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Introduction

This PhD thesis is the result of my research in Software Engineering, particular in the domain
of Component–Based Software Engineering (CBSE), started in 2004.

Since the late 90’s CBSE is a very active area of research and development. CBSE [CL02]
covers both component development and system development with components. There is
a slight difference in the requirements and business ideas in the two cases and different
approaches are necessary. Of course, when developing components, other components can
be (and often must be) incorporated and the main emphasis is on reusability. Development
using components is focused on the identification of reusable entities and relations between
them, starting from the system requirements.

There are two issues [CL02] needed to be addressed when a software system is to be
constructed from a collection of components:

• Component integration – the mechanical process of wiring components together. There
has to be a way to connect the components together.

• (Behavior) Component composition – we have to get the components to do what we
want. We need to ensure that the assembled system does what is required. The
constituent components must not only plug together, they must perform well together.

Building software applications using components significantly reduces software complex-
ity, increasing software reuse. In addition, it reduces the development time, efforts and costs,
resulting in a better software quality.

The goal of this thesis is to investigate automated techniques that may be used to sup-
port component structural composition (integration). Our problem is to select a number of
components from an available set such that their composition satisfies a set of objectives
(the final system requirements). The Simple Component Selection Problem computes all the
possible component configurations and the Multicriteria Component Selection Problem finds
the best component assembly satifying some criteria.

This thesis focuses on the activity of component selection and integration. It contains
107 bibliographical references and is divided in nine chapters as follows.

First chapter provides an introduction to the field of Component–Based Software Engi-
neering and general issues about selection, integration and composition of components are
stated. The used approaches for component–based systems construction are described in
details: backtraking–based approaches, automata–based approaches, evolutionary–based ap-
proaches, Greedy approach, and Branch and Bound approach.

Chapter 2, Backtracking–based composition approach, introduces a new approach
for construction of component configurations based on the backtracking method. Two com-
ponent configurations, one based on data dependencies (APPC – All Possible Component
Configurations algorithm ) and the other based on temporal dependencies (TCCR – Temporal
Component Composition Restraint algorithm) are proposed. The chapter also describes a
component assembly execution model. New rules for execution extends the previously defined
execution model.

Chapter 3, Automata–based composition approach,describes (using an automata
representation of a component–based system) two introduced approaches for component con-
figurations construction: one is based on input data dependencies (MakeAllModels algo-
rithm) and the other is based on task dependencies (ControlFlow and DataFlow Syntactic
Composition algorithm).
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Chapter 4, Artificial intelligence–based composition approach, presents different
intelligent–based approaches to component configurations: using Genetic Algorithms – an ap-
proach to analyze component integration and another approach to analyze behavioral compo-
nent composition using Cartesian Genetic Programming, and using Genetic–based Program-
ming – an approach to determine optimal component combinations using Multi Expression
Programming and another approach to design a component–based system using Membrane
Computing (P–Systems).

Chapter 5, Multicriteria Component Selection Problem, presents Greedy, Branch
and Bound and Evolutionary approaches for the Multicriteria Component Selection Problem,
using various criteria. The Greedy selection function (to best select the component to be
added to the final solution) uses a ratio of component cost and requirements. The depen-
dencies are also considered. The Branch and Bound approach considers at each step the cost
of the selected component and the set of remaind requirements to be satisfied. The depen-
dencies are used during the selection of the successors. Two evolutionary representations are
used with two ways to deal with the multiobjective optimization problem, i.e. weighted sum
method and Pareto dominance principle.

Chapter 6, Component Adaptation Architectures. A Formal Approach, provides
a formal mathematical model for component function adaptation. Four component adapta-
tion architectures are presented. The behavior adaptation constraints for each architecture
(Serial or Sequential Adaptation Architecture – SAA, Parallel Adaptation Architecture –
PAA, Alternative Adaptation Architecture – AAA and Repetitive Adaptation Architecture
– RAA) are discussed.

Chapter 7, Metrics in Component–Based Software Engineering, defines a set of
new metrics to quantify quality attributes of a component–based system and a new set of
metrics to best select a component assembly from a set of available configurations.

Chapter 8, Component Backtracking and Ant Colony–based approach to solve
TSP, Labyrinth Problem and AGAP, presents the developed execution model to solve
Traveling Salesman Problem using backtracking algorithms and Ant (Colony) Systems. The
chapter also describes the applicability of the developed execution model to solve the Labyrinth
Problem and the Airport Gate Assignment Problem using Ant Colony Systems.

Chapter 9, Conclusions and future work, draws the main conclusions about our ap-
proaches and several potential improvements of our work.

The original contributions introduced by this thesis are contained in Chapters 2, 3, 4, 5,
6, 7, 8 and they are as follows:

• A new approach for the construction of component configurations [FM04] (Subsection
2.1.2) based on the backtracking method.

• A temporal component restraint configuration [Ves06, Ves07a] (Subsection 2.1.3) based
on the backtracking method.

• Execution model of a component configuration [Fan05] (Subsection 2.2.3).

• An extension of the previously defined execution model with new execution rules
[Ves07b] (Subsection 2.2.4).

• A new approach for the construction of component configurations having automata
representation, proposal based on input data dependencies [FMD06] (Section 3.1).

• A new approach for the construction of component configurations having automata
representation, approach based on task dependencies [VM06b, VM06a] (Section 3.2).
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• A new approach to generate component execution orders based on Genetic Algorithms
(GA) [FD05a] (Subsection 4.1.1). A comparison between the previously developed
backtracking–based algorithm (Subsection 2.1.2) and the GA algorithm is presented.

• A new approach to analyze component integration based on Genetic Algorithms (GA)
[FD06b] (Subsection 4.1.2). A mapping from the previously developed automata–based
model (Subsection 2.1.2) to a GA approach is considered.

• A new approach to develop optimal component combinations using Multi Expression
Programming [FD05b] (Subsection 4.2.1).

• A new approach to behavioral component composition using Cartesian Genetic Pro-
gramming [FD06c] (Subsection 4.2.2).

• A new approach that uses Membrane Computing (P–Systems) to design a component–
based system [FD06a] (Subsection 4.3.3).

• New approaches for the Component Selection Problem modeled as a multiple objec-
tive optimization problem [VG08a, VG08b, Ves08e, Ves08c, VGP08, Ves08d]. Different
representations are used: requirements–based representation (Subsection 5.3.1) and
components–based representation (Subsection 5.3.2).

• New approaches for the Component Selection Problem modeled as a multiple objective
optimization problem [Ves08b, VP08] using a Greedy approach (Subsection 5.1) and a
Branch and Bound approach (Subsection 5.2).

• A formal mathematical model for component function adaptation [Ves08a] (Subsection
6.2). Four component function architectures are proposed.

• A set of new metrics to quantify quality attributes of component–based systems [SV07b]
(Subsection 7.1.2).

• A new set of metrics to best select a component assembly from a set of available
configurations [SV07a] (Subsection 7.2.1).

• Applying the developed execution model to solve Traveling Salesman Problem using
backtracking algorithms [FP05, VP06a, VP06b] (Subsection 8.1.2) and Ant (Colony)
Systems algorithms [VP07] (Subsection 8.1.3).

• Applying the developed execution model to solve Labyrinth Problem (Subsection 8.2.1)
and Airport Gate Assignment Problem [PV07b, PV07a] (Subsection 8.2.2) using Ant
Colony Systems.
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1 Setting the context

This chapter provides an introduction to the field of Component–Based Software Engineering
(CBSE), given a particular emphasis to the construction of systems out of components.

1.1 Component–Based Software Engineering. Component definitions

CBSE is based on the concept of component. Components are at the heart of CBSE. We may
find several definitions of a component in literature, most of which fail to give an intuitive
definition of a component, but focus instead on the general aspects of a component. In what
follows by a component we understand a software component.

One of the most popular definitions of a component [Szy98] was offered by a working
group at ECOOP (the European Conference on Object–Oriented Programming). The def-
inition emphasizes component composition. As a unit of composition, each component has
its specified interface that determines how it can be composed with other components.
Definition 1.1.1 ([Szy98]) A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A software component can be
deployed independently and it is subject to composition by third parties.

Component integration and (behavior) component compositions are the two issues needed
to be addressed when constructing component configurations. We need to consider how
components can be combined with each other in order to build a more complex system or
component. Generally, one constraint on combining components is that these components are
viewed as black boxes, i.e. it is only necessary to consider their export and import interfaces,
resulting that components are not allowed to be modified.

1.2 Constructing systems out of components

CBSE is concerned with the assembly of pre–existing software components that leads to
a software system that responds to client-specific requirements. Component selection and
component systems assembly have become two of the key issues involved in this process. In
what follows work related to constructing systems out of components is presented.

A framework for automating component retrieval and adaptation for software reuse is de-
scribed in [Mor04]. Layered architecture using feature–based, signature–based and specification–
based retrieval engines to retrieve components that completely or partially match a problem
are used.

MaDcAr [GBV06] provides a uniform solution for automating both the construction of
applications from scratch and the adaptation of existing component assemblies. A MaDcAr
compliant engine computes a configuration and builds the application, and when the exe-
cution context changes, it chooses a more appropriate configuration and re–assembles the
components accordingly.

