
Admiterea la Facultatea de Matematică s, i Informatică

Universitatea Babes, -Bolyai Cluj-Napoca

Probleme s, i teste
pregătitoare

Informatică

Probleme s, i Teste Grilă de Informatică pentru
Admiterea la Facultatea de Matematică s, i Informatică

Universitatea Babes, -Bolyai
2026

Coordonatori – autori:

drd. prof. Ioan Daniel Pop

stud. Rares, Cotoi stud. Cristian Cret,u

Autori:

stud. Mircea Măierean stud. Mara Ielciu

stud. Luca Cret,u stud. Mihai Gheorghes, mast. Paul Somes,an

stud. Luca Tudor stud. Paul Dobrescu

Contribuitori:

prof. univ. dr. Dios,an Laura
prof. univ. dr. Pop Horia
conf. univ. dr. S, erban Camelia
lect. dr. Andor Camelia
lect. dr. Călin Alina
lect. dr. Chisăliţă-Creţu Camelia
lect. dr. Cioban Vasile
lect. dr. Ionescu Clara
lect. dr. Lups,a Dana
lect. dr. Mures,an Horea
lect. dr. Dragos, Radu
drd. Berciu Liviu
drd. Ciprian-Viorel Stupinean

drd. Dicu Mădălina
drd. Ion Iulia
drd. Mădut,a Adrian-Pavel
drd. Manole Alexandru
drd. Văran Andrei
prog. Dragomir Manuel
prog. Sarkozi Melisa Alexandra
prog. Zoltan Răzvan
stud. Danis, Cătălin
stud. Deaconu Mihai
stud. Ceangâr Alexandru
stud. Gas,par Daria

Prefat, ă

Această carte se adresează elevilor de liceu care doresc să ı̂s, i aprofundeze cunos,tint,ele

de Informatică s, i să se pregătească ı̂n mod eficient pentru examenul de admitere la Fa-

cultatea de Matematică s, i Informatică a Universităt, ii Babes,-Bolyai din Cluj-Napoca, la

disciplina Informatică.

Fiecare capitol din programa oficială a examenului de Admitere este aprofundat ı̂n

două părt, i: În prima parte sunt prezentate toate conceptele teoretice aferente capitolu-

lui, alături de exemple concrete s, i elemente grafice explicative, iar a doua parte cont, ine

probleme de antrenament specifice capitolului, după modelul problemelor prezente la exa-

men. Mai apoi, sunt prezentate problemele de la toate sesiunile de admitere s, i de la toate

edit, iile concursului Mate-Info UBB dintre anii 2021 s, i 2024, alături de solut, iile aferente.

Ultima parte a cărt, ii cont, ine 10 teste de antrenament a câte 24 de probleme grilă, res-

pectând cu exactitate modelul subiectelor de la examen. Toate aceste probleme cont, in,

de asemenea, rezolvări s, i explicat, ii, la finalul cărt, ii.

Init, iativa s, i efortul principal de realizare a acestei cărt, i se datorează următorilor

student, i: Rares,-Andrei Cotoi, Cristian-Emanuel Cret,u, Mircea Măierean, Mara Ielciu,

Tudor-Luca Cret,u, Mihai Gheorghes, , Luca Tudor, Paul Dobrescu s, i Paul Somes,an. Aces,tia

au propus probleme, au redactat solut, ii s, i au editat materialul sub coordonarea drd. prof.

preuniv. Ioan Daniel Pop, cu sprijinul departamentului de Informatică s, i al comisiei de

admitere nivel licent, ă, coordonată de conf. univ. dr. Dan Mircea Suciu (prodecan). Le

mult,umim tuturor cadrelor didactice s, i student, ilor care au contribuit la realizarea ma-

terialului prin propunerea de probleme, redactarea de solut, ii s, i realizarea de corecturi.

Adresăm mult,umiri speciale pentru ajutorul acordat lect. dr. Clara Ionescu, conf. dr.

Camelia S, erban s, i conf. dr. Marcel S, erban (decan).

Îi rugăm pe cei care observă erori (care aproape sigur s-au strecurat, ı̂n ciuda eforturilor

noastre) sau au sugestii de ı̂mbunătăt, ire să ı̂i contacteze pe coordonatorii culegerii.

De asemenea, le urăm mult succes elevilor ı̂n pregătirea lor pentru examenul de ad-

mitere s, i sperăm să-i ı̂ntâlnim pe mult, i dintre ei ı̂n sălile Facultăt, ii de Matematică s, i

Informatică.

Cluj-Napoca, februarie 2025 Coordonatorii

Precizare: Problemele din subiectele de la concursurile Mate-Info sau examenele de
Admitere nu se vor regăsi printre problemele din această carte. Culegerea are ca scop
pregătirea s, i ı̂nt,elegerea tipurilor de probleme abordate. Problemele propuse ı̂n subiecte

la următoarele edit, ii de concurs/examen vor fi complet noi.

Notă importantă

În lipsa altor precizări:

• Toate operat, iile aritmetice se efectuează pe tipuri de date nelimitate (nu există
overflow / underflow).

• Numerotarea indicilor tuturor vectorilor, matricelor s, i s, irurilor de caractere ı̂ncepe
de la 1.

• Toate restrict, iile se referă la valorile parametrilor actuali ı̂n momentul apelului
init, ial.

• O subsecvent, ă a unui vector este formată din elemente care ocupă pozit, ii consecu-
tive ı̂n vector.

• Un subs, ir al unui vector/s, ir este format din elemente situate nu neapărat pe pozit, ii
consecutive ı̂n vectorul/s, irul respectiv, ı̂n ordinea ı̂n care acestea apar ı̂n s, irul dat.

• Dacă pe un acelas, i rând apar mai multe instruct, iuni de atribuire consecutive,
acestea sunt delimitate prin ”; ”.

Cuprins

I Teorie s, i probleme . 1

1 Algoritmi . 2

2 Tipuri de date. Operatori. 6

3 Tipuri structurate de date . 15

4 Algoritmi elementari . 31

5 Complexitatea algoritmilor . 81

6 Subprograme . 86

7 Recursivitate . 95

8 Metodele Backtracking, Divide et Impera s, i Greedy 114

9 Combinatorică . 134

10 Grafuri . 153

II Teste . 196

11 Admitere 2021 - 2025 . 197

12 Concurs 2021 - 2025 . 327

13 Antrenament . 389

III Răspunsuri s, i indicat, ii . 490

14 Răspunsuri . 491

15 Rezolvări . 498

16 Propunători . 665

17 Erată . 668

Partea

I

Teorie s, i probleme

1

Algoritmi

Acest capitol acoperă

• Noţiunea de algoritm

• Date, variabile, expresii, operaţii

• Structuri de bază (liniară, alternativă şi repetitivă)

1.1 Teorie

1.1.1 Introducere

Un algoritm reprezintă un set finit de pas, i bine definit, i, care descriu o secvent, ă logică
de act, iuni necesare pentru a rezolva o problemă sau pentru a obt, ine un rezultat specific.
Acesta poate fi implementat ca:

• Algoritm principal: cont, ine logica principală a programului s, i poate include
operat, ii de citire/scriere

• Procedură (subalgoritm): o secvent, ă de instruct, iuni care efectuează o sarcină
specifică, comunică doar prin parametri s, i nu returnează valori

• Funct, ie (subalgoritm): similar cu procedura, dar returnează ı̂ntotdeauna o va-
loare s, i nu ar trebui să aibă efecte laterale (precum citire/scriere)

Notă: Subalgoritmii (proceduri s, i funct, ii) nu ar trebui să efectueze operat, ii de citire
sau scriere direct. Acestea ar trebui realizate ı̂n algoritmul principal sau ı̂n subalgoritmi
special dedicat, i pentru operat, ii I/O. Comunicarea ı̂ntre subalgoritmi se face exclusiv prin
parametri (pentru proceduri) s, i prin valoarea returnată (pentru funct, ii).

Datele sunt informat, iile procesate de către un algoritm s, i pot fi de diferite tipuri, precum
numerice, logice, textuale, etc. O variabilă este un spat, iu de memorie care poate stoca
o valoare ce poate fi modificată pe parcursul execut, iei unui algoritm. Fiecare variabilă
este identificată printr-un nume s, i are un tip de date asociat. O operat, ie este compusă
din operanzi s, i un operator. Operanzii reprezintă datele asupra cărora se aplică operat, ia,
iar operatorul este simbolul care indică tipul de operat, ie efectuată asupra acestora. În
funct, ie de scopul acestora, operat, iile pot fi clasificate ı̂n aritmetice, logice sau relat, ionale.

Operanzii pot fi constante, variabile, literali, rezultatele unor funct, ii, rezultatele altor
operat, ii. O expresie este o operat, ie care are ca operanzi alte operat, ii.

Interact, iunea cu utilizatorul sau cu fis, ierele externe se face prin instruct, iuni de intrare
(citire) s, i ies, ire (scriere). Aceste operat, ii asigură comunicarea dintre program s, i mediul
ı̂nconjurător. În cele ce urmează, vom utiliza instruct, iunile Write s, i Return pentru a
evident, ia valorile afis,ate sau returnate de algoritmul respectiv.

Algoritmi Teorie

1.1.2 Structuri de bază

• Structura liniară: expresiile care sunt evaluate secvent, ial pe o singură linie de
cod, precum declarări, atribuiri s, i operat, ii similare.

Structura liniară

a← 3
b← 5
Write a + b ▷ se afis,ează 8

• Structura alternativă (condit, ională): permite luarea unei decizii prin executa-
rea unei ramuri de cod, ı̂n funct, ie de ı̂ndeplinirea unei condit, ii.

Structura condit, ională If

1: If n MOD 2 = 0 then
2: Write ”par”
3: Else
4: Write ”impar”
5: EndIf ▷ se afies,ază ”par” dacă n este par sau ”impar” altfel

• Structura repetitivă: execută un set de instruct, iuni de mai multe ori, de obicei
ı̂n funct, ie de o condit, ie specifică.

Exemplu: Structura repetitivă cu test init, ial For

1: For i← 0, 9 execute
2: Write i, ’ ’
3: EndFor ▷ se afis,ează toate cifrele separate de un spat, iu

Exemplu: Structura repetitivă cu test init, ial While

1: i← 0
2: While i ≤ 9 execute
3: Write i, ’ ’
4: i← i+ 1
5: EndWhile ▷ se afis,ează toate cifrele separate de un spat, iu

Exemplu: Structura repetitivă cu test final Do...While

1: i← 0
2: Do
3: Write i, ’ ’
4: i← i+ 1
5: While i ≤ 9 ▷ se afis,ează toate cifrele separate de un spat, iu

3

Algoritmi Probleme

1.2 Probleme

1. ✓ ?Fie algoritmul ceFace(a, b), unde a s, i b sunt numere ı̂ntregi:

Algorithm ceFace(a, b)

a← a DIV b
b← a * b
a← b DIV a
Write a, ’ ’, b

EndAlgorithm

Precizat, i valorile init, iale ale lui a s, i b astfel
ı̂ncât algoritmul să afis,eze 10 20.

A. a = 18, b = 20

B. a = 28, b = 10

C. a = 20, b = 10

D. a = 10, b = 20

2. ✓ ?Fie a s, i b două numere ı̂ntregi (−104 ≤ a, b ≤ 104). Precizat, i care dintre următorii
algoritmi realizează corect interschimbarea valorilor a s, i b s, i afis,ează valorile acestora
interschimbate. De exemplu: Pentru a = 12 s, i b = 6, algoritmul ar trebui să afis,eze
6 12.

A.

Algorithm swap1(a, b)

a← b+ a
b← a− b
a← b− a
Write a, ’ ’, b

EndAlgorithm

B.

Algorithm swap2(a, b)

a← a * b
b← a DIV b
a← a DIV b
Write a, ’ ’, b

EndAlgorithm

C.

Algorithm swap3(a, b)

a← a DIV b
b← a * b
a← b DIV a
Write a, ’ ’, b

EndAlgorithm

D.

Algorithm swap4(a, b)

a← a− b
b← a− b
a← b+ a
Write a, ’ ’, b

EndAlgorithm

3. ✓ ?Fie algoritmul pink(a, b, k), unde a, b, k sunt numere naturale (1 ≤ a, b, k ≤ 104).

Algorithm pink(a, b, k)

If a > b then

a← a ˆ b
b← a ˆ b
a← a ˆ b

EndIf

While a ≤ b execute

a← a+ k
b← b− k
Write a, ’ ’

EndWhile

EndAlgorithm

Operatorulˆeste operatorul XOR pe bit, i;
tabelul de adevăr este următorul:

ˆ 0 1
0 0 1
1 1 0

Exemplu: 3̂ 5 convertit ı̂n binar este
011̂ 101 = 110 = 6, iar 1̂ 4 convertit ı̂n
binar este 001̂ 100 = 101 = 5.

Care dintre următoarele afirmat, ii de mai jos nu sunt adevărate?

4

Algoritmi Probleme

A. Numărul de valori afis,ate de algoritm este egal cu (b− a) DIV (k · 2) + 1, b > a.

B. Pentru a = 12, b = 100 s, i k = 4, algoritmul afis,ează 11 valori.

C. Pentru a = 70, b = 20 s, i k = 6, algoritmul afis,ează 26 32 38 44 50.

D. Algoritmul afis,ează ı̂ntotdeauna valori din intervalul [a,
(
a+b
2

)
], multiple de k.

4. ✓ ?Fie algoritmii good(a, b) s, i bad(a, b), unde a s, i b sunt numere ı̂ntregi (−104 ≤
a, b ≤ 104).

Algorithm good(a, b)

a← a * b
b← a DIV b
a← a DIV b
Write a, ’ ’, b

EndAlgorithm

Algorithm bad(a, b)

a← a− b

a← b− a
Write a, ’ ’, b

EndAlgorithm

Aleget, i variantele care completează corect spat, iul subliniat de mai sus astfel ı̂ncât cei
doi algoritmi să afis,eze mereu aceleas, i valori pentru a s, i b, indiferent de valorile init, iale
ale acestora.

A. b← a+ b

B. b← a− b

C. b← b− a

D. b← a * b DIV a+ a

5. ✓ ?Fie algoritmul container(n), unde n este un număr natural (1 ≤ n ≤ 104).

Algorithm container(n)

a← 0
b← 1
While n > 1 execute

a← a+ 1
b← b ∗ 2
n← n− b

EndWhile

Return a
EndAlgorithm

Care dintre următoarele afirmat, ii de mai jos
sunt adevărate?

A. Pentru n = 1024, algoritmul retur-
nează 9.

B. Pentru n = 336, algoritmul returnează
8.

C. Algoritmul returnează ı̂ntotdeauna o
putere a lui 2.

D. Algoritmul container(n) returnează
cel mai mare număr k, cu proprietatea
că numărul 2k este mai mic sau egal
decât n.

6. ✓ ?Fie expresia E = n DIV 100 + n MOD 100 DIV 10 + n MOD 10, unde n este un număr
natural nenul (1 ≤ n < 103). Precizat, i pentru câte valori ale lui n, care respectă
specificat, iile din enunt, , expresia E are valoarea 9.

A. 9 B. 10 C. 45 D. 55

5

2

Tipuri de date. Operatori.

Acest capitol acoperă

• Care sunt principalele tipuri de date s, i cum se reprezintă?

• Care sunt tipurile de operatori s, i cum sunt aces,tia utilizat, i?

2.1 Teorie

2.1.1 Not, iunea de tip de date

Tipul de dată defines,te domeniul de valori pe care le poate lua o variabilă s, i operat, iile
permise asupra acesteia. În limbajele de programare, tipurile de date pot fi: numerice
ı̂ntregi, numerice cu virgulă mobilă (detaliat mai jos), caracter, logice sau structurate
(tablou, structură).

2.1.2 Definirea tipurilor de date

Tipurile de date fundamentale pot fi descrise, din punct de vedere numeric, prin intervale
ce derivă din numărul de bit, i alocat, i fiecărui tip. De obicei, un tip de date reprezentat pe
n bit, i (cu semn, folosind complementul lui 2 - se va detalia ı̂n cadrul materiei Arhitectura
Sistemelor de Calcul) poate reprezenta valori ı̂n intervalul [−2n−1, 2n−1 − 1], iar acelas, i
tip, fără semn, poate reprezenta valori ı̂n [0, 2n − 1]. Totus, i, pentru tipurile uzuale de
date avem:

• char (8 bit, i):

– signed char: [−27, 27 − 1];

– unsigned char: [0, 28 − 1].

• short (16 bit, i):

– short: [−215, 215 − 1];

– unsigned short: [0, 216 − 1].

• int (Minim 16 bit, i, dar poate fi s, i mai mult, ı̂n funct, ie de limbaj):

– int: Minim [−215, 215 − 1];

– unsigned int: Minim [0, 216 − 1].

• long (Minim 32 bit, i, dar poate fi s, i mai mult, ı̂n funct, ie de limbaj):

– long: Minim [−231, 231 − 1];

– unsigned long: Minim [0, 232 − 1].

• long long (Minim 64 bit, i, dar poate fi s, i mai mult, ı̂n funct, ie de limbaj):

– long: Minim [−263, 263 − 1];

Tipuri de date. Operatori. Teorie

– unsigned long: Minim [0, 264 − 1].

• float s, i double: Acestea reprezintă numere reale ı̂n format cu virgulă mobilă, codi-
ficate conform standardului IEEE 754. Intervalele nu se exprimă simplu sub formă
de puteri ale lui 2 pentru ı̂ntregul domeniu numeric, deoarece reprezintă numere ı̂n
formă normalizată (se va detalia ı̂n cadrul materiei Logică computat, ională). Totus, i,
precizia lor ı̂n bit, i este:

– float: 32 bit, i (aprox. 24 bit, i pentru mantisă);

– double: 64 bit, i (aprox. 53 bit, i pentru mantisă).

2.1.3 Operatori

Operatorii sunt de 3 tipuri: aritmetici, logici s, i relat, ionali. Cei pe care noi ı̂i vom folosi
ı̂n cele ce urmează sunt:

• Operatori aritmetici: +, -, *, /, %;

• Operatori logici: AND, OR, NOT;

• Operatori relat, ionali: <, >, ≤, ≥, =, ̸=

Operatorii aritmetici sunt evaluat, i conform regulilor standard de prioritate:

• Operatorii *, / s, i % au prioritate mai mare decât + s, i -;

• Expresiile grupate prin paranteze au prioritate ı̂n timpul evaluării unei expresii;

• Pentru operatorii de aceeas, i prioritate se aplică evaluarea de la stânga la dreapta.

Operatorii logici operează pe valori de adevăr (True sau False) s, i se evaluează după
următoarele principii:

• AND: Returnează True doar dacă ambii operanzi sunt True;

• OR: Returnează True dacă cel put, in unul dintre operanzi este True;

• NOT: Inversează valoarea operandului (adică, NOT False = True s, i NOT True =

False).

A B A AND B A OR B

False False False False

False True False True

True False False True

True True True True

Tabela 2.1 Tabela de adevăr pentru operatorii logici AND s, i OR.

Operatorii relat, ionali compară două valori s, i returnează un rezultat boolean, după cum
urmează:

• <: Verifică dacă valoarea din stânga este mai mică decât cea din dreapta.

• >: Verifică dacă valoarea din stânga este mai mare decât cea din dreapta.

7

Tipuri de date. Operatori. Probleme

• ≤: Verifică dacă valoarea din stânga este mai mică sau egală cu cea din dreapta.

• ≥: Verifică dacă valoarea din stânga este mai mare sau egală cu cea din dreapta.

• =: Verifică egalitatea dintre cele două valori.

• ̸=: Verifică inegalitatea dintre cele două valori.

Evaluarea expresiilor relat, ionale se efectuează după evaluarea expresiilor aritmetice, res-
pectând regulile standard de comparare.

2.2 Probleme

7. ✓ ?Fie variabila n care memorează un număr natural. Care dintre expresiile de mai jos
are valoarea True dacă s, i numai dacă n este divizibil cu 5 s, i cu 9?

A. (n MOD 5 ̸= 1) AND (n MOD 9 = 0)

B. ((n DIV 10) MOD 5 ̸= 1) AND (n DIV 9 = 0)

C. (n MOD 5 ̸= 1) OR (n MOD 9 = 0)

D. (n MOD 5 = 0) AND (n MOD 9 = 0)

8. ✓ ?Fie variabila y care memorează un număr natural. Care dintre expresiile de mai jos
are valoarea True dacă s, i numai dacă y este mai mare decât 10 s, i nu este divizibil cu
4?

A. (y > 10) AND (y MOD 4 ̸= 0)

B. (y > 10) OR (y MOD 4 = 0)

C. NOT(y ≤ 10) AND (y MOD 4 = 0)

D. (y > 10) AND (y MOD 2 ̸= 0)

9. ✓ ?Fie variabila k care memorează un număr natural. Care dintre expresiile de mai jos
are valoarea True dacă s, i numai dacă k este un număr par mai mic decât 20?

A. (k MOD 2 = 0) AND (k < 20)

B. (k MOD 2 ̸= 0) AND (k ≥ 20)

C. (k MOD 2 = 0) OR (k ≥ 20)

D. (k MOD 2 = 0) AND (k ≤ 20)

10. ✓ ?Fie variabila m care memorează un număr ı̂ntreg. Care dintre expresiile de mai jos
este True dacă s, i numai dacă m este un număr negativ divizibil cu 8?

A. (m > 0) AND (m MOD 8 ̸= 0)

B. (m < 0) OR (m MOD 8 ̸= 0)

C. (m < 0) AND (m MOD 8 = 0)

D. (m MOD 8 = 0) AND (m > 0)

11. ✓ ?Fie variabilele a = 16, b = 4 şi c = 2. Ce valoare va avea expresia următoare?

(a MOD b+ b ∗ c) DIV (a DIV b− c) +
(
(a+ 1) MOD (b− 1)

)

8

Tipuri de date. Operatori. Probleme

A. 4 B. 5 C. 6 D. 7

12. ✓ ?Fie variabilele x = 20, y = 7 şi z = 3. Ce valoare va avea expresia următoare?(
(x+ 1) MOD y + z

)
∗
(
(x− 1) DIV z

)
−

(
y MOD (z − 1)

)
A. 18 B. 17 C. 21 D. 23

13. ✓ ?Fie variabilele a = 10, b = 5 şi c = 8. Ce valoare va avea a după executarea
următoarei instrucţiuni?

a = a+ (b ∗ c) DIV (c MOD (b+ 2))− ((c− 1) ∗ (b+ 2))

A. 1 B. 8 C. 9 D. 10

14. ✓ ?Fie variabilele x = 8, y = 15 şi z = 5. Ce valoare va avea următoarea expresie?(
(x MOD (y − 1)) + (z ∗ (x+ 1))

)
DIV ((y − 1) MOD (z − 1))

A. 25 B. 26 C. 27 D. 28

15. ✓ ?Se consideră următoarea expresie logică:

(A OR B) AND (NOT A OR C) OR (B AND (NOT C OR A))

Precizat, i pentru ce valori ale lui A,B,C, expresia are valoarea True.

A. A = True, B = False, C = True

B. A = False, B = True, C = False

C. A = True, B = True, C = False

D. A = False, B = False, C = True

16. ✓ ?Se consideră următoarea expresie logică:

(NOT C AND B) OR (A AND NOT B) AND (NOT A OR C)

Precizat, i pentru ce valori ale lui A,B,C, expresia are valoarea True.

A. A = True, B = False, C = False

B. A = False, B = True, C = False

C. A = True, B = True, C = False

D. A = False, B = False, C = True

17. ✓ ?Se consideră următoarea expresie logică:

((A AND (NOT B OR C)) OR ((NOT A AND B) AND (NOT C OR A))) AND (B OR NOT C)

Precizat, i pentru ce valori ale lui A,B,C, expresia are valoarea True.

