
A community driven approach for click bait
reporting

Darius Bufnea
Department of Computer Science

Babeş-Bolyai University
Cluj-Napoca, Romania

bufny@cs.ubbcluj.ro

Diana Şotropa
Department of Computer Science

Babeş-Bolyai University
Cluj-Napoca, Romania
diana.halita@ubbcluj.ro

©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Abstract—Click baits are primarily used by online content
publishers. Their purpose is to allure readers to click on a
link and subsequently visit other articles by the same publisher,
in order to increase page views and ad revenue. Most of the
time click baits are used for pointing to low quality articles or
thin content. The user falls into the publishers’ trap due to a
misleading or incomplete title or content exaggeration. A bait
article link might also appear on social network shares or within
the search engines result page, the presence of such a link in
3rd party web sites having a negative impact on user experience.
Hence, it is important to properly identify and report them.

In this paper we present an academic research browser
extension meant to be used in the click bait reporting process.
The extension offers to users the possibility to explicitly report a
click bait, a series of details about the bait link being extracted
and logged for further analysis. Based on all the gathered data,
our goal is to obtain a community driven click bait samples
database that may subsequently be used as an input for different
supervised learning algorithms for click bait detection.

Keywords-click bait, information retrieval, web user behavior,
community driven database, fake news, SERP results, academic
research plug-in

I. INTRODUCTION

The term click bait has its origins in old media, in television
or radio shows, when before a commercial, the audience was
urged to ”Do not touch the dial!” (i.e. the audience will
not believe what happens next ... after the break). Later,
click bait was formally defined, in Oxford dictionary1, as
content presented in online media, whose main purpose is to
attract attention and encourage visitors to click on a link to a
particular web page. While this description covers the function
of click bait, it doesn’t fully differentiate it from genuine high-
quality pages, mainly due to a good click-to-rate. Among their
similarities, there are also dissimilarities.

While for a genuine website the content of an article gen-
erally justifies the headline, click baits tend to put more effort
into attracting the click than in creating valuable content. Since
their beginning, click baits exploited the audience’s curiosity.
On the web, click baits articles present irresistible headlines
and eye-catching thumbnail pictures which are teasing the
readers with a hint of what the article is about, without giving

1https://en.oxforddictionaries.com/definition/clickbait

all the answers away. Usually, these strategies generate enough
curiosity among the readers such that they become compelled
to click on the link to fill the knowledge gap or to forward
the material over online social networks in order to monetize
the landing page.

Together with the expansion of the Internet and the migra-
tion of users towards online media from classical advertising
platforms (newspaper, radio and television), content publishers
increased their effort to maximize income, page views and
ad revenue. In classical platforms, there was no or little
interaction between content publishers and content consumers.
By contrast, in online media, content publishers are able
to interact with content consumers by collecting real time
feedback about consumers’ behaviour and about the most
successful methods to trap and engage consumers and convert
their visits in revenue. Among such methods we can mention:
thin and low quality content split over multiple pages, click
bait links between websites/domains under the same affiliation,
aggressive and grey search engine optimization techniques,
aggressive social media presence and advertising. In front of
this, the content consumer is most of the time single and
disarmed. In this context, 3rd party big actors on the WWW
scene such as search engines or social networks should do
more to protect the web consumer, but they failed in doing
so, mainly due to their duplicity: they also serve as advertising
platforms or ads brokers for content publishers. Only recently,
being under fire by the public opinion, some search engines
and social platforms started to take actions in some aspects
such as fake news spreading.

Click bait links are placed in general by content publishers
between sites under the same affiliation, their main goal
being to keep the web visitor trapped as much as possible.
Following such a bait link usually has a negative impact
on user experience. But this unhappy and time consuming
user experience can also be propagated outside a publisher’s
network to a 3rd party web site. A catchy but misleading
or incomplete title can easily be used as a text link by a
search engine in SERP2 or by a social network in a news feed.
Although not directly affiliated with the bait’s creator (i.e. the
content publisher), the source of the bait in these situations

2Search Engine Results Page



can be considered the search engine or the social network.
This is another reason why the aforementioned should step in
and take actions against this type of links and publishers who
use them.

