

DELIMITATION OF MACROFLOWS IN CONGESTION CONTROL

MANAGEMENT USING DATA MINING TECHNIQUES

Alina CÂMPAN, Darius BUFNEA

Department of Computer Science, Faculty of Mathematics and Computer Science,

“Babeş-Bolyai” University of Cluj-Napoca

Abstract: Some of the newest approaches in Internet congestion control management suggest

collaboration between sets of streams that should share network resources and learn from each other

about the state of the network. A set of such collaborating streams is called a macroflow. In classical

congestion control approach, a stream learns information about the network state by itself. It makes

use of the acquired knowledge to adapt its transmission rates to the current network conditions.

Stream collaboration, in exchange, permits dissemination of network state knowledge: the streams in a

macroflow maintain common information about the network state. Every stream in that macroflow

uses this shared knowledge and contributes to its maintenance. This dissemination of network

knowledge conducts to a better, faster and more flexible adaptation of flow behavior in presence of

network congestion. The remaining problem is how to identify the streams forming such a logical

entity (a macroflow). Currently a macroflow is organized on host pair basis. We propose in this paper

a new method for grouping streams into macroflows if they behave similarly. A flow behavior is

described by a set of state variables, such as the congestion window size, the round trip time or

retransmission time out. This extended macroflow granularity can be used in an improved Congestion

Manager.

Key words: congestion control, Congestion Manager, macroflow, and congestion window

1. Introduction

Congestion control aims to control and adapt the transmission rate of the Internet streams so that to

reduce the amount of dropped packages in case of overloaded communication lines and routers.

Practical congestion control approaches work either at protocol level or at router level. A transport

protocol should normally implement a congestion control algorithm. The TCP protocol, which

transports over 90% of Internet data, treats this aspect. But there are other protocols (such as UDP),

which remain congestion unaware. Routers have their congestion control policies and algorithms for

handling congestion situations that are usually induced by misbehaved congestion unaware flows. The

two mentioned approaches do not exclude each other; rather they are completing each other.

In order to properly offer reliable data transmission and congestion control, a TCP connection uses

some state variables such as: the round trip time (rtt), the retransmission time out (rto) [PA00], the

congestion window (cwnd) and the slow start threshold (sstresh) [AP99, JV88]. Usually, each TCP

connection maintains independently its own state variables and performs its own calculation for

determining these variables’ values.

But even if each stream, independently, incorporate congestion aware algorithms, a set of concurrent

streams will still compete with each other for network resources, rather than share them effectively

[BS01]. Recent approaches introduce the idea of Internet streams collaborating for an improved

congestion control mechanism. Rigorous delimited (defined) set of streams should share network

resources and learn from each other about the state of the network. Currently, such a set of

collaborating streams, referred as a macroflow, is organized on host pair basis; i.e. a macroflow

comprises connections sharing the same (source IP, destination IP) pair. We propose in this paper a

new method for grouping streams into macroflows according to their similar behavior. This method

provides an accurate, less naive approach for delimiting macroflows inside the overall set of

connections maintained by a host. As a consequence, better-chosen connections will be detected as

being part in one macroflow and will share their network knowledge. This approach is meant to be part

of an improved congestion Control Manager.

1.1. Related Work

[FL01] suggested that the rtt and rto values should be the same for all connections that share the same

(source IP, destination IP) pair in the same moment in time. For this reason, she claimed that the

network level should be maintaining the values of these state variables, and not the transport level.

However, [FL01] did not further explore this approach.

[T097] joins the idea of sharing state variables between flows, on host pair basis. In addition, she gives

practical suggestions and solutions for accomplishing this sharing, in certain concrete situations.

[SK02] describes the LINUX caching mechanism of state variables values. One set of information is

maintained for each destination IP. The cached values serve for state variables initialization of new

connections targeting the same destination IP. Thus, the LINUX caching mechanism also functions on

host pair basis.

