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1 Introduction

When writing this handbook, our intention was to provide the students with a selection

of theoretical notions and solved exercise helpful in the preparation of the algebra subject

of the final exam. Each of the main chapters – Chapters 2, 3 and 4 – details one topic

from the corresponding curricula.

For better support the students, we tried to produce a self-included theoretical part

of reasonable length for this material. Yet, there are some completions the reader may

consider useful. They can be found in the references. For instance, the last chapter uses

some basic properties concerning the determinant or the rank of a matrix (only some

of them listed at the beginning of the chapter). The students were supposed to know

them from high school for matrices with number field entries. The general case do not

differ much from the high school studied cases for the properties we are going to use

here. However, if the reader wants a detailed presentation of the general case, it can be

found in [3, Chapter VI]. On the other hand, the section 4.3 is quite poor in theoretical

results. Our approach was to insist on the describing the most common algorithms used

for solving systems of linear equations. For additional information, see [2, Chapter 3].

Except, maybe, for the considered lists of exercises, this material looks pretty much

like the first year courses which refer to the discussed topics. Yet some slight changes

concerning the notations or the order some results succeed may appear. The theoretical

part is a mixture between the Romanian version of this handbook, based on [1] and [3]

and the English Algebra course [2]. A hint for the reader who needs hints for solving

the proposed exercises – which are listed in in the sections Exercises – is that all the

exercises (solved or proposed) were taken from [5].

I thank Septimiu Crivei, Ioan Purdea and Simion Breaz for their support.

One can say that this handbook is a joint work since, in order to produce the final

version of this handbook in due time, we used some source files of [1], [2], [3] and [5].

The most obvious resemblance (or identity, sometimes) one can notice is with [5] and it

concerns most of the theoretical issues presented here. My contribution stands mainly in

organizing this handbook to serve its purpose and to look like an autonomous material.

Of course, I do not exclude the possibility that some typewriting errors occur. I only

hope they do not turn into mathematical errors. However, we invite the students to

cooperate with us in finding and repairing these errors.

Cosmin Pelea
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2 Groups, rings and fields

2.1 Groups

Definition 2.1. By a binary operation on a set A we understand a map

ϕ : A×A→ A .

Since all the operations considered in this section are binary operations, we briefly

call them operations. Usually, we denote operations by symbols like ∗, ·, +, and the

image of an arbitrary pair (x, y) ∈ A×A is denoted by x∗y, x·y (multiplicative notation),

x+ y (additive notation), respectively.

Examples 2.2. a) The usual addition and multiplication are operations on N, Z, Q, R,

C, but not on the set of irrational numbers.

b) The usual subtraction is an operation on Z,Q,R and C, but not on N.

c) The usual division is an operation on Q∗,R∗, C∗, but not on Q, R, C, N, Z, N∗ or Z∗.

Definitions 2.3. Let ∗ be an operation on A. We say that:

i) ∗ is associative if

(a1 ∗ a2) ∗ a3 = a1 ∗ (a2 ∗ a3), ∀a1, a2, a3 ∈ A;

ii) ∗ is commutative if

a1 ∗ a2 = a2 ∗ a1, ∀a1, a2 ∈ A.

iii) e ∈ A is an identity element for ∗ if

a ∗ e = e ∗ a = a, ∀a ∈ A.

When using the multiplicative or additive notation, an identity element e is usually

denoted by 1 or 0, respectively.

Definitions 2.4. Let (A, ·) be a monoid. A groupoid is called semigroup if its operation

is associative. A semigroup (A, ∗) is called monoid if it has an identity element. A

groupoid, semigroup, monoid with a commutative operation is called commutative

groupoid, commutative semigroup, commutative monoid, respectively.

Remarks 2.5. a) In a groupoid (A, ∗) there exists at most an identity element.

Indeed, if an identity element does not exist, the statement is, obviously, true. If e

and f are identity elements then, seeing each of them as an identity element, we have

e ∗ f = f şi e ∗ f = e.

Hence e = f.

b) From a) one deduces that a monoid has a unique identity element.

In the next part of this section we prefer to use the multiplicative notation.

Definition 2.6. Let (A, ·) be a groupoid with an identity element 1. An element a ∈ A
has an inverse if there exists an element a′ ∈ A such that

a · a′ = a′ · a = e.

We say that a′ is an inverse for a.
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Remarks 2.7. a) In any monoid (A, ·) there exists at least an element which have an

inverse, e.g. the identity element 1 (whose inverse is, of course, 1).

b) Let (A, ·) be a monoid. If an inverse element for a ∈ A does exist, then it is unique.

Indeed, if we suppose that a has a1, a2 ∈ A as inverses, then we may compute the

product a1 · a · a2 in two ways as

a1 · (a · a2) = a1 · 1 = a1,

(a1 · a) · a2 = 1 · a2 = a2

and we obtain a1 = a2.

The unique inverse of an element a of a monoid (A, ·) is denoted by a−1. When using

the multiplicative notation, this notation changes into −a and this element is usually

called the opposite of a.

Definition 2.8. A groupoid (A, ·) is called group if it is a monoid in which every

element has an inverse. If the operation is commutative as well, the structure is called

commutative or Abelian group.

Examples 2.9. a) (N,+) and (Z, ·) are commutative monoids, but they are not groups.

b) (Q, ·), (R, ·), (C, ·) are commutative monoids, but they are not groups since 0 has no

inverse.

c) (Z,+), (Q,+), (R,+), (C,+), (Q∗, ·), (R∗, ·), (C∗, ·) are Abelain groups.

d) Let {e} be a single element set and let · be the only operation on {e}, defined by

e · e = e. Then ({e}, ·) is an abelian group, called the trivial group.

e) Let M be a set, and MM = {f | f : M → M}. If ◦ is the usual map composition,

then (MM , ◦) is a monoid. The identity function 1M : M →M , 1M (x) = x is its identity

element and the invertible elements are the bijective functions.

f) Let (G, ·) and (G′, ·) be groups with identity elements 1 and 1′ respectively. Define on

G×G′ the operation · by

(g1, g
′
1) · (g2, g′2) = (g1 · g2, g′1 · g′2) , ∀(g1, g′1), (g2, g

′
2) ∈ G×G′ .

Then (G × G′, ·) is a group, called the direct product of the groups G and G′. The

identity element is (1, 1′) and the inverse of an element (g, g′) ∈ G×G′ is (g−1, g′
−1

). If

(G, ·) and (G′, ·) are both commutative, then (G×G′, ·) is commutative.

The example can be easily generalized for n groups.

Remarks 2.10. a) From Remark 2.7 b) one deduces that in a group, each element has

a unique inverse element.

b) The group definition can be rewritten: A groupoid (A, ·) is a group if and only if it

follows the following conditions:

(i) (a1 · a2) · a3 = a1 · (a2 · a3), ∀a1, a2, a3 ∈ A (· is associative);

(ii) ∃1 ∈ A, ∀a ∈ A : a · 1 = 1 · a = a (there exists an identity element for ·);
(iii) ∀a ∈ A, ∃a−1 ∈ A : a · a−1 = a−1 · a = 1 (all the elements of A have inverses).
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If (A, ·) is a semigroup, then the operation · is associative, so for any a ∈ A and

n ∈ N∗, we may define an as follows: a1 = a, and if n > 1, then

an = an−1 · a = a · · · · · a︸ ︷︷ ︸
n factors

.

If (A, ·) is a monoid and a ∈ A, we may define

a0 = 1.

If, in addition, a has an inverse, and n ∈ N∗, then we may define

a−n = (a−1)n.

If we work in additive notation, instead of an we write na.

One can easily check that in a group we have the following:

Proposition 2.11. (Some standard properties of group computation)

Let (G, ·) be a group. The following properties hold:

1) For any a, b ∈ G,

(a−1)−1 = a, (ab)−1 = b−1a−1,

ab = ba⇔ (ab)−1 = a−1b−1.

2) For any a, b ∈ G and any m,n ∈ Z,

aman = am+n, (am)n = amn,

ab = ba⇒ (ab)n = anbn.

3) (Cancellation laws) For any a, x, y ∈ G,

ax = ay ⇒ x = y,

xa = ya⇒ x = y.

4) For any a, b ∈ G, each of the equations ax = b and ya = b has a unique solution in G

(x = a−1b and y = ba−1, respectively).

Corollary 2.12. If (G, ·) is a group, then for any a ∈ G the maps ta : G→ G, ta(x) = ax

and t′a : G→ G, t′a(x) = xa are bijections.

Definitions 2.13. Let (A,ϕ) be a grupoid and B ⊆ A. We say that B is a subgrupoid

of (A,ϕ) or that B is closed under ϕ if

b1, b2 ∈ B ⇒ ϕ(b1, b2) ∈ B.

If B is closed under ϕ, one can define an operation on B as follows:

ϕ′ : B ×B → B, ϕ′(b1, b2) = ϕ(b1, b2).

We call ϕ′ the operation induced by ϕ on B or, briefly, the induced operation. Most

of the time, we denote it also by ϕ.
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Remarks 2.14. a) Let (A,ϕ) be a groupoid, B ⊆ A closed under ϕ and let ϕ′ be the

induced operation on B. If ϕ is associative or commutative, then ϕ′ is associative or

commutative, respectively. So any subgroupoid B of a semigroup (A,ϕ) is a semigroup

with respect to the induced operation, that is why a subgroupoid of a semigroup is called

subsemigroup.

b) Let ϕ1 and ϕ2 be operations on A, let B ⊆ A be closed under ϕ1 and ϕ2, and let ϕ′1
and ϕ′2 be the operations induced by ϕ1 and ϕ2 on B, respectively. If ϕ1 is distributive

with respect to ϕ2, i.e.

ϕ1(a1, ϕ2(a2, a3)) = ϕ2(ϕ1(a1, a2), ϕ1(a1, a3)),∀a1, a2, a3 ∈ A,

then ϕ′1 is distributive with respect to ϕ′2.

c) The existence of an identity element is not always preserved by induced operations.

For instance, N∗ is a subgroupoid of (N,+), but (N∗,+) has no identity element.

Example 2.15. Let M be a nonempty set and let us consider the monoid (MM , ◦)
from Example 2.9 e). Then SM = {f : M → M | f is bijective} is closed under ◦ and

the identity map 1M is bijective, i.e. 1M ∈ SM , hence (SM , ◦) is a monoid. Since any

bijective map f has an inverse f−1 with respect to map composition, (SM , ◦) is a group.

This group is called the symmetric group of M .

Definition 2.16. Let (G, ·) be a group. A subset H ⊆ G is called a subgroup of G if:

i) H is closed under the operation of (G, ·), that is,

∀x, y ∈ H , x · y ∈ H ;

ii) H is a group with respect to the induced operation.

We denote by H ≤ G the fact that H is a subgroup of G.

Examples 2.17. a) Z, Q, R are subgroups of (C,+), Z, Q are subgroups of (R,+) and

Z is a subgroup of (Q,+).

b) Q∗, R∗ are subgroups of (C∗, ·) and Q∗ is a subgroup of (R∗, ·).
c) N is a subsemigroup of (Z,+) which is not a subgroup.

d) Every non-trivial group (G, ·) has two subgroups, namely {1} and G. Any other

subgroup of (G, ·) is called proper subgroup.

Remarks 2.18. a) Any subgroup is a nonempty set.

This is a straightforward consequence of ii).

b) If H is a subgroup of the group (G, ·), then the identity element of (H, ·) coincides

the identity element of (G, ·).
Indeed, if e and 1 are the identity elements of H and G, respectively and h ∈ H ⊆ G,

then we have in G:

eh = h = 1h.

Applying the left cancellation law for h in G we get e = 1.

c) If H is a subgroup of the group (G, ·) and h ∈ H, then the inverse of h in (H, ·) is the

same as the inverse of h in (G, ·).
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Indeed, if h′ and h−1 are inverses for h in H and G, respectively, from b) we deduce

h′h = e = 1 = h−1h.

Applying the left cancellation law in G to the extreme members of this chain of equalities

G we get h′ = h−1.

The following characterization theorem provides us with two easy ways to check if a

subset of a group is a subgroup.

Theorem 2.19. (Teorema de caracterizare a subgrupului)

Let (G, ·) be a group and H ⊆ G. The following statements are equivalent:

1) H is a subgroup of (G, ·).
2)The following conditions hold for H:

α) H 6= ∅;
β) h1, h2 ∈ H ⇒ h1h2 ∈ H;

γ) h ∈ H ⇒ h−1 ∈ H.

3) The following conditions hold for H:

α) H 6= ∅;
δ) h1, h2 ∈ H ⇒ h1h

−1
2 ∈ H.

Proof. 1)⇒ 2). From Remark 2.18 a) one deduces α), and β) and i) coincide; γ) follows

directly from Remark 2.18 c).

2)⇒ 3). Using 2), we have:

h1, h2 ∈ H ⇒ h1, h
−1
2 ∈ H ⇒ h1h

−1
2 ∈ H.

Hence δ) holds.

3)⇒ 1). Taking h1 = h2 in δ) it follows that 1 ∈ H. Let us consider an arbitrary h ∈ H
and let us apply δ) to h1 = 1 and h2 = h. We deduce that h−1 ∈ H. Using this and δ)

we have:

h1, h2 ∈ H ⇒ h1, h
−1
2 ∈ H ⇒ h1(h−12 )−1 = h1h2 ∈ H.

So the operation of (G, ·) induces an operation on H. The induced operation is, of

course, associative and the above considerations help us conclude that H is a subgroup

of (G, ·).

Remark 2.20. The condition α) can be replaced in Theorem 2.19 by the fact that

1 ∈ H, and, most of the time, this is what we check in order to show that H 6= ∅.

Examples 2.21. a) The subset H = {z ∈ C | |z| = 1} of C∗ is a subgroup of (C∗, ·).
Indeed, H 6= ∅ since 1 ∈ H, so α) holds for H. Using the following properties of the

absolute value

|z1z2| = |z1| · |z2| and |z−1| = |z|−1

we have

z1, z2 ∈ H ⇒ |z1| = 1, |z2| = 1⇒ |z1z2| = 1⇒ z1z2 ∈ H

and

z ∈ H ⇒ |z| = 1⇒ |z−1| = 1⇒ z−1 ∈ H.
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Hence β) and γ) also hold for H. Thus H ≤ (C∗, ·).
b) Let us consider n ∈ N. The set nZ = {nk | k ∈ Z} of the integers which are multiples

of n is a subgroup of (Z,+) since nZ 6= ∅ and the difference of two multiples of n is a

multiple of n. Thus α) and δ) hold for nZ or, equivalently, nZ ≤ (Z,+).

Let us remind that for a finite set X, we denote by |X| the number of elements in

the set X.

Theorem 2.22. (Lagrange Theorem) Let G be finite group and H ≤ G. Then |H|
divides |G|.

Proof. Let ρH ⊆ G×G be the relation defined by

xρHy ⇔ y ∈ xH,

where xH = {xh | h ∈ H} ⊆ G. We notice that

xρHy ⇔ x−1y ∈ H.

First, we show that ρH is an equivalence relation on G. The relation ρH is reflexive since

∀x ∈ G, x−1x = 1 ∈ H ⇔ ∀x ∈ G, xρHx.

If xρHy and yρHz then x−1y ∈ H and y−1z ∈ H. It follows that

(x−1y)(y−1z) = x−1z ∈ H

hence xρHz. So ρH is transitive. The relation ρH is also symmetric since if xρHy, i.e.

x−1y ∈ H, then (x−1y)−1 = y−1x ∈ H, i.e. yρHx.

For any x ∈ G

ρH〈x〉 = {y ∈ G | xρHy} = {y ∈ G | x−1y ∈ H} = {y ∈ G | y ∈ xH} = xH.

We choose exactly one element from each of the different (and disjoint) classes

H,xH, yH, . . .

and we get a subset X ⊆ G. The quotient set, i.e. the partition determined by ρH is

G/ρH = {ρH〈x〉 | x ∈ X} = {xH | x ∈ X},

hence

G =
⋃
x∈X

ρH〈x〉 =
⋃
x∈X

xH.

For any x, y ∈ X, x 6= y we have xH
⋂
yH = ∅. Moreover, for any x ∈ X, the map

tx : H → xH, tx(h) = xh is bijective, so |H| = |xH|. Then

|G| =
∑
x∈X
|xH| = |H|+ · · ·+ |H|︸ ︷︷ ︸

|X| terms

= |X||H|,

which concludes the proof.

7



Definition 2.23. Let (G, ∗), (G′,⊥) be two groups. A map f : G → G′ is called

homomorphism if

f(x1 ∗ x2) = f(x1) ⊥ f(x2), ∀ x1, x2 ∈ G.

A bijective homomorphism is called isomorphism. A homomorphism of (G, ∗) into

itself is called endomorphism of (G, ∗). An isomorphism al lui (G, ∗)into itself is called

automorphism of (G, ∗). If there exists an isomorphism f : G → G, we say that the

groups (G, ∗) and (G′,⊥) are isomorphic and we denote this by G ' G′ or (G, ∗) '
(G′,⊥).

Example 2.24. (a) Let (G, ·) and (G′, ·) be groups and let f : G → G′ be defined by

f(x) = 1′, ∀x ∈ G. Then f is a homomorphism, called the trivial homomorphism.

(b) Let (G, ·) be a group. Then the identity map 1G : G→ G is an automorphism of G.

This shows that ' is reflexive.

(c) Let (G, ·) be a group and let H ≤ G. Define i : H → G by i(x) = x, ∀x ∈ H. Then i

is a homomorphism, called the inclusion homomorphism.

(d) Let n ∈ N and define f : Z→ Z by f(x) = nx, ∀x ∈ Z. Then f is an endomorphism

of the group (Z,+).

(e) The groups (R,+) and (R∗+, ·) are isomorphic. An isomorphism is f : R→ R∗+ defined

by f(x) = ex, ∀x ∈ R.

(f) The map f : C∗ → R∗, f(z) = |z| is a group homomorphism from (C∗, ·) into (R∗, ·)
since f(z1z2) = |z1z2| = |z1| · |z2| = f(z1)f(z2).

(g) The map f : C→ C, f(z) = z (where z is the conjugate of z) is an automorphism of

the group (C,+) and f−1 = f . Its restriction to C∗ is an automorphism of (C∗, ·).
(h) For any group (G, ·), the map f : G→ G, f(x) = x−1 is bijective. The map f is an

automorphism of (G, ·) if and only if (G, ·) is an Abelian group.

Let us come back to the multiplicative notation.

Theorem 2.25. Let (G, ·) and (G′, ·) be groups, and let 1 and 1′, respectively, be the

identity element of (G, ·) and (G′, ·), respectively. If f : G → G′ is a group homomor-

phism, then:

(i) f(1) = 1′;

(ii) [f(x)]−1 = f(x−1), ∀x ∈ G.

Proof. (i) We have ∀x ∈ G, 1 · x = x · 1 = x, so that f(1 · x) = f(x · 1) = f(x). Since f

is a homomorphism, it follows that

f(1) · f(x) = f(x) · f(1) = f(x) ,

whence we get f(1) = 1′ by multiplying by (f(x))−1.

(ii) Let x ∈ G. Since x ·x−1 = x−1 ·x = 1, f is a homomorphism and f(1) = 1′, it follows

that f(x) · f(x−1) = f(x−1) · f(x) = 1′ . Hence [f(x)]−1 = f(x−1).

Theorem 2.26. Let f : G→ G′ be a group isomorphism. Then f−1 : G′ → G is again

a group isomorphism.
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Proof. Clearly, f−1 is bijective. Now let x′, y′ ∈ G′. By the surjectivity of f , there exist

x, y ∈ G such that f(x) = x′ and f(y) = y′. Since f is a homomorphism, it follows that

f−1(x′ · y′) = f−1(f(x) · f(y)) = f−1(f(x · y)) = x · y = f−1(x′) · f−1(y′) .

Therefore, f−1 is an isomorphism.

Corollary 2.27. a) If (G, ·) ' (G′, ·) then (G′, ·) ' (G, ·), hence ' is symmetric.

b) An homomorphism f : G→ G′ is isomorphism if and only if there exists a homomor-

phism g : G→ G′ such that g ◦ f = 1G şi f ◦ g = 1G′ .

Theorem 2.28. Let f : G → G′ and g : G′ → G′′ be group homomorphisms (isomor-

phisms). Then g ◦ f : G→ G′′ is a group homomorphism (isomorphism).

Proof. For any x1, x2 ∈ G we have

(g◦f)(x1x2) = g(f(x1x2)) = g(f(x1)f(x2)) = g(f(x1))·g(f(x2)) = (g◦f)(x1)·(g◦f)(x2),

thus g ◦ f is a group homomorphism. The map composition of two bijective function is

a bijective function, thus if f and g are isomorphisms, then g ◦ f is an isomorphism.

Corollary 2.29. a) If (G, ·) ' (G′, ·) and (G′, ·) ' (G′′, ·) then (G, ·) ' (G′′, ·), i.e. ' is

transitive.

b) Let (G, ·) be a group and let us denote by End(G, ·) and Aut(G, ·) the set of its

endomorphisms and automorphisms, respectively. Then End(G, ·) is a subgroupoid of

(GG, ◦) and (End(G, ·), ◦) is a monoid. The set Aut(G, ·) is closed in (End(G, ·), ◦), it

contains the identity element 1G (see Example 2.24 (b)). According to Corollary 2.27,

each element of Aut(G, ·) has an inverse, thus (Aut(G, ·), ◦) is a group.

For a map f : A→ B, X ⊆ A and Y ⊆ B, we denote

f(X) = {f(x) | x ∈ X} and
−1
f (Y ) = {a ∈ A | f(a) ∈ Y }.

Theorem 2.30. Let f : G→ G′ be a group homomorphism and let H ≤ G and H ′ ≤ G′.

Then f(H) ≤ G′ and
−1
f (H ′) ≤ G.

Proof. Since 1 ∈ H and 1′ = f(1), we have 1′ ∈ f(H). Now let x′, y′ ∈ f(H). Then

there exist x, y ∈ H such that f(x) = x′ and f(y) = y′. It follows that

x′y′
−1

= f(x)(f(y))−1 = f(x)f(y−1) = f(xy−1) ∈ f(H),

hence x′y′
−1 ∈ f(H). Therefore, f(H) ≤ G′.

Let us prove the second part. Since f(1) = 1′ ∈ H ′, we have 1 ∈
−1
f (H ′). Now let

x, y ∈
−1
f (H ′). Then there exist x′, y′ ∈ H ′ such that f(x) = x′ and f(y) = y′. But since

H ′ ≤ G′ and f is a group homomorphism, we have

f(xy−1) = f(x)f(y−1) = f(x)(f(y))−1 = x′y′
−1 ∈ H ′ .

Hence xy−1 ∈
−1
f (H ′). Consequently,

−1
f (H ′) ≤ G.
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Definition 2.31. Let f : G→ G′ be a group homomorphism. Then the set

Kerf = {x ∈ G | f(x) = 1′}

is called the kernel of the homomorphism f .