An algorithm for selecting COTS components with multiple interfaces from a repository
in order to implement a given software architecture is presented in [ITV02].

The unified approach to the construction of component systems by employing methods
from the area of compiler construction and especially optimizing code was proposed in [GG07].
The approach allows to first select an optimal set of components and adapters and afterwords
to create a working system by providing the necessary glue code.

Two different types of situations are possible when constructing systems out of compo-
nents: obtain a complete solution (no extra components are needed to perform the desired
tasks), or obtain a partial solution (extra components or assemblies are needed to complete
the required tasks). Both situations are discussed in this thesis.
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1.2.1 Complete system construction

Component selection methods [FBPFR04, BHSS06] are traditionally done in an architecture
centric manner, meaning they aim to answer the question: given a description of a component
needed in a system, what is the best existing alternative available in the market? Another
type of component selection approach [HMH+07, GG07] is built around the relationship
between requirements and components available for use.

Two different types of component systems construction are approached in this thesis: con-
struct all the component–based system out of a set of given components that fullfils the given
requirements (we denote this problem as Simple Component Selection Problem – SCSP),
and construct only one component–based system satisfying different criteria (Multicriteria
Component Selection Problem – MCSP). Both problems are described in details in what
follows.

Simple Component Selection Problem
Informally, our problem is to select a subset of components (each of them satisfying a set

of functionalities) and to connect them such that the target component system fulfills the
needed requirements.

Simple Component Selection Problem (SCSP) is the problem of choosing a number of
components from a set of components such that their composition satisfies a set of objectives.
The notation used for formally defining SCSP, as laid out in [FBPFR04] (with a few minor
changes to improve appearance) is described in what follows.

Denote by SR the set of the final system requirements (target requirements)
SR = {r1, r2, ..., rn} and by SC the set of components available for selection
SC = {c1, c2, ..., cm}. Each component ci may satisfy a subset of the requirements from
SR, SRci

= {ri1 , ri2 , ..., rik}. The goal is to find a set (subset) of components Sol in such a
way that every requirement rj from the set SR may have assigned a component ci from Sol,
where rj is in SRci

.
Various approaches for the Simple Component Selection Problem are used in this the-

sis: backtracking–based approaches, automata representation and evolutionary–based ap-
proaches. The notations used in this thesis for each proposed approach are presented in
Section 1.3.

Multicriteria Component Selection Problem
Another variation of the Simple Component Selection Problem is that stated in [HMH+07].

In addition to the above description a cost ci of a component is considered cost(ci). Different
criteria for the best component selection from an available set are used in this thesis.

Multicriteria Component Selection Problem (MCSP) reduces to the SCSP, adding the
following criteria: minimizing the

∑
ci∈Sol cost(ci) and minimizing the number of components

in the solution Sol.
The Multicriteria Component Selection Problem is investigated using Greedy, Branch and

Bound, and Evolutionary approaches. The used notations are described in Section 1.4.

1.2.2 Partial system construction. Component Adaptation

In any component selection method, it is unrealistic to expect a perfect match between needed
components and available components. A group of components that compose a system may
have overlaps and gaps in required functionality. A process of adaptation is required.

Component adaptation [XW05] can be divided into three families. One is to adapt compo-
nent signature properties, such as names, parameters. The second one is function adaptation:
how to integrate different components both meeting partly the users requirement to satisfy
the final requirement. The third one is behavior adaptation that is how to mediate the
component behavior when behavior mismatches occur.
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1.3. Simple Component Selection Problem

This section describes the approaches used to investigate the Simple Component Selection
Problem. Backtracking method [FPS06], automata representation [PMP04, MPP04] and
artificial intelligence techniques [Gol89, Sys91] are presented.

1.4. Multicriteria Component Selection Problem

Various approaches are used to solve the Multicriteria Component Selection Problem. We
use a Greedy approach [FPS06], a Branch and Bound approach [FPS06] and Evolutionary
Algorithms. Each approach and notations are described in details in the thesis.

1.5 Metrics–based component selection

CBSE is a very active area of research and development. Its goals, among others, are to
consistently increase return on investment and time to market, while assuring higher quality
and reliability than can be achieved through current software development [CL02].

In the area of software reengineering and reverse engineering, metrics are being used for
assessing the quality and complexity of software systems, as well as getting a basic under-
standing and providing clues about sensitive parts of software systems.

Our approach regarding metrics concerns the selection of the best obtain solution from an
available set of configurations. To analyze the quality of a component assembly some quality
attributes must be considered. We introduce new metrics to help us predict the quality of
the considered attributes for a component configuration.

1.6 Application of the developed models

Three problems are described in this section: Traveling Salesman Problem [BT85], Labyrinth
Problem [PD07], and the Airport Gate Assignment Problem [DLRZ04, Bar05]. The problems
are used to apply our developed component execution model.
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2 Backtracking–based composition approach

Simple Component Selection Problem is investigated in this chapter. Data and temporal
composition restraints are used when constructing systems out of components. All possi-
ble component configurations are constructed using a backtracking algorithm, taking into
consideration only two types of composition operations: serial and parallel composition. Re-
garding execution, an execution model is proposed. Construction and execution elements are
presented.

2.1 Constructing component configurations

This proposal is based on the [CS01, Hen00] approaches.

2.1.1 Definitions and notations

In order to specify the components we must first establish the entities involved in a component
definition: domain D - a set that doesn’t contain the null element; set of attributes A - an
infinite fixed and arbitrary set; the attributes signify variables or fields; type of an attribute
x ∈ A : Type(x) ⊆ D represents the set of possible values for the attribute x.

Considering X a component over the set A of attributes, we use the following nota-
tions: inport(X) ⊆ A represents the set of input ports (attributes) of the component
X, outports(X) ⊆ A represents the set of output ports (attributes) of the component X,
attributes(X) ⊆ A represents the set of attributes of the component X, and inports(X) ∩
outports(X) = ∅.
Definition 2.1.1 ([CS01]) A source over A is an attribute. If X is a source, attributes(X)
and outports(X) are both defined to be the set consisting of the single attribute X. It has no
inports and generates data provided as outports in order to be processed by other components.
Definition 2.1.2 ([CS01]) A destination over A is an attribute. If X is a destination,
attributes(X) and inports(X) are both defined to be the set consisting of the single attribute
X. It has no outports and receives data from the system as its inports and usually displays it,
but it doesn’t produce any output.
Definition 2.1.3 ([CS01, FM04]) A simple component over A is a 5-tuple X of the form

(inports, outports, attributes, function,≺X),

where:
• inports is a n-tuple (in1, ..., inn) of attributes and outports is am-tuple (out1, ..., outm)

of attributes and (out1, ..., outm) are not ⊂ inports(SC);
• function is an n-ary function Type(in1) × Type(in2) × ... × Type(inn) →

Type(out1) × Type(out2) × ...× Type(outm).
• attributes is defined to be the set of attributes consisting of the inports and the

outports;
• the binary relation ≺X⊆ (inports(X) × outports(X)) × outports(X).

There are two basic ways in which two components may depend on each other [MP02],
[Hen00]: parallel composition (A||B, in which the operations performed on data are inde-
pendent and there is not dependency between outports(A) and outports(B)) and a serial
composition (A+B, in which the B component expects some results from component A).
Definition 2.1.4 ([CS01, FM04]) A compound component over A is a group of connected
components (using serial or parallel composition), in which the output of a component may
be used as input by another component from this group.

Any compound component can be described with these two basic operations, no matter
how many simple components it contains. Compound components are built from atomic
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components (source, destination or simple components) using parallel and serial composition,
depending on the interdependencies inside the compound component.
Definition 2.1.5 ([CS01]) A component over A is either a source over A, a destination over
A, a simple component over A, or a compound component over A.

2.1.2 All Possible Component Configurations algorithm

The APCC (All Possible Component Configurations) algorithm [FM04] is based on the idea
of composition, components are used as building blocks from a repository and assembled or
plugged together into larger blocks or systems. The APCC Algorithm computes all possible
component configurations. A backtracking algorithm [FPS06] was used.

In order to apply the APCC algorithm [FM04] the following steps must be first per-
formed: check disjoint in/out condition (inports(X) ∩ outports(X) = ∅ for each X compo-
nent), check if composition is possible (the data may flow between the simple components
involved in the composition: the inports of all the simple components are inports of the
black box or they may occur as outports of the other components), and compute the interde-
pendencies. The interdependencies between components are computed as follows: we have to
check if an inport ini of a component appears as an outport of other component; if an inport
of a component B appear as an outport outj of a component A, ( ini = outj) then we have
to use component A before component B, and we can use B only with the “+” operator.

We denote by RSC (Repository Selected Components) the set of components selected
form the repository. A component is added to solution if the component was not already used
before and all the inputs of the component are provided for the tasks to be executed. A set of
already used inputs is memorized (i.e. the number of already used inputs noUsedInputs, the
set setUsedInputs of already used inputs). A data dependency condition is also checked: the
current added component must have all the data dependencies already satisfied. A solution
is found when the last added component is a destination component. The solution of the
backtracking algorithm contains components that are arranged such that the dependencies
are satisfied.

