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ABSTRACT
Reliability is one of the most important quality attributes of a soft-
ware system, addressing the system’s ability to perform the required
functionalities under stated conditions, for a stated period of time.
Nowadays, a system failure could threaten the safety of human life.
Thus, assessing reliability became one of the software engineer-
ing‘s holy grails. Our approach wants to establish based on what
project’s characteristics we obtain the best bug-oriented reliability
prediction model. The pillars on which we base our approach are
the metric introduced to estimate one aspect of reliability using
bugs, and the Chidamber and Kemerer (CK) metrics to assess relia-
bility in the early stages of development. The methodology used for
prediction is a feed-forward neural network with back-propagation
learning. Five different projects are used to validate the proposed
approach for reliability prediction. The results indicate that CK
metrics are promising in predicting reliability using a neural net-
work model. The experiments also analyze if the type of project
used in the development of the prediction model influences the
quality of the prediction. As a result of the operated experiments
using both within-project and cross-project validation, the best
prediction model was obtained using PDE (PlugIn characteristic)
for MY project (Task characteristic).
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• Software and its engineering → Software reliability; Soft-
ware design tradeoffs; Software maintenance tools; Maintaining
software.
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1 INTRODUCTION
One of the factors that affects the software development process
resides in the quality pressure. DevOps help to increase the deploy-
ment speed with high software quality. Several studies investigate
the links between DevOps and software quality [19], [24], some
revealed that there is a need for further research in the area of mea-
surement and proposing metrics for various development stages
to assess software performance. Thus, there is a positive relation
between DevOps’s practices and software quality, i.e. quality is
increased when practice DevOps by following CAMS (Culture, Au-
tomation, Measurement, Sharing) framework.

To assure a high quality of the software, one of the key factors
resides in the reliability of software system. Reliability expresses
“the degree to which a system is free of faults or can recover to a
stable state after changes were applied” [20]. Also, reliability can be
expressed as “the probability of failure-free operation of a system
over a specified time within a specified environment for a specified
purpose" [25].

The definition of reliability seems to be related only to the soft-
ware system external behaviour. However, failures are usually de-
rived from faults or design flawswithin the system internal structure
[30]. It is well known that a good internal design structure has a
strong positive impact on external quality attributes such as relia-
bility, maintainability and reusability. For instance, the complexity
of a reliable system should be minimized as much as possible. Also,
coupling is another important aspect: a highly coupled system is
difficult to be tested, due to its dependencies between constituents
components. Insufficient testing increases the probability of fail-
ures. Thus, assessing the internal structure of the software system,
afford us to predict its external behaviour. One efficient way to as-
sess a software system’s internal structure is by means of software
metrics.

The motivation of this work is to help in the DevOps practices
regarding the measurement of reliability quality attribute and pro-
vide a prediction model for defect classes. Having into account the
reliability definition and the above-mentioned reasoning regarding
the vital influence of the system internal structure on its external
behaviour, the pillars of this research investigation are a metric for
reliability definition using the aspect relating to bugs and the use of
metrics that quantify the internal structure of the system to predict
the system reliability:

• Thus, firstly we define a metric for reliability assessment,
based on the software external aspects that influence reliabil-
ity, in this approach we consider software bugs. We study one
of the indicators of reliability in the form of the bug count,
advocating once again that even if reliability is an opera-
tional characteristic of the software (i.e., remaining faults
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activation is environment context-dependent) post-release
bugs influence its value. For example, the “high priority”
bugs may be framed/enclosed as “every time the software
is executed, a remaining fault is activated”, thus relating to
reliability estimation.

• Secondly, the paper employs metrics that quantify the inter-
nal structure of the system in predicting the system reliabil-
ity.

Thus, based on those two pillars, our approach aims to uncover
associations between the project ’s characteristics and reliability,
using a neural network prediction model and five open source
projects, conducting both within and cross-project validation. This
investigation is a challenging problem due to the fact that reliability
is a dynamic emerging aspect of software, which can be hardly
captured by observing static metrics alone. This prediction is a
necessity due to the fact that assessing the reliability later in the
development life cycle of the project (when failures are known) may
result in increasing the cost of modifications for improvement. The
novelty of this paper refers therefore at proposing a neural network -
based prediction model for reliability defined by one aspect (i.e. bugs)
using CK metrics, reducing the cost of improvements.