A state of the art approach [BS01] in congestion control suggests a practical way for the collaboration

between transport protocols and applications. This collaboration should take place into an integrated

Congestion Manager (CM) framework. All protocols and applications involved in such a framework

should provide their network knowledge (cwnd, rtt, packet losses) to the CM. The CM should aggregate

all these information on host pair basis (macroflow basis), “learn” from them and inform the protocols

and applications, in a synchronous or asynchronous manner, about when and how much data they can

safely “put on the wire”. Practically, the collaboration will take place, by the mediation of the CM,

between connections inside a macroflow; no collaboration will happen across macroflows. So, more

adequate the macroflows are established, more efficient the CM’s control will be.

1.2. Contributions

We propose in this paper a new method for grouping streams into macroflows if they behave similarly.

A flow behavior is defined by a set of state variables, such as the congestion window size, the round

trip time or retransmission time out. The advantage is that we can cluster together streams not only on

host pair basis, but also on LAN pair basis; even more generally, streams sharing a particular network

bottleneck will be identified by our method. This extended macroflow granularity can be used in an

improved Congestion Manager.

2. Data Model

We consider the case of an upload server that treats at the same time a high number of incoming

connections. The aim is to establish inside this set of connections some groups of connections with

similar behavior. A Congestion Manager running on that server will treat such a group as a macroflow.

We denote by S the server machine itself or its network identification IP address.

Each incoming connection is identified by the server S by a pair (CIP:Cport), where CIP is the client’s IP

address and Cport is the client’s port identification.

During the life time of each (CIP:Cport) connection, the server S will periodically measure and retain the

values of some state variables, such as the congestion window size, the round trip time or

retransmission time out. We based our experiments in this paper on measurements of the congestion

window size (cwnd) state variable. Practical ways for the achievement of measurements are described

in [B+04].

2.1. Cwnd Vectors

From the point of view of the upload server S, the incoming connection f=(CIP:Cport) during the time

interval (tb, te) is described by the cwnd vector V = (r1, r2, … , rk) where:

- (tb, te)  (CIP:Cport) connection life time;

- t is a fixed time interval (in experiments around 100 milliseconds);

- k = (te- tb)/t;

- ri = 0 if the congestion window size decreased at least once during the time interval Ti

=[tb+t*(i-1), tb+t*i), and ri = 1 otherwise (e.g. the congestion window size increased or

remained constant during that time interval), 1 i k.

We say that the cwnd vector associated to a connection describes the connection’s behavior.

The choice of the cwnd state variable for describing a connection behavior is justified as follows. For a

connection f, the congestion window size represents its own estimation about the network’s available

transport capacity. A decrease of the congestion window size occurs when a congestion situation

appears along the network path from S towards the destination host. If, during a larger time interval, the

congestion window size decreases for two connections f1 and f2 in approximately the same time this

means that congestion happens for both of them together, in the same moments. So it is very likely that

these two connections share a bottleneck. For this reasons, it is justified to place f1 and f2 in the same

macroflow. Consequently, they will maintain and use common information about the network state. If

one of them will ever face a congestion situation (packets loss), the other one will use this information

and act accordingly without having to experience this crisis by itself.

2.2. Similarity Measure

For grouping similarly behaving flows we will use, as described in the next paragraph, a data mining

clustering algorithm. Such an algorithm needs a similarity measure and a distance function for

comparing and differentiating two flows being analyzed. We propose next such measures and justify

our choice.

We associated to a connection a cwnd vector describing its behavior. The cwnd vector reflects the cwnd

timely evolution of that flow. Two connections will be considered more similar as they meet

congestion together more often. We express next the similarity of two given connections, f1 = (C
1
IP :

C
1
port) and f2 = (C

2
IP : C

2
port) measured during the time interval (tb, te), in terms of their associated cwnd

vectors V1 = (r11, r12, … , r1k) and V2 = (r21, r22, … , r2k).

Definition 1. Given a radius step, which is an integer number, 0  step << k, and a time interval Ti =

[tb + t *(i-1), tb + t *i), 1 i  k we call f1 and f2:

a) congestion neighbors on interval Ti iif either:

- r1i=r2i=0, which means that during Ti both streams faced congestion;

or

- r1i  r2i and rdi = 0, d{0,1} and  j, max{1, i-step} j  min{k, i+step} so that r1-d, j = 0.