An extra operation is applied to each solution to obtain the final solution with the “+”
and “||” operators: the “+” operator is used only before components that depend on other
components in the solution.

An example is provided in the thesis to discussed the proposed approach.

2.1.3 Temporal Components Composition Restraint algorithm

An algorithm that computes all possible component–based systems considering temporal
dependencies between components is presented in what follows. Temporal composition re-
straints [Ves06, Ves07a] to assist the composition process (when selecting the next feasible
component to integrate into the assembly) are introduced.

A top–down approach is used when reasoning about the way to solve a problem (from
the system requirements develop the needed modules to accomplish the requirements of the
under development system), and a bottom–up approach when assembling the pieces in order
to build the final system.

The component composition is accomplished using a bottom-up approach: starting from
a given set of components (stored in a repository) there are two main steps to obtain the
final system: first, newly obtained components (if necessary) by assembling given components
(simple components and/or compound components), and second, compose the final system
from the new set of available components.

An issue concerning the composition process is the execution order of the involved com-
ponents in the assembly. If there is a temporal restriction on the components execution order

8



then the final set of all possible configurations may be smaller. The necessity of user involve-
ment to select the accurate resulted system from all generated configurations was discussed
in [Ves06]. There are two different dependencies that must be taken into consideration when
building all possible system configurations: data dependency and temporal dependency. The
dependency conditions imply two composition restraints: data composition restraint and
temporal composition restraint.
Definition 2.1.10 ([Ves07a]) Data composition restraint – is a relation between two
components in the composition that establishes that one component expects some results from

the other component. Notation: CSender
data−→ CReceiver.

Definition 2.1.11 ([Ves07a]) Temporal composition restraint – is a relation between two
components that asserts that one component must be executed before the other component.

Notation: CPrevious
before−→ CAfter.

The TCCR (Temporal Component Composition Restraint) [Ves07a] algorithm uses a
backtracking approach to generate all the component–based systems from the existing speci-
fied components taking into consideration the temporal composition restraints. The temporal
restraints are explicitly specified in the algorithm input.

The used composition rules [Ves06] are: all ports (inports and outports) must be con-
nected (no unused/lost data), one data provider is allowed for each inport of a component
(one provider/inport), the data for all inports for every component must be provided, and
the same data can be send (“broadcast”) to more than one component to be used.

The first component that is used from repository is a source component. A component
is added to the solution if it was not already used and all the inputs are provided [Ves07a].
Temporal composition restraints are also checked: between the current c component being

checked and a previously added component cc no temporal dependency should exist cc
before−→ c.

A solution is found when the last added component is a destination component.
An example is given to understand and reason about our composition approach: a com-

putation system for the Annual Student Average Mark. Each of the three disciplines have
different mark computation rules. For each discipline a new compound component with dif-
ferent temporal restraints is developed. At the end, only three solutions (out of six possible)
are valid.

2.2 Executing components configurations

The second step needed to be done when constructing systems out of components is to
simulate systems execution and observe behavior. In what follows we present a minimalist
execution model of component configurations.

2.2.1 Definitions and notations

The approach uses the specification from [FM04] and interface theories from [dAH01]. A new
approach/improvement for specifying components is presented in this section.
Definition 2.2.1 ([Fan05]) Input specification. The input In of a component function (or of
the component) is specified using a 4-tuple of the form

In = (name, type, semantic, value),

where: name represents the name of the inport, type represents the type of the inport,
semantic describes the meaning of the inport, and value represents the value of the input at
execution time.
Definition 2.2.2 ([Fan05]) Output specification. The output Out of a component function
(or of the component) is specified using a 4-tuple of the form
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Out = (name, type, semantic, value),

where: name represents the name of the outport, type represents the type of the outport,
semantic describes the meaning of the outport, and value represents the value of the outport
at execution time.
Definition 2.2.3 ([Fan05]) Function specification. The function FC of a component is spec-
ified as follows:

FC = (name, entryPoint),

where: name represents the name of the function and entryPoint represents the entry point
of the function.
Definition 2.2.4 ([Fan05]) Contract specification. The contract cC of a component (a func-
tion) is specified by describing the inputAssumption (specifies the value combinations at the
input ports which the component must accept) and the outputGuarantee (specifies the value
combinations the output ports of the component may produce).
Definition 2.2.5 ([Fan05]) Component specification. A simple component C is specified
using a 5-tuple of the form

C = (name, {in}, out, FC, cC),

where: name represents the name of the component, {in} represents the inputs for the
component function, out represents the output of the component function, FC represents
the component function, and cC represents the component contract.

2.2.2 Construction and execution elements for a component–based model

The wiring of components in order to construct a component–based system is done using a
connection between the output of a component and the input of another component.
Definition 2.2.6([Fan05]) A connection K is made of an origin - output of a component,
and a destination - input of another component:

K = (origin, destination),

where: origin is an output of a component and destination is an input of a component.
The obtained assembly is also a component, i.e. a compound component using the [FM04]

notation. The final system is called BlackBox. The following definition represents a more
formal and detailed specification of the description from Subsection 2.1.2.
Definition 2.2.7 ([Fan05]) A BlackBox is specified as follows:

BlackBox = ({in}, out, {component}, {connection}),
where: {in} represents the inputs for the blackbox, out represents the output of the black-
box, {component} represents the components involved in the composition, and {connection}
represents all the connections between the involved components.
Definition 2.2.8 ([Fan05]) State of execution. At a given time of execution, the state is
presented as follows:

State = (operation, componentForEval),

where:
• operation = {C →, C =};

• C → represents propagation operation from the component C;
• C = represents evaluation operation of the component C.
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• componentForEval is a component ready for evaluation.
The execution of the BlackBox component [Fan05] is a sequence of the form

(Op0, C0), (Op1, C1), (Op2, C2), ...

where for each i ≥ 0, Opi is a subset of possible operations and Ci is a subset of components
ready for execution. Op0 is a propagation operation and C0 is a special “virtual” component
called start.

The two possible operations are propagation and evaluation. The conditions for the
propagation and evaluation rules are given and explained. If both types of operation may be
performed, the propagation operation is chosen. Between many evaluation operations, one
component is chosen randomly.

2.2.3 Algorithm for execution

The description of the algorithm for execution is described. We have used dynamic execution
and reflection in Java. The subalgorithm (main method) for the execution of the BlackBox
component is presented in the thesis. The execution of the model starts with the initialization,
which consist of initialization for the input port of the BlackBox component. Propagation
and/or evaluation are then applied.

2.2.4 Execution rules improvement

Using only the above rules we cannot model a repetitive or alternative execution. The
repetitive and alternative structures are described in what follows. The rules are used during
the assembly construction phase (only for the control flow design) and for the assembly
execution.
Definition 2.2.9 ([Ves07b]) Alternative structure - asks the execution of the CA component
if the condition c is true, else asks the execution of the CB component.
Definition 2.2.10 ([Ves07b]) Repetitive structure - asks the execution of the CRepetitive com-
ponent while the condition c is true. If the condition is false the execution of the CRepetitive
component is finished and the execution continues with the CB component.

Several examples are given in the thesis to exemplafy our approach.

2.3 Conclusions

Two algorithms for construction component configurations based on backtracking have been
presented in this chapter: one that is based on input data dependencies and the other is
based on temporal restraints. A component assembly execution model was presented. An
extention of the previously defined execution model with new rules for execution is another
contribution of this chapter. Some of the original results presented in this chapter have been
reported in the papers [FM04, Ves06, Ves07a, Fan05, Ves07b].

Further work may be done in the following directions: generating the component con-
figurations containing a selected tasks from an available set and checking if the constructed
component configuration supports a given sequence of tasks.
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3 Automata–based composition approach

Simple Component Selection Problem using automata representation is discussed in this chap-
ter. Component system construction is done in two different ways: the first approach uses
components and data dependencies between involved components and the second approach
uses the task of the components. The first construction approach provides the data flow of
the obtained system(s) and the second approach also provides the control flow.

3.1 Input data–based construction

In [PMP04] the component system is modeled as a finite automaton, where components are
represented as states and information flows as transitions. The discussion from Section 1.3
about automata representation and the two approaches of component–based systems con-
struction ([PMP04] and [MPP04]) revealed some drawbacks (disadvantages) of the second
proposal. We have modified the algorithm from [PMP04] in order to generate all the non-
deterministic finite automata. Also, the final constructed system have only live data. This
property is checked after building the consistent system. The construction of the model is
described in what follows.

3.1.1 MakeAllModels algorithm

The entities involved in the component system definition are presented in Section 2.1.
The MakeAllModels algorithm [FMD06] generates all the component–systems from a

set of available and specified components. A backtracking algorithm is used. The obtained
solutions are represented as automata.

The first component that is used in the component–based system is a source component
(see Definition 2.1.1). A component is added to the solution if it was not already used and
all the inputs of the component are provided for the tasks to be executed. A set of already
used inputs is memorized (i.e. the number of already used inputs noUsedInputs, the set
setUsedInputs of already used inputs). A component configuration system is found when
the last component added to the solution is a destination component (see Definition 2.1.2).
The composition rules from Section 2.1.3 are used but using the automata representation.

