

 32

BABEŞ-BOLYAI University of Cluj-Napoca

Faculty of Mathematics and Computer Science

Proceedings of the National Symposium ZAC2014

(Zilele Academice Clujene, 2014), p. 32-41

Scenario-based Refactoring Selection

by

Maria-Camelia Chisăliţă-Creţu
1

Abstract. In order to improve the internal structure of

object-oriented software, refactoring has proved to be a

feasible technique. Refactorings may be organized and

goal-based prioritized shaping thus a refactoring strategy.

The paper presents the formal definition of the

Multi-objective Scenario-based Refactoring Set Selection

Problem (MOSRSSP) by treating the cost constraint and

the refactoring impact as objectives of a weighted-sum

fitness function.

Keywords: software engineering, refactoring, genetic

algorithm, weighted-sum method

1. Introduction

Software systems continually change as they evolve to reflect new

requirements, but their internal structure tends to decay. Refactoring is a

commonly accepted technique to improve the structure of object-oriented

software. Its aim is to reverse the decaying process of software quality by

applying a series of small and behavior-preserving transformations, each

improving a certain aspect of the system [6].

Refactorings may be organized and prioritized based on goals

established by the project management leadership. The MOSRSSP

definition is based on the Refactoring Set Selection Problem (RSSP) [3].

Therefore, the SRSSP is the refactoring set selection problem that combines

1
 Babeş-Bolyai University, Cluj-Napoca, cretu@cs.ubbcluj.ro

 33

multiple strategy criteria in order to find the most appropriate set of

refactorings.

The rest of the paper is organized as follows. Section 2 presents

some close related work and the motivation for the MOSRSSP. The formal

definition for the MOSRSSP is presented in Section 3. The Local Area

Network (LAN) Simulation source code used by approach is discussed in

Section 4. The proposed approach, several details on the genetic operators

of the applied algorithm and the first results are presented and discussed in

Section 5. The paper ends with conclusions and future work.

2. Related work

A closely related previous work to refactoring selection problems is

the Next Release Problem (NRP) studied by several authors [1, 7], where

the goal was to find the most appropriate set of requirements that balance

resource constraints to the customer requests, the problem being defined as a

constrained optimization problem.

More recent work on search based refactoring problems [2, 3] in

SBSE have defined the General Refactoring Selection Problem (GRSP),

used to refine the Multi-Objective Refactoring Set Selection Problem

(MORSSP) [3] and the Multi-Objective Refactoring Sequence Selection

Problem (MORSqSP) [4].

Our approach is similar to those presented in [8]. The research has

addressed the heterogeneous objective functions approach, where multiple

objectives are combined together into a single weighted fitness function.

Thus, we gather up different objectives as the refactoring cost and

refactoring application impact in a single fitness function.

A refactoring scenario allows to fit each transformation performed

on the software system in a general refactoring plan, following a criteria set

that unifies particular transformation requests into a homogenous single and

desired development trend. There are several problems faced, emphasing

diferent aspects of a complex refactoring process, as:a large number of

refactorings advanced; diferent types of dependencies among the affected

software entities and applied refactorings, e.g., an inherited method from a

base class is called within another method of a derived class;

 34

• a specific refactoring priority for each software entity.

3. Scenario-based Refactoring Set Selection Problem

The Scenario-based Refactoring Set Selection Problem (SRSSP) is

mainly based on the Refactoring Set Selection Problem (RSSP) fully

formalized in [2]. SRSSP is a special case of RSSP where the refactoring

selection is enhanced by certain criteria, e.g., refactoring application

priority, refactoring application type: optional or mandatory.

Input Data

The software entity set SE together with different types of

dependencies among its items form a software system named SS . The set of

software entity dependency types SED and the dependency mapping ed are

similar to the ones described in [2]. A set of relevant chosen refactorings

that may be applied to the software entities of SE is gathered up through SR.

