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Abstract—In continuous integration environments, the execu-
tion of test cases is performed for every newly added feature
or when a bug fix occurs. Therefore, regression testing is
performed considering various testing strategies. The Test Case
Prioritization (TCP) approach considers reordering test cases so
that faults are found earlier with a minimum execution cost.

The purpose of the paper is to investigate the impact of neural
network-based classification models to assist in the prioritization
of test cases. Three different models are employed with various
features (duration, fault rate, cycles count, total runs count) and
considering information at every 30 cycles or at every 100 cycles.

The results obtained emphasize that the NEUTRON approach
finds a better prioritization with respect to NAPFD (normalized
average percent of the detected fault) than random permutation
and is comparable with the solutions that used either duration
or faults, considering that it combines both values. Compared
to other existing approaches, NEUTRON obtains similar com-
petitive results when considering a budget of 50% and the best
results when considering budgets of 75% and 100%.

Index Terms—Test Case Prioritization, Continuous Integra-
tion, Neural Network, Faults, Duration, Cycles

I. INTRODUCTION

A crucial step in software development is testing, which
helps to ensure the usability, reliability, and robustness of a
system by identifying bugs or discrepancies from the intended
functionality. Regression testing is one particular kind of test-
ing that is carried out to make sure that previously developed
and tested software continues to function as intended after a
change is made. Modifications, additions, or deletions to the
operating system, database, or code are examples of changes.
Regression testing seeks to find any bugs that might have
unintentionally been introduced in the codebase during these
changes. It is critical to ensure the long-term effectiveness
of software since it helps to ensure that earlier program
functionalities continue to work after incorporating the new
changes.

Regression testing, while extremely beneficial, also presents
a number of challenges. Due to frequent updates and modifi-
cations to the codebase, the regression test suite can become
large and resource-intensive over time. Additionally, it may
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not be possible or feasible to run all test cases within the
time constraints of a typical development cycle [1]. Test
Case Prioritization (TCP) provides a solution to these issues
by ordering the test cases in a manner that increases the
probability of early defect detection. In TCP, the execution
of test cases is prioritized based on several criteria such as:
code coverage, frequency of code changes, the criticality of the
software module, and historical failure rate [2]. By applying
this process, it is ensured that even with limited time and
resources, the most significant potential issues are evaluated
first, thus enabling faster detection and correction of defects.
This can considerably improve the entire software develop-
ment process, which may also impact the overall functionality
and quality of the software system.

Despite its practical importance, regression testing remains
a challenging task due to its inherent trade-off between effec-
tiveness and efficiency, as well as difficulties in accurately cap-
turing the dependencies in complex software systems. Thus,
the regression testing problem is worth exploring, being an
omnipresent one during the software development life cycle.
It is essential to find efficient and effective test case executions
with the aim of obtaining higher qualitative systems.

Moreover, testing within Continuous Integration (CI) envi-
ronments comes with a unique set of challenges [3]. First,
unlike typical testing methods, CI demands tight control over
both the selection and the prioritization of the most promising
test cases, that is, those that are most likely to detect early
failures. Second, it could be argued that selecting test cases
that execute the most recent code changes could be a good
approach. However, when dealing with system tests, the trace-
ability links between code and test cases may not always be
available or easily accessible. Third, due to time constraints
in each cycle, not all tests can be executed, necessitating
an effective method for test case selection. These difficulties
suggest the need for alternative approaches in CI testing.

Several state-of-the-art approaches from the literature like
[4], [5] and [6] propose online methods (e.g. based on rein-
forcement learning) for the test case prioritization problem in
CI contexts, thus eliminating the training phase. Nevertheless,
since significant volumes of data are still needed by these
methods in order to become effective, not needing a training



phase is, in our opinion, not necessarily an advantage. In our
approach, we use a neural network to prioritize test cases in
continuous integration environments. Experiments are carried
out on industrial datasets, some of which are provided in
[4]. We transform the original datasets and we significantly
reduce their size without any loss of data. For example, one
of the datasets is reduced from 32261 lines to 1962 lines.
Additionally, we enrich the datasets with additional features.
All datasets are publicly available, so they can be used by other
researchers. We built three classifiers trained on historical data
about test case execution: the first classifier uses the same
features from the original datasets, and the second and third
ones use additional features that aggregate information about
the test cases from several groups of CI cycles. We compare
our results with standard deterministic methods as well as with
state-of-the-art approaches from the literature, obtaining better
results in some of the considered use cases.