9

Tipuri de date. Operatori. Probleme

A. A = True, B = False, C = False

B. A = False, B = True, C = False

C. A = True, B = True, C = False

D. A = True, B = False, C = True

18. ✓ ?Se consideră următoarea expresie logică:

(NOT ((A OR B) AND C) OR ((B AND NO C) OR (NOTA AND (C OR NOT B)))) AND A

Precizat, i pentru ce valori ale lui A,B,C, expresia are valoarea True.

A. A = True, B = True, C = False

B. A = False, B = False, C = True

C. A = True, B = False, C = False

D. A = True, B = False, C = True

19. ✓ ?Se consideră următoarea expresie logică:

(((A ANDB) OR (NOT C ANDA)) AND (B OR NOTA)) OR ((NOTB AND C) AND (NOTA ORB))

Precizat, i pentru ce valori ale lui A,B,C, expresia are valoarea True.

A. A = True, B = False, C = False

B. A = False, B = False, C = True

C. A = True, B = False, C = True

D. A = True, B = True, C = False

20. ✓ ?Se consideră următoarea expresie logică:

(((A OR (NOTB AND C)) AND (NOTA ORB)) OR ((NOT C ORA) AND (NOTB OR NOTA))) AND C

Precizat, i pentru ce valori ale lui A,B,C, expresia are valoarea False.

A. A = True, B = True, C = False

B. A = True, B = False, C = True

C. A = False, B = True, C = False

D. A = False, B = False, C = True

21. ✓ ?Fie variabilele p = 12, q = 3 şi r = 4. Ce valoare va avea expresia următoare?(
((p+ 1) MOD q) + (r ∗ (p+ 1))

)
−
(
q MOD (r − 1)

)
+
(
(p+ 1) DIV (q + 2)

)
A. 50; B. 52; C. 55; D. 56.

22. ✓ ?Fie variabilele a = 9, b = 2 şi c = 5. Ce valoare va avea expresia următoare?(
(a− 1) MOD b

)
+
(
b ∗ (c+ 1)

)
−
(
(a− 1) DIV b

)
A. 7; B. 8; C. 9; D. 10.

23. ✓ ?Fie variabilele x = 25, y = 4 şi z = 2. Ce valoare va avea următoarea expresie?

(x MOD y) +
(
(y + 1) ∗ z

)
−

(
x DIV (y + 1)

)

10

Tipuri de date. Operatori. Probleme

A. 4; B. 6; C. 8; D. 10.

24. ✓ ?Fie variabilele a = 30, b = 6, c = 2. Ce valoare va avea expresia următoare?(
a DIV b− c

)
+
(
(b− 1) MOD (c+ 1)

)
+

(
a MOD (b− 1)

)
A. 3; B. 4; C. 5; D. 6.

25. ✓ ?Fie variabilele m = 10, n = 3 şi p = 3. Ce valoare va avea m după instrucţiunea:

m = ((m+ 1) MOD n) +
(
(n− 1) ∗ p

)
−

(
(m+ 1) DIV (p+ 0)

)
A. 3; B. 4; C. 5; D. 6.

26. ✓ ?Fie variabilele a = 14, b = 7 şi c = 2. Ce valoare va avea expresia următoare?(
a MOD (b− 1)

)
+
(
(a+ 1) DIV (b− 1) + c

)
∗
(
2 MOD (b− 1)

)
A. 10; B. 16; C. 18; D. 20.

27. ✓ ?Fie variabilele x = 4, y = 2 şi z = 1. Ce valoare va avea x după executarea acestei
instruct, iuni?

x = (x ∗ (y + 1))−
(
(y + 1) DIV (z + 1)

)
+
(
(x+ 1) MOD y

)
A. 10; B. 11; C. 12; D. 13.

28. ✓ ?Fie variabilele a = 6, b = 3, c = 2. Ce valoare va avea următoarea expresie?(
a DIV (b− 1)

)
+
(
(b− 1) ∗ (c MOD (a+ 1))

)
−
(
a MOD (c+ 1)

)
A. 5; B. 6; C. 7; D. 8.

29. ✓ ?Fie variabilele u = 12, v = 4, w = 3. Ce valoare va avea expresia?(
(u− 1) ∗ v

)
DIV

(
(u− 1) MOD w

)
+

(
(v − 1) MOD (w − 1)

)
A. 20; B. 21; C. 22; D. 23.

30. ✓ ?Fie variabilele x = 5, y = 3, z = 10. Ce valoare va avea expresia următoare?(
x MOD y

)
+
(
z DIV (y + 1)

)
−

(
(z − 1) MOD (x− 1)

)

11

Tipuri de date. Operatori. Probleme

A. 2; B. 3; C. 4; D. 5.

31. ✓ ?Fie variabilele x = 7, y = 4, z = 2. Care este valoarea următoarei expresii?(
(x MOD (y − 1)) + (z ∗ (x+ 2))

)
−

(
(x+ 2) DIV z

)
A. 15; B. 16; C. 17; D. 18.

32. ✓ ?Fie variabilele a = 12, b = 5, c = 3. Care este valoarea returnată de expresia
următoare? (

(a DIV b) > c
)
AND

(
(b− 1) < c

)
OR

(
a MOD (b− 1) = 2

)
A. True;

B. False;

C. Eroare de compilare;

D. Niciuna dintre variante.

33. ✓ ?Fie tipul de date signed char, reprezentat pe 8 bit, i cu semn. Care este domeniul
de valori care se pot reprezenta pe acest tip de date?

A. [−128, 127]; B. [−127, 128]; C. [0, 255]; D. [−256, 255].

34. ✓ ?Fie variabila k = 3. Ce valoare va avea k după executarea acestei instruct, iuni?

k = k +
(
(k + 2) MOD (k + 2)

)
+
(
(k + 1) DIV 2

)
A. 1; B. 2; C. 3; D. 5.

35. ✓ ?Fie tipul de date unsigned long, reprezentat pe 32 de bit, i. Care dintre următoarele
intervale este valabil pentru valorile reprezentabile pe acest tip de date?

A. [0, 231 − 1]; B. [0, 232 − 1]; C. [0, 263 − 1]; D. [0, 264 − 1].

36. ✓ ?Fie variabilele x = 10, y = 5. Ce valoarea va returna expresia următoare?(
x > 5

)
AND

(
(x+ y) < 20

)
OR

(
y MOD 2 = 1

)
A. True;

B. False;

C. Eroare de compilare;

D. Niciuna dintre variante.

37. ✓ ?Fie variabila n = 255 de tipul short. Poate valoarea lui n să fie stocată fără depăşire
ı̂ntr-o altă variabilă de tipul signed char?

12

Tipuri de date. Operatori. Probleme

A. Da;

B. Nu;

C. Depinde de limbajul de programare;

D. Depinde de implementare.

38. ✓ ?Fie variabilele a = 8, b = 3, c = 1. Ce valoare va returna expresia următoare?(
(a+ 1) DIV b

)
−
(
b MOD c

)
+
(
(a+ 1) MOD b

)
A. 1; B. 6; C. 2; D. 3.

39. ✓ ?Fie variabila x de tipul signed short. Init, ializarea x = 200 este:

A. Incorectă, deoarece depăs,es,te inter-
valul lui signed short;

B. Corectă, deoarece signed short

stochează valori până la 127;

C. Corectă, deoarece signed short ac-
ceptă valori din [-32768, 32767];

D. Depinde de implementare.

40. ✓ ?Fie variabilele m = 15, n = 4, p = 2. Care e valoarea finală a lui m după instrucţiunea
următoare?

m =
(
m MOD (n+ p)

)
+

(
n DIV p

)
A. 1; B. 3; C. 5; D. 7.

41. ✓ ?Care este limita inferioară garantată pentru tipul de dată long long reprezentat pe
minim 64 de bit, i cu semn?

A. −263; B. −264; C. 0; D. Depinde.

42. ✓ ?Fie variabilele x = 13, y = 3, z = 5. Ce valoare va returna expresia următoare?(
(x MOD y) = 1

)
AND

(
(z ∗ y) > x

)
OR

(
x < (z + y)

)
A. True;

B. False;

C. Eroare de compilare;

D. Niciuna dintre variante.

43. ✓ ?Fie variabilele a = 1, b = 2, c = 3. Ce valoare va returna expresia următoare?(
(b DIV a) > 0

)
OR

(
(c− 1) < (b+ 1)

)
AND

(
a == 2

)
A. True;

B. False;

C. Eroare de compilare;

D. Niciuna dintre variante.

44. ✓ ?Fie variabilele x = 6 s, i y = 10. Ce valoarea va returna următoarea expresie?(
(x+ y) ≤ 15

)
AND

(
(y − x) ≥ 4

)
OR

(
(x ∗ y) MOD 2 = 0

)

13

Tipuri de date. Operatori. Probleme

A. True;

B. False;

C. Eroare de compilare;

D. Niciuna dintre variante.

45. ✓ ?Care dintre următoarele expresii logice sunt adevărate dacă s, i numai dacă valoarea
naturală memorată ı̂n variabila x este multiplu de 5 s, i apart, ine intervalului (a, b]?

A. NOT(x MOD 5 ̸= 0 OR x ≤ a) AND (x ≤ b)

B. x MOD 5 ̸= 1 AND x > a AND x ≤ b

C. x MOD 5 = 0 AND NOT(x < a AND x > b)

D. NOT(x MOD 5 ̸= 0 AND x ≤ a AND x > b)

14

3

Tipuri structurate de date

Acest capitol acoperă

• Care este important,a tipurilor structurate de date?

• Care sunt tipurilor de date structurate studiate s, i cum le folosim?

3.1 Teorie

3.1.1 Introducere

Tipurile structurate de date reprezintă un concept fundamental ı̂n informatică, acestea
permit, ând organizarea eficientă a informat, iilor ı̂n programe s, i aplicat, ii, facilitând atât
manipularea, cât s, i accesarea rapidă a datelor. Ele sunt utilizate pentru a gestiona vo-
lume mari de date s, i pentru a rezolva probleme complexe, cum ar fi căutarea, sortarea
sau determinarea celui mai scurt drum ı̂ntre două puncte ı̂ntr-o ret,ea.

Analogic, putem compara acest concept cu o listă de cumpărături: ı̂n loc să ai obiec-
tele ı̂mprăs,tiate peste tot, le organizezi ı̂ntr-o listă bine structurată, unde s,tii exact ce
trebuie să cumperi s, i ı̂n ce ordine. Similar, ı̂n programare, structurile de date sunt utilizate
pentru a organiza informat, ia ı̂ntr-un mod eficient, permit, ând accesarea s, i manipularea
rapidă s, i corectă a datelor.

Tipuri structurate de date:

• Tipul tablou;

• Tipul s, ir de caractere;

• Tipul ı̂nregistrare.

3.1.2 Tipul tablou: tablouri ı̂n memorie

Un tablou este o structură de date compusă dintr-un număr fix de elemente, toate având
acelas, i tip de bază. Acesta reprezintă o zonă de memorie identificată printr-un nume
specific, permit, ând stocarea mai multor valori de acelas, i tip. Datele dintr-un tablou
pot fi gestionate fie ca un tot unitar, fie ca elemente independente, facilitând accesul rapid
s, i organizat la fiecare valoare.

Tablourile de memorie studiate sunt:

• Tablouri de memorie unidimensionale;

• Tablouri de memorie bidimensionale.

Tipuri structurate de date Teorie

3.1.3 Tablouri de memorie unidimensionale

Tablourile unidimensionale, cunoscute s, i sub denumirea de vectori, sunt structuri de
date caracterizate prin un singur indice, fiecare element fiind accesibil prin intermediul
acestuia. Dacă un tablou cont, ine un număr de elemente, indicii acestor elemente sunt
valori ı̂ntregi cuprinse ı̂n intervalul [1, numărul de elemente]. Astfel, vectorii permit
organizarea eficientă a datelor ı̂n memorie s, i facilitează efectuarea de operat, ii asupra
fiecărui element ı̂n parte, eliminând necesitatea stocării individuale a fiecărei variabile.
De exemplu, vectorul v cu un număr de n elemente poate fi reprezentat astfel:

v[1] v[2] v[n]

Operat, ii cu vectori:

Citirea elementelor unui vector:

Algorithm Citire(v,n)
For i← 1, n execute

Read v[i]
EndFor

EndAlgorithm

Afis,area elementelor unui vector:

Algorithm Afis,are(v,n)
For i← 1, n execute

Write v[i]
EndFor

EndAlgorithm

Afis,area elementelor unui vector ı̂n ordine inversă:

Algorithm Afis,areR(v,n)
For i← n, 1,−1 execute

Write v[i]
EndFor

EndAlgorithm

Cele mai ı̂ntâlnite probleme cu vectori sunt:

• Inversarea unui vector

• Suma elementelor unui vector

• Determinarea valorii minime/maxime

• Inserarea sau eliminarea unui element

• Căutarea unui element

16

Tipuri structurate de date Teorie

• Secvent,e, interclasare, sortare

• Vectori de frecvent, ă

Elementele unui tablou pot fi de orice tip de date disponibil ı̂n limbajul de programare
utilizat. Astfel, ele pot fi chiar s, i alte tablouri, ceea ce permite crearea de tablouri bidi-
mensionale, cunoscute s, i sub numele de matrice.

3.1.4 Tablouri de memorie bidimensionale

Un tablou bidimensional este o structură de date cu două dimensiuni: una cores-
punzătoare liniilor s, i alta coloanelor. Fiecare element este accesibil folosind doi in-
dici, unul pentru linia pe care se află s, i altul pentru coloana respectivă. De exemplu,
matrice[i][j] reprezintă elementul aflat la intersect, ia liniei i s, i a coloanei j. O matrice cu
numărul de linii egal cu numărul de coloane se numes,te o matrice pătratică.

Tablourile bidimensionale sunt utilizate pentru a reprezenta date sub formă de grilă sau
tabel, cum ar fi matrice matematice, tabele de scoruri, imagini sau hărt, i. Acestea oferă
un mod eficient de a organiza s, i accesa date structurale complexe s, i sunt esent, iale ı̂n
diverse domenii, cum ar fi calculul numeric, grafica computerizată s, i s,tiint,a datelor.

De exemplu, matricea mat cu n linii s, i m coloane poate fi reprezentată ı̂n următorul
mod:

mat[1][1] mat[1][2] ... mat[1][m]

mat[2][1] mat[2][2] ... mat[2][m]

...

mat[n][1] mat[n][2] ... mat[n][m]

Operat, ii cu matrice:

Citirea elementelor unei matrice:

Algorithm Citire(mat,n,m)
For i← 1, n execute

For j ← 1,m execute
Read mat[i][j]

EndFor
EndFor

EndAlgorithm

17

Tipuri structurate de date Teorie

Afis,area elementelor unei matrice:

Algorithm Afis,are(mat,n,m)
For i← 1, n execute

For j ← 1,m execute
Write mat[i][j]

EndFor
EndFor

EndAlgorithm

3.1.5 Matrici pătratice

Notăm cu n numărul de linii s, i coloane ale matricei, i reprezentând indicele liniei, iar j
indicele coloanei.
Relat, iile dintre indicii unei matrice pătratice:
- Diagonala principală: Elementele de pe diagonala principală sunt cele pentru care
indicele liniei este egal cu indicele coloanei, adică i = j. Deasupra diagonalei principale,
se respectă relat, ia i < j, iar sub diagonala principală i > j.
- Diagonala secundară: Elementele de pe diagonala secundară sunt cele pentru care
suma indicilor liniei s, i coloanei este egală cu n−1, adică i+j = n+1. Deasupra diagonalei
secundare, se respectă relat, ia i+ j < n+ 1, iar sub diagonala secundară i+ j > n+ 1.
Prin trasarea ambelor diagonale, se delimitează patru zone diferite ale matricei: Nord,
Sud, Est s, i Vest

Nord

Sud

EstVest

• Nord: Elemente situate deasupra di-
agonalei principale s, i a diagonalei se-
cundare, unde i < j s, i i+ j < n+ 1.

• Sud: Elemente situate sub diagonala
principală s, i sub diagonala secundară,
unde i > j s, i i+ j > n+ 1.

• Vest: Elemente situate sub diago-
nala secundară, dar deasupra diagona-
lei principale, unde i > j s, i i + j <
n+ 1.

• Est: Elemente situate deasupra dia-
gonalei secundare, dar sub diagonala
principală, unde i < j s, i i+ j > n+ 1.

Cele mai ı̂ntâlnite probleme cu matrice sunt:

• Interschimbarea a două linii sau coloane

• Rotirea unei matrice

• Labirint

3.1.6 Tipul s, ir de caractere

Un s, ir de caractere este o structură de date utilizată pentru a stoca s, i manipula secvent,e
de caractere. Acesta poate reprezenta cuvinte, propozit, ii sau alte combinat, ii de caractere,

18

Tipuri structurate de date Probleme

fiind unul dintre cele mai utilizate tipuri de date ı̂n programare. În majoritatea limbajelor
de programare, un s, ir este tratat ca un tablou unidimensional de caractere.

Reprezentarea s, irurilor de caractere s, i codurile ASCII:
Fiecare caracter dintr-un s, ir este reprezentat intern printr-un cod numeric, conform stan-
dardului ASCII (American Standard Code for Information Interchange). De exemplu:
-’A’ are codul ASCII 65.
-’a’ are codul ASCII 97.
-’0’ are codul ASCII 48.
Această reprezentare permite manipularea directă a caracterelor folosind operat, ii pe co-
durile lor. În memorie, un s, ir de caractere este stocat sub forma unui tablou de caractere,
fiecare celulă cont, inând codul ASCII al unui caracter. S, irul este terminat de caracterul
special ’\0’ (null) pentru a marca sfârs, itul.

Accesarea unui caracter dintr-un s, ir:
Fiecare caracter al unui s, ir poate fi accesat folosind un indice (̂ıncepând de la 1). De
exemplu, pentru s, irul de caractere s = ”admitere UBB”, s[1] = ’a’, s[5] = ’t’, s[8] = ’ ’,
s[12] = ’B’ s, i s[13] = ’\0’.

3.2 Probleme

46. ✓ ?Se consideră algoritmul Verifica(n, a), unde n este un număr natural (1 ≤ n ≤
103) s, i a este un vector cu n elemente numere ı̂ntregi (a[1], a[2], ..., a[n]), unde −100 ≤
a[i] ≤ 100, pentru i = 1, 2, ..., n:

Algorithm Verifica(n, a)

m← n DIV 2
For i← 1,m execute

If n MOD 2 = 0 then

aux← a[m+ i]
a[m+ i]← a[n− i+ 1]
a[n− i+ 1]← aux

Else

aux← a[m+ i+ 1]
a[m+ i+ 1]← a[n− i+ 1]
a[n− i+ 1]← aux

EndIf

EndFor

For i← 1,m execute

If a[i] ̸= a[n− i+ 1] then

Return False

EndIf

EndFor

Return True

EndAlgorithm

Se cere să se determine pentru ce valori ale
vectorului a, apelul Verifica(n, a) retur-
nează True.

A. a = [1, 2, 3, 4, 3, 2, 1];

B. a = [1, 2, 3, 3, 3, 1, 2, 1];

C. a = [1, 2, 1, 2];

D. a = [−200, 10,−200].

47. ✓ ?Se consideră algoritmul Alg(x, m), unde m este un număr natural (1 ≤ m ≤ 103)
s, i x este un vector cu m elemente numere ı̂ntregi (x[1], x[2], ..., x[m]), unde −100 ≤
x[i] ≤ 100, pentru i = 1, 2, ...,m:

19

Tipuri structurate de date Probleme

Algorithm Alg(x, m)

fx← 0
For p← 1,m execute

a← 0
For q ← p,m execute

a← a+ x[q]
If a = 0 then

w ← q − p+ 1
If w > fx then

fx← w
EndIf

EndIf

EndFor

EndFor

Return fx
EndAlgorithm

Care dintre următoarele afirmat, ii sunt
false?

A. Algoritmul are o complexitate de timp
O(m3);

B. Variabila a este folosită pentru a cal-
cula lungimea unei subsecvent,e;

C. Pentru x = [2, 2, 2], rezultatul retur-
nat este 0;

D. Pentru x =
[0, 2,−2, 1, 1,−1, 1, 6, 0,−1], re-
zultatul returnat este 4.

48. ✓ ?Se consideră algoritmul Contor(x,n), unde n este un număr natural (1 ≤ n ≤ 103) s, i
x este un vector cu n elemente numere ı̂ntregi (x[1], x[2], ..., x[n]), unde 0 ≤ x[i] ≤ 105,
s, i algoritmul Alg(numar), unde numar este un număr natural (0 ≤ numar):

Algorithm Alg(numar)

If numar < 2 then Return False

EndIf

For d← 2,
√
numar execute

If numar MOD d = 0 then

Return False

EndIf

EndForReturn True

EndAlgorithm

Algorithm Contor(x, n)

count← 0
For i← 1,n− 1 execute

For j ← i+ 1 to n execute

v ← x[i]
asc← True

ok ← 1
For k ← i,j − 1 execute

If x[k] ≥ x[k + 1] then

asc← False

ok ← 0
EndIf

If ok = 1 then

v ← v + x[k + 1]
EndIf

EndFor

If asc AND Alg(v) then

count← count+ 1
EndIf

EndFor

EndFor

Return count
EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Pentru x = [7, 7, 7, 7, 7, 7, 7], rezulta-
tul returnat de Contor(x,7) este 7;

B. Pentru x = [2, 3, 5, 7], rezultatul re-
turnat de Contor(x,4) este 2;

C. Pentru x = [7, 5, 3, 2], rezultatul re-
turnat de Contor(x,4) este 2;

D. Pentru x = [7, 2, 2, 9, 6], rezultatul re-
turnat de Contor(x,5) este 1.

20

Tipuri structurate de date Probleme

49. ✓ ?Se consideră 2 algoritmi: A(x,n,k) s, i B(x,n,k), unde n este un număr natural
(1 ≤ n ≤ 103) s, i x este un vector cu n elemente numere ı̂ntregi (x[1], x[2], ..., x[n]),
unde 0 ≤ x[i] ≤ 105, pentru i = 1, 2, ..., n, k număr natural.