The included examples in this thesis compute different configurations: the number of all
solutions (no restrictions), the number of solutions without lost data, the number of solutions
with only one provider/inport and the number of final solutions. The first example obtaines
only one valid solution (with all the restrictions satisfied), and from the second set of available
components no valid solution may be obtained.

3.2 Task–based construction

An algorithm that builds a finite automata–based model of a component–based system is
proposed in [PMP04]. The algorithm checks the consistency of the model during its con-
struction from a given set of components. We state before that the model from [PMP04] has
some drawbacks regarding the solution given, as compared with the model from [MPP04]. In
this section a new algorithm based on [MPP04] specification is presented, trying to overcome
the disadvantages from the previous model [FMD06]. The basic steps are used but the in-
tegration of a component into the solution is different. The algorithm generates all possible
configurations from a set of components.

A component is specified [MPP04] as follows:
Definition 3.2.1 ([MPP04]) A component is specified by the following characteristics: Com-

ponent id and Interface.
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A component may contain one or several class definitions, services, modules, even code, in
a structural programming way (procedures, functions) a.s.o. The interface of the component
should therefore, describe all the exported features of the component. The services provided
by the component should be seen as functions, so the interface will specify a list of function
signatures. We will conclude by saying that a component interface has the general form:

Interface = [Domain, List of signatures],

where the Domain describes the classes, modules and other data structures definitions pro-
vided by the component.

3.2.1 ControlFlow and DataFlow Syntactic Composition algorithm

This section contains the proposal of a new algorithm to construct all the component–based
software systems as finite automata–based models. The obtained configurations are syn-
tactically correct. By syntactically correct configuration we mean no semantic involvement,
but just the way to connect the components together, the mechanical process of “wiring”
components together (component integration).

Consider the component system CS = {C1, C2, ..., Cn}, in which every component Ci is
specified as in the previous Definition 3.2.1. The first task that is used is a task of a source
component (see Definition 2.1.1). The basic steps from the [FMD06] algorithm are applied
but some changes are made. The final solution is composed not by the id of components but
by the tasks. There are some extra properties that this algorithm has than the [FMD06]: the
tasks from a component may be executed at different execution times and not sequential as
in the previous model.

A task is added to solution if it was not already used and all the inputs of the task are
provided. A component–based system is found when the last task added to solution is a task
of a destination component (see Definition 2.1.2). The solution contains task from the set
of available components. The solution array contains tasks and not components as in the
previous proposal from Section 3.1.

Regarding computation of transitions there is an extra condition: for a transition (mC, d) →
c it is not allowed in the solution to have a transition (nC, d) → c, where mC and nC are
from CS, with mC 6= nC. This condition assures that there is only one provider/port.

A major improvement from the previous two models [PMP04, MPP04] and the [FMD06]
model is related to data flow and control flow: the algorithm provides also the data flow (by
transitions) and the control flow (tasks to be executed, and in what order).

The data flow and control flow are both provided for the examples given in the thesis.

3.3 Conclusions

In this chapter we have proposed two approaches for component configurations construction
using automata representation: one that is based on input data dependencies and the other is
based on task dependencies. The second approach provides also the data flow and control flow.
The chapter is based on the original work published in the papers [FMD06, VM06b, VM06a].

Further work can be done in the following directions: checking the behavior of components
(to ensure that the assembled system does what is required) after syntactic composition and
implementing a tool to build the syntactic model for a system of components and to analyze
it based on its behavior.
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4 Artificial intelligence–based composition approach

Genetic Algorithms and Genetic Programming–based approaches are used to investigate Sim-
ple Component Selection Problem. Each approach has different purpose: evolving components
execution order and analyze the component composition. A component–based system is mod-
eled using P–Systems. Rules for the Membrane Computing are applied.

4.1 Genetic Algorithms–based approach

4.1.1 Genetic Algorithms to generate Component Execution Order

A challenge in component–based software development is how to assemble components effec-
tively and efficiently. A new approach to compute component execution orders using Genetic
Algorithms (GA) is presented in this section.

Unlike previous work [FM04] which uses a backtracking algorithm to determine the exe-
cution order for system components, this proposal [FD05a] designs an execution order using
evolutionary methods.

We want to find which component should be first executed and which is the order in
which the components execute. We evolve arrays of integers which provide a meaning for
executing the components within a system.

We denote this approach Evolving Components Execution Order (ECEO). Each in-
dividual is a fixed-length string of genes. Each gene is an integer number, from 0 to
NumberOfComponents. These values represent indexes order of the components. They
will indicate the time moments for execution. Some components may be executed earlier and
some of them are executed later. Therefore, a chromosome must be transformed so that it
has to contain only the values from 0 to Max, where Max represents the number of differ-
ent time moments (at one time moment it is possible that one or more components will be
executed).

Several experiments are presented in the thesis. The number of evolved orders found with
GA is compared to configurations number obtained with the backtracking algorithm from
[FM04]. Numerical experiments show that the GA performs similarly and sometimes even
better than standard backtracking approaches for several human-defined systems.

4.1.2 Genetic Algorithms to analyze Component Composition

In this approach we use the component model from [PMP04, FMD06]. The current [FD06b]
proposal is obtained from an already developed automata-based model. We use the same
features and properties from the given model but encoded into an evolutionary representation.
The mapping steps from an automata–based model to a genetic–based model are given.

The proposed model uses a population of individuals, each individual being represented by
a string of genes. The length of a string (or the chromosome length) is equal to the components
number that is used by the system. Each gene corresponds to a certain component and it
contains a number of ales equal to the number of outputs for corresponding component.
Each ale represents the component index that uses the respective outport for the current
component.

Numerical experiments are performed. For each experiment the best chromosome that
encodes the optimal configuration is described. Also the corresponding automaton is pre-
sented.
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4.2 Genetic Programming–based approach

4.2.1 Multi Expression Programming–based approach

Multi Expression Programming (MEP) is a Genetic Programming (GP) [Koz92, Koz94,
GPW] variant that uses a linear representation of chromosomes. MEP individuals are strings
of genes encoding complex computer programs. A unique MEP feature is its ability of en-
coding multiple solutions of a problem in a single chromosome.

Standard MEP [OD02, OGO04] algorithm uses steady–state evolutionary model [Sys89]
as its underlying mechanism. The MEP genes are represented by substrings of variable length.
The number of genes in a chromosome is constant and it represents the chromosome length.
Each gene encodes a terminal (an element in the terminal set T) or a function symbol (an
element in the function set F ) [Fer01].

MEP is applied to determine optimal component combinations. Having the components
involved in the composition for obtaining the complex system, we have applied MEP algo-
rithm to components, where the operations are the two operations for component composi-
tion: parallel and serial composition. See Section 2.1.1 for details.

Our pattern is represented as a MEP component–based program whose elements are
compound during the EA evolution. We have chosen Multi Expression Programming for rep-
resenting the patterns because MEP provides an easy way to store a sequence of instructions
(elements). In our approach, MEP stores only one solution (pattern) per chromosome.

Representation. The set of terminals are: T = {c1, c2, c3, c4, ..., cn}, where ci is the i− th
component and the set of primitive functions: F = {+,−}, where “+” represents a serial
composition and “−” represents a parallel composition.

A didactical example is presented in the thesis.

4.2.2 CGP–based approach

This section contains an approach for behavior component composition using Cartesian Ge-
netic Programming, enabling behavioral system composition from a set of specified compo-
nents. The mapping elements from a system involving components to CGP, the representation
and the algorithm are given in the thesis.

Cartesian Genetic Programming (CGP) [MT00] was introduced as an alternative method-
ology to standard Genetic Programming (GP), and secondly, to extend GP to non–Boolean
problems and to show that it is a useful method for evolving programs with other data types
[MT98, Mil99]. CGP is Cartesian in the sense that the method considers a grid of nodes that
are addressed in a Cartesian coordinate system. The definition of a Cartesian Program (CP)
is given in the thesis.

The definition of a CP and the definition of a component have given the idea that a
system involving components might be generated using CGP, in which we have identified: the
components are the nodes from the grid, and the components execution order, the execution
rules and the component interconnections are incorporated in the genotype.

Given a set of components that are integrated into the final system we evolve the solution,
taking into account the component composition behavior. Several types of experiments are
performed: the first type uses a genotype-phenotype and requires that all nodes must be
connected to each other and the final solution doesn’t contain duplicate components, and
the second type uses a genotype-phenotype and requires that all nodes are connected to each
other, and we have multiplicity of components in the grid. The best chromosome that encodes
the optimal configuration (for each experiment) is presented.
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4.3 P–Systems–based approach

A new component–based model using P–Systems is presented in this section. The proposed
approach is a technique that uses Membrane Computing to design a component–based model.
The method uses symport/antiport rules to describe the computation of the involved com-
ponents and an extra rule to transfer the result of a component to the inport of another. An
example (with two model executions) reveals how to design a component–based system using
P–Systems.

