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Abstract—Regression testing is an important factor in ensuring
software system reliability once new changes are introduced,
but maintaining complex testing suites in continuous integration
environments is challenging. Test case prioritization techniques
are a potential solution to this problem by computing a reordered
testing suite that can provide better fault detection capabilities.
However, current methods rely on manually providing artifact
dependencies (requirements to code, code to test cases, test cases
to faults) as input.

The purpose of this paper is to minimize the gap between
automatic dependency computation and test case prioritization
by analyzing how Behavior-Driven Development (BDD) practices
affect the two tasks. Thus, the first contribution of this paper
is related to the design and implementation of an automatic
traceability component to retrieve dependencies based on BDD
artifacts (requirements, source code, test cases, and faults). The
second contribution refers to the integration of the discovered
traces as features in a neural network classification model for
test cases for further prioritization.

Various architectures were used for the neural network clas-
sification model. Two real-world BDD projects were used for the
validation of the models, comparing the best-performing models
with a baseline test case prioritization technique to assess their
fault-detection capabilities.

Our approach achieved promising fault detection rates that
demonstrate the efficiency of automatic traceability and may lead
to future applicability to large-scale projects.

Index Terms—Regression Testing, Test Case Prioritization,
Artifact Traceability, Behavior-Driven Development.

I. INTRODUCTION

Regression testing [1] plays a key role in software main-
tenance processes to ensure system reliability, as it evalu-
ates whether new changes do not affect existing components
and modules. Recently, there has been a growing interest
in improving the quality of a regression test suite [2], [3],
[4]. This is because regression testing in complex software
systems takes a long time to complete, which can negatively
impact continuous integration practices. In addition to its
interest in better regression testing techniques, the software
industry is investing in behavior-driven development practices

This work was funded by the Ministry of Research, Innovation, and
Digitization, CNCS/CCCDI - UEFISCDI, project number PN-III-P1-1.1-
TE2021-0892 within PNCDI III.

[5] that make it easy to specify needs and transform them into
executable tests.

Research into better regression testing techniques has re-
ceived great results by studying methods for minimizing,
selecting, or prioritizing test suites based on various artifact de-
pendencies, but there is little work that considers automatically
retrieving traces between the artifacts. Furthermore, behavior-
driven development practices seem to facilitate the recovery of
requirement-to-test and implementation traces. Starting from
this assumption, the investigation of BDD artifacts could lead
to potential solutions that minimize the gap between the
requirements to test cases to code traceability and test case
prioritization techniques.

In this paper, it is investigated how behavior-driven develop-
ment practices could contribute to better test case prioritization
techniques that would require less human guidance. Therefore,
a solution is proposed to automatically retrieve requirements-
tests-code traces from projects using BDD starting from the
idea presented in [6]. Then, we further aim to analyze and
transform the resulting dependencies so that they can be
integrated as part of a dataset for the task of test case
prioritization.

Toward the traceability objective, a traceability graph is built
starting from the BDD artifacts. Our solution applies a series
of Natural Language Processing (NLP) techniques to parse
the data into graph nodes. Further, the approach integrates a
custom language model for dependencies detection based on
cosine similarity.

The achievement of the test case prioritization objective is
accomplished through an Artificial Neural Network (ANN)
classifier trained on a dataset generated starting from the re-
trieved traces. Our approach experiments with various network
architectures validated against real-world BDD projects, with
the end goal of improving fault detection capabilities.

The main contributions of this paper are the following:
• A systematic literature review on the Test Case Prior-

itization in the context of BDD and CI and regarding
approaches for traceability from tests to source code.

• An automatic solution for requirements-tests-code trace-
ability based on data retrieved through natural language
processing techniques applied to BDD artifacts.



• A dataset generation approach that extracts various met-
rics from the detected dependencies and aggregates them
as training and test data for the test case prioritization
task.

• Various ANN architectures were built for the prioritiza-
tion task to validate the fault detection capabilities of our
traceability solution.

• A set of experiments based on datasets generated from
real-world projects that integrate BDD practices. The
experiments include both within-project and cross-project
validation.

The work is organized as follows: In Section II we present
background concepts on the subject of test case prioritization
and review the current state of the art in the context of
prioritizing test cases in regression testing. Section III briefly
describes our proposed approach, while Section IV reports the
experiments carried out on our classification models together
with an analysis of the results. Section V outlines the threats
to validity, while Section VI states the conclusions and future
work.