By applying the second part of the previous theorem to the trivial subgroup {1′} of

G′ we have:

Corollary 2.32. Kerf = {x ∈ G | f(x) = 1′} is a subgroup of G.

Theorem 2.33. Let f : G→ G′ be a group homomorphism. Then f is injective if and

only if Kerf = {1}.

Proof. ⇒ Suppose that Kerf = {1}. Let x, y ∈ G be such that f(x) = f(y). Then

f(x)(f(y))−1 = 1′, whence it follows that f(xy−1) = 1′, that is, xy−1 ∈ Kerf = {1}.
Hence x = y. Therefore, f is injective.

⇐ Suppose that f is injective. Clearly, {1} ⊆ Kerf . If x ∈ Kerf then f(x) = 1′ = f(1),

hence x = 1. Thus Kerf ⊆ {1} and Kerf = {1}.

2.2 Exercises with solution

1) Let M be a set, let P(M) be the set of its subsets and let us consider the simmetric

difference 4, i.e. for X,Y ⊆M , X4Y = (X \ Y ) ∪ (Y \X). Show that (P(M),4) is

a group.

Solution: Let C(X) = CMX = M \X. We have

(1) X4Y = [X ∩ C(Y )] ∪ [Y ∩ C(X)].

In order to prove that 4 is associative, we show that

(2) C(X4Y ) = (X ∩ Y ) ∪ [C(X) ∩ C(Y )].

This results from (1), de Morgan laws and from distributivity of ∩ with respect to ∪ as

follows:

C(X4Y ) = C(X ∩ C(Y )) ∩ C(Y ∩ C(X)) = [C(X) ∪ Y ] ∪ [C(Y ) ∪X]

= {[C(X) ∪ Y ] ∩ C(Y )} ∪ {[C(X) ∪ Y ] ∩X}

= [C(X) ∩ C(Y )] ∪ [Y ∩ C(Y )] ∪ [C(X) ∪X] ∪ [Y ∩X]

= [C(X) ∩ C(Y )] ∪ ∅ ∪ ∅ ∪ (X ∩ Y ) = (X ∩ Y ) ∪ [C(X) ∩ C(Y )].

Using (1) and (2) we deduce

(X4Y )4Z = [(X + Y ) ∩ C(Z)] ∪ [C(X + Y ) ∩ Z]

={[(X ∩ C(Y )) ∪ (Y ∩ C(X))] ∩ C(Z)} ∪ {[(X ∩ Y ) ∪ (C(X) ∩ C(Y ))] ∩ Z}

=[X ∩ C(Y ) ∩ C(Z)] ∪ [Y ∩ C(X) ∩ C(Z)] ∪ [X ∩ Y ∩ Z] ∪ [C(X) ∩ C(Y ) ∩ Z]

=(X ∩ Y ∩ Z) ∪ [X ∩ C(Y ) ∩ C(Z)] ∪ [C(X) ∩ Y ∩ C(Z)] ∪ [C(X) ∩ C(Y ) ∩ Z].

One finds the same result when computing X4(Y4Z). Hence 4 is associative.
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From the definition of 4 it is easy to notice that 4 is commutative, that the empty

set is the identity element and that X4X = ∅, i.e. the opposite of X with respect to 4
is X. Thus (P(M),4) is an Abelian group.

2) Let G = (−1, 1), x, y ∈ G and

(∗) x ∗ y =
x+ y

1 + xy
.

Show that:

i) the equality (∗) defines an operation ∗ on G and (G, ∗) is an Abelian group;

ii) there exists an isomorphism f : R∗+ → G between the multiplicative group of positive

real numbers (R∗+, ·) and (G, ∗) which has the form f(x) =
αx− 1

x+ 1
.

Solution: i) If x, y ∈ G then x ∗ y ∈ G since

x ∗ y = −1 +
(x+ 1)(y + 1)

1 + xy
and x ∗ y = 1− (x− 1)(y − 1)

1 + xy
.

So ∗ is an operation on G. From (1) one easily deduces the commutativity of ∗. The

associativity results as follows:

(x ∗ y) ∗ z =
x+ y

1 + xy
∗ z =

x+ y + z + xyz

xy + xz + yz + 1
,

x ∗ (y ∗ z) = x ∗ y + z

1 + yz
=

x+ y + z + xyz

xy + xz + yz + 1
.

Let us assume that e is the identity element. Then x ∗ e = x for any x ∈ G, i.e.

x+ e

1 + xe
= x, ∀x ∈ G.

It follows that e = 0. Hence, if an identity element exists, it must be 0. Since x ∗ 0 = x,

for any x ∈ G, we deduce that 0 is, indeed, the identity element. If x′ is the inverse of

x ∈ G then x ∗ x′ = 0 which leads us to x′ = −x ∈ G. So, if x has an inverse element,

this must be −x. Conversely, one can easily check that −x is, indeed, the inverse of any

x ∈ G with respect to ∗. Thus (G, ∗) is an Abelian group.

ii) Since the image of the identity element through a group homomorphism is the identity

element, f(1) = 0, which implies α = 1. Hence

(∗∗) f(x) =
x− 1

x+ 1
.

Since

x− 1

x+ 1
> −1⇔ 2x

x+ 1
> 0 ,

x− 1

x+ 1
< +1⇔ −2

x+ 1
< 0 ,

f(x) ∈ G for any x ∈ R∗+; this shows that the equality (∗∗) defines a map f : R∗+ → G.

The map f is bijective since the equation f(x) = y has a unique solution x =
1 + y

1− y
∈ R∗+.

Easy computation shows that

f(x1x2) =
x1x2 − 1

x1x2 + 1
= f(x1) ∗ f(x2) ,
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i.e. f is a homomorphism. Thus f is an isomorphism.

3) Let (G, ·) be a finite group and ∅ 6= H ⊆ G. Show that H is a subgroup of G if and

only if H is closed under the multiplication of (G, ·).

Solution: If H ≤ G then, obviously, H is closed in (G, ·).
Let us take an arbitrary h ∈ H. If H is closed in (G, ·), than the image of each

restriction of each translation with h to H is in H. Therefore we can consider the maps

th, t
′
h : H → H, th(x) = hx, t′h(x) = xh.

If x1, x2 ∈ H and th(x1) = th(x2), i.e. hx1 = hx2, using the cancellation laws, this

equality leads us in G to x1 = x2. Hence th is injective, and, since H is finite, th is also

bijective.

The surjectivity of th leads us to the existence of e ∈ H for which h = th(e) = he.

Then, in G, we have 1h = eh. Using, again, the cancellation laws, we get 1 = e ∈ H.

Since th is surjective, există h′ ∈ H cu proprietatea că

1 = th(h′) = hh′ ⇒ hh−1 = 1 = hh′ ⇒ h−1 = h′ ∈ H.

But h ∈ H is an arbitrary element, so the characterization theorem for subgroups helps

us conclude that H ≤ G.

4) Show that the only group homomorphism from (Q,+) into (Z,+) is the trivial one.

Solution: Let f : Q → Z be a homomorphism, an arbitrary x ∈ Q and f(x) = a ∈ Z.

For any n ∈ N∗ we have

a = f(x) = f
(
n · x

n

)
= f

(
x

n
+ · · ·+ x

n︸ ︷︷ ︸
)

n terms

= f
(x
n

)
+ · · ·+ f

(x
n

)
︸ ︷︷ ︸

n terms

= n · f
(x
n

)
,

and since f
(x
n

)
∈ Z, we deduce that a = 0 (being a multiple of any n ∈ N∗), hence

f(x) = 0 for any x ∈ Q.

5) Find all the automorphisms of the group (Z,+).

Solution: Let f : Z→ Z be an endomorphism of (Z,+). If x ∈ N∗, then

f(x) = f(1 + 1 + · · ·+ 1︸ ︷︷ ︸
x terms

) = xf(1)

and f(−x) = −f(x). Obviously, f(0) = 0 = f(1) · 0, so,

f(x) = f(1) · x, ∀x ∈ Z.

If f is an automorphism, since f is surjective, there exists a ∈ Z such that 1 = f(1) · a.

It follows that f(1) divides 1, which means that f(1) ∈ {−1, 1}. If f(1) = 1, then f = 1Z

which is, of course, an automorphism of (Z,+), and if f(1) = −1, then f is

−1Z : Z→ Z, (−1Z)(x) = −x

for which one easily can show that it is an automorphism of (Z,+).

Thus the automorphisms of (Z,+) are 1Z and −1Z.
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2.3 Rings and fields

Definition 2.34. Let R be a set. A structure (R,+, ·) with two operations is called:

(1) ring if (R,+) is an Abelian group, (R, ·) is a semigroup and the distributive laws

hold (that is, · is distributive with respect to +).

(2) unitary ring if (R,+, ·) is a ring and there exists a multiplicative identity element.

Definition 2.35. Let (R,+, ·) be e unital ring. An element x ∈ R which has an inverse

x−1 ∈ R is called unit. The ring (R,+, ·) is called division ring if it is a unitary ring,

|R| ≥ 2 and any x ∈ R∗ is a unit. A commutative division ring is called field.

Definition 2.36. Let (R,+, ·) be a ring. An element x ∈ R∗ is called zero divisor if

there exists y ∈ R∗ such that

x · y = 0 or y · x = 0.

We say that R is an integral domain if R 6= {0}, R is unitary, commutative and has

no zero divisors.

Remarks 2.37. (1) Notice that x ∈ R∗ is not a zero divisor iff

y ∈ R , x · y = 0 or y · x = 0 ⇒ y = 0 .

(2) A ring R has no zero divisors if and only if

x, y ∈ R , x · y = 0⇒ x = 0 or y = 0 .

(3) (R,+, ·) is a division ring if and only if it satisfies the following conditions:

i) (R,+) is an Abelian group;

ii) R∗ is closed in (R, ·) and (R∗, ·) is a group;

iii) · is distributive with respect to + .

(4) Every field has no zero divisor. Moreover, every field is an integral domain.

Examples 2.38. (a) (Z,+, ·) is an integral domain, but it is not a field. Its units are

−1 and 1.

(b) (Q,+, ·), (R,+, ·), (C,+, ·) are fields.

(c) Let {0} be a single element set and let both + and · be the only operation on {0},
defined by 0 + 0 = 0 and 0 · 0 = 0. Then ({0},+, ·) is a commutative unitary ring, called

the trivial ring (or zero ring). The multiplicative identity element is, of course, 0,

hence we can write 1 = 0. As matter of fact, this equality characterize the trivial ring.

(d) Let R be a set and m,n ∈ N∗. A map

A : {1, . . . ,m} × {1, . . . , n} → R

is called m× n matrix with entries in R. When m = n, one says that A is a square

matrix. For all i = 1, . . . ,m and j = 1, . . . , n we denote A(i, j) by aij(∈ R); we can

write A as a rectangular array with m rows and n columns such that the element from

the i-th row and j-th column is the image of (i, j):

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

... . . .
...

am1 am2 . . . amn

 .
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We also write A = (aij). We denote the set of m × n matrices with entries in R by

Mm,n(R), or by Mn(R) when m = n. If (R,+, ·) is a ring, the + from R induces an

operation + on Mm,n(R) as follows: if A = (aij) and B = (bij) are m×n matrices, then

A+B = (aij + bij).

One can easily check that this (matrix) addition is associative, commutative, the matrix

Om,n with all entries 0 is its identity element and each A = (aij) from Mm,n(R) has an

opposite matrix −A = (−aij).
The term matrix multiplication is used for the partial operation defined on⋃

{Mm,n(R) | (m,n) ∈ N∗ × N∗}

as follows: if A = (aij) ∈Mm,n(R) and B = (bij) ∈Mn,p(R), then

AB = (cij) ∈Mm,p, cu cij =

n∑
k=1

aikbkj , (i, j) ∈ {1, . . . ,m} × {1, . . . , p}.

If we take m = n = p, hence we work with n×n square matrices · becomes an operation

as in Definition 2.1, operation which is associative and distributive with respect to +.

Thus (Mn(R),+, ·) is a ring, called the ring of matrices n × n with entries in R If

R has a multiplicative identity, then Mn(R) has a multiplicative identity. This is

In =


1 0 0 . . . 0

0 1 0 . . . 0
...

...
... . . .

...

0 0 0 . . . 1


If n ≥ 2 and R 6= {0} then Mn(R) is not commutative and it has zero divisors. Indeed,

if a, b ∈ R∗, one can multiply the non-zero matrices
a 0 . . . 0

0 0 . . . 0
...

... . . .
...

0 0 . . . 0

 ,


0 0 . . . b

0 0 . . . 0
...

... . . .
...

0 0 . . . 0


both sides for showing these facts.

If R is a unitary ring, the units of Mn(R) are the elements of

GLn(R) = {A ∈Mn(R) | ∃B ∈Mn(R) : AB = BA = In}.

GLn(R) is closed under the matrix multiplication, it preserves the identity of (Mn(R), ·)
and (GLn(R), ·) is a group called the general linear group over R. One knows that

if R is one of the number fields (Q, R or C) then A ∈ Mn(R) is invertible if and only if

detA 6= 0. Thus,

GLn(C) = {A ∈Mn(C) | detA 6= 0},

and similarly one can define GLn(R) and GLn(Q).
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(e) Let n ∈ N, n ≥ 2. The Division Algorithm in Z gives us a partition of Z in classes

determined by the remainders one can find when dividing by n :

{nZ, 1 + nZ, . . . , (n− 1) + nZ},

where r + nZ = {r + nk | k ∈ Z} (r ∈ Z). We use the following notations

r̂ = r + nZ (r ∈ Z) şi Zn = {nZ, 1 + nZ, . . . , (n− 1) + nZ} = {0̂, 1̂, . . . , n̂− 1}.

Let us notice that for a, r ∈ Z,

â = r̂ ⇔ a+ nZ = r + nZ⇔ a− r ∈ nZ⇔ n|a− r.

The operations

â+ b̂ = â+ b, â b̂ = âb

are well defined, i.e. if one considers another representatives a′ and b′ for the classes â

and b̂, respectively, the operations provide us with the same results. Indeed, from a′ ∈ â
şi b′ ∈ b̂ it follows that

n|a′ − a, n|b′ − b⇒ n|a′ − a+ b′ − b⇒ n|(a′ + b′)− (a+ b)⇒ â′ + b′ = â+ b

and

a′ = a+ nk, b′ = b+ nl (k, l ∈ Z)⇒ a′b′ = ab+ n(al+ bk + nkl) ∈ ab+ nZ⇒ â′b′ = âb.

One can easily check that the operations + and · are associative and commutative, + has

0̂ as identity element, each class â has an opposite in (Zn,+), −â = −̂a = n̂− a, · has 1̂

as identity element and · is distributive with respect to +. Thus, (Zn,+, ·) is a unitary

ring, called (Zn,+, ·) is a commutative ring, called the residue-class ring modulo n.

Since 2̂ · 3̂ = 0̂, both 2̂ and 3̂ are zero divisors in the ring (Z6,+, ·). Thus (Zn,+, ·) is

not a field in the general case. Actually, â ∈ Zn is a unit if and only if (a, n) = 1. Thus

(Zn,+, ·) is a field if and only if n is a prime number.

Remark 2.39. If (R,+, ·) is a ring, then (R,+) is a group and (R, ·) is a semigroup, so

that we may talk about multiples and positive powers of elements of R.

Definition 2.40. Let (R,+, ·) be a ring, let x ∈ R and let n ∈ N∗. Then we define

n · x = x+ x+ · · ·+ x︸ ︷︷ ︸
n terms

, 0 · x = 0 , (−n) · x = −n · x ,

xn = x · x · . . . · x︸ ︷︷ ︸
n factors

.

If R is a unitary ring, then we may also consider x0 = 1 . If R is a division ring, then we

may also define negative powers of nonzero elements x by

x−n = (x−1)n .

Remark 2.41. Notice that in the definition 0 · x = 0, the first 0 is the integer zero and

the second 0 is the zero element of the ring R, i.e., the identity element of the additive

group (R,+).

15



Clearly, the first computational properties of a ring (R,+, ·) are the properties of the

group (R,+) and of the semigroup (R, ·). Some relationship properties between the two

operations are given in the following result.

Theorem 2.42. Let (R,+, ·) be a ring and let x, y, z ∈ R. Then:

(i) x · (y − z) = x · y − x · z, (y − z) · x = y · x− z · x;

(ii) x · 0 = 0 · x = 0;

(iii) x · (−y) = (−x) · y = −x · y.

Proof. (i) We have

x · (y − z) = x · y − x · z ⇔ x · (y − z) + x · z = x · y ⇔ x · (y − z + z) = x · y ,

the last equality being obviously true. Similarly, (y − z) · x = y · x− z · x.

(ii) x · 0 = x · (y − y) = x · y − x · y = 0 . Similarly, 0 · x = 0.

(iii) We have

x · (−y) = −x · y ⇔ x · (−y) + x · y = 0⇔ x · (−y + y) = 0⇔ x · 0 = 0 ,

the last equality being true by (ii).

Definition 2.43. Let (R,+, ·) be a ring and A ⊆ R. Then A is a subring of R if:

(1) A is closed under the operations of (R,+, ·), that is,

∀x, y ∈ A , x+ y , x · y ∈ A ;

(2) (A,+, ·) is a ring.

Remarks 2.44. (a) If (R,+, ·) is a ring and A ⊆ R, then A is a subring of R if and only

if A is a subgroup of (R,+) and A is closed in (R, ·).
This follows directly from subring definition and Remark 2.14 b).

(b) A ring R may have subrings with or without (multiplicative) identity, as we will see

in a forthcoming example.

Using Remark 2.44 (a) and the characterization theorem for subgroups, one can easily

prove the following characterization theorem for subrings:

Theorem 2.45. Let (R,+, ·) be a ring and A ⊆ R. The following conditions are equiv-

alent:

1) A is a subring of (R,+, ·).
2) The following conditions hold for A:

α) A 6= ∅;
β) α1, α2 ∈ A⇒ a1 − a2 ∈ A;

γ) α1, a2 ∈ A⇒ a1a2 ∈ A.

3) The following conditions hold for A:

α) A 6= ∅;
β′) a1, a2 ∈ A⇒ a1 + a2 ∈ A;

β′′) a ∈ A⇒ −a ∈ A;

γ) a1, a2 ∈ A⇒ a1a2 ∈ A.
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Definition 2.46. Let (K,+, ·) be a field and let A ⊆ K. Then A is called a subfield

of K if:

(1) A is closed under the operations of (K,+, ·), that is,

∀x, y ∈ K , x+ y , x · y ∈ K ;

(2) (A,+, ·) is a field.

Remarks 2.47. (a) From (2) it follows that for a subfield A, we have |A| ≥ 2.

(b) If (K,+, ·) is a field and A ⊆ K, then A is a subfield if and only if A is a subgroup

of (K,+) and A∗ is a subgroup of (K∗, ·).
(c) f (K,+, ·) is a field and A ⊆ K, then A is a subfield if and only if A is a subring of

(K,+, ·), |A| ≥ 2 and for any a ∈ A∗, a−1 ∈ A.

Next result provide us with a characterization theorem for subfields.

Theorem 2.48. Let (K,+, ·) be a field and A ⊆ K. The following conditions are

equivalent: 1) A is a subfield of (K,+, ·).
2) The following conditions hold for A:

α) |A| ≥ 2;

β) a1, a2 ∈ A⇒ a1 − a2 ∈ A;

γ) a1, a2 ∈ A; a2 6= 0⇒ a1a
−1
2 ∈ A;

3) The following conditions hold for A:

α) |A| ≥ 2;

β′) a1, a2 ∈ A⇒ a1 + a2 ∈ A;

β′′) a ∈ A⇒ −a ∈ A;

γ′) a1, a2 ∈ A⇒ a1a2 ∈ A;

γ′′) a ∈ A; a 6= 0⇒ a−1 ∈ A.

Proof. It follows from Remark 2.47 and Theorem 2.19.

Examples 2.49. (a) Every non-trivial ring (R,+, ·) has two subrings, namely {0} and

R, called the trivial subrings.

(b) Z is a subring of (Q,+, ·), (R,+, ·) and (C,+, ·), Q is a subfield of (R,+, ·) and

(C,+, ·), R is a subfield of (C,+, ·).
(c) If n ∈ N, then nZ = {nk | k ∈ Z} is a subring of (Z,+, ·). Indeed, 0 = n · 0 ∈ nZ,

and since for any x, y ∈ nZ, there exist k, l ∈ Z such that x = nk and y = nl, we have

x− y = n(k− l) ∈ nZ and x · y = n(nkl) ∈ nZ. One notices that the ring induced on 2Z
by the operations of (Z,+, ·) has no multiplicative identity.

(d) The set Z[i] = {x + iy | x, y ∈ Z} of Gauss integers is a subring of (C,+, ·). Thus

(Z[i],+, ·) is a ring, called the ring of Gauss integers.

Definition 2.50. Let (R,+, ·) and (R′,+, ·) be rings and f : R → R′. Then f is called

a (ring) homomorphism if

f(x+ y) = f(x) + f(y) , ∀x, y ∈ R

f(x · y) = f(x) · f(y) , ∀x, y ∈ R.

The notions of (ring) isomorphism, endomorphism and automorphism are defined

as usual.
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Remark 2.51. If f : R→ R′ is a ring homomorphism, then the first condition from its

definition tells us that f is a group homomorphism between (R,+) and (R′,+). Then f

takes the identity element of (R,+) to the identity element of (R′,+), that is, f(0) = 0′

and we also have f(−x) = −f(x), for any x ∈ R (see Theorem 2.25). But in general,

even if R and R′ have identities, denoted by 1 and 1′ respectively, in general it does not

follow that a ring homomorphism f : R→ R′ has the property that f(1) = 1′.

We denote by R ' R′ the fact that two rings R and R′ are isomorphic.

Examples 2.52. (a) Let (R,+, ·) and (R′,+, ·) be rings and let f : R → R′ be defined

by f(x) = 0′, ∀x ∈ R. Then f is a homomorphism, called the trivial homomorphism.

Notice that if R and R′ 6= {0′} have identities, we do not have f(1) = 1′.

(b) Let (R,+, ·) be a ring. Then the identity map 1R : R→ R is an automorphism of R.

(c) Let (R,+, ·) be a ring and let A ≤ R. Define i : A→ R by i(x) = x, ∀x ∈ A. Then i

is a homomorphism, called the inclusion homomorphism.

(d) The map f : R → M2(R), f(x) =

(
x 0

0 x

)
is a ring homomorphism between the

rings (R,+, ·) and (M2(R),+, ·).
(e) More general, if R is a ring and n ∈ N∗, the map f : R→Mn(R),

f(a) =


a 0 . . . 0

0 a . . . 0
...

...
...

...

0 0 . . . a


is an injective ring homomorphism.

(f) Let us take f : C→ C, f(z) = z (where z is the complex conjugate of z). Since

z1 + z2 = z1 + z2, z1z2 = z1z2 and z = z,

f is an automorphism of (C,+, ·) and f−1 = f .