The contributions of this paper are as follows:
• significantly reducing the size of the datasets from [4],

without any loss of information
• augmenting the datasets with more features describing

finer-grained details regarding the test case executions
• labeling the datasets by using the joined capabilities of

both AI and human domain experts
• a neural network-based approach for testing in CI con-

texts, that takes into account historical execution data
regarding test cases, as well as their duration

• proposing three classification models: the first one used
the original features and all test cases of training, the
other two classifiers are trained on data containing ag-
gregated information from several groups of CI cycles

• evaluating the proposed models on industrial datasets.
The paper is structured as follows. Section II presents back-

ground information on the Test Case Prioritization problem
and its time-limited variant that occurs in the continuous
integration context. In Section III, the related work on test
case prioritization is presented, including state-of-the-art ap-
proaches that address the continuous integration environment.
Section IV, presents our approach including the classification
models, the proposed transformations of the dataset (reducing
the size without any information loss, extending the feature
set, labeling process), and the metrics used for analysis and
evaluation. Section V presents the design of the experiments,
and the results are presented in Section VI. The potential
benefits of our approach and threats to validity are presented
in Section VII and Section VIII, respectively. Section IX,
summarizes the contributions of this paper, presents the results,
and draws concluding remarks.

II. TCP PROBLEM

According to [7], the Test Case Prioritization (TCP) problem
is formally defined as follows:

Definition 1: Test Case Prioritization [7]: a test suite, T,
the set of permutations of T, PT; a function from PT to real
numbers, f. The goal is to find T ∈ PT such that:

(∀T ′′)(T ′′ ∈ PT )(T ′′ ̸= T ′)[f(T ′) ≥ f(T ′′)] (1)

From Definition 1, the function f assigns a real value to
a permutation of T according to the test adequacy of the
particular permutation.

Unfortunately, this problem formulation does not capture the
notion of a time limit to execute the test suite. An extended
problem formulation, Time-limited Test Case Prioritization,
augments the conventional Test Case Prioritization problem
by introducing a time constraint. This added element suggests
that due to time restrictions, there might be situations where
not all test cases can be run. It is noteworthy that not only time
but also other factors could impose limitations on the test case
selection process. However, the formulation given below can
be adapted without any loss of generality.

Definition 2: Time-limited Test Case Prioritization Prob-
lem (TTCP) [4]: find T ∈ PT such that:

f(T ) ≥ f(T ′)∧∑
tk∈T ′

tk.duration ≤ M∧∑
tk∈T

tk.duration ≤ M,∀T ′ ∈ PT,

where:
• tk.duration represents the duration of a test case k from

a test suite
• M is the maximum time available for the test suite

execution.
In this paper, since links between code changes and test

cases are assumed not to be available, historical information
about test case execution needs to be considered. This is
why we use the following definition for Adaptive Test Case
Selection Problem (ATCS) in our approach.

Definition 3: Adaptive Test Case Selection Problem
(ATCS) [4]: let T1, T2, . . . Tk−1 be a sequence of previously
executed test suits, find Tk such that f(Ti) is maximized and∑

tk∈T tk.duration ≤ M .

III. RELATED WORK

Test case selection and prioritization is an intensively inves-
tigated topic in the literature, and it has been approached in
several ways by addressing different optimization goals and by
using a plethora of techniques in doing so [8]–[13]. According
to the machine learning technique involved, test case selection
and prioritization studies could be classified into the following
categories: supervised learning, unsupervised learning, rein-
forcement learning, and natural language processing [14].

Recent studies apply reinforcement learning (RL) tech-
niques to Test Case Prioritization (TCP) in Continuous In-
tegration (CI) due to RL’s ability to adapt to CI’s dynamic
nature without needing full retraining. Once trained, the RL
agent can evaluate a test case, assign it a score, and use
that score to order or prioritize the test cases. Although
most of the RL studies consider only the execution history
to train their agent, we have found one study, namely [9],
where, in addition to the execution history, code complexity
metrics have also been used. In their very comprehensive



research paper, the authors of [9] evaluated and compared
10 machine learning algorithms, focusing on the comparison
between supervised learning and reinforcement learning for
the Test Case Prioritization (TCP) problem. Experiments are
performed on six publicly available datasets, and on the basis
of the results, the authors propose several guidelines for
applying machine learning to regression testing in Continuous
Integration (CI). In [9], the authors also propose some new
metrics (Rank Percentile Average (RPA) and Normalized-
Rank-Percentile-Average (NRPA)) for evaluating how close
a prediction ranking is to the optimal one. Unfortunately, in
[14] it is explained in detail that the NRPA metric is not
always suitable. Nevertheless, the paper by [9] remains a very
thorough and elaborate research study, and the authors of [14]
include it in a short list of research papers that are actually
reproducible.

