SUBIECTUL I. Algebră

Fie \(V \) un spațiu vectorial peste corpul comutativ \(K \).

1. Să se arate că dacă \(f : V \to V \) este un endomorfism al lui \(V \), atunci Ker \(f \) și Im \(f \) sunt subspații ale lui \(V \).

2. Considerăm \(\mathbb{R} \)-spațiul vectorial \(V = \mathbb{R}^2 \) și funcția \(f : V \to V \), \(f(x_1, x_2) = (2x_1 - x_2, -2x_1 + x_2) \).

 (a) Să se arate că \(f \) este liniară.

 (b) Să se determine matricea \([f]_{e,e}\) unde \(e = (e_1, e_2) \) este baza canonica a lui \(V \).

 (c) Să se determine matricea \([f]_{v,v}\) unde \(v = (v_1, v_2), v_1 = (1, 3), v_2 = (2, 5) \).

 (d) Să se determine câte o bază în subspațiile Ker \(f \), Im \(f \), Ker \(f \cap \text{Im} \ f \) și Ker \(f + \text{Im} \ f \).

SUBIECTUL II. Analiză matematică

1. Să se enunțe și să se demonstreze criteriul radicalului (Cauchy) pentru convergența unei serii cu termenii pozitivi.

2. Să se scrie formula lui Maclaurin (formula lui Taylor în punctul \(x_0 = 0 \), cu restul lui Lagrange) de ordinul \(n = 4 \) pentru funcția \(f : \mathbb{R} \to \mathbb{R}, f(x) = \cos x \), explicitând și restul corespunzător.

3. Să se demonstreze inegalitățile: \(\frac{23}{96} < \int_0^1 \frac{1 - \cos x}{x} \, dx < \frac{1}{4} \).

4. Calculați: \(\lim_{n \to \infty} \frac{1}{\sqrt{n}} \left(1 + \frac{1}{\sqrt{2}} + \ldots + \frac{1}{\sqrt{n}} \right) \).

SUBIECTUL III. Geometrie

1. Se dau punctele \(A(0,5) \) și \(B(4,1) \), precum și dreapta \(\Delta : x - 4y + 7 = 0 \). Determinați un punct \(C \) de pe dreapta \(\Delta \) astfel încât triunghiul \(ABC \) să fie isoscel, cu baza \(AB \).

2. Determinați ecuațiile dreptei \(\Delta \) care trece prin punctul \(P(3,2,-1) \) și este perpendiculară pe dreptele \(\Delta_1 \) și \(\Delta_2 \), de ecuații

\[
(\Delta_1): \begin{cases}
x = 1 - t, \\
y = 2 + t, \\
z = -2 + 3t
\end{cases}
\]

și

\[
(\Delta_2): \frac{x - 3}{2} = \frac{y - 1}{4} = \frac{z + 1}{-3}.
\]

Notă.
- Toate subiectele sunt obligatorii. La toate subiectele se cer rezolvări cu soluții complete.
- Nota lucrării este media aritmetică a notelor de la cele trei subiecte.
- Nota minimă ce asigură promovarea este 5,00.
- Timpul efectiv de lucru este de 3 ore.
SUBIECTUL I. Algebra

Oficiu .. (1p)

1. Avem \(f(0) = 0 \), deci vectorul nul \(0 \in \text{Ker} f \) și \(0 \in \text{Im} f \); în particular, deducem că ambele submulțimi sunt nevide. .. (0,5p)

Fie \(\alpha \in K \) și \(x, x' \in \text{Ker} f \); atunci \(f(x + x') = f(x) + f(x') = 0 \) deci \(x + x' \in \text{Ker} f \) (0,5p)

și \(f(ax) = af(x) = 0 \), deci \(ax \in \text{Ker} f \). .. (0,5p)

Fie \(\alpha \in K \) și \(y, y' \in \text{Im} f \); atunci există \(x, x' \in V \) astfel că \(y = f(x) \) și \(y' = f(x') \); avem \(y + y' = f(x) + f(x') = f(x + x') \in \text{Im} f \) (0,5p)

și \(ay = af(x) = f(ax) \in \text{Im} f \). .. (0,5p)

2. Vom nota \(x = (x_1, x_2) \) un vector din \(V = \mathbb{R}^2 \) și avem \(x = x_1e_1 + x_2e_2 \), unde \(e_1 = (1, 0) \) și \(e_2 = (0, 1) \).