Definition 2.53. Let (R,+, ·) and (R′,+, ·) be rings with identity elements 1 and 1′

respectively and let f : R → R′ be a ring homomorphism. Then f is called a unitary

homomorphism if f(1) = 1′.

Theorem 2.54. Let (R,+, ·) and (R′,+, ·) be rings with identity elements 1 and 1′

respectively and let f : R → R′ be a unitary ring homomorphism. If x ∈ R has an

inverse element x−1 ∈ R, then f(x) has an inverse and f(x−1) = [f(x)]−1.

Proof. Since xx−1 = 1 = x−1x, we have

f(x)f(x−1) = 1′ = f(x−1)f(x)

which completes the proof.

Remark 2.55. Any non-zero homomorphism between two fields is a unitary homomor-

phism.
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Indeed, if (K,+, ·) and (K ′,+, ·) are fields and f : K → K ′ is a non-zero homomor-

phism, there exists x0 ∈ K such that f(x0) 6= 0. Since 1 · x0 = x0,

f(1)f(x0) = f(x0) = 1′f(x0),

multiplying both extreme members by the inverse of f(x0), we get f(1) = 1′.

2.4 Exercises with solution

1) Let M be a set and P(M) = {X | X ⊆M}. We consider on P(M) the operations +

and · defined by:

X + Y = (X \ Y ) ∪ (Y \X) şi X · Y = X ∩ Y.

Show that:

i) (P(M),+, ·) is commutative unitary ring;

ii) if |M | ≥ 2 than any X ∈ P(M) \ {∅,M} is a zero divisor;

iii) (P(M),+, ·) is a field if and only if |M | = 1.

Solution: i) One notices that X+Y is the symmetric difference of X and Y , so the solved

exercise 1) of the previous section tells us that (P(M),+) is an Abelian group. Using

the set intersection properties, one deduces that · is associative, commutative and M is

its identity element. Hence (P(M), ·) is a commutative monoid.

Let us prove the distributivity of · with respect to +. Indeed,

X · Y +X · Z = (X ∩ Y ) + (X ∩ Z)

= [(X ∩ Y ) ∩ C(X ∩ Z)] ∪ [(X ∩ Z) ∩ C(X ∩ Y )]

= [X ∩ Y ∩ (C(X) ∪ C(Z))] ∪ [X ∩ Z ∩ (C(X) ∪ C(Y ))]

= [X ∩ Y ∩ C(X)] ∪ [X ∩ Y ∩ C(Z)] ∪ [X ∩ Z ∩ C(X)] ∪ [X ∩ Z ∩ C(Y )]

= ∅ ∪ [X ∩ Y ∩ C(Z)] ∪ ∅ ∪ [X ∩ Z ∩ C(Y )]

= [X ∩ Y ∩ C(Z)] ∪ [X ∩ Z ∩ C(Y )] = X ∩ [(Y ∩ C(Z)) ∪ (Z ∩ C(Y ))]

= X · (Y + Z),

Thus (P(M),+, ·) is a unitary commutative ring. Its additive identity is ∅, and its

multiplicative identity is M .

ii) In this ring, for any X ⊆ M , X2 = X, or, equivalently, X(X − 1) = 0, which means

for us X(X +M) = ∅. This shows that any X ∈ P(M) \ {∅,M} is a zero divisor.

iii) From ii) it follows that (P(M),+, ·) has no zero divisors if and only if P (M) = {∅,M},
i.e. |M | ≤ 1. If |M | = 0 then M = ∅ and (P(M),+, ·) is the trivial ring, and if |M | = 1

then (P(M),+, ·) is isomorphic to (Z2,+, ·), thus (P(M),+, ·) is a field.

2) Let (R,+, ·) be a ring and a, b ∈ R. Show that:

a) (a+ b)2 = a2 + 2ab+ b2 ⇔ ab = ba⇔ a2 − b2 = (a− b)(a+ b);

b) if ab = ba, then for any n ∈ N∗,

(a+ b)n =C0
na

n + C1
na

n−1b+ · · ·+ Cn−1n abn−1 + Cnnb
n;

an − bn =(a− b)
(
an−1 + an−2b+ · · ·+ abn−2 + bn−1

)
;

a2n+1 + b2n+1 = (a+ b)
(
a2n − a2n−1b+ · · · − ab2n−1 + b2n

)
.
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Solution: a) If (a + b)2 = a2 + 2ab + b2 then a2 + ab + ba + b2 = a2 + ab + ab + b2.

Applying the cancellation laws in the group (R,+) we deduce that ab = ba. From

a2 − b2 = (a − b)(a + b) it follows that a2 − b2 = a2 + ab − ba − b2, so 0 = ab − ba, i.e.

ab = ba. If ab = ba the other equalities result by easy computations.

b) If a and b commute, then any natural exponent powers of a and b commute. Let us

prove by way of induction on n the first equality. For n = 1 the statement is, obviously

true. Let us assume that the equality holds for n. Then

(a+ b)n+1 = (a+ b)n(a+ b) = (C0
na

n + C1
na

n−1b+ · · ·+ Cn−1n abn−1 + Cnnb
n)a

+ (C0
na

n + C1
na

n−1b+ · · ·+ Cn−1n abn−1 + Cnnb
n)b

= C0
na

n+1 + (C1
n + C0

n)anb+ · · ·+ (Cn−1n + Cnn )abn + Cnnb
n+1.

Since C0
n = Cnn = 1 and Ckn + Ck−1n = Ckn+1 for any n ∈ N∗ and 1 ≤ k ≤ n, we have

(a+ b)n+1 = C0
n+1a

n+1 + C1
n+1a

nb+ · · ·+ Cnn+1ab
n + Cn+1

n+1b
n+1,

which ends the induction step and the proof.

The other equalities result by simply computing the right side product.

3) Let Z[
√

2] = {a+ b
√

2 | a, b ∈ Z} and Q(
√

2) = {a+ b
√

2 | a, b ∈ Q}. Show that:

i) Z[
√

2] is a subring of (R,+, ·) which contains 1;

ii) Q(
√

2) is a subfield of (R,+, ·);
iii) S1 = {a+ b 3

√
2 | a, b ∈ Z} is not a subring of (R,+, ·);

iv) S2 = {a+ b 3
√

2 | a, b ∈ Q} is not a subfield of (R,+, ·).

Solution: i) Obviously, Z[
√

2] 6= ∅. For any u = a + b
√

2, u′ = a′ + b′
√

2 ∈ Z[
√

2]

(a, a′, b, b′ ∈ Z) we have:

u− u′ = (a− a′) + (b− b′)
√

2 ∈ Z[
√

2], uu′ = (aa′ + 2bb′) + (ab′ + a′b)
√

2 ∈ Z[
√

2]

and 1 = 1 + 0
√

2 ∈ Z[
√

2]. Hence Z[
√

2] is a subring and 1 ∈ Z[
√

2].

ii) Obviously, |Q(
√

2)| ≥ 2. As in i) one shows that for any u, u′ ∈ Q(
√

2) one has

u − u′, uu′ ∈ Q(
√

2). Let u = a + b
√

2 ∈ Q(
√

2), u 6= 0. This means that a, b ∈ Q and

a2 − 2b2 6= 0. So,

u−1 =
1

a+ b
√

2
=
a− b

√
2

a2 − 2b2
=

a

a2 − 2b2
− b

a2 − 2b2

√
2 ∈ Q(

√
2).

Thus Q(
√

2) is a subfield.

iii) Let u = 3
√

2. Obviously, u ∈ S1. Let us show that u2 /∈ S1. Assume by contradiction

that u2 ∈ S1. Then u2 = a+ bu cu a, b ∈ Z. Therefore u3 = au+ bu2, and

2 = au+ b(a+ bu) = ab+ (a+ b2)u.

But u is an irrational number, hence ab = 2 and a+b2 = 0, system which has no solution

in Z. Thus S1 is not closed under · and, consequently, S1 is not a subring of (R,+, ·).
iv) One can show as in iii) that u = 3

√
2 ∈ S2, but u2 /∈ S2.

4) Find all the automorphisms of the field Q(
√

2).
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Solution: Let us consider that f : Q(
√

2) → Q(
√

2) is an automorphism. Since nonzero

field automorphisms are unitary homomorphisms, f(1) = 1.

If m,n ∈ N∗ then f
(m
n

)
= f

(
1

n
+ · · ·+ 1

n︸ ︷︷ ︸
)

m terms

= mf

(
1

n

)
. It follows that

1 = f(1) = f
(n
n

)
= nf

(
1

n

)
,

so f

(
1

n

)
=

1

n
f (1) =

1

n
, f
(m
n

)
=
m

n
f (1) =

m

n
, and f

(
−m
n

)
= −f

(m
n

)
= −m

n
.

Therefore, f(x) = x for any x ∈ Q. We also have (
√

2)2 = 2. Hence [f(
√

2)]2 = 2

which means that f(
√

2) ∈ {−
√

2,
√

2}. Thus f ∈ {f1, f2}, where f1(a+ b
√

2) = a+ b
√

2

and f2(a + b
√

2) = a − b
√

2 . Clearly, f1 is an automorphism, since f1 = 1Q(
√
2). From

f2 ◦ f2 = 1Q(
√
2), one deduces that f2 is bijective and f−12 = f2. One can easily check

that f2 is a homomorphism. Thus f2 is also an automorphism. Finally, one can say that

the automorphisms of the field Q(
√

2) are f1 and f2.

5) Show that the only nonzero endomorphism of the field (R,+, ·) is 1R.

Solution: Let f be an endomorphism of (R,+, ·). Then (f(1))2 = f(1), so f(1) = 1 or

f(1) = 0, case when f is zero. One can show as in the previous exercise that f(x) = x

for any x ∈ Q.

Let us an arbitrary x ∈ R, x > 0. Then f(x) = f((
√
x)2) = (f(

√
x))2 ≥ 0. Assuming

by contradiction that f(x) = 0, since x 6= 0, we have

1 = f(1) = f

(
x · 1

x

)
= f(x) · f

(
1

x

)
= 0 · f

(
1

x

)
= 0,

which is absurd. Hence our assumption is wrong and

x ∈ R, x > 0 ⇒ f(x) > 0.

This leads us to the fact that f is strictly increasing (hence, also, injective). Indeed, if

x, y ∈ R and x < y then f(y)− f(x) = f(y − x) > 0, i.e. f(x) < f(y).

Finally, let us show that f(a) = a for any a ∈ R \ Q. Assume by contradiction that

f(a) 6= a. Of course, this means that either a < f(a) or a > f(a). Let us take the first

case (the second will lead us to a contradiction in the same way). It follows that there

exists a rational number b ∈ Q such that a < b ≤ f(a). But then, since f is strictly

increasing, f(a) < f(b) = b, which is absurd. Hence our assumption was wrong.

Thus f(x) = x, for any x ∈ R, i.e. f = 1R.

2.5 Exercises

1) Let x, y ∈ R and x∗y = xy−5x−5y+30. Is (R, ∗) a group? What about (R\{5}, ∗)?
2) Let (G, ·) be a group and a, b ∈ G such that ab = ba. Show that

ambn = bnam, ∀m,n ∈ Z.

3) Let (G, ·) be a group and f, g : G→ G, f(x) = x−1, g(x) = x2. Show that:

i) f is bijective;
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ii) f is an automorphism if and only if (G, ·) is Abelian;

iii) g is a homomorphism if and only if (G, ·) is Abelian.

4) Show that H ⊆ Z is a subgroup of (Z,+) if and only if there exists a unique n ∈ N
such that H = nZ.

5) Let n ∈ N, n ≥ 2. Show that there exists only one group homomorphism from (Zn,+)

into (Z,+).

6) Show that if f : Q→ Q is an endomorphism of (Q,+) then

f(x) = f(1) · x, ∀x ∈ Q,

i.e. f is a translation of (Q, ·). Show that any translation of (Q, ·) is an endomorphism

of (Q,+). Determine the automorphisms of (Q,+).

7) Let a ∈ Z. Show that â ∈ Zn is a unit of the ring Zn if and only if (a, n) = 1. Using

this equivalence, prove that (Zn,+, ·) is a field if and only if n is a prime number.

8) a) Solve the equations

4̂x+ 5̂ = 9̂ and 5̂x+ 5̂ = 9̂

in Z12, and the equation

(
1 2

1 2

)
X =

(
1 2

1 2

)
in M2(C).

b) Find all the solutions of the system

{
3̂x+ 4̂y = 1̂1

4̂x+ 9̂y = 1̂0
in Z12.

9) A number d ∈ Z is a square-free integer if d 6= 1 and the only square number which

divides d is 1. Let d be a square-free integer. Show that:

i)
√
d /∈ Q;

ii) a, b ∈ Q, a+ b
√
d = 0 ⇒ a = b = 0;

iii) Z[
√
d] = {a+ b

√
d | a, b ∈ Z} is a subring of (C,+, ·) which contains 1;

iv) Q(
√
d) = {a+ b

√
d | a, b ∈ Q} is a subfield of (R,+, ·).

10) Show that the only nonzero field homomorphism from (Q,+, ·) into (C,+, ·) is the

inclusion homomorphism i : Q→ C, i(x) = x.

3 Vector spaces

3.1 Vector spaces, subspaces, linear maps

Let (K,+, ·) be a field. Throughout this chapter this condition on K will always be valid.

Definition 3.1. A vector space over K (or a K-vector space) is an abelian group

(V,+) together with an external operation

· : K × V → V , (k, v) 7→ k · v ,

satisfying the following axioms:

(L1) k · (v1 + v2) = k · v1 + k · v2;

(L2) (k1 + k2) · v = k1 · v + k2 · v;

(L3) (k1 · k2) · v = k1 · (k2 · v);

(L4) 1 · v = v,

for any k, k1, k2 ∈ K and any v, v1, v2 ∈ V .
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In this context, the elements of K are called scalars, the elements of V are called

vectors and the external operation is called scalar multiplication. Sometimes a vector

space is also called linear space.

We denote the fact that V is a vector space over K either by KV or by (V,K,+, ·),
since for a given field K, the addition on V and the external operation are the operations

that determine the vector space structure of V .

Remark 3.2. Notice that in the definition of a vector space appear four operations,

two denoted by the same symbol + and two denoted by the same symbol · . Of course,

they are not the same, but we to denote them identically for the sake of simplicity of

writing. The nature of the elements involved when using these symbols tells us which is

the operation. More precisely, if + appears between two vectors, then it is the addition

from V , if it appears between two scalars, it is the addition from K; if · appears between

a scalar and a vector, then it is the scalar multiplication, otherwise, it appears between

to scalars, hence it is the multiplication from K.

Examples 3.3. (a) Let V2 be the set of all vectors (in the classical sense) in the plane

with a fixed origin O. Then V2 is a vector space over R (or a real vector space), where the

addition is the usual addition of two vectors by the parallelogram rule and the external

operation is the usual scalar multiplication of vectors by real scalars.

If we consider two coordinate axes Ox and Oy in the plane, each vector in V2 is

perfectly determined by the coordinates of its ending point. Therefore, the addition of

vectors and the scalar multiplication of vectors by real numbers become:

(x, y) + (x′, y′) = (x+ x′, y + y′) ,

k · (x, y) = (k · x, k · y) ,

for any k ∈ R and any (x, y), (x′, y′) ∈ R× R. Thus, (R2,R,+, ·) is a vector space.

Similarly, one can consider the real vector space V3 of all vectors in the space with a

fixed origin. Moreover, a further generalization is possible, as we may see in the following

example.

(b) Let n ∈ N∗. Define

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn) ,

k · (x1, . . . , xn) = (kx1, . . . , kxn) ,

for any (x1, . . . , xn), (y1, . . . , yn) ∈ Kn and for any k ∈ K. Then (Kn,K,+, ·) is a vector

space, called the canonical vector space.

For n = 1, we get that KK is a vector space. Hence, as far as the classical numerical

fields are concerned, QQ, RR and CC are vector spaces.

(c) If V = {0} is a single element set, then we know that there is a unique structure of

an abelian group for V , namely that one defined by 0 + 0 = 0. Then we can define a

unique scalar multiplication, namely k · 0 = 0, for any k ∈ K. Thus, V is a vector space,

called the zero (null) vector space and denoted by {0}.
(d) Let A be a subfield of the field K. Then K is a vector space over A, where the

addition and the scalar multiplication are just the addition and the multiplication of

elements in the field K. In particular, QR, QC and RC are vector spaces.
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(e) (K[X],K,+, ·) is a vector space, where the addition is the usual addition of polynomi-

als and the scalar multiplication is defined as follows: if f = a0+a1X+· · ·+anXn ∈ K[X],

kf = (ka0) + (ka1)X + · · ·+ (kan)Xn, forallk ∈ K .

(f) Let m,n ∈ N, m,n ≥ 2. Then (Mmn(K),K,+, ·) is a vector space, where the

operations are the usual addition and scalar multiplication of matrices.

(g) Let A be a non-empty set. Denote

KA = {f | f : A→ K} .

Then (KA,K,+, ·) is a vector space, where the addition and the scalar multiplication

are defined as follows: for any f, g ∈ KA, for any k ∈ K, we have f + g ∈ KA, kf ∈ KA,

where

(f + g)(x) = f(x) + g(x) , (kf)(x) = kf(x) ,∀x ∈ A .

As a particular case, we obtain the vector space (RR,R,+, ·) of real functions of a real

variable.

(h) Let K be a field. The group (Mm,n(K),+) of the m×n matrices over K is a K-vector

space with the scalar multiplication

α(aij) = (αaij) (α ∈ K, (aij) ∈Mm,n(K)).

Let us notice that for n×n square matrices, besides the K-vector space structure, Mn(K)

also has a ring structure (see Example 2.38 d)). Moreover, there is a certain compatibility

between the scalar multiplication and the matrix multiplication

α(AB) = (αA)B = A(αB), ∀α ∈ K, ∀A,B ∈Mn(K).

(i) If V1 and V2 are K-vector spaces, the Cartesian product V1 × V2 is a K- vector space

with the operations defined by

(x1, x2) + (x′1, x
′
2) = (x1 + x′1, x2 + x′2), α(x1, x2) = (αx1, αx2)

for any (x1, x2), (x′1, x
′
2) ∈ V1 × V2 and α ∈ K. This vector space is called the direct

product of KV1 and KV2.

Next we give some computation rules in a vector space. Notice that we denote by 0

both the zero scalar and the zero vector.

Theorem 3.4. Let V be a vector space over K. Then for any k, k′, k1, . . . , kn ∈ K and

for any v, v′, v1, . . . , vn ∈ V we have:

(i) k · 0 = 0 · v = 0;

(ii) k(−v) = (−k)v = −kv;

(iii) k(v − v′) = kv − kv′;
(iv) (k − k′)v = kv − k′v;

(v) (k1 + · · ·+ kn)v = k1v + · · ·+ knv;

(vi) k(v1 + · · ·+ vn) = kv1 + · · ·+ kvn.
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Proof. (i) Since

k · 0 + k · v = k(0 + v) = kv ,

we get k · 0 = 0. Since

0 · v + k · v = (0 + k)v = kv ,

we get 0 · v = 0.

(ii) We have

kv + k(−v) = k(v − v) = k · 0 = 0 ,

whence k(−v) = −kv. Also,

kv + (−k)v = (k − k)v = 0 · v = 0 ,

whence (−k)v = −kv.

(iii) By computing

k(v − v′) + kv′ = k(v − v′ + v′) = kv ,

we obtain k(v − v′) = kv − kv′.
(iv) By computing

(k − k′)v + k′v = (k − k′ + k′)v = kv ,

we obtain (k − k′)v = kv − k′v.

(v) and (vi) can be proved by way of induction on n.

Theorem 3.5. Let V be a vector space over K and let k ∈ K and v ∈ V . Then

kv = 0⇔ k = 0 or v = 0 .

Proof. ⇒ Assume kv = 0. Suppose that k 6= 0. Then k is invertible in the field K and

we have

kv = 0⇒ k · v = k · 0⇒ v = 0 .

⇐ This is Theorem 3.4 (i).

Definition 3.6. Let V be a vector space over K and let S ⊆ V . Then S is a subspace

of V if:

(1) S is closed with respect to the addition of V and to the scalar multiplication, that is,

∀x, y ∈ S , x+ y ∈ S ,

∀k ∈ K , ∀x ∈ S , kx ∈ S .

(2) S is a vector space over K with respect to the induced operations of addition and

scalar multiplication.

We denote by S ≤K V the fact that S is a subspace of the vector space V over K.

Remarks 3.7. 1) Actually, the second condition in the definition is almost superfluous.

If S 6= ∅, then by the stability of S in V with respect to the addition and the scalar

multiplication, it follows immediately that S is a vector space with respect to the induced

operations. Of course, the second condition implies the fact that S 6= ∅ since KS is build

on the abelian group (S,+) determined by the induced addition.

2) The previous remark shows that S ≤K V if and only if S ≤ (V,+) and kx ∈ S for any

x ∈ S and any k ∈ K.
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Hence we have the following characterization theorem for subspaces.

Theorem 3.8. Let V be a vector space over K and let S ⊆ V . The following conditions

are equivalent:

1) S ≤K V .

2) The following conditions hold for S:

α) S 6= ∅;
β) ∀x, y ∈ S , x+ y ∈ S;

γ) ∀k ∈ K , ∀x ∈ S , kx ∈ S .
3) The following conditions hold for S:

α) S 6= ∅;
δ) ∀k1, k2 ∈ K , ∀x, y ∈ S , k1x+ k2y ∈ S .

Proof. 1)⇔ 2) is a straightforward corollary of the Remark 3.7 1).

3)⇒ 2) Taking k1 = k2 = 1 and k2 = 0 and applying δ), we get β) and γ), respectively.

2)⇒ 3) Let k1, k2 ∈ K and x, y ∈ S. We apply γ) to get k1x, k2y ∈ S and then β to get

k1x+ k2y ∈ S.

Remark 3.9. (1) Notice that Remark 3.7 2) allows us to replace α) in the previous

theorem with 0 ∈ S.

(2) If S ≤K V , k1, . . . , kn ∈ K and x1, . . . , xn ∈ S then k1x1 + · · ·+ knxn ∈ S.

Examples 3.10. (a) Every non-zero vector space V over K has two subspaces, namely

{0} and V . They are called the trivial subspaces. If a vector space has only trivial

subspaces, it is called a simple vector space.

(b) Let

S = {(x, y, z) ∈ R3 | x+ y + z = 0} ,

T = {(x, y, z) ∈ R3 | x = y = z} .

Then S and T are subspaces of the real vector space R3. More generally, the subspaces

of R3 are the trivial subspaces, the lines containing the origin and the planes containing

the origin.

(c) Let n ∈ N and let

Kn[X] = {f ∈ K[X] | deg f ≤ n} .