The main idea of clustering in the TCP context is the
assumption that test cases with similar characteristics, like
coverage and other attributes, are likely to have comparable
fault detection abilities. Many papers, such as, for example,
[10], utilized the K-means algorithm or variations of the K-
means algorithm. The Euclidean distance is the most com-
monly used similarity measure in clustering, but there are some
attempts to use other similarity measures like the Hamming
distance. The paper from [11] is an example in this sense. In
this study, the authors represent the coverage information for
a test case as binary strings, where each bit indicates whether
or not a source code element has been covered by a test. An
interesting approach is proposed in [12] where the authors
use clustering for anomaly detection of passing and failing
executions. The key idea is that failures tend to be grouped
into small clusters, while passing tests will group into larger
ones, and their experiments suggest that their hypothesis is
valid.

Supervised learning is probably one of the most commonly
used ML techniques to address TCP as a ranking problem.
Specifically, these techniques typically use one of three distinct
ranking models for information retrieval: pointwise, pairwise,
and listwise ranking. In [9], the authors used a state-of-the-art
ranking library [15] and evaluated the effectiveness of Random
Forest (RF), Multiple Additive Regression Tree (MART), L-
MART, RankBoost, RankNet, Coordinate ASCENT (CA) for
TP. Their results show that (MART) is the most accurate
model. Although supervised learning can achieve high accu-
racy, a major issue is that a full dataset should be available
before training. In order to support incremental learning, the
model often needs to be rebuilt from scratch, which is time-
intensive, and hence not quite ideal for CI.

The use of NLP for TCP seems to be quite limited. The core
motivation to apply NLP techniques is to exploit information
in either textual software development artifacts (e.g., bug
description) or source code that is treated as textual data. In
general, the idea is to transform test cases into vectors and
then to compute the distance between pairs of test cases. The
test cases are then prioritized using different strategies. An
interesting approach is proposed in [13], where NLP is used

to pre-process the specifications that describe the components
of the system under test. Then they used recurrent neural
networks to classify the specifications into the following com-
ponents: user device, protocols, gateways, sensors, actuators,
and data processing. On the basis of this classification, test
cases belonging to these standard components were selected.
Then, they used search-based approaches (genetic algorithms
and simulated annealing) to prioritize the selected test cases.

In the following, some studies are presented that specifically
target the CI context. In the approach from [16], the authors
use the sliding time window to choose the test suits to be
applied in a pre-submit phase of testing by tracking their
history. In a subsequent post-submit phase, a similar approach
is employed to prioritize tests. Experiments with the Google
Shared Dataset of Test Suite Results (GSDTSR) indicate that
the testing load is reduced and delays in fault detection are
reduced.

The paper [4] introduces an innovative method for priori-
tizing and selecting test cases in Continuous Integration (CI)
environments. The proposed method employs reinforcement
learning to select and order test cases based on their dura-
tion, last previous execution, and history of failure. In the
study, both a tableau-based agent and a network-based agent
are employed as reinforcement learning agents. The tableau-
based agent operates using a tabular structure to associate the
different states of the CI system with their respective actions,
maintaining an action-value (Q-table) that updates based on
the outcomes of previous test cases. On the contrary, the
network-based agent uses artificial neural networks (ANN)
to accomplish the same task. In this setup, the ANN serves
as the function approximator for the agent’s policy, i.e., its
strategy for selecting actions based on the current state. In
contrast to the tableau-based agent, which stores the expected
rewards for each (state, action) pair in a lookup table, the
network-based agent generalizes across similar states using the
ANN. This strategy enables the agent to manage larger state
spaces and continuous actions, making it more scalable and
adaptable. Several industrial datasets were used to evaluate the
efficacy of the study. The paper also provides a comparative
analysis against deterministic test case prioritization methods.
The results show that the proposed approach can learn to
prioritize test cases in 60 cycles starting with a model-free
memory and no past information regarding test cases. This
result is comparable to fundamental deterministic test case
prioritization techniques, which indicates that it is a promising
method for CI test case prioritization.