Membrane Computing (MC) [PRSZ02, Pau01b, Pau01a] is part of the powerful trend in
computer science known under the name of Natural Computing. Its goal is to abstract com-
puting models from the structure and the functioning of the living cells, as well as from the
way the cells are organized. These models, called P–Systems, were investigated as mathemat-
ical objects, with the main goals of being a (theoretical) computer science type: computation
power and usefulness in solving computationally hard problems. The paper [Pau00] was first
circulated on web and comprehensive information may be found in the web page [PSy] or in
[Pau02]. In MC area [FPPJ05] there are two main classes of systems: cell-like and tissue-like
P–Systems. The former type is inspired from the cell organization, the latter one mimics the
“collaboration” of cells from tissues of various kinds.

In [FD06a] we have used cell-like P–Systems with symport/antiport rules. The commu-
nication between compartments is done by means of uniport rules.

Subsection 4.3.1 contains the definition of a P–System and the description of the used
rules: symport rules and antiport rules. We introduce an extra rule that performs for each
P–Subsystem when no rules may be applied. This rule is placed in the output membrane
of each P–Subsystem (component) and it fires when the computation in that component is
finished. This rule is used for communicating the result of that component to the input of
another component (P-Subsystem or the final result system).

In Subsection 4.3.2 a P–System encoding a composition process is described.
Subsection 4.3.3 contains an example of a component–based system designed as a P–

System. The component–based system given as example decides if the number 6 ∗Nr1 (with
Nr1 given ) is divided by the numberNr22 (withNr2 given). The system has two inputs Nr1
and Nr2, and an output yes or no. The system is designed using P–Systems: the components
are transformed into P–Subsystems and the communication of data between components is
done using a special rule placed in the output membrane of each component. This rule is
applied when the computation of the subsystem is finished. The initial configuration of the
P–System and the rules are given. There are three components involved in the computation.

Subsection 4.3.4 describes the first model execution. We compute the result of the P–
System with the input values Nr1 = 5 and Nr2 = 4. The result of the computation is no
that means 30 is not divided by 16.

Subsection 4.3.5 described the second model execution. We compute the result of the
P–System with the input values Nr1 = 3 and Nr2 = 3. The result of the computation is yes
that means 18 is divided by 9.

4.4 Conclusions

Simple Component Selection Problem was investigated in this chapter. The proposed ap-
proaches are based on artificial intelligence techniques. A genetic algorithms–based approach
is used to evolve component execution orders and to analyze component integration. A genetic
programming–based approach is used to determine optimal component combinations using
Multi Expression Programming and Cartesian Genetic Programming. A new approach that
uses Membrane Computing (P–Systems.) to design a component–based system is proposed.
The chapter is based on the papers [FD05b, FD05a, FD06b, FD06c, FD06a].
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5 Multicriteria Component Selection Problem

The Multicriteria Component Selection Problem using various criteria is investigated in this
chapter. A Greedy approach, a Branch and Bound and different Genetic Algorithms rep-
resentations are proposed. The Multicriteria Component Selection Problem is modeled as a
multiple objective optimization problem. Comparisons between the proposed approaches are
discussed.

5.1 Greedy–based approach

In this section we address the problem of automatic component selection. In general, there
may be different alternative components that can be selected, each coming at their own cost.
We aim at a selection approach that guarantees the optimality of the generated component
system, an approach that takes into consideration also the dependencies between components
(view as restrictions on how the components interact).

We adapt a greedy approach by introducing a new selection function. The improved selec-
tion decision takes into account not only the cost of the components but also their interplay.
The case study shows that considering the dependencies between the components the cost
of the obtained solution may be higher due to the new selection improvement condition, but
no dependencies between the selected components exist. In what follows we discuss the used
selection functions.

Subsection 5.1.1 describes the Greedy selection functions: a ratio–based selection function
and a component dependencies–based selection function.

The selection function is usually based on the objective function. We consider the propor-
tion of number of requirements that the component ci provides (from the set Remaind Set of
Requirements – RSR) to the cost of the component as a measure to maximize our heuristic
decision:

|SRci
⋂
RSR|/cost(ci) is maximal.

We denote this approach GreedyR from Greedy using the ratio selection function.
The interdependencies are an important factor when considering selection of a component

from an available set. This first selection function does not consider the relations between
requirements of the selected components.

The selection function [Ves08b] is augmented by using the dependencies between the
selected components. To specify the component dependencies we introduce a dependency
matrix for each component from the given set SC of components. We are only interested in
the provided functionalities of the components that are in the set of requirements SR for the
final system. We take into account only the dependencies between these requirements.

The new selection function takes into account the dependencies and selects the compo-
nents such that |SRci

⋂
RSR|/cost(ci) is maximal and the number of dependencies of the

component ci considered is minimal. We denote this approach GreedyRD from Greedy
using ratio and dependencies selection function.

5.1.2 Example

Starting for a set of six requirements and having a set of ten available components, the
dependencies between the requirements of the components, the goal is to find a subset of the
given components such that all the requirements are satisfied.

The set of requirements SR = {r0, r1, r2, r3, r4, r5} and the set of components SC =
{c0, c1, c2, c3, c4, c5, c6, c7, c8, c9} are given.

In Table 1 the cost of each component from the set of components SC is presented.
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Component c0 c1 c2 c3 c4 c5 c6 c7 c8 c9

Cost 8 7 6 9 6 14 15 14 7 14

Table 1: Cost values for each component in the SC

Table 2 contains for each component the provided services (in terms of requirements of
the final system).

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9
r0

√ √ √ √

r1
√ √

r2
√ √ √

r3
√ √

r4
√ √ √ √

r5
√ √ √ √

Table 2: Requirements elements of the components in SC

Table 3 contains the dependencies between each requirement from the set of requirements.

Dependencies r0 r1 r2 r3 r4 r5

r0
√

r1

r2
√ √

r3
√

r4
√

r5
√

Table 3: Specification Table of the Requirements Dependencies

The final solution (using the ratio–based selection) contains the components c8, c0, c1 and
c7, components that satisfied all the requirements from the set of requirements SR. The cost
of the final solution 36 is the sum of the cost of the selected components. The solution (using
the component dependencies–based selection function) contains the following components:
c4, c0, c9 and c1. The cost of the final solution 35, i. e. the sum of the cost of the selected
components.

The two approaches find different solutions with different final cost. Although the same
solution could be found (for a proper instance of the given set of requirement, components and
component costs and dependencies) the first approach may not be the correct solution do to
the fact that the dependencies are not considered. The improvement of the selection function
by using also the dependencies between the considered components helps us to compute the
correct and accurate solution.

5.2 Branch and Bound–based approach

Subsection 5.2.1 contains the descriptions of the Branch and Bound functions. The main
problem is what node for the list should be selected at a given moment in order to obtain the
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shortest solution of the problem. Each node n from the list has an associated value (cost),

f(n) = g(n) + h(n),

where:

• g(n) represents the cost of the components that were used until now (from the root
node to node n) to construct the solution;

• h(n) represents the number of remain requirements needed to be satisfied (to reach the
final solution starting from the current node n). The function h is called heuristics
function.

Subsection 5.2.2 contains the example from Subsection 5.1.2. Decimal scaling to normalize
the cost of the components is used. Table 4 contains the normalization of the number of
remain requirements to be satisfied.

No. of remaind requirements Normalization Value

0 0/6 0

1 1/6 0.16

2 2/6 0.33

3 3/6 0.50

4 4/6 0.66

5 5/6 0.83

6 6/6 1

Table 4: Normalization of the number of remaind requirements to be satisfied.

In what follows we discuss the application of the Greedy algorithm to our problem in-
stance. The first solution description uses the selection function using the g and h functions
descibed above. Our selection function considers the sum of number of remaind requirements
to be satisfied and the cost of the already selected components plus the cost of the new se-
lected component: (g + h)is minimal. The obtained solution contains the components: c9,
c8 and c0. The cost of the final solution 29 is the sum of the cost of the selected components.
The second solution description uses the selection function using the g and h functions de-
scibed above but also takes into consideration the dependencies. The obtained solution with
all the requirements satisfied consists of the follosing components: {c4, c0, c7, c1}. The cost
of the solution is 35.

Results obtained by Branch and Bound algorithm are described in what follows. The first
solution description uses only the g and h function values to guide the selection. The obtained
solution consist of: {c8, c6, c2} having the cost 0.28. In what follows the second method to
select the best solution is described. It uses not only the function values of g and h but also
the dependencies between components. The obtained solution taking into consideration also
the component dependencies is: {c4, c2, c6, c1}. The cost of this solution is 34.

5.3 Genetic Algorithms–based approaches

5.3.1 Requirements–based chromosome representation

Multiobjective optimization problem using weighted sum method

In this proposal we approach the Multicriteria Component Selection Problem involving
dependencies between components (requirements). We formulate the problem as multiobjec-
tive, involving 2 objectives and one constraint. The approach used is an evolutionary com-
putation technique, a steady-state evolutionary model. The experiments and comparisons
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with Greedy approach show the effectiveness of the proposed approach. There are several
ways to deal with a multiobjective optimization problem. In this proposal the weighted sum
method [Kd05] is used. We denote this approach EArWS from the Evolutionary Algorithms
requirements–based using weighted sum method. A more detailed discussion on the proposed
approach may be found in [Ves08d].