Then Kn[X] is a subspace of the polynomial vector space K[X] over K.

d) Let I ⊆ R be an interval. The set RI = {f | f : I → R} is a R-vector space with

respect to the following operations

(f + g)(x) = f(x) + g(x), (αf)(x) = αf(x)

with f, g ∈ RI and α ∈ R. The subsets

C(I,R) = {f ∈ RI | f continuous on I}, D(I,R) = {f ∈ RI | f derivable on I}

are subspaces of RI since they are nonempty and

α, β ∈ R, f, g ∈ C(I,R)⇒ αf + βg ∈ C(I,R);

α, β ∈ R, f, g ∈ D(I,R)⇒ αf + βg ∈ D(I,R).
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Theorem 3.11. Let I be a nonempty set, V be a vector space over K and let (Si)i∈I

be a family of subspaces of V . Then
⋂
i∈I Si ≤K V .

Proof. For each i ∈ I, Si ≤K V , hence 0 ∈ Si. Then 0 ∈
⋂
i∈I Si 6= ∅. Now let k1, k2 ∈ K

and x, y ∈
⋂
i∈I Si. Then x, y ∈ Si, ∀i ∈ I. But Si ≤K V , for any i ∈ I. It follows that

k1x+ k2y ∈ Si, for any i ∈ I, hence k1x+ k2y ∈
⋂
i∈I Si. Now by Theorem 3.8, we have⋂

i∈I Si ≤K V .

Remark 3.12. In general, the union of two subspaces is not a subspace.

Indeed, S = {(a, 0) | a ∈ R} and T = {(0, b) | b ∈ R} are subspaces of RR2, but

S ∪ T is not a subspace of RR2, since (1, 0) ∈ S ⊆ S ∪ T , (0, 1) ∈ T ⊆ S ∪ T and

(1, 0) + (0, 1) = (1, 1) /∈ S ∪ T .

At this point, as we did for the previous algebraic structures, we are interested how

to complete a given subset of a vector space to a subspace in a minimal way. This is the

motivation for the following definition.

Definition 3.13. Let V be a vector space and let X ⊆ V . Then we denote

〈X〉 =
⋂
{S ≤K V | X ⊆ S}

and we call it the subspace generated by X or the subspace spanned by X. Here

X is called the generating set of 〈X〉.
If X = {x1, . . . , xn}, we denote 〈x1, . . . , xn〉 = 〈{x1, . . . , xn}〉.

Remarks 3.14. (1) Actually, 〈X〉 is the smallest subspace of V (with respect to ⊆)

which contains X.

(2) Notice that 〈∅〉 = {0}.
(3) If V is a K-vector space, then:

(i) If S ≤K V then 〈S〉 = S.

(ii) If X ⊆ V then 〈〈X〉〉 ⊆ 〈X〉.
(iii) If X ⊆ Y ⊆ V then 〈X〉 ⊆ 〈Y 〉.

Definition 3.15. A vector space V over K is called finitely generated if there exist

n ∈ N and x1, . . . , xn ∈ V such that V = 〈x1, . . . , xn〉 . Then we call the set {x1, . . . , xn}
a system of generators for V .

Definition 3.16. Let V be a K-vector space. A finite sum of the form

k1x1 + · · ·+ knxn ,

with k1, . . . , kn ∈ K and x1, . . . , xn ∈ V , is called a linear combination of the vectors

x1, . . . , xn.

Let us show how the elements of a generated subspace look like.

Theorem 3.17. Let V be a vector space over K and let ∅ 6= X ⊆ V . Then

〈X〉 = {k1x1 + · · ·+ knxn | ki ∈ K , xi ∈ X , i = 1, . . . , n , n ∈ N∗} ,

that is, the set of all finite linear combinations of vectors of V .
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Proof. We prove the result in 3 steps, by showing that

L = {k1x1 + · · ·+ knxn | ki ∈ K , xi ∈ X , i = 1, . . . , n , n ∈ N∗}

is a subspace of V , L contains X and it is the smallest subspace which has this property.

(i) We choose n = 1 and k1 = 1 to show that X ⊆ L.

(ii) L 6= ∅ since X ⊆ L and X 6= ∅. Now let k, k′ ∈ K and v, v′ ∈ L. Then v =
∑n
i=1 kixi

and v′ =
∑m
j=1 k

′
jx
′
j for some k1, . . . , kn, k

′
1, . . . , k

′
m ∈ K and x1, . . . , xn, x

′
1, . . . , x

′
m ∈ X.

Hence

kv + k′v′ = k

n∑
i=1

kixi + k′
m∑
j=1

k′jx
′
j =

n∑
i=1

(kki)xi +

m∑
j=1

(k′k′j)x
′
j ∈ L ,

since it is a finite linear combination of vectors of X. Now by Theorem 3.8, we have

L ≤K V .

(iii) Let us suppose that S ≤K V and X ⊆ S. Let k1, . . . , kn ∈ K and x1, . . . , xn ∈ X.

Since X ⊆ S and S ≤K V , it follows by Theorem 3.8 that k1x1 + · · ·+ knxn ∈ S. Hence

L ⊆ S.

Thus, by Remark 3.14 (1), we have 〈X〉 = L.

Corollary 3.18. Let V be a vector space over K and x1, . . . , xn ∈ V . Then

〈x1, . . . , xn〉 = {k1x1 + · · ·+ knxn | ki ∈ K , xi ∈ X , i = 1, . . . , n} .

Remark 3.19. Notice that a linear combination of linear combinations is again a linear

combination.

Examples 3.20. Consider the canonical real vector space R3 (see Example 3.3). Then

〈(1, 0, 0), (0, 1, 0), (0, 0, 1)〉 = {k1(1, 0, 0) + k2(0, 1, 0) + k3(0, 0, 1) | k1, k2, k3 ∈ R} =

= {(k1, 0, 0) + (0, k2, 0) + (0, 0, k3) | k1, k2, k3 ∈ R} = {(k1, k2, k3) | k1, k2, k3 ∈ R} = R3 .

Hence R3 is generated by the three vectors (1, 0, 0), (0, 1, 0), (0, 0, 1).

If S, T ≤K V , the smallest subspace of V which contains the union S ∪ T is 〈S ∪ T 〉.
We will show that this subspace is the sum of the given subspaces.

Definition 3.21. Let V be a vector space over K and let S, T ≤K V . Then we define

the sum of the subspaces S and T as the set

S + T = {s+ t | s ∈ S , t ∈ T} .

If S ∩ T = {0}, then S + T is denoted by S ⊕ T and is called the direct sum of the

subspaces S and T .

Examples 3.22. Consider the canonical real vector space R2. Then R2 = S⊕T , where

S = {(x, 0) | x ∈ R} and T = {(0, y) | y ∈ R}.

Theorem 3.23. Let V be a vector space over K and let S, T ≤K V . Then

S + T = 〈S ∪ T 〉 .
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Proof. First, let v = s+ t ∈ S + T , for some s ∈ S and t ∈ T . Then v = 1 · s+ 1 · t is a

linear combination of vectors s, t ∈ S ∪ T , hence v ∈ 〈S ∪ T 〉. Thus,

S + T ⊆ 〈S ∪ T 〉.

Now let v ∈ 〈S ∪ T 〉. Then

v =

n∑
i=1

kivi =
∑
i∈I

kivi +
∑
j∈J

kjvj ,

where I = {i ∈ {1, . . . , n} | vi ∈ S} and J = {j ∈ {1, . . . , n} | vj ∈ T \ S}. But the first

sum is a linear combination of vectors of S, hence it belongs to S, whereas the second

sum is a linear combination of vectors of T , hence it belongs to T . So v ∈ S + T and

consequently

〈S ∪ T 〉 ⊆ S + T.

Thus, S + T = 〈S ∪ T 〉.

Remarks 3.24. (1) One can also prove the previous theorem by showing that S+T ≤K
V , S ∪ T ⊆ S + T , and S + T is the smallest subspace of V which has this property.

Actually, a more general result can be proved: if S1, . . . , Sn are subspaces of a K-vector

space V then S1 + · · ·+ Sn = 〈S1 ∪ · · · ∪ Sn〉.
(2) Moreover, if Xi ⊆ V (i = 1, . . . , n), then 〈X1 ∪ · · · ∪Xn〉 = 〈X1〉+ · · ·+ 〈Xn〉.

Indeed, Xi ⊆ X1 ∪ · · · ∪Xn implies 〈Xi〉 ⊆ 〈X1 ∪ · · · ∪Xn〉 (i = 1, . . . , n) and we have

〈X1 ∪ · · · ∪Xn〉 ⊇ 〈X1〉+ · · ·+ 〈Xn〉. Since Xi ⊆ 〈Xi〉 ⊆ 〈X1〉+ · · ·+ 〈Xn〉 (i = 1, . . . , n),

we have X1 ∪ · · · ∪Xn ⊆ 〈X1〉+ · · ·+ 〈Xn〉, hence

〈X1 ∪ · · · ∪Xn〉 ⊆ 〈〈X1〉+ · · ·+ 〈Xn〉〉 = 〈X1〉+ · · ·+ 〈Xn〉.

Definition 3.25. Let V and V ′ be vector spaces over K. The map f : V → V ′ is called

a (vector space) homomorphism or a linear map (or a linear transformation) if

f(x+ y) = f(x) + f(y) , ∀x, y ∈ V ,

f(kx) = kf(x), ∀k ∈ K, ∀x ∈ V .

The notions of (vector space) isomorphism, endomorphism and automorphism

are defined as usual.

We will mainly use the name linear map or, more precisely, K-linear map.

Remarks 3.26. (1) Notice that, when defining a linear map, we consider vector spaces

over the same field K.

(2) If f : V → V ′ is a K-linear map, then the first condition from its definition tells us

that f is a group homomorphism between (V,+) and (V ′,+). Then we have f(0) = 0′

and f(−x) = −f(x), for any x ∈ V (see Theorem 2.25).

We denote by V ' V ′ the fact that two vector spaces V and V ′ are isomorphic and

HomK(V, V ′) = {f : V → V ′ | f is a K-linear map} ,

EndK(V ) = {f : V → V | f is a K-linear map} .
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Theorem 3.27. Let V and V ′ be vector spaces over K and f : V → V ′. Then f is a

linear map if and only if

f(k1v1 + k2v2) = k1f(v1) + k2f(v2) , ∀k1, k2 ∈ K, ∀v1, v2 ∈ V.

Proof. Let k1, k2 ∈ K and v1, v2 ∈ V . Then

f(k1v1 + k2v2) = f(k1v1) + f(k2v2) = k1f(v1) + k2f(v2) .

Conversely, if we choose k1 = k2 = 1 and then k2 = 0, we get the two conditions from

the definition of a linear map.

One can easily prove by way of induction the following:

Corollary 3.28. If f : V → V ′ is a linear map, then

f(k1v1 + · · ·+ knvn) = k1f(v1) + · · ·+ knf(vn), ∀v1, . . . , vn ∈ V, ∀k1, . . . , kn ∈ K.

Examples 3.29. (a) Let V and V ′ be K-vector spaces and let f : V → V ′ be defined

by f(x) = 0′, for any x ∈ V . Then f is a K-linear map, called the trivial linear map.

(b) Let V be a vector space over K. Then the identity map 1V : V → V is an automor-

phism of V .

(c) Let V be a vector space and S ≤K V . Define i : S → V by i(x) = x, for any x ∈ S.

Then i is a K-linear map, called the inclusion linear map.

(d) Let us consider ϕ ∈ R. The map

f : R2 → R2, f(x, y) = (x cosϕ− y sinϕ, x sinϕ+ y cosϕ),

i.e. the plane rotation with the rotation angle ϕ, is a linear map.

(e) If a, b ∈ R, a < b, I = [a, b], and C(I,R) = {f : I → R | f continuous on I}, then

F : C(I,R)→ R, F (f) =

∫ b

a

f(x)dx

is a linear map.

As in the case of group homomorphisms, we have the following:

Theorem 3.30. (i) Let f : V → V ′ and g : V ′ → V ′′ be K-linear maps (isomorphisms).

Then g ◦ f : V → V ′′ is a K-linear map (isomorphism).

(ii) Let f : V → V ′ be an isomorphism of vector spaces over K. Then f−1 : V ′ → V is

again an isomorphism of vector spaces over K.

Proof. (i) If v1, v2 ∈ V and k1, k2 ∈ K, then

(g ◦ f)(k1v1 + k2v2) = g(f(k1v1 + k2v2)) = g(k1f(v1) + k2f(v2)) =

= k1g(f(v1)) + k2g(f(v2)) = k1(g ◦ f)(v1) + k2(g ◦ f)(v2)

hence g ◦ f is a liniar map.

(ii) We have to check that

f−1(k1v
′
1 + k2v

′
2) = k1f

−1(v′1) + k2f
−1(v′2), ∀ v′1, v′2 ∈ V ′, ∀k1, k2 ∈ K.
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If we denote f−1(v′i) = vi, i = 1, 2 then f(v1) = v′1, f(v2) = v′2, hence

k1v
′
1 + k2v

′
2 = k1f(v1) + k2f(v2) = f(k1v1 + k2v2).

Thus,

f−1(k1v
′
1 + k2v

′
2) = k1v1 + k2v2 = k1f

−1(v′1) + k2f
−1(v′2),

which completes the proof.

Definition 3.31. Let f : V → V ′ be a K-linear map. Then the set

Kerf = {x ∈ V | f(x) = 0′}

is called the kernel of the K-linear map f and the set

Imf = {f(x) | x ∈ V }

is called the image of the K-linear map f .

Theorem 3.32. Let f : V → V ′ be a K-linear map. Then we have

1) Kerf ≤K V and Imf ≤K V ′ .

2) f is invective if and only if Kerf = {0}.

Proof. 1) Since f(0) = 0′, we have 0 ∈ Ker f and 0′ ∈ Imf . If x1, x2 ∈ Ker f and

k1, k2 ∈ K then

f(k1x1 + k2x2) = k1f(x1) + k2f(x2) = k10′ + k20′ = 0′

hence k1x1 + k2x2 ∈ Ker f . Thus Ker f ≤K V .

If x′1, x
′
2 ∈ Im f and k1, k2 ∈ K then there exist x1, x2 ∈ V such that f(x1) = x′1 and

f(x2) = x′2. Therefore

f(k1x
′
1 + k2x

′
2) = k1f(x1) + k2f(x2) = f(k1x1 + k2x2) ∈ Imf .

Thus Im f ≤K V .

2) Since

f(x1) = f(x2)⇔ f(x1 − x2) = 0⇔ x1 − x2 ∈ Ker f

and

x1 = x2 ⇔ x1 − x2 = 0

the implication

f(x1) = f(x2)⇒ x1 = x2

holds if and only if Ker f = {0}.

Theorem 3.33. Let f : V → V ′ be a K-linear map and let X ⊆ V . Then

f(〈X〉) = 〈f(X)〉 .
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Proof. Let us assume X 6= ∅. By Theorem 3.17 we have

〈X〉 = {k1x1 + · · ·+ knxn | ki ∈ K , xi ∈ X , i = 1, . . . , n , n ∈ N∗} ,

Since f is a K-linear map, it follows by Theorem 3.27 that

f(〈X〉) = {f(k1x1 + · · ·+ knxn) | ki ∈ K , xi ∈ X , i = 1, . . . , n , n ∈ N∗} =

= {k1f(x1) + · · ·+ knf(xn) | ki ∈ K , xi ∈ X , i = 1, . . . , n , n ∈ N∗} = 〈f(X)〉 .

If X = ∅, the conclusion trivially holds.

Theorem 3.34. Let V and V ′ be vector spaces over K. For any f, g ∈ HomK(V, V ′)

and for any k ∈ K, we consider f + g, k · f ∈ HomK(V, V ′),

(f + g)(x) = f(x) + g(x), ∀x ∈ V ,

(kf)(x) = kf(x), ∀x ∈ V .

The above equalities define an addition and a sclar multiplication on HomK(V, V ′) and

HomK(V, V ′) is a vector space over K.

Proof. Let k ∈ K and f, g ∈ HomK(V, V ′).

Let us prove first that f + g, kf ∈ HomK(V, V ′). Let k1, k2 ∈ K. Then:

(f + g)(k1x+ k2y) = f(k1x+ k2y) + g(k1x+ k2y) = k1f(x) + k2f(y) + k1g(x) + k2g(y) =

= k1(f(x) + g(x)) + k2(f(y) + g(y)) = k1(f + g)(x) + k2(f + g)(y) .

We also have:

(kf)(k1x+ k2y) = kf(k1x+ k2y) = k(k1f(x)) + k(k2f(y)) = (kk1)f(x) + (kk2)f(y) =

= k1(kf(x)) + k2(kf(y)) .

Therefore, f + g, kf ∈ HomK(V, V ′).

It is easy to check that (HomK(V, V ′),+) is an abelian group, where the identity

element is the trivial linear map θ : V → V ′ defined by θ(x) = 0′, for any x ∈ V

and any element f ∈ HomK(V, V ′) has a symmetric −f ∈ HomK(V, V ′) defined by

(−f)(x) = −f(x), ∀x ∈ V .

Checking the axioms of the vector space for HomK(V, V ′) reduces by the definitions

of operations to the axioms for the vector space KV
′.

Corollary 3.35. If V is a K-vector space, then EndK(V ) is a vector space over K.

Remarks 3.36. a) Let V be a K-vector space and let End(V,+) be the set of the

endomorphisms of its additive group (V,+). From Theorem 3.30 one deduces that

EndK(V ) is a subgroupoid of (End(V,+), ◦) and from Example 3.29 (b) it follows that

(EndK(V ), ◦) is a monoid. Moreover, the endomorphism composition ◦ is distributive

with respect to endomorphism addition +, thus EndK(V ) also has a unitary ring struc-

ture, (EndK(V ),+, ◦).
b) The set AutK(V ) is a subgroup of the automorphism group (Aut(V,+), ◦) of (V,+).
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3.2 Exercises with solution

1) Can one organize a finite set as a vector space over an infinite field?

Solution: Let V be a finite set and K be an infinite field. If V has only one element,

there exists (a unique) K-vector space structure on V , the zero vector space.

If |V | ≥ 2, assuming by contradiction that there exists a K-vector space structure on

V and taking x 6= 0, one deduces that t′x : K → V , t′x(α) = αx is an injective map since

α1, α2 ∈ K, t′x(α1) = t′x(α2)⇒ α1x = α2x⇒ (α1−α2)x = 0
x 6=0⇒ α1−α2 = 0⇒ α1 = α2.

Hence |K| ≤ |V |, which is absurd. Thus there is no K-vector space structure on V in

this case.

2) Let V be a K-vector space, S ≤K V and x, y ∈ V . We denote 〈S, x〉 = 〈S ∪ {x}〉.
Show that if x ∈ V \ S and x ∈ 〈S, y〉 then y ∈ 〈S, x〉.

Solution: From x ∈ 〈S, y〉 it results that there exist s1, . . . , sn ∈ S and α1, . . . , αn, α ∈ K
such that

x = α1s1 + · · ·+ αnsn + αy.

Assuming by contradiction that α = 0 would imply x = α1s1 + · · · + αnsn ∈ S which

contradicts our hypothesis. So, α 6= 0 is a unit in K and

y = −α−1α1s1 − · · · − α−1αnsn + α−1x ∈ 〈S, x〉.

3) If V is a K-vector space, V1, V2 ≤K V and V = V1 ⊕ V2, we say that Vi (i = 1, 2)

is a direct summand of V . Show that the property of a subspace of being a direct

summand is transitive.

Solution: Let V1, V2, V3, V4 be subspaces of K-vector space V such that V = V1⊕V2 and

V1 = V3 ⊕ V4. Then V = V1 + V2 = V3 + V4 + V2. Moreover, if v3 ∈ V3 ∩ (V4 + V2), there

exists v4 ∈ V4, v2 ∈ V2 such that v3 = v4 + v2. Hence v2 = v3 − v4 ∈ V3 + V4 = V1,

which implies v2 ∈ V1 ∩ V2 = {0}. So, v2 = 0 and v3 = v4 ∈ V3 ∩ V4 = {0}. Thus,

V3 ∩ (V4 + V2) = {0} and we deduce that V = V3 ⊕ (V4 + V2), which means that V3 is a

direct summand of V .

4) Is there any R-linear map f : R3 → R2 such that

f(1, 0, 3) = (1, 1) and f(−2, 0,−6) = (2, 1)?

Solution: No, since f(−2, 0,−6) 6= (−2)f(1, 0, 3). Indeed, f(−2, 0,−6) = (2, 1) and

(−2)f(1, 0, 3) = (−2)(1, 1) = (−2,−2).

3.3 Bases. Dimension

Definition 3.37. Let V be a vector space over K. We say that the vectors v1, . . . , vn ∈ V
are (or the set of vectors {v1, . . . , vn} is):

(1) linearly independent in V if for any k1, . . . , kn ∈ K,

k1v1 + · · ·+ knvn = 0⇒ k1 = · · · = kn = 0 .
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(2) linearly dependent in V if they are not linearly independent, that is,

∃k1, . . . , kn ∈ K not all zero, such that k1v1 + · · ·+ knvn = 0 .

More generally, an infinite set of vectors of V is said to be:

(1) linearly independent if any finite subset is linearly independent.

(2) linearly dependent if there exists a finite subset which is linearly dependent.

Remarks 3.38. (1) A set consisting of a single vector v is linearly dependent if and only

if v = 0.

(2) As an immediate consequence of the definition, we notice that if V is a vector space

over K and X,Y ⊆ V such that X ⊆ Y , then:

(i) If Y is linearly independent, then X is linearly independent.

(ii) If X is linearly dependent, then Y is linearly dependent. Thus, every set of vectors

containing the zero vector is linearly dependent.

Theorem 3.39. Let V be a vector space over K. Then the vectors v1, . . . , vn ∈ V are

linearly dependent iff one of the vectors is a linear combination of the others, that is,

∃j ∈ {1, . . . , n}, ∃αi ∈ K : vj =

n∑
i=1

i 6=j

αivi.

Proof. Since v1, . . . , vn ∈ V are linearly dependent, there exist k1, . . . , kn ∈ K not all

zero, say kj 6= 0, such that k1v1 + · · ·+ knvn = 0. But this implies

−kjvj =

n∑
i=1

i 6=j

kivi

and further,

vj =

n∑
i=1

i 6=j

(−k−1j ki)vi .

Now choose αi = −k−1j ki for each i 6= j to get the conclusion.

Conversely, if there exists j ∈ {1, . . . , n} such that

vj =

n∑
i=1

i6=j

αivi

for some αi ∈ K, then

(−1)vj +

n∑
i=1

i 6=j

αivi = 0 .

Since there exists such a linear combination equal to zero and the scalars are not all zero,

the vectors v1, . . . , vn are linearly dependent.

Examples 3.40. (a) ∅ is linearly independent in any vector space.

(b) Let V2 be the real vector space of all vectors (in the classical sense) in the plane with

a fixed origin O. Recall that the addition is the usual addition of two vectors by the
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parallelogram rule and the external operation is the usual scalar multiplication of vectors

by real scalars. Then:

(i) one vector v is linearly dependent in V2 ⇔ v = 0;

(ii) two vectors are linearly dependent in V2 ⇔ they are collinear;

(iii) three vectors are always linearly dependent in V2.