In [5] a Multi-Armed Bandit (MAB) approach for test
case prioritization in CI environments is presented. The MAB
problems are a class of sequential decision problems that
may be seen as a simplified form of RL. As opposed to RL,
they do not need context information and the actions do not
change environment states. Also, MAB does neither need to
handle the state space nor to use function approximators. The
authors performed extensive experiments and evaluated their
approach with several parameter configurations, and with some
parameter settings, they were able to outperform the approach



from [4].
In [6], an approach based on the Dueling Bandit Gradient

Descent (DBGD) algorithm is introduced. Evaluation of sev-
eral industrial datasets indicates that after 150 cycles, the pro-
posed method outperforms other state-of-the-art approaches.

Most approaches from related work in CI use online models
for prioritization and advocate that this choice is an advantage
for the continuous integration context because the training
phase is eliminated. Nevertheless, in order to obtain com-
parable results with deterministic methods, rather significant
volumes of data are still needed (e.g. at least 60 cycles, that is,
about two months of data, in case of one of the state-of-the-art
methods [4]). The approach of [6], which is to our knowledge
the best in the literature, needs 150 cycles (so about 5 months
of data) in order to achieve this result. Considering the vast
volumes of data (and time span) needed by these methods to
become efficient, we argue that eliminating the training phase
is not necessarily such a great advantage as it may seem. Our
approach, which uses a neural network, needs, of course, a
training phase, but our experiments show that it outperforms
related approaches in some of the studied use cases. In our
experiments, we investigate several scenarios, some of which
involve transformations of the original datasets enriching them
with additional features, in order to improve the performance
of our model.

IV. NEUTRON APPROACH FOR TCP IN CI

In this section, we outline our NEUTRON (NEUral network
based Test case pRioritization in cOntinuous iNtegration)
approach for test case prioritization in continuous integration
environments by employing test case priority based on neu-
ral network classification that incorporates knowledge about
previous executions of the test cases and time execution.

A. Approaches in Test Case Priority in Continuous Integration

Regression testing may be implemented using various strate-
gies regarding test suite execution, from retest all to test suite
minimization (TSM), test case selection (TCS), and test case
prioritization (TCP).

Figure 1 graphically depicts the three approaches that we are
going to investigate in this paper: (1) the retest all approach
using random execution of test cases in the test suite, (2) the
sort by fails approach that used the information regarding
test case failures in all cycles to order the test suite, and
(3) the NEUTRON approach (NEUral network based Test
case pRioritization in cOntinuous iNtegration) that uses the
priority-based classification for each test case. As in the
definition in Section II, given T = (t1, t2, ..., tn), retest all
with random strategy means generating a random permutation
of T, while sort by fails refers to sorting the test suite based
on the number of failures in all cycles. The neural network
classification-based TCP in CI means using the test cases
priority classification to order them from the most critical
to the least critical and then selecting the test cases that are
included in the specific time execution budget.

Regression Testing

Test Suite

(t1,t2,...,tn)

Random order of

the test cases

Retest all

(Random)
Sort by failures

in previous cycles

NN-based

test case priority

Soft the test cases

based on failures

from previous cycles

Sort the test cases

based on

NN test case priority

Test Suite

(t5,t3,tn...,t7)

Test Suite

(t6,tn,t4...,t1)

Test Suite

(t6,t1,...,t2)

Fig. 1. TCP in Continous Integration approaches

In what follows, we provide details on our NEUTRON
approach for TCP in CI using the NN-based test case priority
classification.

B. Test case priority classification based on Neural Network

Our overall approach to TCP using NN-based classification
consists of three phases: data preparation, training, and testing.
Figure 2 depicts the process.

