
Int. J. of Computers, Communications & Control, ISSN 1841-9836, E-ISSN 1841-9844
Vol. III (2008), Suppl. issue: Proceedings of ICCCC 2008, pp. 201-205

A New Method for Macroflows Delimitation from a Receiver’s Perspective

Darius Bufnea

Abstract: This paper presents a new approach for shared bottlenecks detection from a re-
ceiver’s perspective. This approach uses flow clustering at the receiver, based on passive
observations of inter-packet arrival time intervals. We also suggest a new cost function use-
ful in the flows clusterization process into macroflows. The proposed method can be used
in the discovery of path patterns or for extending the macroflow granularity in an improved
Congestion Manager.
Keywords: congestion control, bottleneck, Congestion Manager, macroflow.

1 Introduction
The latest years have brought changes in the dominant traffic type carried by the Internet infrastructure. In the

mid-80s the dominant traffic was generated mainly by specialized “well-behaved” users located in universities or in
research centers. Later, in the 90s, the source of the Internet traffic migrated towards business and residential users.
Although, the profile of the Internet user has not changed in the last decade, the traffic profile and the amount of
traffic increased dramatically. This was mainly caused by new Internet applications such as: multimedia streaming
applications (video on demand over Internet, radio broadcasts, voice over IP) and peer-to-peer applications, used
mainly for exchanging huge amount of data (e.g. multimedia files of considerable sizes). The traffic generated
by the latest Internet applications, used mainly by unspecialized users, is carried sometimes over non congestion-
aware protocols such as UDP. Consequently, the network and the transport layers must make continuous efforts
to keep fairness among all Internet users, keeping their “best-effort” traffic in normal throughput patterns, while
performing smooth congestion avoidance.

Congestion avoidance and control in Internet is done either at network level inside transport routers [1] or at
protocol level inside a peer’s TCP/IP stack [2]. It is desirable for each transport protocol to implement a congestion
avoidance algorithm, or if such an algorithm is not available in the transport layer (for example the UDP transport
protocol lacks a congestion avoidance algorithm), it must be implemented in the higher application layer. The
congestion control at the network level is required to interfere when a peer in the communication process is not
congestion-aware and the amount of data it injects into the network exceeds the amount of data carried by the
network for concurrent streams.

2 Previous Work
The current congestion control mechanism, as specified and implemented by the TCP/IP stack [3] performs

per-flow congestion checking. For each active TCP/IP connection, the network stack computes individually and
maintains separately a series of state variables such as: congestion windows size, round trip time or retransmission
time-out. The maintenance of these variables is done on a per-flow basis - there is no coordinated management of
streams which compete with each other for scarce bandwidth, rather then sharing the state variables’ values whose
computation is often redundant. There is a proposed mechanism that implies collaboration between streams that
share the same congestion parameters and often, in this situation, the same state variables values in a so called
macroflow. Such a collaboration between streams would be managed by a Congestion Manger [4]. However, the
problem remains in identifying the flows that must face the same congestion situation. One set of such flows are
those that share the same network bottleneck.

There are some proposed techniques that detect shared bottleneck links by using additional injected traffic in
the network ([5], [6]). Such an approach has the disadvantage that increases network load and depends on features
that might not be available everywhere. Other techniques presented in [7] and [8] detect common bottlenecks
by inspecting the time evolution of state variables and clustering flows based on this evolution. However, these
techniques can be used only from the sender’s point of view. In [9] the authors suggest an information based theory
solution that can be used from the receiver’s point of view.

In this paper, we suggest a mechanism similar to the one presented in [9] for identifying from the receiver’s
perspective the set of flows that share the same bottlenecks in their path towards the same destination but use a
different technique for flow clustering and a different distance (similarity) measure. Such a set of flows is suitable
for extending the granularity of constructing a macroflow in an improved Congestion Manager [4].

Copyright © 2006-2008 by CCC Publications - Agora University Ed. House. All rights reserved.

202 Darius Bufnea

3 Mechanism and Data Model

The approach presented in this paper is suitable for detecting shared bottlenecks from a data receiver’s point
of view or from any transit router’s point of view. The detection of shared bottlenecks is done passively by simple
observation of flows’ inter packet arrival time. Data packets generated by two or more sources that transmit data
to a receiver over the same bottleneck, will arrive to destination at equidistant moments in time. This is because
the bottleneck router has its queue full and it injects periodically, at constant length time intervals, packets in the
congested output line. But these packets that transit a common bottleneck will mix up with data generated by
other hosts. So, the main problem is to identify those sources that generated packets which arrive to receiver at
equidistant moments in time.

