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1 Introduction

When writing this handbook, our intention was to provide the students with a selection
of theoretical notions and solved exercise helpful in the preparation of the algebra subject
of the final exam. Each of the main chapters — Chapters 2, 3 and 4 — details one topic
from the corresponding curricula.

For better support the students, we tried to produce a self-included theoretical part
of reasonable length for this material. Yet, there are some completions the reader may
consider useful. They can be found in the references. For instance, the last chapter uses
some basic properties concerning the determinant or the rank of a matrix (only some
of them listed at the beginning of the chapter). The students were supposed to know
them from high school for matrices with number field entries. The general case do not
differ much from the high school studied cases for the properties we are going to use
here. However, if the reader wants a detailed presentation of the general case, it can be
found in [3, Chapter VI]. On the other hand, the section 4.3 is quite poor in theoretical
results. Our approach was to insist on the describing the most common algorithms used
for solving systems of linear equations. For additional information, see [2, Chapter 3].

Except, maybe, for the considered lists of exercises, this material looks pretty much
like the first year courses which refer to the discussed topics. Yet some slight changes
concerning the notations or the order some results succeed may appear. The theoretical
part is a mixture between the Romanian version of this handbook, based on [1] and [3]
and the English Algebra course [2]. A hint for the reader who needs hints for solving
the proposed exercises — which are listed in in the sections Exercises — is that all the
exercises (solved or proposed) were taken from [5].

I thank Septimiu Crivei, Ioan Purdea and Simion Breaz for their support.
One can say that this handbook is a joint work since, in order to produce the final
version of this handbook in due time, we used some source files of [1], [2], [3] and [5].
The most obvious resemblance (or identity, sometimes) one can notice is with [5] and it
concerns most of the theoretical issues presented here. My contribution stands mainly in
organizing this handbook to serve its purpose and to look like an autonomous material.
Of course, I do not exclude the possibility that some typewriting errors occur. I only
hope they do not turn into mathematical errors. However, we invite the students to

cooperate with us in finding and repairing these errors.

Cosmin Pelea



2 Groups, rings and fields

2.1 Groups
Definition 2.1. By a binary operation on a set A we understand a map
p:AxA—A.

Since all the operations considered in this section are binary operations, we briefly
call them operations. Usually, we denote operations by symbols like *, -, 4+, and the
image of an arbitrary pair (x,y) € AX A is denoted by zxy, -y (multiplicative notation),

x + y (additive notation), respectively.

Examples 2.2. a) The usual addition and multiplication are operations on N, Z, Q, R,
C, but not on the set of irrational numbers.

b) The usual subtraction is an operation on Z, Q,R and C, but not on N.

¢) The usual division is an operation on Q*, R*, C*, but not on Q, R, C, N, Z, N* or Z*.

Definitions 2.3. Let * be an operation on A. We say that:

i) * is associative if
(a1 * ag) x az = ay * (a2 * a3), Vay,as,az € A;

ii) * is commutative if

ay * as = as * a1, Vai,as € A.

iii) e € A is an identity element for * if
axe=exa=a, Va € A.

When using the multiplicative or additive notation, an identity element e is usually

denoted by 1 or 0, respectively.

Definitions 2.4. Let (A, -) be amonoid. A groupoid is called semigroup if its operation
is associative. A semigroup (A, x) is called monoid if it has an identity element. A
groupoid, semigroup, monoid with a commutative operation is called commutative
groupoid, commutative semigroup, commutative monoid, respectively.
Remarks 2.5. a) In a groupoid (A4, ) there exists at most an identity element.

Indeed, if an identity element does not exist, the statement is, obviously, true. If e

and f are identity elements then, seeing each of them as an identity element, we have

exf=fgiexf=e.

Hence e = f.

b) From a) one deduces that a monoid has a unique identity element.
In the next part of this section we prefer to use the multiplicative notation.

Definition 2.6. Let (A, -) be a groupoid with an identity element 1. An element a € A

has an inverse if there exists an element a’ € A such that

We say that o’ is an inverse for a.



Remarks 2.7. a) In any monoid (A, -) there exists at least an element which have an

inverse, e.g. the identity element 1 (whose inverse is, of course, 1).

b) Let (A4, ) be a monoid. If an inverse element for a € A does exist, then it is unique.
Indeed, if we suppose that a has aj,a2 € A as inverses, then we may compute the

product a; - a - as in two ways as
ay - (a-az) =a;-1=ay,

(a1-a)-as=1-as =ay
and we obtain a; = as.

The unique inverse of an element a of a monoid (4, -) is denoted by a~!. When using
the multiplicative notation, this notation changes into —a and this element is usually

called the opposite of a.

Definition 2.8. A groupoid (A4,-) is called group if it is a monoid in which every
element has an inverse. If the operation is commutative as well, the structure is called

commutative or Abelian group.

Examples 2.9. a) (N, +) and (Z, -) are commutative monoids, but they are not groups.
b) (Q,-), (R,-), (C,-) are commutative monoids, but they are not groups since 0 has no
inverse.

¢) (Z,+), (Q,+), (R,+), (C,+), (Q*,-), (R*,-), (C*,-) are Abelain groups.

d) Let {e} be a single element set and let - be the only operation on {e}, defined by
e-e =-e. Then ({e},-) is an abelian group, called the trivial group.

e) Let M be a set, and MM = {f | f: M — M}. If o is the usual map composition,
then (M™ o) is a monoid. The identity function 1y : M — M, 1p/(x) = x is its identity
element and the invertible elements are the bijective functions.

f) Let (G,-) and (G’,-) be groups with identity elements 1 and 1’ respectively. Define on
G x G’ the operation - by

(91,91) - (92,92) = (91 - 92,91 - 93) , Y(g1,91), (92,95) € G x G".

Then (G x G',-) is a group, called the direct product of the groups G and G’. The
identity element is (1,1’) and the inverse of an element (g,¢') € G x G’ is (g~ ¢~ ). If
(G,-) and (G',-) are both commutative, then (G x G',-) is commutative.

The example can be easily generalized for n groups.

Remarks 2.10. a) From Remark 2.7 b) one deduces that in a group, each element has
a unique inverse element.
b) The group definition can be rewritten: A groupoid (4,-) is a group if and only if it
follows the following conditions:

(i) (a1 - az) - a3 =ay - (a2 - as), Yai,az,a3 € A (- is associative);

(ii) 31 € A, Vae A: a-1=1-a=a (there exists an identity element for -);

(iii) Va€ A, 3a=t € A: a-a~ ! =a~!-a=1 (all the elements of A have inverses).



If (A,-) is a semigroup, then the operation - is associative, so for any a € A and

n € N*, we may define a™ as follows: a' = a, and if n > 1, then

n factors

If (A,-) is a monoid and a € A, we may define
a®=1.
If, in addition, a has an inverse, and n € N*| then we may define
a "= (a" )"

If we work in additive notation, instead of a™ we write na.

One can easily check that in a group we have the following:

Proposition 2.11. (Some standard properties of group computation)
Let (G, -) be a group. The following properties hold:
1) For any a,b € G,

(et =a, (ab)"t=b"tat,

ab=ba < (ab) P =a" 1ot

2) For any a,b € G and any m,n € Z,

ab = ba = (ab)™ = a"b".
3) (Cancellation laws) For any a,z,y € G,
ax =ay =z =y,

Ta =ya = =1y.

4) For any a,b € G, each of the equations ax = b and ya = b has a unique solution in G

(x =a~'b and y = ba™?, respectively).

Corollary 2.12. If (G, ) is a group, then for any a € G the maps ¢, : G — G, t,(z) = ax
and t, : G — G, t,(z) = za are bijections.

Definitions 2.13. Let (A, ¢) be a grupoid and B C A. We say that B is a subgrupoid
of (4, ) or that B is closed under ¢ if

bl,bg €EB= @(bl,bg) € B.
If B is closed under ¢, one can define an operation on B as follows:
¢ Bx B — B, ¢'(b1,b2) = ¢(b1, b2).

We call ¢’ the operation induced by ¢ on B or, briefly, the induced operation. Most
of the time, we denote it also by .



Remarks 2.14. a) Let (A, ) be a groupoid, B C A closed under ¢ and let ¢’ be the
induced operation on B. If ¢ is associative or commutative, then ¢ is associative or
commutative, respectively. So any subgroupoid B of a semigroup (A, ) is a semigroup
with respect to the induced operation, that is why a subgroupoid of a semigroup is called
subsemigroup.

b) Let @1 and @9 be operations on A, let B C A be closed under ¢ and s, and let ¢}
and ¢} be the operations induced by ¢; and @2 on B, respectively. If (; is distributive

with respect to (o, i.e.

p1(a1, p2(az,a3)) = p2(p1(ar,az), p1(ai, az)),Va, az, a3 € A,

then ¢ is distributive with respect to 5.
c¢) The existence of an identity element is not always preserved by induced operations.

For instance, N* is a subgroupoid of (N, +), but (N*,4) has no identity element.

Example 2.15. Let M be a nonempty set and let us consider the monoid (MM o)
from Example 2.9 e). Then Syy = {f : M — M | f is bijective} is closed under o and
the identity map 1 is bijective, i.e. 1p; € Shy, hence (S, 0) is a monoid. Since any
bijective map f has an inverse f~! with respect to map composition, (Sys,0) is a group.
This group is called the symmetric group of M.

Definition 2.16. Let (G, ) be a group. A subset H C G is called a subgroup of G if:
i) H is closed under the operation of (G,-), that is,

Ve,ye H, x-ye€ H;
ii) H is a group with respect to the induced operation.
We denote by H < G the fact that H is a subgroup of G.

Examples 2.17. a) Z, Q, R are subgroups of (C,+), Z, Q are subgroups of (R, +) and
Z is a subgroup of (Q,+).

b) Q*, R* are subgroups of (C*,-) and Q* is a subgroup of (R*,-).

¢) N is a subsemigroup of (Z,+) which is not a subgroup.

d) Every non-trivial group (G,-) has two subgroups, namely {1} and G. Any other
subgroup of (G, -) is called proper subgroup.

Remarks 2.18. a) Any subgroup is a nonempty set.
This is a straightforward consequence of ii).
b) If H is a subgroup of the group (G,-), then the identity element of (H,-) coincides
the identity element of (G, -).
Indeed, if e and 1 are the identity elements of H and G, respectively and h € H C G,
then we have in G:
eh =h=1h.

Applying the left cancellation law for h in G we get e = 1.
c¢) If H is a subgroup of the group (G, -) and h € H, then the inverse of h in (H,-) is the

same as the inverse of h in (G, ).



Indeed, if A’ and h~! are inverses for h in H and G, respectively, from b) we deduce
Wh=e=1=h"h.

Applying the left cancellation law in G to the extreme members of this chain of equalities
G we get b/ = h~ 1.

The following characterization theorem provides us with two easy ways to check if a

subset of a group is a subgroup.

Theorem 2.19. (Teorema de caracterizare a subgrupului)
Let (G,-) be a group and H C G. The following statements are equivalent:
1) H is a subgroup of (G, ).
2)The following conditions hold for H:
«) H # 0;
ﬂ) hi,hy € H = hihy € H;
yyheH=h"'eH.
3) The following conditions hold for H:
a) H #0;
8) hi,hy € H= hihy' € H.

Proof. 1) = 2). From Remark 2.18 a) one deduces «), and ) and i) coincide; ) follows
directly from Remark 2.18 c).
2) = 3). Using 2), we have:

hihg € H= hy,hy' € H= hihy' € H.

Hence §) holds.

3) = 1). Taking hy = ho in §) it follows that 1 € H. Let us consider an arbitrary h € H
and let us apply &) to hy = 1 and hy = h. We deduce that h=! € H. Using this and §)
we have:

hihg € H= hy,hyt € H= hy(hy ")~ = h1hg € H.

So the operation of (G,-) induces an operation on H. The induced operation is, of
course, associative and the above considerations help us conclude that H is a subgroup

of (G, ). O

Remark 2.20. The condition «) can be replaced in Theorem 2.19 by the fact that
1 € H, and, most of the time, this is what we check in order to show that H # ().

Examples 2.21. a) The subset H = {z € C | |z] = 1} of C* is a subgroup of (C*,-).
Indeed, H # () since 1 € H, so «) holds for H. Using the following properties of the
absolute value

|z122| = |z1] - |22] and [z = [2] 7}

we have

21, %2 cH= ‘Zl| = 1, |22‘ =1= |2’12’2| =1 = 2122 cH

and
reEH=|z|l=1=z"=1=2"€H.



Hence ) and «) also hold for H. Thus H < (C*,-).

b) Let us consider n € N. The set nZ = {nk | k € Z} of the integers which are multiples
of n is a subgroup of (Z,+) since nZ # () and the difference of two multiples of n is a
multiple of n. Thus «) and §) hold for nZ or, equivalently, nZ < (Z,+).

Let us remind that for a finite set X, we denote by |X| the number of elements in
the set X.

Theorem 2.22. (Lagrange Theorem) Let G be finite group and H < G. Then |H|
divides |G|.

Proof. Let pgr € G x G be the relation defined by
rpuy <y € xH,
where H = {zh | h € H} C G. We notice that
rppy < x ly € H.

First, we show that pgy is an equivalence relation on G. The relation pg is reflexive since

VeeG, zla=1€H & Yz eq, zpyx.
If zpry and yppz then 2~ 'y € H and y~'z € H. It follows that

'Yy '2)=a"'2€H

hence zpyz. So py is transitive. The relation pg is also symmetric since if zpgy, i.e.
r7ly € H, then (z71y)™' =y 1z € H, ie. ypgyr.
For any z € G

pr(e) ={y € G |zpuy} ={ye G|z 'yc H} ={ye G|y czH} = zH.
We choose exactly one element from each of the different (and disjoint) classes
H,zH,yH,...
and we get a subset X C G. The quotient set, i.e. the partition determined by pg is
G/pr ={puz) |v € X} ={aH |z € X},

hence

G= U prlx) = U xzH.

zeX zeX

For any z,y € X, x # y we have zH (JyH = 0. Moreover, for any z € X, the map
ty : H — xH, t,(h) = zh is bijective, so |H| = |zH|. Then

Gl =) leH| = |H| + -+ |H| = |X||H|,
—_——

X
ve |X| terms

which concludes the proof. O



Definition 2.23. Let (G,x*), (G', L) be two groups. A map f : G — G’ is called

homomorphism if

flxy xxo) = f(x1) L f(x2), V 21,20 € G.

A bijective homomorphism is called isomorphism. A homomorphism of (G,x) into
itself is called endomorphism of (G, *). An isomorphism al lui (G, x)into itself is called
automorphism of (G, x). If there exists an isomorphism f : G — G, we say that the
groups (G,*) and (G', L) are isomorphic and we denote this by G ~ G’ or (G,x*) ~
(G, 1).

Example 2.24. (a) Let (G,-) and (G’,-) be groups and let f : G — G’ be defined by
f(z) =1, Vx € G. Then f is a homomorphism, called the trivial homomorphism.
(b) Let (G, -) be a group. Then the identity map 1 : G — G is an automorphism of G.
This shows that ~ is reflexive.

(c) Let (G, -) be a group and let H < G. Define i : H — G by i(z) =z, Vo € H. Then i
is a homomorphism, called the inclusion homomorphism.

(d) Let n € N and define f : Z — Z by f(x) = nz, Vx € Z. Then f is an endomorphism
of the group (Z, +).

(e) The groups (R, +) and (R?, -) are isomorphic. An isomorphism is f : R — R defined
by f(x) =e", Vo € R.

(f) The map f: C* = R*, f(z) = |z| is a group homomorphism from (C*,-) into (R*,")
since f(2122) = [2122] = [21] - |22] = f(21)f(22).

(g) The map f: C — C, f(z) =%z (where Z is the conjugate of z) is an automorphism of
the group (C,+) and f~! = f. Its restriction to C* is an automorphism of (C*,-).

(h) For any group (G,-), the map f: G — G, f(x) = 2! is bijective. The map f is an
automorphism of (G,-) if and only if (G, ) is an Abelian group.

Let us come back to the multiplicative notation.

Theorem 2.25. Let (G,-) and (G’,-) be groups, and let 1 and 1’, respectively, be the
identity element of (G,-) and (G’,-), respectively. If f: G — G’ is a group homomor-
phism, then:

(i) f(1) =14

(i) [f(=)] ' = f(z™"),Vz € G.

Proof. (i) We have Ve € G, 1-x =x -1 =, so that f(1-x) = f(z-1) = f(x). Since f
is a homomorphism, it follows that

whence we get f(1) = 1’ by multiplying by (f(x))~*.
(ii) Let z € G. Since z-z~! =271z =1, f is a homomorphism and f(1) = 1', it follows

that f(z) - f(z7!) = f(a7!) - f(z) = 1. Hence [f(z)] 7! = f(z™"). N

Theorem 2.26. Let f : G — G’ be a group isomorphism. Then f~!: G’ — G is again

a group isomorphism.



Proof. Clearly, f~! is bijective. Now let 2’,y’ € G’. By the surjectivity of f, there exist
x,y € G such that f(z) = 2’ and f(y) =y'. Since f is a homomorphism, it follows that

Uy = @) ) = fH(fey) =2 y= 1) ).
Therefore, f~! is an isomorphism. O

Corollary 2.27. a) If (G,-) ~ (G’,-) then (G',-) ~ (G, -), hence ~ is symmetric.
b) An homomorphism f : G — G’ is isomorphism if and only if there exists a homomor-
phism g : G — G’ such that go f =1g si fog = 1g.

Theorem 2.28. Let f: G — G’ and g : G’ — G” be group homomorphisms (isomor-
phisms). Then go f: G — G” is a group homomorphism (isomorphism).

Proof. For any x1,x2 € G we have

(gof)(w172) = g(f(v172)) = g(f(21) f(22)) = g(f(21))-g(f(x2)) = (9o f) (1) (g0 f)(2),

thus g o f is a group homomorphism. The map composition of two bijective function is
a bijective function, thus if f and g are isomorphisms, then g o f is an isomorphism. [

Corollary 2.29. a) If (G,-) ~ (G',+) and (G',-) ~ (G”,-) then (G, ) ~ (G", "), i.e. ~is
transitive.

b) Let (G,-) be a group and let us denote by End(G,-) and Aut(G,-) the set of its
endomorphisms and automorphisms, respectively. Then End(G,-) is a subgroupoid of
(GY,0) and (End(G,-),0) is a monoid. The set Aut(G,-) is closed in (End(G,-),o), it
contains the identity element 1g (see Example 2.24 (b)). According to Corollary 2.27,
each element of Aut(G,-) has an inverse, thus (Aut(G,-),0) is a group.

Foramap f: A— B, X CAand Y C B, we denote

F(X) = {f(x) |z € X} and f (V) ={acA|fa) €Y}.

Theorem 2.30. Let f : G — G’ be a group homomorphism and let H < G and H' < G'.
-1
Then f(H) < G' and f (H') < G.

Proof. Since 1 € H and 1’ = f(1), we have 1’ € f(H). Now let a’,y’ € f(H). Then
there exist z,y € H such that f(x) =2’ and f(y) = y'. It follows that

a'y' T = f@)(f) 7t = f@)fyTh) = flayh) € f(H),

hence 'y’ ' € f(H). Therefore, f(H) < G'.
-1
Let us prove the second part. Since f(1) =1’ € H', we have 1 € f(H'). Now let
-1
x,y € f(H'). Then there exist ',y € H' such that f(z) =2’ and f(y) = y'. But since

H' < G’ and f is a group homomorphism, we have

flay™) = f@)f(y™") = f@)(f(y)) " =2’y € H'.