Dataset pre-processing

Cross project testing

Test Case Classification Models

Classification

Predictors:

TC in CI metrics

Duration,

Fault Rate,

Cycles Count

Total Runs Count

Target:

ChatGPT

Project A

Project B

Model 1

Model 2

Model 3

Neural Network Models

fault rates per cycle

3 groups

(~100 cycles)

11 groups

(~30 cycles)

Predictors:

TC in CI metrics

Duration,

Fault Rate,

Cycles Count

Total Runs Count

fault rates per cycle

3 groups

(~100 cycles)

11 groups

(~30 cycles)

Target:

ChatGPT

Fig. 2. Overview of the neural networks-based models for TCP in Continous
Integration

The data preparation steps comprise the computation for
each test case of the number of failures in each cycle, the
number of failures in a cycle over the number of total runs in
that cycle, along with the duration of that test case, and the
FaultRate, namely the average of all failures in all cycles.
More information on this data preparation step is provided in
Section IV-C.

In the training step, various NN models are employed in
order to classify the priority of the test cases considering infor-
mation from previous executions like the number of failures,



the total number of executions, and the execution time. The
models used different projects with different characteristics to
be trained. Details regarding this aspect are provided in Section
IV-E and Section IV-C.

The testing phase consists of applying the obtained models
to other projects (cross-project) as shown graphically in Figure
2. For example, we train the model using data from Project A
and test the model on data from Project B.

In what follows, we outline and describe in detail the
constituent elements of the NN approach, starting with the
used and constructed dataset, followed by feature information,
employed models, and finishing with the metrics used for
analysis.

C. Dataset

Three industrial datasets, namely two from ABB Robotics
Norway 1 (Paint Control and IOF/ROL, for testing complex
industrial robots) and Google Shared Dataset of Test Suite
Results (GSDTSR) 2 are used in this study. All three datasets
contain information about historical test case executions, along
with the verdicts (pass, fail), with CI cycles over 300. The two
ABB datasets are split into daily intervals, whereas GSDTSR
is split into hourly intervals as it originally provides log data
of 16 days. However, the average test suite size per CI cycle
in GSDTSR exceeds that in the ABB datasets. An overview
of the dataset is presented in Table I.

TABLE I
DATASETS INFORMATION OVERVIEW

Project Test cases information
name No. of Test Cases CI cycles Verdicts Failed

Paint Control 89 352 25,594 19.36%
IOF/ROL 1941 320 30,319 28.43%
GSDTSR 5,555 336 1,260,617 0.25%

Additionally, in order to structure the information around
a test case and not around cycle or execution, we extracted
and reorganized the information provided in the three datasets,
thus characterizing each test case with execution cycles, fails
versus passes, etc.

Three matrices (the cycle matrix, the fault matrix, and the
verdict matrix) are obtained following the reorganization of the
initial dataset, for each matrix we provide next the constituent
elements:

• cycle matrix, containing:
– Testcase - id of the test case
– Duration - execution time for the given testcase
– Fault Rate - represents the number of total faults over

the number of total runs
– Cycles count - the number of cycles in which the

test case was executed
– Total Runs Count - sum of the runs of the given test

case over all cycles

1https://new.abb.com/products/robotics
2https://bitbucket.org/HelgeS/atcs-data/src

– Cycle 1..N - number of faults over the number of
runs in the given cycle for the given test case

• fault matrix (as we did not have a list of faults, we
considered that each test case would detect one unique
fault if the test case ever failed), containing:

– test case ids as rows
– fault ids as column
– value cells containing 1 if the given test case detected

the given fault, 0 otherwise
• verdict matrix, containing:

– Testcase - id of the test case
– Cycle {1...N} - last verdict for the given test case

and cycle, “success” means pass, “fail” means that
the test case did not pass and found a fault.

The constructed datasets with the built matrices are available
at this link [17].

D. Features

The features used in our investigations are, for each test
case:

• duration
• number of runs in all cycles
• number of total executions
• fault rate
• a rate between the number of fails of the test case in a

cycle over the number of runs in that cycle.
The constructed datasets with the above-specified features

are based on the datasets in the investigation in the paper [4].
The sequence of test cases within the TCP paradigm is

typically decided by a domain expert. However, in the current
scenario, due to the extensive data volume, we opted to utilize
the services of ChatGPT to establish the order. ChatGPT
is already listed as an author in some research papers like
[18], [19]. While many researchers disapprove [20] with
this, using it as an assistant for certain tasks is strongly
promoted in several areas of activity including biomedical
research and healthcare [21], software testing education [22],
software architecture and design [23], source code generation
[24]. We leveraged the AI’s proficiency and potential insights
regarding TCP to procure a prioritized array of test case ids.
In regards to how we prompted the LLM (Large Language
Model), after providing the dataset, and carefully explaining
what is the format of the input and what we expect as an
output, we used the following prompt: “As a testing, especially
regression testing, expert I want you to prioritize all testcases
starting with the most important one.” Furthermore, in order to
facilitate computational operations on the enumerated test case
identifiers, each ID was associated with a real value within the
range of 0 to 1. The most optimal test case received a score of
1.0. The score for each successful test case was determined by
deducting quantity 1 divided by the total count of test cases
from the score of the previous test case.