In this paper we present an academic research browser
extension meant to be used in the click bait reporting process.
The extension offers users the possibility to explicitly report
a click bait, a series of details about the bait link being
extracted and logged for further analysis. Based on all the
gathered data, our goal is to obtain a community driven click
bait samples database that may subsequently be used as an
input for different supervised learning algorithms for click bait
detection. At the same time, our goal is to advert to the web
and research communities about this type of practice and to
urge actions against it.

The rest of the paper is organized as follows. Section II
presents different previous researches related to click bait
identification, with the main focus on the data samples used
in these researches. Section III presents our developed plug-
in’s architecture, while section IV describes the click bait
features logged in our samples database. Section V and VI
discuss the advantages and disadvantages of implicit report
vs. explicit report of a click bait, taking into account how non
bait link data could also be provisioned to the samples database
(necessary for further analysis using supervised learning based
methods). At the end, we present our conclusions and some
further research directions.

II. PREVIOUS WORK

There have been extensive studies on identifying click baits,
most of them being based on the machine learning approach.
Biyani et all describe in [1] a machine-learning model to detect
click baits by using a testing and a training dataset containing
news articles collected during late 2014 and 2015. There are
1349 click bait and 2724 non click bait web pages coming
from different news sites (such as the Huffington Post, New
York Times, CBS, Associated Press, Forbes, etc. ) whose pages
surfaced on the Yahoo homepage. The articles covered differ-
ent domains such as politics, sports, entertainment, science
and finance. The authors defined 8 categories based on the
relation between the title and the content on the landing page.
All the classified web pages should fall in one of the following
categories:

• Exaggeration: Title exaggerating the content on the land-
ing page;

• Teasing: Omission of details from title to build suspense;
• Inflammatory: Either phrasing or use of inappropri-

ate/vulgar words;
• Formatting: Overuse of capitalization/punctuation;
• Graphic: Subject matter that is salacious or disturbing or

unbelievable;
• Bait-and-switch: The thing promised/implied from the

title is not on the landing page: it requires additional
clicks or just missing;

• Ambiguous: Title unclear or confusing to spur curiosity;
• Wrong: Just plain incorrect article: factually wrong.

In order to obtain their dataset, the authors of [2] focused
on Twitter as a social media platform used by many content
publishers. Twitter platform is usually used for publishing
links to different websites, by specifying a short message
(maximum 140 characters), the actual link and a picture. They
collected tweets that included links from the top 20 most
prolific publishers on Twitter. From tweets published in week
24 of 2015 they randomly sampled 150 tweets per publisher
for a total of 2992 tweets (one publisher sent only 142 tweets
in that time). There were three assessors who rated each tweet
as being click bait or not.

Lockwood presented in paper [3] a dataset of 2136 articles,
created as a spreadsheet of every title of every article published
in Frontiers in Psychology journals throughout 2013 and 2014.
In order to classify click baits, each article was analyzed by
three raters by using only subjective factors regarding the title,
such as: positive framing (”I know click bait when I see it”),
phrase arousal, wordplay potential and the possibility of being
a resource for social networks.

During 2017 there was a competition called Clickbait Chal-
lenge, which had the purpose of encouraging the development
of detection technology for click bait in social media, by
developing a classifier that rates how click baiting a social
media post is. They propose in [4] a more general approach
in which one may consider the content analysis based on
natural language processing and image analysis. During the
competition there were released three datasets which contain
posts from Twitter, two of them being used for training and
testing, while the third one was used for evaluating the models
of the contestants. The collection of data from the first dataset
is presented in [2] and comprises 2,495 posts: 762 click baits
and 1,697 non click baits. The data is collected from each
of the top 20 most prolific publishers on Twitter. The second
dataset is presented in [5] and contains 19,538 posts with 4,761
click baits and 14,777 non click baits. The dataset provides
JSON-Objects containing the text and images of the analyzed
post as well as the main content of the linked target web page.
Each dataset contains the following:

• a line delimited JSON file which contains the information
extracted for a specific post and its target article, such
as: id, timestamp, the short message, the image which is
posted in addition to the short message, the title of the
article, the description from the meta tags of the article,
the keywords from the meta tags of the article and the
content of the article).

• a line delimited JSON file which contains people eval-
uation considering a ”clickbaitness” score. For every
tweet, there were five individual evaluators that had the
possibility to assign the tweet to one of the following
category: not click baiting (0.0), slightly click baiting
(0.33), considerably click baiting (0.66) and heavily click
baiting (1.0).