—1 -1
Hence zy~! € f (H'). Consequently, f (H') <G. O



Definition 2.31. Let f : G — G’ be a group homomorphism. Then the set
Kerf ={z € G| f(z)=1"}
is called the kernel of the homomorphism f.

By applying the second part of the previous theorem to the trivial subgroup {1’} of

G’ we have:
Corollary 2.32. Kerf = {z € G| f(z) = 1’} is a subgroup of G.

Theorem 2.33. Let f: G — G’ be a group homomorphism. Then f is injective if and
only if Kerf = {1}.

Proof. = Suppose that Kerf = {1}. Let z,y € G be such that f(z) = f(y). Then
f(@)(f(y))~t = 1/, whence it follows that f(zy~!) = 1’, that is, 2y~ € Kerf = {1}.
Hence = = y. Therefore, f is injective.

< Suppose that f is injective. Clearly, {1} C Kerf. If x € Kerf then f(z) =1 = f(1),
hence x = 1. Thus Kerf C {1} and Kerf = {1}. O

2.2 Exercises with solution

1) Let M be a set, let P(M) be the set of its subsets and let us consider the simmetric
difference A, ie. for X, Y C M, XAY = (X \Y)U (Y \ X). Show that (P(M),A) is
a group.

Solution: Let C(X) = CpyX = M\ X. We have

(1) XAY = XnNnCY)UY nC(X).
In order to prove that A is associative, we show that

(2) C(XAY)=(XNnY)Uu[C(X)nC(Y)].

This results from (1), de Morgan laws and from distributivity of N with respect to U as
follows:

C(XAY)=C(XNCY))NCY NC(X)) = [C(X)UY]U[C(Y)UX]
{lcx)uy]nCc¥)ruf{lC(X)uY]nX}

[C(X)NC)UY NCY)]U[C(X)UX]U[Y NX]

[CX)NCMUBUPU(XNY)=(XNY)Uu[CX)NC(Y)].

— oll
Using (1) and (2) we deduce

(XAMAZ =[(X+Y)NC(Z)|U[C(X+Y)NZ]
={{Xnc¥)uyncX)nc2) u{{(XnY)u(C(X)nC))n Z}
s XnCcY)nCZ)UulyncX)nCcOHuXnynzjulCc(X)nCc(yY)n Z]
=(XNYN2)uXnCY)NC)ulC(X)nYNCZ)]JU[C(X)NnC(Y)NZ].

One finds the same result when computing XA(YAZ). Hence A is associative.

10



From the definition of A it is easy to notice that A is commutative, that the empty
set is the identity element and that XAX = (), i.e. the opposite of X with respect to A
is X. Thus (P(M),A) is an Abelian group.

2) Let G =(—1,1), x,y € G and

x+y
1+ay’

() TxyY =

Show that:
i) the equality (%) defines an operation % on G and (G, ) is an Abelian group;

ii) there exists an isomorphism f : R% — G between the multiplicative group of positive

—1
real numbers (R*,-) and (G, *) which has the form f(z) = ‘m+ =
x
Solution: 1) If z,y € G then z xy € G since
1 1 ~)(y—1
$*y:*1+w and I*y:lfw

So * is an operation on G. From (1) one easily deduces the commutativity of *. The

associativity results as follows:

_ r+vy ‘s Tr+Yy+z2+ryz

1+ ay Ty +xzt+yz+1’
y+z r+y+z+ayz
14+yz ayt+azzt+yz+1°

(xxy)*z

xx(yxz)=x*

Let us assume that e is the identity element. Then x x e = x for any = € G, i.e.

xr+e
1+ xe

=z, Vx € G.

It follows that e = 0. Hence, if an identity element exists, it must be 0. Since x * 0 = x,
for any x € G, we deduce that 0 is, indeed, the identity element. If 2’ is the inverse of
x € G then z * 2’ = 0 which leads us to 2’ = —x € G. So, if x has an inverse element,
this must be —z. Conversely, one can easily check that —z is, indeed, the inverse of any
x € G with respect to x. Thus (G, *) is an Abelian group.

ii) Since the image of the identity element through a group homomorphism is the identity
element, f(1) =0, which implies & = 1. Hence

r—1
Kk = .
(+4) fla) =
Since
-1 2
Tl 1e 2,
rz+1 r+1
r—1

—2
<+l&s — <0,
rz+1 r+1

f(x) € G for any x € R ; this shows that the equality (x*) defines a map flz R% — G.
1ty

The map f is bijective since the equation f(z) = y has a unique solution z = T eR’.
-y

Easy computation shows that

1o — 1 -

r1xo+1

f(z1m2) = f(x1) * f(22),

11



i.e. f is a homomorphism. Thus f is an isomorphism.

3) Let (G, ) be a finite group and () # H C G. Show that H is a subgroup of G if and
only if H is closed under the multiplication of (G, -).
Solution: If H < G then, obviously, H is closed in (G, -).

Let us take an arbitrary h € H. If H is closed in (G, ), than the image of each
restriction of each translation with h to H is in H. Therefore we can consider the maps

th,t;L - H — H, th<x) = h.T, t;l(ﬂf) = zh.

If 1,29 € H and ty(x1) = tp(z2), i.e. haxy = hxg, using the cancellation laws, this
equality leads us in G to x1 = x2. Hence t; is injective, and, since H is finite, ¢} is also
bijective.

The surjectivity of t; leads us to the existence of e € H for which h = t,(e) = he.
Then, in G, we have 1h = eh. Using, again, the cancellation laws, we get 1 = e € H.

Since t, is surjective, existd h’ € H cu proprietatea ci
l=t,(W)=hh =hh'=1=h=>h"'=h c H.

But h € H is an arbitrary element, so the characterization theorem for subgroups helps
us conclude that H < G.

4) Show that the only group homomorphism from (Q,+) into (Z,+) is the trivial one.

Solution: Let f : Q — Z be a homomorphism, an arbitrary € Q and f(x) = a € Z.
For any n € N* we have

o=se=1(00) =5 5) =1 @) e 1 () =ns ()

n terms n terms

and since f (%) € Z, we deduce that a = 0 (being a multiple of any n € N*), hence
f(z) =0 for any =z € Q.

5) Find all the automorphisms of the group (Z, +).
Solution: Let f : Z — Z be an endomorphism of (Z,+). If x € N*, then

fl)=fAQ+1+---+1)=zf(1)

x terms

and f(—xz) = —f(x). Obviously, f(0) =0= f(1) -0, so,
flz)=f(1) -z, Vo €Z.

If f is an automorphism, since f is surjective, there exists a € Z such that 1 = f(1) - a.
Tt follows that f(1) divides 1, which means that f(1) € {—1,1}. If f(1) = 1, then f = 1z
which is, of course, an automorphism of (Z,+), and if f(1) = —1, then f is

—1z:7Z — Z, (—12)(1’) = —x

for which one easily can show that it is an automorphism of (Z, +).
Thus the automorphisms of (Z, +) are 1z and —1z.

12



2.3 Rings and fields

Definition 2.34. Let R be a set. A structure (R, +,-) with two operations is called:
(1) ring if (R, +) is an Abelian group, (R,-) is a semigroup and the distributive laws
hold (that is, - is distributive with respect to +).

(2) unitary ring if (R, +,-) is a ring and there exists a multiplicative identity element.

Definition 2.35. Let (R, +,-) be e unital ring. An element x € R which has an inverse
r71 € R is called unit. The ring (R, +,-) is called division ring if it is a unitary ring,

|R| > 2 and any « € R* is a unit. A commutative division ring is called field.

Definition 2.36. Let (R,+,-) be a ring. An element z € R* is called zero divisor if
there exists y € R* such that

z-y=0ory-z=0.

We say that R is an integral domain if R # {0}, R is unitary, commutative and has

no zero divisors.
Remarks 2.37. (1) Notice that € R* is not a zero divisor iff
yeR, z-y=0o0ry-2=0 = y=0.
(2) A ring R has no zero divisors if and only if
z,y€ER, z-y=0=x=00ry=0.

(3) (R,+,-) is a division ring if and only if it satisfies the following conditions:

i) (R,+) is an Abelian group;

i) R* is closed in (R, ) and (R*,-) is a group;

iii) - is distributive with respect to + .
(4) Every field has no zero divisor. Moreover, every field is an integral domain.
Examples 2.38. (a) (Z,+,) is an integral domain, but it is not a field. Its units are
—1 and 1.
) (Q,+,-), (R,+,), (C,+,) are fields.
(c) Let {0} be a single element set and let both + and - be the only operation on {0},
defined by 04+0 =0 and 0-0 = 0. Then ({0}, +,-) is a commutative unitary ring, called
the trivial ring (or zero ring). The multiplicative identity element is, of course, 0,
hence we can write 1 = 0. As matter of fact, this equality characterize the trivial ring.
(d) Let R be a set and m,n € N*. A map

A:{1,....m}x{1,....,n} = R

is called m x n matrix with entries in R. When m = n, one says that A is a square
matrix. Forall i =1,...,m and j = 1,...,n we denote A(7,7) by a;;(€ R); we can
write A as a rectangular array with m rows and n columns such that the element from

the i-th row and j-th column is the image of (i, j):

air a2 A1n

a21 a2 e a2n
A =

Am1  Am2 e Amn



We also write A = (a;;). We denote the set of m x n matrices with entries in R by
M, n(R), or by M, (R) when m = n. If (R,+,-) is a ring, the + from R induces an

operation + on M, »(R) as follows: if A = (a;;) and B = (b;;) are m x n matrices, then
A+ B = (a;; + bij).

One can easily check that this (matrix) addition is associative, commutative, the matrix
O, with all entries 0 is its identity element and each A = (a;;) from M,, »(R) has an
opposite matrix —A = (—a;;).

The term matrix multiplication is used for the partial operation defined on
U{Mann(R) | (m,m) € N* x N*}

as follows: if A = (a;;) € My, n(R) and B = (b;;) € My, ,(R), then
n
AB = (Cij) S Mm,p7 Cu Cijj = Zaikbkj, (Z,]) S {1, R ,m} X {1, . ,p}.
k=1

If we take m = n = p, hence we work with n X n square matrices - becomes an operation
as in Definition 2.1, operation which is associative and distributive with respect to +.
Thus (M, (R),+,-) is a ring, called the ring of matrices n x n with entries in R If
R has a multiplicative identity, then M, (R) has a multiplicative identity. This is

100 ... 0
0

I, =
000 ... 1

If n > 2 and R # {0} then M, (R) is not commutative and it has zero divisors. Indeed,
if a,b € R*, one can multiply the non-zero matrices

... 0 0 b
00 ... 0 0
0 0 0 0 0 0

both sides for showing these facts.

If R is a unitary ring, the units of M, (R) are the elements of
GLn(R) = {A € My(R) | 3B € Mo(R) : AB = BA=1I,,}.

GL,(R) is closed under the matrix multiplication, it preserves the identity of (M, (R),-)
and (GL,(R),-) is a group called the general linear group over R. One knows that
if R is one of the number fields (Q, R or C) then A € M,,(R) is invertible if and only if
det A # 0. Thus,

GL,(C)={A € M,(C) | det A # 0},

and similarly one can define GL,(R) and GL,(Q).
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(e) Let n € N, n > 2. The Division Algorithm in Z gives us a partition of Z in classes

determined by the remainders one can find when dividing by n :
{nZ,1+nZ,...,(n—1)+nZ},
where r + nZ = {r+nk | k € Z} (r € Z). We use the following notations
F=r+nZ (r€Z)siZy ={nZ,1+nZ,...,(n—1)+nZ} ={0,1,...,n—1}.
Let us notice that for a,r € Z,
a=rTSa+nZ=r+nZ<a—renl<nla—r.

The operations

a+b=a+b, ab=ab
are well defined, i.e. if one considers another representatives a’ and b’ for the classes a
and b, respectively, the operations provide us with the same results. Indeed, from a’ € @
si b’ € b it follows that

nla’ — a, n|b’—b:>n|a’—a—|—b’—b:>n|(a'+b')—(a—I—b)ém’za/—k\b
and
a =a+nk, v =b+nl (k,1€Z)=a't =ab+n(al + bk + nkl) € ab+nZ = d't/ = ab.

One can easily check that the operations 4 and - are associative and commutative, + has
0 as identity element, each class @ has an opposite in (Z,,+), —a = Za= n/—\a, -has 1
as identity element and - is distributive with respect to +. Thus, (Z,,+,-) is a unitary
ring, called (Z,,+,-) is a commutative ring, called the residue-class ring modulo n.

Since 2-3 =0, both 2 and 3 are zero divisors in the ring (Zg,+,-). Thus (Z,,,+,") is
not a field in the general case. Actually, @ € Z,, is a unit if and only if (a,n) = 1. Thus

(Zp,+,-) is a field if and only if n is a prime number.

Remark 2.39. If (R, +,-) is a ring, then (R, +) is a group and (R, -) is a semigroup, so

that we may talk about multiples and positive powers of elements of R.

Definition 2.40. Let (R, +,-) be a ring, let 2 € R and let n € N*. Then we define

nx=x+x+---+z,0-2=0, (—n)-x=-n-x,
—_———

n terms
—_—
n factors

If R is a unitary ring, then we may also consider 2° = 1. If R is a division ring, then we

may also define negative powers of nonzero elements x by
"= (27",

Remark 2.41. Notice that in the definition 0 - x = 0, the first 0 is the integer zero and
the second 0 is the zero element of the ring R, i.e., the identity element of the additive
group (R, +).
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Clearly, the first computational properties of a ring (R, +, -) are the properties of the
group (R, +) and of the semigroup (R, -). Some relationship properties between the two

operations are given in the following result.

Theorem 2.42. Let (R, +,) be a ring and let z,y,z € R. Then:
Daz-(y—2)=v-y—w-2{y-2)-r=y 22

(i) z-0=0-z = 0;

(i) 2 (~9) = () -y = ~a-p.

Proof. (i) We have
x(y—2)=z-y—z-zz (y—2)+zx-z=x-yszx-(y—z+z2)=z-y,

the last equality being obviously true. Similarly, (y —z2) -z =y-2 — z - z.
(i)z-0=2-(y—y)=xz-y—a-y=0. Similarly, 0-z = 0.
(iii) We have

v (-y)=-z-yez(-ytzy=0z (-y+y)=0c2-0=0,
the last equality being true by (ii). O

Definition 2.43. Let (R, +,-) be a ring and A C R. Then A is a subring of R if:
(1) A is closed under the operations of (R, +,-), that is,

Vm,yEA, T+Yy, {ITyEA,
(2) (A,+,") is a ring.

Remarks 2.44. (a) If (R, +,-) is aring and A C R, then A is a subring of R if and only
if A is a subgroup of (R, +) and A is closed in (R, ).

This follows directly from subring definition and Remark 2.14 b).
(b) A ring R may have subrings with or without (multiplicative) identity, as we will see

in a forthcoming example.

Using Remark 2.44 (a) and the characterization theorem for subgroups, one can easily

prove the following characterization theorem for subrings:

Theorem 2.45. Let (R, +,-) be a ring and A C R. The following conditions are equiv-
alent:
1) A is a subring of (R, +,-).
2) The following conditions hold for A:
a) A#0;
B) ar,a0 € A= a3 —ag € A;
v) a1,a2 € A= ajas € A.
3) The following conditions hold for A:
a) A#0;
B') a1,a2 € A= a1 +as € A;
8" ae A= —a€ A
v) a1,a2 € A= ajaq € A.
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Definition 2.46. Let (K, +,-) be a field and let A C K. Then A is called a subfield
of K if:
(1) A is closed under the operations of (K, +,-), that is,

Ve,ye K, x+y, z-y € K;
(2) (4,4+,") is a field.

Remarks 2.47. (a) From (2) it follows that for a subfield A, we have |A| > 2.

(b) If (K,+,) is a field and A C K, then A is a subfield if and only if A is a subgroup
of (K,+) and A* is a subgroup of (K*,-).

(¢) f (K,+,-) is a field and A C K, then A is a subfield if and only if A is a subring of
(K,+,), |A] > 2 and for any a € A*, a=! € A.

Next result provide us with a characterization theorem for subfields.

Theorem 2.48. Let (K,+,:) be a field and A C K. The following conditions are
equivalent: 1) A is a subfield of (K, +,-).
2) The following conditions hold for A:
o) |Al =2
B) a1,a2 € A= a1 — as € A;
v) a1,a2 € A; as #0:>a1a;1 € A,
3) The following conditions hold for A:
o) |Al 22
B') a1,a2 € A= a1 +as € A;
B")ae A= —ac€ A
') ai,as € A= ajas € A;
YNae€A a#0=a"teA

Proof. Tt follows from Remark 2.47 and Theorem 2.19. O

Examples 2.49. (a) Every non-trivial ring (R, +,-) has two subrings, namely {0} and
R, called the trivial subrings.

(b) Z is a subring of (Q,+,-), (R,+,-) and (C,+,-), Q is a subfield of (R,+,-) and
(C,+,-), R is a subfield of (C,+,-).

(¢) If n € N, then nZ = {nk | k € Z} is a subring of (Z,+,-). Indeed, 0 = n -0 € nZ,
and since for any x,y € nZ, there exist k,l € Z such that z = nk and y = nl, we have
x—y=n(k—1) € nZ and = -y = n(nkl) € nZ. One notices that the ring induced on 2Z
by the operations of (Z,+,-) has no multiplicative identity.

(d) The set Z[i] = {x + iy | x,y € Z} of Gauss integers is a subring of (C,+,-). Thus
(Z[i], +, ) is a ring, called the ring of Gauss integers.

Definition 2.50. Let (R, +,-) and (R’,+,-) be rings and f : R — R’. Then f is called

a (ring) homomorphism if
flet+y)=f@)+fly), Yo,y e R

flz-y)=f(z)- fly), Vz,y € R.
The notions of (ring) isomorphism, endomorphism and automorphism are defined

as usual.
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Remark 2.51. If f: R — R’ is a ring homomorphism, then the first condition from its
definition tells us that f is a group homomorphism between (R, +) and (R’,+). Then f
takes the identity element of (R, +) to the identity element of (R’,+), that is, f(0) =0’
and we also have f(—x) = —f(z), for any 2 € R (see Theorem 2.25). But in general,
even if R and R’ have identities, denoted by 1 and 1’ respectively, in general it does not
follow that a ring homomorphism f : R — R’ has the property that f(1) =1'.

We denote by R ~ R’ the fact that two rings R and R’ are isomorphic.

Examples 2.52. (a) Let (R, +,-) and (R',+,) be rings and let f : R — R’ be defined
by f(z) =0, Vz € R. Then f is a homomorphism, called the trivial homomorphism.
Notice that if R and R’ # {0’} have identities, we do not have f(1) =1'.

(b) Let (R, +, ) be a ring. Then the identity map 1z : R — R is an automorphism of R.
(c) Let (R,+,-) be aring and let A < R. Define i : A — R by i(z) = x, Vo € A. Then ¢

is a homomorphism, called the inclusion homomorphism.
(d) The map f : R — M(R), f(z) = (

I‘il’lgS (Ra =+, ) and (MZ(R)ﬂ =+, )
(e) More general, if R is a ring and n € N*| the map f: R — M, (R),

z 0
0 ) is a ring homomorphism between the
T

a 0 0

0 a 0
fa=| .

0 0 a

is an injective ring homomorphism.
(f) Let us take f: C — C, f(z) =Z (where Z is the complex conjugate of z). Since

2t =7+ 7, 7% = Z1% and Z = z,
f is an automorphism of (C,+,-) and f~1 = f.

Definition 2.53. Let (R, +,-) and (R',+,-) be rings with identity elements 1 and 1’
respectively and let f : R — R’ be a ring homomorphism. Then f is called a unitary
homomorphism if f(1) = 1.