(c) Let V3 be the real vector space of all vectors (in the classical sense) in the space with

a fixed origin O. Then:

(i) one vector v is linearly dependent in V3 ⇔ v = 0;

(ii) two vectors are linearly dependent in V3 ⇔ they are collinear;

(iii) three vectors are linearly dependent in V3 ⇔ they are coplanar;

(iv) four vectors are always linearly dependent in V3.

(d) If K is a field and n ∈ N∗, then the vectors

(1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, 0, . . . , 1)

from Kn are linearly independent in the K-vector space Kn.

(e) Let K be a field and n ∈ N. Then the vectors 1, X,X2, . . . , Xn are linearly indepen-

dent in the vector space Kn[X] = {f ∈ K[X] | deg f ≤ n} over K and, more generally,

the vectors 1, X,X2, . . . , Xn, . . . are linearly independent in the K-vector space K[X].

We are going to define a key notion concerning vector spaces, namely basis, which

will perfectly determine a vector space. We will discuss only the case of finitely generated

vector spaces. This is why, till the end of the chapter, by a vector space we will understand

a finitely generated vector space. However, many results from the next part hold for

arbitrary vector spaces.

Definition 3.41. Let V be a vector space over K. By a list of vectors in V we

understand an n-tuple (v1, . . . , vn) ∈ V n for some n ∈ N∗.

Definition 3.42. Let V be a vector space over K. An n-tuple B = (v1, . . . , vn) ∈ V n is

called a basis of V if:

(1) B is a system of generators for V , that is, 〈B〉 = V ;

(2) B is linearly independent in V .

Theorem 3.43. Let V be a vector space over K. A list B = (v1, . . . , vn) of vectors in

V is a basis of V if and only if each vector v ∈ V can be uniquely written as a linear

combination of the vectors v1, . . . , vn, i.e.

∀v ∈ V, ∃k1, . . . , kn ∈ K : v = k1v1 + · · ·+ knvn.

Proof. Let us assume that B is a basis of V . Hence B is linearly independent and

〈B〉 = V . The second condition assures us that every vector v ∈ V can be written as a

linear combination of the vectors of B. Let us suppose now that v = k1v1 + · · · + knvn

and v = k′1v1 + · · ·+ k′nvn for some k1, . . . , kn, k
′
1, . . . , k

′
n ∈ K. It follows that

(k1 − k′1)v1 + · · ·+ (kn − k′n)vn = 0 .

By the linear independence of B, we must have ki = k′i for each i ∈ {1, . . . , n}. Thus, we

have proved the uniqueness of writing.
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Conversely, let us assume that every vector v ∈ V can be uniquely written as a

linear combination of the vectors of B. Then clearly, V = 〈B〉. If k1, . . . , kn ∈ K and

k1v1 + · · ·+ knvn = 0, since this way of writing 0 is unique, we have

k1v1 + · · ·+ knvn = 0 · v1 + · · ·+ 0 · vn ⇒ k1 = · · · = kn = 0 ,

hence B is linearly independent. Consequently, B is a basis of V .

Definition 3.44. Let V be a vector space over K, B = (v1, . . . , vn) a basis of V and

v ∈ V . Then the scalars k1, . . . , kn ∈ K from the unique writing of v as a linear

combination

v = k1v1 + · · ·+ knvn

of the vectors of B are called the coordinates of v in the basis B.

Examples 3.45. (a) ∅ is basis for the zero vector space.

(b) If K is a field and n ∈ N∗, then the list E = (e1, . . . , en) of vectors of Kn, where

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, 0, 0, . . . , 1)

is a basis of the canonical vector space Kn over K, called the standard basis. Indeed,

we saw that E is linearly independent and each vector (x1, . . . , xn) ∈ Kn can be written

as a linear combination of the vectors of E,

(x1, . . . , xn) = x1e1 + · · ·+ xnen.

Notice that the coordinates of a vector in the standard basis are just the components of

the vector, fact that is not true in general.

In particular, if n = 1, the set {1} is a basis of the canonical vector space K over K.

For instance, {1} is a basis of the vector space C over C.

(c) Consider the canonical real vector space R2. We already know a basis of R2, namely

the standard basis ((1, 0), (0, 1)). But it is easy to show that the list ((1, 1), (0, 1)) is also

a basis of R2. Therefore, a vector space may have more than one basis.

(d) Let V3 be the real vector space of all vectors (in the classical sense) in the space with

a fixed origin O. Any 3 vectors which are not coplanar form a basis of V3; e.g. the three

pairwise orthogonal unit vectors
−→
i ,
−→
j ,
−→
k .

(e) The sets S = {(x, y, z) ∈ R3 | x + y + z = 0} and T = {(x, y, z) ∈ R3 | x = y = z}
are subspaces of RR3. As a matter of fact, S = 〈(1, 0,−1), (0, 1,−1)〉 and T = 〈(1, 1, 1)〉.
Since the two generators of S are linearly independent, they form a basis of S. The only

generator of T is clearly linearly independent, hence it forms a basis of T .

(f) Since for any z ∈ C, there exist the uniquely determined real numbers x, y ∈ R such

that z = x · 1 + y · i, the list B = (1, i) is a basis of the vector space C over R (see

Theorem 3.43). The coordinates of a vector z ∈ C in the basis B are just its real and its

imaginary part.

(g) Let K be a field and n ∈ N. Then the list B = (1, X,X2, . . . , Xn) is a basis of the

vector space Kn[X] = {f ∈ K[X] | deg f ≤ n} over K, because each vector (polynomial)

f ∈ Kn[X] can be uniquely written as a linear combination

f = a0 · 1 + a1 ·X + · · ·+ an ·Xn
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(a0, . . . , an ∈ K) of the vectors of B (see Theorem 3.43). In this case, the coordinates of

a vector f ∈ Kn[X] in the basis B are just its coefficients as a polynomial.

(h) Let K be a field. The list((1 0

0 0

)
,

(
0 1

0 0

)
,

(
0 0

1 0

)
,

(
0 0

0 1

))
is a basis of the vector space M2(K) over K. More generally, let m,n ∈ N, m,n ≥ 2 and

consider the matrices Eij = (akl), where

akl =

1 if k = i and l = j

0 otherwise
.

The list consisting of all matrices Eij is a basis of the K-vector space Mmn(K) and the

coordinates of a vector A ∈Mmn(K) in the above basis are the entries of A.

(i) If V1 and V2 are K-vector spaces and B1 = (x1, . . . , xm) and B2 = (y1, . . . , yn) are

bases for V1 and V2, respectively, then ((x1, 0), . . . , (xm, 0), (0, y1), . . . , (0, yn)) is a basis

for the direct product V1 × V2.

Theorem 3.46. Every vector space has a basis.

Proof. Let V be a vector space over K. If V = {0}, then it has the basis ∅.
Now let {0} 6= V = 〈B〉, where B = (v1, . . . , vn). If B is linearly independent, then

B is a basis and we are done. Suppose that the list B is linearly dependent. Then by

Theorem 3.39, there exists j1 ∈ {1, . . . , n} such that

vj1 =

n∑
i=1

i 6=j1

kivi

for some ki ∈ K. It follows that V = 〈B\{vj1}〉, because every vector of V can be written

as a linear combination of the vectors of B \ {vj1}. If B \ {vj1} is linearly independent,

it is a basis and we are done. Otherwise, there exists j2 ∈ {1, . . . , n} \ {j1} such that

vj2 =

n∑
i=1

i6=j1,j2

k′ivi

for some k′i ∈ K. It follows that V = 〈B \ {vj1 , vj2}〉, because every vector of V can

be written as a linear combination of the vectors of B \ {vj1 , vj2}. If B \ {vj1 , vj2} is

linearly independent, then it is a basis and we are done. Otherwise, we continue the

procedure. If all the previous intermediate subsets are linearly dependent, we get to the

step V = 〈B \ {vj1 , . . . , vjn−1}〉 = 〈vjn〉. If vjn were linearly dependent, then vjn = 0,

hence V = 〈vjn〉 = {0}, contradiction. Hence vjn is linearly independent and thus forms

a single element basis of V .

Remarks 3.47. (1) We have proved the existence of a basis of a vector space. As we

saw in Example 3.45 (c) such a basis not necessarily unique.

(2) In the proof of Theorem 3.46 we saw that if B is an n-elements set which generates V

one can successively eliminate elements from B in order to find a basis for V . It follows

that any basis of V has at most n vectors. Later we will prove even a stronger result,

namely if a vector space has a basis of n elements, then all its bases have n elements.
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Theorem 3.48. i) Let f : V → V ′ be a K-linear map and let B = (v1, . . . , vn) be a

basis of V . Then f is determined by its values on the vectors of the basis B.

ii) Let f, g : V → V ′ be K-linear maps and let B = (v1, . . . , vn) be a basis of V . If

f(vi) = g(vi), for any i ∈ {1, . . . , n}, then f = g.

Proof. i) Let v ∈ V . Since B is a basis of V , there exists k1, . . . , kn ∈ K uniquely

determined such that v = k1v1 + · · ·+ knvn. Then

f(v) = f(k1v1 + · · ·+ knvn) = k1f(v1) + · · ·+ knf(vn) ,

that is, f is determined by f(v1), . . . , f(vn).

ii) Let v ∈ V . Then v = k1v1 + · · ·+ knvn for some k1, . . . , kn ∈ K, hence

f(v) = f(k1v1 + · · ·+ knvn) = k1f(v1) + · · ·+ knf(vn) = k1g(v1) + · · ·+ kng(vn) = g(v) .

Therefore, f = g.

Remark 3.49. From the previous theorem one deduces that given two K-vector spaces

V , V ′, a basis B of V and a function f ′ : B → V ′, there exists a unique linear map

f : V → V ′ which extends f ′ (i.e. f |B = f ′ or, equivalently, f(xi) = f ′(xi), i = 1, . . . , n),

result also known as universal property of vector spaces.

Theorem 3.50. Let f : V → V ′ be a K-linear map. Then:

(i) f is injective if and only if for any X linearly independent in V , f(X) is linearly

independent in V ′.

(ii) f is surjective if and only if for any X system of generators for V , f(X) is a system

of generators for V ′.

(iii) f is bijective if and only if for any X basis of V , f(X) is a basis of V ′.

Proof. (i) Let X = (v1, . . . , vn) be a linearly independent list of vectors in V and let

k1, . . . , kn ∈ K be such that k1f(v1) + · · ·+ knf(vn) = 0. Since f is a K-linear map, we

deduce f(k1v1 + · · ·+ knvn) = f(0). By the injectivity of f we get k1v1 + · · ·+ knvn = 0.

But since X is linearly independent in V , we have k1 = · · · = kn = 0. Therefore, f(X)

is linearly independent in V ′.

Conversely, let x, y ∈ V with x 6= y. Then the non-zero vector x − y is linearly

independent, hence f(x− y) is linearly independent by hypothesis. So, f(x− y) 6= 0 and

thus, f(x) 6= f(y). Thus f is injective.

(ii) Let X be a system of generators for V . Then 〈X〉 = V . By Theorem 3.33 and the

surjectivity of f we have:

〈f(X)〉 = f(〈X〉) = f(V ) = V ′ ,

that is, f(X) is a system of generators for V ′.

Conversely, V is, clearly, a system of generators for V . By hypothesis, it follows that

f(V ) is a system of generators for V ′. Hence 〈f(V )〉 = V ′. Now by Theorem 3.33, we

get f(〈V 〉) = V ′, that is, f(V ) = V ′. Hence f is surjective.

(iii) It follows by (i) and (ii).

Recall that we consider only finitely generated vector spaces. Let us begin with a

very useful lemma, that will be often implicitly used.
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Lemma 3.51. Let V be a K-vector space and let Y = 〈y1, . . . , yn, z〉. If z ∈ 〈y1, . . . , yn〉,
then Y = 〈y1, . . . , yn〉.

Proof. The generated subspace Y is the set of all linear combinations of the vectors

y1, . . . , yn, z (see Theorem 3.17). Since z ∈ 〈y1, . . . , yn〉, z is a linear combination of the

vectors y1, . . . , yn. It follows that every vector in Y can be written as a linear combination

only of the vectors y1, . . . , yn. Consequently, Y = 〈y1, . . . , yn〉.

Let us now discuss a key theorem for proving that any two bases of a vector space

have the same number of elements. But it is worth mentioning that it has a much broader

importance in Linear Algebra.

Theorem 3.52. (Steinitz, The Exchange Theorem) Let V be a vector space over K,

let X = (x1, . . . , xm) be a linearly independent list of vectors of V and Y = (y1, . . . , yn) a

system of generators of V (m,n ∈ N∗). Then m ≤ n and m vectors of Y can be replaced

by the vectors of X in order to obtain a system of generators for V .

Proof. We prove this result by way of induction on m. Let us take m = 1. Then clearly

m ≤ n. Since Y is a system of generators for V , we have x1 =
∑n
i=1 kiyi for some

k1, . . . , kn ∈ K. The list X = {x1} is linearly independent, hence x1 6= 0. It follows that

there exists j ∈ {1, . . . , n} such that kj 6= 0. Then

yj = k−1j x1 −
n∑

i=1

i 6=j

k−1j kiyi ,

that is, yj is a linear combination of the vectors y1, . . . , yj−1, x1, yj+1, . . . , yn. Hence, in

any linear combination of y1, . . . , yn, the vector yj can be expressed as a linear combina-

tion of the other vectors and x1. Therefore, we have

V = 〈y1, . . . , yn〉 = 〈y1, . . . , yj−1, x1, yj+1, . . . , yn〉 .

Thus, we have obtained again a system of n generators for V containing x1.

Let us assume that the statement holds for a list with m − 1 linearly independent

vectors of V (m ∈ N, m ≥ 2) and let us prove it for the linearly independent list

X = (x1, . . . , xm). Then (x1, . . . , xm−1) is also linearly independent in V . By the

induction step hypothesis, we have m− 1 ≤ n. If necessary, we can reindex the elements

of Y and we have

V = 〈x1, . . . , xm−1, ym, . . . , yn〉 .

Assume by contradiction that m − 1 = n. Then from V = 〈x1, . . . , xm−1〉 it follows

that xm ∈ 〈x1, . . . , xm−1〉, which is absurd since X is linearly independent in V . Thus

m− 1 < n or, equivalently, m ≤ n.

We have xm ∈ V = 〈x1, . . . , xm−1, ym, . . . , yn〉, hence

xm =

m−1∑
i=1

kixi +

n∑
i=m

kiyi

for some k1, . . . , kn ∈ K. The list X being linearly independent in V , it follows that

there exists m ≤ j ≤ n such that kj 6= 0 (otherwise, xm =
∑m−1
i=1 kixi and the list X
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would be linearly dependent in V ). For simplicity of writing, assume that j = m. It

follows that

ym = k−1m xm −
m−1∑
i=1

k−1m kixi −
n∑

i=m+1

k−1m kiyi .

Thus, ym ∈ 〈x1, . . . , xm, ym+1, . . . , yn〉. Therefore, we have

V = 〈x1, . . . , xm−1, ym, . . . , yn〉 = 〈x1, . . . , xm, ym+1, . . . , yn〉 .

Thus, we have obtained again a system of generators for V , where m vectors of the list

Y have been replaced by the vectors of the list X. This completes the proof.

Theorem 3.53. Any two bases of a vector space have the same number of elements.

Proof. Let V be a vector space over K and let B = (v1, . . . , vm) and B′ = (v′1, . . . , v
′
n)

be bases of V . Since B is linearly independent in V and B′ is a system of generators for

V , we have m ≤ n by Theorem 3.52. Since B is a system of generators for V and B′ is

linearly independent in V , we have n ≤ m by the same Theorem 3.52. Hence m = n.

Definition 3.54. Let V be a vector space over K. Then the number of elements of any

of its bases is called the dimension of V and is denoted by dimK V or simply by dimV .

Examples 3.55. Using the bases given in Examples 3.45, one can easily determine the

dimension of those vector spaces.

(a) If V = {0}, V has the basis ∅ and dimV = 0.

(b) Let K be a field and n ∈ N∗. Then dimK K
n = n. In particular, dimC C = 1.

(c) dimR C = 2.

(d) S = {(x, y, z) ∈ R3 | x + y + z = 0} and T = {(x, y, z) ∈ R3 | x = y = z} are

subspaces of RR3 with dimS = 2 and dimT = 1. More general, the subspaces of R3 are

{(0, 0, 0)}, any line containing the origin, any plane containing the origin and RR3. Their

dimensions are 0, 1, 2 and 3, respectively.

(e) Let K be a field and n ∈ N. Then dimKn[X] = n+ 1.

(f) Let K be a field. Then dimM2(K) = 4. More generally, if m,n ∈ N, m,n ≥ 2, then

dimMmn(K) = m · n.

(g) If V1 and V2 are K-vector spaces and B1 = (x1, . . . , xm) and B2 = (y1, . . . , yn) are

bases for V1 and V2, respectively, then dim(V1 × V2) = m+ n = dimV1 + dimV2.

Theorem 3.56. Let V be a vector space over K. Then the following statements are

equivalent:

(i) dimV = n;

(ii) The maximum number of linearly independent vectors in V is n;

(iii) The minimum number of generators for V is n.

Proof. (i)⇒(ii) Assume dimV = n. Let B = (v1, . . . , vn) be a basis of V . Since B is

a system of generators for V , any linearly independent list in V must have at most n

elements by Theorem 3.52.

(ii)⇒(i) Let B = (v1, . . . , vm) be a basis of V and let (u1, . . . , un) be a linearly indepen-

dent list in V . Since B is linearly independent, we have m ≤ n by hypothesis. Since B
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is a system of generators for V , we have n ≤ m by Theorem 3.52. Hence m = n and

consequently dimV = n.

(i)⇒(iii) Assume dimV = n. Let B = (v1, . . . , vn) be a basis of V . Since B is a linearly

independent list in V , any system of generators for V must have at least n elements by

Theorem 3.52.

(iii)⇒(i) Let B = (v1, . . . , vm) be a basis of V and let (u1, . . . , un) be a system of

generators for V . Since B is a system of generators for V , we have n ≤ m by hypothesis.

Since B is linearly independent, we have m ≤ n by Theorem 3.52. Hence m = n and

consequently dimV = n.

Theorem 3.57. Let V be a vector space over K with dimV = n and X = (u1, . . . , un)

a list of vectors in V . Then X is linearly independent in V if and only if X is a system

of generators for V .

Proof. Let B = (v1, . . . , vn) be a basis of V .

Let us assume that X is linearly independent. Since B is a system of generators for V ,

we know by Theorem 3.52 that n vectors of B, i.e., all the vectors of B, can be replaced

by the vectors of X and we get another system of generators for V . Hence 〈X〉 = V .

Thus, X is a system of generators for V .

Conversely, let us suppose that X is a system of generators for V . Assume by con-

tradiction that X is linearly dependent. Then there exists j ∈ {1, . . . , n} such that

uj =

n∑
i=1

i 6=j

kiui

for some ki ∈ K. It follows that V = 〈X〉 = 〈u1, . . . , uj−1, uj+1, . . . , un〉 . This contradicts

the fact that the minimum number of generators for V is n (see Theorem 3.56). Thus

our assumption must have been false. So X is linearly independent.

Theorem 3.58. Any linearly independent list of vectors in a vector space can be com-

pleted to a basis of the vector space.

Proof. Let V be a K-vector space, let B = (v1, . . . , vn) be a basis of V and (u1, . . . , um)

be a linearly independent list in V . Since B is a system of generators for V , we know by

Theorem 3.52 that m ≤ n and m vectors of B can be replaced by the vectors (u1, . . . , um)

obtaining again a system of generators for V , say (u1, . . . , um, vm+1, . . . , vn). But by

Theorem 3.57, this is also linearly independent in V and consequently a basis of V .

Remark 3.59. The completion of a linearly independent list to a basis of the vector

space is not unique.

Example 3.60. The list (e1, e2), where e1 = (1, 0, 0) and e2 = (0, 1, 0), is linearly

independent in the canonical real vector space R3. It can be completed to the standard

basis of the space, namely (e1, e2, e3), where e3 = (0, 0, 1). On the other hand, since

dimR R3 = 3, in order to obtain a basis of the space it is enough to add to our list any

vector v3 for which (e1, e2, v3) is linearly independent (see Theorem 3.57). For instance,

we may take v3 = (1, 1, 1).
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Corollary 3.61. Let V be a vector space over K and S ≤K V . Then:

(i) Any basis of S is a part of a basis of V .

(ii) dimS ≤ dimV .

(iii) dimS = dimV ⇔ S = V .

Proof. (i) Let (u1, . . . , um) be a basis of S. Since the list is linearly independent, it can

be completed to a basis (u1, . . . , um, vm+1, . . . , vn) of V by Theorem 3.58.

(ii) follows from (i).

(iii) Assume that dimS = dimV = n. Let (u1, . . . , un) be a basis of S. Then it is

linearly independent in V , hence it is a basis of V by Theorem 3.57. Thus, if v ∈ V , then

v = k1u1 + · · ·+ knun for some k1, . . . , kn ∈ K, hence v ∈ S. Therefore, S = V .

Remark 3.62. For the equivalence (iii) from the previous corollary the fact that we are

working in a finitely generated space is essential.

Theorem 3.63. Let V and V ′ be vector spaces over K. Then

V ' V ′ ⇔ dimV = dimV ′ .

Proof. ⇒. Let f : V → V ′ be a K-isomorphism. If (v1, . . . , vn) is a basis of V , then by

Theorem 3.50, (f(v1), . . . , f(vn)) is a basis of V ′. Hence dimV = dimV ′.

⇐. Assume that dimV = dimV ′ = n. Let B = (v1, . . . , vn) and B′ = (v′1, . . . , v
′
n)

be bases of V and V ′ respectively. We know by Theorem 3.48 that a K-linear map

f : V → V ′ is determined by its values on the vectors of the basis B. Define f(vi) = v′i,

for any i ∈ {1, . . . , n}. Then it is easy to check that f is a K-isomorphism.

Corollary 3.64. Any vector space V over K with dimV = n(∈ N∗) is isomorphic to

the canonical vector space Kn over K.

Remark 3.65. Corollary 3.64 is a very important structure result, saying that, up to

an isomorphism, any finite dimensional vector space over K is, actually, the canonical

vector space Kn over K. Thus, we have an explanation why we have used so often this

kind of vector spaces: not only because the operations are very nice and easily defined,

but they are, up to an isomorphism, the only types of finite dimensional vector spaces.

We end this section with some important formulas involving vector space dimension.

Theorem 3.66. Let f : V → V ′ be a K-linear map. Then

dimV = dim(Kerf) + dim(Imf) .