Algorithm A(x, n, k)

k ← k MOD n
For i← 1, k execute

temp[i]← x[i]
EndFor

For i← k + 1, n execute

x[i− k]← x[i]
EndFor

For i← 1, k execute

x[n− k + i]← temp[i]
EndFor

EndAlgorithm

Algorithm Helper(x, n)

primul← x[1]
For i← 1, n− 1 execute

x[i]← x[i+ 1]
EndFor

x[n]← primul
EndAlgorithm

Algorithm B(x, n, k)

For i← 1, k execute

Helper(x, n)

EndFor

EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Algoritmul A face acelas, i lucru ca algoritmul B, dar algoritmul A este mai eficient;

B. Algoritmul A nu face acelas, i lucru ca algoritmul B;

C. Algoritmul A face acelas, i lucru ca algoritmul B, dar algoritmul B este mai eficient;

D. Algoritmul A face acelas, i lucru ca algoritmul B doar dacă k = n.

50. ✓ ?Se consideră algoritmul Calculeaza(x,n), unde n este un număr natural (1 ≤ n ≤
103) s, i x este un vector cu n elemente numere ı̂ntregi (x[1], x[2], ..., x[n]), unde −104 ≤
x[i] ≤ 104, pentru i = 1, 2, ..., n:

Algorithm Calculeaza(x, n)

s← x[1]
a← x[1]
For i← 2, n execute

If a+ x[i] > x[i] then

a← a+ x[i]
Else

a← x[i]
EndIf

If a > s then

s← a
EndIf

EndFor

Return s
EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Pentru x =
[−2, 1,−3, 4,−1, 2, 1,−5, 4], rezul-
tatul returnat de Calculeaza(x,9)

este 6;

B. Pentru x = [1,−2, 3, 5,−1], rezultatul
returnat de Calculeaza(x,5) este 8;

C. Pentru x = [−1,−2,−3,−4], rezulta-
tul returnat de Calculeaza(x,4) este
−1;

D. Pentru x = [2, 4,−1, 3], rezultatul re-
turnat de Calculeaza(x,4) este 6.

Problemele 51. s, i 52. se referă la următorii 2 algoritmi:
Se consideră algoritmul Afiseaza(x,n,k), unde n este un număr natural (1 ≤ n ≤
103), x este un vector cu n elemente numere ı̂ntregi (x[1], x[2], ..., x[n]), unde −104 ≤
x[i] ≤ 104, pentru i = 1, 2, ..., n, s, i k este un număr natural (1 ≤ k ≤ n), s, i algoritmul
A(x,n), unde n, x au aceleas, i restrict, ii ca pentru algoritmul Afiseaza(x,n,k):

21

Tipuri structurate de date Probleme

Algorithm A(x, n)

For i← 1,n− 1 execute

For j ← i+ 1,n execute

If x[i] > x[j] then

a← x[i]
x[i]← x[j]
x[j]← a

EndIf

EndFor

EndFor

EndAlgorithm

Algorithm Afiseaza(x, n, k)

A(x, n)

i← 1
While i ≤ n execute

count← 1
While i+ count ≤ n AND

x[i] = x[i+ count] execute

count← count+ 1
EndWhile

If count MOD k ̸= 0 then

scrie x[i]
EndIf

i← i+ count
EndWhile

EndAlgorithm

51. ✓ ?Care dintre următoarele afirmat, ii sunt adevărate?

A. Apelul algoritmului A(x,n) nu afectează rezultatul afis,at de algoritmul
Afiseaza(x,n,k), indiferent de parametri;

B. Apelul algoritmului A(x,n) nu afectează rezultatul afis,at de algoritmul
Afiseaza(x,n,k), dacă s, i numai dacă s, irul x este ordonat crescător;

C. Algoritmul A(x,n) sortează crescător s, irul x;

D. Algoritmul A(x,n) sortează descrescător s, irul x.

52. ✓ ?Care dintre următoarele afirmat, ii sunt adevărate?

A. Pentru x = [1, 4, 1, 2, 3, 3, 2] s, i k = 2, rezultatul afis,at de Afiseaza(x,7,2) este
4;

B. Pentru x = [1, 2, 2, 3, 3, 3, 4, 4, 4, 4] s, i k = 3, rezultatul afis,at de Afiseaza(x,10,3)
este 1, 2, 4;

C. Pentru x = [5, 6, 5, 7, 6, 6, 7] s, i k = 2, rezultatul afis,at de Afiseaza(x,7,2) este
5, 7;

D. Pentru x = [2, 2, 4, 4, 4, 6, 4, 5] s, i k = 2, rezultatul afis,at de Afiseaza(x,8,2) este
4, 6.

53. ✓ ?Se consideră algoritmul Peak(x,n), unde n este un număr natural (3 ≤ n ≤ 103), x
este un vector cu n elemente numere ı̂ntregi (x[1], x[2], ..., x[n]), unde −104 ≤ x[i] ≤
104, pentru i = 1, 2, ..., n:

Algorithm Peak(x, n)

i← 1
While i < n and x[i] < x[i+ 1] execute

i← i+ 1
EndWhile

If i = 1 or i = n then

Return False

EndIf

While i < n and x[i] > x[i+ 1] execute

i← i+ 1
EndWhile

22

Tipuri structurate de date Probleme

Return i = n
EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Pentru x = [1, 2], rezultatul returnat de Peak(x,2) este True;

B. Pentru x = [1, 4, 3, 2, 1], rezultatul returnat de Peak(x,5) este True;

C. Pentru x = [1, 3, 3, 2, 1], rezultatul returnat de Peak(x,5) este False;

D. Pentru x = [1, 2, 3, 4], rezultatul returnat de Peak(x,3) este True.

54. ✓ ?Se consideră algoritmul Down(x,n), unde n este un număr natural (3 ≤ n ≤ 103), x
este un vector cu n elemente numere ı̂ntregi (x[1], x[2], ..., x[n]), unde −104 ≤ x[i] ≤
104, pentru i = 1, 2, ..., n:

Algorithm Down(x, n)

i← 1
While i < n and x[i] > x[i+ 1] execute

i← i+ 1
EndWhile

If i = 1 or i = n then

Return False

EndIf

While i < n and x[i] < x[i+ 1] execute

i← i+ 1
EndWhile

If i = n then

Return True

Else

Return False

EndIf

EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Pentru x = [4, 2, 3, 5], rezultatul returnat de Down(x,4) este True;

B. Pentru x = [4, 3, 2, 1], rezultatul returnat de Down(x,4) este True;

C. Pentru x = [1, 2, 3, 4], rezultatul returnat de Down(x,4) este False;

D. Pentru x = [4, 3, 3, 2, 1], rezultatul returnat de Down(x,5) este True.

55. ✓ ?Se consideră algoritmul Get(a,b,n,m), unde n s, i m sunt lungimile sirurilor de ca-
ractere a s, i b, respectiv, iar a s, i b sunt două s, iruri de caractere formate din litere mici
ale alfabetului englez (a[1], a[2], ..., a[n]) s, i (b[1], b[2], ..., b[m]): Presupunem că avem
definit următorul subalgoritm: ascii(c) - returnează codul ASCII al caracterului
c. Presupunem că operat, iile aritmetice nu produc depăs, ire pe mult, imea numerelor
ı̂ntregi.

Algorithm Get(a, b, n, m)

i← 1
While i ≤ n and i ≤ m and a[i] = b[i] execute

i← i+ 1
EndWhile

Return i− 1
EndAlgorithm

23

Tipuri structurate de date Probleme

Care dintre următoarele afirmat, ii sunt adevărate?

A. Pentru a = abcdef, b = abcxyz, rezultatul returnat de Get(a,b,6,6) este 3;

B. Pentru a = hello, b = world, rezultatul returnat de Get(a,b,5,5) este 1;

C. Pentru a = test, b = testcase, rezultatul returnat de Get(a,b,4,8) este 4;

D. Pentru a = abcd, b = abef, rezultatul returnat de Get(a,b,4,4) este 2.

56. ✓ ?Se dă un s, ir a de n caractere din alfabetul englez, (a[1], a[2], ..., a[n]). Dorim să aflăm
cea mai lungă subsecvent, ă a sa care este palindrom. Care dintre următoarele imple-
mentări returnează lungimea acestei subsecvent,e la apelul LongestPalindrome(a,n)?

A.

Algorithm LongestPalindrome(a, n)

maxLength← 1
For i← 1,n execute

len1← ExpandAroundCenter(a, n, i, i)

len2← ExpandAroundCenter(a, n, i, i+1)

If len1 > maxLength then

maxLength← len1
EndIf

If len2 > maxLength then

maxLength← len2
EndIf

EndFor

Return maxLength
EndAlgorithm

Algorithm ExpandAroundCenter(a, n, l, r)

While l ≥ 1 and r ≤ n and a[l] = a[r] execute

l← l − 1
r ← r + 1

EndWhile

Return r − l − 1
EndAlgorithm

B.

Algorithm LongestPalindrome(a, n)

maxLength← 0
For i← 1 to n execute

For j ← i+ 1 to n execute

If a[i] = a[j] then

If j − i+ 1 > maxLength then

maxLength← j − i+ 1
EndIf

EndIf

EndFor

EndFor

Return maxLength
EndAlgorithm

C.

Algorithm LongestPalindrome(a, n)

maxLength← 1
start← 1
For i← 1,n execute

24

Tipuri structurate de date Probleme

dp[i][i]← True

EndFor

For i← 1,n− 1 execute

If a[i] = a[i+ 1] then

dp[i][i+ 1]← True

start← i
maxLength← 2

EndIf

EndFor

For len← 3,n execute

For i← 1,n− len+ 1 execute

j ← i+ len− 1
If a[i] = a[j] and dp[i+ 1][j − 1] = True then

dp[i][j]← True

If len > maxLength then

maxLength← len
start← i

EndIf

EndIf

EndFor

EndFor

Return maxLength
EndAlgorithm

D. Niciuna dintre variante.

57. ✓ ?Se consideră algoritmul Compute(m,n), unde n este dimensiunea unei matrici pătratice
m de dimensiune n x n, iar m este o matrice cu elemente ı̂ntregi (m[1][1],m[1][2], ...,
m[n][n]):

Algorithm Compute(m, n)

p1← 1
p2← 1
For i← 1 to n execute

p1← p1 ·m[i][i]
p2← p2 ·m[i][n− i+ 1]

EndFor

Return p1 · p2
EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Pentru m =

[
1 2
3 4

]
, rezultatul returnat de Compute(m,2) este 11;

B. Pentru m =

2 3 4
5 6 7
8 9 10

, rezultatul returnat de Compute(m,3) este 23040;

C. Pentru m =

1 0 0
0 1 0
0 0 1

, rezultatul returnat de Compute(m,3) este 1;

D. Pentru m =

3 1 2
4 5 6
7 8 9

, rezultatul returnat de Compute(m,3) este 11430.

25

Tipuri structurate de date Probleme

Problemele 58. s, i 59. se referă la următorii 2 algoritmi:
Se consideră algoritmul algoritmul B(m,n), unde n este dimensiunea unei matrici
pătraticem de dimensiune n x n, iarm este o matrice cu elemente ı̂ntregi (m[1][1],m[1][2],
...,m[n][n]), s, i algoritmul A(m,n,i,s1,s2), unde m, n au aceleas, i restrict, ii ca pentru
algoritmul B(m,n), iar i,s1,s2 sunt numere ı̂ntregi.

Algorithm A(m, n, i, s1, s2)

If i = n+ 1 then

Return s1− s2
EndIf

x← 0
For j ← 1,n execute

x← x+m[i][j]
EndFor

If i MOD 2 = 0 then

s1← s1 + x
Else

s2← s2 + x
EndIf

Return A(m, n, i + 1, s1, s2)

EndAlgorithm

Algorithm B(m, n)

Return A(m, n, 1, 0, 0)

EndAlgorithm

58. ✓ ?Care dintre următoarele afirmat, ii sunt adevărate?

A. Pentru m =

[
1 2
3 4

]
, rezultatul returnat de B(m,2) este 4;

B. Pentru m =

2 3 4
5 6 7
8 9 10

, rezultatul returnat de B(m,3) este −18;

C. Pentru m =

1 1 1
1 1 1
1 1 1

, rezultatul returnat de B(m,3) este 0;

D. Pentru m =

10 20 30
5 15 25
40 50 60

, rezultatul returnat de B(m,3) este 65.

59. ✓ ?Dacă ı̂n subalgoritmul A(m,n,i,s1,s2), ı̂nlocuim apelul Return A(m,n, i+1, s1, s2)
cu Return A(m,n, i− 1, s1, s2), ce ar trebui modificat ı̂n subalgoritmul B(m,n) pentru
a oferi acelas, i rezultat?

A. Înlocuim Return A(m,n, 1, 0, 0) cu Return A(m,n, 0, n, 0);

B. Înlocuim Return A(m,n, 1, 0, 0) cu Return A(m,n, 0, n, n− 1);

C. Înlocuim Return A(m,n, 1, 0, 0) cu Return A(m,n, 0, 0, n);

D. Înlocuim Return A(m,n, 1, 0, 0) cu Return A(m,n, n, 0, 0);

60. ✓ ?Se consideră algoritmii H(m,mx,nx) s, i G(m,mx,nx), unde m este o matrice cu mx
linii s, i nx coloane (m[1][1],m[1][2], ...,m[mx][nx]), mx s, i nx sunt numere naturale mai

26

Tipuri structurate de date Probleme

mari decât 2:

Algorithm H(m, mx, nx)

For j ← 1,nx execute

temp← m[mx− 2][j]
m[mx− 2][j]← m[mx− 1][j]
m[mx− 1][j]← temp

EndFor

For i← 1,mx execute

temp← m[i][nx− 2]
m[i][nx− 2]← m[i][nx− 1]
m[i][nx− 1]← temp

EndFor

Return m
EndAlgorithm

Algorithm G(m, mx, nx)

For i← 1,mx execute

temp← m[i][nx− 2]
m[i][nx− 2]← m[i][nx− 1]
m[i][nx− 1]← temp

EndFor

For j ← 1,nx execute

temp← m[mx− 2][j]
m[mx− 2][j]← m[mx− 1][j]
m[mx− 1][j]← temp

EndFor

Return m
EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Ambii algoritmi au acelas, i efect asupra unei matrici m;

B. Pentru m =


1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

, rezultatul returnat de H(m,4,4)

este


1 2 4 3
5 6 8 7
13 14 16 15
9 10 12 11

;
C. Algoritmul H(m,mx,nx) returnează un rezultat diferit fat, ă de rezultatul returnat

de algoritmul G(m,mx,nx);

D. Pentru m =

1 2 3
4 5 6
7 8 9

, rezultatul returnat de G(m,3,3) este

1 2 3
7 8 9
4 5 6

.
61. ✓ ?Se consideră algoritmul Cauta(a, n , i, j), unde s este un vector cu n elemente,

init, ial egale cu 0, iar a un s, ir de numere ı̂ntregi (a[1], a[2], ..., a[n]) cu n elemente,
1 ≤ i ≤ j < n+ 1:

Algorithm Cauta(a, n, i, j)

s← Construieste(a, n)
If i = 1 then

Return s[j]
Else

Return s[j]− s[i− 1]
EndIf

EndAlgorithm

Algorithm Construieste(a, n)

s[1]← a[1]
For k ← 2,n execute

s[k]← s[k − 1] + a[k]
EndFor

Return s
EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

27

Tipuri structurate de date Probleme

A. Pentru a = [1, 2, 3, 4, 5] s, i i = 2, j = 4, rezultatul returnat de Cauta(a,5,2,4)

este 9;

B. Pentru a = [1, 1, 1, 1, 1] s, i i = 1, j = 4, rezultatul returnat de Cauta(a,5,1,4)

este 5;

C. Algoritmul returnează suma elementelor dintre indicii i s, i j, inclusiv, ai vectorului
a;

D. Algoritmul returnează suma elementelor dintre indicii i s, i j, fără a[i], a[j], ai
vectorului a.

62. ✓ ?Se consideră algoritmul Find(m, n), unde n este dimensiunea unei matrici pătratice
m de dimensiune n x n.

Algorithm Find(m, n)

For i← 1, n execute

For j ← i+ 1, n execute

If m[i][j] ̸= m[j][i] then

Return False

EndIf

EndFor

EndFor

Return True

EndAlgorithm

Ce face algoritmul?

A. Verifică dacă toate elementele de pe marginea matricei sunt egale;

B. Verifică dacă toate elementele de pe diagonala principală sunt egale;

C. Verifică dacă matricea este simetrică fat, ă de diagonala secundară;

D. Verifică dacă matricea este simetrică fat, ă de diagonala principală.

63. ✓ ?Se consideră algoritmul bin(arr, n), unde n este un număr natural nenul (1 ≤ n ≤
104) s, i arr este un s, ir binar de n elemente.

Algorithm bin(arr, n)

cont← 0
For i← 1, n− 1 execute

cont← cont+ arr[i] * arr[i+ 1]
EndFor

Return cont
EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Pentru apelul bin([0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1,

0, 1, 1], 20), algoritmul returnează 6.

B. Pentru n = 11, există exact 233 s, iruri binare arr cu proprietatea că apelul
bin(arr, n) returnează 0.

C. Pentru n = 6, există exact 20 s, iruri binare arr cu proprietatea că apelul bin(arr,
n) returnează 0.

D. Pentru n = 8, există exact 201 s, iruri binare arr cu proprietatea că apelul bin(arr,
n) returnează o valoare diferită de 0.

28

Tipuri structurate de date Probleme

64. ✓ ?Fie vectorul v = [3, 5, 2, 2, 7, 9, 1, 1, 4, 6]. Primul element este situat pe
pozit, ia 0. Care este valoarea expresiei următoare?

v[2 ∗ v[2 ∗ v[3]− 1] + 1] + v[2 ∗ v[7− 5]− 1] + v[3− v[2 ∗ v[2]− 3] + 6]

A. 11

B. 24

C. 18

D. Niciuna din variantele de mai sus.

65. ✓ ?Se consideră algoritmul Algo(a, n, m, k), unde a este un tablou bidimensional
cu dimensiunea n × m (1 ≤ n,m ≤ 103), unde n s, i m sunt numere naturale iar
fiecare element din a este un număr natural. Parametrul k este un număr natural
(1 ≤ k ≤ min(n,m)). Fie x o matrice de dimenisune n×m, unde fiecare element este
init, ializat cu 0.

Algorithm Algo(a, n, m, k)

max ← 0
For i← 1, n execute

For j ← 1, m execute

If Check(a[i][j]) then

x[i][j] ← a[i][j]

EndIf

EndFor

EndFor

For i← 1, n− k + 1 execute

For j ← 1, m− k + 1 execute

sum ← 0
For p← 0, k − 1 execute

For q ← 0, k−1 execute

sum ← sum +

x[i + p][j + q]

EndFor

EndFor

If sum > max then

max ← sum

EndIf

EndFor

EndFor

Return max

EndAlgorithm

Algorithm Check(num)

If num ≤ 1 then

Return False

EndIf

For i← 2,
√
num execute

If num MOD i = 0 then

Return False

EndIf

EndFor

Return True

EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Complexitatea algoritmului este O(n ·m · k2).
B. Algoritmul Algo determină suma maximă a elementelor prime dintr-o submatrice

k × k din a.

C. Pentru apelul f(a, 5, 5, 3) s, i matricea a =


2 3 4 5 6
3 5 7 9 11
4 5 7 10 13
5 9 13 17 4
6 11 16 4 9

 algoritmul

va returna valoarea 62.

29

Tipuri structurate de date Probleme

D. Algoritmul verifică dacă există o submatrice k × k ı̂n care toate elementele sunt
numere prime s, i returnează suma acestora.

66. ✓ ?Fie vectorul v = [4, 7, 1, 9, 6, 3, 8, 5, 5, 2]. Primul element este situat pe
pozit, ia 0. Care este valoarea expresiei următoare?

v[2 ∗ v[4] MOD 3] + v[v[7] DIV 2− 1] ∗ v[3− v[2] + 1]

A. 42

B. 67

C. Acelas, i rezultat ca al expresiei v[v[9] ∗ v[4] MOD v[5]] + v[v[8] DIV v[9] − v[2]] ∗
v[3− v[2] + v[2]].

D. Acelas, i rezultat ca al expresiei v[v[8] MOD v[5]∗3]∗v[3]−v[v[9]]−v[0]−v[v[2] DIV 3]∗
v[4− v[5]].

30

4

Algoritmi elementari

Acest capitol acoperă

• Baze de numerat, ie

• Divizibilitate

• Determinare minim/maxim

• Căutări secvent, iale/binare pe s, iruri de numere

• Interclasare

• Metode de sortare

4.1 Teorie

4.1.1 Baze de numerat, ie

Cu except, ia bazei 10, alte baze de numerat, ie utilizate frecvent sunt:

• Baza 2 (binar): cifrele 0 s, i 1, utilizată ı̂n computere.

• Baza 8 (octal): cifrele 0-7, folosită pentru simplificarea reprezentării binare.

• Baza 16 (hexazecimal): cifrele 0-9 s, i literele A− F (A = 10, B = 11, ..., F = 15).

• Baza b (caz general): cifrele 0, 1, ..., b− 1

Transformarea din baza 10 ı̂n baza b

Transformarea unui număr n din baza 10 ı̂n baza b, se realizează utilizând metoda
ı̂mpărt, irii repetate, conform următorilor pas, i:

• Împarte cu rest numărul n la baza b.

• Notează restul (care va deveni o cifră ı̂n baza b).

• Împarte câtul obt, inut anterior la baza b.

• Repetă până când câtul devine 0.

• Resturile obt, inute, scrise ı̂n ordinea inversă obt, inerii, reprezintă scrierea ı̂n baza b
a lui n.

Algoritmi elementari Teorie

Pasul 1: 46÷ 3 = 15
Rest: 1

Pasul 2: 15÷ 3 = 5
Rest: 0

Pasul 3: 5÷ 3 = 1
Rest: 2

Pasul 4: 1÷ 3 = 0
Rest: 1

Rezultat final:
46(10) = 1201(3)

Transformare iterativă din baza 10 ı̂n
baza b:

1: Algorithm iterativ(n, b)
2: poz ← 0
3: While n > 0 execute
4: poz ← poz + 1
5: cifre[poz]← n MOD b
6: n← n DIV b
7: EndWhile
8: For i← poz, 1,−1 execute
9: Write cifre[i]

10: EndFor
11: EndAlgorithm

Complexitate: O(log(n))

Transformare recursivă din baza 10 ı̂n
baza b:

1: Algorithm recursiv(n, b)
2: If n > 0 then
3: recursiv(n DIV b, b)
4: Write n MOD b
5: EndIf
6: EndAlgorithm

Complexitate: O(log(n))

Transformarea din baza b ı̂n baza 10

Pentru a converti un număr din baza b ı̂n baza 10, folosim o formulă care exprimă numărul
ca o sumă de puteri ale bazei b. Fie un număr ckck−1 . . . c1c0(b), atunci conversia acestuia
ı̂n baza 10 se face conform formulei:

ckck−1 . . . c1c0(b) = ck · bk + ck−1 · bk−1 + · · ·+ c1 · b1 + c0 · b0

Exemplu:

11010001(2) = 1 · 27 + 1 · 26 + 0 · 25 + 1 · 24 + 0 · 23 + 0 · 22 + 0 · 21 + 1 · 20

= 1 · 128 + 1 · 64 + 0 · 32 + 1 · 16 + 0 · 8 + 0 · 4 + 0 · 2 + 1 · 1

= 128 + 64 + 0 + 16 + 0 + 0 + 0 + 1

= 128 + 64 + 16 + 1

32

Algoritmi elementari Teorie

= 209

Astfel, rezultatul este:

11010001(2) = 209(10)

Transformare iterativă din baza b ı̂n baza 10:

1: Algorithm iterativ(n, b)
2: result← 0
3: p← 1
4: While n > 0 execute
5: result← result+ (n MOD 10) ∗ p
6: p← p ∗ b
7: n← n DIV 10
8: EndWhile
9: Return result

10: EndAlgorithm

Transformare recursivă din baza b ı̂n baza 10:

1: Algorithm recursiv(n, b)
2: If n = 0 then
3: Return 0
4: EndIf
5: Return (n MOD 10) + recursiv(n DIV 10, b) ∗ b
6: EndAlgorithm

Transformarea din baza b ı̂n baza d

Pentru transformarea unui număr din baza b ı̂n baza d, procesul poate fi realizat ı̂n două
etape principale:

• 1. Conversia numărului din baza b ı̂n baza 10.

• 2. Conversia rezultatului din baza 10 ı̂n baza d.

4.1.2 Conversii rapide

Transformările rapide ı̂ntre baze care sunt puteri ale lui 2 (cum ar fi 2, 4, 8 sau 16) se
bazează pe gruparea cifrelor binare ı̂n subgrupuri specifice. Această abordare permite
conversia directă a unui număr din baza 2 ı̂n alte baze fără a trece prin baza 10.
1. Conversia din baza 2 ı̂n baza 4, 8, sau 16 se realizează ı̂n următorul mod:

• Grupare: Împărt, im numărul binar ı̂n grupuri de câte 2 cifre (pentru baza 4), 3 cifre
(pentru baza 8) sau 4 cifre (pentru baza 16) cifre. Dacă numărul de cifre binare nu
este multiplu al dimensiunii grupului, se completează cu zerouri ı̂n partea stângă.