Theorem 2.54. Let (R,+,-) and (R’,+,-) be rings with identity elements 1 and 1’
respectively and let f : R — R’ be a unitary ring homomorphism. If z € R has an

inverse element =1 € R, then f(z) has an inverse and f(x~!) = [f(z)]~ .

Proof. Since xz~' =1 = 2~ 'z, we have

f@)fl@ ) =1= fz"")f(z)
which completes the proof. O

Remark 2.55. Any non-zero homomorphism between two fields is a unitary homomor-

phism.
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Indeed, if (K, +,) and (K',+,) are fields and f : K — K’ is a non-zero homomor-
phism, there exists g € K such that f(z¢) # 0. Since 1-x9 = xo,

F(U) f(zo) = f(xo) = 1" f(x0),

multiplying both extreme members by the inverse of f(zq), we get f(1) =1'.

2.4 Exercises with solution

1) Let M be a set and P(M) = {X | X C M}. We consider on P(M) the operations +
and - defined by:

X4Y=X\Y)U(Y\X)giX-Y=XnY.

Show that:
i) (P(M),+,-) is commutative unitary ring;
ii) if |M| > 2 than any X € P(M) \ {0, M} is a zero divisor;
iii) (P(M),+,) is a field if and only if |M| = 1.
Solution: i) One notices that X +Y is the symmetric difference of X and Y, so the solved
exercise 1) of the previous section tells us that (P(M),+) is an Abelian group. Using
the set intersection properties, one deduces that - is associative, commutative and M is
its identity element. Hence (P(M),-) is a commutative monoid.

Let us prove the distributivity of - with respect to +. Indeed,

X-Y+X-Z=(XNY)+(XN2Z)
=[(XNY)NCXN2)\|U(XNZ)NnC(XNY)]
=[XNYNCX)UCZ)U[XNZN(C(X)uC(Y))]
=[XNYNCX)|UXNYNCDUXNZNCX)UXNZnC(Y)]
=QUXNYNC2)|udu[XNZnC(Y)]
=[XNYNCZ)|UXNZNCY)]=Xn[(YNC(Z)U(ZNnC(Y))]
=X -(Y+2),

Thus (P(M),+,-) is a unitary commutative ring. Its additive identity is @), and its
multiplicative identity is M.
ii) In this ring, for any X € M, X2 = X, or, equivalently, X (X — 1) = 0, which means
for us X (X + M) = 0. This shows that any X € P(M) \ {0, M} is a zero divisor.
iii) From ii) it follows that (P(M), +, ) has no zero divisors if and only if P(M) = {0, M },
Le. |[M| <1. If [M| =0 then M =0 and (P(M),+,-) is the trivial ring, and if |[M| =1
then (P(M),+,-) is isomorphic to (Zz,+,-), thus (P(M),+,-) is a field.
2) Let (R, +,-) be aring and a,b € R. Show that:
a) (a+0b)? =a%+2ab+ b < ab=ba < a*> —b*> = (a — b)(a + b);
b) if ab = ba, then for any n € N*,

(a+b)" =Cpa™ + Cra™ o+ --- + Cp~lab" ™t + CO™;

a" = b =(a—0b) (a"t+a" b+ +ab" 2+ 0"

"+ 0" = (a+b) (@ —a® o+ —ab® T B
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Solution: a) If (a + b)? = a? + 2ab + b? then a? + ab + ba + b?> = a® + ab + ab + b2
Applying the cancellation laws in the group (R,+) we deduce that ab = ba. From
a? —b? = (a — b)(a +b) it follows that a® — b2 = a® + ab — ba — b%, so 0 = ab — ba, i.e.
ab = ba. If ab = ba the other equalities result by easy computations.

b) If @ and b commute, then any natural exponent powers of a and b commute. Let us
prove by way of induction on n the first equality. For n = 1 the statement is, obviously

true. Let us assume that the equality holds for n. Then

(a+b)" =(a+b)"(a+b)=(Cla™+Cra™ b+ -+ Crlab" ' +Cl")a
+(C%" + CLa™ o4+ O ab™ T - CTY™)b
=C%" T 4 (C 4+ CNOa™b + -+ (O C™M)adb™ + CTH T

Since C2 = C? =1 and CF + CF~1 = Ck | for any n € N* and 1 < k < n, we have
(a+b)" =00, 0" + Ch ab+ 4 O ab™ + Cl e

which ends the induction step and the proof.
The other equalities result by simply computing the right side product.

3) Let Z[v2] = {a+ bv/2 | a,b € Z} and Q(v/2) = {a + bv/2 | a,b € Q}. Show that:

i) Z[+/2] is a subring of (R, +,-) which contains 1;

ii) Q(v/2) is a subfield of (R, +,-);

iii) Sy = {a +bV/2 | a,b € Z} is not a subring of (R, +,-);

iv) Sy = {a+b3/2 | a,b € Q} is not a subfield of (R, +,-).

Solution: i) Obviously, Z[v2] # 0. For any u = a + bv/2, v’ = a' + b2 € Z[V?2]
(a,d’,b,b’ € Z) we have:

u—u' = (a—a)+(b-b)V2e€ZV2, uu = (ad +2bb') + (ab' + a'b)V2 € Z[V2]

and 1 =14 0v/2 € Z[v/2]. Hence Z[v/2] is a subring and 1 € Z[v/2].

ii) Obviously, |Q(v/2)] > 2. As in i) one shows that for any u,u’ € Q(+/2) one has
u—u' uu’ € Q(v2). Let u=a+bv2 € Q(v/2), u # 0. This means that a,b € Q and
a? —2b% # 0. So,

1 a—bv2 a b
1= = = — 2 2).
Y a+b/2 a?—202 a?-2p2 a?-— 2b2\f € Q(\[)

Thus Q(v/2) is a subfield.
iii) Let u = v/2. Obviously, v € S;. Let us show that u? ¢ S;. Assume by contradiction
that u? € S;. Then u? = a + bu cu a,b € Z. Therefore u® = au + bu?, and

2 = au + b(a + bu) = ab + (a + b*)u.

But u is an irrational number, hence ab = 2 and a+b? = 0, system which has no solution
in Z. Thus S; is not closed under - and, consequently, S is not a subring of (R, +, ).
iv) One can show as in iii) that u = /2 € S, but u? ¢ S,.

4) Find all the automorphisms of the field Q(v/2).
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Solution: Let us consider that f : Q(v/2) — Q(+/2) is an automorphism. Since nonzero

field automorphisms are unitary homomorphisms, f(1) = 1.

1 1 1
If m,n € N* thenf(%) —f<n—|—-~~+n> =mf (n) It follows that
—_——

m terms

1=f(1)=f(Z)=nf<i),

1 1 1 m m m m m m
0 f(n> =t = 0 r () = s = ad £ (=7) = = () =
Therefore, f(z) = z for any x € Q. We also have (v/2)? = 2. Hence [f(v/2)]? = 2

which means that f(v/2) € {—v/2,v/2}. Thus f € {f1, fo}, where fi(a+bv2) = a+by/2
and fo(a + bv/2) = a — by/2. Clearly, f; is an automorphism, since f; = Lowva)- From
fao fo = lg(yz): one deduces that f, is bijective and fy5 1 = f,. One can easily check
that f5 is a homomorphism. Thus f5 is also an automorphism. Finally, one can say that
the automorphisms of the field Q(v/2) are f; and fo.

5) Show that the only nonzero endomorphism of the field (R, +,-) is 1g.
Solution: Let f be an endomorphism of (R,+,-). Then (f(1))? = f(1), so f(1) =1 or

f(1) = 0, case when f is zero. One can show as in the previous exercise that f(x) = x
for any = € Q.

Let us an arbitrary € R, z > 0. Then f(z) = f((v/7)?) = (f(v/7))? > 0. Assuming
by contradiction that f(x) = 0, since z # 0, we have

1=f(1)=f<x-;>=f(w)-f(i>=0-f<i)=0,

which is absurd. Hence our assumption is wrong and
reR, >0 = f(z)>0.

This leads us to the fact that f is strictly increasing (hence, also, injective). Indeed, if
z,y € Rand z < y then f(y) — f(z) = fly —x) > 0, i.e. f(z) < f(y).

Finally, let us show that f(a) = a for any a € R\ Q. Assume by contradiction that
f(a) # a. Of course, this means that either a < f(a) or a > f(a). Let us take the first
case (the second will lead us to a contradiction in the same way). It follows that there
exists a rational number b € Q such that a < b < f(a). But then, since f is strictly
increasing, f(a) < f(b) = b, which is absurd. Hence our assumption was wrong.

Thus f(z) =z, for any z € R, i.e. f = 1g.

2.5 Exercises

1) Let z,y € R and 2 xy = ay — 5z — 5y +30. Is (R, *) a group? What about (R\ {5}, *)?
2) Let (G,-) be a group and a,b € G such that ab = ba. Show that

a™bp" =b"a™, Ym,n € Z.
3) Let (G, ) be a group and f,g: G — G, f(z) = 27!, g(x) = 2. Show that:

i) f is bijective;
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ii) f is an automorphism if and only if (G, ) is Abelian;

iii) g is a homomorphism if and only if (G, -) is Abelian.

4) Show that H C Z is a subgroup of (Z,+) if and only if there exists a unique n € N
such that H = nZ.

5) Let n € N, n > 2. Show that there exists only one group homomorphism from (Z,,, +)
into (Z,+).

6) Show that if f : Q — Q is an endomorphism of (Q, +) then

fl)=fQ) x, Vz €Q,

i.e. f is a translation of (Q,-). Show that any translation of (Q,-) is an endomorphism
of (Q,+). Determine the automorphisms of (Q,+).
7) Let a € Z. Show that a € Z,, is a unit of the ring Z,, if and only if (a,n) = 1. Using
this equivalence, prove that (Z,,+,-) is a field if and only if n is a prime number.
8) a) Solve the equations

dr+5=9and 5z +5=9

1 2 1 2
in Z1o, and the equation ( L 9 )X = < L 9 ) in M5(C).

gm + Zy = ﬁ
1z + §y =10
9) A number d € Z is a square-free integer if d # 1 and the only square number which

b) Find all the solutions of the system in Zis.

divides d is 1. Let d be a square-free integer. Show that:

i) Vd ¢ Q;

i)a,beQ,a+bv/d=0 = a=b=0;

iil) Z[vd] = {a +bVd | a,b € Z} is a subring of (C,+,-) which contains 1;

iv) Q(vd) = {a+bVd | a,b € Q} is a subfield of (R, +,-).

10) Show that the only nonzero field homomorphism from (Q,+,-) into (C,+,-) is the

inclusion homomorphism i : Q — C, i(z) = x.

3 Vector spaces

3.1 Vector spaces, subspaces, linear maps

Let (K, +,-) be a field. Throughout this chapter this condition on K will always be valid.

Definition 3.1. A vector space over K (or a K-vector space) is an abelian group
(V,+) together with an external operation

K xV -V, (kv)—k-v,

satisfying the following axioms:
(L) k- (v +v2) =k vy + k- vg;
(Lo) (k1 4+ ko) -v="FKy-v+ko-v;
(L3) (k1 ko) -v="Fks- (ko v);
(L) 1-v =,
for any k,ki,ks € K and any v,vy,v9 € V.
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In this context, the elements of K are called scalars, the elements of V' are called
vectors and the external operation is called scalar multiplication. Sometimes a vector

space is also called linear space.

We denote the fact that V' is a vector space over K either by xV or by (V, K, +,),
since for a given field K, the addition on V' and the external operation are the operations

that determine the vector space structure of V.

Remark 3.2. Notice that in the definition of a vector space appear four operations,
two denoted by the same symbol + and two denoted by the same symbol - . Of course,
they are not the same, but we to denote them identically for the sake of simplicity of
writing. The nature of the elements involved when using these symbols tells us which is
the operation. More precisely, if + appears between two vectors, then it is the addition
from V, if it appears between two scalars, it is the addition from K; if - appears between
a scalar and a vector, then it is the scalar multiplication, otherwise, it appears between

to scalars, hence it is the multiplication from K.

Examples 3.3. (a) Let V5 be the set of all vectors (in the classical sense) in the plane
with a fixed origin O. Then V; is a vector space over R (or a real vector space), where the
addition is the usual addition of two vectors by the parallelogram rule and the external
operation is the usual scalar multiplication of vectors by real scalars.

If we consider two coordinate axes Ox and Oy in the plane, each vector in V5 is
perfectly determined by the coordinates of its ending point. Therefore, the addition of

vectors and the scalar multiplication of vectors by real numbers become:
(@y)+ @ y) =@+ y+y),

ke (z,y) = (k-2 k-y),
for any k € R and any (z,v), (2',%') € R x R. Thus, (R? R, +,) is a vector space.
Similarly, one can consider the real vector space V3 of all vectors in the space with a
fixed origin. Moreover, a further generalization is possible, as we may see in the following

example.

(b) Let n € N*. Define

(xla"'axn>+(yl7"'7yn):(xl+y17"'axn+yn)7
k- (z1,...,2,) = (kx1,..., kz,),
for any (1,...,2n), (Y1,...,yn) € K™ and for any k € K. Then (K", K, +, ") is a vector

space, called the canonical vector space.

For n = 1, we get that x K is a vector space. Hence, as far as the classical numerical
fields are concerned, g@Q, rR and ¢C are vector spaces.
(¢) If V = {0} is a single element set, then we know that there is a unique structure of
an abelian group for V, namely that one defined by 0 + 0 = 0. Then we can define a
unique scalar multiplication, namely k-0 = 0, for any k € K. Thus, V is a vector space,
called the zero (null) vector space and denoted by {0}.
(d) Let A be a subfield of the field K. Then K is a vector space over A, where the
addition and the scalar multiplication are just the addition and the multiplication of
elements in the field K. In particular, gR, oC and rC are vector spaces.
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(e) (K[X], K, +,) is a vector space, where the addition is the usual addition of polynomi-
als and the scalar multiplication is defined as follows: if f = ap+a; X+ - -+a, X" € K[X],

kf = (kao) + (ka1)X + -+ + (kan) X", forallk € K .

(f) Let m,n € N, myn > 2. Then (M,,(K),K,+,) is a vector space, where the
operations are the usual addition and scalar multiplication of matrices.
(g) Let A be a non-empty set. Denote

KA={f|f: A= K}.

Then (K A K, +, -) is a vector space, where the addition and the scalar multiplication
are defined as follows: for any f,g € K4, for any k € K, we have f +¢g € K4, kf € K4,
where

(f +9)(x) = f(z) +g(x), (kf)(x) =kf(z), Ve e A.

As a particular case, we obtain the vector space (R®, R, +,-) of real functions of a real
variable.
(h) Let K be a field. The group (M,, ,,(K),+) of the m x n matrices over K is a K-vector

space with the scalar multiplication
a(ay;) = (aai;) (@ € K, (aij) € Mypn(K)).

Let us notice that for n xn square matrices, besides the K-vector space structure, M, (K)
also has a ring structure (see Example 2.38 d)). Moreover, there is a certain compatibility

between the scalar multiplication and the matrix multiplication
a(AB) = (aA)B = A(aB), Va € K, YA, B € M,(K).

(i) If V7 and V, are K-vector spaces, the Cartesian product V; x V4 is a K- vector space
with the operations defined by

(r1,22) + (2, 2%) = (x1 + 2}, 22 + 2%), a(z1,72) = (axy, axs)

for any (z1,z2), (z7,25) € V1 x V5 and a € K. This vector space is called the direct

product of xV; and g V5.

Next we give some computation rules in a vector space. Notice that we denote by 0

both the zero scalar and the zero vector.

Theorem 3.4. Let V be a vector space over K. Then for any k, k', k1,...,k, € K and
for any v,v’,v1,...,v, € V we have:

(i)k-0=0-v=0;

(ii) k(—v) = (=k)v = —kv;

(iil) k(v — ") = kv — ko'

(iv) (k= k')v = kv — K'v;

(V) (k14 -+ kp)v=kivo+ -+ kpv;

(vi) k(v1 4+ -+ v,) = kv + -+ + kvp,.
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Proof. (i) Since
k-O+k-v=Ek(0+v)=kv,
we get k-0 = 0. Since
0-v+k-v=(0+k)v=kov,
we get 0-v =0.
(ii) We have
kv+k(—v)=k(v—v)=k-0=0,
whence k(—v) = —kv. Also,
kv+ (=kyv=(k—kjv=0-v=0,
whence (—k)v = —kv.
(iii) By computing
k(v —v)+ kv =k(v—2" +0") =kv,
we obtain k(v —v') = kv — kv'.
(iv) By computing
(k—KYo+kv=(k—-K+kK)=kv,
we obtain (k — k')v = kv — k'v.
(v) and (vi) can be proved by way of induction on n. O
Theorem 3.5. Let V be a vector space over K and let kK € K and v € V. Then
kv=0&k=00rv=0.

Proof. = Assume kv = 0. Suppose that k # 0. Then k is invertible in the field K and
we have
kv=0=k-v=k-0=0v=0.

<« This is Theorem 3.4 (i). O

Definition 3.6. Let V be a vector space over K and let S C V. Then S is a subspace
of V if:
(1) S is closed with respect to the addition of V' and to the scalar multiplication, that is,

Ve,ye S, z4+y€eS,

Vke K,VxeS, kxes§.

(2) S is a vector space over K with respect to the induced operations of addition and

scalar multiplication.
We denote by S <g V the fact that S is a subspace of the vector space V over K.

Remarks 3.7. 1) Actually, the second condition in the definition is almost superfluous.
If S # (), then by the stability of S in V with respect to the addition and the scalar
multiplication, it follows immediately that S is a vector space with respect to the induced
operations. Of course, the second condition implies the fact that S # () since xS is build
on the abelian group (S, +) determined by the induced addition.

2) The previous remark shows that S <y V if and only if S < (V,+) and kx € S for any
x € S andany k € K.
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Hence we have the following characterization theorem for subspaces.

Theorem 3.8. Let V' be a vector space over K and let S C V. The following conditions
are equivalent:
1) S<gV.
2) The following conditions hold for S:
a) S #0;
B)Vr,ye S, x+yeS,;
YNVVke K, VzxeS, kxeS.
3) The following conditions hold for S:
a) S # 0
(5) Vki,ko € K, Vz,y € S, kix+koy € S.

Proof. 1) < 2) is a straightforward corollary of the Remark 3.7 1).

3) = 2) Taking k1 = ks = 1 and ko = 0 and applying ¢), we get 5) and +), respectively.
2) = 3) Let k1,ky € K and z,y € S. We apply 7) to get kix, koy € S and then S to get
kix 4+ koy € S. O

Remark 3.9. (1) Notice that Remark 3.7 2) allows us to replace «) in the previous
theorem with 0 € S.
QU S<kgV,ky,...,k,€ Kand z1,...,2, €S then kyz1 + -+ + kpz, € S.

Examples 3.10. (a) Every non-zero vector space V over K has two subspaces, namely
{0} and V. They are called the trivial subspaces. If a vector space has only trivial
subspaces, it is called a simple vector space.
(b) Let

S={(r,y,2) eER® |2 +y+2=0},

T={(zyz2eR |z=y=2z}.

Then S and T are subspaces of the real vector space R3. More generally, the subspaces
of R? are the trivial subspaces, the lines containing the origin and the planes containing
the origin.
(c) Let n € N and let

Kn[X] ={f € K[X] | deg f <n}.

Then K,[X] is a subspace of the polynomial vector space K[X] over K.
d) Let I C R be an interval. The set Rl = {f | f : I — R} is a R-vector space with
respect to the following operations

(f +9)(x) = f(2) +g(2), (af)(z) = af(z)
with f,g € Rl and o € R. The subsets
C(I,R) = {f € R | f continuous on I}, D(I,R) = {f € R! | f derivable on I}
are subspaces of R’ since they are nonempty and
a,fER, f,ge C(I,R) = af + g € C(I,R);

a,BeR, f,ge D(I,R) = af + Bg € D(I,R).
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Theorem 3.11. Let I be a nonempty set, V' be a vector space over K and let (.S;);er
be a family of subspaces of V. Then [;.; S; <k V.