• media: A folder that contains all the images posted in
addition to the short message.

In order to help the users deal with click baits across



different websites, there were added in Chrome Store some
plug-ins that promise to automatically detect click baits and
to notify users about low quality websites. From analyzing
Chrome Store statistics follows that most of them are not
used by a large mass of users and some of them have
negative reviews related to click baits detection. Their main
disadvantage is that they usually target social media platforms
(such as Facebook, Youtube, Twitter) as the main source of
links to click baits. Their purpose is to notify users about
the possible fake news presented on the platforms or to
remove them automatically. Another disadvantage is that their
efficiency is not scientifically proven.

Chakraborty et all present in [6] an extensive dataset which
contains both click bait and non click bait web pages. They
built their dataset from two different sources: 18513 articles
from Wikinews, for non click baits and 8069 articles man-
ually chosen from different domains (such as ”BuzzFeed”,
”Upworthy”, ”ViralNova”, ”Scoopwhoop”, and ”ViralStories”)
for click baits. Then, they built a Chrome plug-in, called ’Stop
Clickbait’ which warns the users about the existence of click
baits in different web pages and provides the facility to block
certain click baits whereby it automatically block similar click
baits in future visits. One of the biggest disadvantages of this
plug-in is that it is too invasive regarding user privacy, due
to the fact that it scans and saves all the anchor elements
from every analyzed webpage. This is also the reason why we
consider that it is not scalable.

III. PLUG-IN ARCHITECTURE

We chose Google Chrome web browser for implementing
our plug-in. This decision is mainly driven by the fact that
Google Chrome browser has the largest user community in
general, and, at the same time, is by far the most popular
web browser within our faculty’s students in particular -
we involved our students both in testing the plug-in in its
development phase, and also in the click bait reporting process.
The plug-in consists of two main components: the plug-in
itself written in JavaScript programming language that runs
in browser space and a back-end web service written in PHP
hosted by our university’s servers. These two components
communicate over https. The back-end service is responsible
for generating unique API keys used by the bait reporters (a
bait reporter being a user having an instance of the plug-
in installed in his/her browser) and also for storing the bait
reports in a back-end database. The plug-in architecture is
depicted in Figure 1.

A. The back-end service

The back-end service provides two endpoints which are used
in asynchronous calls by the front-end part of the plug-in:

• getNewId: this endpoint returns a unique SHA256 API
key used by a bait reporter in any future reports. In
regard to security constraints, this endpoint may be called
(i.e. returns a valid API key) no more than once every
5 minutes from a specific IP address. The getNewId

endpoint is usually called at the plug-in initialization,

the API key being stored by the plug-in in the browser’s
local storage. If the plug-in fails to obtain a valid API
key, it will retry to call this endpoint next time when the
user starts his/her browser. By setting the 5 minutes limit
per IP address for requesting a new API key, we tried
to avoid the situation when a malicious reporter means
to pollute the bait database with noise (false non bait
reports). This strategy can be used in conjunction with
other techniques such as the mod evasive Apache plug-in
or some connection limits set via the operating system’s
firewall. Although, all these techniques cannot guarantee
the absence of false non bait reports, they ease the process
of cleaning the database of such reports.

• report: this endpoint is called by a reporter to actually
store a bait report. The reported and logged features are
presented in section IV. A valid API key is required for
a successful report.

Fig. 1. Click bait report plug-in’s architecture

B. Plug-in’s front-end

The plug-in itself is written in JavaScript, its architecture
following the Google Chrome’s API programming and security
guidance. It consists of three modules:

• a content script called page.js that interacts with the
user’s visited web page. This content script adds event
listeners for different events that lead to new links being
opened in the same tab or a new one: click (for catching
regular left mouse clicks), mousedown (for catching
middle mouse clicks, sometimes called scroll clicks),
or contextmenu (for catching right clicks or links being
opened in a new tab through the context menu). All these
listeners send messages through the Chrome runtime,
containing the attributes of a followed link to the second
component of our plug-in, the background script.

• a background script called background.js. This mod-
ule stays at the very heart of our plug-in. It is responsible
for plug-in initialization, initial API key retrieval, persis-
tence, receiving messages about accessed links from the
above content script and storing information about these
links.

