several important components with
different, but yet interconnected, responsibilities. Their re-
sponsibilities are for:

• simple lists (BasicList) implementations,
• powerlist structures implementations,
• powerlist functions implementations,
• powerlist functions executions.
This separation of concerns allows us to modify them

independently, offering the possibility of extension by pro-
viding new or improved ways for execution, or for storage,
etc.

1) Parallel Programs Definition: A powerlist function
expresses the specific computation by either using tie or
zip deconstruction operators for splitting the powerlist ar-

guments. The result could be a simple data (PowerFunction
case), or a powerlist (PowerResultFunction case).

All powerlist functions specify how the powerlist ar-
guments are split, and also, if it is the case, how the
result powerlist is constructed for two similar powerlists
(combine function). This specification is based on a list of
construction/deconstruction operators that is an ordered list
op_args with values from {tie, zip}.

Proposition 1 implies that a certain powerlist argument is
always split by using the same operator. Also, if the result is
a powerlist, this is constructed at each step by using the same
operator. Based on this proposition, in the framework, the
construction and deconstruction operators are not explicitly
specified for each function; instead they are implied by the
powerlists types – if they are TiePowerLists, tie operator
is used, and if the type is ZipPowerLists then zip operator
is used. So, it is very important when a specific function is
called, to prepare it such that the types of the arguments be
the types implied by the set op_args. The PowerList class
provides two methods toTiePowerList and toZipPowerList

that transforms a general PowerList into a specific one that
has specific implementation for splitting and construction.

In order to allow the implementation of the divide and
conquer functions over powerlists we use the Template
Method design pattern [12]. The PowerFunction class de-
fines the template method compute that implements the
divide&conquer solving strategy. The following code snippet
shows the code of the template method compute defined for
PowerFunction:
public Object compute() {
if (test_basic_case())
result = basic_case();

else {
split_arg();
PowerFunction<T> left = create_left_function();
PowerFunction<T> right = create_right_function();
Object res_left = left.compute();
Object res_right = right.compute();
result = combine(res_left, res_right);

}
return result;

}

For a new function, the user should provide implementa-
tions for the following methods:

• basic_case,
• combine,
• create_left_function, create_right_function.
Still, it is not mandatory to provide implementations

for all of them, their implicit definitions could be used.
For example, for map we have to give definition only
for basic_case(), while for reduce we have to provide
an implementation only for combine(). For the functions
create_left_function() and create_right_function()

specialised definitions should be given to assure that the new
created functions correspond to the particular definition of
the function that it is to be defined. Implicitly, the function
test_basic_case() verifies if the powerlist argument is a
singleton, as the powerlist theory specifies. But the method

Figure 2: The class diagram of classes corresponding to functions
on lists and their execution.

could be overridden and could force ending the recursion be-
fore singleton list are encountered. For the functions that do
not follow a classical divide&conquer definition the compute

method could be overridden. Using the presented framework
infrastructure, new powerlist functions could be defined
by extending the PowerFunction or PowerResultFunction

classes; the first is chosen when the result is a simple, scalar
type object (as for Reduce), and the second is used for
the functions that return powerlists (as for FFT)1. Figure
2 emphasises these variants. Also, in order to compare
the performance of the obtained programs to sequential
implementation of the required problem (possible based
on other methods) function on BasicLists could also be
defined by extending either the class BasicListFunction or
BasicListResultFunction.

2) Parallel Programs Executions: The execution of a
powerlist function is defined separately, in order to allow its
modification or specialisation. IPowerFunctionExecution is
the type that covers the responsibility of executing a pow-
erlist function. It provides methods for setting the function
that is going to be execute, and a compute function. This
execution could be used for any function that follows the
divide& conquer pattern.

The class PowerFunctionExecution provides an imple-
mentation based on the ForkJoinPool Java executor. Other
implementations could be easily defined, such that other
executors to be used. Figure 2 shows the relations between
the power function classes and PowerFunctionExecution.

The Java ForkJoinPool is an implementation of the
ExecutorService interface, and it is designed for work
that can be broken into smaller pieces recursively. As with
any Java ExecutorService implementation, this distributes
tasks to worker threads in a thread pool. The ForkJoinPool

executor is distinct because it uses a work-stealing algorithm.
Worker threads that run out of things to do can steal tasks
from other threads that are still busy. This executor allows
a simple definition of the tasks that we choose to execute in
parallel: – each time a split operation is done, a new task is
forked for computing the right part, the left part computation
being taken by the current task. In this way no more tasks
than the number of list elements are created [20].