Proof. For eachi € I, S; <g V,hence 0 € S;. Then 0 € (;; S; # 0. Now let k1, ky € K
and z,y € (;c; Si- Then z,y € S;, Vi € I. But S; <g V, for any i € I. It follows that
kixz + koy € S;, for any i € I, hence kyx + koy € ﬂiel S;. Now by Theorem 3.8, we have
ﬂiel Si <k V. O

Remark 3.12. In general, the union of two subspaces is not a subspace.

Indeed, S = {(a,0) | @ € R} and T = {(0,b) | b € R} are subspaces of gR?, but
S UT is not a subspace of gR?, since (1,0) € S C SUT, (0,1) € T € SUT and
(1,0) +(0,1) =(1,1) ¢ SUT.

At this point, as we did for the previous algebraic structures, we are interested how
to complete a given subset of a vector space to a subspace in a minimal way. This is the

motivation for the following definition.

Definition 3.13. Let V be a vector space and let X C V. Then we denote
(X)=({S<kV|XCS}

and we call it the subspace generated by X or the subspace spanned by X. Here
X is called the generating set of (X).
If X ={x1,...,z,}, we denote (z1,...,2,) = ({z1,...,2,}).

Remarks 3.14. (1) Actually, (X) is the smallest subspace of V' (with respect to C)
which contains X.
(2) Notice that (0) = {0}.
(3) If V is a K-vector space, then:
(i) If S <g V then (S) = S.
(ii) If X CV then ((X)) C (X).
(ii) If X €Y C V then (X) C (Y).

Definition 3.15. A vector space V over K is called finitely generated if there exist
n € Nand zy,...,2, € V such that V = (z1,...,2,). Then we call the set {z1,...,z,}
a system of generators for V.

Definition 3.16. Let V be a K-vector space. A finite sum of the form
kizy + -+ kpoy,

with k1,...,k, € K and z1,...,z, € V, is called a linear combination of the vectors

Llyeoey Ly
Let us show how the elements of a generated subspace look like.

Theorem 3.17. Let V be a vector space over K and let () # X C V. Then
(Xy=A{kwz1 4+ +knep | ki e K, ;€ X,i=1,...,n, n€ N},

that is, the set of all finite linear combinations of vectors of V.
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Proof. We prove the result in 3 steps, by showing that
L={kiz1+ - +kprn|kie K, x;, € X,i=1,...,n, n e N}

is a subspace of V| L contains X and it is the smallest subspace which has this property.
(i) We choose n =1 and k1 = 1 to show that X C L.
(ii) L # 0 since X C L and X # (). Now let k,k’ € K and v,v’ € L. Then v =Y k;x;

and U/:Zj | Kol for some ki, ... K, Ky, Ky, € Koand @4, w2, 1, € X

Hence
kv+ kv = ka x4+ k' Zk’ = Z (kki)a; + Y (K'K))a) € L,
i=1 j=1

since it is a finite linear combination of vectors of X. Now by Theorem 3.8, we have
L<kgV.
(iii) Let us suppose that S < V and X C S. Let k1,...,k, € K and zy,...,2, € X.
Since X C S and S <g V, it follows by Theorem 3.8 that kyz1 +---+ k,x, € S. Hence
LCS.

Thus, by Remark 3.14 (1), we have (X) = L. O

Corollary 3.18. Let V be a vector space over K and z1,...,z, € V. Then
(X1, cyxn) ={kit1+- -+ kpay |k e K, z;€ X,i=1,...,n}.

Remark 3.19. Notice that a linear combination of linear combinations is again a linear

combination.

Examples 3.20. Consider the canonical real vector space R? (see Example 3.3). Then
((1,0,0),(0,1,0),(0,0,1)) = {k1(1,0,0) + k2(0,1,0) + k3(0,0,1) | k1, ko, k3 € R} =

= {(k1,0,0) 4 (0, kg, 0) 4 (0,0, k3) | k1, ko, ks € R} = {(k1, ko, k3) | k1, k2, k3 € R} = R?.

Hence R? is generated by the three vectors (1,0,0), (0,1,0), (0,0, 1).

If S, T <k V, the smallest subspace of V' which contains the union SUT is (SUT).

We will show that this subspace is the sum of the given subspaces.

Definition 3.21. Let V be a vector space over K and let S,T <, V. Then we define

the sum of the subspaces S and T as the set
S+T={s+t|seS,teT}.

If SNT = {0}, then S + T is denoted by S @& T and is called the direct sum of the
subspaces S and T

Examples 3.22. Consider the canonical real vector space R2. Then R? = S & T, where
§={(,0) |z € R} and T = {(0,) | y € R}.

Theorem 3.23. Let V be a vector space over K and let S,T <y V. Then

S+T=(SUT).
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Proof. First,let v=s+t€S+T, forsomesec Sandt€T. Thenv=1-s+1-tisa
linear combination of vectors s,t € SUT, hence v € (SUT). Thus,

S+T C(SUT).

Now let v € (SUT). Then

v = Zkivi = Zkivi—FZkzjvj,
i=1 il jeJ
where I = {ie {1,...,n} |v; € S} and J ={j € {1,...,n} | v; € T\ S}. But the first
sum is a linear combination of vectors of S, hence it belongs to .S, whereas the second
sum is a linear combination of vectors of T', hence it belongs to T. So v € S+ T and
consequently
(SUT) CS+T.

Thus, S+ 7T = (SUT). O

Remarks 3.24. (1) One can also prove the previous theorem by showing that S+7T <y
V,SUT C S+1T, and S+ T is the smallest subspace of V which has this property.
Actually, a more general result can be proved: if Si,..., S, are subspaces of a K-vector
space V then S1+---+ S, ={(S1U---US,).

(2) Moreover, if X; CV (i=1,...,n), then (X; U---UX,) =(X1)+ -+ (Xn).
Indeed, X; C XjU---UX, implies (X;) C(XjU---UX,) (i=1,...,n) and
(X1U- - UX,) D(Xq) 4+ (X,). Since X; C (X)) CT{Xq)+--+{(X,) (i=1

we have X; U---UX,, C (X31)+ -+ (X,,), hence

we have

1),

(X1 U UX,) C{X1)+ -+ (X)) = (X1) + -+ (Xp).

Definition 3.25. Let V and V' be vector spaces over K. The map f : V — V' is called

a (vector space) homomorphism or a linear map (or a linear transformation) if

fle+y)=fl@)+fy), Ve,yeV,
flkz) =kf(x), Vke K, Yz e V.

The notions of (vector space) isomorphism, endomorphism and automorphism

are defined as usual.
We will mainly use the name linear map or, more precisely, K -linear map.

Remarks 3.26. (1) Notice that, when defining a linear map, we consider vector spaces
over the same field K.

(2) If f:V — V' is a K-linear map, then the first condition from its definition tells us
that f is a group homomorphism between (V;+) and (V’,+). Then we have f(0) = 0/
and f(—xz) = —f(x), for any € V (see Theorem 2.25).

We denote by V ~ V' the fact that two vector spaces V and V' are isomorphic and
Homg(V,V')={f:V = V'| fis a K-linear map},

Endg(V)={f:V =V | fisa K-linear map}.
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Theorem 3.27. Let V and V' be vector spaces over K and f: V — V’. Then f is a
linear map if and only if

f(klvl + kQ'UQ) = klf(Ul) + sz(’l)z)7 Vkl, kQ S K, Vvhv2 eV.
Proof. Let ki,ko € K and vy,v3 € V. Then

f(kivr + kgva) = f(kiv1) + f(kav2) = ki f(v1) 4 ka f (v2) .

Conversely, if we choose k; = k3 = 1 and then ks = 0, we get the two conditions from

the definition of a linear map. O
One can easily prove by way of induction the following:

Corollary 3.28. If f: V — V' is a linear map, then
f(k'll}l + -4 kn’Un) = k:lf(vl) + -+ knf(’l)n), Vvl, e Up €V Vk’l, ey k, € K.

Examples 3.29. (a) Let V and V' be K-vector spaces and let f : V — V' be defined
by f(z) =0, for any € V. Then f is a K-linear map, called the trivial linear map.
(b) Let V' be a vector space over K. Then the identity map 1y : V — V is an automor-
phism of V.
(c) Let V be a vector space and S <g V. Define i : S — V by i(z) = «, for any = € S.
Then ¢ is a K-linear map, called the inclusion linear map.
(d) Let us consider ¢ € R. The map

f:R?* = R? f(x,y) = (xcosp — ysinp, xsin g + ycosp),

i.e. the plane rotation with the rotation angle ¢, is a linear map.
(e) Ifa,beR,a<b, I =]Ja,b],and C(I,R) ={f:I— R| f continuous on I}, then

b
F:C(,R)—=R, F(f) :/ flx)dx
is a linear map.

As in the case of group homomorphisms, we have the following;:

Theorem 3.30. (i) Let f:V — V' and g: V' — V" be K-linear maps (isomorphisms).
Then go f : V — V" is a K-linear map (isomorphism).
(ii) Let f : V — V’ be an isomorphism of vector spaces over K. Then f~!: V' — V is

again an isomorphism of vector spaces over K.

Proof. (i) If v1,v3 € V and kq, ks € K, then
(g o f)(k1vi + kava) = g(f(k1v1 + kav2)) = g(k1 f(v1) + k2 f(v2)) =

=k1g(f(v1)) + k2g(f(v2)) = k1(g o f)(v1) + ka2(g o f)(v2)

hence g o f is a liniar map.
(ii) We have to check that

T (ko) + kovh) = ko f 71 (0) + ko f 1 (vh), YV v, vh € V!, Yk, ko € K.
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If we denote f~1(v]) =wv;, i = 1,2 then f(v1) = v}, f(va) = v}, hence
kivy + ko = ki f(v1) + kaf(v2) = f(kiv1 + kava).

Thus,
FTHE1v] + kov) = Koy + kgvg = ki f 7N (0]) 4 ko f T (v),

which completes the proof. O

Definition 3.31. Let f : V — V' be a K-linear map. Then the set
Kerf={z eV | f(z)=0}
is called the kernel of the K-linear map f and the set

Imf ={f(z) |z €V}
is called the image of the K-linear map f.

Theorem 3.32. Let f: V — V'’ be a K-linear map. Then we have
1) Kerf <k V and Imf <g V'.
2) f is invective if and only if Kerf = {0}.

Proof. 1) Since f(0) = 0/, we have 0 € Ker f and 0’ € Imf. If 21,25 € Ker f and
ki,ky € K then
f(k1xy + kaxa) = k1 f(21) + ko f (w2) = k10" + k20" =0

hence k1x1 + koxo € Ker f. Thus Ker f <g V.
If ), 24 € Im f and k1, ke € K then there exist x1,29 € V such that f(z,) = 2} and

f(z2) = x4. Therefore
fkr@y + kaxy) = ki f (1) + ko f (x2) = f(k121 + koxo) € Imf .

Thus Im f <g V.
2) Since
flx1) = f(z2) & f(x1 —x2) =0 21 — a9 € Ker f

and

T =225 —22=0

the implication
f(w1) = f(w2) = 21 = 22

holds if and only if Ker f = {0}. O

Theorem 3.33. Let f: V — V'’ be a K-linear map and let X C V. Then
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Proof. Let us assume X # (). By Theorem 3.17 we have
(Xy={kwz1 4+ +knep | ki e K, ;€ X, i=1,...,n, n €N},
Since f is a K-linear map, it follows by Theorem 3.27 that
fFUX) ={flkiza+ -+ kpzyn) | ki e K, ;€ X,i=1,...,n, ne N} =

={kif(z1)+ - +knflan) | kie K, z;,€ X,i=1,...,n, n € N} = (f(X)).
If X = 0, the conclusion trivially holds. O

Theorem 3.34. Let V and V' be vector spaces over K. For any f,g € Homg(V,V’)
and for any k € K, we consider f + g, k- f € Homg(V,V’),

(f+9)(x) = f(z)+g(x), Ve eV,
(kf)(x) = kf(z), Vo e V.

The above equalities define an addition and a sclar multiplication on Homg (V,V’) and

Homg (V,V') is a vector space over K.

Proof. Let k € K and f,g € Homg (V, V).
Let us prove first that f 4+ g, kf € Homg(V,V'). Let k1, ko € K. Then:

(f+9)(k1x+ koy) = f(krx+ koy) + g(krx + kay) = k1 f(x) + k2 f(y) + k1g(x) + kag(y) =

= k1(f(z) +g(x)) + k2(f(y) + 9(y)) = k1 (f + g9) (@) + k2(f + 9) () -

We also have:
(kf)(k1z + koy) = kf(k1z + kay) = k(k1f(2)) + k(k2f(y)) = (kk1) f(z) + (kk2) f(y) =

=k (kf(x)) + ka(kf(y)) .

Therefore, f + g, kf € Homg(V,V").

It is easy to check that (Homg (V,V’),+) is an abelian group, where the identity
element is the trivial linear map 6 : V' — V' defined by 6(z) = 0, for any z € V
and any element f € Homg(V,V’) has a symmetric —f € Homg(V,V’) defined by
(=) =—f(z), Ve e V.

Checking the axioms of the vector space for Homg (V, V') reduces by the definitions
of operations to the axioms for the vector space V. O

Corollary 3.35. If V is a K-vector space, then Endy (V) is a vector space over K.

Remarks 3.36. a) Let V be a K-vector space and let End(V,+) be the set of the
endomorphisms of its additive group (V,+). From Theorem 3.30 one deduces that
Endg (V) is a subgroupoid of (End(V,+),0) and from Example 3.29 (b) it follows that
(Endk(V),o) is a monoid. Moreover, the endomorphism composition o is distributive
with respect to endomorphism addition +, thus Endg (V') also has a unitary ring struc-
ture, (Endg (V),+,0).

b) The set Autx (V') is a subgroup of the automorphism group (Aut(V,+),0) of (V,+).
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3.2 Exercises with solution

1) Can one organize a finite set as a vector space over an infinite field?

Solution: Let V be a finite set and K be an infinite field. If V has only one element,
there exists (a unique) K-vector space structure on V', the zero vector space.
If |V| > 2, assuming by contradiction that there exists a K-vector space structure on

V and taking x # 0, one deduces that ¢/, : K — V, t/.(a) = ax is an injective map since
a, s € K, th(ar) =t (a) = a1z = asxr = (o —ag)z =0 2z0 a1—ag =0= a1 = as.

Hence |K| < |V|, which is absurd. Thus there is no K-vector space structure on V in
this case.

2) Let V' be a K-vector space, S <g V and z,y € V. We denote (S,z) = (S U {z}).
Show that if z € V'\ S and = € (S,y) then y € (5, z).

Solution: From = € (S,y) it results that there exist s1,...,s, € S and a1,...,a,,a € K
such that

T =o181 + -+ apSy, +ay.

Assuming by contradiction that « = 0 would imply = = a;81 + -+ + a,S, € S which

contradicts our hypothesis. So, a # 0 is a unit in K and

y=—atais; — - —a ta,s, +atr € (S, ).

3) If V is a K-vector space, V1,V <k V and V = V; @ Vs, we say that V; (i = 1,2)
is a direct summand of V. Show that the property of a subspace of being a direct
summand is transitive.

Solution: Let Vi, Vs, V3, V4 be subspaces of K-vector space V such that V =V, @& V5 and
Vi=Vs®Vy. Then V=V, + Vo = V3 4+ Vi + V,. Moreover, if vg € V3N (Vy + V3), there
exists vy € Vy, vy € Vo such that vg = v4 + vo. Hence vo = vg3 —vg € V3 + V4 = V7,
which implies v3 € Vi N Vo = {0}. So, v2 = 0 and v3 = vg € V3NV, = {0}. Thus,
V3N (Vi + Vo) = {0} and we deduce that V = V3 @ (V4 + Va), which means that V3 is a
direct summand of V.

4) Is there any R-linear map f : R® — R? such that
f(17073) = (15 1) and f(72a Oa 76) = (25 1)‘?
Solution: No, since f(—2,0,—6) # (—2)f(1,0,3). Indeed, f(—2,0,—6) = (2,1) and

(=2)£(1,0,3) = (=2)(1,1) = (=2, -2).

3.3 Bases. Dimension

Definition 3.37. Let V be a vector space over K. We say that the vectors vy,...,v, € V
are (or the set of vectors {vq,...,v,} is):

(1) linearly independent in V if for any kq,...,k, € K,

kiovi+---+kyw,=0=>k=---=k,=0.
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(2) linearly dependent in V if they are not linearly independent, that is,
dky,...,k, € K not all zero, such that kyvy +--- + kv, =0.

More generally, an infinite set of vectors of V is said to be:
(1) linearly independent if any finite subset is linearly independent.
(2) linearly dependent if there exists a finite subset which is linearly dependent.

Remarks 3.38. (1) A set consisting of a single vector v is linearly dependent if and only
ifv=0.
(2) As an immediate consequence of the definition, we notice that if V' is a vector space
over K and X,Y C V such that X C Y, then:

(i) If Y is linearly independent, then X is linearly independent.

(ii) If X is linearly dependent, then Y is linearly dependent. Thus, every set of vectors

containing the zero vector is linearly dependent.

Theorem 3.39. Let V be a vector space over K. Then the vectors vy,...,v, € V are
linearly dependent iff one of the vectors is a linear combination of the others, that is,

n
Jje{l,...,n}, 3o, e K: v; = Zaivi.
7
Proof. Since vy,...,v, € V are linearly dependent, there exist k1,...,k, € K not all
zero, say k; # 0, such that kyvq + - + kpv, = 0. But this implies

n
7kj"Uj = Z ki'Ui
i

and further,
n

v = Z(—kjilk‘z)’l)z .
7
Now choose «; = —k:;lki for each ¢ # j to get the conclusion.

Conversely, if there exists j € {1,...,n} such that

n
v; = Z ;U5

i7
for some a; € K, then

n

(—1)1}j + ZO&Z"UZ‘ =0.

2

Since there exists such a linear combination equal to zero and the scalars are not all zero,

the vectors vq,...,v, are linearly dependent. O

Examples 3.40. (a) 0 is linearly independent in any vector space.
(b) Let V4 be the real vector space of all vectors (in the classical sense) in the plane with
a fixed origin O. Recall that the addition is the usual addition of two vectors by the
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parallelogram rule and the external operation is the usual scalar multiplication of vectors
by real scalars. Then:

(i) one vector v is linearly dependent in V5 < v = 0;

(ii) two vectors are linearly dependent in V5 < they are collinear;

(iii) three vectors are always linearly dependent in V5.
(c) Let V3 be the real vector space of all vectors (in the classical sense) in the space with
a fixed origin O. Then:

(i) one vector v is linearly dependent in V3 < v = 0;

(i) two vectors are linearly dependent in V3 < they are collinear;

(iii) three vectors are linearly dependent in V3 < they are coplanar;

(iv) four vectors are always linearly dependent in Vj.
(d) If K is a field and n € N*, then the vectors

(1,0,0,...,0),(0,1,0,...,0),...,(0,0,0,...,1)

from K™ are linearly independent in the K-vector space K.

(e) Let K be a field and n € N. Then the vectors 1, X, X2,..., X" are linearly indepen-
dent in the vector space K,,[X] = {f € K[X] | deg f < n} over K and, more generally,
the vectors 1, X, X2 ..., X", ... are linearly independent in the K-vector space K[X].