Two methods were used to verify the ChatGPT labelling
following an exhaustive analysis of the dataset’s constitution
and the features’ semantics, namely, one manual and one using



the NAPFD metric. First, the authors randomly selected and
inspected 30 test cases and established, based on their exper-
tise, that the test cases appeared to be correctly prioritized.
It is important to mention that, since we trained the neural
network using supervised learning on the IOF/ROL dataset
(because it was the most balanced dataset according to the test
case verdicts), the ChatGPT labels were only needed for this.
Subsequently, we computed the NAPFD metric (see Section
IV-F). For all the methods considered (see Section V), given
a budget of 100%, we achieved values close to 1, indicating
a highly accurate ordering.

E. Models

The models employed in our study used a subset of the
existing features based on the constructed datasets as men-
tioned in Section IV-C. It is worth mentioning that all the
models employed used all instances of the IOF/ROL project
as training and the other two projects, namely, Paint Control
and GSDTSR are used for the testing phase.

The similarities and differences between the models consid-
ering the used features are provided next:

• Model 1 uses four features from the dataset: Duration,
Fault Rate, Cycles Count, and Total Runs Count.

• Model 2: uses four features from the dataset (Duration,
Fault Rate, Cycles Count, Total Runs Count) augmented
by other three features regarding the average of faults at
every approximately 100 cycles (namely, first 107 cycles,
next 107 cycles and the last 106 cycles).

• Model 3: uses four features from the dataset (Duration,
Fault Rate, Cycles Count, Total Runs Count) augmented
by other 11 features regarding the average of faults every
approximately 30 cycles (namely, 10 groups of 30 cycles
and the last group of 20 cycles).

As shown in Figure 2, the three models use various features
as predictors, the 4 features, in the first rectangle in the
Predictors section, are used in Model 1, and for the other 2
models, Model 1 and Model 2 the fault rates from various
groups of cycles are used (3 groups for the second model
and eleven groups for the third model). For the testing phase
of Model 2 the following cycle groups were used for the
paintcontrol project 118, 118, 116, and for the gsdtsr project
112, 112, 112. For the testing phase of Model 3, for th
paintcontrol project 32 cycles for used for each group and
for the gsdtsr project 31 cycles of each group, except the last
one with 26 cycles.

F. Metrics for Analysis

The APFD metric [25] is defined as follows (n is the number
of test cases, m is the number of faults, and TFf represents
the position of the test case in the prioritized test suite that
detects the fault f). The higher the value of the APFD score,
the better the fault detection.

APFD = 1− TF1 + TF2 + ....TFm

m×m
+

1

2× n
(2)

Normalized APFD (NAPFD) [26] is an extension of APFD
in order to incorporate the fact that not all test cases are
executed and failures can be undetected. When p=1, namely,
all faults are detected, the NAPFD is the same as the APFD
formulation.

NAPFD = p− TF1 + TF2 + ....TFm

m×m
+

p

2× n
(3)

where p = the number of faults detected by the prioritized
test suite divided by the number of faults detected in the full
test suite.

V. DESIGN OF EXPERIMENTS

Research investigation consists of various experiments. Fig-
ure 3 graphically shows the overview of the experiments
performed. All experiments considered a minimum of four
features, namely, Duration, Fault Rate, Cycles count, and Total
runs count. The first and second experiments also considered
the information regarding faults for each test case for each
cycle. In the first experiment, we follow the experimental
protocol considered in [4] (where data from every 30 CI
cycles were used, considering 50% budget) and [6] (where
50%, 75%, 95% budgets were considered), thus considering in
our experiment information provided every approximately 30
cycles. In the second experiment, we considered information
provided every approximately 100 cycles. And in the last
experiment, we only considered the four general information
about the test cases. For all three experiments, we performed
various budget percentages, from 25% to 50% and 75%, and
also 100%.