• Conversie: Fiecare grup de cifre binare se transformă direct ı̂n cifra corespunzătoare
din baza dorită.

Exemplu:

33

Algoritmi elementari Teorie

a. Din baza 2 ı̂n baza 4:
• Număr: 110101110(2)

• Grupare: 4 = 22:
(01)(10)(10)(11)(10)

• Conversie: 1, 2, 2, 3, 2

• Rezultatul: 12232(4)

b. Din baza 2 ı̂n baza 8:

• Număr: 110101110(2)

• Grupare: 8 = 23:
(110)(101)(110)

• Conversie: 6, 5, 6

• Rezultatul: 656(8)

c. Din baza 2 ı̂n baza 16:

• Număr: 110101110(2)

• Grupare: 16 = 24:
(0001)(1010)(1110)

• Conversie: 1, A, E

• Rezultatul: 1AE(16)

2. Conversia din baza 4, 8, sau 16 ı̂n baza 2:

• Fiecare cifră din baza respectivă se transformă ı̂n echivalentul său binar, folosind 2
(pentru baza 4), 3 (pentru baza 8) sau 4 (pentru baza 16) cifre binare pentru fiecare
cifră din baza respectivă.

Exemplu:

a. Din baza 4 ı̂n baza 2:
• Număr: 10313(4)

• Grupare: 1, 0, 3, 1, 3

• Conversie:
(01)(00)(11)(01)(11)

• Rezultatul: 100110111(2)

b. Din baza 8 ı̂n baza 2:

• Număr: 467(8)

• Grupare: 4, 6, 7

• Conversie: (100)(110)(111)

• Rezultatul: 100110111(2)

c. Din baza 16 ı̂n baza 2:

• Număr: 137(16)

• Grupare: 1, 3, 7

• Conversie:
(0001)(0011)(0111)

• Rezultatul: 100110111(2)

4.1.3 Divizibilitate

Divizibilitatea se referă la proprietatea unui număr a de a fi ı̂mpărt, it exact la un alt
număr b (notat b | a).

34

Algoritmi elementari Teorie

• Divizor: Un număr care ı̂mparte exact alt număr, adică restul ı̂mpărt, irii ı̂ntregi
este 0. De exemplu, 2 este divizor al lui 8.

• Multiplu: Rezultatul obt, inut prin ı̂nmult, irea unui număr ı̂ntreg cu alt număr. De
exemplu, 12 este multiplu al lui 3.

• Rest: Numărul rămas după ı̂mpărt, ire. De exemplu, restul ı̂mpărt, irii lui 10 la 3
este 1.

Divizorii unui număr

Un număr d este divizor al lui n dacă n : d = k, unde k este un număr ı̂ntreg. Exemplu:
Pentru n = 12, divizorii sunt 1, 2, 3, 4, 6, 12.

Exemplu 1: Afis,area divizorilor unui
număr

1: Algorithm afisare(n)
2: For d← 1, n execute
3: If n MOD d = 0 then
4: Write d, ’ ’
5: EndIf
6: EndFor
7: EndAlgorithm

Complexitate: O(n)

Exemplu 2: Afis,area divizorilor unui
număr

1: Algorithm afisare(n)
2: For d← 1, d ∗ d ≤ n execute
3: If n MOD d = 0 AND d ∗

d < n then
4: Write d, ’ ’, n DIV d, ’ ’
5: Else
6: If d ∗ d = n then
7: Write d
8: EndIf
9: EndIf

10: EndFor
11: EndAlgorithm

Complexitate: O(
√
n)

Observat, ii importante

• Divizorii unui număr sunt simetrici: dacă d este un divizor al lui n, atunci
n DIV d este de asemenea un divizor.

• Numerele care nu sunt pătrate perfecte au număr par de divizori.

• Singurele numere cu număr impar de divizori sunt pătratele perfecte.

• Cel mai mic divizor propriu al unui număr natural (diferit de 1 s, i de numărul
ı̂nsus, i) este ı̂ntotdeauna un număr prim.

CMMDC (Cel Mai Mare Divizor Comun)

Cel mai mare divizor comun (CMMDC) al două numere naturale a s, i b este cel mai mare
număr natural care divide atât pe a, cât s, i pe b. CMMDC al numerelor a s, i b se notează
(a, b). Dacă (a, b) = 1, spunem că a s, i b sunt prime ı̂ntre ele.

Descompunerea ı̂n factori primi sau Algoritmul lui Euclid reprezintă metode prin care
putem calcula CMMDC.

35

Algoritmi elementari Teorie

Algoritmul lui Euclid prin scăderi: Cel mai mare divizor a două numere divide s, i
diferent,a acestora.

• Dacă a = b, CMMDC este a sau b.

• Dacă a > b, se ı̂nlocuies,te a cu a− b.

• Dacă a < b, se ı̂nlocuies,te b cu b− a.

• Se repetă pas, ii 2 s, i 3 cât timp a ̸= b. Rezultatul final va fi CMMDC.

Algoritmul lui Euclid prin scăderi, itera-
tiv

Algorithm iterativ(a, b)
While a ̸= b execute

If a > b then
a← a− b

Else
b← b− a

EndIf
EndWhile
Return a

EndAlgorithm

Complexitate: O(min(a, b))

Algoritmul lui Euclid prin scăderi, recur-
siv

Algorithm recursiv(a, b)
If a = b then

Return a
Else

If a > b then
Return recursiv(a− b, b)

Else
Return recursiv(a, b− a)

EndIf
EndIf

EndAlgorithm

Complexitate: O(min(a, b))

Algoritmul lui Euclid prin ı̂mpărt, iri (cu resturi): Cel mai mare divizor a două
numere divide s, i restul ı̂mpărt, irii acestora, conform teoremei ı̂mpărt, irii cu rest.

• Dacă b = 0, CMMDC este a.

• Dacă b ̸= 0, calculează r = a mod b.

• Înlocuies,te a cu b s, i b cu r.

• Repetă pas, ii 2-3 cât timp b ̸= 0. CMMDC este valoarea finală a lui a.

Exemplu: Algoritmul lui Euclid pentru a = 56 s, i b = 42:

Algoritmul lui Euclid prin ı̂mpărt, iri, ite-
rativ

Algorithm iterativ(a, b)
While b > 0 execute

r ← a MOD b
a← b
b← r

EndWhile
Return a

EndAlgorithm

Complexitate: O(log(min(a, b)))

Algoritmul lui Euclid prin ı̂mpărt, iri, re-
cursiv

Algorithm recursiv(a, b)
If b = 0 then

Return a
Else

Return recursiv(b, a MOD b)
EndIf

EndAlgorithm

Complexitate: O(log(min(a, b)))

36

Algoritmi elementari Teorie

CMMMC (Cel Mai Mic Multiplu Comun)

Cel mai mic multiplu comun (CMMMC) al două sau mai multe numere ı̂ntregi este cel
mai mic număr ı̂ntreg pozitiv care este divizibil cu toate numerele respective. Pentru
două numere a s, i b, CMMMC se calculează folosind formula:

CMMMC(a, b) =
a · b

CMMDC(a, b)
,

unde CMMDC este cel mai mare divizor comun.

Primalitate

Un număr prim este un număr ı̂ntreg pozitiv mai mare decât 1 care are exact doi divizori:
1 s, i el ı̂nsus, i.
Pentru a verifica algoritmic dacă un număr n este prim:

• Presupunem că n este prim.

• Dacă n ≤ 1, atunci nu este prim.

• Căutăm un divizor ı̂ntre 2 s, i
√
n.

• Dacă n nu este divizibil cu niciunul dintre aceste numere, atunci este prim.

• Dacă găsim un divizor d, atunci n nu este prim.

Metoda 1: Verificare dacă un număr
este prim

1: Algorithm primalitate(n)
2: If n ≤ 1 then
3: Return False
4: EndIf
5: For d← 2, n− 1 execute
6: If n MOD d = 0 then
7: Return False
8: EndIf
9: EndFor

10: Return True
11: EndAlgorithm

Complexitate: O(n)

Metoda 2: Verificare dacă un număr este
prim

1: Algorithm primalitate(n)
2: If n ≤ 1 then
3: Return False
4: EndIf
5: If n MOD 2 = 0 AND n > 2 then
6: Return False
7: EndIf
8: For d← 3, d ∗ d ≤ n, 2 execute
9: If n MOD d = 0 then

10: Return False
11: EndIf
12: EndFor
13: Return True
14: EndAlgorithm

Complexitate: O(
√
n)

37

Algoritmi elementari Teorie

Observat, ie importantă

• Putem stabili dacă un număr n este prim s, i prin următoarele feluri:

– Numărăm divizorii lui n. Dacă are exact 2 divizori, atunci n este prim.

– Determinăm suma divizorilor lui n. Dacă suma este egală cu n + 1,
numărul este prim.

Descompunerea ı̂n factori primi

Descompunerea ı̂n factori primi este procesul prin care un număr ı̂ntreg pozitiv este
exprimat ca produs de numere prime, posibil ridicate la o putere. De exemplu, numărul
60 poate fi descompus ı̂n factori primi astfel:

60 = 22 · 31 · 51

Pentru a descompune un număr ı̂ntreg pozitiv n ı̂n factori primi, se urmează pas, ii următori:

• Începem cu cel mai mic număr prim, 2.

• Împărt, im n la 2. Dacă n este divizibil cu 2, notăm 2 ca factor s, i ı̂mpărt, im n cu 2.

• Continuăm ı̂mpărt, irea lui n la 2 până când n nu mai este divizibil cu 2.

• Trecem la următorul număr prim (3, 5, 7, etc.) s, i repetăm procesul până când n
devine egal cu 1.

Descompunerea ı̂n factori primi

1: Algorithm factorizare(n)
2: d← 2
3: While n > 1 execute
4: putere← 0
5: While n MOD d = 0 execute
6: putere← putere+ 1
7: n← n DIV d
8: EndWhile
9: If putere > 0 then

10: Write d, ^, putere
11: Write new line

12: EndIf
13: d← d+ 1
14: If d ∗ d > n then
15: d← n
16: EndIf
17: EndWhile
18: EndAlgorithm

Complexitate: O(
√
n)

38

Algoritmi elementari Teorie

4.1.4 Şirul lui Fibonacci

S, irurile cu termen general sunt frecvent ı̂ntâlnite ı̂n matematică, ı̂nsă ı̂n informatică ele
sunt adesea utilizate pentru implementarea structurilor repetitive sau a programelor re-
cursive. Cu toate acestea, S, irul lui Fibonacci nu este un s, ir oarecare cu termen general,
deoarece al n-lea termen al său este dependent de termenii n− 1 s, i n− 2. Astfel, pentru
S, irul lui Fibonacci, sunt valabile următoarele precizări: fiecare termen n este suma terme-
nilor n− 1 s, i n− 2, iar s, irul ı̂ncepe cu termenii 0 s, i 1 (unii programatori consideră primii
termeni ca fiind 1 s, i 1, dar ambele convent, ii sunt acceptate). În cele ce urmează, vom
considera primul termen al s, irului f0 = 0. Deci, dacă fn, n ∈ N este s, irul lui Fibonacci,
avem:

fn =


0, dacă n = 0;

1, dacă n = 1;

fn−1 + fn−2, dacă n ≥ 2.

Astfel, un posibil program care afis,ează primii n termeni din s, irul lui Fibonacci s, i care
foloses,te un vector este:

S, irul lui Fibonacci folosind un array:

1: Algorithm Fibo(n)
2: f [0]← 1
3: f [1]← 1
4: For i← 2, n− 1 execute
5: f [i] = f [i− 1] + f [i− 2]
6: EndFor
7: For i← 0, n− 1 execute
8: afis,ează f [i]
9: EndFor

10: EndAlgorithm

Această implementare este una simplă s, i intuitivă, dar nu este cea mai optimă din
punct de vedere al complexităt, ii spat, iale, deoarece foloses,te un vector de dimensiune
n(complexitatea spat, iu este O(n)). Un algoritm care afis,ează primii n termeni din s, irul
lui Fibonacci ı̂n complexitate spat, iu O(1) ar fi următorul, care foloses,te doar 3 variabile,
numere naturale:

S, irul lui Fibonacci folosind trei variabile:

1: Algorithm Fibo(n)
2: a← 1
3: b← 1
4: Write a, Write b
5: For i← 2, n− 1 execute
6: aux← a+ b
7: a← b
8: b← aux
9: Write aux

10: EndFor
11: EndAlgorithm

39

Algoritmi elementari Teorie

Complexitatea de timp pentru afis,area primelor n numere din s, irul lui Fibonacci este
O(n). Însă, verificarea dacă un număr x este ı̂n S, irul lui Fibonacci se poate implementa
ı̂n complexitatea de timp O(1), folosind următoarea proprietate:

x face parte din s, irul Fibonacci⇔

⇔ 5x2 + 4 este pătrat perfect sau 5x2 − 4 este pătrat perfect .

4.1.5 Determinare minim/maxim

Determinarea maximului s, i minimului reprezintă procesul de identificare a valorii celei
mai mari (maxim) sau celei mai mici (minim) dintr-un set de valori.

Maximul s, i minimul a două valori

Determinarea minimului unei valori

Algorithm minim(a, b)
If a < b then

Return a
Else

Return b
EndIf

EndAlgorithm

Complexitate: O(1)

Determinarea maximului unei valori

Algorithm maxim(a, b)
If a > b then

Return a
Else

Return b
EndIf

EndAlgorithm

Complexitate: O(1)

Determinarea minimului pentru un număr oarecare de valori

Algoritmul primaValoare va păstra ı̂n variabila min cu cea mai mică valoare citită (init, ia,
prima valoarea citită), ı̂n timp ce valoareMare init, ializează variabila min cu o valoare su-
ficient de mare pentru a permite găsirea minimului, ambii algoritmi terminându-se când
se introduce valoarea 0.

Variabila min init, ializată cu prima va-
loare citită

1: Algorithm primaValoare
2: Read nr
3: min← nr
4: Read nr
5: While nr ̸= 0 execute
6: If nr < min then
7: min← nr
8: EndIf
9: Read nr

10: EndWhile
11: Write min
12: EndAlgorithm

Complexitate: O(n)

Variabila Min init, ializată cu o valoare
mare

1: Algorithm valoareMare
2: min←∞
3: Read nr
4: While nr ̸= 0 execute
5: If nr < min then
6: min← nr
7: EndIf
8: Read nr
9: EndWhile

10: Write min
11: EndAlgorithm

Complexitate: O(n)

40

Algoritmi elementari Teorie

Determinarea maximului pentru un număr oarecare de valori

Algoritmul primaValoare actualizează variabila max cu prima valoare citită, ı̂n timp ce
valoareMica init, ializează variabila max cu o valoare suficient de mică pentru a permite
găsirea maximului, ambii algoritmi terminându-se când se introduce 0.

Variabila Max init, ializată cu cea mai
mare valoarea citită

1: Algorithm primaValoare
2: Read nr
3: max← nr
4: Read nr
5: While nr ̸= 0 execute
6: If nr > max then
7: max← nr
8: EndIf
9: Read nr

10: EndWhile
11: Write max
12: EndAlgorithm

Complexitate: O(n)

Variabila Max init, ializată cu o valoarea
mică

1: Algorithm valoareMica
2: max← −999999
3: Read nr
4: While nr ̸= 0 execute
5: If nr > max then
6: max← nr
7: EndIf
8: Read nr
9: EndWhile

10: Write max
11: EndAlgorithm

Complexitate: O(n)

4.1.6 Căutări pe s, iruri de numere

Căutarea Secvenţială

Căutarea secvenţială (numită s, i căutare liniară) presupune parcurgerea element cu ele-
ment a şirului până când fie se găseşte elementul căutat, fie se ajunge la finalul şirului
fără a găsi elementul respectiv. Din punct de vedere al complexităţii timp, ı̂n cel mai bun
caz (când elementul se află la ı̂nceputul şirului), complexitatea căutării este O(1), ı̂nsă ı̂n
medie şi ı̂n cel mai rău caz, complexitatea va fi O(n), unde n este lungimea şirului.

Exemplu: Presupunem că avem şirul A = [2, 5, 7, 10, 14, 20], iar elementul căutat este
10. Căutarea secvenţială va compara ı̂n ordine elementele: 2, 5, 7, 10, iar la al patrulea
element găseşte valoarea căutată. Ilustrarea grafică a căutării lui 10 ı̂n A este aceasta:

2 5 7 10 14 20

10 ̸= 2

10 ̸= 5

10 ̸= 7

10 = 10

Considerăm A - şir de numere, n - dimensiunea şirului s, i x - elementul căutat. O imple-
mentare ı̂n pseudocod a căutării secvent, iale arată astfel:

41

Algoritmi elementari Teorie

Căutare Secvenţială

1: For i = 0, n− 1 execute
2: If A[i] = x then
3: Return i ▷ Returnăm pozit, ia lui x
4: EndIf
5: EndFor
6: Return −1 ▷ x nu a fost găsit

Căutarea Binară

Pentru a putea căuta un element ı̂ntr-un s, ir folosind Căutarea Binară, s, irul trebuie
să fie sortat (vezi următorul capitol referitor la Metode de Sortare). Ideea de bază este
ı̂mpărţirea şirului ı̂n două subintervale de dimensiune aproximativ egală. Astfel, la fiecare
pas:

• Se calculează indicele mijlocului secvent,ei curente → m;

• Dacă A[m] este elementul căutat, returnăm m.

• Dacă A[m] > x, continuăm căutarea ı̂n subsecvent,a stângă [st,m− 1].

• Dacă A[m] < x, continuăm căutarea ı̂n subsecvent,a dreaptă [m+ 1, dr].

Căutarea binară are o complexitate timp atât ı̂n cazul mediu, cât şi ı̂n cel mai rău caz de
O(log n), unde n este lungimea şirului.

Observat, ie: Complexitatea Căutării Binare nu include s, i complexitatea sortării s, irului.
Atunci când ı̂ncepem să căutăm binar un anumit element, s, irul trebuie să fie deja sortat.

Exemplu: Considerăm acelaşi şir sortat: A = [2, 5, 7, 10, 14, 20], unde vom căuta elementul
10.
Paşii sunt următorii:

• Interval iniţial: st = 0, dr = 5, m = ⌊(0 + 5)/2⌋ = 2. Avem elementul A[2] = 7;

• Cum 7 < 10, căutăm ı̂n secvent,a [3, 5];

• Avem m = ⌊(3 + 5)/2⌋ = 4 s, i elementul A[4] = 14;

• 14 > 10, deci căutăm ı̂n secvent,a [3, 3];

• m = ⌊(3 + 3)/2⌋ = 3, A[3] = 10 s, i oprim căutarea.

Ilustrarea grafică a căutării lui 10 ı̂n A este aceasta:

42

Algoritmi elementari Teorie

Pasul 1: 2 5 7 10 14 20

st drm

7 < 10→ st = m+ 1

Pasul 2: 2 5 7 10 14 20

st drm

14 > 10→ dr = m− 1

Pasul 3: 2 5 7 10 14 20

st

dr

m

10 = 10→ stop

Figura 4.1 Căutare binară pentru elementul 10

Considerăm A - şir de numere, n - dimensiunea şirului s, i x - elementul căutat. O imple-
mentare ı̂n pseudocod a căutării secvent, iale arată astfel:

Căutare Binara

1: While st ≤ dr execute
2: m← (st+ dr) DIV 2
3: If A[m] = x then
4: Return m
5: Else If A[m] > x then
6: dr ← m− 1
7: Else
8: st← m+ 1
9: EndIf

10: EndWhile
11: Return −1

4.1.7 Interclasarea

Interclasarea este o tehnică fundamentală utilizată pentru combinarea a două secvent,e
sortate ı̂ntr-o singură secvent, ă sortată. Această metodă este folosită frecvent ı̂n algoritmi
precum sortarea prin interclasare (Merge Sort) sau pentru alte aplicat, ii care presupun
manipularea datelor sortate.

Principiile Interclasării

• Intrările:

– Două liste sortate (sau secvent,e sortate)

• Ies, irea:

43

Algoritmi elementari Teorie

– O singură listă sortată obt, inută prin combinarea celor două liste

• Procesul:

– Compararea elementelor curente din cele două liste

– Inserarea elementului mai mic ı̂n lista finală

– Repetarea procesului până la epuizarea ambelor liste

Modelul Matematic al Interclasării

Considerăm două liste sortate A = {a1, a2, . . . , am} s, i B = {b1, b2, . . . , bn}. Interclasarea
produce o listă C = {c1, c2, . . . , cm+n} astfel ı̂ncât C este de asemenea sortată:

C = Merge(A,B)

Algoritmul pentru Interclasare

Algoritmul de Interclasare

1: Algorithm Merge(A,B)
2: i← 1, j ← 1, k ← 1
3: C ← listă goală
4: While i ≤ |A| && j ≤ |B| execute ▷ S-a folosit |A| = lungimea s, irului A
5: If A[i] ≤ B[j] then
6: C[k]← A[i]
7: i← i+ 1
8: Else
9: C[k]← B[j]

10: j ← j + 1
11: EndIf
12: k ← k + 1
13: EndWhile
14: While i ≤ |A| execute
15: C[k]← A[i]
16: i← i+ 1, k ← k + 1
17: EndWhile
18: While j ≤ |B| execute
19: C[k]← B[j]
20: j ← j + 1, k ← k + 1
21: EndWhile
22: Return C
23: EndAlgorithm

Complexitatea Algoritmului

• Complexitatea temporală: O(m+n), unde m s, i n sunt dimensiunile celor două
liste de intrare. Acest lucru rezultă din faptul că fiecare element este comparat s, i
inserat o singură dată.

• Complexitatea spat, ială: O(m+ n) pentru stocarea listei rezultate.

44

Algoritmi elementari Teorie

Aplicat, ii

• Sortarea prin interclasare:

– Algoritmul Merge Sort utilizează interclasarea pentru a combina subsecvent,e
sortate.

• Îmbinarea datelor sortate:

– Utilizat ı̂n baze de date s, i fluxuri de date mari pentru a uni seturi sortate.

4.1.8 Metode de sortare

Ce sunt metodele de sortare?

Metodele de sortare ne ajută să aducem elementele unui tablou unidimensional (vector)
ı̂ntr-o ordine crescătoare sau descrescătoare. Există mai multe metode de a realiza
acest lucru, iar diferent,a majoră care ne va determina să alegem o anumită metodă va
fi cu sigurant, ă complexitatea timp a metodei. Atunci când procesăm un s, ir cu o
lungime imensă, suntem interesat, i ca operat, ia de sortare să fie făcută cât mai eficient
din punct de vedere al timpului de execut, ie. În cele ce urmează, vom prezenta cele mai
ı̂ntâlnite metode de sortare ı̂n Informatica de liceu, iar la finalul prezentării vom face o
scurtă comparat, ie ı̂ntre eficient,a acestora.

Metoda Bubble Sort

Bubble Sort este un algoritm de sortare care parcurge ı̂n mod repetat un s, ir de numere,
comparând perechi de elemente adiacente s, i interschimbându-le dacă sunt ı̂n ordinea
gres, ită fat, ă de cum ne dorim să sortăm s, irul (crescător/descrescător). Procesul continuă
până când s, irul este complet ordonat, adică nu mai sunt necesare interschimbări.

Exemplu: Vom sorta s, irul [5, 1, 4, 2, 8] crescător, folosind metoda Bubble Sort:

• Iterat, ia 1:

– Comparăm 5 s, i 1: 5 > 1, interschimbăm → {1, 5, 4, 2, 8}
– Comparăm 5 s, i 4: 5 > 4, interschimbăm → {1, 4, 5, 2, 8}
– Comparăm 5 s, i 2: 5 > 2, interschimbăm → {1, 4, 2, 5, 8}
– Comparăm 5 s, i 8: 5 < 8, nu interschimbăm.