The implementation of the compute method of the class
PowerFunctionExecution relies on the fact that the pow-

1The source code is on: https://github.com/vniculescu/pares_src

erlists functions are defined based on the Template Method

pattern. Its implementation follows the same skeletons as
that used by the compute method defined for any powerlist
function. Here, both PowerFunctions created inside the
compute method of the PowerFunction class (left and
right) are wrapped into separate execution tasks. For the
task right_function_exec a forked execution is called, and
the task left_function_exec is computed by the calling
task. This implies that no more tasks than the length of the
powerlist are created for the function execution.

C. Distributed Lists

Ideally, the implementation of parallel programs described
with powerlists consider that any application of the operators
tie or zip as deconstructors, leads to two new processes
running in parallel, or, at least, to assume that for each
element of the list there is a corresponding process.

PowerFunctionExecution forks a new task for the execu-
tion of right-part-function. This means that the number
of tasks grows linearly with the size of the data. In this ideal
situation, the time-complexity is usually logarithmic (if the
combination step complexity is a constant), depending on
loglen of the input list.

In many cases, a more practical approach is preferable:
to consider a bounded number p of parallel tasks. In this
case we have to transform de input list, such that no more
than p tasks are created. This transformation of the input
list corresponds to a data distribution. A list of length n
is transformed into a list of p sublists, each having n/p
elements. In the framework, this responsibility is assigned
to the class Transformer that defines several functions:

• toTieDepthList and toZipDepthList,
• toTieFlatList and toZipFlatList.
For Transformer class implementation Singleton pattern

has been used [12]. The transformations does not imply any
elements copying, but just the creation of a new list that uses
the same storage, has p elements, each being a BasicList

object, again with the same storage. The storage information
SI is set for each sublist depending on which operator tie or
zip is used for this decomposition. So, the time-complexity
associated to this operation is O(p).

The model execution of the functions defined on lists of
sublists is different just for the basic case. If the element of
a singleton list that corresponds to the basic case has the
type IPowerList – is a sublist, then a simple sequential
execution of the function on that sublist is called. The
analysis presented in [16] assures the fact that the final
result is correct. For the functions on sublists, sequential
execution is based implicitly on recursion, which implies
many function calls. In a language such as Java, a recursive
implementation is not very efficient, and so, if an equivalent
function defined over IBasicList (based on iteration) could
be defined, then this will be used instead.

V. APPLICATIONS AND EXPERIMENTS

In order to evaluate the usability of the implemented
framework, in this section we will consider two classical
problems giving solutions to these problems using our
framework. We will also discuss some performance impli-
cations of the framework’s parameters by conducting some
experiments for the two problems, considering different
input sizes and different computing solutions.

A. Applications

1) Reduce: The powerlist representation of the reduce
computation is given in Section III. The definition of func-
tion red could be done either using tie or zip operator.

Corresponding to this definition, we have defined a
class Reduce<T> that extends the class PowerFunction<T>.
The associative operator is given using an instance of
the function interface BinaryOperator of the package
java.util.function from Java Platform SE 8, so that a
lambda expression could be used to specify it.

The Reduce class overrides the method combine that
applies the associative operator on the results of the recursive
calls on left and right lists. The method basic_case() is
overridden just to include also the case when the argument
is a list of sublists, in which case the singleton case uses a
sequential reduce function on BasicLists. For example, the
class Reduce could be used to add a list of numbers stored
into an ArrayList base.
int limit = 1<<5;
ArrayList<Double> base = new ArrayList<Double>(limit);
[...] // base initialisation
BinaryOperator<Double> op = (a,b)->(a+b);
PowerList<Double> list =

new PowerList<Double>(base, 0, limit-1);
ForkJoinPool executor = ForkJoinPool.commonPool();

The following code snippets could be used in order
execute the reduction:

• sequentially but also recursively using powerlists
Reduce<Double> rf =

new Reduce<Double>(op, list.toTiePowerList());
Double result1 = (Double) rf.compute();

• in parallel using powerlists
PowerFunctionExecution<Double> exec =

new PowerFunctionExecution<Double>(rf);
Double result2 = (Double) executor.invoke(exec);

• in parallel using a powerlist of sublists
Transformer t = Transformer.getInstance();
IPowerList<BasicList<Double>> dlist =

t.toTieDepthList(list, 1<<3).toPowerList();
Reduce<Double> drf = new Reduce(op, dlist);
PowerFunctionExecution dexec =

new PowerFunctionExecution<Double>(drf);
Double result3 = (Double) executor.invoke(dexec);

2) Fast Fourier Transform: For a polynomial p with
complex coefficients, Fourier Transform could be obtained
by evaluating p on a specific sequence of points: (W p). The
points form a powerlist (W p) = (ω0, ω1, .., ωn−1), where

n is the length of p and w is the nth principal root of 1.
It can be noticed that (W p) depends only on the length of
p but not on its elements; hence, for two similar powerlists
p, q we have (W p) = (W q).