The ra mapping sets the applicability for each refactoring from the chosen

set of refactorings SR on the set of software entities SE [2].

The set of refactoring dependencies SRD, together with the mapping

rd that highlights the dependencies among different refactorings when

applied to the same software entity are stated in [2].

The effort involved by each transformation is converted to cost,

described by rc mapping [2]. Changes made to each software entity mi ei ,1,

, by applying the refactoring tl rl 1, , are stated by the effect mapping

defined in [3]. The overall impact of applying a refactoring tl rl 1, , to

each software entity mi ei ,1, , is defined as: SRres : in [2].

eSR represents the subset of refactorings that may be applied to a

software entity SE e e , [6]. Therefore, .,1, mi SRSR
SEe

e

i

i

rSE represents

the subset of software entities to whom a refactoring r may be applied

SR r [2]. Therefore, .,1, tl SESE
SRr

r

l

l

In [8], the refactoring-entity pair notion was introduced, as it was

required for the refactoring sequence selection problem definition.

Therefore, a refactoring-entity pair was defined as a tuple)(ilil e re r

 35

consisting of a refactoring tl rl 1, , applied to a software entity miei 1 , ,

where Terra il),(.

Let Np erererREPSet pp ,),,,(= 2211 be the set of all refactoring-

entity pairs build over SR and SE , where psTerra ss 1 ,),(.

Refactoring Strategy

The refactoring strategy may be formally described by one or more

functions NCi sf i ,1, , where NC is the total number of criteria integrated

with the strategy. In the following, a sample strategy consisting of two

criteria, i.e., mappings, is introduced.

The development team may consider relevant that in a specific

context some refactoring applications to be mandatory, optional or selected

from a subset. Let elected SptionalO andatoryMRType ,, be the set of

possible refactoring types. The mapping rtype associates a type to each

refactoring from SR as follows: RTypeSRrtype : ,

tq, r ., . .rr if S

optional applied is r if O

mandatory applied is r if M

rrtype

q

0,,

,

,

)(

1

.

A second criterion considered by the development team may refer

the level of the affected entity when refactoring. Let

 lassC ethod MttributeARLevel ,, be the set of refactoring levels involved

in the transformation process. Therefore, the function rlevel maps each

refactoring to the entity level that it mainly changes, as: RLevelSRrlevel :

,

classes to applied is r if c

methods to applied is r if m

attributes to applied is r if a

rrlevel

,

,

,

)(.

Output Data

Multi-objective optimization often means compromising conflicting

goals. For our MOSRSSP formulation there are two objectives taken into

consideration in order minimize required cost for the applied refactorings

and to maximize refactorings impact upon software entities.

 36

The first objective function to for the MOSRSSP is the total cost is

subtracted from MAX , the biggest possible total cost, as it is shown below:

 errcMAXmaximizerfmaximize il

m

i

t

l

,),(=)(
1=1=

1

 where),...,(1 trrr

.

The second objective function maximizes the total effect of applying

refactorings upon software entities, considering the weight of the software

entities in the overall system, like:

,)(=)(
1=

2

l

t

l

rresmaximizerfmaximize where),...,(1 trrr

.

The final fitness function for MOSRSSP is defined by aggregating

the two objectives and may be written as:

(1))()(1)(=)(21

 rfrfrF , where 10 .

Let REPSetDS be the decision domain for the MOSRSSP and

 erererx ss ,),,,(= 2211

where SEeu , SRru , su 1 , Ns , DSx

 a

decision variable. The MOSRSSP is the problem of finding a decision

vector erererx ss ,),,,(= 2211

such that:

• the following objectives are optimized:

– the overall refactoring cost is minimized (rc) [2] and the overall

refactoring impact on software entities is maximized (res) [2].

• the following constraints are satisfied:

– software entity dependencies (ed) [2] and refactoring

dependencies (rd) [2].