We are going to define a key notion concerning vector spaces, namely basis, which
will perfectly determine a vector space. We will discuss only the case of finitely generated
vector spaces. This is why, till the end of the chapter, by a vector space we will understand
a finitely generated vector space. However, many results from the next part hold for

arbitrary vector spaces.

Definition 3.41. Let V' be a vector space over K. By a list of vectors in V' we

understand an n-tuple (vy,...,v,) € V™ for some n € N*.

Definition 3.42. Let V be a vector space over K. An n-tuple B = (v1,...,v,) € V™ is
called a basis of V if:

(1) B is a system of generators for V, that is, (B) = V;

(2) B is linearly independent in V.

Theorem 3.43. Let V be a vector space over K. A list B = (v1,...,v,) of vectors in
V' is a basis of V if and only if each vector v € V' can be uniquely written as a linear

combination of the vectors vy,...,v,, i.e.
VoeV, Jdki,....kn € K: v=Fkuv+- -+ kv,

Proof. Let us assume that B is a basis of V. Hence B is linearly independent and
(B) = V. The second condition assures us that every vector v € V can be written as a
linear combination of the vectors of B. Let us suppose now that v = kyvy + -+ - + kpv,
and v = kKjvy + -+ + kv, for some ky,..., kn, ky,..., kI, € K. It follows that

(k1 — kDvi + -+ + (kn — k),)v,, = 0.

By the linear independence of B, we must have k; = k} for each i € {1,...,n}. Thus, we

have proved the uniqueness of writing.
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Conversely, let us assume that every vector v € V can be uniquely written as a
linear combination of the vectors of B. Then clearly, V = (B). If k,...,k, € K and

kivi + - + kpv, = 0, since this way of writing 0 is unique, we have
kivi+---+kyw,=0-014+---+0-v, =k =---=k, =0,
hence B is linearly independent. Consequently, B is a basis of V. O

Definition 3.44. Let V be a vector space over K, B = (v1,...,v,) a basis of V and
v € V. Then the scalars ki,...,k, € K from the unique writing of v as a linear
combination

v =Fkvy+ -+ kv,

of the vectors of B are called the coordinates of v in the basis B.

Examples 3.45. (a) 0 is basis for the zero vector space.
(b) If K is a field and n € N*, then the list E = (eq,...,e,) of vectors of K™, where

e1 = (1,0,0,...,0),e2 = (0,1,0,...,0),...,e, = (0,0,0,...,1)

is a basis of the canonical vector space K™ over K, called the standard basis. Indeed,
we saw that E is linearly independent and each vector (z1,...,z,) € K™ can be written

as a linear combination of the vectors of E,
(xla"'7xn) =x1€1 + -+ Tpen.

Notice that the coordinates of a vector in the standard basis are just the components of
the vector, fact that is not true in general.

In particular, if n = 1, the set {1} is a basis of the canonical vector space K over K.
For instance, {1} is a basis of the vector space C over C.
(c) Consider the canonical real vector space R?. We already know a basis of R?, namely
the standard basis ((1,0), (0,1)). But it is easy to show that the list ((1,1), (0,1)) is also
a basis of R2. Therefore, a vector space may have more than one basis.
(d) Let V3 be the real vector space of all vectors (in the classical sense) in the space with
a fixed origin O. Any 3 vectors which are not coplanar form a basis of V3; e.g. the three
pairwise orthogonal unit vectors 7, 7, ?
(e) The sets S = {(x,y,2) €ER® |z +y+2=0}and T = {(z,y,2) ER3 |z =y = 2}
are subspaces of gR3. As a matter of fact, S = ((1,0,—1),(0,1,—1)) and T = {(1,1,1)).
Since the two generators of .S are linearly independent, they form a basis of S. The only
generator of T is clearly linearly independent, hence it forms a basis of T'.
(f) Since for any z € C, there exist the uniquely determined real numbers z,y € R such
that 2z = x -1+ gy -4, the list B = (1,4) is a basis of the vector space C over R (see
Theorem 3.43). The coordinates of a vector z € C in the basis B are just its real and its
imaginary part.
(g) Let K be a field and n € N. Then the list B = (1, X, X?,..., X") is a basis of the
vector space K,[X] = {f € K[X] | deg f < n} over K, because each vector (polynomial)
f € K, [X] can be uniquely written as a linear combination

f:a0.1+a1.X+...+an.Xn
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(ag,-..,a, € K) of the vectors of B (see Theorem 3.43). In this case, the coordinates of
a vector f € K,[X] in the basis B are just its coefficients as a polynomial.
(h) Let K be a field. The list

(o) (o) 686D

is a basis of the vector space Ms(K') over K. More generally, let m,n € N, m,n > 2 and
consider the matrices F;; = (a), where
1 ifk=diandl=j

A = .
0 otherwise
The list consisting of all matrices E;; is a basis of the K-vector space M, (K) and the
coordinates of a vector A € M,,,(K) in the above basis are the entries of A.
(i) If V4 and V, are K-vector spaces and By = (21,...,2m,) and By = (y1,...,Yn) are
bases for V7 and V3, respectively, then ((z1,0),...,(zm,0),(0,41),...,(0,y,)) is a basis
for the direct product Vi x V5.

Theorem 3.46. Every vector space has a basis.

Proof. Let V be a vector space over K. If V = {0}, then it has the basis 0.

Now let {0} # V = (B), where B = (vq,...,v,). If B is linearly independent, then
B is a basis and we are done. Suppose that the list B is linearly dependent. Then by
Theorem 3.39, there exists j; € {1,...,n} such that

Vj, = Z k‘ﬂ}i
for some k; € K. It follows that V' = (B\{vj, }), because every vector of V' can be written

as a linear combination of the vectors of B\ {v;, }. If B\ {v;, } is linearly independent,
it is a basis and we are done. Otherwise, there exists jo € {1,...,n}\ {j1} such that

n
sz = Z k‘:Uz
Z?gﬂzllyh
for some k] € K. It follows that V = (B \ {v;,,vj,}), because every vector of V' can
be written as a linear combination of the vectors of B\ {v;,,v;,}. If B\ {v;,,v},} is
linearly independent, then it is a basis and we are done. Otherwise, we continue the
procedure. If all the previous intermediate subsets are linearly dependent, we get to the
step V.= (B\ {vj,,...,v;, ,}) = (vj,). If v;, were linearly dependent, then v;, = 0,
hence V' = (v;,,) = {0}, contradiction. Hence v;, is linearly independent and thus forms

a single element basis of V. O

Remarks 3.47. (1) We have proved the existence of a basis of a vector space. As we
saw in Example 3.45 (c) such a basis not necessarily unique.

(2) In the proof of Theorem 3.46 we saw that if B is an n-elements set which generates V'
one can successively eliminate elements from B in order to find a basis for V. It follows
that any basis of V' has at most n vectors. Later we will prove even a stronger result,

namely if a vector space has a basis of n elements, then all its bases have n elements.
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Theorem 3.48. i) Let f : V — V'’ be a K-linear map and let B = (v1,...,v,) be a
basis of V. Then f is determined by its values on the vectors of the basis B.

ii) Let f,g : V — V'’ be K-linear maps and let B = (vy,...,v,) be a basis of V. If
f(v;) = g(v;), for any i € {1,...,n}, then f =g.

Proof. 1) Let v € V. Since B is a basis of V, there exists ki,...,k, € K uniquely
determined such that v = kjv1 + - -+ + k,v,,. Then

f) = flkivr + -+ kpvp) = ki f(v1) + -+ kn fon),

that is, f is determined by f(v1), ..., f(vn).
ii) Let v € V. Then v = kyvy + - - - + kpv, for some kq, ..., k, € K, hence

f) = f(kror 4+ knon) = k1 f(v1) -+ + kn f(0n) = k1g(v1) -+ + kng(vn) = g(v) .
Therefore, f = g. O

Remark 3.49. From the previous theorem one deduces that given two K-vector spaces
V, V', a basis B of V and a function ' : B — V', there exists a unique linear map
f:V = V' which extends [ (i.e. flg = f' or, equivalently, f(x;) = f'(x;), i=1,...,n),
result also known as universal property of vector spaces.

Theorem 3.50. Let f: V — V'’ be a K-linear map. Then:

(i) f is injective if and only if for any X linearly independent in V, f(X) is linearly
independent in V.

(ii) f is surjective if and only if for any X system of generators for V, f(X) is a system
of generators for V.

(iii) f is bijective if and only if for any X basis of V, f(X) is a basis of V.

Proof. (i) Let X = (vy,...,v,) be a linearly independent list of vectors in V' and let
k1,...,k, € K be such that ky f(vi) + -+ k, f(vn) = 0. Since f is a K-linear map, we
deduce f(kiv1i+---+kpv,) = f(0). By the injectivity of f we get kivy + -+ + kpv, = 0.
But since X is linearly independent in V', we have k; = --- = k,, = 0. Therefore, f(X)
is linearly independent in V.

Conversely, let z,y € V with £ # y. Then the non-zero vector z — y is linearly
independent, hence f(x —y) is linearly independent by hypothesis. So, f(x —y) # 0 and
thus, f(z) # f(y). Thus f is injective.

(ii) Let X be a system of generators for V. Then (X) = V. By Theorem 3.33 and the

surjectivity of f we have:

that is, f(X) is a system of generators for V.

Conversely, V is, clearly, a system of generators for V. By hypothesis, it follows that
f(V) is a system of generators for V'. Hence (f(V)) = V’. Now by Theorem 3.33, we
get f((V)) =V’ that is, f(V) =V’. Hence f is surjective.

(iii) It follows by (i) and (ii). O

Recall that we consider only finitely generated vector spaces. Let us begin with a
very useful lemma, that will be often implicitly used.
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Lemma 3.51. Let V be a K-vector space and let Y = (y1,..., yn,2). If 2 € (y1,...,yn),
then Y = (y1,...,yn).

Proof. The generated subspace Y is the set of all linear combinations of the vectors

Y1y- - Yn, 2 (see Theorem 3.17). Since z € (y1,...,Yn), 2 is a linear combination of the
vectors 1, . . ., Yn. It follows that every vector in Y can be written as a linear combination
only of the vectors y1,...,y,. Consequently, Y = (y1,...,yn). O

Let us now discuss a key theorem for proving that any two bases of a vector space
have the same number of elements. But it is worth mentioning that it has a much broader

importance in Linear Algebra.

Theorem 3.52. (Steinitz, The Exchange Theorem) Let V' be a vector space over K,
let X = (21,...,2m) be a linearly independent list of vectors of V and Y = (y1,...,yn) a
system of generators of V' (m,n € N*). Then m < n and m vectors of Y can be replaced

by the vectors of X in order to obtain a system of generators for V.

Proof. We prove this result by way of induction on m. Let us take m = 1. Then clearly
m < n. Since Y is a system of generators for V, we have z1 = Y. | k;y; for some
k1,...,kn € K. The list X = {1} is linearly independent, hence x; # 0. It follows that
there exists j € {1,...,n} such that k; # 0. Then

n
y; =kitar =k ki,

=1

i#]
that is, y; is a linear combination of the vectors y1,...,y;-1, 21, ¥j+1,- .-, Yn. Hence, in
any linear combination of y1, ..., yn, the vector y; can be expressed as a linear combina-

tion of the other vectors and x;. Therefore, we have

V= <yla--~ayn> = <y1a---ayj—1>$1,yj+17---7yn>~

Thus, we have obtained again a system of n generators for V' containing z;.

Let us assume that the statement holds for a list with m — 1 linearly independent
vectors of V' (m € N, m > 2) and let us prove it for the linearly independent list
X = (x1,...,%m). Then (z1,...,2m,-1) is also linearly independent in V. By the
induction step hypothesis, we have m — 1 < n. If necessary, we can reindex the elements
of Y and we have

V= <x17~'~7xm717ym7"'7yn>~

Assume by contradiction that m — 1 = n. Then from V = (x1,...,2,_1) it follows
that z,, € (x1,...,Zm—1), which is absurd since X is linearly independent in V. Thus
m — 1 < n or, equivalently, m < n.

We have ©,, € V ={(x1,...,Zm—-1,Ym,---,Yn), hence

m—1 n
Tm = Z kix; + Z iy
i=1 i=m

for some kq,...,k, € K. The list X being linearly independent in V, it follows that
there exists m < j < n such that k; # 0 (otherwise, z,,, = Z:’:ll k;x; and the list X
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would be linearly dependent in V). For simplicity of writing, assume that j = m. It
follows that

m—1 n
Ym =k = Y ki — Yk ks
i=1

1=m-+1
Thus, ym € (T1,- -, Tm, Ym+t1,---,Yn). LTherefore, we have
V= <x17"'7xm—1ayma"'ayn> = <x1,~~';$m7ym+l7"'ayn>'

Thus, we have obtained again a system of generators for V', where m vectors of the list
Y have been replaced by the vectors of the list X. This completes the proof. O

Theorem 3.53. Any two bases of a vector space have the same number of elements.

!

Proof. Let V be a vector space over K and let B = (v1,...,0,,) and B’ = (vi,...,v),)
be bases of V. Since B is linearly independent in V' and B’ is a system of generators for
V', we have m < n by Theorem 3.52. Since B is a system of generators for V and B’ is

linearly independent in V', we have n < m by the same Theorem 3.52. Hence m =n. [

Definition 3.54. Let V' be a vector space over K. Then the number of elements of any

of its bases is called the dimension of V' and is denoted by dimg V or simply by dim V.

Examples 3.55. Using the bases given in Examples 3.45, one can easily determine the
dimension of those vector spaces.

(a) If V = {0}, V has the basis ) and dimV = 0.

(b) Let K be a field and n € N*. Then dimg K™ = n. In particular, dim¢ C = 1.

(C) dimR C=2.

(d) S = {(z,9,2) ER} |z+y+2=0}and T = {(z,y,2) € R® | 2 = y = 2} are
subspaces of gR? with dim S = 2 and dimT = 1. More general, the subspaces of R? are
{(0,0,0)}, any line containing the origin, any plane containing the origin and gR3. Their
dimensions are 0, 1, 2 and 3, respectively.

(e) Let K be a field and n € N. Then dim K,,[X] =n + 1.

(f) Let K be a field. Then dim My (K) = 4. More generally, if m,n € N, m,n > 2, then
dim M, (K) =m - n.

(¢) If V4 and V4 are K-vector spaces and By = (z1,...,%m) and B = (y1,...,Yyn) are
bases for V; and V3, respectively, then dim(V; x V3) = m 4+ n = dim V; + dim V5.

Theorem 3.56. Let V be a vector space over K. Then the following statements are
equivalent:

(i) dimV =n;

(ii) The maximum number of linearly independent vectors in V' is n;

(iii) The minimum number of generators for V is n.

Proof. (i)=(ii) Assume dimV = n. Let B = (v1,...,v,) be a basis of V. Since B is
a system of generators for V', any linearly independent list in V' must have at most n
elements by Theorem 3.52.

(ii)=-(i) Let B = (v1,...,vm) be a basis of V and let (ug,...,u,) be a linearly indepen-
dent list in V. Since B is linearly independent, we have m < n by hypothesis. Since B
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is a system of generators for V, we have n < m by Theorem 3.52. Hence m = n and
consequently dimV = n.

(i)=(iii) Assume dimV =n. Let B = (vy,...,vy,) be a basis of V. Since B is a linearly
independent list in V', any system of generators for V' must have at least n elements by
Theorem 3.52.

(iii)=(i) Let B = (v1,...,vm) be a basis of V and let (ui,...,u,) be a system of
generators for V. Since B is a system of generators for V', we have n < m by hypothesis.
Since B is linearly independent, we have m < n by Theorem 3.52. Hence m = n and

consequently dim V' = n. O

Theorem 3.57. Let V be a vector space over K with dimV =n and X = (uq,...,up)
a list of vectors in V. Then X is linearly independent in V' if and only if X is a system

of generators for V.

Proof. Let B = (v1,...,v,) be a basis of V.

Let us assume that X is linearly independent. Since B is a system of generators for V,
we know by Theorem 3.52 that n vectors of B, i.e., all the vectors of B, can be replaced
by the vectors of X and we get another system of generators for V. Hence (X) = V.
Thus, X is a system of generators for V.

Conversely, let us suppose that X is a system of generators for V. Assume by con-

tradiction that X is linearly dependent. Then there exists j € {1,...,n} such that

U; = Z kiui
%
for some k; € K. It follows that V = (X) = (u1,...,u;j—1,U%j41,. .., up) . This contradicts

the fact that the minimum number of generators for V' is n (see Theorem 3.56). Thus

our assumption must have been false. So X is linearly independent. O

Theorem 3.58. Any linearly independent list of vectors in a vector space can be com-

pleted to a basis of the vector space.

Proof. Let V be a K-vector space, let B = (v1,...,v,) be a basis of V and (u1,...,un)
be a linearly independent list in V. Since B is a system of generators for V', we know by
Theorem 3.52 that m < n and m vectors of B can be replaced by the vectors (uy, ..., Unm)
obtaining again a system of generators for V', say (ui,...,Um,Um+1,--.,0,). But by

Theorem 3.57, this is also linearly independent in V' and consequently a basis of V. O

Remark 3.59. The completion of a linearly independent list to a basis of the vector

space is not unique.

Example 3.60. The list (e1,e2), where e; = (1,0,0) and es = (0,1,0), is linearly
independent in the canonical real vector space R3. It can be completed to the standard
basis of the space, namely (e1,ea,e3), where e3 = (0,0,1). On the other hand, since
dimg R? = 3, in order to obtain a basis of the space it is enough to add to our list any
vector vg for which (eq, ez, v3) is linearly independent (see Theorem 3.57). For instance,

we may take vz = (1,1,1).
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Corollary 3.61. Let V be a vector space over K and S <g V. Then:
(i) Any basis of S is a part of a basis of V.
(ii) dim S < dim V.
(iii) dim S = dimV & S = V.

Proof. (i) Let (u1,...,un) be a basis of S. Since the list is linearly independent, it can
be completed to a basis (u1, ..., Um, Vm+1s---,Vn) of V by Theorem 3.58.

(ii) follows from (i).

(iii) Assume that dimS = dimV = n. Let (uy,...,u,) be a basis of S. Then it is
linearly independent in V', hence it is a basis of V' by Theorem 3.57. Thus, if v € V| then
v =kius + -+ kyu, for some kq,...,k, € K, hence v € S. Therefore, S =V. O

Remark 3.62. For the equivalence (iii) from the previous corollary the fact that we are

working in a finitely generated space is essential.

Theorem 3.63. Let V and V' be vector spaces over K. Then
VeV e&dimV =dimV'.

Proof. =. Let f:V — V'’ be a K-isomorphism. If (vy,...,v,) is a basis of V, then by
Theorem 3.50, (f(v1),..., f(v,)) is a basis of V. Hence dim V' = dim V.

<. Assume that dimV = dimV’ = n. Let B = (v1,...,v,) and B’ = (v{,...,v),)
be bases of V' and V' respectively. We know by Theorem 3.48 that a K-linear map
f:V — V' is determined by its values on the vectors of the basis B. Define f(v;) = v/,

for any i € {1,...,n}. Then it is easy to check that f is a K-isomorphism. O

Corollary 3.64. Any vector space V over K with dimV = n(€ N*) is isomorphic to

the canonical vector space K™ over K.

Remark 3.65. Corollary 3.64 is a very important structure result, saying that, up to
an isomorphism, any finite dimensional vector space over K is, actually, the canonical
vector space K™ over K. Thus, we have an explanation why we have used so often this
kind of vector spaces: not only because the operations are very nice and easily defined,

but they are, up to an isomorphism, the only types of finite dimensional vector spaces.
We end this section with some important formulas involving vector space dimension.

Theorem 3.66. Let f: V — V'’ be a K-linear map. Then
dimV = dim(Kerf) 4+ dim(Imf) .