A basic sequential implementation of Fourier Transform
of polynomial P simply computes the values of the poly-
nomial in all the points of the list (W p). The corre-
sponding time complexity is O(n2). This is what has been
implemented using BasicList data structure. Since (W p)
contains powers of the nth principal root of 1, and since they
have special relations with the roots of 1 of lower order, the
Fourier transform can be recursively computed in O(n log n)
steps, using the Fast Fourier Transform algorithm [8]. The
powerlist representation of this algorithm, proved in [15], is:{

fft([a]) = [a]
fft(p \ q) = (P + u×Q) |(P − u×Q)

(6)

where P = fft(p), Q = fft(q) and u = powers(p).
The result of the function powers(p) is the powerlist

(w0, w1, .., wn−1) where n is the length of p and w is the
(2× n)th principal root of 1.

The operators + and × used in the fft definition are
extension of the addition and multiplication operators on
powerlists. They have simple definitions that consider as an
input two similar powerlists, and specify that the elements on
the similar positions are combined using the corresponding
scalar operator. The theoretical parallel time-complexity of
fft computation using this powerlist definition is O(log n)
parallel steps using O(n) processors.

B. Experiments

All the experiments have been executed on a Nextscale
IBM machine with two Intel Xeon CPU E5-2697 v2 @
2.70GHz, each processor having 12 physical computing
cores (24 with hyper-threading), 128 GB RAM memory and
approximately 2.7 TB storage. Thus, a total number of 24
physical computer cores where used in our experiments (48
also considering the virtual ones given by the hyperthreading
mechanism). The machine was running Linux Red Hat
Enterprise 6.5 on 64bit and JDK 8.

For the two examples with Reduce function, the results
are compared with the results obtained using Java Parallel
Streams, and emphasise that we obtained at least similar
performance. Both frameworks are based on ForkJoinPool
executor that has certain particularities: the performance is
very unpredictable since is dependent on a pool of threads,
where the tasks are added into each thread queue, and
if necessary work-stealing principle is used. There is a
particularity of the ForkJoinPool executor so called “warm-
up” behaviour: a second similar execution inside the same
program is very much improved since information about
tasks creation is preserved; because of this we carefully split
all the executions in separate processes which run in separate
Java virtual machines.

The Fast-Fourier Transform algorithm cannot be directly
implemented using Parallel Streams. This problem imposes
splitting the input list based on the zip operator. With this
example the advantages of using powerlists are very clear
emphasised – they are not only related to performance but
also to extending the space of the problems that could be
solved using it.

For all experiments, each displayed value is the average
value over a series of 100 measures.

1) Reduce: In order to test the performance of the Reduce
operation using our implementation of powerlists, we con-
ducted a series of experiments, comparing the computational
times of different associative operators, operand types and
number of operands. We have considered the following
cases:

• Reduce for a list of complex numbers, and for the
associative operator: (a, b)→ a + b + a ∗ b,

• Reduce for multiplication of a series of matrices,
In the first Reduce experiment, the argument list contains
simple Complex numbers (the complex numbers implemen-
tation is taken from The Apache Commons Mathematics
Library [19]), and the associative operator is defined by the
formula (a, b) → a + b + a ∗ b. The reason for choosing
this operator is based on the fact that we tried to increase
the computational work executed at each step, and also to
avoid the dynamic optimizations of JVM. Figure 3 shows
the PowerList.Reduce performance for powerlists of size
2n, n = 15, 24 split into 2p sublists, p = 3, 9. It can
be seen that the best time performance while increasing
the data size (2n) was obtained for those values of p for
which 2p is closest to the number of physical computer
cores involved in the computation (i.e. p = 4 or p = 5
for our 24 physical cores test system). Figure 4 shows
the comparison between PowerList.Reduce, ParallelStreams
reduce, and sequential BasicList computations. We can see
in this figure that the PowerList.Reduce implementation
achieves approximately the same performance as the Java
ParallelStreams implementation, and even better for n = 24.

For the second Reduce experiment we generated pow-
erlists of random 10× 10 matrices of 64 bits floating point
numbers, and we have used the matrix and its correspond-
ing multiplication operation as also implemented by The
Apache Commons Mathematics Library (which is a simple
implementation of O(n3) time-complexity). Figures 5 and
6 show the PowerList Reduce performance for a powerlist
of size 2n, n = 8, 20 split into 2p sublists, p = 3, 9, and the
comparison with the similar computation with PowerStreams
and BasicLists. We obtained in these two figures similar
results as those obtained in figures 3 and 4.