• the addressed strategy-based criteria are met:

– rmrrRMandatory ,...,1 is the set of mandatory refactorings, where

SRrr rm ,...,1
, trm 0 ;

– rorrROptional ,...,1 is the set of optional refactorings, where

SRrr ro ,...,1
, tro 0 ;

– rsrrRSelect ,...,1 is the set of single selected refactorings, where

SRrr rs ,...,1
, trs 0 ;

– trsrorm 1 , RSelectROptionalRMandatory ;

 37

– conditions on the number of applied refactorings on attribute,

method, and class levels are met.

4. Case Study: LAN Simulation

The algorithm proposed was applied on a simplified version of the

Local Area Network (LAN) Simulation source code that was presented in

[2]. Figure 1 shows the class diagram of the studied source code. It contains

5 classes with 5 attributes and 13 methods, constructors included.

Figure 1. Class diagram for LAN Simulation

The current version of the source code lacks of hiding information

for attributes since they are directly accessed by clients. The abstraction

level and clarity may be increased by creating a new superclass for

PrintServer and FileServer classes, and populate it by moving up methods in

the class hierarchy. Thus, for the studied problem the software entity set is

defined as: 1315151 ,...,,,...,,,..., mmaaccSE . The chosen refactorings that

may be applied are: renameMethod, extractSuperClass, pullUpMethod,

moveMethod, encapsulateField, addParameter, denoted by the set

 61,...,rrSR in the following.

The values of the res function for each refactoring are: 0.4, 0.49,

0.63, 0.56, 0.8, and 0.2. The full input data table is included in [3]. Due to

the space limitation, intermediate data for these mappings was not included.

The refactoring strategy consists of the following refactoring criteria:

 38

• 52 ,rrRMandatory ; 61,rrROptional ; 43 ,rrRSelect ,

where if 3r is applied to the entity 13,1, imi , 4r will not be selected to be

applied to the same entity;

• 6||||||1 RSelectROptionalRMandatory ,

 RSelectROptionalRMandatory ;

• refactorings of all levels have to be selected (attribute, method, and

class).

An acceptable solution denotes lower costs and higher impact on

transformed entities, both objectives being satisfied. The entities

dependencies and refactoring dependencies need to be met as well, while the

strategy selection criteria constraints have to be fulfilled.

5. First Results of the Evolutionary Approach

An adapted genetic algorithm to the context of the investigated

problem, with weighted sum fitness function, similar to the one in [3, 4], is

proposed here. In a steady-state evolutionary algorithm a single individual

from the population is changed at a time. The best chromosome (or a few

best chromosomes) is copied to the population in the next generation.

Elitism can very rapidly increase performance of genetic algorithm, because

it prevents to lose the best found solution to date.

The genetic algorithm approach uses a refactoring-based solution

representation for the strategy-based refactoring set selection problem, being

denoted by SRSSGARef. Crossover and mutation operators are used by the

genetic algorithm as well, being fully described in [2].

The algorithm was run 100 times and the best, worse, and average

fitness values were recorded. The parameters used by the evolutionary

approach were as follows: mutation probability 0.7 and crossover

probability 0.7. Different numbers of generations and of individuals were

used: number of generations 10, 50, 500, and 1000 and number of

individuals 20, 50, 100, and 200. Equal weights (i.e., 5.0) on the

refactoring cost application and the transformation impact was investigated.

 39

Figure 2 presents the 10 and 1000 generations runs of the fitness

function (best, average, and worse) for 100 chromosomes populations, with

11 mutated genes, for SRSSGARef Algorithm.

