

 11

BABEŞ-BOLYAI University of Cluj-Napoca

Faculty of Mathematics and Computer Science

Proceedings of the National Symposium ZAC2014

(Zilele Academice Clujene, 2014), p. 11-18

A Comparison of Aspect Oriented Languages

by

Grigoreta S. Cojocar and Adriana M. Guran
1

Abstract. Many different aspect oriented languages have

been developed since the first presentation of aspect oriented

concepts in 1997 by Kiczales et al. In this paper we compare

four of the existing languages using different criteria: the

aspect oriented concepts implemented, weaving, and whether

they require source code modification.

Keywords: aspect-oriented languages, comparison

1. Introduction

Developing software systems that can be easily evolved, modified,

and maintained is one of the main goals of software developers. However,

practice has shown that developing such software systems is not easy. One

of the problems is the “tyranny of the dominant decomposition” [TOH+99].

A software system is composed of many core concerns and (some)

crosscutting concerns. If core concerns can be cleanly separated and

implemented using existing programming paradigms (like object oriented

paradigm), this is not true for crosscutting concerns, as a crosscutting

concern has a more system-wide behavior that cuts across many of the core

concerns implementation modules. The aspect-oriented paradigm (AOP) is

one of the approaches proposed, so far, for overcoming this prevalent

decomposition [KLM+97].

1
 Babeş-Bolyai University, Cluj-Napoca, grigo/adriana@cs.ubbcluj.ro

 12

Aspect oriented paradigm is used only for crosscutting concerns, the

core concerns are still designed and implemented using the base

programming paradigm. For crosscutting concerns development, AOP

introduces new concepts: join point, pointcut, advice, aspect and

introduction for the design and implementation, and weaving for building

the final software system. In the following, these concepts are briefly

explained:

 A join point is a well-defined point in the execution of a program.

Any software system can be seen as a sequence of execution points

like: assignments, conditional statements, loop statements, methods

calls executions, etc. regardless of the programming paradigm used

for developing the system. AOP only uses some of these points,

called join points, in order to add new behavior.

 Not all the join points that appear during the execution of a software

system are necessary for the design and implementation of

crosscutting concerns. A pointcut selects the necessary join points,

and exposes some of the values in the execution context of these join

points.

 A pointcut allows selecting join points from the software system, but

they do not change the behavior of the system. An advice defines

crosscutting behavior and it is defined in terms of pointcuts. The

code of an advice runs at every join point selected by its pointcut.

There are different options as to when the code of the advice is

executed relatively to the corresponding join point(s): before,

after or around the join point. For the after advice there can be

three situations, depending on the execution of the join point: after

returning (the advice code is executed only if the join point

execution completes normally), after throwing (the advice code

is executed only if the join point execution ends by throwing an

exception), and after (finally) (the advice code is executed

regardless of the means by which the selected join point exits

(normal or exceptional return)).

 13

 Sometimes, in order to design and implement a crosscutting concern,

it is necessary to modify the static structure of a type (by adding new

members - attributes/methods or by modifying its inheritance

hierarchy). Even though an advice adds new behavior to existing

types, it does not modify their static structure. An introduction

allows developers to extend the static structure of existing types.

New methods and/or attributes can be added, or the type inheritance

hierarchy can be modified (by adding new interfaces or by adding a

base type to an existing type).

 An aspect is a new kind of type that is used to implement one

crosscutting concern in a modular way. An aspect is similar to a

class, it can contain attributes and methods declarations, but it also

encapsulates pointcuts, advice and introductions.

 When AOP is used for developing software systems, the core

concerns are developed independently of the crosscutting concerns.

However, in the end, they still have to be put together in order to

obtain the final executing system. Weaving is the process that

produces the final system, and the weaver is the tool used to obtain

it. The weaver takes some representation of the core concerns

(source code or binaries), some representation of the crosscutting

concerns (source code or binaries) and produces the output, which is

often a binary representation.

2. Comparison

2.1 Aspect Oriented Languages

The aspect oriented languages considered for this comparison are:

AspectJ for Java, the first aspect-oriented extension developed and the most

used both in industry and in the academia [AspectJ], SpringAOP, that is

Spring framework implementation of AOP concepts [SpringAOP],

PostSharp, an aspect-oriented implementation framework for C#

[PostSharp], and AspectC++, an aspect oriented extension for C++

[AspectC++].

 14

2.2 Selected Comparison Criteria

In order to compare the chosen aspect oriented languages we use the

following criteria: the aspect-oriented concepts supported (the join points

that can be selected, advices, aspects, introductions), the weaving process,

and the required core concerns source code modification. For our analysis

we have considered three common crosscutting concerns: logging, observer

design pattern and security because they require different AOP concepts for

their design and implementation:

 Logging. In order to implement logging, a new aspect is defined

which selects the join points of interest (usually entering a

method and exiting a method) and before and after advice for

storing the necessary data.

 Observer. For the Observer design pattern [GHJ+95]

implementation the classes hierarchy is usually changed: one

class inherits from the Subject and one or more classes

implement the Observer interface [HK02]. The modified classes

also need to define new methods for adding/removing observer,

and they must provide a definition for the update method.

 Security. Different software systems may require different things

to be secured: some of them require the execution of certain

functionalities to be secured, while others require the data to be

secured. Because of that, depending on the software system

security type, different join points must be used: getting or

setting the value of an attribute, or executing or calling some

methods.

2.3 Analysis

In the following we analyze the chosen aspect-oriented languages

using the considered criteria: the AOP concepts implemented (the type of

join points that can be selected, the kind of advice and of introductions

 15

allowed, how the weaver builds the final system, and how the rules of

weaving are specified to the weaver.