• Iterat, ia 2:

– Comparăm 1 s, i 4: 1 < 4, nu interschimbăm.

– Comparăm 4 s, i 2: 4 > 2, interschimbăm → {1, 2, 4, 5, 8}
– Comparăm 4 s, i 5: 4 < 5, nu interschimbăm.

– Comparăm 5 s, i 8: 5 < 8, nu interschimbăm.

• Iterat, ia 3:

– Comparăm 1 s, i 2: 1 < 2, nu interschimbăm.

– Comparăm 2 s, i 4: 2 < 4, nu interschimbăm.

– Comparăm 4 s, i 5: 4 < 5, nu interschimbăm.

45

Algoritmi elementari Teorie

La finalul execut, iei, obt, inem s, irul sortat crescător: {1, 2, 4, 5, 8}. O ilustrare grafică a
rezultatelor ı̂n urma celor 3 iterat, ii se regăses,te mai jos:

5 1 4 2 8

1 5 4 2 8

1 4 5 2 8

1 2 4 5 8

Iterat, ia 1:

Iterat, ia 2:

Iterat, ia 3:

Final:

Figura 4.2 Sortare cu metoda Bubble Sort

O implementare a algoritmului ı̂n pseudocod arată astfel:

Bubble Sort

1: Do
2: ok ← True

3: For i← 1, n− 1 execute
4: If A[i] > A[i+ 1] then
5: Swap(A[i], A[i+ 1])
6: ok ← False

7: EndIf
8: EndFor
9: While NOT ok

Complexitate timp: O(n2) ı̂n cel mai rău caz, O(n) ı̂n cel mai bun caz.

Metoda Selection Sort

Sortarea prin metoda Selection Sort funct, ionează prin găsirea ı̂n mod repetat a elemen-
tului minim din vectorul nesortat s, i mutarea lui pe pozit, ia corespunzătoare ı̂n vectorul
sortat.

Exemplu: Vom sorta s, irul {29, 10, 14, 37, 13} folosind Selection Sort:

• Iterat, ia 1:

– Găsim minimul ı̂n {29, 10, 14, 37, 13}, care este 10.

– Interschimbăm 29 cu 10 → {10, 29, 14, 37, 13}.

• Iterat, ia 2:

– Găsim minimul ı̂n {29, 14, 37, 13}, care este 13.

– Interschimbăm 29 cu 13 → {10, 13, 14, 37, 29}.

46

Algoritmi elementari Teorie

• Iterat, ia 3:

– Găsim minimul ı̂n {14, 37, 29}, care este 14.

– Cum 14 este deja la locul său, nu interschimbăm.

• Iterat, ia 4:

– Găsim minimul ı̂n {37, 29}, care este 29.

– Interschimbăm 37 cu 29 → {10, 13, 14, 29, 37}.

Cum s, irul este sortat, algoritmul se opres,te ı̂n acest punct. O reprezentare grafică a
pas, ilor se regăses,te mai jos:

29 10 14 37 13

10 29 14 37 13

10 13 14 37 29

10 13 14 37 29

10 13 14 29 37

Iterat, ia 1:

Iterat, ia 2:

Iterat, ia 3:

Iterat, ia 4:

Final:

Figura 4.3 Sortare cu metoda Selection Sort

O implementare a algoritmului ı̂n pseudocod arată astfel:

Selection Sort

1: For i← 1, n− 1 execute
2: min← i
3: For j ← i+ 1, n execute
4: If A[j] < A[min] then
5: min← j
6: EndIf
7: EndFor
8: If min ̸= i then
9: Swap(A[i], A[min])

10: EndIf
11: EndFor

Complexitate: O(n2), atât ı̂n cel mai bun, cât s, i ı̂n cel mai rău caz.

47

Algoritmi elementari Teorie

Metoda Insertion Sort

Insertion Sort este un algoritm de sortare simplu s, i eficient pentru seturi mici de date.
Funct, ionează pe principiul construirii treptate a s, irului sortat, inserând fiecare element ı̂n
pozit, ia corectă. Algoritmul parcurge s, irul de la stânga la dreapta s, i la fiecare pas, mută
elementul curent ı̂n pozit, ia corespunzătoare fat, ă de elementele deja sortate din partea
stângă a s, irului.

Exemplu: Vom sorta s, irul {12, 11, 13, 5, 6} folosind metoda Insertion Sort:

• Iterat, ia 1:

– Element curent: 11

– Comparăm cu 12, deoarece 11 < 12, mutăm 12 o pozit, ie la dreapta.

– Inserăm 11 pe pozit, ia 1.

– S, irul devine: {11, 12, 13, 5, 6}

• Iterat, ia 2:

– Element curent: 13

– Comparăm cu 12, deoarece 13 ≥ 12, nu facem modificări.

– S, irul rămâne: {11, 12, 13, 5, 6}

• Iterat, ia 3:

– Element curent: 5

– Comparăm cu 13, 5 < 13, mutăm 13 la dreapta.

– Comparăm cu 12, 5 < 12, mutăm 12 la dreapta.

– Comparăm cu 11, 5 < 11, mutăm 11 la dreapta.

– Inserăm 5 pe pozit, ia 0.

– S, irul devine: {5, 11, 12, 13, 6}

• Iterat, ia 4:

– Element curent: 6

– Comparăm cu 13, 6 < 13, mutăm 13 la dreapta.

– Comparăm cu 12, 6 < 12, mutăm 12 la dreapta.

– Comparăm cu 11, 6 < 11, mutăm 11 la dreapta.

– Comparăm cu 5, 6 ≥ 5, inserăm 6 pe pozit, ia 1.

– S, irul devine: {5, 6, 11, 12, 13}

La finalul execut, iei, obt, inem s, irul sortat: {5, 6, 11, 12, 13}. O ilustrare grafică a pas, ilor
algoritmului este prezentată mai jos:

48

Algoritmi elementari Teorie

Iterat, ia 1: 12 11 13 5 6 → 11 12 13 5 6

Iterat, ia 2: 11 12 13 5 6 → 11 12 13 5 6

Iterat, ia 3: 11 12 13 5 6 → 5 11 12 13 6

Iterat, ia 4: 5 11 12 13 6 → 5 6 11 12 13

Figura 4.4 Sortare cu metoda Insertion Sort

O implementare a algoritmului ı̂n pseudocod arată astfel:

Insertion Sort

1: For i← 1 to n− 1 execute
2: key ← A[i]
3: j ← i− 1
4: While j ≥ 0 and A[j] > key execute
5: A[j + 1]← A[j]
6: j ← j − 1
7: EndWhile
8: A[j + 1]← key
9: EndFor

Complexitate: O(n2), atât ı̂n cel mai bun, cât s, i ı̂n cel mai rău caz.

Metoda Quick Sort

Quick Sort este un algoritm de sortare care utilizează strategia ”Divide et Impera”. Algo-
ritmul funct, ionează prin selectarea unui element numit ”pivot” s, i divizarea s, irului astfel
ı̂ncât toate elementele mai mici decât pivotul să fie plasate ı̂naintea acestuia, iar cele mai
mari după el. Acest proces se repetă recursiv pentru subs, irurile rezultate până când s, irul
este complet sortat.

Exemplu: Vom sorta s, irul {33, 10, 55, 71, 29, 3, 18} folosind metoda Quick Sort:

• Pasul 1:

– Alegem pivotul: 33.

– Divizăm s, irul ı̂n funct, ie de pivot:

∗ Elemente mai mici decât 33: {10, 29, 3, 18}
∗ Pivot: {33}
∗ Elemente mai mari decât 33: {55, 71}

• Pasul 2: Aplicăm recursiv Quick Sort pe subs, irurile rezultate.

49

Algoritmi elementari Teorie

– Sortăm {10, 29, 3, 18}
∗ Pivot: 10

∗ Elemente mai mici: {3}
∗ Elemente mai mari: {29, 18}

– Sortăm {3} (deja sortat)

– Sortăm {29, 18}
∗ Pivot: 29

∗ Elemente mai mici: {18}
∗ Elemente mai mari: {}

• Pasul 3: Reunim subs, irurile sortate.

– Subs, irul stâng sortat: {3, 10, 18, 29}
– Pivotul init, ial: {33}
– Sortăm {55, 71}

∗ Pivot: 55

∗ Elemente mai mici: {}
∗ Elemente mai mari: {71}

– Subs, irul drept sortat: {55, 71}

La final, obt, inem s, irul sortat: {3, 10, 18, 29, 33, 55, 71}. O ilustrare grafică a procesului
este prezentată mai jos:

33
{33}

10
{3, 10, 18, 29}

3
{3}

29
{18, 29}

18
{18} ∅

55
{55, 71}

∅
71
{71}

Figura 4.5 Sortare cu metoda Quick Sort

O implementare a algoritmului ı̂n pseudocod arată astfel:

50

Algoritmi elementari Teorie

Quick Sort

1: Algorithm QuickSort(A, low, high)
2: If low < high then
3: pivot index← Partition(A, low, high)
4: QuickSort(A, low, pivot index− 1)
5: QuickSort(A, pivot index+ 1, high)
6: EndIf
7: EndAlgorithm
8: Algorithm Partition(A, low, high)
9: pivot← A[high]

10: i← low − 1
11: For j ← low to high− 1 execute
12: If A[j] ≤ pivot then
13: i← i+ 1
14: Swap(A[i], A[j])
15: EndIf
16: EndFor
17: Swap(A[i+ 1], A[high])
18: Return i+ 1
19: EndAlgorithm

Complexitate timp:

• Caz mediu: O(n log n)

• Cazul cel mai rău: O(n2) (dacă s, irul este deja sortat invers sau pivotul ales este
mereu cel mai mic/mare element)

Metoda Merge Sort

Merge Sort este, de asemenea, un algoritm care utilizează ”Divide et Impera”. Spre
deosebire de Quick Sort, Merge Sort ı̂mparte ı̂n mod recursiv s, irul ı̂n jumătăt, i până când
ajunge la subs, iruri de un singur element, apoi le ı̂mbină (merge) ı̂ntr-un mod ordonat
pentru a obt, ine s, irul sortat final.

Exemplu: Vom sorta s, irul {38, 27, 43, 3, 9, 82, 10} folosind metoda Merge Sort:

• Pasul 1: Divizăm recursiv s, irul până la subs, iruri de un element:

– S, irul init, ial: {38, 27, 43, 3, 9, 82, 10};
– Împărt, im ı̂n două: {38, 27, 43} s, i {3, 9, 82, 10};
– Continuăm ı̂mpărt, irea:

∗ {38, 27, 43} → {38}, {27, 43} → {27}, {43};
∗ {3, 9, 82, 10} → {3, 9}, {82, 10} → {3}, {9}, {82}, {10}.

• Pasul 2: Îmbinăm subs, irurile ı̂ntr-un mod ordonat:

– Îmbinăm {27} s, i {43} → {27, 43};
– Îmbinăm {38} s, i {27, 43} → {27, 38, 43};
– Îmbinăm {3} s, i {9} → {3, 9};

51

Algoritmi elementari Teorie

– Îmbinăm {82} s, i {10} → {10, 82};
– Îmbinăm {3, 9} s, i {10, 82} → {3, 9, 10, 82}.

• Pasul 3: Îmbinăm cele două subs, iruri sortate:

– Îmbinăm {27, 38, 43} s, i {3, 9, 10, 82} → {3, 9, 10, 27, 38, 43, 82}.

La final, obt, inem s, irul sortat: {3, 9, 10, 27, 38, 43, 82}. Diagrama de mai jos ilustrează
procesul:

{38, 27, 43, 3, 9, 82, 10}

{38, 27, 43}

{38} {27, 43}

{27} {43}

{3, 9, 82, 10}

{3, 9}

{3} {9}

{82, 10}

{82} {10}

Figura 4.6 Divizarea s, irului ı̂n Merge Sort

{3, 9, 10, 27, 38, 43, 82}

{27, 38, 43}

{38} {27, 43}

{27} {43}

{3, 9, 10, 82}

{3, 9}

{3} {9}

{10, 82}

{10} {82}

Figura 4.7 Îmbinarea subs, irurilor ı̂n Merge Sort

O implementare a algoritmului ı̂n pseudocod arată astfel:

Merge Sort

1: Algorithm MergeSort(A, left, right)
2: If left < right then
3: mid← ⌊(left+ right)/2⌋
4: MergeSort(A, left, mid)
5: MergeSort(A, mid+ 1, right)
6: Merge(A, left, mid, right) ▷ Definită la capitolul interclasare
7: EndIf
8: EndAlgorithm

Complexitate timp: O(n log n) ı̂n toate cazurile, datorită divizării s, i ı̂mbinării constante
a subs, irurilor.

52

Algoritmi elementari Probleme

Comparat, ie ı̂ntre metodele de sortare

Până acum am prezentat multiple metode de sortare, iar acum a venit timpul să punem
următoarea problemă: Pe care dintre ele este cel mai bine să o utilizăm? Răspunsul se
bazează foarte mult pe analiza complexităt, ilor acestora, explicate ı̂n următorul capitol.
Pe scurt, complexităt, ile sortărilor arată astfel:

Algoritm Cazul mediu Cazul cel mai rău
Bubble Sort O(n2) O(n2)
Selection Sort O(n2) O(n2)
Insertion Sort O(n2) O(n2)
Quick Sort O(n log n) O(n2)
Merge Sort O(n log n) O(n log n)

Tabela 4.1 Comparat, ie algoritmi de sortare

Având ı̂n vedere comparat, ia de mai sus, observăm că algoritmul Merge Sort este cel mai
stabil s, i eficient din punct de vedere al complexităt, ii. As,adar, atunci când ne dorim să
sortăm un s, ir de numere cât mai eficient, putem folosi cu certitudine Merge Sort.

4.2 Probleme

67. ✓ ?Care este rezultatul conversiei numărului binar 1010101100 ı̂n baza 8?

A. 684

B. 1254

C. 1002

D. Niciunul din răspunsurile A., B., C.

68. ✓ ?Care este rezultatul conversiei numărului zecimal 24 + 26 + 210 − 3 ı̂n baza 2?

A. 10001001101

B. 1101

C. 10001010000

D. Niciunul dintre răspunsurile A., B., C.

69. ✓ ?Fie expresia E = 10(16) − 10(15) + 10(14) − 10(13) + · · · + 10(2), unde notat, ia x(b)

semnifică numărul x scris ı̂n baza b. Care valoare corespunde expresiei E?

A. 0 B. 1001(2) C. 11(8) D. 9(16)

70. ✓ ?Se consideră algoritmul ceFace(arr, n), unde n este un număr natural nenul (1 ≤
n ≤ 104) s, i arr este un s, ir de numere ı̂ntregi cu n elemente (−106 ≤ arr[1], arr[2], . . . ,
arr[n] ≤ 106).

53

Algoritmi elementari Probleme

Algorithm ceFace(arr, n)

c← arr[1]
For i← 2, n execute

dup← false

For j ← 1, i− 1 execute

If arr[i] = arr[j] then

dup← true

EndIf

EndFor

If NOT dup then

If arr[i] < c then

c← arr[i]
EndIf

EndIf

EndFor

Return c
EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Pentru apelul ceFace([7, 3, 3, 4,

8], 5) algoritmul returnează 4.

B. Algoritmul ceFace(arr, n) deter-
mină elementul minim din vectorul
arr.

C. Algoritmul ceFace(arr, n) deter-
mină elementul maxim din vectorul
arr.

D. Dacă toate elementele din s, irul arr

sunt egale, algoritmul ceFace(arr,

n) returnează oricare dintre aceste ele-
mente.

71. ✓ ?Se consideră algoritmii ceFace1(x) s, i ceFace2(x) definit, i alăturat, unde x este un
număr ı̂ntreg, cel mult 109.

Algorithm ceFace1(x)

While x > 9 execute

s← 0
While x > 0 execute

s← s+ x MOD 10
x← [x DIV 10]

EndWhile

x← s
EndWhile

Return x
EndAlgorithm

Algorithm ceFace2(x)

If x = 0 OR x MOD 9 = 0 then

Return 0
Else

Return x MOD 9
EndIf

EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Algoritmul ceFace1(x) returnează suma cifrelor lui x;

B. Algoritmul ceFace2(x) returnează ı̂ntotdeauna restul ı̂mpărt, irii lui x la 9;

C. Algoritmii ceFace1(x) s, i ceFace2(x) vor returna mereu aceeas, i valoare ∀x;
D. Algoritmul ceFace1(x) returnează cifra de control a numărului x.

72. ✓ ?Precizat, i care dintre următoarele afirmat, ii referitoare la egalitatea unor valori ı̂n
diferite baze de numerat, ie sunt adevărate, unde x(b) semnifică numărul x scris ı̂n baza
b.

A. 1010101(2) = 85(10)

B. 11100100011011111010(2) = E46FA(16)

C. 21030010121110(3) = 7203543(9)

D. 1234(8) = 1010011100(2)

54

Algoritmi elementari Probleme

73. ✓ ?Se consideră algoritmul ceFace(n), unde n este un număr natural (0 ≤ n ≤ 104).

Algorithm ceFace(n)

If n = 1 then

Return False

EndIf

If n = 2 then

Return True

EndIf

If n MOD 2 = 0 AND n ≥ 4 then

Return False

EndIf

For index ← 3, index * index ≤ n
execute

If n MOD index = 0 then

Return False

EndIf

EndFor

Return True

EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. În cazul apelului ceFace(21), algorit-
mul returnează True.

B. Algoritmul returnează False pentru
toate valorile pare diferite de 2.

C. Algoritmul returnează True dacă s, i
numai dacă numărul n este prim, False
altfel.

D. Există exact 5 numere cu proprieta-
tea că n ≤ 10, pentru care apelul
ceFace(n) returnează True.

74. ✓ ?Se consideră algoritmul ceFace(n), unde n este un număr natural nenul (1 ≤ n ≤
109):

Algorithm ceFace(n)

top ← 0
While n > 0 execute

If n MOD 6 = 0 then

top ← top + 1

EndIf

n← n DIV 6
EndWhile

Return top

EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Pentru n = 1302, algoritmul retur-
nează valoarea 3.

B. Pentru n = 216, algoritmul returnează
valoarea 2.

C. Dacă n este un număr par, algoritmul
returnează o valoare impară.

D. Algoritmul returnează numărul de ci-
fre de 0 din reprezentarea ı̂n baza 6 a
numărului n.

75. ✓ ?Se consideră 3 numere ı̂n diferite baze de numerat, ie: x = 429 ı̂n baza 10, y = 1AD ı̂n
baza 16 s, i z = 110101100 ı̂n baza 2. Care dintre următoarele afirmat, ii sunt adevărate?

A. x = y s, i y ̸= z. B. x = y = z. C. x ̸= y s, i y ̸= z. D. x ̸= y s, i y = z.

76. ✓ ?Se consideră subalgoritmul ceFace() definit alăturat. Şirul a de lungime n este
citit de la tastatură, iar şirul sp este iniţializat cu 0. Funcţia max(a, b) returnează
maximul dintre numerele a şi b. Vectorii sunt indexat, i de la 0.

55

Algoritmi elementari Probleme

Algorithm ceFace()

c← a[0]
sp[0]← a[0]
If c < 0 then

c← 0
EndIf

For i← 1, n− 1 execute

c← c+ a[i]
sp[i]← max(sp[i− 1], c)
If c < 0 then

c← 0
EndIf

EndFor

c← a[n− 1]
b← a[n− 1]
If c < 0 then

c← 0
EndIf

d← b+ sp[n− 2]
For i← n− 2 to 1, −1 execute

c← c+ a[i]
If b < c then

b← c
EndIf

If c < 0 then

c← 0
EndIf

d← max(d, b+ sp[i− 1])
EndFor

Output d

EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Subalgoritmul ceFace determină
suma maximă posibilă care se poate
obt, ine din două secvent,e oarecare din
şirul a.

B. Subalgoritmul ceFace determină
suma maximă posibilă care se poate
obt, ine din două secvent,e care nu au
niciun element comun din şirul a.

C. Subalgoritmul ceFace determină
secvent,a de lungime maximă s, i sumă
maximă din şirul a.

D. Subalgoritmul ceFace determină
numărul de secvent,e cu sumă s, i
lungimea maximă din şirul a.

77. ✓ ?Se consideră algoritmul ceFace(arr, n, i), unde n s, i i sunt numere naturale nenule
(1 ≤ n ≤ 104, 1 ≤ i ≤ n) s, i arr este un s, ir de numere ı̂ntregi cu n elemente (−106 ≤
arr[1], arr[2], . . . , arr[n] ≤ 106).

Algorithm ceFace(arr, n, i)

If i = n then

Return arr[i]

EndIf

m← ceFace(arr, n, i+ 1)
If arr[i] > m then

m← arr[i]
EndIf

Return m
EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate referitoare la algoritmul ceFace(arr,
n, i)?

A. Pentru apelul ceFace([10, -3, 7, 5, -11, 12, 6, 0], 8, 1) algoritmul re-
turnează -11.

B. Pentru apelul ceFace([10, -3, 7, 5, -11, 12, 6, 0], 8, 1) algoritmul re-
turnează 12.

56

Algoritmi elementari Probleme

C. Pentru apelul ceFace([5, -4, 3, -2, 1], 5, 2) algoritmul returnează 5.

D. Algoritmul ceFace(arr, n, i) determină maximul din ı̂ntregul vector arr.

78. ✓ ?Se consideră algoritmul special(v, n, k), unde n s, i v sunt două numere naturale
(1 ≤ n ≤ 104, 1 ≤ k ≤ 9), iar v este un s, ir de numere naturale cu n elemente
(v[1], v[2], . . . , v[n]).

Algorithm special(v, n, k)

If n = 0 then

Return 0

EndIf

Return ((v[n] DIV 10− v[n] MOD 10 ∗ 2) MOD k = 0) + special(v, n− 1, k)
EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Pentru apelul special([11, 33, 36, 44, 66, 67], 6, 3) algoritmul returnează 3.

B. Pentru apelul special([28, 70, 30, 35], 4, 7) algoritmul returnează 3.

C. Algoritmul special(v, n, k) calculează s, i returnează câte numere sunt divizibile
cu k ı̂n vectorul v.

D. Pentru apelurile special([21, 15, 6, 8, 49], 5, 7) s, i special([77, 147, 5, 16, 25],
5, 7) algoritmul returnează ı̂n ambele cazuri o valoare pară.

79. ✓ ?Se consideră algoritmul taste(arr, n), unde n este un număr natural nenul (1 ≤
n ≤ 104), iar arr este un s, ir de numere naturale cu n elemente (1 ≤ arr[1], arr[2], . . . ,
arr[n] ≤ 106).

Algorithm taste(arr, n)

If n = 0 then

Return 0

EndIf

p ← true

If arr[n] ≤ 1 then

p ← false

EndIf

For j ← 2 to j * j ≤ arr[n] execute

If arr[n] MOD j = 0 then

p ← false

EndIf

EndFor

If p then

Return taste(arr, n - 1)

EndIf

Return arr[n] + taste(arr, n - 1)

EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Algoritmul taste(arr, n) retur-
nează suma numerelor prime din
vectorul arr.

B. Pentru apelul taste([3, 8, 9,

13, 15, 21, 23, 24], 8) algo-
ritmul returnează 39.

C. Pentru apelul taste([1, 5, 6,

9, 11, 16, 17, 19, 20], 9)

algoritmul returnează 52.

D. Algoritmul taste(arr, n) retur-
nează 0 dacă niciun element din
vectorul arr nu este prim.

80. ✓ ?Se consideră algoritmul extra(n), unde n este un număr natural nenul (1 ≤ n ≤ 109).

57

Algoritmi elementari Probleme

Algorithm extra(n)

If n > 0 then

Write n MOD 2
extra(n DIV 2)

EndIf

EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Pentru n = 73, algoritmul afis,ează 1001001.