Proof. Let (u1,...,un) be a basis of the subspace Kerf of V. Then by Corollary 3.61,
it can be completed to a basis B = (u1,...,Um,Vm+1,---,Un) of V. We are going to
prove that B’ = (f(vm+1), ..., f(vn)) is a basis of Imf.

First, we prove that B’ is linearly independent in Imjf. Let us take kp,v1,...,k, € K.
By the K-linearity of f we have:

Zn: kif(vi):0:>f< Xn: kivi):0:> zn: k;v; € Kerf.

i=m+1 i=m+1 i=m+1
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Since (u1,...,uy,) is a basis of Kerf, there exist ki, ...,k € K such that

i kiv; = i ki ,
=1

i=m—+1
that is,
m n
Zkiui — Z k‘ﬂ)i =0.
i=1 i=m+1
But B = (u1,...,Um, Vm+t1,---,0,) 18 a basis of V' hence it follows that k; = 0, for any

i € {1,...,n}. Therefore, B’ is linearly independent in Imf.
Let us now show that B’ is a system of generators for Imf. Let v’ € Imf. Then
v = f(v) for some v € V. Since B is a basis of V, there exist k1,...,k, € K such that

v = ikiuiJr Zn: kiv; .
i1

i=m-+1

By the K-linearity of f and the fact that uq,...,u,, € Kerf, it follows that

v'=fv) = f(zkiui + ) km) = Zkif(ui) + Y kiflu) = Y kif(vi).

i=m-+1 1=m-+1 i=m-+1

Hence B’ is a system of generators for Imf.

Therefore, B’ is a basis of Imf and consequently,
dimV =n=m+ (n—m) = dim(Kerf) + dim(Imf) .
O
Corollaries 3.67. a) Let V be a K-vector space and let S, T be subspaces of V. Then
dim S 4+ dim7 = dim(SN7T) + dim(S + 7).

Indeed, f: SxT — S+T, f(x,y) = x —y is a surjective linear map with the kernel
Ker f = {(z,z) | z € SNT}. Hence,

dim(S x T') = dim(Ker f) + dim(S + 7).
Since g: SNT — Ker f, g(x) = (x,x) is an isomorphism, we have
dim(Ker f) = dim(SNT),

and by Example 3.55 g) we have dim(S x T') = dim S + dim 7', which completes the proof
of the statement.
b) If V' is a K-vector space and S,T <y V, then

dim(S+7T)=dimS +dim7T < S+T=SaT.
c¢) Let V be a K-vector space and f € Endg (V). The following statements are equivalent:
(i) f is injective;
(ii) f is surjective;

(iii) f is bijective.
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Of course, it is enough to show that (1)< (ii).
(i)=(i) If f is injective, then Kerf = {0} by Theorem 3.32, hence dim(Kerf) = 0. By
Theorem 3.66, it follows that dim(Imf) = dimV. But Imf <x V, so Imf = V by
Corollary 3.61.
(ii)=(i) Let us assume that f is surjective. Since Imf = V, it follows by Theorem 3.66
that dim(Kerf) = 0, whence Kerf = {0}. By Theorem 3.32, f is injective.

3.4 Exercises with solution
1) Let n € Nand f, : R > R, f,(z) = sin” 2. Show that L = {f,, | n € N} is a linearly
independent subset of the R-vector space RE.

Solution: L is linearly independent if and only if for any nq, ..., niy € N mutually different,
the vectors fy,,..., fn, are linearly independent. Let us take ay,...,a; € R arbitrary
such that oy fn, + -+ + arfn, =0 (0 is the zero map). It follows that

VreR, apsin™ x+---+ apsin™ x = 0.
We deduce that for the polynomial
p=oa X" 4+ ap X" € RIX]
any number ¢(= sinz) € [—1,1] is a root, hence it has infinitely many roots. This is
possible only if p=0,s0 a3 =--- = ap, = 0.

2) Let p € N be a prime number. Show that the usual addition and multiplication
determine a Q-vector space structure on V = {a +byp+ c3/p? | a,b,c € Q} and find a
basis and the dimension of V.
Solution: V is a subspace of gR generated by {1, ¢/p, v/p?}. We show that 1, ¢/p, V/p?
are linearly independent. If a, b, ¢ € Q and a+by/p+c+/p? = 0. Multiplying this equality
by ¢/p, we get ay/p+by/p* + cp = 0. We eliminate {/p? from the two equalities and we
have (ab — ¢*p) + (b* — ac) ¥p = 0. Since ¥/p ¢ Q, we must have ab — ¢’p = 0 = b* — ac.
2 4 b3
Assuming by contradiction that a # 0 we have ¢ = — , hence ab— —p =0, i.e. p= —.
a a a
b
This implies ¢/p = — € Q, which is absurd. Thus a = 0, and, consequently, b = ¢ = 0.
a
It means that (1, ¢/p, v/p?) is a basis of gV and dimg V' = 3.

3) Let V be a K-vector space whose dimension is 3 and let Vi, V5 be two different
subspaces, both having the dimension 2. Show that the dimension of V3 NV5 is 1. Which
is the geometric meaning of this situation when K = R, V = R3?

Solution: From Vi # V5 and dim V; = dim V5 it follows that V5 g V1. Hence,
NEVi+hCV,
which implies dim(V; + V3) = 3 and
dim(V; N V32) = dim V; + dim V5 — dim(V; + Vo) = 1.

In R? this means that the intersection of two distinct planes which contain the origin is

a line which contains the origin.
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4) Let V be a K-vector space whose dimension is n € N* and let V7, V5 be subspaces of
V. Sho that if dimV; =n — 1 and Vo € V; then

dim(Vi NV3) = dim Vs — L and V; + V3 = V.

Solution: Since V5 Q V1, we have V1NV, ; Va, so dim(V1NV;,) < dim V4, or, equivalently,
dim Vo — dim(V; NV3) > 1. Then

n=dimV > dim(V; + Vo) =dimV; +dim V5, —dim(ViNVa) >n—14+1=n.
Therefore, dim(V; + Vo) = n = dim V, thus V = V; 4+ V5. Finally, we have

dim(V;NV,) =dimV; +dim Vo — dim(V; + Vo) =n— 1+ dimVy —n = dim Vo — 1.

3.5 Exercises

1) Show that the Abelian group (R%,-) is an R-vector space with respect to the scalar
multiplication % defined by

axr=12% aecR, reRY

and that this vector space is isomorphic to the R-vector space defined on R by the usual
addition and multiplication.

2) Let V be a K-vector space, let «, 3,7 € K and z,y,z € V such that ay # 0 and
ax + By + vz = 0. Show that (z,y) = (y, 2).

3) In the R-vector space R® = {f | f : R — R} one considers

R¥), ={f :R—=R| fisodd}, (R*), ={f:R—R]|fiseven}.

Show that (R®); and (R®), are subspaces of R® and R® = (RF); @ (RF),,.

4) Let V be a R-vector space and vy, vy,v3 € V. Show that vy, vs,vs are linearly inde-
pendent if and only if the vectors ve + vs, v3 + v1,v1 + v are linearly independent.

5) Show that in the R-vector space Mz(R) the matrices

10 11 11 11
E, = By = , By = By =

-2 3
form a basis and find the coordinates of the matrix A = A 5 in this basis.
6) Find a € R such that the vectors v1 = (a,1,1), vo = (1,a,1), vs = (1,1,a) form a
basis of the real vector space R3.

7) In the Q-vector space Q3 one considers the vectors
a=1(-2,1,3),b=(3,-2,-1), c=(1,-1,2), d = (-5,3,4), e = (-9, 5, 10).

Prove that {(a,b) = (¢, d, e).

8) In the R-vector space R* one considers the subspaces:

a) S = (uy,ug,us), with uy = (1,2,1,-2), us = (2,3,1,0), uz = (1,2, 2, —3),
T = (v1,v2,v3), with v; = (1,1,1,1), v2 = (1,0,1,-1), v3 = (1, 3,0, —3);
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b) S = (uy,us), with uy = (1,2,1,0), ug = (—1,1,1,1),
T = (v1,v9), with v; = (2,-1,0,1), vo = (1,-1,3,7);
c) S = (u1,uz), with uy = (1,1,0,0), us = (1,0,1,1),
T = (v1,v2), with v; = (0,0,1,1), v2 = (0, 1,1, 0);
d) S = (u1,ug,us), with u; = (1,2,-1,-2), us = (3,1,1,1), ug = (-1,0,1, —1),

T = (vy,v9), with v; = (-1,2,-7,-3), v2 = (2,5, —6, —5).
Find a basis and the dimension for each of the spaces S, T, S+ T and SNT.

4 Matrices and linear maps. Systems of linear equa-

tions

For a better understanding of this section, we recommend the reader to remind the
basics concerning the determinant of a matrix and the rank of a matrix. In order to
support their effort, we list here some of the properties which will be used in our further
discussions.

Let K be a field, A = (a;;) € Mp(K), n > 2, d = det A, let d;; be the minor of a;;
and a;; = (—1)""7d;; be the cofactor of a;;.
1) The determinant of A and the deteriminant of its transpose matrix A are equal.
2) If the matrix B results from A by multiplying each element of a row (column) of A
by an element o € K then det(B) = avdet(A).
3) If A has two equal rows (columns), then det(A4) = 0.
4) If B results from A after permuting two rows (columns) of A then det(B) = — det(A).
5) If a row (column) of A consists only of 0, then det(A4) = 0.
6) If B results from A after adding to its i-th row (column) its j-th row (column)
multiplied by an element from K (i # j), then det B = det A.
7) If a row (column) of A is a linear combination of the other rows (columns) of A, then
det A = 0.
8) If A, B € M, (K) then det(AB) = det(A) - det(B).
9) (the cofactor expansion of det(A) along its i-th row)

det(A) = ajnaun + aipuo + -+ - + Ainoun, Yi € {1,...,n}.
10) (the cofactor expansion of det(A4) along its j-th column)
det A = ajjaqj + agjon; + -+ anjan;, Vj € {l,...,n}.
11) If i,k € {1,...,n}, i # k, then
G101 + a0k + - + iy = 0.
12) If j,k € {1,...,n}, j # k then
a1jong + agjop + -+ apjogng = 0.

Using the above properties, we can deduce the following:
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Theorem 4.1. A matrix A = (a;;) € M, (K) is invertible if and only if d = det(A) # 0.
If this is the case, then
At =dt. A

Proof. If A is invertible, i.e. there exists A1 € M, (K) such that
ATV A=, =A-A7Y
according to 8), we have
det(A71) - det(A) =1,

hence d # 0.
Conversely, let us consider d # 0. Let us take the matrix A* = “(«a;;) (called the
adjugate or the (classical) adjoint) of A. From 9), 10), 11) and 12) it follows

A" A=d-I,=A-A".
Hence, if d # 0 then A has an inverse matrix equal to A~! = d~1 - A*. O

The previous properties also allow us to connect the rank of a matrix with the di-

mension of the subspace generated by its rows (columns).

cd e K™ are the

rn

Theorem 4.2. If A € M,, ,(K), and 7{*,... 74 € K™ and c{}, ...

sim

rows and the columns of A, respectively, then

rank A = dim(r{",...,72) = dim(c{, ..., ).
where (r{, ..., 74} is the subspace of K™ generated by r{*,... 7% and (c{',...,c?) is the
subspace of K™ generated by cil, ..., c2.

Proof. Let r = rank A. The matrix A has an r X r nonzero minor. To simplify the

notations, we consider that such a minor is

aill a12 e aly
a1 Q22 N agy

d=| . . |#0
ar1  Ar2 ... (708

Since any (r + 1) x (r 4+ 1) minor is zero, the (r + 1) x (r + 1) determinant

aip aiz ... Qir Gaij

a1 Q22 ... A2y Q25
Dij =

Qr1  QAr2 ... Qry  Qrj

Q51 ;o e (0778 Aij

obtained by adding to d the i-th row and the j-th column of Ais) (1 <i<m,r < j <mn),

i.e. D;; = 0. The cofactor expansion of D;; along its r + 1-th row gives us

apdy + ajpds + - - + airdy 4+ a;5d = 0,
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where the cofactors dy,ds, ..., d, do not depend on the added row. It follows that
a; = —d 'dvay —d 'daazy — -+ — d” draiy

fori=1,2,...,mand j=r+1,...,n. Therefore,

c;‘ :ozlc‘lq+agc‘24+~~+ozrcf forj=r+1,...,n,
where o, = —d~'dy, 1 < k < r. This means that c;-‘ is a linear combination ¢!, ¢4\, ..., c2.
Thus, dim{c{!, ..., c¢A) <7 If we had dim(c{, ..., c2) < r then it would results that each
of the columns c‘f‘, . 70;4 is a linear combination of the other columns, hence d = 0,
which is absurd. Thus dim(c{!, ..., cf!) = r. Since we also have, rank A = rank ‘A we
conclude that dim(r{', ... r2) =r. O

Corollary 4.3. a) The rank of A is equal to the maximum number of linearly indepen-
dent rows (columns) of A.

b) If an r x r determinant d is nonzero, and an (r + 1) x (r+ 1) determinant D obtained
from d by adding it a row and a column is zero, then the added row (column) is a linear
combination of all the other rows (columns) of D.

Remarks 4.4. a) The previous theorem is also valid for any finite dimensional vector
space: the dimension of the subspace generated by m vectors of an n-dimensional vector
space gV is equal to the rank of the m X n matriz A whose rows are the coordinates of
these vectors in a certain basis B of V.

This can be easily shown by using the isomorphism between V and K™ which trans-
forms B into the standard basis. Obviously, this isomorphism transforms the given m
vectors into r{l, ... ri.

b) n vectors in an n-dimensional vector space are linearly dependent if and only if the

determinant of the matrix formed with their coordinates as rows (or as columns) is zero.

4.1 The matrix of a linear map

First, we define the matrix of a vector in a basis of a vector space. For certain reasons,
it is presented as a column-matrix, but it must be said that this is rather a convention
than a constraint. Of course, if one changes the convention, the form of the next notions
and results must be properly changed.

Definition 4.5. Let V be a K-vector space, v € V and B = (v1,...,v,) a basis of V. If
v =kyvy+- -+ kpv, (k1,...,k, € K) is the unique writing of v as a linear combination
of the vectors of the basis B, then the matrix of the vector v in the basis B is

Definition 4.6. Let f: V — V' be a K-linear map, B = (v1,...,v,) a basis of V' and

B’ = (v},...,v],) abasis of V. Then we can uniquely write the vectors in f(B) as linear
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combinations of the vectors of the basis B’, say

f(’l)l) = allvi —+ CL21’U/2 —+ -+ amlv;n
f(v2) = a12v] + agevh + -+ - + amav),

for some a;; € K. Then the matrix of the K-linear map f in the pair of bases (B, B’)
(or, simply, in the bases B and B’) is the matrix whose columns consist of the coordinates
of the vectors of f(B) in the basis B’, that is,

a1 a2 ... Qin

a21 as2 e a2n
[flep =

aml Am2 ... (mn

If V=V’ and B = B’, then we simply denote [f|g = [f]55'-

Remarks 4.7. (1) We complete the matrix of a linear map by columns. This is also a
part of the convention we mentioned at the beginning of this section.

(2) As we will see next, the matrix of a linear map depens on the map, on the considered
bases, but also by the order of the elements in each basis.

Examples 4.8. a) Consider the R-linear map f : R* — R3 defined by
fl@y,zt)=(@+y+zy+z+t,z+t+z), V(z,y,z21t) R,

Let E = (e1,e2,e3,e4) and E' = (e}, e, e}) be the standard bases in R* and R? respec-

tively. Since

f(e1) = f(1,0,0,0) = (1,0,1) =€} + €}
f(e2) = £(0,1,0,0) = (1,1,0) = €} + €}
f(es) = £(0,0,1,0) = (1,1,1) =€} + €5 + €4
f(es) = £(0,0,0,1) = (0,1,1) = €} + €4

it follows that the matrix of f in the bases E and E’ is

—_ = =

1 1 0
[f]EE/ =10 1 1
1 0 1

b) Let R,,[X] be the R - vector space of the polynomials with the degree at most n and
real coeflicients. The map

@ : Rg[X] — RQ[X], go(ao +(11X +(l2X2 —|—a3X3) =ay + 2(12X +3G3X2

(which associates a polynomial f its formal derivative f) is a linear map. Let us write
the matrix of ¢ in the pair of basis B = (1, X, X2, X3), B’ = (1, X, X?), and then in the
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pair of basis B = (1, X, X2, X3), B” = (X?%,1, X). We have

e()=0-14+0-X+0-X>=0-X24+0-14+0-X
P(X)=1-1+0-X4+0-X>=0-X>+1-1+0-X

(X)) =0-142-X+0-X>=0-X240-142-X
o(XH=0-14+0-X+3-X>=3-X24+40-1+0-X

thus,

0100 000 3
[SO]B,B’ = 00 2 0 and [QD]B,B” = 01 0 O
000 3 00 20

c) Let K be a field, m,n € N* and A € M, ,(K). If E is the standard basis of K™ and
E’ is the standard basis of K™, and one writes the vectors of K™ and K™ as columns,
one can easily show that

fa: K" = K™, fa(x) = Az

is a linear map and [falg g = A.
Theorem 4.9. Let f : V — V' be a K-linear map, B = (v1,...,v,) a basis of V|
B’ = (v],...,v},) abasis of V' and v € V. Then

[f()]B = [flpp - [V]B-

Proof. Let [flpp = (aij) € Myn(K). Let v = 377 kju; and f(v) = 321, kjvj for
some k;, ki € K. On the other hand, using the definition of the matrix of f in the bases
B and B’, we have

fv) = f(i:kjvj) = zn:kjf(vj) =
= =

= Zka( > az‘j”é) = i (zn:aijkj)v;.
: — e\

]:1 1= =1 j=

But the writing of f(v) as a linear combination of the vectors of the basis B’ is unique,

n
k; = E aijk;
Jj=1

for every i € {1,...,m}. Therefore, [f(v)|g = [flBE - [V]B- O

hence we must have

For a K-linear map f : V — V' the dimension dim(Imf f) is also called the rank of
f. We denote it by rank(f). The rank of a linear map and the rank of its matrix in a
pair of bases are strongly connected.

Theorem 4.10. Let f: V — V'’ be a K-linear map. Then

rank(f) = rank[f]pp ,

where B and B’ are arbitrary bases of V' and V' respectively.

a0



Proof. Let B = (v1,...,v,) and [f]pp = A. By Theorem 3.33 and Remark 4.4 a), we
have

rank(f) = dim(Imf f) = dim (V) = dim f({v1,...,v,)) = dim(f(v1),..., f(vn)) =

= rank( ‘A) = rank(A) = rank[f]pp .

Now take some other bases By = (u1,...,u,) of V and B} of V' and denote [f]BlB{ = A.
It follows that

rank([f]p, p;) = rank(A;) = rank( "A;) = dim(f (u1), ..., f(un)) = dim(Imf f) =
- d1m<f(v1), ceey f(’l)n)> - rank[f]BB' .
O

Remark 4.11. (1) Notice that the rank of a linear map does not depend on the pair of
bases in which we write its matrix.

(2) Also notice that, considering matrices of a linear map in different pairs of bases, their
ranks are the same. Some other connection between matrices of a linear map in different

pairs of bases will be discussed in the next part of this section.

Example 4.12. Consider the R-linear map f : R* — R3 defined by
flyzt)=(e+y+zytzttzrtta), V(zyzt) R

Let E = (e1,ea,¢e3,e4) and E' = (e}, €5, €4) be the canonical bases in R* and R? respec-

1 1 10
tively. We have seen in Example 4.8 a) that [f]lggpr = |0 1 1 1| . Since
1 0 11
1 11
01 1|=1+#0,
1 01

it follows by Theorem 4.2 that rank(f) = rank[f]gp = 3.