These conditions ensure that when one of the streams f1 and f2 faces congestion, the other stream also

faces congestion in the same interval Ti, or in one of the neighbor intervals Ti-step, …, Ti+step; of course

we take into consideration only intervals that exist: i-step1 and i+stepk. The similarity between two

streams will increase with the number of intervals Ti where they are congestion neighbors. This

definition takes into consideration the sequentiality in detecting congestion for two different streams at

server S. Sending and receiving packets, measuring state variables for more connections, congestion

detection by different streams are in most cases actions performed by a single kernel dealing with the

TCP/IP stack and, in most cases, a single working processor. These facts, associated with the temporal

discretization we have performed in our experiments, has conducted to the necessity of allowing

congestion to be reflected, for two streams, not by the same vector components r1i and r2i, but by two

close in time measurements.

b) congestion disassociated on interval Ti iif r1i  r2i and rdi = 0, d{0,1} and not j, max{1, i-step} j

 min{k, i+step} so that r1-d, j = 0. The similarity between two streams will be decreased with the

number of intervals Ti where they are congestion disassociated.

Definition 2. Given a radius step, which is an integer number, 0  step << k we define for f1 and f2 the

following sets:

a) },1|{),(2121 iTonneighbourscongestionarefandfkiiVVCN  ;

b) },1|{),(2121 iToneddeassociatcongestionarefandfkiiVVCD  .

Definition 3. Given a radius step, which is an integer number, 0  step << k the congestion similarity

coefficient of f1 and f2 is defined as:

1),(

otherwise,0|),(||),(|if,
|),(||),(|

|),(||),(|
),(

21

2121

2121

2121
21









VVCS

VVCDVVCN
VVCDVVCN

VVCDVVCN
VVCS

(1)

CS(V1,V2) describes the similarity of f1 and f2 with respect to congestion occurrence. It takes values in

[-1,1] interval. Higher is the CS measure more similar are the compared vectors.

Definition 4. For differentiating connections we use a congestion distance function defined by:

2

),(1
),(21

21

VVCS
VVdC


 (2).

dC take values in [0,1]; two identical flows will be at 0 distance, two negatively correlated flows will be

separated by a distance of 1.

3. Algorithm

Let F = {f1, f2, … , fn} be the set of all incoming concurrent connections served by S. For the (tb, te) time

interval, the measured cwnd vectors are V={V1, V2, … , Vn}, where Vi is the cwnd vector associated to fi,

fi = (C
 i

IP : C
 i

port), Vi = (ri1, ri2, … , rik).

We use an agglomerative hierarchical clustering algorithm ([HK01]) for grouping in macroflows the

concurrent connections described by similar cwnd vectors. This bottom-up strategy starts by placing

each connection in its own cluster (macroflow) and then merges these atomic clusters into larger and

larger clusters (macroflows) until a termination condition is satisfied.

At each iteration, the closest two clusters (macroflows) are identified. The distance between two

clusters Mi and Mj is considered to be, as defined in (3), the maximum distance of any pair of objects in

the cartezian product Mi  Mj. If the distance between these two closest clusters does not exceed a

given threshold thr_max_dist, we merge them and the algorithm continues by a new iteration.

Otherwise, the algorithm stops. So, the termination condition is that there are no more clusters closer

than a given threshold.

This decision regarding the termination condition is justified. We want that the resulting macroflows

not to contain any “wrong” placed connections, so that the subsequent decisions based on our

macroflow delimitation not to be erroneous. A macroflow will surely be “correct” if any pair of its

objects will be similar enough.

The threshold thr_max_dist was chosen above 0.8, to ensure correct macroflow construction. By

merging two clusters that are close enough with respect to the threshold thr_max_dist ensures that,

inside the obtained merged cluster (macroflow), any two objects (connections) are not more distant

than thr_max_dist. So, it is safe to place them into the same macroflow.

Algorithm MacroflowIdentification is

Input: n, the number of concurrent connection at server S;

 F={f1, f2, … , fn} the set of concurrent connection at S;

 V={V1, V2, … , Vn}, Vi =(ri1, ri2, … , rik), i=1..n, the cwnd

vectors associated to the connections;

thr_max_dist, the maximal distance threshold for two connections to

be admitted in the same macroflow.