Figure 1: Equidistant inter-packet arrival time intervals

For a better understanding of the mechanism above we analyze it for the network depicted in figure 1. The S1
and S2 sources send packets to the Dst receiver over the same congested link C-R. The congested router C queues
incoming packets and sends them over the congested link at a constant rate, each packet is output in a ∆t time
interval. However, this regulated traffic is mixed on the R-Dst link with the traffic generated by the S3 source. So,
at the Dst receiver, we have to identify those packets that reach the destination at equidistant moments in time, i.e.
packets generated by the {S1,S2} source set.

The data model used in this paper was presented in [9]. However, we use a modified version of the data model,
adapted to achieve our goals. Let D = {d1,d2, · · · ,dn} be the set of incoming data packets at the Dst receiver. This
set is ordered by the incoming timestamp of each packet td1 < td2 < · · ·< tdn where tdi is the timestamp when Dst
receives the di packet. The D packet set is generated by the source set S = {S1,S2, · · · ,Sm}, usually m << n. This
assumption is obvious and respects the real traffic patterns. We denote by Source(di) ∈ S the source host of packet
di and by ∆tde = |td − te|, d,e ∈ D, the time interval spent between the arrival time of packet d and the arrival time
of packet e. Let also Fi be the flow generated by source Si, Ti = {ti1 , ti2 , · · ·} the arrival times of flow Fi’s packets
and ∆i = {δi1 ,δi2 , · · ·} the inter-packet arrival time intervals of flow Fi, δi1 = ti2 − ti1 ,δi2 = ti3 − ti2 · · · . Each of the
values above can be easily identified by a TCP/IP receiver by direct observation of incoming packets.

In order to simplify our model we made the assumption that all incoming packets at the receiver have the same
size. For packets of different sizes, the output intervals can be normalized by the capacity of the congested link.
For instance, if two different packets d and e have different sizes, Bd and Be, those two packets will be output over
the congested link at Bd/C ≈ Be/C time intervals, where C is the capacity of the output link.

Identifying those packets that share the same bottleneck means determining at least a subset D′ ⊂D of packets,
D′ = {di1 ,di2 , . . . ,dik}, k < n, ordered by arrival timestamps (td1 < td2 < .. . < tdn), so that ∆tdi1 di2

≈ ∆tdi2 di3
≈ . . .≈

∆tdik−1 dik
. Also, for each such set D′ ⊂ D, we can also identify S′ ⊂ S subset of sources , S′ =

⋃
dik∈D′

{Source(dik)}.

All the flows generated by the sources in S′, share the same bottleneck and will be considered part of the same
macroflow.

A New Method for Macroflows Delimitation from a Receiver’s Perspective 203

4 Algorithm
Our main goal is to group in a cluster those flows that share the same bottleneck to the destination. Without

considering the mixed data traffic, the bottleneck is reflected in a constant inter-packet arrival time intervals at the
receiver. Each flow in the clustering process will be represented by its inter-packet arrival time interval vector (∆i),
while the correct cluster will be represented by a merged vector of inter-packet arrival time intervals. We will use
for clustering a hierarchical algorithm that uses as the cost function the standard deviation of a vector. For a cluster
C, with a merged data vector ∆ having K components, its cost is represented by:

σC =

√
1
K

K

∑
i=1

(∆i− ∆̄)2 (1)

In figure 2 we present the image of a correct determined cluster vs. an incorrect one.

Figure 2: A correct identified macroflow vs. an incorrect one

We are using an iterative clustering algorithm, from the K-means family. The algorithm tries to group packets
in clusters using the approach above, in order to reduce clusters final costs.

Subalgorithm ClusterIdentification is:
Input:

m - the total number of flows that reach us;
Fi, i = 1..m - flow i;
Ti = {ti1, ti2, . . . ,} - the arrival times of flow Fi’s packets;

Output:
N, the number of clusters inferred in by the algorithm;
M = {C1, . . . ,CN}, the set of inferred clusters.