II. TEST CASE PRIORITIZATION BACKGROUND AND
RELATED WORK

This section outlines the definition of Test Case Prioriti-
zation (TCP) followed by related work on TCP, focusing on
existing approaches.

A. Definition of TCP

Graves defines TCP in his paper [7], as follows.
Definition 1. Test case prioritization [7]: Given a test suite,

T, the set of permutations of T, PT; a function from PT to real
numbers, f.

Problem: to find T’ ∈ PT such that

(∀T ′′)(T ′′ ∈ PT )(T ′′ ̸= T ′)[f(T ′) ≥ f(T ′′)] (1)

The function f assigns a real value to a permutation of T
according to the test adequacy of the particular permutation.

B. Related work on TCP

A Sytematic Literature Review (SLR) was performed fol-
lowing the methodology presented by Kitchenham et al. in
[8]. In the following paragraphs, we aim to summarize the
information extracted during the SLR, presenting our findings
for each of the 13 selected papers (out of an initially larger
set). The SLR investigation seeks to answer questions related
to current research on TCP in the context of BDD and CI
and regarding approaches for traceability from tests to source
code.

Analyzing the distribution of the selected publications, we
observed that there is an increased interest in the last years,
as 10 out of 13 papers have been published since 2019.

The set of selected papers can be further grouped by their
main investigated topic. Using this approach, we grouped the
papers into two categories, that is, one group that deals with
the test case prioritization or optimization task and one group
that investigates the traceability task. Moreover, the papers can

be clustered based on the testing technique they address, i.e.,
black box, based only on the test suite and does not require
any implementation or source code details, or white box.

Regarding test case prioritization, we identified 9 scientific
research papers. The approaches are commonly based on a
Greedy strategy [4], [9], on search strategies mainly focused on
Genetic Algorithms (GA) [2] [10] [11], on Machine Learning
(ML) solutions [12] [13] or on Model-based strategies using
Finite State Machines (FSM) [14] [3]. Most of these studies
focus on Java projects, both for industry (3) and academic pur-
poses (6). Next, we outline several aspects of each approach.

The work of X. Wang et al. [9] introduces a black-box
method to prioritize test cases for regression testing based on
the associated requirements and historical fault detection data.
For each requirement, a set of priorities are assigned by both
the customer and the developers. An initial order of the test
cases is then computed on the basis of the priorities of their
corresponding requirements. Based on historical execution
data and faults detected by each test case, the requirement
priorities are adjusted, resulting in a reordering of the test
suite. Their approach uses a Greedy strategy to select the test
cases with the highest probability of fault detection, i.e. with
the highest priority, given an execution budget. The solution
was evaluated using the weighted average of the percentage
of faults detected (APFD) and the fault detection rate (FDR)
against the baseline provided by Random Prioritization. The
evaluation was performed on an industrial Java system, ob-
taining an APFD of 71%.

A Greedy approach is also implemented by Xu et al.
in [4], however, applied in the context of behavior-driven
development with the selection based on similarities between
requirements. The main assumption of the authors is that
similar requirement specifications also share similar code
structures. Thus, a new requirement will most likely introduce
code changes in areas of a project that implement requirements
having similar natural language specifications. The approach
uses the computed cosine similarity between requirements,
which can be further used as a criterion to select the most
relevant acceptance tests and their corresponding unit tests
that fit into a given budget. To evaluate their technique, the
authors analyzed the inclusion and precision in a real industry
project. However, the analyzed metrics were computed against
human-selected requirements which are project-dependent and
may introduce a bias factor.

In black box testing, prioritization based on computed
similarities is widely adopted with evolutionary strategies,
Cruciani et al. [13] providing such a solution, considered as
a baseline in further research. His work introduces a family
of solutions for test suite reduction and prioritization, called
FAST-R based on similarity measures borrowed from the big
data domain. The FAST-R solutions model the problem as a
clustering task, using the k-means algorithm [15]. Distances
are computed in terms of Euclidean distances, since test
cases are represented as points in D-dimensional space. To
transform each test case into its corresponding coordinates,
the author uses the vector space model by mapping the textual



representation of the test to an n-dimensional point according
to the term frequencies. The approach was validated against 5
C programs from the Software Infrastructure Repository (SIR)
[16] and 5 Java programs from the Defects4J database [17].
To evaluate the solutions, the Fault Detection Loss (FDL),
Preparation, and Execution Time were computed based on the
results obtained for a given reduction budget ranging from 1%
to 30% achieving promising results.