(a) Fie \(x, x' \in V \) și \(\alpha \in \mathbb{R} \). Avem \(f(x + x') = f(x_1 + x_1', x_2 + x_2') = (2x_1 + x_1') - (x_2 + x_2') \), \[-2(x_1 + x_1') + x_2 + x_2' = 2(x_1 - x_2, -2x_1 + x_2) + (2x_1' - x_2' - 2x_1' + x_2') = (f(x) + f(x')) \] (0,5p)

și \(f(\alpha x) = f(\alpha x_1 + \alpha x_2) = (2\alpha x_1 - \alpha x_2, -2\alpha x_1 + \alpha x_2) = \alpha(2x_1 - x_2, -2x_1 + x_2) = \alpha f(x) \), deci \(f \)

este liniară. .. (0,5p)

(b) Avem \(f(e_1) = (2, -2) \) și \(f(e_2) = (-1, 1) \), deci \([f]_{e,e} = \begin{bmatrix} 2 & -1 \\ -2 & 1 \end{bmatrix} \). .. (0,5p)

(c) Matricea de trecere de la \(e \) la \(v \) este \(T = \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix} \). det \(T = 1 \), deci \(T \) este inversabilă, \(T^{-1} = \begin{bmatrix} -5 & 2 \\ 3 & -1 \end{bmatrix} \) și, în particular, \(v \) este într-adevăr bază în \(V \). .. (0,5p)

Avem \([f]_{v,v} = T^{-1}[f]_{e,e}T = \begin{bmatrix} 7 & 7 \\ -4 & -4 \end{bmatrix} \). .. (0,5p)

(d) Rezolvarea ecuației \(f(x) = y \) în \(V \) este echivalentă cu rezolvarea sistemului de ecuații

\[
\begin{align*}
2x_1 - x_2 &= y_1 \\
-2x_1 + x_2 &= y_2
\end{align*}
\]

Observăm că rangul matricii acestui sistem este \(\text{rang}\{f\}_{v,v} = 1 \).

• Determinarea subspuatului \(\text{Ker} f \) se reduce la rezolvarea în \(\mathbb{R}^2 \) a ecuației \(2x_1 - x_2 = 0 \), care are soluție \(x_1 = \alpha, x_2 = 2\alpha, \alpha \in \mathbb{R} \), adică \(x = \alpha(1, 2) \). Deci vectorul \(u = (1, 2) \) formeză o bază a lui \(\text{Ker} f \). .. (1p)

• Pentru determinarea subspuatului \(\text{Im} f \) trebuie că și \(y \in \text{Im} f \). \(y \) se poate scrie ca \(y = (y_1, y_2) \) din sistemul de ecuații \(2x_1 - x_2 = y_1, -2x_1 + x_2 = y_2 \). Observăm că

\[
\begin{bmatrix}
2 & -1 \\
-2 & 1
\end{bmatrix}
\]

este matricea lui \(f \) și deci \(\text{rang} = 1 \) implica \(y_1 = -y_2 = \alpha \in \mathbb{R} \), adică \(y = \alpha(1, -1) \). Deci vectorul \(v = (1, -1) \) formeză o bază a lui \(\text{Im} f \). .. (1p)

• Fie \(x = \alpha(1, 2) = \beta(1, -1) \in \text{Ker} f \cap \text{Im} f \). Obținem sistemul \(\begin{align*}
\alpha &= \beta \\
2\alpha &= -\beta
\end{align*} \), de unde \(\alpha = \beta = 0 \).