(a) The SRSSGARef Algorithm: Experiment

with 10 generations and 100 individuals

(b) The SRSSGARef Algorithm: Experiment

with 1000 generations and 100 individuals

Figure 2. The fitness function (best, average, and worse) for 100

individuals populations with 10 and 1000 generations runs, with 11

mutated genes, for the SRSSGARef Algorithm, for α = 0.5

In the context of equal weights for the established objectives, the

obtained solutions by the applied algorithm, for 100 individual populations,

when α = 0.5 are:

• after 10 generations, the best fitness value = 0.4499:

• best chromosome = [[16, 11, 23, 22, 21], [5], [12, 16, 19, 23, 11,

14, 20], [11, 20, 18, 23, 14] , [6], [20, 16, 14, 15, 11, 23]];

• after 1000 generations, the best fitness value= 0.457:

• best chromosome = [[12, 23, 15, 18, 11, 20, 14], [2, 1, 3, 4], [13,

16, 18, 23, 14, 15, 11], [20, 16, 19, 23], [10], [12, 19, 20, 11, 23, 22]].

For the recorded experiments, the best individual obtained for the

SRSSGARef Algorithm after 1000 generations of evolution with a 100

chromosomes population, has the fitness value of 0.457. The current version

of the SRSSGARef Algorithm lessens criteria constraints of the addressed

strategy. Therefore, it admits as a valid solution chromosomes where the

number of applications for the mandatory refactoring encapsulateField is at

least 1. For the single selected refactorings from the set RSelect , the current

version of the algorithm accepts the solutions that have at least an additional

application of the addressed refactoring, i.e., pullUpMethod and

moveMethod.

 40

6. Conclusions

This paper has advanced the evolutionary-based solution approach

for the MOSRSSP. An adapted genetic algorithm has been proposed in

order to cope with a weighted-sum objective function for the required

solution.

Two conflicting objectives have been addressed, as to minimize the

refactoring cost and to maximize the refactoring impact on the affected

software entities, following a refactoring application strategy. The run

experiments used a balanced weighted fitness function between the cost and

the impact on the entities. A refactoring-based solution representation was

used by the algorithm implementation. The first recorded experiments have

lessened the constraints criteria of the refactoring strategy.

Further work may be done by investigating the results where

refactoring impact or the refactoring cost has a greater weight on the fitness

function. Strengthening the refactoring strategy criteria is another task that

will be approached in the future. The results achieved here will be compared

to the experiments results obtained from the entity-based solution

representation for the same algorithm.

 References

[1] Bagnall, V. Rayward-Smith, and I. Whittley. The next release problem.

 Information and Software Technology, 43(14):883 - 890, 2001.

[2] M.C. Chisalita-Cretu, A. Vescan. The Multi-objective Refactoring

 Selection Problem, in ”Studia Universitatis Babeş-Bolyai”, Series

 Informatica, Special Issue KEPT-2009: Knowledge Engineering:

 Principles and Techniques, July 2-4, 2009, pp. 249 - 253.

[3] M.C. Chisalita-Cretu. A multi-objective approach for entity refactoring

 set selection problem, in ”Proceedings of the 2nd International

 Conference on the Applications of Digital Information and Web

 Technologies”, August 4-6, London, UK, 2009, pp. 790 - 795.

[4] M.C. Chisalita-Cretu. An evolutionary approach for the entity

 refactoring set selection problem. Journal of Information

 Technology Review, ISSN: 0976-2922, pp.107 - 118, 2010.

 41

[5] S. Demeyer, F. Van Rysselberghe, T. Grba, J. Ratzinger, Marinescu R.,

 T. Mens, B. Du Bois, D. Janssens, S. Ducasse, M. Lanza, M. Rieger,

 H. Gall, and M. El-ramly. The LAN simulation: A refactoring

 teaching example. In 8th Int. Workshop on Principles of Software

 Evolution (IWPSE’05), pp. 123 - 134, 2005.

[6] Fowler. Refactoring Improving the Design of Existing Code, Addison-

 Wesley, 1999.

[7] Greer and G. Ruhe. Software release planning: an evolutionary and

 iterative approach. Information and Software Technology,

 46(4):243–253, 2004.

[8] M. O’Keefe and M. O’Cinneide. Search-based software maintenance. In

 Proceedings of the 10th European Conference on Software

 Maintenance and Reengineering (CSMR 2006), pp. 249–260, 2006.