Arrieta et al. [10] also described a suite of strategies,
however, focused on seedings for multi-objective selection.
Her work proposes three strategies based on randomization
integrated with a Non-dominated Sorting Genetic Algorithm-
II (NSGA-II) [18]. The seeding strategies, i.e., Static and
Dynamic Test Suite Size-based Random Seeding and Adaptive
Random Population Generation are integrated as an initializa-
tion step with the goal of having higher diversity between
the individuals of the initial population. The experiments
focused on Simulink models, including industry setups as
well. The evaluation was performed by analyzing the statistical
significance of the solutions against a non-seeding baseline,
resulting in a positive effect on the selection task.

The most recent work on black-box test case selection
was introduced by [2] which is based on test case similarity
applied in both GA and NSGA-II. The technique uses Abstract
Syntax Trees (AST) to model test code and applies tree-
based traversing algorithms in computing similarities, i.e.,
bottom-up, top-down, combined, and tree edit distances. The
authors evaluated their method against the previously men-
tioned FAST-R baseline and random selection technique on
16 Java projects from the Defects4J dataset [17]. The metrics
considered focused mainly on the fault detection rate (FDR),
preparation, and execution time, achieving an average of 82%
within 1.1 to 4.3 average hours of execution.

Although it might provide less scalability due to its need for
implementation and source code details, white-box test case
prioritization is widely studied. Research focuses on improving
test case prioritization techniques and automatically achieving
better requirements to code traceability. Besides greedy and
search-based solutions, white-box testing also enables the use
of model-based techniques built on Finite State Machines
(FSM). Both [3] and [14] describe a model-based solution,
although their approach is fairly different.

In [14] the authors aim to generate a ranking model using
machine learning, starting from a system described as an
Extended Finite State Machine (EFSM). To train the model,
multiple faulty versions of the system were created by inject-
ing faults into the EFSM. The faulty versions were then fed
through a series of heuristic algorithms to generate a set of
ranking results that were used as training data. The model
was evaluated using APFD on 5 protocol EFSMs obtaining
an average of 83%.

On the other hand, the authors of [3] aim to maximize
coverage and reduce the set of inputs in the automated testing
of mobile apps by implementing a model-based approach that
integrates multiple testing strategies. Their solution combines
and extends program analysis approaches to generate an ex-

tended window transition graph (EWTG) so that it can capture
user interface differences and transitions triggered between
different versions of applications. The solution was tested in
different versions of a set of Android applications and was
shown to significantly reduce testing time, that is, around 30%
with a coverage of around 60 to 70%.

The work of [12] models test case prioritization as a
classification task solved using a neural network classifier. The
implemented approach incorporates both static and dynamic
data, that is, requirement dependencies, faults discovered, and
testing cost. Experiments include neural network architectures
and configurations, all of which are analyzed against objects
selected from SIR. Performance-wise, the approach was eval-
uated using the APFD metric and model-specific metrics,
achieving a maximum accuracy of 98.96 and an APFD of
18%.

The work of Marchetto et al. [11] details the approach both
for the task of prioritization and traceability. Their research
introduced a test case prioritization technique that incorporates
low- and high-level test case data together with automatically
recovered traceability links. The test case data are collected
based on a set of source code and requirements metrics (e.g.:
size, complexity, cohesion, coupling, maintainability index),
while traceability is achieved using Latent Semantic Indexing
and similarity computation. All the extracted features are also
used in the multi-objective optimization task implementing
NSGA-II [18]. The technique was validated on 21 Java
projects using the APFD metric, among others, proving it is
able to early identify both technical and non-technical relevant
defects.