Proof. Let (u1, . . . , um) be a basis of the subspace Kerf of V . Then by Corollary 3.61,

it can be completed to a basis B = (u1, . . . , um, vm+1, . . . , vn) of V . We are going to

prove that B′ = (f(vm+1), . . . , f(vn)) is a basis of Imf .

First, we prove that B′ is linearly independent in Imf . Let us take km+1, . . . , kn ∈ K.

By the K-linearity of f we have:

n∑
i=m+1

kif(vi) = 0⇒ f
( n∑
i=m+1

kivi

)
= 0⇒

n∑
i=m+1

kivi ∈ Kerf .
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Since (u1, . . . , um) is a basis of Kerf , there exist k1, . . . , km ∈ K such that

n∑
i=m+1

kivi =

m∑
i=1

kiui ,

that is,
m∑
i=1

kiui −
n∑

i=m+1

kivi = 0 .

But B = (u1, . . . , um, vm+1, . . . , vn) is a basis of V , hence it follows that ki = 0, for any

i ∈ {1, . . . , n}. Therefore, B′ is linearly independent in Imf .

Let us now show that B′ is a system of generators for Imf . Let v′ ∈ Imf . Then

v′ = f(v) for some v ∈ V . Since B is a basis of V , there exist k1, . . . , kn ∈ K such that

v =

m∑
i=1

kiui +

n∑
i=m+1

kivi .

By the K-linearity of f and the fact that u1, . . . , um ∈ Kerf , it follows that

v′ = f(v) = f
( m∑
i=1

kiui +

n∑
i=m+1

kivi

)
=

m∑
i=1

kif(ui) +

n∑
i=m+1

kif(vi) =

n∑
i=m+1

kif(vi) .

Hence B′ is a system of generators for Imf .

Therefore, B′ is a basis of Imf and consequently,

dimV = n = m+ (n−m) = dim(Kerf) + dim(Imf) .

Corollaries 3.67. a) Let V be a K-vector space and let S, T be subspaces of V . Then

dimS + dimT = dim(S ∩ T ) + dim(S + T ).

Indeed, f : S × T → S + T , f(x, y) = x− y is a surjective linear map with the kernel

Ker f = {(x, x) | x ∈ S ∩ T}. Hence,

dim(S × T ) = dim(Ker f) + dim(S + T ).

Since g : S ∩ T → Ker f , g(x) = (x, x) is an isomorphism, we have

dim(Ker f) = dim(S ∩ T ),

and by Example 3.55 g) we have dim(S×T ) = dimS+dimT, which completes the proof

of the statement.

b) If V is a K-vector space and S, T ≤K V , then

dim(S + T ) = dimS + dimT ⇔ S + T = S ⊕ T.

c) Let V be aK-vector space and f ∈ EndK(V ). The following statements are equivalent:

(i) f is injective;

(ii) f is surjective;

(iii) f is bijective.
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Of course, it is enough to show that (i)⇔ (ii).

(i)⇒(ii) If f is injective, then Kerf = {0} by Theorem 3.32, hence dim(Kerf) = 0. By

Theorem 3.66, it follows that dim(Imf) = dimV . But Imf ≤K V , so Imf = V by

Corollary 3.61.

(ii)⇒(i) Let us assume that f is surjective. Since Imf = V , it follows by Theorem 3.66

that dim(Kerf) = 0, whence Kerf = {0}. By Theorem 3.32, f is injective.

3.4 Exercises with solution

1) Let n ∈ N and fn : R → R, fn(x) = sinn x. Show that L = {fn | n ∈ N} is a linearly

independent subset of the R-vector space RR.

Solution: L is linearly independent if and only if for any n1, . . . , nk ∈ N mutually different,

the vectors fn1
, . . . , fnk

are linearly independent. Let us take α1, . . . , αk ∈ R arbitrary

such that α1fn1
+ · · ·+ αkfnk

= θ (θ is the zero map). It follows that

∀x ∈ R, α1 sinn1 x+ · · ·+ αk sinnk x = 0.

We deduce that for the polynomial

p = α1X
n1 + · · ·+ αkX

nk ∈ R[X]

any number t(= sinx) ∈ [−1, 1] is a root, hence it has infinitely many roots. This is

possible only if p = 0, so α1 = · · · = αk = 0.

2) Let p ∈ N be a prime number. Show that the usual addition and multiplication

determine a Q-vector space structure on V = {a+ b 3
√
p+ c 3

√
p2 | a, b, c ∈ Q} and find a

basis and the dimension of QV .

Solution: V is a subspace of QR generated by {1, 3
√
p, 3
√
p2}. We show that 1, 3

√
p, 3
√
p2

are linearly independent. If a, b, c ∈ Q and a+b 3
√
p+c 3

√
p2 = 0. Multiplying this equality

by 3
√
p, we get a 3

√
p+ b 3

√
p2 + cp = 0. We eliminate 3

√
p2 from the two equalities and we

have (ab− c2p) + (b2 − ac) 3
√
p = 0. Since 3

√
p /∈ Q, we must have ab− c2p = 0 = b2 − ac.

Assuming by contradiction that a 6= 0 we have c =
b2

a
, hence ab− b4

a2
p = 0, i.e. p =

b3

a3
.

This implies 3
√
p =

b

a
∈ Q, which is absurd. Thus a = 0, and, consequently, b = c = 0.

It means that (1, 3
√
p, 3
√
p2) is a basis of QV and dimQ V = 3.

3) Let V be a K-vector space whose dimension is 3 and let V1, V2 be two different

subspaces, both having the dimension 2. Show that the dimension of V1∩V2 is 1. Which

is the geometric meaning of this situation when K = R, V = R3?

Solution: From V1 6= V2 and dimV1 = dimV2 it follows that V2 * V1. Hence,

V1 $ V1 + V2 ⊆ V,

which implies dim(V1 + V2) = 3 and

dim(V1 ∩ V2) = dimV1 + dimV2 − dim(V1 + V2) = 1.

In R3 this means that the intersection of two distinct planes which contain the origin is

a line which contains the origin.
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4) Let V be a K-vector space whose dimension is n ∈ N∗ and let V1, V2 be subspaces of

V . Sho that if dimV1 = n− 1 and V2 * V1 then

dim(V1 ∩ V2) = dimV2 − 1 and V1 + V2 = V.

Solution: Since V2 * V1, we have V1∩V2 $ V2, so dim(V1∩V2) < dimV2, or, equivalently,

dimV2 − dim(V1 ∩ V2) ≥ 1. Then

n = dimV ≥ dim(V1 + V2) = dimV1 + dimV2 − dim(V1 ∩ V2) ≥ n− 1 + 1 = n.

Therefore, dim(V1 + V2) = n = dimV , thus V = V1 + V2. Finally, we have

dim(V1 ∩ V2) = dimV1 + dimV2 − dim(V1 + V2) = n− 1 + dimV2 − n = dimV2 − 1.

3.5 Exercises

1) Show that the Abelian group (R∗+, ·) is an R-vector space with respect to the scalar

multiplication ∗ defined by

α ∗ x = xα, α ∈ R, x ∈ R∗+

and that this vector space is isomorphic to the R-vector space defined on R by the usual

addition and multiplication.

2) Let V be a K-vector space, let α, β, γ ∈ K and x, y, z ∈ V such that αγ 6= 0 and

αx+ βy + γz = 0. Show that 〈x, y〉 = 〈y, z〉.
3) In the R-vector space RR = {f | f : R→ R} one considers

(RR)i = {f : R→ R | f is odd}, (RR)p = {f : R→ R | f is even}.

Show that (RR)i and (RR)p are subspaces of RR and RR = (RR)i ⊕ (RR)p.

4) Let V be a R-vector space and v1, v2, v3 ∈ V . Show that v1, v2, v3 are linearly inde-

pendent if and only if the vectors v2 + v3, v3 + v1, v1 + v2 are linearly independent.

5) Show that in the R-vector space M2(R) the matrices

E1 =

(
1 0

0 0

)
, E2 =

(
1 1

0 0

)
, E3 =

(
1 1

1 0

)
, E4 =

(
1 1

1 1

)

form a basis and find the coordinates of the matrix A =

(
−2 3

4 −2

)
in this basis.

6) Find a ∈ R such that the vectors v1 = (a, 1, 1), v2 = (1, a, 1), v3 = (1, 1, a) form a

basis of the real vector space R3.

7) In the Q-vector space Q3 one considers the vectors

a = (−2, 1, 3), b = (3,−2,−1), c = (1,−1, 2), d = (−5, 3, 4), e = (−9, 5, 10).

Prove that 〈a, b〉 = 〈c, d, e〉.
8) In the R-vector space R4 one considers the subspaces:

a) S = 〈u1, u2, u3〉, with u1 = (1, 2, 1,−2), u2 = (2, 3, 1, 0), u3 = (1, 2, 2,−3),

T = 〈v1, v2, v3〉, with v1 = (1, 1, 1, 1), v2 = (1, 0, 1,−1), v3 = (1, 3, 0,−3);
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b) S = 〈u1, u2〉, with u1 = (1, 2, 1, 0), u2 = (−1, 1, 1, 1),

T = 〈v1, v2〉, with v1 = (2,−1, 0, 1), v2 = (1,−1, 3, 7);

c) S = 〈u1, u2〉, with u1 = (1, 1, 0, 0), u2 = (1, 0, 1, 1),

T = 〈v1, v2〉, with v1 = (0, 0, 1, 1), v2 = (0, 1, 1, 0);

d) S = 〈u1, u2, u3〉, with u1 = (1, 2,−1,−2), u2 = (3, 1, 1, 1), u3 = (−1, 0, 1,−1),

T = 〈v1, v2〉, with v1 = (−1, 2,−7,−3), v2 = (2, 5,−6,−5).

Find a basis and the dimension for each of the spaces S, T , S + T and S ∩ T .

4 Matrices and linear maps. Systems of linear equa-

tions

For a better understanding of this section, we recommend the reader to remind the

basics concerning the determinant of a matrix and the rank of a matrix. In order to

support their effort, we list here some of the properties which will be used in our further

discussions.

Let K be a field, A = (aij) ∈ Mn(K), n ≥ 2, d = detA, let dij be the minor of aij

and αij = (−1)i+jdij be the cofactor of aij .

1) The determinant of A and the deteriminant of its transpose matrix tA are equal.

2) If the matrix B results from A by multiplying each element of a row (column) of A

by an element α ∈ K then det(B) = α det(A).

3) If A has two equal rows (columns), then det(A) = 0.

4) If B results from A after permuting two rows (columns) of A then det(B) = −det(A).

5) If a row (column) of A consists only of 0, then det(A) = 0.

6) If B results from A after adding to its i-th row (column) its j-th row (column)

multiplied by an element from K (i 6= j), then detB = detA.

7) If a row (column) of A is a linear combination of the other rows (columns) of A, then

detA = 0.

8) If A,B ∈Mn(K) then det(AB) = det(A) · det(B).

9) (the cofactor expansion of det(A) along its i-th row)

det(A) = ai1αi1 + ai2αi2 + · · ·+ ainαin, ∀i ∈ {1, . . . , n}.

10) (the cofactor expansion of det(A) along its j-th column)

detA = a1jα1j + a2jα2j + · · ·+ anjαnj , ∀j ∈ {1, . . . , n}.

11) If i, k ∈ {1, . . . , n}, i 6= k, then

ai1αk1 + ai2αk2 + · · ·+ ainαin = 0.

12) If j, k ∈ {1, . . . , n}, j 6= k then

a1jα1k + a2jα2k + · · ·+ anjαnk = 0.

Using the above properties, we can deduce the following:
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Theorem 4.1. A matrix A = (aij) ∈Mn(K) is invertible if and only if d = det(A) 6= 0.

If this is the case, then

A−1 = d−1 ·A∗.

Proof. If A is invertible, i.e. there exists A−1 ∈Mn(K) such that

A−1 ·A = In = A ·A−1,

according to 8), we have

det(A−1) · det(A) = 1,

hence d 6= 0.

Conversely, let us consider d 6= 0. Let us take the matrix A∗ = t(αij) (called the

adjugate or the (classical) adjoint) of A. From 9), 10), 11) and 12) it follows

A∗ ·A = d · In = A ·A∗.

Hence, if d 6= 0 then A has an inverse matrix equal to A−1 = d−1 ·A∗.

The previous properties also allow us to connect the rank of a matrix with the di-

mension of the subspace generated by its rows (columns).

Theorem 4.2. If A ∈ Mm,n(K), and rA1 , . . . , r
A
m ∈ Kn and cA1 , . . . , c

A
n ∈ Km are the

rows and the columns of A, respectively, then

rankA = dim〈rA1 , . . . , rAm〉 = dim〈cA1 , . . . , cAn 〉.

where 〈rA1 , . . . , rAm〉 is the subspace of Kn generated by rA1 , . . . , r
A
m and 〈cA1 , . . . , cAn 〉 is the

subspace of Km generated by cA1 , . . . , c
A
n .

Proof. Let r = rankA. The matrix A has an r × r nonzero minor. To simplify the

notations, we consider that such a minor is

d =

∣∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1r

a21 a22 . . . a2r
...

...
...

ar1 ar2 . . . arr

∣∣∣∣∣∣∣∣∣∣
6= 0

Since any (r + 1)× (r + 1) minor is zero, the (r + 1)× (r + 1) determinant

Dij =

∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 . . . a1r a1j

a21 a22 . . . a2r a2j
...

...
...

...

ar1 ar2 . . . arr arj

ai1 ai2 . . . air aij

∣∣∣∣∣∣∣∣∣∣∣∣
obtained by adding to d the i-th row and the j-th column of A is ) (1 ≤ i ≤ m, r < j ≤ n),

i.e. Dij = 0. The cofactor expansion of Dij along its r + 1-th row gives us

ai1d1 + ai2d2 + · · ·+ airdr + aijd = 0,
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where the cofactors d1, d2, . . . , dr do not depend on the added row. It follows that

aij = −d−1d1ai1 − d−1d2ai2 − · · · − d−1drair

for i = 1, 2, . . . ,m and j = r + 1, . . . , n. Therefore,

cAj = α1c
A
1 + α2c

A
2 + · · ·+ αrc

A
r for j = r + 1, . . . , n,

where αk = −d−1dk, 1 ≤ k ≤ r. This means that cAj is a linear combination cA1 , c
A
2 , . . . , c

A
r .

Thus, dim〈cA1 , . . . , cAn 〉 ≤ r. If we had dim〈cA1 , . . . , cAr 〉 < r then it would results that each

of the columns cA1 , . . . , c
A
r is a linear combination of the other columns, hence d = 0,

which is absurd. Thus dim〈cA1 , . . . , cA1 〉 = r. Since we also have, rankA = rank tA we

conclude that dim〈rA1 , . . . , rAn 〉 = r.

Corollary 4.3. a) The rank of A is equal to the maximum number of linearly indepen-

dent rows (columns) of A.

b) If an r× r determinant d is nonzero, and an (r+ 1)× (r+ 1) determinant D obtained

from d by adding it a row and a column is zero, then the added row (column) is a linear

combination of all the other rows (columns) of D.

Remarks 4.4. a) The previous theorem is also valid for any finite dimensional vector

space: the dimension of the subspace generated by m vectors of an n-dimensional vector

space KV is equal to the rank of the m × n matrix A whose rows are the coordinates of

these vectors in a certain basis B of V .

This can be easily shown by using the isomorphism between V and Kn which trans-

forms B into the standard basis. Obviously, this isomorphism transforms the given m

vectors into rA1 , . . . , r
A
m.

b) n vectors in an n-dimensional vector space are linearly dependent if and only if the

determinant of the matrix formed with their coordinates as rows (or as columns) is zero.

4.1 The matrix of a linear map

First, we define the matrix of a vector in a basis of a vector space. For certain reasons,

it is presented as a column-matrix, but it must be said that this is rather a convention

than a constraint. Of course, if one changes the convention, the form of the next notions

and results must be properly changed.

Definition 4.5. Let V be a K-vector space, v ∈ V and B = (v1, . . . , vn) a basis of V . If

v = k1v1 + · · ·+ knvn (k1, . . . , kn ∈ K) is the unique writing of v as a linear combination

of the vectors of the basis B, then the matrix of the vector v in the basis B is

[v]B =


k1
...

kn


Definition 4.6. Let f : V → V ′ be a K-linear map, B = (v1, . . . , vn) a basis of V and

B′ = (v′1, . . . , v
′
m) a basis of V ′. Then we can uniquely write the vectors in f(B) as linear
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combinations of the vectors of the basis B′, say
f(v1) = a11v

′
1 + a21v

′
2 + · · ·+ am1v

′
m

f(v2) = a12v
′
1 + a22v

′
2 + · · ·+ am2v

′
m

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f(vn) = a1nv
′
1 + a2nv

′
2 + · · ·+ amnv

′
m

for some aij ∈ K. Then the matrix of the K-linear map f in the pair of bases (B,B′)

(or, simply, in the bases B and B′) is the matrix whose columns consist of the coordinates

of the vectors of f(B) in the basis B′, that is,

[f ]BB′ =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn

 .

If V = V ′ and B = B′, then we simply denote [f ]B = [f ]BB′ .

Remarks 4.7. (1) We complete the matrix of a linear map by columns. This is also a

part of the convention we mentioned at the beginning of this section.

(2) As we will see next, the matrix of a linear map depens on the map, on the considered

bases, but also by the order of the elements in each basis.

Examples 4.8. a) Consider the R-linear map f : R4 → R3 defined by

f(x, y, z, t) = (x+ y + z, y + z + t, z + t+ x) , ∀(x, y, z, t) ∈ R4 .

Let E = (e1, e2, e3, e4) and E′ = (e′1, e
′
2, e
′
3) be the standard bases in R4 and R3 respec-

tively. Since 
f(e1) = f(1, 0, 0, 0) = (1, 0, 1) = e′1 + e′3

f(e2) = f(0, 1, 0, 0) = (1, 1, 0) = e′1 + e′2

f(e3) = f(0, 0, 1, 0) = (1, 1, 1) = e′1 + e′2 + e′3

f(e4) = f(0, 0, 0, 1) = (0, 1, 1) = e′2 + e′3

it follows that the matrix of f in the bases E and E′ is

[f ]EE′ =

1 1 1 0

0 1 1 1

1 0 1 1

 .

b) Let Rn[X] be the R - vector space of the polynomials with the degree at most n and

real coefficients. The map

ϕ : R3[X]→ R2[X], ϕ(a0 + a1X + a2X
2 + a3X

3) = a1 + 2a2X + 3a3X
2

(which associates a polynomial f its formal derivative f ′) is a linear map. Let us write

the matrix of ϕ in the pair of basis B = (1, X,X2, X3), B′ = (1, X,X2), and then in the
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pair of basis B = (1, X,X2, X3), B′′ = (X2, 1, X). We have

ϕ(1) = 0 · 1 + 0 ·X + 0 ·X2 = 0 ·X2 + 0 · 1 + 0 ·X

ϕ(X) = 1 · 1 + 0 ·X + 0 ·X2 = 0 ·X2 + 1 · 1 + 0 ·X

ϕ(X2) = 0 · 1 + 2 ·X + 0 ·X2 = 0 ·X2 + 0 · 1 + 2 ·X

ϕ(X3) = 0 · 1 + 0 ·X + 3 ·X2 = 3 ·X2 + 0 · 1 + 0 ·X

thus,

[ϕ]B,B′ =

 0 1 0 0

0 0 2 0

0 0 0 3

 and [ϕ]B,B′′ =

 0 0 0 3

0 1 0 0

0 0 2 0

 .

c) Let K be a field, m,n ∈ N∗ and A ∈Mm,n(K). If E is the standard basis of Kn and

E′ is the standard basis of Km, and one writes the vectors of Kn and Km as columns,

one can easily show that

fA : Kn → Km, fA(x) = Ax

is a linear map and [fA]E,E′ = A.

Theorem 4.9. Let f : V → V ′ be a K-linear map, B = (v1, . . . , vn) a basis of V ,

B′ = (v′1, . . . , v
′
m) a basis of V ′ and v ∈ V . Then

[f(v)]B′ = [f ]BB′ · [v]B .

Proof. Let [f ]BB′ = (aij) ∈ Mmn(K). Let v =
∑n
j=1 kjvj and f(v) =

∑m
i=1 k

′
iv
′
i for

some ki, k
′
i ∈ K. On the other hand, using the definition of the matrix of f in the bases

B and B′, we have

f(v) = f
( n∑
j=1

kjvj

)
=

n∑
j=1

kjf(vj) =

=

n∑
j=1

kj

( m∑
i=1

aijv
′
i

)
=

m∑
i=1

( n∑
j=1

aijkj

)
v′i .

But the writing of f(v) as a linear combination of the vectors of the basis B′ is unique,

hence we must have

k′i =

n∑
j=1

aijkj

for every i ∈ {1, . . . ,m}. Therefore, [f(v)]B′ = [f ]BB′ · [v]B .

For a K-linear map f : V → V ′ the dimension dim(Imff) is also called the rank of

f . We denote it by rank(f). The rank of a linear map and the rank of its matrix in a

pair of bases are strongly connected.

Theorem 4.10. Let f : V → V ′ be a K-linear map. Then

rank(f) = rank[f ]BB′ ,

where B and B′ are arbitrary bases of V and V ′ respectively.
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Proof. Let B = (v1, . . . , vn) and [f ]BB′ = A. By Theorem 3.33 and Remark 4.4 a), we

have

rank(f) = dim(Imff) = dim f(V ) = dim f(〈v1, . . . , vn〉) = dim〈f(v1), . . . , f(vn)〉 =

= rank( tA) = rank(A) = rank[f ]BB′ .

Now take some other bases B1 = (u1, . . . , un) of V and B′1 of V ′ and denote [f ]B1B′1
= A1.

It follows that

rank([f ]B1B′1
) = rank(A1) = rank( tA1) = dim〈f(u1), . . . , f(un)〉 = dim(Imff) =

= dim〈f(v1), . . . , f(vn)〉 = rank[f ]BB′ .

Remark 4.11. (1) Notice that the rank of a linear map does not depend on the pair of

bases in which we write its matrix.

(2) Also notice that, considering matrices of a linear map in different pairs of bases, their

ranks are the same. Some other connection between matrices of a linear map in different

pairs of bases will be discussed in the next part of this section.

Example 4.12. Consider the R-linear map f : R4 → R3 defined by

f(x, y, z, t) = (x+ y + z, y + z + t, z + t+ x) , ∀(x, y, z, t) ∈ R4 .

Let E = (e1, e2, e3, e4) and E′ = (e′1, e
′
2, e
′
3) be the canonical bases in R4 and R3 respec-

tively. We have seen in Example 4.8 a) that [f ]EE′ =

1 1 1 0

0 1 1 1

1 0 1 1

 . Since

∣∣∣∣∣∣∣
1 1 1

0 1 1

1 0 1

∣∣∣∣∣∣∣ = 1 6= 0 ,

it follows by Theorem 4.2 that rank(f) = rank[f ]EE′ = 3 .