Rezultă că \(\text{Ker} f \cap \text{Im} f = \{0\} \), baza acestui subspuat fiind multimea vidă \(\emptyset \). .. (1p)

• Avem \(\text{Ker} f + \text{Im} f = \{\alpha x + \beta w \mid \alpha, \beta \in \mathbb{R} \} \) este subspuatul generat de \(u \) și \(v \). Din cele de mai sus rezultă că \(u \) și \(v \) sunt liniar independenți, deci formeză o bază a lui \(\text{Ker} f + \text{Im} f \). Decoare \(\text{dim} \mathbb{V} = 2 \), deducem că \(\text{Ker} f + \text{Im} f = V \). .. (1p)
SUBIECTUL II. Analiză matematică

Oficiu ... (1,0p)
1. Enunțul teoremei ... (1,5p)
Demonstrație ... (1,5p)

2. Formula: \(f(x) = f(0) + f'(0) \frac{x}{1!} + \ldots + f^{(n)}(0) \frac{x^n}{n!} + \frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}, \) unde \(c \) se află între 0 și \(x \). Pentru funcția \(f: \mathbb{R} \to \mathbb{R}, \) \(f(x) = \cos x, \) și \(n = 4 \) avem:

\[\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^5}{5!}. \]

Soluție

1. Teorema (criteriul radicalului, criteriul Cauchy) Fie \(\sum_{n=1}^{\infty} u_n \) o serie cu termeni pozitivi.

(a) Dacă există un număr real \(q \in [0,1) \) și un număr natural \(n_0 \) astfel încât

\[\sqrt[n]{u_n} \leq q, \, \forall n \in \mathbb{N}, n \geq n_0, \]

atunci seria \(\sum_{n=1}^{\infty} u_n \) este convergentă.

(b) Dacă există un număr natural \(n_0 \) astfel încât

\[\sqrt[n]{u_n} \geq 1, \, \forall n \in \mathbb{N}, n \geq n_0, \]

atunci seria \(\sum_{n=1}^{\infty} u_n \) este divergentă.

Demonstrație:

(a) Presupunem că există \(q \in [0,1) \) și un număr natural \(n_0 \) astfel încât \(\sqrt[n]{u_n} \leq q, \, \forall n \in \mathbb{N}, n \geq n_0, \) atunci \(u_n \leq q^n, \, \forall n \in \mathbb{N}, n \geq n_0, \) șă

\[
\sum_{n=1}^{\infty} u_n = \sum_{n=1}^{n_0-1} u_n + \sum_{n=n_0}^{\infty} u_n \leq \sum_{n=1}^{n_0-1} u_n + \sum_{n=n_0}^{\infty} q^n = \sum_{n=1}^{n_0-1} u_n + q^{n_0-1} \lim_{k \to \infty} \frac{1 - q^k}{1 - q} = \sum_{n=1}^{n_0-1} u_n + \frac{q^{n_0-1}}{1 - q} \in \mathbb{R},
\]

astfel, rezultă că \(\sum_{n=1}^{\infty} u_n \) este convergentă (monoton crescătoare și mărginită superior).

(b) Dacă există un număr natural \(n_0 \) astfel încât \(\sqrt[n]{u_n} \geq 1, \, \forall n \in \mathbb{N}, n \geq n_0, \) atunci rezultă că \(u_n \geq 1, \, \forall n \in \mathbb{N}, n \geq n_0, \) de unde

\[
\sum_{n=1}^{\infty} u_n = \sum_{n=1}^{n_0-1} u_n + \sum_{n=1}^{\infty} u_n \geq \sum_{n=1}^{n_0-1} u_n + \sum_{n=n_0}^{\infty} 1 = \infty,
\]

deci \(\sum_{n=1}^{\infty} u_n \) este divergentă.