The paper is organized as follows: Section 2 contains related
work. Section 3 describes the research design: the research ques-
tion, the Goal-Question-Metric (GQM) approach used for reliability
assessment and prediction along with the neural network approach,
the used dataset and the description of experiments. Section 4 out-
lines the obtained results, followed by a discussion. Section 5 por-
trays our long-term objectives and planned work. Section 6 discuses
threats to validity that can affect the results of our study. The con-
clusions of our paper and further research directions are outlined
in Section 7.

2 RELATEDWORK
Reliability is one of the most important measurements when we
describe safety-critical systems. It is so important because a fail in
such a system could produce life losses. This subject was of major
interest in the last years and several research works studied its
impact on software safety, as well as methods through which we
can predict and accomplish a high reliability value from the earliest
development stages.

How reliability predictions can increase trust in the reliability
of safety-critical systems was studied in paper [27]. The author
determines a prediction model for different reliability measures
(remaining failure, maximum failures, total test time required to
attain a given fraction of remaining failures, time to next failure),
concluding that they are useful for assuring that the software is
safe and for determining how long to test a piece of software.

Another approach [4] defined a classifier (with 37 software met-
rics) and used it to classify the software modules as fault-none or
fault-prone. They compared their work with others and concluded
that their model has the best performance. The approach in [14]
proposes a new tool named Automated Reliability Prediction System
for predicting the reliability of safety-critical software. An experi-
ment was conducted where some students used this tool. The result
was that they made fewer mistakes in their analysis.

The work described in [18] tries to solve the problem of deter-
mining the error rate of the electronic parts of a track circuit system
(which is a safety critical system) by using Markov chains in order
to predict the reliability of the fault-tolerant system. The paper
[15] proposes an approach for predicting software reliability using
Relevance vector machines as kernel-based learning methods that
have been adopted for regression problems.

In relation to existing approaches, ours investigates how we can
use Chidamber and Kemerer (CK) [3] metrics to predict reliability
and relates to approach [4], with the difference that we use CK
metrics instead of cyclomatic complexity, decision count, decision
density, etc., and we predict a reliability value for each class in the
project, instead of classifying the design classes in two categories –
faulty or healthy.

3 RESEARCH DESIGN OR METHODOLOGY
This section presents our approach for reliability prediction, pre-
senting first our research question, the ingredients of our investi-
gated problem (the proposed reliability metric definition, and the
metrics used to define the prediction model), and then the determi-
nation of the neural network model for reliability prediction.

3.1 Research Question
In this paper, we empirically try to uncover, using five open source
projects, the associations between the project’s characteristics and
reliability using a prediction model based on Neural Networks.
Therefore, we use both within and cross-project approaches to
discover the relations between the characteristics of the projects
used as training and those used to validate the obtained reliability
prediction model. The details about each project’s characteristics
are provided in Section 3.3.

More specifically, the study aims at addressing the following
research question:

RQ: What is the association between the project’s characteris-
tics and reliability expressed by bugs when using a CK-based
metrics neural network prediction model?

3.2 Goal-Question Metric approach to quantify
reliability

The studies on how to quantify reliability highlight two aspects:
reliability assessment, respectively reliability prediction. Reliability
assessment relies on collecting data during testing, operation, and
maintenance in order to conclude about the overall reliability of the
system. It can be seen as a “black box” approach, and very few infor-
mation can be inferred about which part of the code has a negative
impact on reliability. Also, this analysis is performed late in the
development cycle, when making modifications for improvement
are costly. Reliability prediction is collecting information from the
code (quantified by means of software metrics) and uses different
approaches, such as simulations, statistical analysis, and others, to
infer a prediction about reliability. Thus, the results of reliability
assessment can be used in other future projects to predict reliability
based on the internal structure of the analyzed system.
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To approach the above-mentioned aspects on how to quantify
reliability, we are led by Fenton’s theory of measurement: “any mea-
surement activity must have clear objectives”. The Goal-Question-
Metric (GQM) model [1] spells out the necessary obligations for
setting objectives before embarking on any software measurement
activity [17]. Thus, our proposed model to quantify reliability is
driven by a GQM approach applied for both aspects mentioned
above regarding on how to quantify reliability:

• First of all, the measurements objectives are linked to reliabil-
ity assessment defining a new metric to quantify reliability,

• Then, we connect the measurements objectives to reliabil-
ity prediction, by using the metric defined at the previous
step and the characteristics of the software system internal
structure.

In what follows, we present the two steps involved in our ap-
proach to predict reliability, using a GQM approach. A graphical
view of our approach is presented in Figure 1.