2.3.1 Pointcuts. Three of the four aspect-oriented languages

(AspectJ, PostSharp, AspectC++) allow the selection of many different join

points: method call/execution, constructor call/execution, class initialization,

getting/setting the value of a field, handling a thrown exception, etc, but

they do not allow selection at statement level: the execution of a for-

statement, an if-statement, etc. Spring AOP allows only the selection of

methods call/execution and the selection of beans based on their name.

2.3.2 Advice. All the chosen aspect-oriented languages support the

three kinds of advice: before, after and around, and the three variations

of the after advice: after (finally), after throwing and after

returning.

2.3.3 Introductions. AspectJ and PostSharp allow different kinds of

introductions: method and field introductions, base class inheritance,

interface implementation, etc. AspectC++ introduces the notion of slice

that can have attributes and methods. The slice can later be used for

modifying the static structure of existing types (adding new fields, methods,

changing the inheritance hierarchy). SpringAOP allows only one static

modification, which is the introduction of interface implementation to

existing types.

2.3.4 Weaving. Depending on the aspect-oriented language, the

weaving process can take places at different times. AspectJ allows three

different times: compile-time, post-compile time and load-time, Spring AOP

allows weaving at run-time, PostSharp allows post-compile weaving, while

AspectC++ allows compile time weaving. The approach used for weaving

also depends on the aspect-oriented language: AspectJ uses byte-code

modification, Spring AOP uses dynamic proxies, PostSharp uses

intermediate language transformation, while AspectC++ uses source code

preprocessing.

2.3.5 Weaving rules specification. One of the premises of AOP is

that code corresponding to the implementation of crosscutting concern will

not be mixed with the code corresponding to core concerns. It is the

responsibility of the weaver to build the final that contains both the core

 16

concerns and crosscutting concerns. In order to build the final system the

weaver uses the rules specified by the developers. These rules specify which

part of the software system must be modified and how. However, the way

these rules are specified depends on the aspect-oriented language.

For AspectJ, the pointcuts and the advice are considered to be

weaving rules. The former specifies where and the latter specify how. The

pointcuts allow the selection of join points either using the pattern matching

of method names, type names, etc. or using annotations. Both criteria have

advantages and disadvantages. If names are used for selection, the core

concerns do not need to be modified, but every name modification may

affect the behavior of the final system, as the new name may not be selected

by the selection criteria. If annotations are used, that means that the core

concerns code must be modified and recompiled in order to include the

annotations, which means that we still have to modify the original source

code. There is also the possibility of introducing annotations using aspects,

however we still have to specify a selection criterion based on names, and

we go back to the first problem.

PostSharp also offers two possibilities: a declarative one or using

attributes. The former one does not modify the core concerns source code

but it is more difficult to use. The latter one is every easy to use, but it

requires the addition of each attribute corresponding to an aspect to all the

classes/methods that may be modified by the weaver.

Spring AOP offers the same possibilites as AspectJ, either using

name patterns or using annotations.

AspectC++ offers only the possibility based on matching of either

method names, type names, etc. so it has the same disadvantages.

Considering the above, not all crosscutting concerns can be easily

implemented in all analyzed aspect-oriented languages. For example, we

cannot implement security on data level using SpringAOP. Also, the design

and implementation of the Observer pattern is more difficult with

SpringAOP as it allows only the introduction of interfaces to existing types.

 17

3. Conclusions

In this article we have presented a short comparison of four aspect-

oriented languages: AspectJ, Spring AOP, PostSharp and AspectC++. The

proposed comparison criteria are: the AOP concepts implemented, weaving,

and whether they require core concern code modification. These criteria are

important when deciding whether to use AOP for developing a system or

not to use it. For example, AspectC++ cannot be used for the development

of crosscutting concerns that require availability of core concerns code (such

as automatic usability evaluation). Spring AOP cannot be used for

crosscutting concerns that need to select different join points like class

initialization, or fields getting/setting. AspectJ and PostSharp can be used

for different kinds of crosscutting concerns implementation. The latter one

is not free, but it has a free express version that can be used for simple

crosscutting concerns, but for more complicated ones developers need to

buy the full version of PostSharp.

References

[AspectJ] AspectJ homepage, http://www.eclipse.org/aspectj/.

[AspectC++] AspectC++ homepage, http://www.aspectc.org/.

[PostSharp] PostSharp homepage, http://www.postsharp.net/.

[SpringAOP] Aspect Oriented Programming with Spring,

 http://docs.spring.io/spring/docs/2.5.4/reference/aop.html.

[KLM+97] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, JM

 Loingtier, J. Irwin. Aspect-Oriented Programming. In Proceedings of the

 European Conference on Object-Oriented Programming, volume LNCS

 1241, pages 220 - 242, Springer-Verlag, 1997.

[TOH+99] P. L. Tarr, H. Ossher, W. H. Harrison, and S. M. S. Jr. N Degrees of

 Separation: Multi-Dimensional Separation of Concerns. In Proceedings of

 the 21st International Conference on Software Engineering, pages 107 -

 119, May 1999.

 18

[GHJ+95] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides, Design Patterns.

 Elements of Reusable Object-Oriented Software, Addison-Wesley. 1995.

[HK02] J. Hannemann, G. Kiczales. Design Pattern Implementation in Java and

 AspectJ. In Proceedings of the 17th ACM SIGPLAN conference on

 Object-oriented programming, systems, languages, and applications

 (OOPSLA '02), pages 161 - 173, New York, NY, USA, 2002. ACM Press.

