
Duplicate Transfer Problem inside a Proxy’s Cache

Darius-Vasile Bufnea
Department of Computer Science

“Babeş-Bolyai” University
Mihail Kogalniceanu nr. 1,

Cluj-Napoca, Romania
bufny@cs.ubbcluj.ro

Florian Mircea Boian
florin@cs.ubbcluj.ro

Abstract

This paper presents an overview of the current web client
- web proxy - web server mechanism and takes a deep look
into one of its main disadvantages: the replication, in the
proxy’s cache, of web objects having different URL but
the same content. This problem is known as the “Dupli-
cate Transfer” problem and is mainly caused by the current
mode of indexing web objects based on their URL, which is
used as a primary key in the cache repository. We present
in this paper a statistical analysis based on real traffic mea-
surements, which shows that more than 10% of a proxy’s
cache consists of replicated objects, grabbed from the In-
ternet in a useless manner and stored redundantly at least
twice. These results urge the development of a scalable real-
life solution to the duplicate transfer problem: some solu-
tions have been previously proposed, but never deployed on
a large scale in Internet.

1. Introduction

The dominant traffic types in the current Internet fall in
two main categories that take approximately equal shares
of the global Internet traffic: the web traffic and the peer to
peer (P2P) traffic. Although the latest one has taken a se-
rious advantage beginning with the late 90s, more recently
the web traffic also claimed its share and today it exceeds
any other form of Internet traffic, including P2P traffic. This
come-back situation is mainly due to the following two as-
pects:

a) The legal battle against the illegal aspect of sharing
multimedia content files transported over peer to peer
protocols;

b) The migration of software development from desktop
and standalone applications towards web-based appli-
cations.

Considering the main share of the web traffic, many en-
terprise networks currently implement various mechanisms
to control and reduce this type of traffic. Usually, in an
enterprise network having hundreds or thousands of clients
(enterprise users), these clients access the Internet through
an intermediary (middleware) server called a proxy server,
such as Squid [2]. This architecture presents a series of ad-
vantages, both from the enterprise and the user’s perspec-
tive. From the enterprise’s perspective a web-proxy server
usage can reduce the public IP space required to address
the clients - these clients can be addressed using private IP
addresses [5]. Also, a proxy server is generally extremely
configurable and allows definition of complex access lists
(ACL) that can filter the web traffic based on different char-
acteristics such as: client address, URL, protocol, content
type or date and time.

From the client’s perspective, a web client that accesses
the Internet through a corporate proxy server can benefit
from the web objects already in cache that other clients have
previously requested. This will result in fast object deliv-
ery to the client (i.e. higher navigation speed), less traffic
from the Internet towards the corporate network (i.e. less
consumed bandwidth, higher bandwidth available to other
clients/applications) and lower web server load (as less ob-
jects are to be served to clients).

This already existing proxy-based web architecture
pleases everybody: from the corporate user to the corpo-
rate staff and web servers’ maintainers. However, there are
certain situations, very often encountered, when the proxy
server will retrieve from the Internet an already in cache
object. This is caused by the fact that an object is identi-
fied by its URL (Uniform Resource Locator) rather than by
its content. We will reveal later in this paper such a situa-
tion encountered in our experience of operating the Campus
Intranet.

This paper advocates and urges the introduction of a new
web-based mechanism for serving and indexing web objects
by their content, instead of the current URL location based

method. This new serving mechanism must be implemented
in both servers implied in the web delivery process: the web
server and the proxy server. This mechanism is transparent
to the end-user - the only client side aspect of the proposed
mechanism is a faster delivery of certain web objects. There
are no modifications or additions necessary on the client
side, a fact that might ensure an easier and faster deploy-
ment process of the presented mechanism.

This paper is structured as follows. First, we will present
the Duplicate Transfer Problem as part of a working sce-
nario often encountered in today’s enterprise networks. The
disadvantages of the current state of facts in the browser
- proxy server - web server architecture will be also dis-
cussed, revealing the urgent need to adapt this architecture
to a new model where objects are indexed by their content.
Proposed mechanisms for achieving this model will be de-
scribed in the next section of the paper. We will continue by
presenting a statistical analysis in order to demonstrate the
impact and benefits of the new model. The paper ends with
conclusions and future work.