Figure 1: Detailed Goal-Question-Metric Model [1] applied
in two steps in our investigation/approach

3.2.1 GQM approach for reliability assessment. Reliability is gen-
erally accepted as the major factor in software quality since it
quantifies software failures, which can make a powerful system
inoperative. Having into account the reliability definition of a soft-
ware system as being the probability of failure-free operation for a
specified period of time we aim to measure its complementary value,
its degree of failures.

In order to assess reliability, we follow the steps implied in the
GQM approach. The first step consists in establishing The Goal of

Measurement. In this respect, “Identify aspects of software external
behaviour that are related to reliability”. The current approach con-
siders these aspects as being reliability sub-characteristics from the
ISO25010 Quality Model [9]: Maturity, Availability, Fault Tolerance
and Recoverability. The second step is to derive Questions that must
be answered to determine if the Goals are met. For each of the
questions highlighted in the previous step, identify metrics that
quantify the aspects involved in questions. This is the third step of
GQM approach. This process is detailed in Figure 1 left side.

Following the GQM approach described before, we claim that
the four subcharacteristics of reliability are related in a great extent
to the post-release faults/bugs found in the analyzed system. These
bugs are grouped in four categories considering their severity and
priority. Thus, the following types of bugs were reported by a
bug tracking system: #HighPriorityBugs (HPB) - number of bugs
considered to be a priority, #NonTrivialBugs (NTB) - number of
bugs being non trivial, #MajorBugs (MB)- number of bugs having a
major importance, #CriticalBugs (CB) - number of bugs considered
to be critical, and #Bugs - number of bugs that were not categorized.

We establish weights for each of the above four categories con-
sidering an order relation that establishes a priority in solving these
faults/bugs, thus assigning a greater impact for high priority bugs
HPB, major bugs BM and for critical ones, CB, with weights of
0.25. Common bugs are the lowest priority and we consider the
weights of 0.15 for non-trivial bugs and 0.10 for common bugs. This
order relation, together with the corresponding weight values is de-
fined as a set of pairs: {(0.25,HPB), (0.25,MB), (0.25,CB), (0.15,NTB),
(0.10,Bugs) }. The reliability of a class is defined as an aggregate
measure by means of Equation 1 that linearly combines the number
of different types of bugs:

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =

(0.25 ∗ 𝐻𝑃𝐵 + 0.15 ∗ 𝑁𝑇𝐵 + 0.25 ∗𝑀𝐵 + 0.25 ∗𝐶𝐵 + 0.10 ∗ 𝐵𝑢𝑔𝑠).
(1)

Thus, theMetric for the reliability assessment is that stated above
in Equation (1).

3.2.2 GQM approach for reliability prediction. The process of de-
signing software is error prone and object-oriented design makes
no exception. We have argued earlier that the flaws of the soft-
ware system internal structure have a highly negative impact on
quality attributes such as reliability, reusability, or maintainability.
Thus, the system internal structure affords us to predict its external
behaviour.

Having into account the above-mentioned motivation to predict
reliability, we collect information from the code by means of soft-
ware metrics and we use various approaches, such as simulation,
statistical analysis, and others, to infer a prediction about reliability.
Our proposal will follow this approach using the information pro-
vided by Chidamber and Kemerer (CK) [3] object-oriented metrics.

The reason for choosing CK metrics is that several studies [2],
[13], [31], [28] [12], reveal them having a strong impact on soft-
ware reliability by predicting fault-prone classes. In addition, these
metrics measure four internal characteristics that are essential to ob-
ject orientation, i.e., coupling, inheritance, cohesion, and structural
complexity [17]. All these metrics are defined at the class level, thus
we predict the reliability of a class.
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Following a GQM approach to predict reliability, our Goal is to
identify those aspects of the software system internal structure that
are related to reliability, and then to derive questions that suggest
us metrics to quantify these internal structure characteristics. This
process is detailed in Figure 1 right side.

Thus, the goal of this study is to explore the relationship between
object-oriented metrics and reliability by predicting reliability at
the class level. For this, we use the value of reliability, computed
with Equation 1, as target value, and the values of CK metrics as
independent variables in the prediction model.

In order to predict the reliability, a feed-forward neural network
with back-propagation learning is used, with the following struc-
ture: six nodes on the input layer (one for each considered metric),
one node on the output layer and two hidden layers, each of them
having four nodes. Each node uses the bipolar sigmoid activation
function [26]. The termination condition of training is either the
error to be less or equal then 0.001 or the number of epochs to be
at most 10000. After training this neural network, we obtained a
neural network model for reliability prediction.