B. Pentru n = 21, algoritmul afis,ează 10101.

C. Algoritmul afis,ează reprezentarea numărului n
ı̂n baza 2.

D. Algoritmul are complexitate logaritmică.

81. ✓ ?Se consideră algoritmul ceFace(arr, n), unde n este un număr natural nenul (2 ≤
n ≤ 104), iar arr este un s, ir de numere ı̂ntregi cu n elemente (−104 ≤ arr[1], arr[2], . . . ,
arr[n] ≤ 104).

Algorithm ceFace(arr, n)

a← 10001
b← −10001
For i← 2 to n execute

If arr[i] > arr[1] AND arr[i] < a then

a← arr[i]
EndIf

If arr[i] < arr[1] AND arr[i] > b then

b← arr[i]
EndIf

EndFor

If a = 10001 OR b = −10001 then

Return arr[1]
Else

Return a+ b
EndIf

EndAlgorithm

Pentru care dintre următoarele ape-
luri ale algoritmului ceFace(arr, n)

algoritmul returnează valoarea 31?

A. ceFace([31, 31, 31, 31,

31], 5)

B. ceFace([31, -21, -11, -1,

32, -5, 49], 7)

C. ceFace([18, 20, 5, 6], 4)

D. ceFace([15, 17, 5, 49, 37,

14], 6)

82. ✓ ?Se consideră algoritmul ceFace(a, b), unde a s, i b sunt numere naturale pozitive
(1 ≤ a ≤ b ≤ 109).

58

Algoritmi elementari Probleme

Algorithm ceFace(a, b)

k ← 0
m← 109

M ← 0
For i← a, b execute

x← 1
nr ← 0
d← 2
cn← i
While cn > 1 AND d * d ≤ cn execute

nr ← 0
If cn MOD d = 0 then

While cn MOD d = 0 execute

cn← cn DIV d
nr ← nr + 1

EndWhile

x← x * (nr + 1)
EndIf

d← d+ 1
EndWhile

If cn > 1 then

x← x * 2
EndIf

If x > M then

M ← x
m← i
k ← 1

Else

If x = M then

k ← k + 1
EndIf

EndIf

EndFor

Write m, M, k
EndAlgorithm

Care dintre următoarele afirmat, ii
sunt adevărate?

A. Pentru apelul ceFace(200,

200), algoritmul afişează va-
lorile 200 10 1.

B. Pentru apelul ceFace(2,

10), algoritmul afişează
valorile 6 4 3.

C. Algoritmul ceFace(a, b)

determină s, i afişează cel mai
mic număr din intervalul
[a, b] cu număr maxim de
divizori, numărul de divizori
al acestuia s, i numărul de nu-
mere cu această proprietate.

D. Algoritmul ceFace(a, b)

determină s, i afişează cel
mai mic număr din interva-
lul [a, b] cu număr maxim
de factori primi distinct, i,
numărul acestora s, i numărul
de numere care au această
proprietate.

83. ✓ ?Care ar putea fi elementele unui vector astfel ı̂ncât, aplicând metoda căutării binare
pentru valoarea 64, aceasta să fie comparată succesiv cu valorile 36, 45, 64?

A. [4, 7, 9, 15, 36, 40, 42, 45, 64, 67]

B. [2, 4, 7, 12, 24, 36, 50]

C. [12, 24, 36, 42, 54, 66]

D. [4, 8, 9, 36, 16, 45, 64]

84. ✓ ?Fie expresia E = AB(16) + 120(3) − 120(4), unde notat, ia x(b) semnifică numărul x
scris ı̂n baza b. Care valoare corespunde expresiei E?

A. 162(10); B. 278(8); C. 1000101(2); D. 242(8).

85. ✓ ?Se consideră algoritmul dificil(n), unde n este un număr natural nenul (1 ≤ n ≤
106).

59

Algoritmi elementari Probleme

Algorithm dificil(n)

k ← 0
nr ← 0
For index← 1 to n execute

nr ← index

While nr > 0 execute

k ← k + (nr MOD 2)
nr ← nr DIV 2

EndWhile

EndFor

Return k
EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Pentru n = 509, algoritmul returnează
2287.

B. Pentru n = 1025, algoritmul retur-
nează 5123.

C. Pentru n = 120, algoritmul returnează
406.

D. Algoritmul dificil(n) calculează s, i
returnează numărul total de cifre de
1 din reprezentarea binară a tuturor
numerelor de la 1 până la n.

86. ✓ ?Se consideră algoritmul indigo(n), unde n este un număr natural (1 ≤ n ≤ 106).

Algorithm indigo(n)

cnt← 0
For i← 2, i * i ≤ n execute

If n MOD i = 0 then

cnt← cnt+ 1
While n MOD i = 0 execute

n← n DIV i
EndWhile

EndIf

EndFor

If n > 1 then

cnt← cnt+ 1
EndIf

Return cnt
EndAlgorithm

Care dintre următoarele apeluri ale al-
goritmului indigo(n) returnează va-
loarea 3?

A. indigo(120)

B. indigo(9016)

C. indigo(630)

D. indigo(8064)

87. ✓ ?Se consideră algoritmul lambda(n), unde n este un număr natural nenul (1 ≤ n ≤
109).

Algorithm lambda(n)

If n < 10 then

Return n
EndIf

b← lambda(n DIV 10)
a← n MOD 10
If a MOD 4 > b MOD 4

then

Return a
EndIf

Return b
EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate re-
feritoare la algoritmul lambda(n)?

A. Pentru apelul lambda(12569) algoritmul retur-
nează 2.

B. Pentru apelul lambda(783031) algoritmul re-
turnează 8.

C. Pentru apelurile lambda(2024) s, i
lambda(2025) algoritmul returnează aceeas, i
valoare.

D. Algoritmul lambda(n) returnează prima cifră
divizibilă cu 4 din reprezentarea numărului n.

88. ✓ ?Se consideră algoritmul book(n), unde n este un număr natural nenul (1 ≤ n ≤ 109).

60

Algoritmi elementari Probleme

Algorithm book(n)

If n < 10 then

x← n MOD 3

y ← n MOD 2

If x = 0 AND y ̸= 0 then

Return n
Else

Return -1

EndIf

EndIf

u← n MOD 10

v ← n DIV 10

p← book(v)
t← u MOD 3

q ← u MOD 2

z ← p
If t = 0 AND q ̸= 0 AND u > z then

w ← u
Else

w ← z
EndIf

r ← w * 2− w
Return r

EndAlgorithm

Care dintre următoarele afirmat, ii sunt false
referitoare la algoritmul book(n)?

A. Pentru apelul book(3063528) algorit-
mul returnează 3.

B. Pentru apelul book(24680) algorit-
mul returnează -1.

C. Pentru apelul book(5792041) algorit-
mul returnează 9.

D. Algoritmul book(n) returnează -1
dacă numărul n cont, ine doar cifre din
mult, imea {3, 4, 5, 6, 7, 8}.

89. ✓ ?Se consideră algoritmii switch(a, b) s, i case(a, b), unde a s, i b sunt numere natu-
rale (1 ≤ a, b ≤ 106).

Algorithm switch(a, b)

If a = b then

Return a

EndIf

If a < b then

Return switch(a, b - a)

EndIf

Return switch(a - b, b)

EndAlgorithm

Algorithm case(a, b)

Return a * b DIV switch(a, b)
EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Dacă a = 2024 s, i b = 32, atunci apelul switch(a, b) returnează 8.

B. Dacă a = 48 s, i b = 22, atunci apelul case(a, b) returnează 528.

C. Algoritmul switch(a, b) returnează cel mai mic multiplu comun al lui a s, i b.

D. Algoritmul case(a, b) returnează produsul celor două numere, dacă acestea
sunt prime ı̂ntre ele.

90. ✓ ?Se consideră algoritmul red(arr, n), unde n este un număr natural nenul (1 ≤ n ≤
104) s, i arr este un s, ir de numere ı̂ntregi cu n elemente (0 ≤ arr[1], arr[2], . . . , arr[n] ≤
106).

61

Algoritmi elementari Probleme

Algorithm red(arr, n)

For i← n− 1, 1,−1 execute

If arr[i] < arr[i+ 1] then

arr[i]← arr[i]− arr[i+ 1]
arr[i+ 1]← arr[i+ 1] + arr[i]
arr[i]← arr[i+ 1]− arr[i]

EndIf

EndFor

Return arr[1]
EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Pentru apelul red([15, 23, 7, 12,

81, 49, 35, 31], 8) algoritmul re-
turnează 7.

B. Pentru apelul red([23, 10, 44,

52, 19, 81, 3, 72, 22], 9) algo-
ritmul returnează 81.

C. Algoritmul red(arr, n) sortează des-
crescător vectorul arr.

D. Algoritmul red(arr, n) determină
elementul minim din vectorul arr.

91. ✓ ?Se consideră algoritmul great(arr, n, i), unde n s, i i sunt numere naturale ne-
nule (1 ≤ n, i ≤ 104), iar arr este un s, ir de numere naturale cu n elemente (1 ≤
arr[1], arr[2], . . . , arr[n] ≤ 106).

Algorithm great(arr, n, i)

If i = n then

Return arr[i]
EndIf

g ← great(arr, n, i+ 1)
While g ̸= 0 execute

If arr[i] > g then

arr[i]← arr[i] MOD g
Else

temp← arr[i]
arr[i]← g
g ← temp MOD g

EndIf

EndWhile

Return arr[i]
EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii
sunt adevărate referitoare la algoritmul
great(arr, n, i).

A. Pentru apelul great([30, 60,

12, 48, 72], 5, 1) algoritmul
returnează 3.

B. Pentru apelul great([21, 14, 42],

3, 2) algoritmul returnează 7.

C. Pentru apelul great([45, 35,

20, 80, 50], 5, 3) algoritmul
returnează 10.

D. Algoritmul are complexitate liniară
O(n).

92. ✓ ?Se consideră algoritmul Algo(v, n), unde v este un vector cu n numere naturale
(v[1], v[2], . . . , v[n]) (1 ≤ n ≤ 105):

Algorithm Algo(v, n)

s← 0
For i← 1, n execute

v[i]← n+ 1− i
EndFor

For i← 1, n execute

If i MOD 2 ̸= 0 then

s← s+ v[i]
EndIf

EndFor

Write s
EndAlgorithm

Ce valoare afis,ează algoritmul ı̂n urma ape-
lului Algo(v, 10)?

A. 25

B. 35

C. 50

D. 30

62

Algoritmi elementari Probleme

93. ✓ ?Se consideră algoritmii ceFace1(v, n) s, i ceFace2(v, n, i, fl, sl), unde n s, i i
sunt numere naturale (1 ≤ n ≤ 104, 0 ≤ i ≤ n), iar v este un s, ir de numere ı̂ntregi
cu n+ 1 elemente (0 ≤ v[0], v[1], v[2], . . . , v[n] ≤ 106). fl si sl sunt 2 numere naturale
(0 ≤ fl, sl ≤ 106).

Algorithm ceFace2(v, n, i, fl, sl)

If i ≤ n then

If v[i] > fl then

ceFace2(v, n, i + 1, v[i], fl)

Else

If v[i] > sl AND v[i] ̸= fl then

ceFace2(v, n, i + 1, fl, v[i])

Else

ceFace2(v, n, i + 1, fl, sl)

EndIf

EndIf

Else

Write ‘(‘, fl, ‘,‘, sl, ‘)‘, ‘ ’

EndIf

EndAlgorithm

Algorithm ceFace1(v, n)

For k ← 0, n execute

ceFace2(v, n, k, 0, 0)

EndFor

EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate referitoare la algoritmii ceFace1(v,
n) s, i ceFace2(v, n, i, fl, sl)?

A. Pentru apelul ceFace2([9, 8, 6, 3, 7, 2, 4], 6, 1, 0, 0), algoritmul afis,ează
(8, 7).

B. Pentru apelul ceFace1([7, 9, 1, 4, 5, 3], 5), algoritmul afis,ează (9, 7) (9, 5)
(5, 4) (5, 4) (5, 3).

C. Algoritmul ceFace1(v, n) afis,ează n + 1 perechi de numere din vectorul v, de
forma (a, b), unde a > b s, i a este cel mai mare element din vectorul v.

D. Pentru apelul ceFace2([5, 5, 4, 2, 1, 3, 1], 6, 3, 0, 0), algoritmul afis,ează
(3, 2).

94. ✓ ?Se consideră algoritmul ceFace(n), unde n este un număr natural nenul (1 ≤ n ≤
109).

Algorithm ceFace(n)

While n ̸= 0 execute

If n MOD 4 > 1 then

Return False

EndIf

n← n DIV 4
EndWhile

Return True

EndAlgorithm

Care dintre următoarele afirmat, ii sunt
false?

A. Algoritmul returnează True dacă s, i
numai dacă n cont, ine doar cifrele 0
s, i 1 ı̂n reprezentarea sa ı̂n baza 4.

B. Algoritmul verifică dacă numărul n
poate fi scris ca suma de puteri dis-
tincte ale lui 4.

C. Pentru n = 806, algoritmul returnează
False.

D. Algoritmul returnează False pentru
orice număr care nu este multiplu de
4.

63

Algoritmi elementari Probleme

95. ✓ ?Se consideră algoritmul Algo(v), unde v este un vector cu n = 8 elemente (v[1], v[2], . . . , v[8]):

Algorithm Algo(v)

For i← 8, 1,−1 execute

If i MOD 2 ̸= 0 then

v[i]← i+ 1
Else

v[i]← i− i/2
EndIf

EndFor

EndAlgorithm

Cum va arăta vectorul v ı̂n urma execut, iei
instruct, iunilor algoritmului Algo(v)?

A. 3 1 5 3 7 5 9 7

B. 2 1 4 3 6 5 8 7

C. 2 1 4 2 6 3 8 4

D. 3 1 5 3 5 7 7 9

96. ✓ ?Se consideră algoritmul Algo(v, n, e), unde v este un vector cu n elemente ı̂ntregi
distincte (v[1], v[2], . . . , v[n]), 1 ≤ n ≤ 104 s, i v[i] ̸= v[j], pentru 1 ≤ i ≤ j ≤ n), iar e
este un număr ı̂ntreg. Algoritmul caută elementul e ı̂n vectorul v s, i, dacă ı̂l găses,te,
mută toate elementele de după elementul e la ı̂nceputul vectorului s, i returnează True,
nemodificând ordinea celorlalte elemente. Dacă elementul e nu se găses,te ı̂n v, al-
goritmul returnează False s, i nu modifică nimic. De exemplu, pentru vectorul v cu
elementele [3, 5, 7, 9, 11] s, i e = 5, algoritmul va returna True s, i vectorul v va deveni
[7, 9, 11, 3, 5]. Care dintre următoarele implementări de mai jos este o variantă corectă
pentru algoritmul descris?

A.

Algorithm algo(v, n, e)

i← 0
While i < n execute

If v[i] = e then

Break

EndIf

i← i+ 1
EndWhile

If i = n then

Return False

EndIf

j ← i
While j < n execute

v[j − i]← v[j]
j ← j + 1

EndWhile

k ← 0
While k < i execute

v[n− i+ k]← v[n− k − 1]
k ← k + 1

EndWhile

Return True

EndAlgorithm

B.

Algorithm algo(v, n, e)

i← 0
found← False

While i < n execute

If v[i] = e then

found← True

Break

EndIf

i← i+ 1
EndWhile

If NOT found then

Return False

EndIf

j ← i
While j < n execute

v[j − i]← v[j]
j ← j + 1

EndWhile

k ← 0
While k < i execute

v[k]← v[n− i+ k]
k ← k + 1

EndWhile

Return True

EndAlgorithm

64

Algoritmi elementari Probleme

C.

Algorithm algo(v, n, e)

i← 1
found← False

While i ≤ n execute

If v[i] = e then

found← True

Break

EndIf

i← i+ 1
EndWhile

If NOT found then

Return False

EndIf

elements← n− i
temp← [] ▷ vector vid

For j ← 1, elements execute

temp[j]← v[i+ j]
EndFor

For j ← i, 1,−1 execute

v[j + elements]← v[j]
EndFor

For j ← 1, elements execute

v[j]← temp[j]
EndFor

Return True

EndAlgorithm

D.

Algorithm algo(v, n, e)

i← 0
found← False

While i < n execute

If v[i] = e then

found← True

Break

EndIf

i← i+ 1
EndWhile

If NOT found then

Return False

EndIf

temp← [0] ∗ i
k ← 0
tempIndex← 0
While k ≤ i execute

temp[tempIndex]← v[k]
tempIndex← tempIndex+ 1
k ← k + 1

EndWhile

j ← i
While j < n execute

v[j − i]← v[j]
j ← j + 1

EndWhile

k ← 0
While k < i execute

v[n− i+ k]← temp[k]
k ← k + 1

EndWhile

Return True

EndAlgorithm

97. ✓ ?Se consideră algoritmul algo(v, n, k), unde n este un număr natural (1 ≤ n ≤ 104),
v este un vector cu n elemente numere ı̂ntregi (v[1], v[2], . . . , v[n]), iar k este un număr
natural:

Algorithm algo(v, n, k)

If n MOD k ̸= 0 then

Return False

EndIf

s← n DIV k
For i← 1, k execute

start← (i− 1) ∗ s+ 1
end← i ∗ s
For j ← start, end− 1 execute

If v[j] ≥ v[j + 1] then

Return False

EndIf

EndFor

EndFor

65

Algoritmi elementari Probleme

Return True

EndAlgorithm

Precizat, i care dintre afirmat, iile de mai jos sunt adevărate:

A. Algoritmul verifică dacă un vector poate fi ı̂mpărt, it ı̂n k subsecvent,e egale, fiecare
fiind strict crescător.

B. Algoritmul verifică dacă un vector poate fi ı̂mpărt, it ı̂n k subsecvent,e, fiecare fiind
ordonat crescător.

C. Apelul algo([1, 2, 1, 2, 1, 2, 1, 2], 8, 4) returnează valoarea True.

D. Apelul algo([1, 2, 3, 4, 3, 4], 6, 2) returnează valoarea True.

98. ✓ ?Se consideră algoritmul algo(n, k), unde n s, i k sunt numere naturale (1 ≤ n, k ≤
106):

Algorithm algo(n, k)

nr ← 0
p← 1
While (n ̸= 0)

AND (k ̸= 0) execute

a← n MOD 10
b← (n DIV 10) MOD 10
If (a+ b) MOD 3 = 0 then

nr ← nr + (a ∗ b) ∗ p
p← p ∗ 10

Else

k ← k − 1
EndIf

n← n DIV 10
EndWhile

Return nr
EndAlgorithm

Care dintre următoarele perechi de apeluri
returnează valori identice?

A. algo(676458, 3) s, i algo(655413,

3)

B. ceFace(2314587, 4) s, i
ceFace(1314579, 5)

C. algo(321458, 7) s, i algo(120459,

6)

D. ceFace(227459, 6) s, i algo(227454,
4)

99. ✓ ?Se consideră algoritmul transform(secv, n, m), unde n este un număr natural
(1 ≤ n ≤ 104), secv este un vector cu n elemente numere naturale (secv[1], secv[2], . . . ,
secv[n]), iar m este un număr ı̂ntreg. Se consideră |m| ca fiind valoarea absolută a
numărului.

Algorithm transform(secv, n, m)

For i← 1, n execute

rez[i]← 1
EndFor

For i← 1, n execute

If m = 0 then

rez[i]← 1
Else If m > 0 then

prod← 1
For j ← 1,m execute

prod← prod ∗ secv[(i+ j − 1) MOD n+ 1]
EndFor

rez[i]← prod
Else

prod← 1

66

Algoritmi elementari Probleme

For j ← 1, |m| execute
prod← prod ∗ secv[(i− j + n− 1) MOD n+ 1]

EndFor

rez[i]← prod
EndIf

EndFor

Return rez
EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate:

A. Pentru apelul transform([1, 3, 8, 5, 9], 5, 2) algoritmul va returna
[25, 40, 45, 30, 9].

B. Pentru apelul transform([1, 3, 2, 7], 4, -3) algoritmul va returna
[42, 14, 21, 6].

C. Pentru apelul transform([2, 3, 4, 5, 6], 5, 3) algoritmul va returna
[60, 120, 60, 36, 24].

D. Pentru apelul transform([1, 3, 7, 5, 9], 5, -2) algoritmul va returna
[45, 9, 3, 21, 35].

100. ✓ ?Se consideră algoritmii g(v, n), s, i f(v, n, t),unde n este un număr natural (1 ≤
n ≤ 104), v este un vector cu n elemente numere naturale (v[1], v[2], . . . , v[n]), iar t
este un număr natural (1 ≤ n ≤ 104). Valoarea INF reprezintă valoarea cea mai mare
valoarea posibilă.

Algorithm f(v, n, t)

g(v, n)

c← INF

aux← []
For i← 1, 3 execute

aux[i]← 0
EndFor

For i← 1, n− 2 execute

l← i+ 1
r ← n− 1
While l < r execute

s← v[i] + v[l] + v[r]
If |s− t| < |c− t| then

c← s
aux← [v[i], v[l], v[r]]

EndIf

If s < t then

l← l + 1
Else If s > t then

r ← r − 1
Else

Return aux
EndIf

EndWhile

EndFor

Return aux
EndAlgorithm

Algorithm g(v, n)

For i← 1, n− 1 execute

For j ← 1, n− i execute

If v[j] > v[j + 1] then

temp← v[j]
v[j]← v[j + 1]
v[j + 1]← temp

EndIf

EndFor

EndFor

EndAlgorithm

67

Algoritmi elementari Probleme

Precizat, i care dintre afirmat, iile de mai jos sunt adevărate:

A. Algoritmul indică tripletul de elemente din vector, a cărui sumă reprezintă cea
mai apropiată valoare de o valoare dată.

B. Algoritmul indică tripletul de elemente din vector, a cărui sumă reprezintă ele-
mentul strict mai mic al unei valori date.

C. Pentru apelul f([-1, 2, 1, -3, 5, -4], 6, 1) algoritmul returnează [−3,−1, 5].
D. Pentru apelul f([-1, 7, 1, 5, -8], 5, 6) algoritmul returnează [−1, 1, 5].

101. ✓ ?Se consideră algoritmul one(nr), unde nr este un număr natural nenul (1 ≤ nr ≤
106) s, i algoritmul two(v, n), unde n este un număr natural nenul (1 ≤ n ≤ 10000) s, i
v un vector cu n numere naturale pozitive (1 ≤ v[1], v[2], . . . , v[n] ≤ 106).

1: Algorithm two(v, n)

2: cnt← 0
3: p← 1
4: For i← 1, n− 1 execute

5: For j ← n, i+ 1, −1 execute

6: p← p+ 1
7: If (one(v[i]) MOD 2 = one(v[j]) MOD 2) AND (one(v[i]) MOD 2) then

8: cnt← cnt+ 1
9: EndIf

10: EndFor

11: EndFor

12: Return p− cnt− 1
13: EndAlgorithm

Algorithm one(nr)

c← 0
For d← 1, d * d ≤ nr execute

If nr MOD d = 0 then

c← c+ 1
If d * d < nr then

c← c+ 1
EndIf

EndIf

EndFor

Return c
EndAlgorithm

Care dintre următoarele afirmat, ii sunt
false?

A. Pentru apelul one(2027), se retur-
nează 2.

B. Pentru apelul two([144, 12, 24,

1024, 4, 36], 6), se returnează 6.

C. Algoritmul two(v, n) returnează
numărul de perechi (a, b) de elemente
din vector, cu număr par de divizori.

D. Dacă linia 12 ar fi schimbată cu
“Return cnt”, algoritmul two(v,

n) ar returna numărul de perechi de
elemente din vector, cu proprietatea
că cele 2 numere sunt pătrate per-
fecte.

