Bachelor Degree Exam, September 2016 Computer Science - English

Subject 1

Write a program in one of the programming languages Python, C++, Java, C\# that:
(a) Defines the classes Entity, Student, and Professor according to the following UML class diagram:

Entity	Student
	-scholarship : Real
-city : String	```+amountReceived(): Real ```
+Entity(city : String) +getCity() : String	Professor
+ amountReceived() : Real toString() : String	-salary: Real
	+Professor(city : String, salary : Real) +amountReceived() : Real

- The city must be not null and non-empty, and scholarship and salary must be strictly greater than zero. The constructors must enforce the constraints.
- The amountReceived () method returns the amount received by the entity (scholarship for Student, and salary for Professor).
- The toString() method from the Entity class returns a string that contains the city concatenated with the amount received by that entity.
(b) Defines a function that creates and returns a list of four Entities, two Students and two Professors.
(c) Defines a function that has as parameter a list of Entities and rearranges it such that the Professors are at the beginning of the list, ordered descendingly by the amount received, followed by the Students, ordered ascendingly by the amount received.
(d) Defines a function that has as parameters a list of Entities and a city, and returns the total amount received by the Entities belonging to that city.
(e) The main function of the program calls the functions indicated at (b), (c), then reads the name of a city and prints the result returned by the function at (d).
(f) For the data structures used by your program, write the specifications of the used operations.

Remarks

- Do not use sorted containers and predefined sorting operations.
- Do not define other methods than those specified in the subject.

You can use existing libraries for data structures (Python, C++, Java, C\#).

Subject 2

a. Create a relational database with all the tables in 3NF. The database will store the following information for the women's professional tennis circuit:
tennis players: player id, name, current rank in the world, country;
tournaments: tournament id, name, city, tournament type id, tournament type name (values: Grand Slam, Premier Mandatory, Premier 5, etc), court surface id, court surface name (values: clay, grass, hard), and a list with the number of matches won in a year by every player that participated in the tournament (if a player didn't participate in a certain year, she won't appear in
the list).
Examples of information one can store for the Roland Garros tournament (for simplicity, the ids are ignored): (Roland Garros, Paris, Grand Slam, clay, ((Garbine Muguruza, 2016, 7), (Serena Williams, 2016, 6), (Simona Halep, 2016, 3), (Simona Halep, 2015, 0), ...)).

Prove the created database is in 3NF, by identifying the functional dependencies.
b. For the database created for a, solve, using the relational algebra or SQL, the following queries:
i) The Grand Slam tournaments (tournament name, year) in which players outside of the world top 10 won 7 matches in a year.
ii) The players (name and country) who, in 2016, won at least one match in a clay tournament, but didn't participate in any grass tournament.
iii) The players (name, country, total number of victories) with the greatest number of victories.

Subject 3

3.1 Answer the following questions considering that all instructions are executed successfully.

```
int main() {
    int pfd[2], i, n;
    pipe(pfd);
    for(i=0; i<3; i++) {
        if(fork() == 0) {
            write(pfd[1], &i, sizeof(int));
            close(pfd[0]); close(pfd[1]);
            exit(0);
        }
        else {
            // see questions c) and d)
        }
    }
    for(i=0; i<3; i++) {
        wait(0);
        read(pfd[0], &n, sizeof(int));
        printf("%d\n", n);
    }
    close(pfd[0]); close(pfd[1]);
    return 0;
}
```

a) What will display the execution of the code as it is?
b) How many processes will be created, including the initial process, if line 8 is missing? Specify the parent/child relationship between these processes.
c) How many processes will be created, including the initial process, if line 8 is moved to line 11 (in the given code)? Specify the parent/child relationship between these processes.
d) What will display the execution of the code, if lines 16 and 17 are moved inside the else branch, starting with line 11 of the initial code? Justify your answer.
3.2 Answer the following questions about the UNIX Shell script below, considering that directory DIR contains a hierarchy of subdirectories and text files.

```
for f in `find DIR -type f`; do
    if grep -q "^[^0-9]" $f; then
        echo $f >> 1.txt
    fi
    if ! grep -q "[a-z]$" $f;
then
    echo $f > 2.txt
    fi
done
```

a) What will file 1.txt contain after the script is executed?
b) What will file 2.txt contain after the script is executed?
c) Explain in detail the regular expressions on lines 2 and 5 .

Remarks: All subjects are compulsory. Each subject will be graded with a mark between 1 and 10 by both evaluators.

Time limit: $\mathbf{3}$ hours

BAREM
 INFORMATICĂ

Subiect 1 (Algoritmică şi Programare):
Oficiu - 1p
Definirea clasei Entitate- 0.7p din care
atribut - 0.1
constructor - 0.2
metode-0.4
Definirea clasei Student- 0.7p din care
relația de moștenire -0.1
constructor - 0.5
metoda sumaIncasata ()-0.1
Definirea clasei Profesor- 0.7p din care
relația de moștenire - 0.1
constructor -0.5
metoda sumaIncasata() - 0.1
Funcția de la punctul b) $-\mathbf{0 . 3}$ p din care
signatura corectă -0.1 p
creare obiecte -0.1 p
adaugare în listă -0.1 p
Funcția de la punctul c) $-\mathbf{2 . 5 p}$ din care
signatura corectă -0.1 p
rearanjarea listei -2.4 p
Funcția de la punctul d) - 2.2p din care
signatura - 0.1 p
determinare sumă încasată $-2 p$
returnare rezultat -0.1 p
Funcția de la punctul e) - 0.4p
Specificațiile operațiilor tipurilor de dată folosite- $\mathbf{1 . 5}$ p

Subiect 2 (Baze de date)

1 punct oficiu
Problema a:
2 puncte pentru tabelele în 3 NF
2 puncte pentru justificare :
1 punct definiții
1 punct explicații
Problema b:
1 puncte pentru b1
1.5 puncte pentru b2
2.5 puncte pentru b3

Subiect 3 (Sisteme de operare):
Oficiu: 1p
3.1
a) $0,1,2$ pe linii separate in orice ordine $\quad 1 \mathrm{p}$
b) 8 procese, arbore cu 8 procese $\quad 2 \mathrm{p}$
c) 4 procese, arbore cu 4 procese 1 p
d) $0,1,2$ pe linii separate întodeauna în această ordine $1 p$
a) Căile (relative la DIR) ale tuturor fișierelor care conțin linii care nu încep cu cifră
b) Calea (relativă la DIR) a ultimului fișier găsit de comanda find care nu conține
linii terminându-se cu literă mică
c) Linia 2: început de linie, interval de cifre negat

Linia 5: interval de litere mici, sfârșit de linie
1p