3.3 Dataset
The dataset used in our investigation is described in [5]: JDT [10],
PDE [23], Equinox (EQ) [6], Lucene (LU) [16], and Mylyn (MY) [21]
projects. The values for the metrics WMC, RFC, NOC, LCOM, DIT,
CBO are used for the last version of the projects before release [5],
thus the faults/bugs were found in the analyzed system during a
period o six months.

More information about the number of classes in each project
and the number of bugs may be visualized in Table 1 (#C=number
of total classes, #CB=number of classes with Bugs, #B=number of
Bugs, #NTB=number of Non Trivial Bugs , #MB =number of Major
Bugs, #C=number of Critical Bugs, #HPB=number of High Priority
Bugs), and #Bugs - number of bugs that were not categorized.

Table 1: Dataset description

#C #CB #B #NTB #MB #CB #HPB
JDT 997 206 374 17 35 10 3
PDE 1497 209 341 14 57 6 0
EQ 324 129 244 3 4 1 0
LU 691 64 97 0 0 0 0
MY 1862 245 340 187 18 3 36

Our study used data from 5 different software projects. For ex-
ample, the experiment that considered the JDT project for training,
the prediction model, used over 1000 classes for training, and the
projects used for validation had classes as follows: 2 projects with
a number of classes between 400 and 1000 classes, and 2 projects
around 2000 classes. Thus, over 1000 instances/classes were used
in the determination of the reliability prediction neural network
model and for the validation phase over 5000 instances/classes were
used (cumulative over the 4 projects).

The characteristics used in our investigation related to the project
used are: UI, Framework, Indexing and search technology, Plug-in
management and Task management. We mention next for each
project the characteristic that is present: JDT (UI, IndexSearch),

PDE (UI, PlugIn), EQ (UI, Framework), LU c(UI, IndexSearch), MY
(UI, Task). Table 2 details for each project if the characteristic is
present (𝑌 ) or not (𝑁 ).

Table 2: Characteristics of investigated Projects

Projects Characteristics of projects
UI Framework Search Plug-in Task

JDT Y N Y N N
PDE Y N N Y N

Equinox Y Y N N N
Lucene Y N Y N N
Mylyn Y N N N Y

3.4 Experiments description
Our conducted investigation used various experiments in five projects.
Each experiment builds a neural network bug-oriented reliability
prediction model considering one of the five projects as training.
A graphical view of our experiments descriptions are provided in
Figure 2.

In each experiment, we trained a neural network-based predic-
tion model using 9/10 data from a single dataset (each experiment
used a different dataset for training). Each prediction model was
then validated in two steps. The first step was to validate it using
the cross-validation technique [7]), which means that we used for
validation the remaining 1/10 data from the dataset that was used
for training. The second step was to validate the model using data
from the other four projects from the dataset.

Thus, the within-project validation was first applied; in Figure 2
Project A is considered both for training and testing. As a second
part of each experiment, the cross-project validation was performed,
i.e., using the other four projects from the dataset for validating the
model, for example, for JDT-training PDE, EQ, LU and MY projects
are used in turn as Project B in Figure 2.

As marked in Figure 2, Project A was both used as training and
validating, instantiated in turn with JDT, PDE, EQ, LU and MY. In
the same experiment, for the same Project A considered as training,
the other four projects were considered for testing, thus Project B
being initialized in turn with the other projects.

4 RESULTS
After conducted the above-mentioned experiments, we scrutinized
the results to find out if the type of project used for the training of
the prediction model has an impact on the obtained RMSE values.

The experiments investigated to what extend the obtained neural
network model for reliability prediction is different in terms of
the Root Mean Squared Error (RMSE) value (thus better) when a
different type of project is used for training varies. The lower this
RMSE value is, the better the model is in its predictions. If you have
a smaller value, this means that the predicted values are closer to
the observed values.

Table 3 contains the RMSE values for all experiments, considering
each project as a training project, for both within-project and cross-
project validation. Thus, for each project used as training project,
the RMSE values for the withing-project validation is listed (values
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Figure 2: Our approach overview

on the principal diagonal in the table) and also the RMSE values for
the cross-project validation (for the JDT-training the values in the
second column, one value for each PDE, EQ, LU, My, except JDT).

Scrutinizing the result in Table 3, we can observe that:

• For within-project – the PDE-training obtained the mini-
mum value (bold in the table, among all other each training
project).