We continue this section by presenting one of the key results in Linear Algebra,

connecting linear maps and matrices.

Theorem 4.13. Let V, V/ and V" be vector spaces over K with dimV =n, dim V' =m
and dimV"” = p and let B, B’ and B” be bases of V, V' and V" respectively. If
fy9€ Homg(V,V'), h € Homg(V', V") and k € K, then

[f + 9l =flee +9lBE , [kflBEB =k [flBB,

[ho flgsr = [hp B [flBB -
Proof. Let us consider [flpp = (aij) € Mpun(K), [gle = (bij) € Mpy,(K) and
[h}B/B” = (Cm) S Mpm(K) We have

m

m p
f(vj) = Zaijvgv g(v;) = Z bijvi,  h(vi) = chﬂ)g
i=1 k=1

i=1
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for any j € {1,...,n} and for any i € {1,...,m}.
Then for any k € K and for any j € {1,...,n} we have

(f +9)(vj) = f(vg) + g(v)) Za”v +mev —Z aj + bij)vy
=1

m

(k) (vg) = kf (o) = k- (3 aigof) = D (kag)f,

i=1 i=1

hence [f + gl = [flpp + 9] and [kflpp =k - [flpB
Finally, for any j € {1,...,n} we have

(hOf)(U ) 'Uj —h Zazj Zam Za” chz =
=3 (eriaij)vy .

k=11i=1

hence [ho flgp» = [kl B - [f]BB" - O

Theorem 4.14. Let V and V' be vector spaces over K with dimV =n and dim V' =m
and let B and B’ be bases of V and V' respectively. Then the map

©: Homg(V,V') = My (K)

defined by
o(f) = flep, Vf € Homg (V, V)

is an isomorphism of vector spaces.

Proof. Let us prove first that ¢ is bijective.
Let f,g € Homg(V,V') such that o(f) = ¢(g). Then [f]lpp = [9]pp = (a;;) and

f(v) = arjvy + agjvy + - + amjvy, = g(v;), Vj € {1,...,n}.

Then f = g by Theorem 3.48. Thus, ¢ is injective.

Now let A = (ai;) € Mumn(K), seen as a list of column-vectors (a',...,a™), where
aij

al = : |. Consider B = (v1,...,v,) and B’ = (v,...,v},) and define a K-linear
Amj

map f: V — V'’ on the basis of the domain by

foj) = arjvf + -+ + amgvp, |
for any j € {1,...,n}. Then

o(f) = [flsp = (ay) = A.

Thus, ¢ is surjective.
The proof is completed by Theorem 4.13. O
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Remark 4.15. The extremely important isomorphism given in Theorem 4.14 allows us
to work with matrices instead of linear maps, which is much simpler from a computational

point of view.
As we saw in Remark 3.36 a), (Endk(V),+,0) is a unitary ring.

Theorem 4.16. Let V be a vector space over K with dimV = n and let B be a basis
of V. Then the map
v : Endg(V) = M,(K)
defined by
o(f) =1fls, Vf € Endx(V)

is an isomorphism of vector spaces and of rings.
Proof. Tt follows by Theorem 4.13 and Theorem 4.14. O

Corollary 4.17. Let V be a vector space over K, B is an arbitrary basis of V' and
f € Endg (V). Then
fe AutK(V) =2 det[f]B 75 0.

Proof. By Remark 3.36 b) and Theorems 4.16, f € Autx (V) (i.e. f is a unit in the ring
(Endk(V),+,0)) if and only if [f]p is a unit in (M,,(K),+,-). According to Remark 4.4
b), this means that det[f]s # 0. O

Definition 4.18. Let f € Endg (V) and let B = (vq,...,v,) and B’ = (vf,...,v},) be
bases of V. Then we can write

V] =t1v1 +torve + - v,
Uy = t19U1 + togVs + -+ - + Lpovy

!
v, = tlnvl + thUQ + -+ tnnvn

for some ¢;; € K. Then the matrix (¢;;) € M, (K), having as columns the coordinates of
the vectors of the basis B’ in the basis B, is called the transition matrix from B to
B’ and is denoted by Tgp'.

Remarks 4.19. 1) Sometimes the basis B is referred to as the ”old” basis and the basis
B’ is referred to as the "new” basis.
2) The j-th column of Tgp: (j = 1,--- ,n) consists of the coordinates of v; = 1y (v}) in

the basis B7 hence TBB’ = [1\/]3/3.

Theorem 4.20. Let f € Endg (V) and let B = (v1,...,v,) and B’ = (v},...,v}) be
bases of V. Then the transition matrix Tz p- is invertible and its inverse is the transition

matrix TB/B~

Proof. Since T' = Tgp: is the transition matrix from the basis B to the basis B’ we have

n
- tiovs
Uj - ij Vi
=1
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for any j € {1,...,n}. Denote S = (s;;) € My, (K) the transition matrix from the basis
B’ to the basis B. Then .
= Z skiv/k )
k=1

for any i € {1,...,n}. It follows that

n

n n n
V=Yt (O skivg) = DO skatig)vh
- k=

i=1 k=1 =1 =1

By the uniqueness of writing of each v/ as linear combination of the vectors of the basis
B’, it follows that

1 ifk=y

0 ifk#j

n
E Skitij =
i=1

that is, S-T = IL,.
Similarly, one can show that T'-S = I,,. Thus, T is invertible and its inverse is S. [

Theorem 4.21. Let f € Endg(V), let B = (v1,...,v,) and B’ = (v{,...,v],) be bases
of V and let v € V. Then

[v]p = Tpp - [v]p .

Proof. Let v € V and let us write v in the two bases B and B’. Then v = ;" | k;v; and
v = ZJ 1 kgv; for some k;, k. € K. Since Tpp' = (ti;) € M, (K), we have

(3] 7
n
/
v; = E Lijvi,
i=1

for any j € {1,...,n}. It follows that

n n
U—Zk Zt”vZ :Z t” ]

i=1 j=1

By the uniqueness of writing of v as a linear combination of the vectors of the basis B,

it follows that
ki = Z tijk) 7o

hence [v]p = Trp - [V]B'. O

Remark 4.22. Usually, we are interested in computing the coordinates of a vector v in
the new basis B’, knowing the coordinates of the same vector v in the old basis B and

the transition matrix from B to B’. Then by Theorem 4.21, we have
[vlp = Tpp - Wl =Tpp - [v]s-

Example 4.23. Consider the bases F = (e1, es, e3) and B = (v, va, v3) of the canonical
real vector space R3, where E is the canonical basis and v; = (0,1,1), vo = (1,1,2),

vz = (1,1,1). Let us determine the transition matrices from E to B and viceversa.
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Since
V] = es + e3

Vg = €1 + es + 2e3
U3:61+€2+63

it follows that

0 1 1
Tgp=11 1 1
1 2 1
Further, we get
e = —vp + v3

€y = V1 — VU + V3

€3 = Vg — V3
hence
-1 1 0
Tgp=1 0 -1 1
1 1 -1

Recall that we must have Tgrp = T é, so that we could have obtained Tgg by computing
the inverse of the matrix Tgp.

Let us consider now the vector u = (1,2,3). Clearly, its coordinates in the canonical
basis F are 1, 2 and 3. By Theorem 4.21, it follows that

-1 1 0 1
ulp=Tpe-ulg=0 -1 1 |[-|12]=]1
1 1 -1 0

Hence the coordinates of u in the basis B are 1, 1 and 0.

Theorem 4.24. Let f € Endg (V) and let B and B’ be bases of V. Then
[/ =T5p - 15 Top -

Proof. Let us denote T'= Tgp/. For every v € V, by Theorems 4.9 and 4.21, we have

e =1flg s =[flg T [v]p.
We also have
f))s=T-[f(v)]p =T-[flp - [v]p -

Then the equality
flg-T-Wwlp =T-[flz - [v]p

yields two ways of writing the vector v as linear combinations of the vectors of the basis
B’. Since we must have the equality of the corresponding scalars, [f]g - T =T - [f]5-
Therefore, [flgr =T [f]lp-T. O
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Example 4.25. Consider the bases E = (e, €2, e3) and B = (v1, v, v3) of the canonical
real vector space R3, where E is the canonical basis and v; = (0,1,1), vo = (1,1,2),
v = (1,1,1). Also let f € Endg(R?) be defined by

fl@,y,2)=(x+y,y—2z2+2), Y(z,y,2) € R®.

Let us determine the matrix of f in the basis F and in the basis B.

Since
fler) =(1,0,1) =e; +e3
fle2) = (1,1,0) = ey + €2
fles) =(0,—1,1) = —eq + €3
1 1 0
we get [fle=10 1 —1] .Using Theorem 4.24 and the transition matrices Tgp and
1 0 1

Tpg, that we have determined in Example 4.23, we have

(fls=Tgpfle - Tep = Tee - [fle - Tep =

-1 1 0 11 0 0 1 1 -1 -3 -2
=10 -1 1 }|-10 1 =1]-J1 1 1|=1]1 4 2
1 1 -1 1 0 1 1 2 1 0 -2 0

It is worth to be mentioned that we could have reached the same result using the definition
of the matrix of a linear map and expressing the vectors f(v1), f(v2) and f(v3) as linear

combinations of the vectors vy, vo and v3 of the basis B.

Remark 4.26. It is possible to establish a more general result than Theorem 4.24,
namely to consider linear maps between different vector spaces and to take two bases in
each of the vector spaces. Thus, we have the following theorem whose proof gives the
reader another way to approach Theorem 4.24.

Theorem 4.27. Let f € Homg(V,V’), let By and B be bases of V' and let B} and B}
be bases of V'. Then

[f1B.By = Tngé [flB.B; - T, B, -

Proof. As in Remark 4.19 2), Tg,p, = [lv]s,n, and Tp;p, = [lv/]p,p;. Of course,
TB_{lBé = [lv] B B;- Applying Theorem 4.13 to the equality f = 1y o f o 1y, we have

[fl,By = (vl By - [f]BiBY - [IV]BaB:

hence the expected conclusion. O

4.2 Exercises with solution

1) Let B = ((1,2),(-2,1)) and B’ = ((1,—1,0),(-1,0,1),(1,1,1)). Show that B, and
B’ are bases in the R-vector spaces R? and R3, respectively, and determine the matrix
of the linear map f : R? — R3, f(x,y) = (z + y,2x — y,32z + 2y) in the pair of bases
(B, B").
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Solution: Since the rank of the matrix formed with the pairs from B is 2, and the rank
of the matrix formed with the vectors of B is 3, B is a basis of R? and B’ is a basis of
R3. The columns of the matrix [f]p, 5 = (a;j) € M32(R) are given by the equalities
(37 Oa 7) = f(17 2) = all(la 7170) + (121(71, Oa 1) + 0,31(1, 17 1)7
(—1, —5, —4) = f(—2, 1) = a12(1, —1, O) + agg(—l, 07 1) + a32(1, 1, 1),

hence by the systems

a1 — a1 +az; =3 a2 —agz +azx = —1
—an +a3 =0 and —ap2 +azx = -5
asy +az =7 a2 + azy = —4

10 11 10 5 2 10
which have the solutions ( — ) and ( —= —), respectively. Thus,

37373 3737 3
(U
3 3
11 2
[f]B,B’ - ? —g
o _io
3 3
Another solution: The transition matrix from the standard basis E’ of R? to B’ is
1 -1 1
T=] -1 0 1 |,and the matrix of f in the bases B, E’ is
0 1 1
3 -1
flgee=1 0 =5 |,
7T —4

(its columns are the coordinates of f(1,2) and f(—2,1) in the standard basis baza E’,
ie. f(1,2) and f(—2,1)) hence,

o5

3 3

11 2

, =71 , = = _Z
He =T Wee=| 5 -3
lo 10

3 3

2) Let f: R?® — R* be the R-linear map defined on the standard basis as follows:

f(el) = (1727374)7 f(e2) = (473’27 1), f(e?:) = (_2, 1,4, 1)'

Determine:
i) f(v) when v € R3;
ii) the matrix of f in the standard bases;

iii) a basis for each of the R-spaces Im f and Ker f.
Solution: 1) f(x1,xe,x3) = x1f(€1) + xaf(e2) + x3f(es).
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ii) The matrix of f in the standard bases is the matrix whose columns are f(e1), f(e2)
and f(es), respectively, i.e.

1 4 -2

2 3 1

3 2 4

4 1 1

iii) Im f = f((e1,e2,€3)) = (f(e1), f(e2), f(e3)), so,
1 4 -2
, B 23 1 |
dim(Imf) = rank 5 9 4 =3,

4 1 1

therefore f(ey1), f(e2) and f(e3) form a basis in Im f. Then
dim(Kerf) = dimR* — dim(Imf) = 3 — 3 = 0,

hence Ker f = {(0,0,0)} and () is a basis in Ker f.

3) Let V, V'’ be R-vector spaces, B = (v1,v2,v3) be a basis in V, B’ = (v], v}, v;) be a
basis in V' and f : V — V' be the linear map for which

0 -1 5
fleer=|1 0 0
0O 1 =5

Determine:

i) the dimension and a basis for each of the spaces Im f and Ker f;

ii) [f]p.zr when V' = R3, v} = (1,0,0), v4 = (0,1,1), v§ = (0,0,1) and E’ is the standard
basis of R3;

iti) f(x) for © = 2v1 — v2 + 3vz, under the circumstances of ii).

Solution: 1) We remind that the columns of [f]p g give us the coordinates of the vectors

f(v1), f(ve) and f(v3), respectively in B’, i.e.
f(vr) =vh, f(va) = —v} +v5 and f(v3) = bv} — Hvs.

Then dim(Im f) =rank[f]g g = 2, and a 2 x 2 minor of [f]p, B can be taken from the
first 2 columns (and the first 2 rows), therefore f(v1) and f(vy) form a basis in Im f.

Furthermore,
dim(Kerf) = dimV — dim(Imf) =3 -2 =1,

and, since the columns 2 and 3 of [f]p, g are proportional, we have
flus) = =5f(va) & f(vs — Bug) =0 < vz — Suy € Ker f.

Thus vg — bvy forms a basis in Kerf.
ii) The transition matrix T" from the standard basis E’ to B’ is the matrix whose columns

are v}, vh, v4, and

flee =T " [flee < [flse =T[f]s5-
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iii) Since the columns of [f]p g contain the coordinates of f(v1), f(v2), f(vs) in the
standard basis E’, they will be exactly the vectors f(v1), f(vs), f(v3) of R?, and

f(x) = f(2v1 — v + 3v3) = 2f (v1) — f(v2) + 3f(v3).
We recommend the reader to complete the solution with the missing computations.

4) Let f € Endg(Q*) with the matrix in the standard basis

Find a basis and the dimension for each of the Q-spaces Ker f and Im f.

Solution: Let E = (e1, eq, e3,e4) be the standard basis of @Q4. The given matrix is [f]g
and its columns are f(e1), f(ez2), f(es), f(es). For finding a basis and the dimension of
Im f we compute the rank of [f]g, carefully watching from which columns we ”"cut” a
nonzero minor which gives us rank[f]g. We find that dim(Im f) = 3 and a possibility
for a 3 x 3 nonzero minor is to take the first 3 rows and the first 3 columns. So,
(f(e1), f(e2), f(es)) is a basis of Im f and dim(Ker f) = 4 — 3 = 1. For finding a basis
for Ker f we can notice that 7(c; — ¢3) = c2 — ¢4 (¢; denotes the i-th column of [f]g, i.e.

f(e;)) and we continue as in the previous exercise, or we can use Theorem 4.9 as follows:

X1 0 X1 + 2172 + I3 + 2504 = 0
0 3 2 3 204 =0
(@1, 29, 23,24) € Kerf < [fle = ok Ao A
T3 0 —xr1 — 312 + 4z4 =0
T4 0 +4x9 —x3 — 314 =0

The solution set of this system is
{(Ta, —a, =T, ) € Q* | a € Q} = {a(7,-1,-7,1) | a € Q} = ((7,-1,-T7,1)),
hence the vector (7,—1,—7,1) is a linearly independent (i.e. nonzero) generator of Ker f,
thus it forms a basis of Ker f.
4.3 Systems of linear equations
Let K be a field. A system of m linear equations with n unknowns z1,...,z, is
a1121 + a2 + -+ A1pTn = by
a21T1 + G222 + -+ + A2p Ty = b2

Am1%1 + AmaT2 + -+ + AmpTn = bm

where a;;,b; € K (i =1,...,m, j = 1,...,n). The elements a;; € K (1 = 1,...,m,
j =1,...,n) are called coefficients and b, € K (j = 1,...,n) are called constant

terms.
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The matrix A = (a;;) € Mpn(K) is called the matrix of the system (S). Let us

X1 bl
denote x = | @ [ and b= | : [. Then the system (S) can also be written:
a:‘7l b'fn/
A-x=b (S)
The matrix
a1 a2 ... Qi by
- a1 a2 ... Gn by
A=
Am1 Qm2  ---  Qmn by

is called the augmented matrix of the system ().

By Theorem 4.14, there exists a bijective correspondence between K-linear maps
and matrices. Thus, since A € My, (K), there exists fa € Homg (K™, K™) such that
[faler = A, where E and E’ are the standard bases in K™ and K™, respectively (see
Remark 4.8 ¢)). If one considers z € K™ and b € K™, by Theorem 4.9, we have

T bl
[fa@)]e = [falpp [2le=A-| * | = | =[]

Tn bm

It follows that fa(x) = b. Thus, the system (5) can be written as:
fa(z) =0 (5)

Remarks 4.28. (1) Thus, for a linear system of equations we have three equivalent
forms, namely: the classical one with coefficients and unknowns, the one using matrices
and the one using the corresponding linear map.

(2) We have denoted by = and b first column-matrices and then row-matrices to get nicer

results, without using any transposed matrices.

Definition 4.29. An element 2° € M,1(K) (2 € K™) is called a solution of (S) if
A-2° =0 (or, equivalently, fa(2°) =b).

The system (5) is called consistent if it has at least one solution. Otherwise, the system
(S) is inconsistent. Two systems of linear equations with n unknowns are equivalent

if they have the same solution set.

If b = 0, then the system () is called a homogeneous system of linear equations
and it has the following three equivalent forms:
a11T1 + a1222 + - + a1y, =0
a2121 + ag2T2 + -+ + a2p &y =0

Am1T1 + Q2T + -+ Gpp®y, =0
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A-z=0 (So)
fa(x) =0 (So)
Denote the solution sets of (S) and (Sp) by
S={a" € My (K) | A-2®=b} = {2” € K" | fa(a®) = b},
Sop={2" € My (K) | A-2°=0} = {2° € K™ | fa(z°) = 0}.

Theorem 4.30. The solution set Sy of the homogeneous linear system of equations (Sp)

is a subspace of the canonical vector space K™ over K and
dim Sy = n — rank(A).

Proof. Since
So ={2° € K™ | fa(2°) = 0} = Kerfa

and the kernel of a linear map is always a subspace of the domain vector space, it follows
that Sy < K™. Now by Theorems 3.66 and 4.10, it follows that

dim Sy = dim(Kerf4) = dim K" — dim(Imf f4) = n — rank(f4) = n — rank(A).
O

Remark 4.31. If (c!,...,c") is a basis of the subspace Sy, then every z € Sy can be
uniquely written as
=kt + -+ kd

for some ki,...,k € K.
Theorem 4.32. If x! € S is a particular solution of the system (S), then
S=a'+Sy={z' +2°|2° € Sp}.

Proof. Since x! € S, we have Az! = b.
First, let 22 € S. Then

Azl =b= Az’ = Azt = A(@® — ") =0=2 -2l e Sy =22 ca' + 5.