102. ✓ ?Se consideră algoritmul poate(n, b), unde n s, i b sunt numere naturale nenule

(1 ≤ n ≤ 109, 2 ≤ b ≤ 10).

Algorithm poate(n, b)

If n = 0 then

Return 1

EndIf

68

Algoritmi elementari Probleme

Return n MOD b MOD 2 * poate(n DIV b, b)
EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Pentru n = 42 s, i b = 4, algoritmul returnează 1.

B. Pentru n = 502 s, i b = 7, algoritmul returnează 1.

C. Algoritmul poate(n, b) returnează produsul cifrelor pare ale lui n din reprezen-
tarea ı̂n baza b.

D. Algoritmul poate(n, b) returnează 1 dacă s, i numai dacă toate cifrele lui n din
reprezentarea ı̂n baza b sunt impare.

103. ✓ ?Fie nr un număr ı̂ntreg (0 < nr ≤ 109) s, i b o bază ı̂ntreagă (1 < b < 11). Precizat, i
care dintre următorii algoritmi transformă corect numărul nr din baza b ı̂n baza 10 s, i
returnează acest număr.

A.

Algorithm alg1(nr, b)

rez ← 0
k ← 1
ax← 1
While nr > 0 execute

ax← (nr MOD 10) ∗ k
rez ← rez + ax
nr ← nr DIV 10
k ← k ∗ b

EndWhile

Return rez
EndAlgorithm

B.

Algorithm alg2(nr, b)

rez ← 0
k ← 1
While nr > 0 execute

k ← k ∗ b
rez ← rez + (nr MOD 10) ∗ k
nr ← nr DIV 10

EndWhile

Return rez
EndAlgorithm

C.

Algorithm alg3(nr, b)

If nr = 0 then

Return 0

EndIf

Return nr MOD 10+alg3(nr DIV 10, b∗
b)
EndAlgorithm

D.

Algorithm alg4(nr, b)

If nr = 0 then

Return 0

EndIf

ax← nr
ax← ax MOD 10
nr1← nr DIV 10
Return ax+ alg4(nr1, b) ∗ b

EndAlgorithm

104. ✓ ?Se consideră algoritmul clock(n), unde n este un număr natural (1 ≤ n ≤ 104).

Algorithm clock(n)

nd← 0
For i← 1, n execute

If n MOD i = 0 then

If i MOD 2 = 0 then

nd← nd+ 1
Else

nd← nd− 1
EndIf

69

Algoritmi elementari Probleme

EndIf

EndFor

Return nd
EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Dacă n = 12, algoritmul returnează 2.

B. Algoritmul calculează s, i returnează diferent,a dintre numărul de divizori pari s, i
numărul de divizori impari ai lui n.

C. Dacă n este un număr prim, algoritmul clock(n) returnează ı̂ntotdeauna -2.

D. Algoritmul clock(n) returnează 0 pentru toate numerele din mult, imea
{2, 6, 18, 30, 72}.

105. ✓ ?Se consideră algoritmul algo(n, x, p), unde n este un număr natural (1 ≤ n ≤
105), x este un vector cu n elemente numere ı̂ntregi (x[1], x[2], . . . , x[n]), iar p este un
număr natural:

Algorithm algo(n, x, p)

If n MOD p ̸= 0 then

Return False

EndIf

i← 1
While i ≤ n− p execute

If x[i] ̸= x[i+ p] then

Return False

EndIf

i← i+ 1
EndWhile

Return True

EndAlgorithm

Pentru care dintre următoarele condit, ii al-
goritmul returnează True?

A. Dacă vectorul x este periodic de peri-
oadă p, iar lungimea n este un multi-
plu al perioadei p.

B. Dacă ı̂n vectorul x toate elementele au
aceeas, i valoare, indiferent de valoarea
lui p.

C. Dacă x[i] este egal cu x[i+p] pen-
tru i = 1, n, iar lungimea n nu este
multiplu al lui p.

D. Dacă vectorul x este periodic cu peri-
oada p, iar n mod p = 0.

106. ✓ ?Se consideră algoritmul algo(n, d), unde n este un număr natural pozitiv (1 ≤
n ≤ 104), iar d este o cifră (0 ≤ d ≤ 9).

Algorithm algo(n, d)

count← 0
total← 0
While n > 0 execute

r ← n MOD 10
If r = d then

count← count+ 1
EndIf

total← total + 1
n← n DIV 10

EndWhile

Return count > total DIV 2
EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii
sunt adevărate:

A. Pentru n = 1223333 s, i d = 3, algorit-
mul returnează True.

B. Pentru n = 444555 s, i d = 4, algorit-
mul returnează True.

C. Algoritmul verifică dacă cifra d apare
de mai multe ori decât jumătate din
numărul total de cifre ale lui n.

D. Pentru n = 77431 s, i d = 7, algoritmul
returnează True.

70

Algoritmi elementari Probleme

107. ✓ ?Se consideră algoritmul algo(n, b), unde n este un număr natural pozitiv (1 ≤
n ≤ 106) s, i b este un număr natural.

Algorithm algo(n, b)

count← 0
While n > 0 execute

r ← n MOD b
If r MOD (b− 1) = 0 then

count← count+ 1
EndIf

n← n DIV b
EndWhile

Return count
EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii
sunt adevărate:

A. Pentru n = 31 s, i b = 4, algoritmul
returnează 2.

B. Pentru n = 255 s, i b = 16, algoritmul
returnează 2.

C. Algoritmul determină câte cifre din
reprezentarea numărului n ı̂n baza b
sunt divizibile cu b− 1.

D. Algoritmul determină suma cifrelor
din reprezentarea numărului n ı̂n baza
b care sunt divizibile cu b− 1.

108. ✓ ?Se consideră algoritmul algo(n, x), unde n este un număr natural (1 ≤ n ≤ 104),
iar x este un vector cu n elemente numere ı̂ntregi (x[1], x[2], . . . , x[n]).

Algorithm algo(n, x)

For i← 1, n− 1 execute

nr ← 0
a← x[i]
b← x[i+ 1]
While a > 0 OR b > 0 execute

If a > 0 then

cif a← a MOD 10
Else

cif a← 0
EndIf

If b > 0 then

cif b← b MOD 10
Else

cif b← 0
EndIf

If cif a > cif b then

nr ← nr + (cif a− cif b)
Else If cif a < cif b then

nr ← nr − (cif b− cif a)
Else

nr ← nr + 1
EndIf

a← a DIV 10
b← b DIV 10

EndWhile

x[i]← (x[i] + nr) MOD (i+ 1)
EndFor

s← 0
For i← 1, n execute

s← s+ x[i]
EndFor

71

Algoritmi elementari Probleme

x[n]← s MOD 10
Return x

EndAlgorithm

Care va fi noul cont, inut al vectorului x după executarea algoritmului dat dacă n = 6
s, i x = [134, 214, 789, 578, 636, 543]?

A. [0, 2, 1, 2, 3, 2]

B. [0, 2, 1, 3, 3, 3]

C. [0, 2, 1, 3, 3, 2]

D. [1, 2, 1, 3, 3, 2]

109. ✓ ?Se consideră algoritmul algo(n), unde n este un număr natural (1 ≤ n ≤ 105).

Algorithm algo(n)

a← 0
b← False

While n > 0 execute

c← n MOD 10
If c MOD 2 = 0 then

a← a+ c
b← True

EndIf

n← n DIV 10
EndWhile

If NOT b then

Return −1
Else

Return a
EndIf

EndAlgorithm

Ce va returna apelul algo(6356)?

A. 13 B. 50 C. 0 D. 12

110. ✓ ?Se consideră algoritmul algo(a, b), unde a s, i b sunt numere naturale (1 ≤ a, b ≤
105).

Algorithm algo(a, b)

c← 0
d← 1
p← 1
While a+ b > 0 execute

If (a MOD 10 + b MOD 10) MOD 2 = 0 then

c← (a MOD 10 + b MOD 10) ∗ p
Else

If a MOD 10 > b MOD 10 then

c← (a MOD 10− b MOD 10) ∗ p
Else

c← (b MOD 10− a MOD 10) ∗ p
EndIf

EndIf

If c < 0 then

c← c ∗ (−1)
EndIf

d← d+ c
p← p+ 2
a← a DIV 10
b← b DIV 10

72

Algoritmi elementari Probleme

EndWhile

Return d
EndAlgorithm

Care va fi rezultatul apelului algo(387, 2349)?

A. 23 B. 145 C. 97 D. 278

111. ✓ ?Se consideră algoritmul f(v, n), unde n este un număr natural (1 ≤ n ≤ 104), iar
v este un vector cu n elemente numere naturale (v[1], v[2], . . . , v[n]).

Algorithm f(v, n)

If n = 0 then

Return 0

EndIf

If n = 1 then

Return v[1]
EndIf

p2← 0
p1← v[1]
For i← 2, n execute

If p1 > p2 + v[i] then

c← p1
Else

c← p2 + v[i]
EndIf

p2← p1
p1← c

EndFor

Return p1
EndAlgorithm

A. Apelul f([2, 7, 9, 3, 1], 5) va
returna valoarea 12.

B. Apelul f([2, 1, 1, 2], 4) va re-
turna valoarea 3.

C. Apelul f([9, 7, 8, 4, 1, 9], 6)

va returna valoarea 26.

D. Apelul f([9, 7, 8, 4, 1, 6, 9,

2], 8) va returna valoarea 32.

112. ✓ ?Se consideră algoritmul ceFace(n, arr), unde n este un număr natural nenul (1 ≤
n ≤ 104) s, i arr este un vector de n numere ı̂ntregi (−100 ≤ arr[1], arr[2], . . . , arr[n] ≤
100).

Algorithm ceFace(n, arr)

b← True

i← 1
While i ≤ n and b execute

b← arr[i] mod 2 = 0
i← i+ 1

EndWhile

Return b
EndAlgorithm

Pentru care din următoarele situat, ii algorit-
mul returnează True?

A. Dacă vectorul arr este format din va-
lorile 2, 0, 4,−2, 8,−6.

B. Dacă vectorul arr este format din va-
lorile 4, 10,−1, 8, 6, 2.

C. Dacă vectorul arr are doar elemente
impare.

D. Dacă vectorul arr are cel put, in un ele-
ment par.

113. ✓ ?Se consideră algoritmul X(arr, n, y), unde n s, i y sunt numere naturale (4 ≤
n ≤ 104, 1 ≤ y ≤ 104) s, i arr este un vector de n numere naturale nenule (1 ≤
arr[1], arr[2], . . . , arr[n] ≤ 104).

73

Algoritmi elementari Probleme

Algorithm X(arr, n, y)

If y > n then

Return 0

EndIf

For i← 1, n− 2 execute

arr[i+1]← arr[i]+2 * arr[i+2]−arr[i+1]
EndFor

Return arr[y]
EndAlgorithm

Pentru care din următoarele ape-
luri returnează valoarea 16?

A. X([7, 4, 3, 5, 12], 5,

3)

B. X([2, 5, 7, 9, 4], 5,

4)

C. X([1, 4, 7, 8, 10, 16],

6, 6)

D. X([7, 5, 2, 3, 4, 9,

2], 7, 5)

Problemele 114., 115. se referă la următorul algoritm ceFace(n, k, r), unde n, k,
s, i r sunt numere naturale nenule (1 ≤ n, k, r ≤ 103).

Algorithm ceFace(n, k, r)

If k * k > n then

If n > 1 then

r ← r * (n+ 1)
EndIf

Return r
EndIf

p← 0
sF ← 1
While n MOD k = 0 execute

p← p+ 1
n← n DIV k
sF ← sF * k

EndWhile

If p > 0 then

r ← r * (sF * k − 1) DIV (k − 1)
EndIf

Return ceFace(n, k + 1, r)

EndAlgorithm

114. ✓ ?Pentru care din următoarele
afirmat, ii sunt adevărate referitoare
la apelul ceFace(n, 2, 1)?

A. Algoritmul returnează
numărul de divizori impari ai
numărului n.

B. Algoritmul returnează
numărul de divizori ai
numărului n.

C. Algoritmul returnează suma
divizorilor numărului n.

D. Algoritmul are complexitatea
de timp O(log n).

115. ✓ ?Care dintre următoarele afirmat, ii sunt false referitoare la algoritmul ceFace(n, k,

r)?

A. Pentru apelul ceFace(12, 2, 1) algoritmul returnează 28.

B. Pentru apelurile ceFace(16, 2, 1) s, i ceFace(30, 2, 2) algoritmul returnează
31.

C. Pentru apelul ceFace(360, 2, 1) algoritmul returnează 1160.

D. Pentru apelurile ceFace(100, 2, 1) s, i ceFace(100, 2, 2) algoritmul retur-
nează aceeas, i valoare.

116. ✓ ?Se consideră algoritmul ceFacea(n, l, h), unde n, l s, i h sunt numere naturale
nenule (1 ≤ n, l, h ≤ 109).

74

Algoritmi elementari Probleme

Algorithm ceFacea(n, l, h)

If l > h then

Return False

EndIf

m← l + (h− l) DIV 2
If m * m * m = n then

Return True

Else

If m * m * m < n then

Return ceFacea(n, m + 1, h)

Else

Return ceFacea(n, l, m - 1)

EndIf

EndIf

EndAlgorithm

Precizat, i care afirmat, ii de mai jos
sunt adevărate referitor la algorit-
mul ceFacea(n, 1, n).

A. Algoritmul returnează False

pentru n = 8.

B. Algoritmul returnează True

pentru n = 5832.

C. Există cel put, in 27 valori ı̂n
intervalul (1, 30] pentru care
algoritmul returnează False.

D. Algoritmul returnează True

pentru exact 6 valori din in-
tervalul [9, 513).

117. ✓ ?Se consideră algoritmul Magic(n), unde n este un număr natural (1 ≤ n ≤ 105)

Algorithm Magic(n)

s← 0
p← 1
While n > 0 execute

c← n MOD 10
If c MOD 2 = 0 then

s← s+ c ∗ p
p← p ∗ 10

Else

s← c+ s ∗ 10
EndIf

n← n DIV 10
EndWhile

Return s
EndAlgorithm

Precizat, i care dintre afirmat, iile următoare
sunt adevărate:

A. Pentru apelul Magic(23456) valoarea
returnată de algoritm este 1255

B. Pentru apelul Magic(987654) valoa-
rea returnată de algoritm este 18579

C. Algoritmul Magic(n) returnează un
număr construit prin rearanjarea ci-
frelor lui n, astfel ı̂ncât cifrele impare
sunt păstrate ı̂n ordine directă, iar ci-
frele pare ı̂n ordine inversă, ment, inând
pozit, iile relative ale acestora.

D. Algoritmul Magic(n) inversează ordi-
nea tuturor cifrelor lui n.

118. ✓ ?Se consideră algoritmul Algo(x, y), unde x s, i y sunt numere naturale:

Algorithm Algo(x, y)

a← x
b← y
If a = 0 OR b = 0 then

a← a ∗ b
Else

While a ̸= b execute

If a < b then

a← a+ x
Else

b← b+ y
EndIf

EndWhile

EndIf

75

Algoritmi elementari Probleme

Write a
EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt corecte:

A. Algoritmul determină cel mai mare divizor comun al numerelor x s, i y.

B. Algoritmul calculează cel mai mare multiplu al numerelor x sau y.

C. Algoritmul calculează cel mai mic multiplu comun a numerelor x s, i y.

D. Algoritmul determină cel mai mic număr divizibil fie cu x, fie cu y.

119. ✓ ?Se consideră algoritmul ceFace(n), unde n este un număr natural (1 ≤ n ≤ 106).

Algorithm ceFace(n)

s← 0
p← 1
While n > 0 execute

c← n MOD 10
p← 1
x← c
ok ← True

For i← 1, c− 1 execute

x← x ∗ 10 + c
p← p ∗ 10

EndFor

t← x
inv ← 0
While t > 0 execute

inv ← inv ∗ 10 + t MOD 10
t← t DIV 10

EndWhile

If x = inv AND x > 0 then

s← s+ x
p← p ∗ c

EndIf

n← n DIV 10
EndWhile

Return s MOD p
EndAlgorithm

Precizat, i care dintre afirmat, iile următoare
sunt adevărate:

A. Algoritmul ceFace(n) calculează
suma numerelor formate din cifrele
lui n, repetate s, i verificate dacă
sunt palindromuri, s, i returnează
restul ı̂mpărt, irii la produsul cifrelor
speciale.

B. Pentru apelul ceFace(789), valoarea
returnată de algoritm este 464.

C. Algoritmul returnează 0 dacă n
cont, ine cel put, in o cifră 0

D. Pentru apelul ceFace(123), algorit-
mul returnează 3 deoarece doar cifrele
care generează palindromuri de lun-
gime impară contribuie la suma finală.

120. ✓ ?Se consideră algoritmul ceFace(n, p), unde n s, i p sunt numere naturale nenule
(2 ≤ n ≤ 20, 1 ≤ p ≤ n).

Algorithm ceFace(n, p)

nrF ← 0
pr ← p
While n ≥ pr execute

nrF ← nrF + n DIV pr
pr ← pr ∗ p

EndWhile

Return nrF
EndAlgorithm

Precizat, i care afirmat, ii de mai jos sunt adevărate:

A. Algoritmul are complexitatea O(log n).

76

Algoritmi elementari Probleme

B. Algoritmul returnează suma numerelor mai mici ca n care sunt divizibile cu p.

C. Algoritmul returnează numărul de factori p din n!.

D. Algoritmul returnează numărul de numere divizibile cu p din intervalul [1, n].

121. ✓ ?Se consideră algoritmii Cifra(n) s, i Check(x), unde n s, i x sunt numere naturale
(1 ≤ n, x ≤ 106). frecv este un s, ir de 10 elemente, init, ializate cu 0.

Algorithm Cifra(n)

temp← n
While temp > 0 execute

cifra← temp MOD 10
frecv[cifra]← frecv[cifra] + 1
If frecv[cifra] > 1 then

Return 0
EndIf

temp← temp DIV 10
EndWhile

s← Check(n)
If s = n then

Return 1
EndIf

While s > 9 execute

aux← s
s← 0
While aux > 0 execute

s← s+ aux MOD 10
aux← aux DIV 10

EndWhile

EndWhile

Return s
EndAlgorithm

Algorithm Check(x)

s← 0
For d← 1,

√
x execute

If x MOD d = 0 then

s← s+ d
If d ∗ d ̸= x then

s← s+ x DIV d
EndIf

EndIf

EndFor

Return s
EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Funct, ia Cifra(n) returnează 1 dacă n este un număr perfect s, i toate cifrele sale
sunt distincte.

B. Pentru apelul Cifra(7654), valoarea returnată de algoritm este 9.

C. Funct, ia Cifra(n) returnează restul sumei divizorilor lui n redus la o singură
cifră, dacă toate cifrele lui n sunt distincte.

D. Pentru apelul Cifra(452), valoarea returnată de algoritm este 6.

122. ✓ ?Se consideră algoritmii ceFace(n) s, i Algo(n), unde n este un număr natural nenul
(1 ≤ n ≤ 106). Simbolul & reprezintă operat, ia de AND pe bit, i (1012&1102 = 1002).

77

Algoritmi elementari Probleme

Algorithm Algo(n)

For i← 1, n execute

v[i]← i− 1
EndFor

For i← n, 2 execute

j ← (i− 1) & ((i− 1)− 1)
aux← v[i]
v[i]← v[j + 1]
v[j + 1]← aux

EndFor

Return v
EndAlgorithm

Algorithm ceFace(n)

p← Algo(n)
suma← 0
For i← 1, n execute

If (p[i] & (i− 1)) = (i− 1) then

suma← suma+ 1
EndIf

EndFor

Return suma
EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Pentru apelul ceFace(2345), valoarea returnată de algoritm este 587.

B. Algoritmul determină suma palindromurilor formate din fiecare cifră repetată
un număr egal cu valoarea sa, modulată de produsul cifrelor din număr care
generează palindromurilor valide.

C. Pentru apelul ceFace(7546), valoarea returnată de algoritm este 1887.

D. Algoritmul calculează rădăcina produsului dintre palindromurilor formate din
fiecare cifră repetată de atâtea ori cât reprezintă valoarea cifrei.

123. ✓ ?Se consideră algoritmul S(n, s, d), unde n, s s, i d sunt numere naturale nenule
(1 ≤ n, s, d ≤ 104).

Algorithm S(n, s, d)

If s > n then

Return False

EndIf

If s = n then

Return True

EndIf

Return S(n, s + d, d + 2)

EndAlgorithm

Precizat, i care afirmat, ii sunt adevărate referitor la apelul algoritmului S(n, 0, 1):

A. Algoritmul verifică dacă n este pătrat perfect.

B. Algoritmul verifică dacă n poate fi scris ca sumă de numere naturale consecutive
impare ı̂ncepând de la 1.

C. Există exact 19 valori ı̂n intervalul [71, 734] pentru care algoritmul returnează
True.

D. Algoritmul returnează False pentru exact 2 numere din mult, imea {73, 9, 442, 841,
576, 962}.

124. ✓ ?Se consideră algoritmul ceFace(n, k), unde n s, i k reprezintă numere naturale:

78

Algoritmi elementari Probleme

Algorithm ceFace(n, k)

c← 0
While n > 0 execute

x← n
y ← 0
len← 0
For i← 1, k execute

If x = 0 then

Return c
EndIf

y ← y ∗ 10 + (x MOD 10)
x← x DIV 10
len← len+ 1

EndFor

If len < k then

Return c
EndIf

unique← True

temp← y
While temp > 0 execute

d← (temp MOD 10)
frecv[d]← frecv[d] + 1
If frecv[d] > 1 then

unique← False

Break

EndIf

temp← temp DIV 10
EndWhile

If unique then

c← c+ 1
EndIf

n← n DIV 10
EndWhile

Return c
EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii
sunt adevărate:

A. Secvent,ele verificate sunt reordonate
s, i comparate ı̂n ordine descrescătoare
pentru a determina unicitatea cifrelor.

B. Algoritmul determină numărul de
subsecvent,e de k cifre consecutive ı̂n
n, unde toate cifrele din subsecvent, ă
sunt distincte

C. Dacă lungimea rămasă a numărului
n este mai mică decât k, algoritmul
returnează 0 fără a mai verifica alte
secvent,e.

D. Algoritmul calculează suma cifrelor
distincte din secvent,ele de lungime k
ı̂n loc să returneze numărul lor.

125. ✓ ?Se consideră algoritmul SpecialBits(n), unde n reprezintă un număr natural (1 ≤
n ≤ 105). Operat, ia SHL (Shift Left) este definită ca o operat, ie de deplasare pe bit, i
(bitwise shift left), care deplasează bit, ii unui număr spre stânga cu un anumit număr
de pozit, ii.

Algorithm SpecialBits(n)

If n = 0 then

Return 0
EndIf

count← 0
mask ← 1
While mask ≤ n execute

temp ← n AND ((mask SHL 1)− 1)
next← temp OR mask
If next ≤ n then

count← count+ 1
aux← next
While aux > 0 execute

79

Algoritmi elementari Probleme

If (aux AND mask) ̸= 0 then

test ← aux AND (aux −1)
If test ≤ n then

count← count+ 1
aux← test

Else

aux ← aux AND (aux− 1)
EndIf

Else

aux ← aux AND (aux− 1)
EndIf

EndWhile

EndIf

mask ← mask SHL 1
EndWhile

Return count
EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate:

A. Algoritmul returnează numărul de operat, ii posibile asupra n, care respectă con-
strângerile impuse de mask s, i bit-shifting.