We continue this section by presenting one of the key results in Linear Algebra,

connecting linear maps and matrices.

Theorem 4.13. Let V , V ′ and V ′′ be vector spaces over K with dimV = n, dimV ′ = m

and dimV ′′ = p and let B, B′ and B′′ be bases of V , V ′ and V ′′ respectively. If

f, g ∈ HomK(V, V ′), h ∈ HomK(V ′, V ′′) and k ∈ K, then

[f + g]BB′ = [f ]BB′ + [g]BB′ , [kf ]BB′ = k · [f ]BB′ ,

[h ◦ f ]BB′′ = [h]B′B′′ · [f ]BB′ .

Proof. Let us consider [f ]BB′ = (aij) ∈ Mmn(K), [g]BB′ = (bij) ∈ Mmn(K) and

[h]B′B′′ = (cki) ∈Mpm(K). We have

f(vj) =

m∑
i=1

aijv
′
i , g(vj) =

m∑
i=1

bijv
′
i , h(v′i) =

p∑
k=1

ckiv
′′
k

51



for any j ∈ {1, . . . , n} and for any i ∈ {1, . . . ,m}.
Then for any k ∈ K and for any j ∈ {1, . . . , n} we have

(f + g)(vj) = f(vj) + g(vj) =

m∑
i=1

aijv
′
i +

m∑
i=1

bijv
′
i =

m∑
i=1

(aij + bij)v
′
i ,

(kf)(vj) = kf(vj) = k · (
m∑
i=1

aijv
′
i) =

m∑
i=1

(kaij)v
′
i ,

hence [f + g]BB′ = [f ]BB′ + [g]BB′ and [kf ]BB′ = k · [f ]BB′ .

Finally, for any j ∈ {1, . . . , n} we have

(h ◦ f)(vj) = h(f(vj)) = h(

m∑
i=1

aijv
′
i) =

m∑
i=1

aijh(v′i) =

m∑
i=1

aij(

p∑
k=1

ckiv
′′
k ) =

=

p∑
k=1

m∑
i=1

(ckiaij)v
′′
k ,

hence [h ◦ f ]BB′′ = [h]B′B′′ · [f ]BB′ .

Theorem 4.14. Let V and V ′ be vector spaces over K with dimV = n and dimV ′ = m

and let B and B′ be bases of V and V ′ respectively. Then the map

ϕ : HomK(V, V ′)→Mmn(K)

defined by

ϕ(f) = [f ]BB′ , ∀f ∈ HomK(V, V ′)

is an isomorphism of vector spaces.

Proof. Let us prove first that ϕ is bijective.

Let f, g ∈ HomK(V, V ′) such that ϕ(f) = ϕ(g). Then [f ]BB′ = [g]BB′ = (aij) and

f(vj) = a1jv
′
1 + a2jv

′
2 + · · ·+ amjv

′
m = g(vj) , ∀j ∈ {1, . . . , n}.

Then f = g by Theorem 3.48. Thus, ϕ is injective.

Now let A = (aij) ∈ Mmn(K), seen as a list of column-vectors (a1, . . . , an), where

aj =


a1j
...

amj

. Consider B = (v1, . . . , vn) and B′ = (v′1, . . . , v
′
m) and define a K-linear

map f : V → V ′ on the basis of the domain by

f(vj) = a1jv
′
1 + · · ·+ amjv

′
m ,

for any j ∈ {1, . . . , n}. Then

ϕ(f) = [f ]BB′ = (aij) = A .

Thus, ϕ is surjective.

The proof is completed by Theorem 4.13.
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Remark 4.15. The extremely important isomorphism given in Theorem 4.14 allows us

to work with matrices instead of linear maps, which is much simpler from a computational

point of view.

As we saw in Remark 3.36 a), (EndK(V ),+, ◦) is a unitary ring.

Theorem 4.16. Let V be a vector space over K with dimV = n and let B be a basis

of V . Then the map

ϕ : EndK(V )→Mn(K)

defined by

ϕ(f) = [f ]B , ∀f ∈ EndK(V )

is an isomorphism of vector spaces and of rings.

Proof. It follows by Theorem 4.13 and Theorem 4.14.

Corollary 4.17. Let V be a vector space over K, B is an arbitrary basis of V and

f ∈ EndK(V ). Then

f ∈ AutK(V )⇔ det[f ]B 6= 0 .

Proof. By Remark 3.36 b) and Theorems 4.16, f ∈ AutK(V ) (i.e. f is a unit in the ring

(EndK(V ),+, ◦)) if and only if [f ]B is a unit in (Mn(K),+, ·). According to Remark 4.4

b), this means that det[f ]B 6= 0.

Definition 4.18. Let f ∈ EndK(V ) and let B = (v1, . . . , vn) and B′ = (v′1, . . . , v
′
n) be

bases of V . Then we can write
v′1 = t11v1 + t21v2 + · · ·+ tn1vn

v′2 = t12v1 + t22v2 + · · ·+ tn2vn

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

v′n = t1nv1 + t2nv2 + · · ·+ tnnvn

for some tij ∈ K. Then the matrix (tij) ∈Mn(K), having as columns the coordinates of

the vectors of the basis B′ in the basis B, is called the transition matrix from B to

B′ and is denoted by TBB′ .

Remarks 4.19. 1) Sometimes the basis B is referred to as the ”old” basis and the basis

B′ is referred to as the ”new” basis.

2) The j-th column of TBB′ (j = 1, · · · , n) consists of the coordinates of v′j = 1V (v′j) in

the basis B, hence TBB′ = [1V ]B′B .

Theorem 4.20. Let f ∈ EndK(V ) and let B = (v1, . . . , vn) and B′ = (v′1, . . . , v
′
n) be

bases of V . Then the transition matrix TBB′ is invertible and its inverse is the transition

matrix TB′B .

Proof. Since T = TBB′ is the transition matrix from the basis B to the basis B′ we have

v′j =

n∑
i=1

tijvi ,
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for any j ∈ {1, . . . , n}. Denote S = (sij) ∈Mmn(K) the transition matrix from the basis

B′ to the basis B. Then

vi =

n∑
k=1

skiv
′
k ,

for any i ∈ {1, . . . , n}. It follows that

v′j =

n∑
i=1

tij(

n∑
k=1

skiv
′
k) =

n∑
k=1

(

n∑
i=1

skitij)v
′
k .

By the uniqueness of writing of each v′j as linear combination of the vectors of the basis

B′, it follows that
n∑
i=1

skitij =

1 if k = j

0 if k 6= j
,

that is, S · T = In.

Similarly, one can show that T ·S = In. Thus, T is invertible and its inverse is S.

Theorem 4.21. Let f ∈ EndK(V ), let B = (v1, . . . , vn) and B′ = (v′1, . . . , v
′
n) be bases

of V and let v ∈ V . Then

[v]B = TBB′ · [v]B′ .

Proof. Let v ∈ V and let us write v in the two bases B and B′. Then v =
∑n
i=1 kivi and

v =
∑n
j=1 k

′
jv
′
j for some ki, k

′
j ∈ K. Since TBB′ = (tij) ∈Mn(K), we have

v′j =

n∑
i=1

tijvi ,

for any j ∈ {1, . . . , n}. It follows that

v =

n∑
j=1

k′j(

n∑
i=1

tijvi) =

n∑
i=1

(

n∑
j=1

tijk
′
j)vi .

By the uniqueness of writing of v as a linear combination of the vectors of the basis B,

it follows that

ki =

n∑
j=1

tijk
′
j ,

hence [v]B = TBB′ · [v]B′ .

Remark 4.22. Usually, we are interested in computing the coordinates of a vector v in

the new basis B′, knowing the coordinates of the same vector v in the old basis B and

the transition matrix from B to B′. Then by Theorem 4.21, we have

[v]B′ = T−1BB′ · [v]B = TB′B · [v]B .

Example 4.23. Consider the bases E = (e1, e2, e3) and B = (v1, v2, v3) of the canonical

real vector space R3, where E is the canonical basis and v1 = (0, 1, 1), v2 = (1, 1, 2),

v3 = (1, 1, 1). Let us determine the transition matrices from E to B and viceversa.
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Since 
v1 = e2 + e3

v2 = e1 + e2 + 2e3

v3 = e1 + e2 + e3

it follows that

TEB =

0 1 1

1 1 1

1 2 1

 .

Further, we get 
e1 = −v1 + v3

e2 = v1 − v2 + v3

e3 = v2 − v3

hence

TBE =

−1 1 0

0 −1 1

1 1 −1

 .

Recall that we must have TBE = T−1EB , so that we could have obtained TBE by computing

the inverse of the matrix TEB .

Let us consider now the vector u = (1, 2, 3). Clearly, its coordinates in the canonical

basis E are 1, 2 and 3. By Theorem 4.21, it follows that

[u]B = TBE · [u]E =

−1 1 0

0 −1 1

1 1 −1

 ·
1

2

3

 =

1

1

0


Hence the coordinates of u in the basis B are 1, 1 and 0.

Theorem 4.24. Let f ∈ EndK(V ) and let B and B′ be bases of V . Then

[f ]B′ = T−1BB′ · [f ]B · TBB′ .

Proof. Let us denote T = TBB′ . For every v ∈ V , by Theorems 4.9 and 4.21, we have

[f(v)]B = [f ]B · [v]B = [f ]B · T · [v]B′ .

We also have

[f(v)]B = T · [f(v)]B′ = T · [f ]B′ · [v]B′ .

Then the equality

[f ]B · T · [v]B′ = T · [f ]B′ · [v]B′

yields two ways of writing the vector v as linear combinations of the vectors of the basis

B′. Since we must have the equality of the corresponding scalars, [f ]B · T = T · [f ]B′ .

Therefore, [f ]B′ = T−1 · [f ]B · T .
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Example 4.25. Consider the bases E = (e1, e2, e3) and B = (v1, v2, v3) of the canonical

real vector space R3, where E is the canonical basis and v1 = (0, 1, 1), v2 = (1, 1, 2),

v3 = (1, 1, 1). Also let f ∈ EndR(R3) be defined by

f(x, y, z) = (x+ y, y − z, z + x) , ∀(x, y, z) ∈ R3 .

Let us determine the matrix of f in the basis E and in the basis B.

Since 
f(e1) = (1, 0, 1) = e1 + e3

f(e2) = (1, 1, 0) = e1 + e2

f(e3) = (0,−1, 1) = −e2 + e3

we get [f ]E =

1 1 0

0 1 −1

1 0 1

 . Using Theorem 4.24 and the transition matrices TEB and

TBE , that we have determined in Example 4.23, we have

[f ]B = T−1EB · [f ]E · TEB = TBE · [f ]E · TEB =

=

−1 1 0

0 −1 1

1 1 −1

 ·
1 1 0

0 1 −1

1 0 1

 ·
0 1 1

1 1 1

1 2 1

 =

−1 −3 −2

1 4 2

0 −2 0

 .

It is worth to be mentioned that we could have reached the same result using the definition

of the matrix of a linear map and expressing the vectors f(v1), f(v2) and f(v3) as linear

combinations of the vectors v1, v2 and v3 of the basis B.

Remark 4.26. It is possible to establish a more general result than Theorem 4.24,

namely to consider linear maps between different vector spaces and to take two bases in

each of the vector spaces. Thus, we have the following theorem whose proof gives the

reader another way to approach Theorem 4.24.

Theorem 4.27. Let f ∈ HomK(V, V ′), let B1 and B2 be bases of V and let B′1 and B′2
be bases of V ′. Then

[f ]B2B′2
= T−1B′1B

′
2
· [f ]B1B′1

· TB1B2
.

Proof. As in Remark 4.19 2), TB1B2
= [1V ]B2B1

and TB′1B′2 = [1V ′ ]B′2B′1 . Of course,

T−1B′1B
′
2

= [1V ′ ]B′1B′2 . Applying Theorem 4.13 to the equality f = 1V ′ ◦ f ◦ 1V , we have

[f ]B2B′2
= [1V ′ ]B′1B′2 · [f ]B1B′1

· [1V ]B2B1
,

hence the expected conclusion.

4.2 Exercises with solution

1) Let B = ((1, 2), (−2, 1)) and B′ = ((1,−1, 0), (−1, 0, 1), (1, 1, 1)). Show that B, and

B′ are bases in the R-vector spaces R2 and R3, respectively, and determine the matrix

of the linear map f : R2 → R3, f(x, y) = (x + y, 2x − y, 3x + 2y) in the pair of bases

(B,B′).
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Solution: Since the rank of the matrix formed with the pairs from B is 2, and the rank

of the matrix formed with the vectors of B′ is 3, B is a basis of R2 and B′ is a basis of

R3. The columns of the matrix [f ]B,B′ = (aij) ∈M3,2(R) are given by the equalities

(3, 0, 7) = f(1, 2) = a11(1,−1, 0) + a21(−1, 0, 1) + a31(1, 1, 1),

(−1,−5,−4) = f(−2, 1) = a12(1,−1, 0) + a22(−1, 0, 1) + a32(1, 1, 1),

hence by the systems
a11 − a21 + a31 = 3

−a11 + a31 = 0

a21 + a31 = 7

and


a12 − a22 + a32 = −1

−a12 + a32 = −5

a22 + a32 = −4

which have the solutions

(
10

3
,

11

3
,

10

3

)
and

(
5

3
,−2

3
,−10

3

)
, respectively. Thus,

[f ]B,B′ =


10

3

5

3
11

3
−2

3
10

3
−10

3

 .

Another solution: The transition matrix from the standard basis E′ of R3 to B′ is

T =

 1 −1 1

−1 0 1

0 1 1

, and the matrix of f in the bases B,E′ is

[f ]B,E′ =

 3 −1

0 −5

7 −4

 ,

(its columns are the coordinates of f(1, 2) and f(−2, 1) in the standard basis baza E′,

i.e. f(1, 2) and f(−2, 1)) hence,

[f ]B,B′ = T−1[f ]B,E′ =


10

3

5

3
11

3
−2

3
10

3
−10

3

 .

2) Let f : R3 → R4 be the R-linear map defined on the standard basis as follows:

f(e1) = (1, 2, 3, 4), f(e2) = (4, 3, 2, 1), f(e3) = (−2, 1, 4, 1).

Determine:

i) f(v) when v ∈ R3;

ii) the matrix of f in the standard bases;

iii) a basis for each of the R-spaces Im f and Ker f .

Solution: i) f(x1, x2, x3) = x1f(e1) + x2f(e2) + x3f(e3).
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ii) The matrix of f in the standard bases is the matrix whose columns are f(e1), f(e2)

and f(e3), respectively, i.e. 
1 4 −2

2 3 1

3 2 4

4 1 1

 .

iii) Im f = f(〈e1, e2, e3〉) = 〈f(e1), f(e2), f(e3)〉, so,

dim(Imf) = rank


1 4 −2

2 3 1

3 2 4

4 1 1

 = 3,

therefore f(e1), f(e2) and f(e3) form a basis in Im f . Then

dim(Kerf) = dimR3 − dim(Imf) = 3− 3 = 0,

hence Ker f = {(0, 0, 0)} and ∅ is a basis in Ker f .

3) Let V, V ′ be R-vector spaces, B = (v1, v2, v3) be a basis in V , B′ = (v′1, v
′
2, v
′
3) be a

basis in V ′ and f : V → V ′ be the linear map for which

[f ]B,B′ =

 0 −1 5

1 0 0

0 1 −5

 .

Determine:

i) the dimension and a basis for each of the spaces Im f and Ker f ;

ii) [f ]B,E′ when V ′ = R3, v′1 = (1, 0, 0), v′2 = (0, 1, 1), v′3 = (0, 0, 1) and E′ is the standard

basis of R3;

iii) f(x) for x = 2v1 − v2 + 3v3, under the circumstances of ii).

Solution: i) We remind that the columns of [f ]B,B′ give us the coordinates of the vectors

f(v1), f(v2) and f(v3), respectively in B′, i.e.

f(v1) = v′2, f(v2) = −v′1 + v′3 and f(v3) = 5v′1 − 5v′3.

Then dim(Im f) =rank[f ]B,B′ = 2, and a 2 × 2 minor of [f ]B,B′ can be taken from the

first 2 columns (and the first 2 rows), therefore f(v1) and f(v2) form a basis in Im f .

Furthermore,

dim(Kerf) = dimV − dim(Imf) = 3− 2 = 1,

and, since the columns 2 and 3 of [f ]B,B′ are proportional, we have

f(v3) = −5f(v2)⇔ f(v3 − 5v2) = 0⇔ v3 − 5v2 ∈ Ker f.

Thus v3 − 5v2 forms a basis in Kerf .

ii) The transition matrix T from the standard basis E′ to B′ is the matrix whose columns

are v′1, v
′
2, v

′
3, and

[f ]B,B′ = T−1 [f ]B,E′ ⇔ [f ]B,E′ = T [f ]B,B′ .
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iii) Since the columns of [f ]B,E′ contain the coordinates of f(v1), f(v2), f(v3) in the

standard basis E′, they will be exactly the vectors f(v1), f(v2), f(v3) of R3, and

f(x) = f(2v1 − v2 + 3v3) = 2f(v1)− f(v2) + 3f(v3).

We recommend the reader to complete the solution with the missing computations.

4) Let f ∈ EndQ(Q4) with the matrix in the standard basis
1 2 1 2

3 2 3 2

−1 −3 0 4

0 4 −1 −3

 .

Find a basis and the dimension for each of the Q-spaces Ker f and Im f .

Solution: Let E = (e1, e2, e3, e4) be the standard basis of QQ4. The given matrix is [f ]E

and its columns are f(e1), f(e2), f(e3), f(e4). For finding a basis and the dimension of

Im f we compute the rank of [f ]E , carefully watching from which columns we ”cut” a

nonzero minor which gives us rank[f ]E . We find that dim(Im f) = 3 and a possibility

for a 3 × 3 nonzero minor is to take the first 3 rows and the first 3 columns. So,

(f(e1), f(e2), f(e3)) is a basis of Im f and dim(Ker f) = 4 − 3 = 1. For finding a basis

for Ker f we can notice that 7(c1 − c3) = c2 − c4 (ci denotes the i-th column of [f ]E , i.e.

f(ei)) and we continue as in the previous exercise, or we can use Theorem 4.9 as follows:

(x1, x2, x3, x4) ∈ Kerf ⇔ [f ]e


x1

x2

x3

x4

 =


0

0

0

0

⇔


x1 + 2x2 + x3 + 2x4 = 0

3x1 + 2x2 + 3x3 + 2x4 = 0

−x1 − 3x2 + 4x4 = 0

+4x2 − x3 − 3x4 = 0

.

The solution set of this system is

{(7α,−α,−7α, α) ∈ Q4 | α ∈ Q} = {α(7,−1,−7, 1) | α ∈ Q} = 〈(7,−1,−7, 1)〉,

hence the vector (7,−1,−7, 1) is a linearly independent (i.e. nonzero) generator of Ker f ,

thus it forms a basis of Ker f .

4.3 Systems of linear equations

Let K be a field. A system of m linear equations with n unknowns x1, . . . , xn is
a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

am1x1 + am2x2 + · · ·+ amnxn = bm

(S)

where aij , bi ∈ K (i = 1, . . . ,m, j = 1, . . . , n). The elements aij ∈ K (i = 1, . . . ,m,

j = 1, . . . , n) are called coefficients and bi ∈ K (j = 1, . . . , n) are called constant

terms.
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The matrix A = (aij) ∈ Mmn(K) is called the matrix of the system (S). Let us

denote x =


x1
...

xn

 and b =


b1
...

bm

. Then the system (S) can also be written:

A · x = b (S)

The matrix

Ā =


a11 a12 . . . a1n b1

a21 a22 . . . a2n b2
...

...
...

...

am1 am2 . . . amn bm


is called the augmented matrix of the system (S).

By Theorem 4.14, there exists a bijective correspondence between K-linear maps

and matrices. Thus, since A ∈ Mmn(K), there exists fA ∈ HomK(Kn,Km) such that

[fA]EE′ = A, where E and E′ are the standard bases in Kn and Km, respectively (see

Remark 4.8 c)). If one considers x ∈ Kn and b ∈ Km, by Theorem 4.9, we have

[fA(x)]E′ = [fA]EE′ · [x]E = A ·


x1
...

xn

 =


b1
...

bm

 = [b]E .

It follows that fA(x) = b. Thus, the system (S) can be written as:

fA(x) = b (S)

Remarks 4.28. (1) Thus, for a linear system of equations we have three equivalent

forms, namely: the classical one with coefficients and unknowns, the one using matrices

and the one using the corresponding linear map.

(2) We have denoted by x and b first column-matrices and then row-matrices to get nicer

results, without using any transposed matrices.

Definition 4.29. An element x0 ∈Mn1(K) (x0 ∈ Kn) is called a solution of (S) if

A · x0 = b (or, equivalently, fA(x0) = b) .

The system (S) is called consistent if it has at least one solution. Otherwise, the system

(S) is inconsistent. Two systems of linear equations with n unknowns are equivalent

if they have the same solution set.

If b = 0, then the system (S) is called a homogeneous system of linear equations

and it has the following three equivalent forms:
a11x1 + a12x2 + · · ·+ a1nxn = 0

a21x1 + a22x2 + · · ·+ a2nxn = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

am1x1 + am2x2 + · · ·+ amnxn = 0

(S0)
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A · x = 0 (S0)

fA(x) = 0 (S0)

Denote the solution sets of (S) and (S0) by

S = {x0 ∈Mn1(K) | A · x0 = b} = {x0 ∈ Kn | fA(x0) = b} ,

S0 = {x0 ∈Mn1(K) | A · x0 = 0} = {x0 ∈ Kn | fA(x0) = 0} .

Theorem 4.30. The solution set S0 of the homogeneous linear system of equations (S0)

is a subspace of the canonical vector space Kn over K and

dimS0 = n− rank(A) .

Proof. Since

S0 = {x0 ∈ Kn | fA(x0) = 0} = KerfA

and the kernel of a linear map is always a subspace of the domain vector space, it follows

that S0 ≤ Kn. Now by Theorems 3.66 and 4.10, it follows that

dimS0 = dim(KerfA) = dimKn − dim(ImffA) = n− rank(fA) = n− rank(A) .

Remark 4.31. If (c1, . . . , cl) is a basis of the subspace S0, then every x ∈ S0 can be

uniquely written as

x = k1c
1 + · · ·+ klc

l

for some k1, . . . , kl ∈ K.

Theorem 4.32. If x1 ∈ S is a particular solution of the system (S), then

S = x1 + S0 = {x1 + x0 | x0 ∈ S0} .

Proof. Since x1 ∈ S, we have Ax1 = b.

First, let x2 ∈ S. Then

Ax2 = b⇒ Ax2 = Ax1 ⇒ A(x2 − x1) = 0⇒ x2 − x1 ∈ S0 ⇒ x2 ∈ x1 + S0 .

Conversely, let x2 ∈ x1 +S0. Then there exists x0 ∈ S0 such that x2 = x1 +x0. It follows

that Ax2 = A(x1 + x0) = Ax1 +Ax0 = b+ 0 = b and consequently x2 ∈ S.