2. Duplicate Transfer Problem

Let C = {C1, C2, . . . , Cn} be a set of web clients lo-
cated in the same LAN or in the same enterprise Intranet.
These clients access web resources located in the Internet
through a corporate HTTP proxy server. We will denote
this proxy server by S. An object O located at URLO re-
quested by a client Ci, object that has not been previously
requested by another client, will be stored after retrieval in
the web proxy’s cache. Because in the proxy’s cache the
objects are indexed and identified by their URL rather than
by their content, when a second client Cj will request a
content identical object P (O = P) located at a different
URL, URLP (URLO 6= URLP), the object P will also
be retrieved from the Internet, even if an object with a sim-
ilar content already exists in the proxy’s cache. This sec-
ond retrieval process is a waste from the client Cj’s spent
time point of view or from the consumed bandwidth point
of view.

This inefficient approach is used by the most popular
proxy server in the Internet - Squid. Squid indexes and
stores web objects by their URL - in fact it uses the MD5
checksum of their URLs as the primary key for storing, in-
dexing and retrieving objects from its cache.

A real scenario that covers the above formal description
follows. Our Computer Science Department hosts a series
of Linux workstations labs. Periodically, all these Linux
workstations execute an automatic update process, which
implies retrieval of any available updates from the Inter-
net. An update is a web object located in a specific web
repository. For load balancing reasons, the updates reposi-
tory is replicated in multiple mirrors, each mirror being ac-

cessed with a different URL. This fact implies that the same
updates, located in repositories having different URLs, are
treated by the proxy server as different objects, even if they
have the same content. If one of the Linux workstations is
retrieving first the updates from a certain mirror M1, these
updates are cached by our department proxy server. An-
other Linux workstation that will setup the update process
at a future moment of time, might be assigned to download
these updates from a different mirror M2, having a different
URL from the first one. Even if the updates are the same,
the proxy server will treat these updates as different objects
and will retrieve them again from the Internet and will also
cache them - i.e. will cache an object twice or several times
even if their content is the same.

For a better understanding of this situation we depicted
it in figure 1.

Figure 1. Duplicate Transfer Problem

The disadvantages of this behavior are obvious. First
of all, any web client, starting with the second one, that
accesses a certain update, might wait for the update being
retrieved from the Internet even if the update is already in
the proxy server’s cache, located in a location that is faster
to access. Secondly, multiple retrievals of the same objects
lead to wasted precious network resources such as band-
width. And finally, there is a waste of storage space at the
proxy server level, because objects having the same content
are cached more than once.

An alternative solution to this situation is to set up a
repository of updates (a local mirror) located in our depart-
ment’s Intranet. Forcing the Linux workstations to retrieve
the updates from this local repository will save download
time (all the clients access a very fast, proximity located
update repository) and bandwidth (all the updates are down-
loaded only once, specifically when our mirror is synchro-
nizing with other Internet mirrors). However, this solution
did not please us. Setting up and maintaining a local repos-

itory might be an expensive process (from the human re-
sources point of view). Also, this addresses the problem of
our specific scenario, but does not solve the general prob-
lem of having the same object being retrieved and cached
by an HTTP proxy server more than once.

3. Solutions to the Duplicate Transfer Problem

The solution of the above problem is identifying and in-
dexing web objects at the level of a proxy server by their
MD5 checksum [6]. This mode of identifying and indexing
web objects is not to replace the classical one where web
objects are identified and indexed by their source URL. It
may be used as an alternative method for maintaining web
objects at the level of a proxy server, especially web objects
of a considerable size.

In order to maintain web objects at a proxy server by
their MD5 checksum, certain requirements have to be ful-
filled by the web server where the web objects reside. The
web server must notify a client requesting a certain web
object of the object’s checksum prior to the object’s con-
tent delivery to that client. The justification for this step is
that, once a client (i.e. a middleware proxy server) receives
an object’s checksum, it might not be interested anymore
in that object’s content because it locates the object by its
checksum in his own cache.

The delivery of the MD5 checksum to the client, if it
is available at the level of the web server, might be an
implicit or an explicit process. In the first case, the web
server might notify a web client, even though this might not
be interested, about the checksum of the web object that
will be served next by using the Content-MD5 HTTP
header as described in [4]. For example, the Apache web
server is able to deliver such an HTTP header by using the
ContentDigest on directive in its httpd.conf con-
figuration file [1]. Unfortunately, this is an Apache only
feature, the other dominant web server in Internet - i.e. IIS -
lacks such a feature. However, the web server might notify
the client about the checksum only when the client explic-
itly requests it, by using a different HTTP request (besides
the HTTP request for the web object itself). Such a prelim-
inary request may be invoked using the HEAD HTTP com-
mand.