On the sublists, the sequential algorithm defined for
BasicList is used. BasicList implementation for reducing
was based in this case on a simple iteration of the elements.
This sequential variant on BasicList is faster, but equiva-
lent to the sequential powerlist variant, which is based on

Figure 3: Reduce with complex associative op-
erator using PowerLists that is split into 2p

sublists, each having 2n−p elements.

Figure 4: Complex associative operator:
PowerList.Reduce vs. ParallelStreams reduce

vs. Sequential – BasicList.

Figure 5: PowerList.Reduce with matrix multi-
plication using PowerLists that is split into 2p

sublists, each having 2n−p elements.

Figure 6: Matrix multiplication:
PowerList.Reduce vs. ParallelStreams reduce

vs. Sequential – BasicList.

Figure 7: Execution time for FFT using
PowerLists with 2p sublists for polynomials of
different orders (2n)

Figure 8: Execution time for Fourier Transform
for polynomials of different orders (2n)

recursion.
The best choices for p depends of the value of n. For the

first experiment with lists of complex numbers, for small
values of p, some small anomalies can be noticed for n =
20 and n = 21 – they are due to specific automatic JVM
improvements of the code. In average, for both experiments,
the case of p = 5 could be considered the best; 25 = 32
which is closest to the number of physical machine cores.

From these experiments we may conclude that the perfor-
mance of PowerList Reduce is similar to that obtained with
ParallelStreams.

2) Fast-Fourier Transform: As we have emphasised
in section V-A, Fast-Fourier Transform can be ex-
pressed in a very easy and elegant way using pow-
erlists. So, sequential implementation is also based on
PowerLists but in this case a simple computation without a
ParallelExecutionFunction call is used.

A corresponding algorithm on BasicLists implements a
simple, non-fast Fourier Transform, and so less efficient.
This is why, in this case, on the sublists we have applied
the powerlists function too, but without parallel execution.

Figure 7 shows the PowerList FFT performance for
a powerlist of size 2n, n = 16, 21 split into 2p sublists,
p = 4, 20. More specifically, it shows how the total size of
the data set (i.e. 2n) and the length of a sublist (i.e. 2n−p;
remember that the powerlist with 2n elements is divided into
2p sublists) affect the performance of the computation. The

best running times were obtained when the length of the
sublist, 2n−p, is closest to the number of physical cores in
the system (i.e. 24 physical cores). For example, for the
n = 21 line, the lowest execution time is obtained for
p = 16, the length of a sublist being 2n−p = 32. Similarly,
for the n = 20 line, the lowest execution time is obtained
for p = 16, the length of a sublist being 2n−p = 16. For
the n = 19 line, the lowest execution time is obtained for
p = 15, the length of a sublist being 2n−p = 16. 16 and
32 are the powers of 2 that are closest to 24, the number of
physical cores in the system. The same happens for the other
values of n and p depicted in this figure. In Figure 8 we
emphasise a comparison between different variants of FFT
programs: a parallel, powerlist based algorithm on the initial
list; a parallel, powerlist based algorithm on a partitioned
list with 2p sublists, p = n−4 (considering the results from
Figure 7 that show that best performance is obtained when
n−p is 4 or 5), and two sequential programs: a fast recursive
one based on powerlists, and a non-recursive implementation
on BasicLists.

VI. CONCLUSION AND FUTURE WORK

We have presented how programs defined on powerlists
could be transformed into real code in the Java programming
language. Examples for Reduce and Fast-Fourier Transform
have been presented and the experiments done for them show
that the framework is practical, performant, and allow simple
development of efficient parallel programs.

The experiments shows that for the reduce operation the
best time is obtained when we use a list of sublists, and on
the sublists a simple sequential algorithm is used. For FFT a
very good variant is that when we let the parallel execution
to go until creating tasks with simple elements. A possible
explanation could be due to the particular implementation
of ForkJoinPool executor, which has been used.

The comparison, for reduce operation, with Java parallel
streams emphasises that the performance of our framework
is at least equal to the performance of parallel streams,
while it comes with the benefits brought by the possibility
of using beside the classical concatenation operator, the
zip operator. Using in combination these two operators –
tie and zip the user can define very simple definitions of
the parallel programs based on recursive functions. The
framework design is based on design patterns that provide
easy definition of the new concrete programs, but also the
possibility to extend the framework to accept other similar
data structures and also other execution models. By applying
separation of concerns principle, we achieve a framework
that separates a data-structure behaviour of its storage, and
also separates the execution of a function by its definition.
We plan to extend our framework such that to include also
PLists programs, and so introducing the possibility to define
multiways divide & conquer programs. Also, the execution
could be extended to distributed memory systems.