• a popup page together with popup.js script. This mod-
ule is responsible for user interaction with the browser
when reporting a click bait. It retrieves all relevant
attributes as stored by the above background script about



the current opened tab such as: how this tab was opened,
its URL, which link was used to open this tab and the
referrer URL of the current tab. All these features are then
logged to the back-end service by calling the report

endpoint.

C. Batch processing and filling in the bait database with
additional data

Although not part of the plug-in itself and neither being
necessary on the back-end for its functionality, we provide
an additional batch processing tool that helps filling in the
bait database with additional data. This tool is aimed to be
run at a later time over the bait database entries and enhance
them with: full absolute content of the bait destination URL,
its excerpt, content description, languages of the source and
destination URLs, the image or other media used by the bait
link. All these features are extremely important in a further
click bait classification but we do not retrieve and store them
at report time for two reasons: it will increase the plug-
in complexity and at the same time we express copyright
infringement concerns in public releasing a click bait database
containing these features (concerns mentioned in subsection
IV-A).

IV. LOGGED FEATURES

The following features are reported by the plug-in and
logged by the back-end service:

• sourceURL: the source URL of the bait;
• destinationURL: the destination URL of the bait;
• linkText: the text that appears within the bait link (i.e.

the innerHTML of the anchor);
• linkMedia: whatever image or other media that may

also link to the bait URL. In order to increase the bait
impact, a text link is usually accompanied by an image
within the same link (the same anchor tag) or as a
different link that points to the same destination URL.
In fact, the user might click on either the text or the
media image, the browser’s behaviour (and our plug-in
behaviour too) being the same. In either case, we extract,
report and logged both the text and the media. While the
link’s text is suitable for further text analytics, the media
might also be suitable for use in machine learning based
frameworks such as TensorFlow in order to detect click
bait based on a media link (and also for associating the
bait text with the bait media).

• destinationTitle: the destination URL’s title;
• isClickBait: an always true feature indicating that

the report is a click bait. This feature assures a future
compatibility for allowing non bait reports (that will have
this attribute set to false).

• type: how the bait link was opened: left click, scroll
(middle) click, right click or context menu ”Open in a
new tab”. This feature is not directly used, it is rather
logged for debugging purposes.

• pluginVersion: the plug-in version;
• openTime: the time when the bait URL was opened;

• reportTime: the report time of the bait URL. This
timestamp together with the previous one will be used
in order to detect how long it took the user to detect
the bait link’s misleading text (or media) relative to the
destination URL’s content. For a click bait report, the user
usually reacts in a few seconds.

• reporterId: a unique API key associated on the back-
end with a bait reporter id. This key will not be used to
identify in any way the reporter, rather it is used due
to security concerns in order to prevent and limit the
pollution of our baits database with fake reports. Other
user privacy concerns and security related problems are
also discussed throughout the paper.

One interesting discussion is about the click bait source
domain or URL: should it be considered as a click bait feature
or not? There are certain situations when a web visitor reaches
a site that is part of an affiliated network of websites, or is
under the same administration as the website the bait link is
pointing to. Site owners use such methods in order to increase
page and ad views, the user being almost trapped in this
scheme of cross links that usually points to low quality or
thin content. At a glance, most of the bait reports logged until
now fall in this category, but further analysis is required in
this regard.

On the other hand, there are situations when a bait article
that uses an extremely catchy title is being indexed by search
engines. A user may obtain in the search engine result page
(i.e. SERP) a link to this article, the link text provided in the
SERP being exactly (or build upon) the article’s catchy title.
Our plug-in will report the search engine as the source of
the bait, but whether the search engine is responsible for the
bait or not, or at least partially, remains an open discussion.
A similar case is when the bait article is shared on a social
network: the plug-in will log the social network as the source
of the bait.

Previously provided click bait data samples [2], [3], [5]
where taken exclusively from a social network (i.e. Twitter).
The source of the bait not being a considered feature, all baits
had the same source, i.e. the social network. Being aware of
the source of the bait, our plug-in is also logging the source
URL of the bait, but, as stated above, whether a search engine
or a social network is responsible for the bait and if the source
domain of a bait should be used as a feature in a future A.I
analysis, remains an open and disputable question. However,
the authors opinion is that, both these categories of traffic
sources (i.e. search engines and social networks), as dominant
and big actors on the WWW scene, should be more aware
and responsible in providing links that might fall in the bait
category.