2. Se aplică formula:

\[f(x) = f(0) + f'(0) \frac{x}{1!} + \ldots + f^{(n)}(0) \frac{x^n}{n!} + \frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}, \]

unde \(c \) se află între 0 și \(x \). Pentru funcția \(f: \mathbb{R} \to \mathbb{R}, \) \(f(x) = \cos x, \) și \(n = 4 \) avem:

\[\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \sin c \frac{x^5}{5!}. \]
3. Folosind dezvoltarea \(\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \ldots \), pentru \(x \neq 0 \) avem \(\frac{1 - \cos x}{x} = \frac{x}{2} - \frac{x^3}{2!} + \sin \frac{x^4}{4!} \), de unde, pentru \(x > 0 \) avem

\[
\frac{x}{2!} - \frac{x^3}{4!} < \frac{1 - \cos x}{x} < \frac{x}{2!} \implies \frac{23}{96} = \int_0^1 \left(\frac{x^3}{2} - \frac{x^3}{24} \right) dx < \int_0^1 \frac{1 - \cos x}{x} dx < \int_0^1 \frac{x}{2} dx = \frac{1}{4}.
\]

4. \(\lim_{n \to \infty} \frac{1}{\sqrt{n}} \left(1 + \frac{1}{\sqrt{2}} + \ldots + \frac{1}{\sqrt{n}} \right) = \lim_{n \to \infty} \frac{1}{n} \left(\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \ldots + \frac{1}{\sqrt{n}} \right) = \int_0^1 \frac{dx}{\sqrt{x}} = 2. \)
SUBIECTUL III. Geometrie

1. Oficiu ... (1 p)

2. (a) Punctul C se află pe mediatoarea segmentului AB .. (0.5 p)
(b) Coordonatele mijlocului C' ale segmentului AB ... (1 p)
(c) Ecuatia mediatoarei CC' ... (2 p)
(d) C = CC' ∩ Δ ... (1.5 p)

3. (a) vectorul director v_1 al dreptei Δ_1 .. (0.5 p)
(b) vectorul director v_2 al dreptei Δ_2 ... (0.5 p)
(c) vectorul director v al dreptei Δ (coliniar cu $v_1 \times v_2$) (2 p)
(d) Ecuatii canoniice ale dreptei Δ .. (1 p)

Solutie

1. Dacă triunghiul ABC este isoscel, cu baza AB, atunci vârful C trebuie să se afle pe mediatoarea segmentului AB, deci acest punct se află la intersectia dintre această mediatoare și dreapta (Δ).

Pentru a determina mediatoarea, determinăm mai întâi coordonatele mijlocului C' al segmentului AB. Obținem, imediat, $C'(2,3)$. Mediatoarea este dreapta care trece prin C' și este perpendiculară pe dreapta AB.

Panta dreptei AB este

\[k_{AB} = \frac{y_B - y_A}{x_B - x_A} = \frac{-4}{4} = -1, \]

ceea ce înseamnă că panta mediatoarei este $k = 1$, așadar ecuația sa este

\[(m) : y - 3 = x - 2 \]

sau $(m) : x - y + 1 = 0$ În concluzie, coordonatele punctului C sunt date de soluția sistemului

\[
\begin{align*}
\begin{cases}
x - 4y + 7 &= 0, \\
x - y + 1 &= 0,
\end{cases}
\end{align*}
\]

adică $C = C(1,2)$.

2. Vectorul director al dreptei Δ_1 este $v_1(-1,1,3)$, iar vectorul director al dreptei Δ_2 este $v_2(2,4,-3)$. Pentru ca dreapta Δ să fie perpendiculară pe cele două drepte date, ea trebuie să fie perpendiculară pe fiecare dintre ele, deci vectorul său director, v trebuie să fie perpendicular pe v_1 și v_2, adică să fie coliniar cu produsul lor vectorial. Avem

\[v_1 \times v_2 = \begin{vmatrix} i & j & k \\ -1 & 1 & 3 \\ 2 & 4 & -3 \end{vmatrix} = -15i + 3j - 6k. \]

Așadar, putem lua ca vector director al dreptei Δ vectorul $v(5,-1,2)$, prin urmare ecuațiile dreptei sunt

\[(\Delta) : \frac{x - 3}{5} = \frac{y - 2}{-1} = \frac{z + 1}{2}. \]