Conversely, let 22 € 2! 4+ Sy. Then there exists 20 € Sy such that 22 = 2! +20. It follows
that Az? = A(z! +2°) = Az' + A2° = b+ 0 = b and consequently z? € S.
Therefore, S = 2! + Sp. O

Remarks 4.33. (1) By Theorem 4.32, if ! is a (particular) solution of (S), then every
x € S can be uniquely written as

x:x1+klcl+-~-+klcl

for some ki,...,k € K. This is called the general solution of the system (.5).
(2) By Theorem 4.32, the general solution of the system (.S) can be obtained by knowing
the general solution of the homogeneous system (Sp) and a particular solution of (.5).

Next, we are going to see when a linear system of equations has a solution.
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Remarks 4.34. (1) The system (S) is consistent if and only if b € Imf f4.
(2) Any homogeneous linear system of equations is consistent, having at least the zero

(trivial) solution.
Theorem 4.35. The system (Sp) has a non-zero solution if and only if rank(A4) < n.

Proof. By Theorem 4.30, we have

So = Kerfa # {0} & dim Sy # 0 < n —rank(A) # 0 < rank(A4) < n.

Corollary 4.36. If A € M, (K), then
So = {0} & rank(4) =n < det(A) #0.

Definition 4.37. If A € M,,(K) and det(A) # 0, then the system (9) is called a Cramer
system.

So, Cramer system is a system

1121 + a12%2 + - + a1 Ty = by
a21%1 + A22%2 + - -+ + A2p Ty, = by

Gn1T1 + Ap2T2 + - -+ GppTn = bn
with A = (a;5) € M, (K), b1,...,b, € K and d = det(A) # 0

Theorem 4.38. A Cramer system has a unique solution. This solution is given by the so
called Cramer’s rule (or Cramer’s formulas) which says that if d; is the determinant

obtained from d by replacing its j-th column by b (the column of constant terms), then

T =d; .41
To = do -d!
Ty =d,, -d7 !

Proof. The matrix of a Cramer system is an invertible matrix A € M, (K). Then we
deduce that x = A~'b is the unique solution. More precisely,

X1 by by dy
Z2 4 b.z gt b'2 g d.2 7
Tn b by dn
which leads us to the expected formulas. O

Corollary 4.39. A homogeneous Cramer system has only the zero solution.

As for the consistency of the general linear systems, we have the following result.
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Theorem 4.40. (Kronecker-Capelli) The linear system (S) is consistent if and only

if rank(A) = rank(A).
Proof. Let (eq,...,e,) be the standard basis of the canonical vector space K™ over K

and denote by a', ..., a" the columns of the matrix A. Then using Theorem 4.4, we have
(S) is consistent < J2° € K™ : fa(a®) =bebeImffa < b faller,. .., en) &

Sbe{faler), ..., falen)) &be (a,...,a") & (a*,...,a",b) = (a',...,a") &

& dim(a',...,a", b) = dim(a',...,a") < rank(A) = rank(A).

O

Let us consider that rank(A4) = r. Based on how one can determine the rank of a

matrix one can restate the previous theorem as follows:

Theorem 4.41. (Rouché) Let d, be a nonzero r x r minor of the matrix A. The
system () is consistent if and only if all the (r 4+ 1) x (r 4+ 1) minors of A obtained by
completing d, with a column of constant terms and the corresponding row are zero (if
such (r + 1) x (r + 1) minors exist).

We call the unknowns corresponding to the the entries of d, main unknowns and
the other unknowns side unknowns.
We end this section by presenting two algorithms for solving arbitrary systems of

linear equations.

1. Based on Rouché Theorem. We use the notations from Rouché Theorem.
Let us consider that we have the minor d, of A. For simplicity reasons, we consider
that this minor was “cut” from the first r rows and the first » columns of A. If one finds
a nonzero (r + 1) x (r + 1) minor which completes d,, as in Rouché Theorem, then (S) is
inconsistent and the algorithm ends. If r = m or all the Rouché Theorem (r+1) x (r+1)
minor completions of d,, are 0, then (S) is consistent. One considers only the r equations
which determined the rows of d,. Since rank A = rank A = r, Corollary 4.3 b) tells us
that all the other equations are linear combinations” of these r equations, hence S is
equivalent to
a11%1 + T12%2 + -+ + a1pTp = b1
a21%1 + T22%2 + -+ + A2y = b1

(%)

Ar1%1 + Tr2Z2 + - + Qpp Ty = br

If n = r, i.e. all the unknowns are main unknowns, then (x) is a Cramer system. The

Cramer’s rule gives us its unique solution, hence the unique solution of (S).

Otherwise, n > r, and z,41, ..., z, are side unknowns. We can assign them arbitrary
“values” from K ay.41,...,ay, respectively. Then (x) becomes
anzi + a2y + -+ a1y = b1 — Q141041 — 0 — A1y
2121 + a22T2 + -+ + A2r Ty = by — A2 r 11041 — - — Q2p Oy

Ar1T1 + QroXo + -+ + Qpp Xy = br — Qprr41Q0p41 — 0 — ArpQip
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The determinant of the matrix of (xx) is d,, # 0, hence we can express the main unknowns
using the side unknowns, by solving the Cramer system (xx).

2. Gaussian elimination provides us with an algorithm for studying the consistency
of a linear system (S) as well as for solving it. It is based on the fact that certain
elementary operations on the equations of (S) (or, more precisely, on the matrix A) lead
us to equivalent systems.

By an elementary operation on the rows (columns) of a matrix we understand
one of the following:

(1) the interchange of two rows (columns).

(2) multiplying a row (column) by a non-zero element from K.

(3) multiplying a row (column) by an element from K and adding the result to another
row (column).

The purpose is to successively use elementary operations on the rows of the augmented
matrix A of (S) in order to bring it to an echelon form B. This procedure corresponds to
a partial elimination of some unknowns to get an equivalent system which can be easier
solved. If we manage to do this, then B is the augmented matrix of such an equivalent
system.

A matrix A € M,,,,(K) is in an echelon form with r > 1 non-zero rows if:

(1) the rows 1,...,r are non-zero and the rows r + 1,...,m consists only of 0;

(2) if N(7) is the number of zeros at the beginning of the row ¢ (i € {1,...,7}), then

0<N(1)<N(2)<---<N(r).

An r non-zero rows echelon form with N(i) = i — 1, for any 7 € {1,...,r} is called
trapezoidal form.

As we will see in the solution of Exercise (with solution) 2), one can easily work
very well with the echelon form for solving a linear system. Yet, if we manage to get to
a trapezoidal form, some information on the given system can be easily red from this.
E.g. the rank of A is (the rank of B which is) the number of the nonzero elements on
the diagonal of B and these nonzero elements on the diagonal of B provide us with the
main unknowns. Yet, finding the trapezoidal form is not always possible by using only
row elementary operations (see, again, Exercise (with solution) 2)). Sometimes, we have
to interchange two columns of the firs n columns, hence columns corresponding to the
matrix of a certain equivalent system. This is, obviously, allowed since this means that
we commute the two corresponding terms in each equation of this system.

If, during this algorithm, one can find a row for which all the elements are 0, except
for the last one, which is a € K*, then (S) is inconsistent since it is equivalent to a
system which contains the equality 0 = a which is not possible. Otherwise, B gives us
an equivalent system of the form

/ li / / / li /
an T+ QT + -+, T+ 0T A Ty e F AT = D)
/ / / / li /
Aoy + -+ Ay o Ty + A, Tr + Ay Trgy + oo F A, Ty = b
a Tr_1 +a T, +a Tpy1 4+ +al Ty = b
r—1,r—1%r—1 r—1,04r r—1,r+147r+1 r—1,ntn — Yr—1

! I / N
Oy Ty + Ay r41Tr+1 T QT = br
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(possibly with the unknowns succeeding in a different way, not as in (), if we permuted
columns) The main unknowns z1,...,x, can be easily computed starting from the last

equation of this system.

4.4 Exercises with solution

1) Solve in R? the following system

1+ 22+ 223 =1
21}1 71‘24’2‘%3 =—4
4(E1 -|—(E2 +4.’E3 = —2

Solution: I) ... using Gaussian elimination:

The augmented matrix of the system is

1 1 2|-1
A= 2 -1 2|4
4 1 4|-2

Subtracting row 2 from row 1 multiplied by 2, fact denoted by ro — 2r1, and subtracting

from row 3 row 1 multiplied by 4 we get the matrix
1 1 2 | -1

A= 0 -3 —2|-2
0 -3 —4]| 2

The row operation r3 — r9 leads us to the echelon form:

1 1 2 | -1
A= 0 -3 —2| -2
0 0 -2| 4

Hence the given system is equivalent to

R +2x3 = -1
—3.1‘2 —2.1‘3 =-2
—2333 = 4
Thus the given system has a unique solution; the last equation leads us to x5 = —2, the

second to x9 = 2, and the first to 1 = 1. So, the solution is (1,2, —2).

If in Ay we continue the row operations as follows

1 1 0 3 ) 1 0 0 1
— ro—rT rit+3r
A " -3 0 -6 | N7 -3 0 —6
r1TT3
0 -2 4 0 0 -2 4

one says that we used Gauss-Jordan elimination. This gives us the equivalent system:

T, = 1
—31‘2 = -6
723]3 =4
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The solution results right away.
IT) ... using Rouché Theorem:

The systems matrix determinant is

So, we are dealing with a Cramer system. Hence, the system is consistent, it has a
unique solution, and this solution is given by Cramer’s formulas. We let the reader find

the solution this way.
2) Solve in R* the system
3r1 +4x2 + 23+ 224 =3

6x1 +8x2 +2x3+bxy =7
91’1 —+ 12132 —+ 3$3 —+ 101’4 = 13

Solution: I) ... using Gaussian elimination:

We write the augmented matrix and we apply the mentioned elementary operations

3 4 1 213 341 2|3
A=|6 8 2 5|7 3}§ 000 1|1
9 12 3 10|13 00 0 4|4
341 23
Il 000 1)1
00000

This shows that the given system is equivalent to

{3x1+4x2+x3 +2z4, =3

ry4 = 1
Here, 1, x4 are main unknowns and the solution set is:
1
§(174a75),a,6,1 cua,feR.

Remark: If one wants to continue the algorithm in order to obtain a trapezoidal form,

one has to permute columns. E.g., permutinc ¢ and ¢4 we get the trapezoidal form

S O W
S =
o O =
o O N
S = W

Consequently, when we write the corresponding equivalent system, the unknowns suc-

cession (in each equation) is x1, x4, 3, T2, hence the system appears as follows

3r1 +2x4 Hx3+410=3
Ty =1

One can easily notice that this system is consistent and it is to find its solution set.
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IT) ... using Rouché Theorem: We have

5 3 1 2 4 1 2
5 s =land |6 2 5 |=] 8 2 5 |=0
9 3 10 12 3 10
. . 2 .
(since c+1 = 4c¢y). Therefore, we can consider d), = 9 5 | We can uniquely complete
1 2 3
it with a constant terms column | 2 5 7 | and this determinant is 0 since column 3
3 10 13

is the sum of the first two columns. Thus the system is consistent, and it is equivalent to

T3+ 2x4 =3 — 3x1 — 4o
2x3 + bxy =7 — 621 — 829

Here x1,z2 are side unknowns. We consider them parameters, and finding z3 and x4

from the above system is now an easy exercise.

3) Solve in R? the system
T, + o — 3x3 = —1
201 +x9 — 223 =1
T+ T2+ 23=23
T+ 2x9 — 33 =1

Solution: I) ... using Gaussian elimination:
1 1 -3|-1 1 1 -3|-1
<21 -2 0 -1 4|3
1t 113 0 0 4|4
1 2 =31 0 0 2
1 1 -3]|-1 1 1 -3]|-1
0 -1 4 3 0 —1 4 3
0 O 4 4 0 O 4 4
0 0 4|5 0 0 0|1

The last row leads us to 0 - x4 = 1, which is absurd. Thus the system is inconsistent.
IT) ... using Rouché Theorem:

1 1 -3
Avemd,=| 2 1 -2 |= —4# 0; the unique way to complete it with a constant terms
11 1
11 -3 -1
column is ? 1 _12 L = —4 which is not zero, hence the system is inconsistent.
1 2 -3 1

4) Discuss on the real parameter a the consistency of the following system in R*, then
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solve it:
201 — 29+ 3x3+ 4y = 5

4r1 — 229 + 523+ 64 = 7
6x1 —3x9 + T3+ 8xy4= 9
ary —4xy + 9x3 + 1024 = 11

Solution: I) ... using Gaussian elimination:
Starting with the augmented matrix we successively find the matrices

2 -1 3 4 5 1 2 3 4 5 1 2 3 4 5
4 —2 5 6 T 2 4 5 6 7 0o 0 -1 -2 -3
6 378 9|7 3678 o | o o -2 -4 -6
a —4 9 10 11 4 o 9 10 11 0 a-8 -3 —6 -9
1 2 3 4 5 1 2 3 4 5
0 -2 -1 0 -3 0 -2 -1 0 -3
"o 4 2 o || o 0o o o o
0 -6 -3 a—8 -9 0 0 0 a—8 0
1 2 3 4 5 1 2 3 5
0 -2 -1 0 -3 0o -2 0 -1 -3
“l o 0o 0 a-8 0o || 0 0 a-8 0 0
O 0 0 0 0 O 0 0 0 0

hence the system is always consistent.

1) If o # 8, we get the equivalent system:

—xo + 2x4 + 411 +3x3 = 5
—2I4 — I3 = -3
(v — 8)xy =0

3
S:{<07—2+21‘3,£L’3,2—$23) mgeR}

2) If a = 8, the system is equivalent to

Its solution set is

)

—x9 +2x4 + 421 +3x3= 5
—21‘4 — X3 = -3

which has the solution set

3
SZ{($1,—2+4x1+2$3,$3,2—?>|$1,$3€R}-
IT) ... using Rouché Theorem:
We have 3 =1,
-2 5
2 -1 3 -1 3 4 -1 3 4 2 -1 3
-2 5|=|-2 5 6|=|-25 6 |=0and |4 -2 5 |=a-38.
6 -3 7 -3 7 8 -4 9 10 a —4 9
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-1 3

1) If & = 8, then we can consider d, = | . We can complete it two ways with

-2 5
constant terms columns:
-1 3 5 -1 3 5
-2 5 7|=|-2 5 7 |=0,
-3 7 9 —4 9 11

hence the system is consistent. To get the solution set, we have to solve a system of 2
linear equations with 2 unknowns, which will be the reader’s task.

2 -1 3
2)Ifa#8, wetaked, =| 4 —2 5 |. The only way to complete it with a constant
a —4 9

terms column gives us a zero minor, hence the system is consistent, equivalent to

2r7 — 9+ 3x3 = 5 —4duy
4ry — 229 +5x3 = 7—06x4
axy —4xe + 923 = 11 — 1024

system which can be solved with Cramer’s rule.
Let us notice that in the considered cases, we have different types of consistency: in
the first case we have 2 side unknowns and in the second case we have only one.

5) Discuss on the real parameter a the consistency of the following system in R?, then
solve it:

axi1+ To+ x3=1

1 tary+ z3=1

T+ o +axz=1

Solution: I) ... using Gaussian elimination:
We successively obtain the equivalent matrices:

a 1 1 1 1 1 a1 1 1 Q@ 1
1 o 1 1 ~ 1 aa 1 1 ~ 0 a—-1 l-«o 0
1 o 1 a 1 1 1 0 1-a 1I-a)(l4+a) 1-a
1 1 « 1
~ 0 a-1 11—« 0 =B

1) If « = —2 then

11 =21
B=]10 -3 3 0|,
0o 0 0 3

hence the system is inconsistent.
2) If o # 2 then the system is consistent.
2.1) If « = 1 then

oy}

I
o O =
S O =
o O =
O O =
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the system is consistent, equivalent to the equation x; + x5 + 3 = 1, and the solution
set is S = {(1 — z3 — @3, T2, x3) | T2,23 € R}.

2.2) If « € R\ {—2,1} then the system is consistent, it has a unique solution which can
be found by solving the equivalent system

T + To + ars =1
(a—Dze+ (1 —a)zg=0
l1-a)2+a)zz3=1-«

Th t luti t i 1 L 1
e systems solution set is .
Y 24+a’24+a’ 24+«
IT) ... using Rouché Theorem:
a 1 1
The system’s matrix determinant is | 1 « 1 |. We add all the rows to the first one,
1 1 «

we get the factor o + 2, and the left determinant can be easily computed

a 1 1
1 a1 |=(+2)
1 1 «

—_ = =

1 1
a 1 [=(a+2)(a-1)>2
1 «o

1) If « € R\ {=2,1}, the system is consistent, with a unique solution, provided by
Cramer’s rule.

2) If @ = 1, all the equations become
T+ T2+ 23 =1,

which can be solved as we previously saw.

-2
3) If @ = —2, we take dp = . The only way to complete it with a constant
-2 1 1
terms column gives us theminor | 1 —2 1 | =9 # 0 hence the system is inconsistent.
1 1 1

4.5 Exercises

1) Let ¢ € R. Show that the plane rotation with rotation angle ¢, i.e. the map
f:R? = R? f(x,y) = (xcosp — ysinp, zsinp + ycos p),

is an automorphism of the real vector space R2. Find the matrix of f in the standard
basis of R2.

2) Show that the maps f : R? — R?, f(x,y) = (v,—y) (the symmetry with respect
to Ox) and g : R? — R?, f(x,y) = (—x,y) (the symmetry with respect to Oy) are
automorphisms of the real space R?. Find the matrices of f, g, f —¢, f +2g and go f
in the standard basis.

3) Show that the vector lists (vq, va,v3) and (v], vh, v4) with

v1 = (1,2,1),v2 = (2,3,3),v3 = (3,7,1) and v} = (3,1,4),v = (5,2,1),v5 = (1,1, —6)
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are bases for the real vector space R? and find the connection between the coordinates
of a given vector in these bases.
4) Let B = (v1,v9,v3,v4) be a basis of the R-vector space R*, let us consider

U] = V1, Uz = V1 + V2, U3 = V1 + V2 + V3, Ug = V1 + V2 + U3+ Uy

and let f € Endg(R?*) with

[fl5 =

— N W
o |

—_
I

Show that B’ = (uy,uz,us3,uy) is a basis of R* and determine the matrix [f]z.

5) Let V be a real vector space, B = (v1, v2,v3) a basis of V, let us consider
up = vy + 2v + U3, Uz = V1 + V2 + 2v3, u3z = v1 + V2

and let f € Endg(V). Show that B" = (u1,us2,u3) is a basis of V and determine the

matrix [f]p knowing that

1 1 3
[fls = 0 5 -1
2 7 -3

6) Let f € Endg(Q?) with the matrix in the standard basis equal to

0 1 2 3
-1 2 1 0
3 0 -1 -2
5 -3 -1 1

Determine a basis and the dimension for each of the vector spaces Ker f, Im f, Ker f+ Im f

and Ker f0Im f.
7) Let K = R. Check the equality S = x! + Sy from Theorem 4.32 for the linear system

2004+ x9— T3 — x4+ x5 =1
T1— To+ T3+ x4 —225=0
35614’31’2731‘373!174%’4135:2

and find a basis for the solution subspace of the associated homogeneous system.
8) Discuss on the real parameters «, (3, v, A the consistency of the following systems,

then solve them:

5x1 — 3x9 + 223+ 4x4 =3
41 —2x9 + 33+ Ty =1
8r1 —6x9 — 23— by =9
Tx1 —3x0 + Txs + 1724 = @

1+ 294+ x3=1
(in RY), b) ary + Bra+ yrz = A (in R?).
o’z + f2xg + 723 = A2
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