• For cross-project – the minimum RMSE values for each vali-
dation set for the cross-project experiments is marked with
gray background: for all projects (except LU-training and
MY) the minimum RMSE obtained is for MY. For LU-training
the minimum RMSE is obtained for EQ and for MY-training
the minimum RMSE is obtained for PDE project.

Scanning the values for both within and cross-project, we note
that for all projects (except LU) the value for the within-project is
smallest than the cross-project validation values. Thus, in what fol-
lows we will analyze thoroughly the obtained cross-project values.

The beanplot, an enhancement of the boxplot that adds a rug
showing every value and a line showing the mean, was introduced
by Kampstra [11]. The name is inspired by the appearance of the
plot: the shape of the density looks like the outside of a bean pod
and the rug plot looks like the seeds within.

Figure 3 presents the beanplot for the cross-project validation
experiment. Examining the figure, we discern that the RMSE mean
for EQ is the highest among all projects. The JDT project had the
largest number of similar RMSE values for all its validations projects,
whereas PDE and MY have the smallest RMSE values.

In Figure 4 we present a radar plot to emphasize the relationships
between the project used as training and the projects used as vali-
dation. Analyzing the results, it can be seen that the obtained RMSE
values may differ depending on which project is used as a basis to
train the model. Best RMSE is obtained for PDE-training and MY-
training, thus with PlugIn and Task characteristics. The worst value

Figure 3: RMSE - beanplot for all projects (1-JDT, 2-PDE, 3-
EQ, 4-LU, 5-MY) for cross-project experiment

is obtained with EQ project, thus using a project with framework
characteristics as training. In conclusion, PlugIn-training finds best
RMSE for a Task-oriented project and a Framework-training project
finds the worst RMSE for a Task-oriented project.

The experiments conducted in this paper enabled us to state the
following observations:

• One aspect for reliability prediction based on code metrics
is considered in this investigation: bugs with various flavors
(high priority bugs, non-trivial bugs, major bugs, critical
bugs); other aspects for reliability need to be considered for
a deeper understanding, aspects such as changes (number
of revisions, number of authors, number of fixies, etc);
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Table 3: RMSE values for within-project and cross-project experiments

Projects RMSE values
JDT-training PDE-training EQ-training LU-training MY-training

JDT 0.087380777 0.204252533 0.188846308 0.156155316 0.089221831
PDE 0.100760247 0.043892742 0.122337023 0.064645116 0.051891154
EQ 0.091224966 0.066800726 0.071841441 0.052064477 0.062254302
LU 0.096635928 0.067367806 0.240844976 0.072722731 0.103173017
MY 0.091181044 0.047469571 0.105609546 0.067368627 0.044976185

Figure 4: Projects’s Characteristics - relation between train-
ing and validation for cross-project validation.

• Various predictionmodels were compared using cross-project
validation and only one model per trained project for within-
project validation; it would be interesting to investigate var-
ious prediction models for the same project using various
releases.

In summary, with respect to our 𝑅𝑄 , namely What project (i.e
characteristics) should be used as training for better bugs-oriented
reliability prediction?, we elaborate the following response:

The experiments using within-project and cross-project pre-
diction models identified that the best reliability by bugs pre-
diction is obtained using PlugIn-based characteristic training
project for Task-based characteristic project.

Comparison: Multiple regression model versus
Neural Network model
In what follows, we compare a multiple regression approach [29]
with the current proposed neural network approach, both using
the same dataset.

The approach in [29] investigated the same reliability prediction
using CK metrics with the same bug-based definition of reliability
as in this current paper approach, but considering the multiple re-
gression approach. Three models encapsulating various CK metrics
were investigated and the best one revealed that the equation with
CBO and WMC metrics predicts better.

The same type of experiments were conducted, i.e., considering
one of the five projects as training and the others four as validation.
The RMSE values were also reported for the multiple regression

approach. We should mention that in the [29] approach only four
initial CK values were used after conducting the preliminary analy-
sis (Pearson correlation between independent variables and depen-
dent variable and multicoliniarity - correlation between any two
metrics). Thus, in what follows we present the analysis between
the two approaches, however we should keep in mind this differ-
ence: the [29] approach used only four metrics (reduced to two CK
metrics by experiments) and the current approach uses all six CK
metrics.

The obtained results in the multiple regression approach [29]
showed that using MY as training provides the best prediction (for
the Lucene project as validation). In the current paper, i.e. using
Neural Network approach, the best training project was the PDE
with the best RMSE value obtained for the MY validation project.