Begin // the initial clusters’ configuration
N := m; M := φ;
For i := 1 to N do

Ci := {Fi};
M := M∪{Ci};

endfor;
For i := 1 to m do

Do
modified := false;
C := cluster that contains flow Fi;
min := cost_function(C);
For each Dst cluster, Dst ∈M, Dst 6= C do

If cost_function(Dst ∪{Fi}) < min then
Move Fi from C to Dst;
min := cost_function(Dst);
If C is an empty cluster then

M := M−C; N := N−1;
endif;

204 Darius Bufnea

modified := true;
break;

endif;
endfor;

While modified = true;
endfor;

end; // ClusterIdentification

Function cost_function(Cluster C):real is

Initialize an empty vector T;
For each flow Fi ∈C do

Append all values from vector Ti to vector T;
endfor;

Ascending sort vector T by its numerical values;

Compute merged vector inter-packet arrival intervals ∆;
Return standard deviation σC of ∆;

end; // cost_function

5 Algorithm Evaluation
The mechanism presented in the previous section has been tested on a simulated network having the topology

shown in figure 3. The infrastructure of the simulated network is a real one, but the network’s links operating
at 100 Mbps had been shaped using HTB [10] in order to simulate lower link capacity. Each data source opens
a TCP/IP connection to the destination and sends a continuous data flow over it. The data receiver records the
incoming packets together with their arrival timestamps, for each incoming flow. The arrival times were recorder
over a time interval of 160 milliseconds and are presented in figure 4.

Figure 3: Simulated network

Flow Arival times of flow’s packets
F1 7 31 55 63 85 93
F2 4 12 22 24 38 43
F3 10 44 56 106 117 148 159
F4 19 26 40
F5 15 22 39 46 70 77
F6 7 9 15 30 33 36
F7 21 32 68 81 94 128 138

A New Method for Macroflows Delimitation from a Receiver’s Perspective 205

Figure 4: Arrival times of flows’ packets for the simulated network

Our method successfully detected three clusters of sources, correctly assigning the seven flows in three distinct
macroflows, one macroflow for each congested link that the network contains. Figure 5 presents the identified
macroflows, the flows that are part of each macroflow (cluster) and the equidistant packet arrival times for each
macroflow.

Macroflow Flows assigned to macroflow Inter packet arrival times
C1 F1, F5 7 8 7 9 8 7 9 8 7 7 8 8
C2 F2, F4, F6 4 3 2 3 3 3 4 3 2 2 4 3 3 2 2 3
C3 F3, F7 10 11 11 12 12 12 13 13 12 11 11 10 10 11

Figure 5: Macroflows identified by our method for the simulated network

6 Conclusions and future work
In this paper we present a mechanism for better macroflow identification from the receiver point of view. This

technique can be used inside an improved Congestion Manager to extend macroflows granularity.
The proposed mechanism successfully identified the correct macroflows when used on a simulated network.

Future analysis must be performed in order to determine the performance of our method when applied to real bulk
data collected from real traffic patterns. Methods for fast computation and implementation of the algortihm will be
identified considering that the implementation is part of the very time-sensitive TCP/IP stack.

References
[1] S. Floyd, V. Jacobson, Random Early Detection Gateways for Congestion Avoidance, IEEE/ACM Transactions on Net-

working, 1(4), pp. 379-413, 1993.

[2] W. Stevens, TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery, IETF RFC 2001, January 1997.

[3] M. Allman, V. Paxson, W. Stevens, TCP Congestion Control, IETF RFC 2581, April 1999.

[4] H. Balakrishnan, S. Seshan, The Congestion Manager, IETF RFC 3124, June 2001.

[5] V. Paxson, Measurements and Analysis of End-to-end Internet Dynamics, Thesis Dissertation, 1997.

[6] A. Downey, Using Pathchar to Estimate Link Characteristics, Computer Communication Review, a publication of ACM
SIGCOMM, volume 29, number 4, October 1999.

[7] D. V. Bufnea, A. Câmpan, A. S. Dărăbant, Fine-Grained Macroflow Granularity in Congestion Control Management, in
Studia Universitatis, Vol. L(1), pp. 79-88, 2005.

[8] A. Câmpan, D. V. Bufnea, Delimitation of Macroflows in Congestion Control Management Using Data Mining Tech-
niques, 4th ROEDUNET International Conference, Education/Training and Information/Communication Technologies -
ROEDUNET ’05, Romania, pp. 225-234, 2005.

[9] D. Katabi, I. Bazzi, X. Yang, An Information Theoretic Approach for Shared Bottleneck Inference Based on End-to-end
Measurements, Laboratory for Computer Science, MIT, 2001.

[10] M. Devera, Hierarchical Token Bucket Theory, http://luxik.cdi.cz/∼devik/qos/htb/manual/theory.htm, May 2002.

Darius Bufnea
“Babeş-Bolyai” University of Cluj-Napoca

Department of Computer Science
E-mail: bufny@cs.ubbcluj.ro