In the task of traceability, the most common approaches
are based on information retrieval (IR) techniques and natural
language processing (NLP) applied to various code artifacts.
Such examples are provided by [6] and [19] that aim to
recover traceability through fine-grained relations between re-
quirements and source code (classes, method calls) or between
cross-commit artifacts. The work of [19] infers trace links in
an unsupervised setting using word embedding similarities.
The approach is based on the assumption that requirement
and code artifacts express a single cohesive semantics that can
be used to recover traces in the following manner: transform
artifacts to word embeddings, compute similarities between
elements, and aggregate them to recover trace-links. The
analysis of results was performed on datasets provided by
the Center of Excellence for Software & Systems Traceability
(CoEST) [20] using accuracy, precision, recall, and F1 score
with a maximum of 49.5%. However, a semantic gap between
artifacts still remains but might be reduced by incorporating
language models. We provide further details on each of these
studies.

Yang [6] addresses the traceability task with respect to
behavior-driven development. His work aims to identify trace-
ability links between .feature files and source code by analyz-
ing and further predicting changes between multiple commits.
To achieve this, the author investigates common keywords and
similarities between cross-commit files, then approaches the



prediction task as a binary classification problem solved by
implementing three techniques. Among these, the best results
are obtained using a random forests algorithm when tested
against 133 Java projects crawled from GitHub.

In the context of BDD, Fazzolino [21] investigated the
potential use of operational profiles to generate trace links
to support the prioritization of tests. Operational Profiles
(OP) consider the probability of an artifact being executed to
provide information about how a system is used. The authors’
approach in generating this profile is based on statically
and dynamically retrieved information. The retrieved data are
classified by artifact, each artifact corresponding to a profile
level that can be aggregated into an operational graph. The
technique was evaluated on a real-world project, yet the
evaluation was mainly empirical.

Lucassen et al. [22] introduced another BDD approach to
traceability. Differently from the previously presented tech-
niques, their approach does not make use of IR techniques. The
solution presented by the authors implements a Tracer used to
build a Traceability Matrix by recording the methods called by
each step of a scenario. The proposed matrix relates the code
artifacts to a single scenario step, a scenario, and an entire
user story or requirement. The approach was evaluated in an
open-source project, but the authors do not provide quantitative
results.

Our findings, based on the SLR, are provided next in
relation to TCP research and traceability. Although we identi-
fied state-of-the-art solutions in test case prioritization, imple-
menting various techniques with promising results, research
on this task in the context of BDD or CI is still limited.
However, by analyzing the work presented above, we were
able to define a baseline for our research and identify areas
of potential improvement. The majority of solutions address
the traceability task through information retrieval or natural
language processing algorithms focused on semantic analysis,
however, with little applicability tested. Despite the fact that
new traceability solutions may lack quantitative and practical
experiments, throughout the analysis step, we have seen an
increasing interest in integrating new traceability solutions
into the task of test case prioritization. Our proposal links
the requirements to the source code and to the test cases
(which are also linked to the faults) based on the data retrieved
through natural language processing techniques applied to
BDD artifacts, whereas other existing approaches are based
on test case similarity by using various methods to model the
test code.

III. TCP USING NEURAL NETWORK CLASSIFICATION
WITH ARTIFACTS TRACEABILITY

The proposed approach for the generation of complete trace-
ability from requirements to faults and test case prioritization
based on neural network classification is outlined in this
section. First, the automatic traceability graph construction
process is presented along with the step descriptions. In
addition, the test case prioritization problem is defined, incor-
porating the discovered traces as features of the neural network

classification model. The metrics used for the evaluation of the
proposed approaches are also provided.

A. Requirements-to-Code Traceability

The work of [6] introduces the concept of automatic
traceability in the context of behavior-driven development
(BDD). Our approach builds on this concept, we aim to assess
traceability by identifying keywords in .feature and source
code files and analyzing the similarity between each of them.

Our solution generates a dependency graph to better model
dependencies between various components to better model
dependence. Each component (requirement, test case, source
code, and fault) is represented as a single graph node as part
of its corresponding cluster. Dependencies between types are
represented as weighted edges between nodes of two different
clusters, where the weight describes the similarity score. To
produce the final traceability graph, our solution involves the
following three steps that may be visualized in Figure 1.

In the File Type Parsing step each project file is being parsed
based on its corresponding type, i.e. .feature file, Java source
code, or Java test file, and irrelevant, type-specific keywords
are ignored. At the end of this phase, new graph nodes are
created, each one containing the relevant information for its
type. The exact steps of this phase are illustrated in the first
part of Figure 1.