A. Post log batch processing retrieved features

A series of features of a click bait may be retrieved at a
later time through batch processing. Such features include:

• the bait language: this consists in the language of the
text link and the destination URL’s content. Although this
language can be detected in some situation client side at



report time, we suggest that a back-end detection is more
suitable, subsequent to report time. The language can be
detected with the help of the html tag lang attribute (but
there are frequent situations when this attribute is not
properly set) or by looking at the Top Level Domain of
the source and destination domains. Another approach is
to back-end detect the bait language by calling a 3rd party
API which provides languages detection services.

• destination URL’s content: this content is absolutely nec-
essary for any future text analytics that would imply click
bait detection, the quality of this content being the one
who delude the user. We are not logging the destination
URL content at report time mainly for two reasons:

– we do not want to provide the entire (i.e. full) content
of the destination URL in any public release of the
click bait database, due to copyright concerns (very
probably this content is copyrighted by the owner
of the domain who published that content). Instead,
we suggest to the interested researchers to harvest
this content on their own at a later time. Another
approach would be to log in the bait database only
a limited length abstract of the content, an excerpt
or the content description as it appears in the header
of the html files. However, this later approach would
reduce the quality of any further analysis. It would be
useful for the click bait database to also contain any
image (media) that might appear within the bait link
(there are situations when users click on the bait link
being impressed by the graphical image rather than
by the text link itself). However, the same copyright
concerns mentioned above stand for these images
(media) too, so we do not include the media itself in
the click bait database - rather we will store only the
link to these images, leaving to other researchers the
possibility for retrieving them on their own. Another
possibility would be to store in the bait database the
thumbnail or the image at a reduced resolution in
order to avoid copyright issues.

– security concerns related to any private information
that may be displayed to the user at the destination
URL if the user is logged in or have any form of
a session started. Accessing the destination URL at
a later time, assures private information free content
(any session variables used to personalize the content
of the destination URL at report time will not be
available at a ulterior content retrieval time).

V. IMPLICIT OR EXPLICIT REPORT OF A CLICK BAIT

A click bait report can be trigger either in an explicit or an
implicit way.

1) In an explicit way, the user triggers the submission
himself/herself by clicking on the report icon of our
plug-in when he or she is unsatisfied by the reached
content following a link. This is the default and the
desired behaviour of our plug-in.

2) An implicit report on the other hand can be performed
automatically in the background by the plug-in, if the
behaviour of the user suggests so. A simple heuristic
for detecting such behaviour is the following one: the
user clicks on a link that opens in a new tab a web
page hosted on an external domain (i.e. an external
link). After a second or so, the user closes this new tab
(Google Analytics calls this behaviour ”bounce”), most
probably the user being unsatisfied by the quality of
the reached content. All these actions/events (tab open-
ing, tab closing, timestamp measurements) are already
implemented in the current version of the plug-in, an
implicit report feature for the plug-in being extremely
easy to implement. Observation: instead of opening the
external link in a new tab and closing this newly open
tab within a few seconds, an external link can be opened
through a click bait in the same tab. In this scenario the
user would rather push the back button of its browser
within a few seconds since the last Tab Update event,
the general principle of the implicit detection of a click
bait being the same.

However, at this moment, we will not rely on the implicit
report approach mainly due to user privacy concerns. A future
version of the plug-in might have a user configurable option,
which will allow, if explicitly enabled by the user, implicit
click bait reports in user behaviour scenarios as the one
described above (i.e. the user ”bounces”, accessing one single
webpage of the external domain for a few seconds).

VI. IMPLICIT OR EXPLICIT REPORT OF A NON CLICK BAIT

The developed plug-in could also be used to populate a
back-end database with non click bait entries. In order for our
collected entries to be suitable for a further supervised learning
based analysis, an entry in our database should contain an
attribute that will allow training of a classification algorithm
that will map click samples into bait and non bait categories.