Design Of Experiments

TC in CI metrics

Duration

Fault Rate

Cycles Count

Total Runs Count

fault rates per cycle

11 groups

(~30 cycles)

TC in CI metrics

Duration

Fault Rate

Cycles Count

Total Runs Count

fault rates per cycle

3 groups

(~100 cycles)

TC in CI metrics

Duration

Fault Rate

Cycles Count

Total Runs Count

Experiment 1 Experiment 2 Experiment 3

Budget

25%                     50%                 75%                100%

Fig. 3. Design of experiments



VI. RESULTS

This section outlines the results of the above-mentioned
experiments.

For all experiments, the training was carried out in the
IOF/ROL project (since it was the most balanced dataset
among the available ones) and testing was carried out in the
Paint Control and GSDTSR projects.

A. Experiment 1
The current experiment considers for each test case the

four general features mentioned above, together with the fault
information for each cycle. The neural network uses the
provided data for every 30 cycles.

Paint Control GSDTSR
0.0

0.2

0.4

0.6

0.8

1.0
NAPFD, budget 50%

Initial Permutation
Random Permutation
Sorted by Fault Rate

Sorted by Duration
Neural Network
Elbaum's Approach

RETECS
COLEMAN
LeaRnTeC

Fig. 4. Experiment 1 with approximately 11x30 cycles, considering 50%
budget

As can be observed in Figure 4, the best results, in the
case of 50% budget, are obtained by RETECTS [4] and
COLEMAN [5]. It should be noted that NEUTRON obtains
better results than the Random solutions and also better than
Sorted by Duration and Sorted by Fault Rate in each of the
tested projects, however, the NEUTRON solution embedded
both features regarding duration and fault rate.
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Fig. 5. Experiment 1 with approximately 11x30 cycles, considering all
budgets

In Figure 5, it is shown that NEUTRON obtains the best
solution for 75% budget in the case of testing Paint Control

and for both testing projects in the case of the 100% budget.
Table II contains the values of the NAPFD obtained for
the previous papers Elbaum’s approach [16], RETECTS [4],
COLEMAN [5], LeanRnTeC [6] and the results for NEUTRON
approach, along with the results for the initial permutation,
random and soft by duration or faults. It should be stated that
the complete values exist only for the 50% budget. For the
25% and 75%, we have considered in the table the results of
previous solutions for 10% and 80% respectively.

B. Experiment 2

The second experiment considers, like the first experiment,
for each test case the four general features along with fault
information regarding each cycle, at every 100 cycles.
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Fig. 6. Experiment 2 with approximately 3x100 cycles, considering all
budgets

In Figure 6, it can be seen that the best solutions are ob-
tained for the Sorted by Fault or Sorted by Duration. However,
it must be stated that the NEUTRON solution combines both
features, namely, faults and duration, obtaining comparable
results when only considering one of the dimensions.

C. Experiment 3

This third experiment takes into account only the four
general features.

In Figure 7, the same results are found, namely NEUTRON
finds better solutions than the Random permutation, however,
considering only single feature, the Sorted by Faults Rate
and Sorted by Duration obtain better ones. Furthermore, in
this case, it should be noted that the NEUTRON approach
simultaneously considers both features (duration and faults)
and the results are comparable in this case.

D. Comparisons of the three models

We have also investigated the three models proposed in the
context of the 50% budget. As shown in Figure 8, in the case of
the Paint Control project the best model is for the one trained
with no cycles followed by the Model with 100 cycles. In the
case of the GSDTSR project, the best model is with 100 cycles
followed by the one with 30 cycles.