In the Keyword Identification step a node clean-up process
further trims the node data by applying a series of natural lan-
guage processing (NLP) techniques. The flow corresponding
to this phase is detailed in the second container in Figure 1.

The Dependency Identification step represents the phase that
creates the edges between the different types of nodes and
assigns their weights based on the cosine similarity. This phase
is also detailed in the last part of Figure 1.

The File Parsing phase processes only the Gherkin (.feature)
files and Java (.java) source files, the others being considered
irrelevant for traceability in the context of regression test-
ing. However, other file types can be easily integrated and
processed by adding a new parser as each of the existing
ones implements a common interface and has a dedicated
processing method. The parsing logic uses a dedicated Python
library for each file type, as language-specific words are
ignored by default. As a result of the parsing process, each
parsed file is transformed into a corresponding graph node.
Yet, Gherkin files follow a slightly different logic as they are
split into both requirement nodes and test case nodes due to
the existence of scenarios, that is, each scenario is considered
a different test case, while the description of the feature is
considered as part of a requirement.

Given the list of relevant data extracted from the previous
step, the identification of keywords aims to further clean
the data to achieve a standard format that can be fed to a
language model. To achieve this, we apply a series of NLP
techniques [23], i.e., tokenization, part-of-speech identifica-
tion, and lemmatization. Similarly to the solution proposed
by Yang et al. [6], we used the pipeline provided by the
Stanford CoreNLP toolkit [24] and selected only nouns and



Fig. 1. Automatic Traceability Graph Process - Overview

verbs as relevant attributes. Furthermore, since Gherkin files
[5] often include named entities as examples, we also included
the named entity recognition step as part of the pipeline.

As the last part of the traceability graph building flow,
dependencies between nodes of different types are inferred
by computing the cosine similarity. To calculate it, we em-
bedded the keywords of each node through a custom-trained
Word2Vec [25] model. We also analyzed the option of using
pre-trained models such as those provided by Stanford Univer-
sity in GloVe [26], but decided on custom training considering
the large amount of potential unseen words introduced on a
project-by-project basis as variable, method, or class names.

Regarding the traceability preservation it is important to
mention that since requirements or source code or test cases
may be changed, some parts of the mappings should be re-do.
In the generated versions, the mapping is the same and only
a subset of requirements was considered as changed in the
experiments.

B. Test Case Prioritization

The TCP solution is built on top of the work of [12],
formalizing prioritization from requirements-to-code depen-
dencies. The TCP task is modeled as a multi-label classi-
fication problem. Thus, target labels represent the level of
importance of a test case within the reordered test suite,

while feature vectors are represented by transforming the
dependencies obtained from the traceability module. That is,
each test case ti in a given test suite T = (t1, t2, ..., tn) gets
a priority label assigned that is used further as an ordering
criterion. In the end, we achieve an ordered test suite T ′

representing a potential prioritization of T .
1) Features: Our feature collection is based on the results

obtained with our traceability module. The following attributes
were included as part of the feature vector for each test case
t:

• NRt - number of requirements covered by the test case;
• NCt - number of source code files covered by the test

case;
• NFt - number of faults detected by the test case;
• NR′

t - number of requirements covered by the test case,
given a subset of modified requirements.

As the dependencies resulting from the traceability module
are weighted by cosine similarity, a requirement or source
code file is considered covered if its corresponding similarity
exceeds a given threshold (or confidence level). The threshold
for each dependency type was set upon analyzing the incipient
results and the type characteristics. Thus, we achieved more
granular control over the dependencies and minimize the risk
of introducing irrelevant data into the final dataset.

The target labels for each test case are defined upon ana-



lyzing the data on the covered requirements, source code, and
discovered faults as a weighted sum. Furthermore, the test suite
is broken down into three priority classes so that the resulting
labels are uniformly distributed.

2) Neural Network Model: Following the work of [12], our
TCP solution is modeled as a classification task solved through
an artificial neural network (ANN). As a general architecture,
the ANN [27] consists of three main parts, each of which
contains numerous control units for the computation known
as neurons. The three components include the input layer, a
set of hidden layers that represent the core of the classification
process, and an output layer. Synaptic weights act as a bridge,
carrying the input signal from the input layer to the first hidden
layer. Activation functions decide whether the value of the
weighted sum of inputs in the neurons of the hidden layer
should be sent to the next layer.