Similar to a click bait report, a non click bait report entry
can be logged in two different ways:

1) an explicit report of a non click bait. Unfortunately, the
cases when a satisfied user will offer such a feedback
will be rare. We can think to a web visitor as to a content
consumer, a satisfied consumer (i.e. client) will rarely
offered feedback of his/her positive experience. Rather,
the feedback will come from unsatisfied consumers (in
fact this is what we will rely on to gather click baits
reports). Another approach is to prompt user when a non
click bait user behaviour is detected (see below). But,
this could be considered an annoying intervention and
we want our plug-in to be as less intrusive as possible.
Additionally, a non click bait behaviour could only be
detected after some time has passed since the click in
question, the user performing meanwhile some other
actions following that click. It will be useless and rather
confusing to prompt the user for feedback related to a
link he or she followed some time ago.



2) an implicit report of a non click bait. As similar to
the implicit report of a click bait, such a feature could
be used to automatically submit non click bait reports.
While the automatically detection of a click bait involved
the closing of a browser tab soon after opening, the
detection of a non click bait relies upon an opposite
heuristic: the user is ”happy” about the reached content,
spending more time on the newly open external link,
consuming and scrolling the content, and eventually
accessing more than one page of the external website.

Due to the same user privacy concerns, we will not rely
on the implicit report of a non click bait either. Still, a future
version of our plug-in might implicitly submit non click bait
reports if explicitly enabled by the user.

In order to populate the data samples with non click bait
entries as required by a supervised learning based algorithm,
we will rely for now on a different approach: we will detect
and collect such entries from an HTTP proxy server’s logs.
The proxy logs are obtained from the proxy server of our
university which is running Squid, the most popular proxy
server in the Internet [7]. The detection and extraction of non
click bait entries from the Squid logs is currently a work in
progress that is conducted as a graduation thesis research by
one of our students.

VII. CONCLUSIONS

We have presented in this paper an academic research plug-
in meant to be used in the click bait reporting process. The
main scope of this paper was not to advance or evaluate any
click bait detection methods or algorithms, we rather focus
in providing to the research community a click bait samples
database (and a way of building it). Previous sample databases
provided by [2], [3], [5] were built exclusively with bait
samples collected from a social network (Twitter in their case).
By logging also the source of the baits and also considering
sources other than social networks (3rd party web sites, search
engines), our plug-in and the samples database build upon it,
offers a serious advantage over the previous work. Another
advantage is that the click bait samples database is community
driven (and not under the influence of any of the big actors
on the WWW scene). Moreover, the batch processing tool,
delivered together with the plug-in, fills the bait database
with additional data such as: the content language, destination
URL’s content, excerpt, content description and image used in
the bait link. This additional data can play a fundamental role
in any further click bait detection analysis, with an important
focus on the content language which can be used to localize
any detection methods to a specific language.

For future work, authors plan to be more involved in the
click bait research community, with the intention of imple-
menting and enhancing a supervised learning based algorithm
for click bait detection on their samples database built upon
the current research.

VIII. ACKNOWLEDGMENTS

The authors of this paper would like to thank 2nd year
students of the Faculty of Mathematics and Computer Science
of Babeş-Bolyai University Cluj-Napoca for their involvement
in testing the plug-in in its development phase and in the click
bait reporting process.

REFERENCES

[1] P. Biyani, K. Tsioutsiouliklis, and J. Blackmer, “”8 amazing secrets for
getting more clicks”: Detecting clickbaits in news streams using article
informality.” in AAAI, 2016, pp. 94–100.

[2] M. Potthast, S. Köpsel, B. Stein, and M. Hagen, “Clickbait detection,”
in European Conference on Information Retrieval. Springer, 2016, pp.
810–817.

[3] G. Lockwood, “Academic clickbait: Articles with positively-framed titles,
interesting phrasing, and no wordplay get more attention online,” The
Winnower, vol. 3, 2016.

[4] “Clickbait challenge 2017,” https://www.clickbait-challenge.org/, Last
visited on 20.05.2018.

[5] M. Potthast, T. Gollub, K. Komlossy, S. Schuster, M. Wiegmann,
E. Garces, M. Hagen, and B. Stein, “Crowdsourcing a large corpus of
clickbait on twitter,” to appear, 2017.

[6] A. Chakraborty, B. Paranjape, S. Kakarla, and N. Ganguly, “Stop click-
bait: Detecting and preventing clickbaits in online news media,” in 2016
IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining (ASONAM). IEEE, 2016, pp. 9–16.

[7] “Squid: Optimising web delivery,” http://www.squid-cache.org/, Last vis-
ited on 09.05.2018.