Therefore, S = x1 + S0.

Remarks 4.33. (1) By Theorem 4.32, if x1 is a (particular) solution of (S), then every

x ∈ S can be uniquely written as

x = x1 + k1c
1 + · · ·+ klc

l

for some k1, . . . , kl ∈ K. This is called the general solution of the system (S).

(2) By Theorem 4.32, the general solution of the system (S) can be obtained by knowing

the general solution of the homogeneous system (S0) and a particular solution of (S).

Next, we are going to see when a linear system of equations has a solution.
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Remarks 4.34. (1) The system (S) is consistent if and only if b ∈ ImffA.

(2) Any homogeneous linear system of equations is consistent, having at least the zero

(trivial) solution.

Theorem 4.35. The system (S0) has a non-zero solution if and only if rank(A) < n.

Proof. By Theorem 4.30, we have

S0 = KerfA 6= {0} ⇔ dimS0 6= 0⇔ n− rank(A) 6= 0⇔ rank(A) < n .

Corollary 4.36. If A ∈Mn(K), then

S0 = {0} ⇔ rank(A) = n⇔ det(A) 6= 0 .

Definition 4.37. If A ∈Mn(K) and det(A) 6= 0, then the system (S) is called a Cramer

system.

So, Cramer system is a system
a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

an1x1 + an2x2 + · · ·+ annxn = bn

with A = (aij) ∈Mn(K), b1, . . . , bn ∈ K and d = det(A) 6= 0

Theorem 4.38. A Cramer system has a unique solution. This solution is given by the so

called Cramer’s rule (or Cramer’s formulas) which says that if dj is the determinant

obtained from d by replacing its j-th column by b (the column of constant terms), then
x1 = d1 · d−1

x2 = d2 · d−1
...

xn = dn · d−1

Proof. The matrix of a Cramer system is an invertible matrix A ∈ Mn(K). Then we

deduce that x = A−1b is the unique solution. More precisely,
x1

x2
...

xn

 = A−1


b1

b2
...

bn

 = d−1 ·A∗ ·


b1

b2
...

bn

 = d−1 ·


d1

d2
...

dn

 ,

which leads us to the expected formulas.

Corollary 4.39. A homogeneous Cramer system has only the zero solution.

As for the consistency of the general linear systems, we have the following result.
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Theorem 4.40. (Kronecker-Capelli) The linear system (S) is consistent if and only

if rank(Ā) = rank(A).

Proof. Let (e1, . . . , en) be the standard basis of the canonical vector space Kn over K

and denote by a1, . . . , an the columns of the matrix A. Then using Theorem 4.4, we have

(S) is consistent ⇔ ∃x0 ∈ Kn : fA(x0) = b⇔ b ∈ ImffA ⇔ b ∈ fA(〈e1, . . . , en〉)⇔

⇔ b ∈ 〈fA(e1), . . . , fA(en)〉 ⇔ b ∈ 〈a1, . . . , an〉 ⇔ 〈a1, . . . , an, b〉 = 〈a1, . . . , an〉 ⇔

⇔ dim〈a1, . . . , an, b〉 = dim〈a1, . . . , an〉 ⇔ rank(Ā) = rank(A) .

Let us consider that rank(A) = r. Based on how one can determine the rank of a

matrix one can restate the previous theorem as follows:

Theorem 4.41. (Rouché) Let dp be a nonzero r × r minor of the matrix A. The

system (S) is consistent if and only if all the (r + 1) × (r + 1) minors of A obtained by

completing dp with a column of constant terms and the corresponding row are zero (if

such (r + 1)× (r + 1) minors exist).

We call the unknowns corresponding to the the entries of dp main unknowns and

the other unknowns side unknowns.

We end this section by presenting two algorithms for solving arbitrary systems of

linear equations.

1. Based on Rouché Theorem. We use the notations from Rouché Theorem.

Let us consider that we have the minor dp of A. For simplicity reasons, we consider

that this minor was “cut” from the first r rows and the first r columns of A. If one finds

a nonzero (r+ 1)× (r+ 1) minor which completes dp as in Rouché Theorem, then (S) is

inconsistent and the algorithm ends. If r = m or all the Rouché Theorem (r+1)×(r+1)

minor completions of dp are 0, then (S) is consistent. One considers only the r equations

which determined the rows of dp. Since rankA = rankA = r, Corollary 4.3 b) tells us

that all the other equations are linear combinations” of these r equations, hence S is

equivalent to 
a11x1 + x12x2 + · · ·+ a1nxn = b1

a21x1 + x22x2 + · · ·+ a2nxn = b1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ar1x1 + xr2x2 + · · ·+ arnxn = br

(∗)

If n = r, i.e. all the unknowns are main unknowns, then (∗) is a Cramer system. The

Cramer’s rule gives us its unique solution, hence the unique solution of (S).

Otherwise, n > r, and xr+1, . . . , xn are side unknowns. We can assign them arbitrary

“values” from K αr+1, . . . , αn, respectively. Then (∗) becomes
a11x1 + a12x2 + · · ·+ a1rxr = b1 − a1,r+1αr+1 − · · · − a1nαn
a21x1 + a22x2 + · · ·+ a2rxr = b2 − a2,r+1αr+1 − · · · − a2nαn
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ar1x1 + ar2x2 + · · ·+ arrxr = br − ar,r+1αr+1 − · · · − arnαn

(∗∗)
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The determinant of the matrix of (∗∗) is dp 6= 0, hence we can express the main unknowns

using the side unknowns, by solving the Cramer system (∗∗).

2. Gaussian elimination provides us with an algorithm for studying the consistency

of a linear system (S) as well as for solving it. It is based on the fact that certain

elementary operations on the equations of (S) (or, more precisely, on the matrix A) lead

us to equivalent systems.

By an elementary operation on the rows (columns) of a matrix we understand

one of the following:

(1) the interchange of two rows (columns).

(2) multiplying a row (column) by a non-zero element from K.

(3) multiplying a row (column) by an element from K and adding the result to another

row (column).

The purpose is to successively use elementary operations on the rows of the augmented

matrix A of (S) in order to bring it to an echelon form B. This procedure corresponds to

a partial elimination of some unknowns to get an equivalent system which can be easier

solved. If we manage to do this, then B is the augmented matrix of such an equivalent

system.

A matrix A ∈Mmn(K) is in an echelon form with r ≥ 1 non-zero rows if:

(1) the rows 1, . . . , r are non-zero and the rows r + 1, . . . ,m consists only of 0;

(2) if N(i) is the number of zeros at the beginning of the row i (i ∈ {1, . . . , r}), then

0 ≤ N(1) < N(2) < · · · < N(r) .

An r non-zero rows echelon form with N(i) = i − 1, for any i ∈ {1, . . . , r} is called

trapezoidal form.

As we will see in the solution of Exercise (with solution) 2), one can easily work

very well with the echelon form for solving a linear system. Yet, if we manage to get to

a trapezoidal form, some information on the given system can be easily red from this.

E.g. the rank of A is (the rank of B which is) the number of the nonzero elements on

the diagonal of B and these nonzero elements on the diagonal of B provide us with the

main unknowns. Yet, finding the trapezoidal form is not always possible by using only

row elementary operations (see, again, Exercise (with solution) 2)). Sometimes, we have

to interchange two columns of the firs n columns, hence columns corresponding to the

matrix of a certain equivalent system. This is, obviously, allowed since this means that

we commute the two corresponding terms in each equation of this system.

If, during this algorithm, one can find a row for which all the elements are 0, except

for the last one, which is a ∈ K∗, then (S) is inconsistent since it is equivalent to a

system which contains the equality 0 = a which is not possible. Otherwise, B gives us

an equivalent system of the form

a′11x1 + a′12x2 + · · ·+ a′1,r−1xr + a′1rxr + a′1,r+1xr+1 + · · ·+ a′1nxn = b′1
a′22x2 + · · ·+ a′2,r−1xr + a′2rxr + a′2,r+1xr+1 + · · ·+ a′2nxn = b′2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a′r−1,r−1xr−1 + a′r−1,rxr + a′r−1,r+1xr+1 + · · ·+ a′r−1,nxn = b′r−1
a′rrxr + a′r,r+1xr+1 + · · ·+ a′rnxn = b′r
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(possibly with the unknowns succeeding in a different way, not as in (S), if we permuted

columns) The main unknowns x1, . . . , xr can be easily computed starting from the last

equation of this system.

4.4 Exercises with solution

1) Solve in R3 the following system
x1 + x2 + 2x3 = −1

2x1 − x2 + 2x3 = −4

4x1 + x2 + 4x3 = −2.

Solution: I) ... using Gaussian elimination:

The augmented matrix of the system is

A =

 1 1 2 −1

2 −1 2 −4

4 1 4 −2


Subtracting row 2 from row 1 multiplied by 2, fact denoted by r2 − 2r1, and subtracting

from row 3 row 1 multiplied by 4 we get the matrix

A1 =

 1 1 2 −1

0 −3 −2 −2

0 −3 −4 2


The row operation r3 − r2 leads us to the echelon form:

A2 =

 1 1 2 −1

0 −3 −2 −2

0 0 −2 4


Hence the given system is equivalent to

x1 +x2 +2x3 = −1

−3x2 −2x3 = −2

−2x3 = 4

Thus the given system has a unique solution; the last equation leads us to x3 = −2, the

second to x2 = 2, and the first to x1 = 1. So, the solution is (1, 2,−2).

If in A2 we continue the row operations as follows

A2
r2−r3∼
r1+r3

 1 1 0 3

0 −3 0 −6

0 0 −2 4

 r1+
1
3 r2∼

 1 0 0 1

0 −3 0 −6

0 0 −2 4


one says that we used Gauss-Jordan elimination. This gives us the equivalent system:

x1 = 1

−3x2 = −6

−2x3 = 4
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The solution results right away.

II) ... using Rouché Theorem:

The systems matrix determinant is∣∣∣∣∣∣∣
1 1 2

2 −1 2

4 1 4

∣∣∣∣∣∣∣ = 6.

So, we are dealing with a Cramer system. Hence, the system is consistent, it has a

unique solution, and this solution is given by Cramer’s formulas. We let the reader find

the solution this way.

2) Solve in R4 the system 
3x1 + 4x2 + x3 + 2x4 = 3

6x1 + 8x2 + 2x3 + 5x4 = 7

9x1 + 12x2 + 3x3 + 10x4 = 13

Solution: I) ... using Gaussian elimination:

We write the augmented matrix and we apply the mentioned elementary operations

A =

 3 4 1 2 3

6 8 2 5 7

9 12 3 10 13

 r2−2r1∼
r3−3r1

 3 4 1 2 3

0 0 0 1 1

0 0 0 4 4


r3−4r2∼

 3 4 1 2 3

0 0 0 1 1

0 0 0 0 0


This shows that the given system is equivalent to{

3x1 + 4x2 + x3 +2x4 = 3

x4 = 1

Here, x1, x4 are main unknowns and the solution set is:(
1

3
(1− 4α− β), α, β, 1

)
cu α, β ∈ R.

Remark: If one wants to continue the algorithm in order to obtain a trapezoidal form,

one has to permute columns. E.g., permutinc c2 and c4 we get the trapezoidal form 3 4 1 2 3

0 1 0 0 1

0 0 0 0 0

 .

Consequently, when we write the corresponding equivalent system, the unknowns suc-

cession (in each equation) is x1, x4, x3, x2, hence the system appears as follows{
3x1 +2x4 +x3 + 4x2 = 3

x4 = 1

One can easily notice that this system is consistent and it is to find its solution set.
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II) ... using Rouché Theorem: We have

∣∣∣∣∣ 1 2

2 5

∣∣∣∣∣ = 1 and

∣∣∣∣∣∣∣
3 1 2

6 2 5

9 3 10

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
4 1 2

8 2 5

12 3 10

∣∣∣∣∣∣∣ = 0

(since c+1 = 4c2). Therefore, we can consider dp =

∣∣∣∣∣ 1 2

2 5

∣∣∣∣∣ . We can uniquely complete

it with a constant terms column

∣∣∣∣∣∣∣
1 2 3

2 5 7

3 10 13

∣∣∣∣∣∣∣ and this determinant is 0 since column 3

is the sum of the first two columns. Thus the system is consistent, and it is equivalent to{
x3 + 2x4 = 3− 3x1 − 4x2

2x3 + 5x4 = 7− 6x1 − 8x2

Here x1, x2 are side unknowns. We consider them parameters, and finding x3 and x4

from the above system is now an easy exercise.

3) Solve in R3 the system 
x1 + x2 − 3x3 = −1

2x1 + x2 − 2x3 = 1

x1 + x2 + x3 = 3

x1 + 2x2 − 3x3 = 1

Solution: I) ... using Gaussian elimination:

A =


1 1 −3 −1

2 1 −2 1

1 1 1 3

1 2 −3 1

 ∼


1 1 −3 −1

0 −1 4 3

0 0 4 4

0 1 0 2

 ∼

∼


1 1 −3 −1

0 −1 4 3

0 0 4 4

0 0 4 5

 ∼


1 1 −3 −1

0 −1 4 3

0 0 4 4

0 0 0 1

 .

The last row leads us to 0 · x4 = 1, which is absurd. Thus the system is inconsistent.

II) ... using Rouché Theorem:

Avem dp =

∣∣∣∣∣∣∣
1 1 −3

2 1 −2

1 1 1

∣∣∣∣∣∣∣ = −4 6= 0; the unique way to complete it with a constant terms

column is

∣∣∣∣∣∣∣∣∣
1 1 −3 −1

2 1 −2 1

1 1 1 3

1 2 −3 1

∣∣∣∣∣∣∣∣∣ = −4 which is not zero, hence the system is inconsistent.

4) Discuss on the real parameter α the consistency of the following system in R4, then
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solve it: 
2x1 − x2 + 3x3 + 4x4 = 5

4x1 − 2x2 + 5x3 + 6x4 = 7

6x1 − 3x2 + 7x3 + 8x4 = 9

αx1 − 4x2 + 9x3 + 10x4 = 11

.

Solution: I) ... using Gaussian elimination:

Starting with the augmented matrix we successively find the matrices
2 −1 3 4 5

4 −2 5 6 7

6 −3 7 8 9

α −4 9 10 11

 ∼


−1 2 3 4 5

−2 4 5 6 7

−3 6 7 8 9

−4 α 9 10 11

 ∼


−1 2 3 4 5

0 0 −1 −2 −3

0 0 −2 −4 −6

0 α− 8 −3 −6 −9



∼


−1 2 3 4 5

0 −2 −1 0 −3

0 −4 −2 0 −6

0 −6 −3 α− 8 −9

 ∼


−1 2 3 4 5

0 −2 −1 0 −3

0 0 0 0 0

0 0 0 α− 8 0



∼


−1 2 3 4 5

0 −2 −1 0 −3

0 0 0 α− 8 0

0 0 0 0 0

 ∼


−1 2 4 3 5

0 −2 0 −1 −3

0 0 α− 8 0 0

0 0 0 0 0

 .

hence the system is always consistent.

1) If α 6= 8, we get the equivalent system:
−x2 + 2x4 + 4x1 + 3x3 = 5

−2x4 − x3 = −3

(α− 8)x1 = 0

.

Its solution set is

S =

{(
0,−2 + 2x3, x3,

3

2
− x3

2

)
| x3 ∈ R

}
.

2) If α = 8, the system is equivalent to{
−x2 + 2x4 + 4x1 + 3x3 = 5

−2x4 − x3 = −3
,

which has the solution set

S =

{(
x1,−2 + 4x1 + 2x3, x3,

3

2
− x3

2

)
| x1, x3 ∈ R

}
.

II) ... using Rouché Theorem:

We have

∣∣∣∣∣ −1 3

−2 5

∣∣∣∣∣ = 1,

∣∣∣∣∣∣∣
2 −1 3

4 −2 5

6 −3 7

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
−1 3 4

−2 5 6

−3 7 8

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
−1 3 4

−2 5 6

−4 9 10

∣∣∣∣∣∣∣ = 0 and

∣∣∣∣∣∣∣
2 −1 3

4 −2 5

α −4 9

∣∣∣∣∣∣∣ = α− 8.
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1) If α = 8, then we can consider dp =

∣∣∣∣∣ −1 3

−2 5

∣∣∣∣∣. We can complete it two ways with

constant terms columns: ∣∣∣∣∣∣∣
−1 3 5

−2 5 7

−3 7 9

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
−1 3 5

−2 5 7

−4 9 11

∣∣∣∣∣∣∣ = 0,

hence the system is consistent. To get the solution set, we have to solve a system of 2

linear equations with 2 unknowns, which will be the reader’s task.

2) If α 6= 8, we take dp =

∣∣∣∣∣∣∣
2 −1 3

4 −2 5

α −4 9

∣∣∣∣∣∣∣ . The only way to complete it with a constant

terms column gives us a zero minor, hence the system is consistent, equivalent to
2x1 − x2 + 3x3 = 5− 4x4

4x1 − 2x2 + 5x3 = 7− 6x4

αx1 − 4x2 + 9x3 = 11− 10x4

,

system which can be solved with Cramer’s rule.

Let us notice that in the considered cases, we have different types of consistency: in

the first case we have 2 side unknowns and in the second case we have only one.

5) Discuss on the real parameter α the consistency of the following system in R3, then

solve it: 
αx1 + x2 + x3 = 1

x1 + αx2 + x3 = 1

x1 + x2 + αx3 = 1

.

Solution: I) ... using Gaussian elimination:

We successively obtain the equivalent matrices: α 1 1 1

1 α 1 1

1 1 α 1

 ∼

 1 1 α 1

1 α 1 1

α 1 1 1

 ∼

 1 1 α 1

0 α− 1 1− α 0

0 1− α (1− α)(1 + α) 1− α



∼

 1 1 α 1

0 α− 1 1− α 0

0 0 (1− α)(2 + α) 1− α

 = B.

1) If α = −2 then

B =

 1 1 −2 1

0 −3 3 0

0 0 0 3

 ,

hence the system is inconsistent.

2) If α 6= 2 then the system is consistent.

2.1) If α = 1 then

B =

 1 1 1 1

0 0 0 0

0 0 0 0

 ,
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the system is consistent, equivalent to the equation x1 + x2 + x3 = 1, and the solution

set is S = {(1− x2 − x3, x2, x3) | x2, x3 ∈ R}.
2.2) If α ∈ R \ {−2, 1} then the system is consistent, it has a unique solution which can

be found by solving the equivalent system
x1 + x2 + αx3 = 1

(α− 1)x2 + (1− α)x3 = 0

(1− α)(2 + α)x3 = 1− α
.

The systems solution set is

(
1

2 + α
,

1

2 + α
,

1

2 + α

)
.

II) ... using Rouché Theorem:

The system’s matrix determinant is

∣∣∣∣∣∣∣
α 1 1

1 α 1

1 1 α

∣∣∣∣∣∣∣. We add all the rows to the first one,

we get the factor α+ 2, and the left determinant can be easily computed∣∣∣∣∣∣∣
α 1 1

1 α 1

1 1 α

∣∣∣∣∣∣∣ = (α+ 2)

∣∣∣∣∣∣∣
1 1 1

1 α 1

1 1 α

∣∣∣∣∣∣∣ = (α+ 2)(α− 1)2.

1) If α ∈ R \ {−2, 1}, the system is consistent, with a unique solution, provided by

Cramer’s rule.

2) If α = 1, all the equations become

x1 + x2 + x3 = 1,

which can be solved as we previously saw.

3) If α = −2, we take dp =

∣∣∣∣∣ −2 1

1 −2

∣∣∣∣∣ . The only way to complete it with a constant

terms column gives us the minor

∣∣∣∣∣∣∣
−2 1 1

1 −2 1

1 1 1

∣∣∣∣∣∣∣ = 9 6= 0 hence the system is inconsistent.

4.5 Exercises

1) Let ϕ ∈ R. Show that the plane rotation with rotation angle ϕ, i.e. the map

f : R2 → R2, f(x, y) = (x cosϕ− y sinϕ, x sinϕ+ y cosϕ),

is an automorphism of the real vector space R2. Find the matrix of f in the standard

basis of R2.

2) Show that the maps f : R2 → R2, f(x, y) = (x,−y) (the symmetry with respect

to Ox) and g : R2 → R2, f(x, y) = (−x, y) (the symmetry with respect to Oy) are

automorphisms of the real space R2. Find the matrices of f , g, f − g, f + 2g and g ◦ f
in the standard basis.

3) Show that the vector lists (v1, v2, v3) and (v′1, v
′
2, v
′
3) with

v1 = (1, 2, 1), v2 = (2, 3, 3), v3 = (3, 7, 1) and v′1 = (3, 1, 4), v′2 = (5, 2, 1), v′3 = (1, 1,−6)
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are bases for the real vector space R3 and find the connection between the coordinates

of a given vector in these bases.

4) Let B = (v1, v2, v3, v4) be a basis of the R-vector space R4, let us consider

u1 = v1, u2 = v1 + v2, u3 = v1 + v2 + v3, u4 = v1 + v2 + v3 + v4

and let f ∈ EndR(R4) with

[f ]B =


1 2 0 1

3 0 −1 2

2 5 3 1

1 2 1 3

 .

Show that B′ = (u1, u2, u3, u4) is a basis of R4 and determine the matrix [f ]B′ .

5) Let V be a real vector space, B = (v1, v2, v3) a basis of V , let us consider

u1 = v1 + 2v2 + v3, u2 = v1 + v2 + 2v3, u3 = v1 + v2

and let f ∈ EndR(V ). Show that B′ = (u1, u2, u3) is a basis of V and determine the

matrix [f ]B knowing that

[f ]B′ =

 1 1 3

0 5 −1

2 7 −3

 .

6) Let f ∈ EndQ(Q4) with the matrix in the standard basis equal to
0 1 2 3

−1 2 1 0

3 0 −1 −2

5 −3 −1 1

 .

Determine a basis and the dimension for each of the vector spaces Ker f , Im f , Ker f+ Im f

and Ker f∩ Im f .

7) Let K = R. Check the equality S = x1 + S0 from Theorem 4.32 for the linear system
2x1 + x2 − x3 − x4 + x5 = 1

x1 − x2 + x3 + x4 − 2x5 = 0

3x1 + 3x2 − 3x3 − 3x4 + 4x5 = 2

and find a basis for the solution subspace of the associated homogeneous system.

8) Discuss on the real parameters α, β, γ, λ the consistency of the following systems,

then solve them:

a)


5x1 − 3x2 + 2x3 + 4x4 = 3

4x1 − 2x2 + 3x3 + 7x4 = 1

8x1 − 6x2 − x3 − 5x4 = 9

7x1 − 3x2 + 7x3 + 17x4 = α

(in R4), b)


x1 + x2 + x3 = 1

αx1 + βx2 + γx3 = λ

α2x1 + β2x2 + γ2x3 = λ2
(in R3).
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