REFERENCES

[1] K. Achatz and W. Schulte, “Architecture independent massive
parallelization of divide-and-conquer algorithms,” Fakultaet
fuer Informatik, Universitaet Ulm, 1995.

[2] M. Aldinucci, M. Danelutto, and P. Teti, “An advanced
environment supporting structured parallel programming in
Java,” Future Generation Computer Systems, vol. 19, pp. 611–
626, 2003.

[3] A. S. Anand and R. K. Shyamasundarn, “Scaling computation
on GPUs using powerlists,” in Proceedings of the 22nd
International Conference on High Performance Computing
Workshops (HiPCW). Oakland: IEEE, 2015, pp. 34–43.

[4] R. Bird, “An introduction to the theory of lists,” in Logic of
Programming and Calculi of Discrete Design, M. Broy, Ed.
Springer, 1987, pp. 5–42.

[5] M. Cole, Algorithmic Skeletons: Structured Management of
Parallel Computation. MIT Press, 1989.

[6] D. Caromel and M. Leyton, “A transparent non-invasive file
data model for algorithmic skeletons,” in Parallel and Dis-
tributed Processing, 2008. IPDPS 2008. IEEE International
Symposium on, 2008, pp. 1–10.

[7] P. Ciechanowicz and H. Kuchen, “Enhancing Muesli’s Data
Parallel Skeletons for Multi-core Computer Architectures,” in
IEEE International Conference on High Performance Com-
puting and Communications (HPCC), 2010, pp. 108–113.

[8] J. W.Cooley and J. W. Tukey, “An algorithm for the ma-
chine calculation of complex fourier series,” Math. Comput.,
vol. 19, pp. 297–301, 1965.

[9] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Pro-
cessing on Large Clusters,” in OSDI. USENIX Association,
2004, pp. 137–150.

[10] U. Dastgeer and C. W. Kessler, “Smart containers and
skeleton programming for gpu-based systems,” International
Journal of Parallel Programming, vol. 44, no. 3, pp. 506–530,
2016.

[11] S. Ernsting and H. Kuchen, “Algorithmic skeletons for
multi-core, multi-GPU systems and clusters,” Int. J. High
Perform. Comput. Netw., vol. 7, no. 2, pp. 129–138, Apr.
2012. [Online]. Available: http://dx.doi.org/10.1504/IJHPCN.
2012.046370

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
patterns: elements of reusable object-oriented software.
Boston, MA, USA: Addison-Wesley, 1995.

[13] J. Kornerup, “Data structures for parallel recursion,” Ph.D.
dissertation, University of Texas, 1997.

[14] M. Leyton and J. M. Piquer, “Skandium: Multi-core
Programming with Algorithmic Skeletons,” in PDP. IEEE,
2010, pp. 289–296.

[15] J. Misra, “Powerlist: A structure for parallel recursion,” ACM
Trans. Program. Lang. Syst., vol. 16, no. 6, pp. 1737–1767,
November 1994.

[16] V. Niculescu, “Data-Distributions in PowerList Theory,” in
Theoretical Aspects of Computing (ICTAC), ser. LNCS, C. B.
Jones, Z. Liu, and J. Woodcock, Eds., vol. 4711. Springer,
2007, pp. 396–409.

[17] V. Niculescu, “PARES – A Model for Parallel Recursive
Programs,” Romanian Journal of Information Science and
Technology (ROMJIST), vol. 14, no. 2, pp. 159–182, 2011.

http://dx.doi.org/10.1504/IJHPCN.2012.046370
http://dx.doi.org/10.1504/IJHPCN.2012.046370

[18] D. Skillicorn and D. Talia, “Models and languages for parallel
computation,” Computing Surveys, vol. 30, no. 2, pp. 123–
169, June 1998.

[19] “Commons Math – The Apache Commons Mathematics
Library,” accessed: 2017-05-10. [Online]. Available: http:
//commons.apache.org/proper/commons-math/

[20] “The JavaTM Tutorials: Fork/Join,” accessed: 2017-05-10.
[Online]. Available: https://docs.oracle.com/javase/tutorial/
essential/concurrency/forkjoin.html

http://commons.apache.org/proper/commons-math/
http://commons.apache.org/proper/commons-math/
https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html

	Introduction
	Related work
	Powerlist Theory
	Powerlists Framework in Java
	The Powerlist Data-Structure in Java
	Framework Design
	Distributed Lists

	Applications and Experiments
	Applications
	Experiments

	Conclusion and Future Work
	References