A solution (chromosome) is represented as a string of size equal to the number of re-
quirements from SR. The value of i− th gene represent the component satisfying the i− th
requirement. The values of these genes are not different from each other (which means, same
component can satisfy multiple requirements).

The used example is the one described in Section 5.1.2. Running the algorithm we could
find more solutions (having the total cost 35) than the Greedy approach: [4 0 9 1 0 1 ],
[4 9 9 1 0 9 ], [8 2 7 8 0 7 ], [4 0 5 5 0 1 ], [4 2 6 8 6 1 ], etc.

The result computed with GreedyRD algorithm and with Evolutionary Algorithm (de-
noted EArWS from Evolutionary Algorithm with requirements representation and that used
weighted sum method) is stated in Table 5.

Algorithm r1 r0 r4 r2 r3 r5 cost no

GreedyRD 4 0 9 8 0 9 35 4

EArWS
best 8 2 6 8 6 6 28 3
worst 4 2 7 8 0 9 55 6

Table 5: GreedyRD and EArWS Solutions

Multiobjective optimization problem using Pareto dominance principle

The Multicriteria Component Selection Problem is approached in this section. We formu-
late the problem as multiobjective, involving 2 objectives: the number of used components
and the cost of the involved components. We use the Pareto dominance principle [AJG05] to
deal with the multiobjective optimization problem.

In this proposal [Ves08e] we have not considered the dependencies because at end all
the dependencies are satisfied due to the fact that all requirements must be satisfied and
the dependencies are only between them. The approach used is an evolutionary computation
technique, a steady-state evolutionary algorithm. The experiments and comparisons with the
Greedy approach show the effectiveness of the proposed approach. We denote this approach
as EArP from Evolutionary Algorithm with requirements representation and that uses Pareto
dominance principle.

A solution (chromosome) is represented as a string of size equal to the number of re-
quirements from SR. The value of i− th gene represent the component satisfying the i− th
requirement. The values of these genes are not different from each other (which means, same
component can satisfy multiple requirements). The following two objective functions are
considered: the total cost of the components used, fCost, and the number of components
used, fNoComp.

A short and representative example is presented in what follows. Starting for a set of six
requirements and having a set of twenty available components the goal is to find a subset of
the given components such that all the requirements are satisfied. The set of requirements
SR = {r0, r1, r2, r3, r4, r5} and the set of components SC = {c0, c1, c2, ... c19} are
given. Table 6 contains for each component the provided services (in terms of requirements
of the final system).

In the following we discuss the application of the Greedy algorithm using the first selection
function from Section 5.1.2. The solution consists of five components and has the total cost
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Component re-
quirements

r0 r1 r2 r3 r4 r5 cost

c0
√ √

25

c1
√

7

c2
√

3

c3
√

3

c4
√ √ √

17

c5
√ √

12

c6
√ √ √ √

37

c7
√

5

c8
√

27

c9
√ √

8

c10
√

15

c11
√ √ √ √

34

c12
√ √

25

c13
√

13

c14
√ √

26

c15
√

6

c16
√

13

c17
√ √

12

c18
√

28

c19
√

5

Table 6: Requirements elements of the components in SC and the costs

71, with the representation: [c5, c5, c0, c2, c7, c14].
Results obtained by the EArP approach are discussed in what follows. The parameters

used by the evolutionary approach are as follows: mutation probability 0.7; crossover prob-
ability 0.7 and number of different runs 100. We have performed 3 different experiments
considering different population sizes and different number of generations.

For the first experiment we have considered the following parameters: population size is
10 and number of iterations is 10. We can observe that in some situations we are obtaining
10 nondominated solutions which indicate that the whole final population is nondominated.
Parameters used in the second experiment are as follows: population size 20 and number of
iterations 20. For this experiment, we have obtained 20 nondominated solutions at the end of
each run. Some of the solutions are similar, but it is important to note that all the solutions
are finally becoming nondominated, which shows that a greater number of iterations and a
bigger population size are conducting to better results. The third experiment performed has
considered the following parameters: population size 50 and number of iterations 50. The
number of nondominated solutions obtained in each of the 100 independent runs is 50.

While compared with the previous experiments we notice that we are getting a lower
number of different solutions while cumulation the results obtained in all the 100 runs, but
the quality of these solutions is improving much more while compared with first experiment
and the second one. For instance, in the first experiment the greater value for the cost
objective is 83 and in the second experiment is 71 while in the third experiment this is not
more than 51. So, by increasing the number of iterations and the populations size we can
observe that the diversity of the final solutions is decreasing but their quality is improving
very much. But we should also mention that the best solution in terms of cost (which is 46)
or number of components (which is 2) is obtained in all experiments.
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The results computed with Greedy Algorithm and with Evolutionary Algorithm stated
in Table 7. The last two columns contain the final cost and the number of used components
in the presented solution.

Algorithm r1 r0 r4 r2 r3 r5 cost no

GreedyR 5 5 0 2 7 14 71 5

EArP
best 17 17 11 11 11 11 46 2
worst 17 17 0 9 7 0 50 4

Table 7: GreedyR and EArP Solutions

5.3.2 Components–based chromosome representation

We formulate the problem as multiobjective, involving 3 objectives. The approach [VG08a]
uses principles of evolutionary computation and multiobjective optimization [Gro05] com-
bined with a greedy approach used to fine tune the solutions obtained by applying genetic
operators (mutation and crossover). The experiments and comparisons with Greedy tech-
nique (GreedyR algorithm) show the effectiveness of the proposed approach. We denote this
approach EAcP from Evolutionary Algorithm with chromosome representation and using
Pareto dominance principle.

The following three objective functions are considered: the number of remain require-
ments to be satisfied, fRemReq ; the total cost of the components used, fCost ; the number
of components used, fNoComp. All objectives are to be minimized. There are several ways
to deal with a multiobjective optimization problem. In this proposal the Pareto dominance
[AJG05] principle is used.

A solution (chromosome) [VG08a] is represented as a string of size equal to the number of
components from SC. The value of i-th gene represents the set of requirements the component
satisfies.

Solution fine tuning. An extra operation is used to fine tune the individuals after crossover
and mutation. The fine tuning process consists of eliminating the requirements (in fact,
the corresponding components) which are satisfied multiple times. We use a greedy–based
heuristic to select the components that will have the requirements removed.

We have considered again the example from Section 5.3.1. The results obtained with the
GreedyR algorithm is already presented. Results obtained by the Evolutionary Algorithm are
presented in what follows. We have performed 3 different experiments considering different
population sizes and different number of generations. For all experiments we used the same
values for mutation and crossover probabilities which are: mutation probability 0.7; crossover
probability: 0.7 and number of different runs 100.

For the first experiment we have considered the following parameters: population size:
10; number of iterations: 10. In some situation we are obtaining 10 nondominated solutions
which indicate that the whole final population is nondominated. Parameters used in the
second experiment are as follows: population size: 20; number of iterations: 20. The third
experiment performed considers the following parameters: population size: 50; number of
iterations: 50.

The approach [VG08a] described in this section combines the convergence efficiency of
and evolutionary approach with a greedy approach whose role is to fine tune in an efficient
way the solutions after the application of the genetic operators. For the hybrid evolutionary
approach, one can deduce that we are obtaining better results with a smaller population and
a smaller number of individuals which shows that these parameters are not influencing that
much the final result.
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5.3.3 Comparisons of the evolutionary Pareto dominance–based approaches

A short and representative example is presented in this section to help compare the requirements–
based and components–based representations that use Pareto dominance principle. Starting
for a set of six requirements and having a set of twenty available components the goal is
to find a subset of the given components such that all the requirements are satisfied. The
example is provided in details in the thesis.

We have performed different experiments [VG08b] considering different population sizes
and different number of generations. For all experiments we used the same values for mutation
and crossover probabilities which are: mutation probability 0.7; crossover probability 0.7 and
number of different runs 100.

In order to compare 2 sets of nondominated solutions we introduce a measure. For 2 sets
A and B of nondominated solutions, the dominance measure (denoted DM) gives the number
of solutions from the set A which dominates solutions from the set B (denoted Dominates (A,
B)) divided by the sum between number of different solutions (denoted DifSol) from A and
the number of different solutions from B. Formally, the measure can be stated as follows.
Definition 5.3.2 ([VG08b]) Dominance measure (denoted DM)

DM(A,B) =
Dominates (A, B)

DifSol(A) + DifSol(B)
.

Similarly, we have:

DM(B,A) =
Dominates (B, A)

DifSol(A) + DifSol(B)
.

Remark 5.3.3 DM takes values between 0 and 1. The closer the value to 1 the better the
results.

We have considered all the nondominated individuals obtained in all 100 runs.
For the first experiment we have considered the following parameters: number of genera-

tions: 10 and population size varying from 10 to 50 (we report the results obtained for 10, 20
and 50 individuals). A comparison between the two approaches in terms of DM measure is
performed. The solutions obtained by the EArP approach are better than the ones obtained
by the EAcP approach. It can also be deduced that the population size is not playing an
important role in the evolution. Even with 10 individuals and 10 generations the results
obtained are same like the ones obtained with 100 individuals in 10 generations.

For the second experiment we fix the population size at 10 and we let the number of
generations to vary from 10 to 50. We report the results obtained for 10, 20 and 50 individuals.
A comparison between the two approaches in terms of DM measure is performed.