TABLE II
EXPERIMENT 1

NAPFD
Project Initial Random Sort Fault Rate Sort Duration NEUTRON Elbaum RETECS COLEMAN LeaRnTeC

25%-Paint Control 0.275280 0.320224 0.067415 0.567415 0.251276 0.915 0.915
25%-GSDTSR 0.160602 0.208414 0.798651 0.692944 0.486858 0.9911 0.9893

50%-Paint Control 0.584485 0.589887 0.372999 0.780898 0.600487 0.9145 0.915 0.915 0.915
50%-GSDTSR 0.409727 0.486987 0.999755 0.882094 0.917503 0.9891 0.9911 0.9893 0.9894

75%-Paint Control 0.666328 0.864736 0.700434 0.949570 0.937796 0.9162 0.9171
75%-GSDTSR 0.672442 0.697674 0.999878 0.945154 0.987035 0.9921 0.9893

100%-Paint Control 0.988700 0.980494 1 0.972667 0.994003
100%-GSDTSR 0.982327 0.974485 0.999904 0.959203 0.998308
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Fig. 7. Experiment 3 with four features, considering all budgets
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Fig. 8. Comparisons of the three models

VII. POTENTIAL BENEFITS OF THE CONTRIBUTION

In regression testing, there is no time to run all existing test
cases, so there are various strategies to execute the tests with
the highest impact, finding more faults as early as possible in
the time execution. Test Case Prioritization overcomes some
of the drawbacks of the selection or reduction mechanism by
not discarding test cases. In this regard, one benefit of this
contribution is that the results of the models are provided for
various time budgets, thus allowing the software tester to select

the proper model according to the needs and time available.
Another benefit of the approach is that it allows the identi-

fication of faults early during the testing process since it could
be applied not only in the early stages of development/testing
when only a few tests are implemented, but also in the later
stages of development when the test suite is very large.

Regarding the constructed dataset, various researchers could
use it to further propose other methods and compare it with
other existing ones. Thus, in this respect, the benefit will be to
the researchers being able to further analyze and compare new
solutions with state-of-the-art ones. Furthermore, considering
that the datasets were industrial, this newly constructed dataset
augmented with more features describing finer-grained details
regarding the test case executions could be used to validate
other similar industrial projects.

In future work, the best model could be embedded in an
IDE tool such that developers and testers could benefit from
the prioritization of test cases when specifying a time budget.
It would also be possible to specify how many cycles to be
considered when aiming to find a fault or when aiming at a
specific pass/fail execution history.

VIII. THREATS TO VALIDITY

Experiments may be vulnerable to certain threats to validity,
and the outcome of the research is influenced by various
aspects. Next, several points are indicated that may have
influenced the results obtained, stating the action taken to
mitigate them.

Internal. The primary internal validity threat is the use on
ChatGPT to label the datasets. However, we have explained
our validation approach for this labeling process and we have
confidence that it is accurate. Moreover, both the datasets
and the labels are public, so anyone at any point can inspect
and validate them. Another potential threat to validity is the
presence of bugs in our implementation. However, through
comprehensive testing and code review, we hope to have
significantly reduced the likelihood of such issues.

Construct. The original datasets contain few features with
respect to the test cases. To mitigate this threat, we enhanced
the datasets with additional features, but we believe that more
and more diverse information can be included in the datasets.



External. We evaluate our approach on three industrial
datasets. Clearly, we should have used more datasets, but
to our knowledge, there are no other datasets that have the
required data, especially historical information regarding the
execution of the test cases. Also, another important aspect re-
lated to the structure of the dataset and the existing information
is the scenario where a single test case may discover a single
fault and thus a fault is found by a single test case. Even if,
in theory, a test case was designed with the purpose to check
a behavior, it is possible that the same fault is identified by
various test cases. Thus, more complex datasets are needed
in the context of continuous integration environments, also
with links between the changed and associated test case or/and
requirements that are checked.

IX. CONCLUSIONS

In continuous integration settings, a set of tests is run
for each new feature or bug fix. There are several strategies
to select or prioritize the execution of the tests. Test Case
Prioritization reorders the test cases so that faults are found
earlier with a minimum execution cost.

The paper investigated the use of neural network-based
classification models to help prioritize tests. Three different
models were employed with various features (duration, fault
rate, cycles count, total runs count) and considering informa-
tion at every 30 cycles or at every 100 cycles.

The NEUTRON approach finds a better prioritization with
respect to NAPFD than random permutation. The NEUTRON
results are comparable with other sort-based solutions that
used either duration or faults; in addition, it considers both
features when constructing the solution. Compared to other
existing state-of-the-art approaches, NEUTRON achieves sim-
ilar competitive results when considering a budget of 50% and
the best results when considering budgets of 75% and 100%.

In future work, further experiments are going to be per-
formed with more projects and with more complex scenarios
considering various cycles and more test cases discovering the
same faults, along with the connection to the change in the
source code or in the requirements.
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