Output: m, the number of macroflows inferred in the concurrent

 connections set;

 M = {M1,…,Mm}, the inferred macroflows, where

 miM i ..1,  , FM

m

i

i 




1

, jimjiMM ji  ,..1,,

Begin

 m := n;

 M := ;

 For i:=1 to m do

 Mi := {fi};

 M := M  {Mi};

 End For;

 While (m>1) and (Continue(M,thr_max_dist,Mmerge1,Mmerge2)=true) do

 Mnew := Mmerge1  Mmerge2;

 M := M – {Mmerge1, Mmerge2}  {Mnew};

 m := m-1;

 End While;

End.

Function Continue(M the set of current macroflows, thr_max_dist,

 out Mmerge1, out Mmerge2):boolean is

 min_dist := ;

 For each MiM

 For each MjM, MjMi

  
jtirtrCji MfMfvvdMMdist  ,|),(max),(; (3)

 If dist(Mi,Mj) < min_dist

 min_dist := dist(Mi,Mj);

 Mmerge1 := Mi; Mmerge2 := Mj;

 End If;

 End For;

 End For;

 If min_dist<thr_max_dist Return True;

 Else Return False;

 End If;

End Function;

Function Continue determines the closest two clusters from the clusters set M. It will return true if

these clusters are closer than thr_max_dist and false otherwise.

4. Results and Evaluations

To test the efficiency of the proposed algorithm, we used it at an http upload server, with a high

number of incoming connections. We measured the cwnd state variable for the incoming connections at

S during a larger time interval and we considered for clustering samples of 40 seconds. We take the

case of one such sample, which comprised a large number of connections. We present in Figure 1 two

macroflows that our algorithm detected inside this connection set. There were detected, as we intended,

macroflows over connections coming from different client IPs. It can be clearly seen the similar cwnd

evolution during time for the connections of each macroflow. This fact might happen in different

situations: client IPs hosted in the same remote LAN or client IPs sharing the same bottleneck toward

server S. This extended macroflow granularity can be used in an improved Congestion Manager.

Figure 1. Macroflows composed of connections originating from different client IPs

5. Conclusions and Future Work

We suggested in this paper a data model and an algorithm for extending the macroflow granularity

outside of the host-pair approach. Our method will prove its advantages in a Congestion Manager

framework.

As a future work we plan to explore the use of different similarity measures and other state variables to

compare the timely evolution of the connections being analyzed. We also want to extend the clustering

method to an incremental variant having the ability to adapt macroflows according to observations of

streams’ evolution during more than one surveillance intervals. The incremental mechanism also has to

deal with new connections entering or leaving the system at any given moment.

The collaboration strategy and mechanisms for the streams inside a macroflow will also be subject to

study, as they are influential factors for the stream behavior. Consequently, the macroflow delimitation

mechanisms (incremental or no) will have to consider these behavioral effects induced by the

collaboration mechanisms.

References

[AP99]Allman, M., Paxson, V., Stevens, W., TCP Congestion Control, IETF RFC 2581, April, 1999.

[BS01] Balakrishnan, H., Seshan, S., The Congestion Manager, IETF RFC 3124, June 2001.

[B+04] Bufnea, D., Sterca, A., Cobarzan, C., Boian, F., TCP State Variables Sharing, Proc. of the

Symposium “Zilele Academice Clujene”, pp 129-133, Cluj-Napoca, 2004.

[FL01] Floyd, S., A reports on Some Recent Developments in TCP Congestion Control, IEEE

Communication Magazine, April 2001, vol 39, no 4.

[HK01] Han, J., Kamber, M., Data Mining: Concepts and Techniques, Morgan Kaufmann Publishers,

2001.

[JV88] Jacobson, V., Congestion Avoidance and Control, Proc. of SIGCOMM ’88, ACM, 1988.

[PA00]Paxon, V., Allman, M., Computing TCP’s Retransmission Timer, IEFC RFC 2988, November

2000.

[SK02] Sarolahti, P., Kuznetzov, A., Congestion Control in Linux TCP, Proc. of the FREENIX Track,

USENIX Annual Technical Conf., pp 49-62, 2002.

[T097] Touch, J., TCP Control Block Interdependence, IETF RFC 2140, April 1997.