In our case, the number of units on the input layers corre-
sponds to the number of features considered for a test case,
whereas the number of units on the output layer corresponds
to the total number of priority classes. In addition, in the
pre-processing phase, a normalization layer is integrated into
our models. For the neurons of the hidden layers, a ReLu
activation mechanism was set up, whereas the output units
used a Softmax activation function.

The designed models, illustrated in Table I, are built by
variating a series of parameters: number of hidden layers
(2,3), number of neurons per hidden layer (40, 60), and
the optimization algorithms used in the training phase. For
the optimization algorithms, we decided on the Stochastic
Gradient Descent (SGD) [28] and the Adam optimizer [28].

TABLE I
DETAILED NEURAL NETWORKS ARCHITECTURES

Model No. Hidden Layers Neurons Optimizer
Model 1 2 40 Adam
Model 2 2 60 Adam
Model 3 2 40 SGD
Model 4 2 60 SGD
Model 5 3 40 Adam
Model 6 3 60 Adam
Model 7 3 40 SGD
Model 8 3 60 SGD

3) Dataset: The performance of both the traceability mod-
ule and the test case prioritization module was analyzed on
the same datasets to better understand the fault detection
capabilities of our solution: the trivial-graph (https://github.
com/akollegger/trivial-graph/tree/master)) and the springmvc-
router (https://github.com/bclozel/springmvc-router) projects.

The data generation schema is depicted in Figure 2. Our
traceability solution initially processed the 2 projects and the
resulting files have subsequently been analyzed for feature
extraction.

• the trivial-graph,
https://github.com/akollegger/trivial-graph/tree/master

• the springmvc-router,
https://github.com/bclozel/springmvc-router.

Our traceability solution initially processed these projects
and the resulting files have subsequently been analyzed for
feature extraction and data generation (Figure 2). For the
feature extraction part, the dependency files were analyzed,
and only the edges having similarity above a defined threshold
were selected for further processing. That is, we consider a test
case as relevant for a certain requirement or source code file
depending on the comparison between its similarity and the
threshold.

After defining the major features, i.e. NRt, NCt and NFt,
the datasets have been enhanced to simulate several different
versions of a system being tested by generating an array of
modified requirements, each corresponding to a new version.
The version enhancement updated the dataset to include a
newly extracted NR′

t feature. The target vectors were defined
by manually assigning one of the three priority classes: High
(0), Medium (1), and Low (2) such that the final labeling
follows a uniform distribution.

The final datasets listed in Table II included 5 versions per
dataset, 1 to 3 requirements changed per version, cumulating
a total of 135 examples for trivial-graph, respectively 222
examples for springmvc-router. The generated files for the
traceability steps are available in this Figshare link [29].

Regarding time execution, no such data was considered in
the TCP analysis since were not considered important for
the two projects (the time was similar among the executed
test cases), thus time (cost) not considered in the APFD
computation.

TABLE II
STRUCTURE OF SELECTED DATASETS

Dataset Req. Test Code Fault Version E.g.
trivial-graph 6 31 22 34 5 135

springmvc-router 5 45 14 116 5 222

4) Metrics: The performance of our traceability and prior-
itization solution was evaluated using both metrics related to
neural networks and the Average Percent of Faults Detected
(APFD) metric. The model-related metrics we incorporated
are Accuracy, Precision, Recall, and F1-Score, each defined
as follows (TP = Total Positive, TN = Total Negatives, FP =
False Positives, FN = False Negatives):

• Accuracy

Accuracy =
TP + TN

TP + TN + FP + FN

• Precision

Precision =
TP

TP + FP

• Recall

Recall =
TP

TP + FN

• F1-Score

F1 =
2 ∗ TP

2 ∗ TP + FP + FN



Fig. 2. Dataset Generation Process - Overview

The performance of our solution in comparison to the
Random prioritization technique chosen as a baseline was ex-
amined using the APFD metric. Unlike the model performance
metrics which can be applied to any collection of labeled test
cases, The APFD must be applied to the entire rearranged test
suite. The metric is defined as

APFD = 1−
∑m

i=1 TFi

m2
+

1

2 ∗ n
where m represents the total number of faults, n represents the
total number of test cases and TFi represents the position of
the test case that discovered the fault i within the re-ordered
test suite.