From both experiments, EArP is obtaining better results than EAcP [VG08b]. We should
also mention that the solutions obtained by EArP for 10 iterations and 10 individuals are
not improving neither by increasing the population size nor the number of generations. This
means that the approach is performing very well even with these parameter values.

5.4 Conclusions

In this chapter we have proposed various approaches for construction component configu-
rations using various criteria. A Greedy algorithm and two selection functions were pro-
posed. Branch and Bound approach was used to solve the Multicriteria Component Se-
lection Problem. Various genetic algorithms representations are discussed and compared.
The chapter is based on the following papers that are published in international conferences
[Ves08e, VG08a, Ves08c, VG08b, Ves08b, Ves08d].
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6 Component Adaptation Architectures. A Formal Approach

In any component selection method, it is unrealistic to expect a perfect match between needed
components and available components. The available components are adapted (adapting
component signature properties, function adaptation, behavior adaptation) to meet the spe-
cific needs of the user. We discuss in this chapter function adaptation and four adaptation
architectures are proposed. The behavior adaptation constraints for each architecture are
given.

6.1 Correctness and component formal description

In a program P we distinguish [Fre05] three types of variables, grouped as three vectors X,
Y and Z. The input vector X = (x1, x2, ..., xn) consists of the input variables. The input
variables denote the known data of the given problem solved by the program P. We may
suppose that they do not change during computation. The output vector Z = (z1, z2, ..., zm)
consists of those variables which denote the results of the problem.

The specification of the program P is the pair formed from the input predicate ϕ(X) and
the output predicate ψ(X,Z) : Specification : [ϕ(X), ψ(X,Z)].

A more formal component specification (than the ones described in the previous chapters)
is given in what follows. A component specification is given by: the set of input variables -
X; the set of output variables - Z; input predicate - ϕ(X) and output predicate - ψ(X,Z).
Definition 6.1.1 A Component specification is given by:
ComponentName = [X = {inputV ar}, Z = {outputV ar}, ϕ(X), ψ(X,Z)].

6.2 Component function adaptation architectures

This section presents four adaptation architectures to be used when selecting components to
obtain a larger system and there is a gap between the required and the provided functionalities
in the selected components. There are cases when an adaptation of the involved components
may provide the required functionality.

6.2.1 Adaptation architectures

The following adaptation architectures offer a new mechanism to compose different selected
components in order to obtain a new component that fulfills the user requirements. Each new
component is composed by using two selected components (except the repetitive adaptation
architecture) and by taking into consideration the specification of the used components.

Serial (or sequential) adaptation architecture - SAA.
The serial adaptation architecture is based on the assumption that the output of the C1

component is the input of the C2 component. The behavior conditions state that for those
values a of X for which the problem may be solved we have: the precondition of C1 holds,
the postcondition of C1 makes the the precondition of C2 to hold, and from the previous
two conditions, the postcondition of C2 will make the postcondition of the architecture to be
true.

The new component composed using SAA from the two selected components is:

CCAA = [{i}, {o}, ϕS(X), ψS(X,Z)],

where ϕS : ϕ1(i), i ∈ X1 and ψS : ∃z ∈ Z1|ψ1(i, z) ∧ ψ2(z, o).
Parallel adaptation architecture - PAA.
The assumption of the parallel adaptation architecture is that the selected components

involved in the composition satisfy only partially the user requirements. The union of the
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outputs of the two selected components can satisfy the user requirements. The behavior
conditions state that the user requirements (precondition) can be decomposed into two re-
quirements (preconditions), and that the union of the two outputs of the selected components
makes the postcondition of the adapted component to hold (for those values for which the
problem may be solved).

The new component composed using PAA from the two selected components is:

CPAA = [{i1, i2}, {o1, o2}, ϕP (X), ψP (X,Z)],

where ϕP : ϕ1(i1) ∧ ϕ2(i2) and ψP : ψ1(i1, o1) ∧ ψ(i2, o2).
Alternative adaptation architecture - AAA.
The alternative adaptation architecture is based on the assumption that the precondition

of the adapted components is only a part of the precondition of the user requirements. The
requirements of the user are implemented using two separate cases. The behavior adaptation
constraints state that: if the precondition of the adapted component is true then one precon-
dition of the C1 or C2 components may be satisfied, if the precondition and postcondition
of one of the components are satisfied then the postcondition of the adapted components
will be true, and the last constraint, only one of the two preconditions of the two selected
components may be true at the same time.

The new component composed using AAA from the two selected components is:

CAAA = [{i}, {o}, ϕA(X), ψA(X,Z)],

where ϕA : ϕ1(i) ∨ ϕ2(i) and ψA : ψ1(i, o) ∨ ψ2(i, o), where X = X1 ∪X2 and Z = Z1 ∪ Z2.
Repetitive adaptation architecture - RAA.
Let rc (RepetitiveCondition) be the repetitive condition and bFalse and bTrue values

that will keep rc unmodified (in the current state). In the repetitive adaptation architecture
an extra condition for the repetitive structure is provided. The behavior conditions state
that if the precondition of the adapted component holds then the precondition of the se-
lected component will also hold; if the precondition of the adapted component holds and the
postcondition of the selected component is true and the extra condition rc is true then the
precondition of the adapted component will remain true, and (the last behavior condition)
if the precondition of the adapted component holds and the postcondition of the selected
component is true and the extra condition rc does not hold then the postcondition of the
adaptive component will be true.

The new component composed using RAA from the two selected components is:

CRAA = [{i}, {o}, ϕR(X), ψR(X,Z)],

where ϕR : ϕ1(i), i ∈ X and ψR : ∃o ∈ Z : ψ1(i, o) ∧ ¬rc.

6.3 Conclusions

Component function adaptation has been investigated in this chapter. When developing a
system using pre–existing components the provided functionalities of the available set of com-
ponents may not cover all the user requirements, the adaptation is used. Serial (Sequential)
Adaptation, Parallel Adaptation, Alternative Adaptation and Repetitive Adaptation are the
introduced adaptation architectures to provide a formal mathematical model for component
function adaptation. Behavior adaptation constrains are discussed for each architecture. The
chapter is based on the paper [Ves08a].
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7 Metrics in Component–Based Software Engineering

Metrics have become essential in some disciplines of software engineering. Metrics are used
for assessing the quality and complexity of software systems, as well as getting a basic un-
derstanding and providing clues about sensitive parts of software systems. In this chapter
we adapt and propose metrics to quantify quality attributes of a component configuration.
Metrics are also used to best select a component assembly from an available set.

7.1 New metrics to quantify quality attributes in Component–Based Soft-

ware Engineering

The interaction among components in an assembly is essential to the overall quality of the
system. When integrating components into a system assembly, it would be useful to predict
how the quality attributes for the whole system will be. In order to predict and to asses
quality attributes, the usage of software metrics is a necessity.

7.1.1 Formal Approach of Assembly

Definition 7.1.1 ([SV07b]) An assembly is a binary relation denoted by DR = (C,D), D ⊆
C ×C, where C is a set of components and D is the relation that contains the dependencies
between components. There is a component c0 ∈ C with a special role: to start the system
execution.
Definition 7.1.2 ([SV07b]) A dependency is a pair d = (c1, c2) ∈ D with the meaning that
the execution of c1 needs some services provided by c2 (in other words, c1 depends of c2).

We model a component–based system (an assembly of components) as a directed graph
(DR) in which the vertices are the components (the set C) and the edges are the dependencies
(the set D) between components. In this way we map each assembly to a directed graph.

Using directed graph view of the assembly is difficult to provide the depth and breath of
the dependencies between involved components. A better view implies the transformation
of the directed graph into a tree. The dependency tree construction [SV07b] is described in
detail in the thesis Dependency Tree Algorithm (DTA).

To obtained an optimal tree that contains all the paths from the directed graph represen-
tation, an additional algorithm that completes the tree is required. The proposed algorithm
is called Complete Dependency Tree Algorithm (CDTA).

7.1.2 Adapted and defined metrics

In what follows the existing metrics from object–oriented design [LK94, CK93] that were
adapted for component assemblies are presented.

In an object–oriented design, coupling is “the interconnectedness between its pieces”
[CY91]. The declaration of an object of a remote class creates a potential collaboration
between the two classes. This is measured by the metric CBO (Coupling Between Objects)
[CK93].

We consider an assembly of components, DR = (C,D), where C is a set of components
and D is the relation that contains the dependences between components.
Definition 7.1.4 ([SV07b]) A component c1 is coupled with component c2 if (c1, c2) ∈ D.
Definition 7.1.5 ([SV07b]) Coupling Between Components (CBC) of the component
c metric is the number of components with which the component c is coupled.

We are interested in coupling from the perspective of quality evaluation because an ex-
cessive coupling plays a negative role on many external quality attributes: reusability, mod-
ularity, understandability and testability.
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Definition 7.1.6 ([SV07b]) Depth Dependency Tree (DDT) of a component c0
metric. Let us consider a component cn ∈ C and the corresponding elementary chain
c0, c1, ..., cn, where c0 is the root node. The metric value of the c0 component is DDT (c0) =
n. In other words, DDT measures the length chain dependencies from a given component to
the root.
Definition 7.1.7 ([SV07b]) Breadth Dependency Tree (BDT) metric represents the
number of chains dependencies from the root to all the leafs.