In order to deliver the checksum the interested clients,
this checksum must be available at the web server’s level.
There are multiple approaches for storing and computing
the checksum for a web object:

- The checksum is computed by the web server “on the
fly”, when a client sends the first request for a web
object. While the web object content is read from the
file system to be delivered to the client, the web server
can also compute the content’s checksum. This is a

run-once process, because the checksum information
can be stored in the web server memory cache and
may be subsequently delivered to any other client that
might request that web object again.

- The checksum is pre computed and is located in a file
in the same web space (web folder) as the web ob-
jects. This is a very common situation, when for ex-
tremely large file offered for download, the client can
also download a file containing the checksum of the
large file, information that might be helpful in veri-
fying the download. For example, a file available for
download called Fedora-8-i386.iso might be accompa-
nied in the same web folder by a file called Fedora-
8-i386.iso.md5 containing the MD5 checksum of the
Fedora-8-i386.iso file.

4. Statistical Analysis

In order to analyze the Squid cache, we developed a soft-
ware tool [3] that retrieves for each cache object its content
and some of its properties such as: size, URL and, most im-
portant, its MD5 checksum. We will briefly present next the
results of this analysis.

By object cont:

Total objects in cache 653529
Unique objects 572586
Useless (redundant) objects 80943
Percent of useless objects 12.38 %

By object occupied space:

Cache size in bytes 10662828959
(9.93 GBytes)

Space occupied by unique objects 9548218120
Useless cache space occupied 1114610839
by useless objects
Percent of useless cache 10.45 %

Other statistics:

Useless unique objects 39243
(appear at least twice in cache)
Minimum duplications count 2
Maximum duplications count 1028
Size in bytes of the object having 575
maximum number of occurrences
Average number of duplicate 3.06
occurrences
Minimum size in bytes of a 332
duplicate object
Maximum size in bytes of a 4140152
duplicate object
Number of occurrences of the duplicate 3
object having maximum size

The results of our experiment show that, from a proxy
server perspective, approximately 10 to 12 % of the cache
size consist of duplicate objects that are retrieved from the
Internet and stored in the proxys cache at least twice in a
useless manner.

In these situations, a duplicate transfer aware proxy
server might reduce an enterprise consumed bandwidth by
at least 10 %. This is not the single advantage, the proxy
clients might also benefit with a higher cache-hit ratio from
already in cache objects previously grabbed from the Inter-
net for other clients.

5. Conclusions and Future Work

We advocate in this paper the need of a new method for
indexing and storing objects in a proxy’s cache by their con-
tent and their MD5 checksum, approach that is perfectly in-
teroperable with the current one that supposes web objects
management by their URL.

The advantages brought by such a mechanism are ob-
vious: fast objects delivery to a client in certain situa-
tions, bandwidth savings from the corporate perspective,
and lower load from the server point of view. From the
above exposed experiment, we conclude that such a mecha-
nism may reduce the storage space and the download traffic
of a proxy server with at least 10 percent.

The Squid proxy server development projects list in-
cludes the Duplicate Transfer Detection project. Unfortu-
nately, this project is listed as stale project, not being ac-
tively developed. The Duplicate Transfer Detection project
was developed for Squid version 2.4STABLE7, a version
which is five year old. We are currently working to port the
DTD project to the latest version of Squid proxy server, i.e.
version 3.0.

Because the MD5 message digest algorithm presents
some collision related security issues, future work may also
imply the implementation of a similar mechanism using
other message digest algorithm such as SHA1.

References

[1] Apache Core Features.
http://httpd.apache.org/docs/1.3/mod/core.html.

[2] Squid: Optimising Web Delivery. http://www.squid-
cache.org.

[3] D. Bufnea. A tool for md5 checksum retrieval of squid cache
objects. http://www.cs.ubbcluj.ro/∼bufny/.

[4] J. Myers and M. Rose. The content-md5 header field. RFC
1864, October 1995.

[5] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and
E. Lear. Address allocation for private internets. RFC 1918,
February 1996.

[6] R. Rivest. The md5 message-digest algorithm. RFC 1321,
April 1992.