IV. EXPERIEMENTS AND RESULTS

This section presents the results of our prioritization ap-
proach together with the details of the designed experiments.
The experimental setup is first described, followed by the
results grouped based on the training and test datasets. This
section also illustrates a comparison between the various
models considering both the model performance metrics and
the APDF against a baseline prioritization technique.

A. Experimental Setup

The focus directions of the designed experiments are as
follows:

i) observing the performances of the solution when used
across multiple versions within the same project;

ii) observing the performances in a simulated real-world
environment where the solution is trained on a sample
set of projects and applied to new, unrelated data.

Therefore, both within-project validation and cross-project
validation were considered in the experiments. Additionally,
all the 8 ANN architectures described in Section III were
included when running the experiments.

Our setup uses the hold-out method for within-project
validation, with a 80%-20% train-test split by version to ensure
a uniform distribution of data. We opted for this splitting
method, as it simulated the real-world need for a test suite
rerun once new requirements or source code changes occur.

For cross-project validation, the experiments included both
datasets as training and test data such that the model is trained
on an entire dataset and validated on several sampled versions
of the remaining one. Therefore, the experiments included
two variations: i) training on trivial-graph and testing on
springmvc-router and ii) training on springmvc-router and
testing on trivial-graph.

A random prioritization technique is also included as a
baseline for comparison. Random permutations have been
calculated at each successive experiment, and the result has
been computed from a sample of 10 randomly selected con-



figurations.

B. Within-Project Experiments

Next, the results of within-project experiments for both
projects are provided.

1) Project springmvc-router: Table III lists the performance
metrics that each model achieved using a 80% - 20% split of
the springmvc-router dataset. As we can see, Model 1, which
has two hidden layers with 40 units each and is set up to use
the Adam optimizer, is our best-performing model.

TABLE III
HOLD-OUT VALIDATION RESULTS ON springmvc-router DATASET

Model No. Accuracy Precision Recall F1 Score
Model 1 86.71 90.75 86.71 85.29
Model 2 82.23 90.8 82.23 79.53
Model 3 67.78 77.52 67.78 64.38
Model 4 72.22 83.74 72.22 69.72
Model 5 84.45 90.88 84.45 81.05
Model 6 84.45 90.88 84.45 81.05
Model 7 78.89 84.74 78.89 73.23
Model 8 64.65 62.58 64.65 58.55

We have calculated the APFD for a test suite based on our
best-performing model, with regard to performance against
Random Prioritization Baseline. A mean APFD of 79.5% has
been obtained by reordering a test set, while the random
technique achieved an overall APFD of 43.33%.

2) Project trivial-graph: The performance metrics our
models achieved on a 80%-20% split for the trivial-graph
dataset are presented in Table IV. All the models configured
to use the Adam optimizer outperform the models configured
on SGD, although the best results were achieved by Model 1,
i.e. a model using 2 hidden layers with 40 units.

TABLE IV
HOLD-OUT VALIDATION RESULTS ON trivial-graph DATASET

Model No. Accuracy Precision Recall F1 Score
Model 1 98.38 98.53 98.38 98.39
Model 2 95.96 97.02 95.69 95.65
Model 3 61.29 48.68 61.29 53.94
Model 4 67.74 50.61 67.74 57.33
Model 5 96.77 97.58 96.77 96.77
Model 6 95.48 97.45 95.48 95.18
Model 7 67.74 50.61 67.74 57.33
Model 8 64.51 47.25 64.51 54.29

As the Random obtained an APFD of 41,74%, the differ-
ences between the best-performing model and the Random
permutation are less significant compared to the previous
dataset, although it achieved an APFD of 42.85%.

C. Cross-Project Experiments

Next, the results of cross-project experiments for both
projects are provided.

1) Train on trivial-graph, test on springmvc-router: Table
V illustrates the results we obtained on springmvc-router
dataset when the trivial-graph project was used for training.
Most SGDs are performing better than the Adam configured
models, compared to other experiments conducted on the
springmvc-router. The best results are achieved on Model 4
and Model 8 using 60 unit layers, with 2 or 3 hidden layers.