An important remark regarding both approaches is that for all
training-based projects (except for the current approach with LU
project) the project that obtained the minimum RMSE values is the
MY project. Thus, having as a validation a project with Task man-
agement characteristic, we obtained the best prediction approach
no matter what characteristics had the training project.

The current approach also conducted experiments within project
testing in contrast to the multiple regression approach. The within-
project testing results showed that the PDE project obtained the
best prediction model, as showed in Table 3.

5 LONGER-TERM OBJECTIVES AND
PLANNEDWORK

Emerging from the above two observations, we plan to further
refine the work done in this paper to firstly consider other aspects
of reliability prediction, secondly to experiment with various re-
leases of the same project, and thirdly to investigate with further
experiments different weights for the considered bugs.

Considering other reliability aspects. The used dataset [5]
contains also historical data, such as versions, fixes and authors,
refactorings made data that could be used further in the reliability
estimation model. Thus, future experiments will investigate an ag-
gregated metric for assessing reliability, taking into account others
aspects that influence reliability such as changes made during the
entire system lifecycle.

Considering various releases of the same project. Conduct-
ing within-project experiments for multiple releases should provide
a better model than considering training and testing for projects
with different characteristics.
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Considering various weights for various types of bugs. It
is worth mentioning that establishing the weights based on pri-
ority in solving the faults and then considering their severity, it
is our first attempt to propose a metric for reliability estimation.
Further investigation will follow, conducting various experiments,
employing different weights for diverse types of bugs for a bet-
ter reliability estimation metric, such as, for example, the design
method of Taguchi [8], [22].

6 THREATS TO VALIDITY
The proposed approach for reliability prediction, as every experi-
mental analysis, may suffer from some threats to validity and biases
that can affect the results of our study. There are several issues
which may have influenced the obtained results and their analysis
are pointed out in the following.

Threats to internal validity refer to the subjectivity introduced
in setting the weights for the reliability estimation equation. To
minimize threats to internal validity, we reason the weight establish-
ment by the fact that bugs that are categorized with high severity
and high priority, influence in a greater extent the system reliability.

Threats to external validity are related to the generalization of
the obtained results. Only five open-source projects were consid-
ered for evaluation, written in the same programming language
(Java) and considering a single version. Another threat to external
validity refers to the bias between the set of bugs categorized by
priority and severity and the set of bugs, as the results obtained on
a biased dataset are less generalizable. We tried to reduce threats to
external validity by choosing projects of different sizes and types
and using information extracted from a bug tracking system. We
plan to extend the experimental evaluation to others large-scale
software systems, analyzing several versions of the project, and
also using others information regarding the software changes that
could influence reliability.

Construct validity refers to check if the proposed construct is
real and if the proposed indicators reflect its target construct. In-
tentional validity, if the constructs we chose adequately represent
what we intend to study: we wanted to study the prediction of
defect classes that are represented by the bugs it may contain. Re-
garding representation validity, i.e. how well do the constructs or
abstractions translate into observable measures, we argue that the
different categories of bugs were considered with various weights
in the proposed reliability metric. Thus, the sub-constructs define
the construct. Observation Validity, i.e. how good are the measures
themselves, the values of the metrics used in our investigation come
from the last version of the projects, before release, thus the bugs
were found in the analysed systems during a period of six months.

Threats to conclusion validity are related to the relationship
between treatment and outcome and are mitigated through ensur-
ing that experimental assumptions are valid. In this investigation,
the conclusion threats are mitigated by classifying the bugs based
on their quality impact degree on the software system being in-
vestigated and using the same bug categories used in software
development and studies (high priority bugs, non trivial bugs, ma-
jor bugs, critical bugs, and those bugs that are not categorized).
Further more, we only used the measurements that come from

well-known sources, other research investigations that provide the
metrics values.

7 CONCLUSIONS AND FUTUREWORK
The paper proposes an approach for predicting bug-oriented reliabil-
ity using as pillars two perspectives: first, estimating the reliability
using the number of bugs in the system and, second, using CK
metrics for prediction. The obtained model is validated using a date-
set containing over 5000 instances/classes, grouped in 5 projects.
The experiments revealed that a PlugIn based characteristic project
obtains the “best” neural network reliability prediction model.

Future work will investigate: applying the neural network predic-
tion model for other quality attributes, overcoming the limitation
of the subjectively established weights of the reliability equation by
using supervised learning methods, and extending the experimental
evaluation considering other open source projects.
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