We evaluate these metrics taking into account the impact on quality attributes. From this
point of view, a high value of metric DDT makes the component hard to reuse in a different
context. In addition, understandability, maintainability and testability are also affected. The
understanding of an entity requires a recursive understanding of all the components that it
depends. Moreover any change in a component c requires changes in all components that
the c depends on. A high value of the metric affects maintainability and some of its criteria
(understandability). The system tends to become increasingly complex.

Subsection 7.1.3 contains a system example, PDA - Personal Digital Assistant, to dis-
cussed the adapted and proposed metrics.

7.2 Metrics–based selection of a component assembly

The long–term success of Component–Based Development (CBD) depends on the ability to
predict the quality of the obtained systems. For this reason researchers and practitioners are
keen on developing techniques for efficient component selection and composition [CSSW04].

Software metrics that follow the assembly-centric evaluation approach are used to select
(from all obtained assemblies) the solution that best represents the system requirements.

7.2.1 Proposed Metrics

We have proposed the following two metrics for measuring coupling between components.
Definition 7.2.1 ([SV07a] ) Component Coupling Grade. The Component Coupling
Grade (CCG) of a component X which is dependent on a component Y, represents the number
of services provided by Y that X uses. In what follows we will denote this value by CCG(X,Y).
Definition 7.2.2 ([SV07b] ) Component Coupling Total Grade. The Component Cou-
pling Total Grade (CCTG) of a component X which is dependent by a set of components
C1,C2,...,Cn, represents the number of services provided by all these components that X uses.

CCTG = CCG(X,C1) + CCG(X,C2) + ...+ CCG(X,Cn). (1)

7.2.2 The influence of metrics values on quality attributes

Our aim is to define metrics that are relevant in measuring the quality attributes which we
are interested in. We need these informations for choosing the solution that best represents
the system requirements.

The influence of metrics values on the quality attributes (whitch we consider important
for the assembly evaluation) is presented in Table 8. We use the following notations: m for
metric low value, M for hight value of the metric, “+” for positive influence and “−” for
negative influence. For example a low value of IDC influences positively the reusability of
the component.

A threshold is a limit (high or low) placed on a specific metric. All the above metric
values scale between 0 and 1, except the CCTG and CCG. We set the value of the threshold
at 0.5.

An example to discuss the proposed metrics is presented. In this example, nine compo-
nents have been found as candidates. We add two more components to complete the final
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Reusability Functionality Understandability Maintainability Testability

PSU m/+ m/- m/+ m/+ m/+

RSU m/+ - m/+ m/+ m/+

CPSU m/+ m/- m/+ m/+ m/+

CRSU m/+ - m/+ m/+ m/+

IDC m/+ m/- m/+ m/+ m/+

IIDC m/+ - m/+ m/+ m/+

OIDC m/+ m/- m/+ m/+ m/+

AIDC m/+ - m/+ m/+ m/+

CCG M/- M/+ M/- M/- M/-

CCTG M/- M/+ M/- M/- M/-

Table 8: The influence of metrics values on quality attributes

system: a Read (R) and a Write (W ) component. The used algorithms [FMD06, VM06b]
provided several solutions. We only present two solutions and discuss the different metrics
values for each system–solution and their influences on the quality attributes.

The metrics values for the first solution are around the medium value, for all quality
attributes. For example, the majority of the components have a very high functionality in
the system and at the same time they can offer new functionalities for the future improvement
by adding new provided services (influences the maintainability attribute). Regarding the
coupling metrics we can remark that there is a maximum limit that is not very high and we
may say that the maintainability and reusability are not strongly influenced. The assembly
values metrics suggest that the solution is not considered to be the “best” for every quality
attribute, but a medium “best” solution for the overall system. The value of the AIDC
metric is close to 1 but we must take also into consideration the CCTG metric to decide
which solution best represents our future needs (if we would like to improve and add new
functionality or if we just want to have a good functionality for the system).

The second solution contains only three internal components from the set of candidate–
components. The metrics values that influence the functionality attribute are close to 1
revealing a good functionality of each component inside the system, but the other metrics
values influence negatively the other quality attributes. The 0.50 chosen threshold is exceeded
for all the computed metrics. In Table 8 we can see that a high value influences negatively
almost all the quality attributes discussed. The values of CCTG metric are relatively high
considering that there are few components in the solution. The CCTG value for the ninth
component is considered to be high yielding a very hard understandability, testability and
maintainability.

7.3 Conclusions

In this chapter we have defined a set of metrics to quantify some quality attributes of
component–based systems and a new set of metrics to select a component assembly (that
best represents the system requirements) from a set of configurations. The chapter is based
on the published papers [SV07b, SV07a].
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8 Component Backtracking and Ant Colony–based approaches

to solve TSP, Labyrinth Problem and AGAP

In this chapter we present three real problems that we have used to validate our previously
described model: Traveling Salesman Problem, Labyrinth Problem and AGAP.

8.1 Backtracking and Ant Colony Component-based approaches to solve

TSP

The Traveling Salesman Problem is designed using components in this section. The compo-
nents may be reused to solve other problems, or to solve Traveling Salesman Problem using
other techniques.

Subsection 8.1.2 presents the backtraking–based approach used to solve the TSP. The
recursive and the sequential backtracking methods are used to show a comparative analysis
of Traveling Salesman Problem models. The computational steps of the two models (recursive
model and sequential model) are described using the execution model from Section 2.2.

Subsection 8.1.3 describes the component Ant (System) Colony–based approach to solve
the TSP. The internal reasoning is presented: the iteration with all the ants and the usage
of the global update rule, and the complete tour construction for an ant; the usage of the
update local rule.

8.2 Component Ant Colony–based approach to solve Labyrinth Problem

and AGAP

The Ant Colony approach is used to design the Labyrinth Problem and the Airport Gate
Assignment Problem in this section.

Subsection 8.2.1 presents the architecture of the component–based approach for the
Labyrinth Problem, the control flow and the data flow model. The solution using compo-
nents is described: the first level of design contains initialization, computation and printing
the obtained results. The next two levels are also presented: the second level contains the
exploring ants , and the third level contains a more detail view of the PosPhAnts component
(build a solution for an ant from the first colony). At the end of this subsection we have
illustrated how the computation steps are successively executed.

Subsection 8.2.2 presents the architecture of the component–based approach for the Air-
port Gate Assignment Problem, the control flow and the data flow model. The solution
using components is described: the first level of design contains initialization, computation
and printing the obtained results, the second level contains the data generation for the greedy
algorithm, the computation of the distance flow potentials and the ant system algorithm, and
the third level contains a more detail view of the ant system algorithm computation (build
solution, cost solution computation based on the constraints, best solution computation,
and the update global rule computation). The steps of the computation of the ant colony
component model for AGAP are described.

8.3 Conclusions

Component–based models (a recursive and a sequential backtracking method) for solving
the Traveling Salesman Problem are introduced. The developed models are used to solve
Labyrinth Problem and AGAP using Ant Colony Systems. The chapter is based on the
papers [FP05, VP07, PV07b, VP06a, PV07a, VP06b].
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9 Conclusions and future work

The aim of the present PhD thesis was to be a supporting evidence to the idea that the
component configurations construction is an important research and development area in
Component–Based Software Engineering. The goal and objectives of this research are met
as supported by this thesis. This thesis focuses on the activity of component integration and
component composition. Construction component configurations by using different methods
is one of the issues this thesis discusses.

A backtracking–based composition approach is one of the used approaches. Data and tem-
poral component composition restraint configurations are proposed. A model for execution
of a component assembly and new rules for execution are also developed.

Automata–based composition approach is another approach for component configurations
construction. We have developed two different constructions: one is based on input data
dependencies and the other is based on task dependencies.

Artificial intelligence–based approach is the third approach used for construction compo-
nent configurations. Different intelligent–based approaches are used: Genetic Algorithms–
based (to analyze component integration and to behavioral component composition) and
Genetic Programming–based (to determine optimal component combinations and to design
a component–based system using P Systems).

A Greedy approach, Branch and Bound approach and Genetic Algorithms approaches are
used to develop solutions for the above stated problem but using various criteria. The used
criteria are the total cost of used components and the number of used components.

A formal mathematical model for component function adaptation is proposed. Four com-
ponent adaptation architectures for component functional adaptation are presented. The
behavior adaptation constraints for each architecture (Serial or Sequential Adaptation Archi-
tecture, Parallel Adaptation Architecture, Alternative Adaptation Architecture and Repeti-
tive Adaptation Architecture) are discussed.

A set of new metrics to quantify quality attributes of Component–Based Software Engi-
neering and to best select a component assembly from a set of configurations are proposed
in this thesis.

The developed models above are used to design a component–based system for the Trav-
eling Salesman Problem, Labyrinth Problem and Airport Gate Assignment Problem using
backtracking algorithms and Ant (Colony) Systems.

For each original approach we have suggested possible developments and new research
directions in component configurations construction.
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