TABLE V
CROSS-PROJECT VALIDATION RESULTS

TRAINED ON trivial-graph, VALIDATED ON springmvc-router

Model No. Accuracy Precision Recall F1 Score
Model 1 55.56 42.07 55.56 44.95
Model 2 55.56 38.48 55.55 45.40
Model 3 60.00 46.26 60.00 49.55
Model 4 62.23 44.89 62.23 51.8
Model 5 55.55 38.27 55.55 45.32
Model 6 55.56 38.83 55.56 45.53
Model 7 40.00 27.67 40.00 32.71
Model 8 62.22 51.18 62.22 53.15

The best-performing model achieved an APFD of 65.6%
outperforming the Random configuration that scored an aver-
age of 43.33%, although it obtained a lower APFD than the
models trained within the same project (79.5%).

2) Train on springmvc-router, test on trivial-graph: The
results obtained on the trivial-graph after training the models
on the springmvc-router are shown in Table VI. Models 2 and
5 obtained the best performances, i.e. architectures with 60
neurons, configured to use the Adam optimizer, although no
significant differences were observed when compared to SGD
models.

TABLE VI
CROSS-PROJECT VALIDATION RESULTS

TRAINED ON springmvc-router, VALIDATED ON trivial-graph

Model No. Accuracy Precision Recall F1 Score
Model 1 67.74 53.54 67.74 58.87
Model 2 70.96 85.48 70.96 67.09
Model 3 67.74 53.54 67.74 58.87
Model 4 64.51 52.63 64.51 57.23
Model 5 70.96 85.48 70.96 67.09
Model 6 67.74 84.71 67.74 61.98
Model 7 64.51 52.63 64.5 57.23
Model 8 70.96 83.4 70.96 66.3

Regarding fault detection capabilities, the APFD of the
best-performing model (42. 62%) slightly exceeded the Ran-
dom prioritization technique (41.74%). Moreover, the obtained
APFD is close to the results of the experiment carried out
within-project.

Both the within-project and cross-project experiments illus-
trated robust performances of our proposed models. The SGD
optimization method proves to be more suitable for industrial
use, as the real-world environment comes closer to our cross-
project setup. Furthermore, our solution outperformed the Ran-
dom prioritization technique, indicating that the traceability
component can be efficiently used as a part of a test case
prioritization solution.



V. THREATS TO VALIDITY

A number of factors, which could influence the validity of
the results are inherent in our approach to this problem, as
with all other solutions. Two different categories can be used
to identify these factors: internal validity which relates to any
potential bias that may have occurred in the study and external
validity which deals with the ease of generalization of results.

To minimize internal validity threats, the datasets used for
validation were labeled and further split to ensure uniform
distribution. However, the empirical evaluation of the trace-
ability module, together with the empirical selection of the
dependency confidence level, and the further manual labeling
process, could influence the validity of our results. To mitigate
the impact, an enhancement of both the traceability module
and the TCP technique will be considered in a forthcoming
study so that the proposed solution can be validated against
standard datasets for such tasks.

The two datasets we used to validate our approach might
have an impact on the external validity of our solution.
However, a series of different selection criteria were applied
when selecting the real-world projects used for validation to
try to minimize this influence. In addition, we will look at
the possibility of adding new features and generalizing the
traceability module to allow it to be applied to projects that
are not currently integrating BDD, such as larger-scale industry
projects and standard TCP datasets.

VI. CONCLUSIONS

In this paper, a test case prioritization approach is proposed
that incorporates a traceability module to automatically re-
trieve requirements-to-code traces. The traceability component
was developed in the context of behavior-driven development,
but we plan to add support for other different approaches as
well.

The traceability solution achieved promising results after
validation in two real-world BDD projects. Furthermore, the
results and implications of traceability were analyzed by
integrating the retrieved traces as training data for various
ANN architectures designed for the prioritization of test cases.
This analysis consisted of investigating a set of model-related
and fault detection metrics through multiple experiments,
indicating better reliability of our approach compared to a
baseline prioritization technique.

In subsequent work, our aim is to validate the effectiveness
of our solution on larger-scale data in order to make a better
assessment of their efficiency. Furthermore, we are planning on
independently testing traceability and test case prioritization
components on more metrics and different features for better
understanding and improving their fault-detection capabilities.
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