B. Dacă n este o putere a lui 2, algoritmul va returna ı̂ntotdeauna n− 1.

C. Algoritmul verifică toate submask-urile posibile ale lui n, indiferent de con-
strângeri.

D. Pentru apelul SpecialBits(12), algoritmul va returna valoarea 9.

126. ✓ ?Se consideră algoritmul ceFace(a, b), unde a s, i b sunt numere naturale (1 ≤ a, b ≤
104).

1: Algorithm ceFace(a, b)

2: x← a
3: y ← b
4: While x ̸= y execute

5: If x < y then

6: x← x+ a
7: Else

8: y ← y + b
9: EndIf

10: EndWhile

11: Return x
12: EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii
sunt adevărate:

A. Pentru apelul ceFace(24, 36), algo-
ritmul returnează 72.

B. Pentru apelul ceFace(52, 14), algo-
ritmul returnează 728.

C. Algoritmul returnează cel mai mare
divizor comun al lui a s, i b.

D. Dacă Linia 11 ar fi schimbată cu
Return a * b DIV y, algoritmul ar
returna cel mai mare divizor comun
al lui a s, i b.

80

5

Complexitatea algoritmilor

Acest capitol acoperă

• De ce sunt importante complexităt, ile ı̂n analiza algoritmilor;

• Cum se determină complexitatea unui algoritm;

• Exemple de complexităt, i comune s, i implementările lor;

• Diferent,a ı̂ntre complexităt, i aditive s, i multiplicative.

5.1 Teorie

Complexităt, ile algoritmilor reprezintă un concept fundamental care se află la intersect, ia
dintre informatică s, i matematică. Acestea ne permit să estimăm numărul aproximativ
de pas, i necesari pentru ca un algoritm să rezolve o problemă, constituind un instrument
esent, ial ı̂n alegerea algoritmului optim ı̂n funct, ie de cerint,ele de eficient, ă. Des, i comple-
xitatea poate fi analizată atât din perspectiva temporală, cât s, i spat, ială, ı̂n acest capitol
ne vom concentra pe analiza temporală a algoritmilor.

5.1.1 Elementele Fundamentale ale Complexităt, ilor

• Complexitate constantă O(1):

– Timpul de execut, ie este independent de dimensiunea datelor de intrare

– Operat, iile elementare (atribuiri, operat, ii aritmetice simple, comparat, ii) au
complexitate constantă

• Complexitate liniară O(n):

– Numărul de pas, i este direct proport, ional cu dimensiunea datelor de intrare

• Complexitate logaritmică O(log n):

– Numărul de pas, i cres,te lent pe măsură ce dimensiunea datelor de intrare devine
mai mare

• Complexitate radical O(
√
n):

– La fel ca ı̂n cazul complexităt, ii logaritmice, numărul de pas, i cres,te lent pe
măsură ce dimensiunea intrării devine mai mare

• Complexitate pătratică O(n2):

– Numărul de pas, i cres,te proport, ional cu pătratul dimensiunii datelor de intrare
ı̂n cazul buclelor imbricate

• Complexitate exponent, ială O(2n):

Complexitatea algoritmilor Teorie

– Timpul de execut, ie cres,te rapid, fiind adesea ineficient pentru valori mari ale
intrării

• Teorema Master (pentru algoritmi Divide and Conquer):

– Fie un algoritm recursiv de tipul Divide and Conquer. Complexitatea sa poate
fi scrisă sub forma T (n) = a · T (n/b) + Θ(nk · logp(n)).

– Clasa de complexitate a algoritmului poate fi determinată astfel:

∗ Cazul 1: Dacă a > bk ⇒ T (n) = Θ(nlogb(a))

∗ Cazul 2: Dacă a = bk:

· Pentru p > −1⇒ T (n) = Θ(nlogb(a) · logp+1(n))

· Pentru p = −1⇒ T (n) = Θ(nlogb(a) · log(log(n)))
· Pentru p < −1⇒ T (n) = Θ(nlogb(a))

∗ Cazul 3: Dacă a < bk:

· Pentru p ≥ 0⇒ T (n) = Θ(nk · logp(n))
· Pentru p < 0⇒ T (n) = O(nk)

5.1.2 Exemple de implementare

Exemplu de Complexitate Liniară O(n)

1: For i← 1, n execute
2: Write i
3: EndFor

Exemplu de Complexitate Logaritmică O(log n)

1: i← 1
2: While i ≤ n execute
3: Write i
4: i← i× 2
5: EndWhile

Exemplu de Complexitate O(
√
n)

1: i← 1
2: While i ∗ i ≤ n execute
3: Write i
4: i← i+ 1
5: EndWhile

Exemplu de Complexitate Pătratică O(n2)

1: For i← 1, n execute
2: For j ← 1, n execute
3: Write i, j
4: EndFor
5: EndFor

82

Complexitatea algoritmilor Probleme

Exemplu de Complexitate Exponent, ială O(2n)

1: Algorithm Fibonacci(n)
2: If n ≤ 1 then
3: Return 1
4: Else
5: Return Fibonacci(n− 1) + Fibonacci(n− 2)
6: EndIf
7: EndAlgorithm

5.1.3 Analiza Complexităt, ii

• Complexitate temporală: Analiza unui algoritm ı̂n funct, ie de numărul de operat, ii
efectuate ı̂n timpul execut, iei.

• Complexitate spat, ială: Analiza resurselor de memorie utilizate de algoritm ı̂n
timpul execut, iei.

Observat, ie importantă: Constantele sunt ignorate ı̂n analiza Big-O, deoarece nu
influent,ează cres,terea pe termen lung a complexităt, ii. De exemplu, un algoritm de com-
plexitate O(2n) este considerat echivalent cu unul de complexitate O(n).

5.2 Probleme

127. ✓ ?Se consideră algoritmul ceFace(n), unde n este un număr natural nenul (1 ≤ n ≤
104).

Algorithm ceFace(n)

k ← 0
For i← n, n DIV 3, −1 execute

For j ← 3, n, j ← j * 3 execute

k ← k + n DIV 3
EndFor

EndFor

Return k
EndAlgorithm

Care este complexitatea de timp a
algoritmului ceFace(n)?

A. O(n2)

B. O(n2 · log3(n))

C. O(n)

D. O(n · log3(n))

128. ✓ ?Se consideră algoritmul ceFace(n, v), unde v este un tablou unidimensional cu

cel mult 106 elemente (v[1], v[2], . . . , v[n]) s, i n reprezintă numărul elementelor din v.
Subalgoritmul A(n, v) produce o schimbare asupra tabloului v, sortând elementele
crescător folosind metoda Selection Sort.

Algorithm ceFace(n, v)

A(n, v)

For i← 1, n− 2 execute

For j ← i+ 1, n− 1 execute

st← j + 1
dr ← n
k ← n
While st ≤ dr execute

k ← (st+ dr)/2
If v[i] + v[j] > v[k] then

83

Complexitatea algoritmilor Probleme

st← k + 1
Else

dr ← k − 1
EndIf

EndWhile

cnt← cnt+ (dr − j)
EndFor

EndFor

Return cnt
EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Algoritmul ceFace are complexitatea O(n);

B. Algoritmul ceFace are complexitatea O(n2 log(n)) s, i calculează numărul triple-
telor (i, j, k) din tabloul v cu proprietatea că v[i]− v[j] + v[k] > 0.

C. Algoritmul ceFace are complexitatea O(n3) s, i calculează numărul tripletelor
(i, j, k) din tabloul v cu proprietatea că v[i] + v[j] > 0.

D. Algoritmul ceFace calculează numărul triunghiurilor distincte care au lungimile
laturilor ı̂n tabloul v.

129. ✓ ?Se consideră algoritmul ceFace(n), unde n este un număr natural nenul (1 ≤ n ≤
104).

Algorithm ceFace(n)

k ← 0
m← 1
While k ≤ n execute

ind← 1
While ind ≤ m execute

Write j
ind← ind+ 1

EndWhile

k ← k + 1
m← m * 3

EndWhile

EndAlgorithm

Care este complexitatea de timp a algorit-
mului ceFace(n)?

A. O(n · log3(n))

B. O(n2)

C. O(3n)

D. O(n ·m)

130. ✓ ?Se consideră algoritmul Ack(n), unde n este un număr natural nenul (1 ≤ n ≤ 104).

Algorithm Ack(n)

If n ̸= 1 then

Ack(n - 1)

Write n
Ack(n - 1)

Write n− 1
EndIf

EndAlgorithm

Care dintre următoarele afirmat, ii referitoare la algo-
ritmul Ack(n) sunt false?

A. Complexitatea de timp a algoritmului Ack(n)
este O(n).

B. Complexitatea de timp a algoritmului Ack(n)
este O(2n).

C. Complexitatea de timp a algoritmului Ack(n)
este O(n2).

D. Niciuna dintre afirmat, iile de mai sus.

84

Complexitatea algoritmilor Probleme

131. ✓ ?Se consideră algoritmul ceFace(n, i), unde n s, i i sunt numere naturale nenule
(1 ≤ n, i ≤ 104).

Algorithm ceFace(n, i)

If n = 1 then

Return 1

Else

m← n DIV 2
If i MOD 2 = 0 then

Return ceFace(m, i)−i
Else

Return ceFace(m, i)+i
EndIf

EndIf

EndAlgorithm

Care dintre următoarele afirmat, ii referitoare la
algoritmul ceFace(n, i) sunt adevărate?

A. Complexitatea de timp a algoritmului
ceFace(n, i) este O(log2(n)).

B. Complexitatea de timp a algoritmului
ceFace(n, i) este O(n).

C. Complexitatea de timp a algoritmului
ceFace(n, i) este O(n2).

D. Apelul ceFace(17, 5) returnează valoa-
rea 21.

132. ✓ ?Se consideră algoritmul X(n), unde n este un număr natural nenul (1 ≤ n ≤ 104).

Algorithm X(n)

s← 0
ind← n
While ind > 0 execute

j ← 1
While j ≤ ind execute

s← s+ j + 5
j ← j * 5
ind← ind DIV 5

EndWhile

EndWhile

Return s
EndAlgorithm

Care este complexitatea de timp a
algoritmului X(n)?

A. O(n2)

B. O(n · log5 n)

C. O(5n)

D. O(log5 n)

133. ✓ ?Care dintre următorii algoritmi sortează ı̂n cel mai eficient mod elementele unui
vector de n elemente cu valori din mult, imea {0, 1, 3, 5, 8, 9}?

A. QuickSort B. MergeSort C. CountSort D. BubbleSort

134. ✓ ?Se consideră vectorul ordonat crescător a cu n elemente numere naturale (1 ≤ n ≤
104) s, i un număr natural q (1 ≤ n ≤ 109). Fie T interogări de tipul: ”care este
numărul maxim de elemente din a ale căror sumă nu depăs,es,te valoarea numărului
q?”. Care este complexitatea celui mai eficient subprogram care rezolvă o interogare?
(excluzând orice alte operat, ii ı̂naintea procesării interogărilor)

A. O(log n); B. O(n log n); C. O(n); D. O(n2 log n).

85

6

Subprograme

Acest capitol acoperă

• Ce sunt subprogramele s, i de ce sunt utile?

• Cum definim s, i folosim subprograme?

• Tipurile de subprograme: funct, ii s, i proceduri.

• Reutilizarea subprogramelor pentru organizarea codului.

6.1 Teorie

Introducere

În acest subcapitol discutăm despre subprograme, un concept foarte important ı̂n progra-
mare. Subprogramele reprezintă un mod de a ı̂mpărt, i un program mai mare ı̂n sect, iuni
mai mici s, i reutilizabile, facilitând organizarea s, i gestionarea codului.

Elementele Fundamentale ale Subprogramelor

• Funct, ii:

– Subprograme care returnează o valoare.

• Proceduri:

– Subprograme care nu returnează o valoare.

Definirea Subprogramelor

Un subprogram este definit o singură dată, dar poate fi apelat de oricâte ori este necesar
ı̂n contextul unui program. Definirea unui subprogram implică specificarea unui nume s, i
a unei liste de parametri. În cazul funct, iilor, este necesară utilizarea s, i a unei instruct, iuni
return pentru a returna o valoare.

Funct, ia suma

1: Algorithm suma(a, b)
2: Return a+ b
3: EndAlgorithm

Exemplul prezentat mai jos ilustrează o funct, ie simplă care primes,te doi parametri, a s, i
b, s, i returnează suma acestora. Funct, ia poate fi apelată de mai multe ori:

Apelarea funct, iei suma

1: result← suma(3, 5)
2: Write result

Subprograme Probleme

Parametrii Subprogramelor

Subprogramele pot include parametri, care reprezintă variabilele de intrare necesare pen-
tru a executa operat, iile definite. Aces,ti parametri pot fi de mai multe tipuri, iar atât
numărul, cât s, i tipul lor trebuie specificate la momentul apelării subprogramului.

Funct, ia inmultire

1: Algorithm inmultire(a, b)
2: Return a ∗ b
3: EndAlgorithm

În cazul ı̂n care un subprogram nu primes,te parametri, lista de parametri este omisă:

Funct, ia hello

1: Algorithm hello
2: Write ”Salutare viitor student UBB Info!”
3: EndAlgorithm

Reutilizarea Subprogramelor

Unul dintre cele mai mari avantaje ale subprogramelor este reutilizarea. Odată definit,
un subprogram poate fi apelat de oricâte ori este nevoie, ceea ce facilitează modularitatea
s, i reduce totodată redundant,a codului:

Apelarea funct, iei suma pentru reutilizare

1: result1← suma(10, 20)
2: result2← suma(15, 25)

Concluzie

Subprogramele sunt un instrument esent, ial pentru organizarea codului ı̂n sect, iuni re-
utilizabile. Acestea simplifică dezvoltarea aplicat, iilor, reduc volumul de cod scris de
programatori s, i contribuie la cres,terea clarităt, ii s, i modularităt, ii codului.

6.2 Probleme

135. ✓ ?Se consideră algoritmul ceFace(arr, n, y), unde n s, i y sunt numere naturale
(1 ≤ n ≤ 104, 1 ≤ y ≤ 104) s, i arr este un vector de n numere naturale nenule
(1 ≤ arr[1], arr[2], . . . , arr[n] ≤ 104).

87

Subprograme Probleme

Algorithm ceFace(arr, n, y)

rezultat← 0
For i← 1, n execute

If arr[i] > y then

rezultat← rezultat+ 1
EndIf

EndFor

Return rezultat
EndAlgorithm

Care dintre următoarele afirmat, ii despre
funct, ie sunt adevărate?

A. Algoritmul are complexitate O(n);

B. Funct, ia returnează numărul elemente-
lor din arr care sunt mai mari decât
y;

C. Algoritmul returnează 0 dacă toate
elementele din arr sunt mai mici
decât y+1;

D. Algoritmul poate fi optimizat pentru
a reduce complexitatea la O(log n).

136. ✓ ?Se consideră algoritmul ceFace(v, n, k), unde n s, i k sunt numere naturale (1 ≤
n, k ≤ 106), iar v este un vector de n numere naturale nenule (1 ≤ v[1], v[2], . . . , v[n] ≤
109).

Algorithm ceFace(v, n, k)

k ← k MODn
temp ← vector auxiliar de

dimensiune n
For i← 1, n execute

temp[(i+ k − 1) MODn+ 1]← v[i]
EndFor

For i← 1, n execute

v[i]← temp[i]
EndFor

EndAlgorithm

Care dintre următoarele afirmat, ii despre
funct, ie sunt adevărate?

A. Algoritmul are complexitate O(n);

B. Realizează o rotat, ie a vectorului la
dreapta cu k pozit, ii;

C. Algoritmul face ca in vectorul temp
doar pozitiile pare sa fie ocupate;

D. Modifică vectorul original.

137. ✓ ?Se consideră algoritmul ceFace(v, n), unde n este un număr natural nenul (1 ≤
n ≤ 106), iar v este un vector de n numere ı̂ntregi (−109 ≤ v[1], v[2], . . . , v[n] ≤ 109).

Algorithm ceFace(v, n)

count← 0
For i← 1, n− 1 execute

If v[i] > v[i+ 1] then

temp← v[i]
v[i]← v[i+ 1]
v[i+ 1]← temp
count← count+ 1

EndIf

EndFor

Return count
EndAlgorithm

Care dintre următoarele afirmat, ii despre
funct, ie sunt adevărate?

A. Algoritmul implementează o iterat, ie
din bubble sort;

B. Complexitatea este O(n);

C. Numărul returnat reprezintă câte in-
terschimbări s-au făcut;

D. Vectorul va fi complet sortat după
execut, ie.

138. ✓ ?Se consideră algoritmul ceFace(v, n), unde n este un număr natural nenul (1 ≤
n ≤ 106), iar v este un vector de n numere ı̂ntregi (−109 ≤ v[1], v[2], . . . , v[n] ≤ 109).

Algorithm ceFace(v, n)

Sum← v[1]

88

Subprograme Probleme

currentSum← v[1]
For i← 2, n execute

currentSum← max(v[i], currentSum+ v[i])
Sum← max(Sum, currentSum)

EndFor

Return Sum
EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Algoritmul găses,te suma maximă a unei subsecvent,e continue;

B. Complexitatea este O(n);

C. Pentru un vector cu toate elementele negative, se va returna cel mai mare element;

D. Algoritmul modifică vectorul original.

139. ✓ ?Se consideră algoritmul ceFace(n), unde n este un număr natural nenul (1 ≤ n ≤
109).

Algorithm ceFace(n)

count← 0
For i← 1, i · i ≤ n execute

If n mod i = 0 then

count← count+ 1
If i · i ̸= n then

count← count+ 1
EndIf

EndIf

EndFor

Return count
EndAlgorithm

Care dintre următoarele afirmat, ii sunt false?

A. Algoritmul numără divizorii proprii a lui n;

B. Complexitatea este O(
√
n);

C. Pentru n = 1, rezultatul este 0;

D. Pentru numere prime, rezultatul este ı̂ntotdeauna 2.

140. ✓ ?Se consideră algoritmul ceFace(n, k), unde n s, i k sunt numere naturale nenule
(1 ≤ n, k ≤ 104).

Algorithm ceFace(n, k)

s← 1
For i← 1, n execute

If i mod k = 0 then

s← s · i
EndIf

EndFor

Return s
EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

89

Subprograme Probleme

A. Subalgoritmul poate returna orice număr din intervalul [0, 104];

B. Dacă ar lipsi linia cu if(i % k == 0), rezultatul funct, iei ar fi factorialul lui n;

C. Rezultatul funct, iei va fi un număr divizibil cu k dacă s, i numai dacă n ≥ k;

D. Pentru cazul ı̂n care n < k, subalgoritmul returnează mereu o cifră.

141. ✓ ?Se consideră algoritmul ceFace(n), unde n este un număr natural nenul (2 ≤ n ≤
109).

Algorithm ceFace(n)

For i← 2, n DIV 2 execute

If n mod i = 0 then

Return 0

EndIf

EndFor

Return 1

EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Algoritmul returnează cât, i divizori are numărul n;

B. Algoritmul verifică dacă numărul este prim, dar se poate face mai eficient;

C. Algoritmul are complexitatea O(
√
n);

D. Niciun răspuns de mai sus.

142. ✓ ?Se consideră algoritmul ceFace(v, n, k), unde n s, i k sunt numere naturale (1 ≤
k < n ≤ 106), iar v este un vector de n numere ı̂ntregi (−109 ≤ v[1], v[2], . . . , v[n] ≤
109).

Algorithm ceFace(v, n, k)

For i← 2, n execute

v[i]← v[i] + v[i− 1]
EndFor

Return v[n]− v[k]
EndAlgorithm

Care dintre următoarele afirmat, ii despre funct, ie sunt adevărate?

A. Algoritmul poate returna s, i valori negative;

B. Algoritmul este pătratic;

C. Algoritmul calculează suma subsecvent,ei dintre indicii [k + 1, n];

D. Dacă numerele din vector sunt pozitive s, i elementele ordonate crescător, rezulta-
tul este ı̂ntotdeauna pozitiv s, i nenul.

143. ✓ ?Se consideră algoritmul ceFace(n) definit alăturat, unde n este un număr natural,
n ≤ 1000 s, i a este un tablou unidimensional cu cel mult 105 elemente, init, ial toate
nule.

90

Subprograme Probleme

Algorithm ceFace(n)

a[1]← 1
cf ← 1
For i← 1, n execute

cr ← 0
For j ← 1, cf execute

temp← a[j] ∗ i+ cr
a[j]← temp MOD 10
cr ← temp DIV 10

EndFor

While cr ̸= 0 execute

cf ← cf + 1
a[cf]← cr MOD 10
cr ← cr DIV 10

EndWhile

EndFor

For i← cf, 1,−1 execute

scrie a[i]
EndFor

EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Algoritmul scrie pe ecran numărul de
cifre al tuturor valorilor x!, unde x ∈
[1, n];

B. Algoritmul scrie pe ecran valoarea lui
n!;

C. Pentru n = 10, programul afis,ează pe
ecran 3628800;

D. Pentru n = 5, programul afis,ează
11123.

144. ✓ ?Se consideră algoritmul ceFace(v, n), unde v este un vector de n numere ı̂ntregi
(−109 ≤ v[1], v[2], . . . , v[n] ≤ 109), iar n este un număr natural nenul (1 ≤ n ≤ 106).

Algorithm ceFace(v, n)

result← 0
i← 1
While i ≤ n execute

While i < n and v[i] ≤ v[i+ 1] execute

i← i+ 1
EndWhile

While i < n and v[i] ≥ v[i+ 1] execute

i← i+ 1
EndWhile

result← result+ 1
i← i+ 1

EndWhile

Return result
EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Algoritmul numără vârfurile din vector (elemente precedate de o secvent, ă crescătoare
s, i urmate de una descrescătoare);

B. Complexitatea este O(n);

C. Pentru un vector strict crescător returnează n/2;

D. Pentru un vector sortat crescător returnează 1.

145. ✓ ?Se consideră algoritmul ceFace(n), unde n este un număr natural nenul (1 ≤ n ≤
106).

91

Subprograme Probleme

Algorithm ceFace(n)

sum← 0
For i← 1, n execute

If n mod i = 0 then

d← i
While d > 0 execute

sum← sum+ (d mod 10)
d← d DIV 10

EndWhile

EndIf

EndFor

Return sum
EndAlgorithm

Care dintre următoarele afirmat, ii sunt false?

A. Algoritmul calculează suma cifrelor tuturor divizorilor lui n;

B. Complexitatea este O(n);

C. Pentru numere prime returnează 1 + suma cifrelor lui n;

D. Pentru n = 1 returnează 1.

146. ✓ ?Se consideră algoritmul ceFace(v, n), unde v este un vector de n numere ı̂ntregi
(−109 ≤ v[1], v[2], . . . , v[n] ≤ 109), iar n este un număr natural nenul (1 ≤ n ≤ 106).

Algorithm ceFace(v, n)

maxLen← 2
len← 2
diff ← v[2]− v[1]
For i← 2, n− 1 execute

If v[i+ 1]− v[i] = diff then

len← len+ 1
Else

maxLen← max(maxLen, len)
len← 2
diff ← v[i+ 1]− v[i]

EndIf

EndFor

Return max(maxLen, len)
EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Algoritmul găses,te lungimea celei mai lungi progresii aritmetice consecutive din
vector;

B. Complexitatea este O(n);

C. Pentru un vector cu valori constante returnează n;

D. Pentru un vector cu elemente distincte returnează ı̂ntotdeauna 2.

147. ✓ ?Se consideră algoritmul ceFace(v, n), unde v este un vector de n numere ı̂ntregi
(−109 ≤ v[1], v[2], . . . , v[n] ≤ 109), iar n este un număr natural nenul (1 ≤ n ≤ 103).

Algorithm ceFace(v, n)

92

Subprograme Probleme

result← 0
For i← 1, n execute

For j ← i, n execute

If v[i] = v[j] then

result← max(result, j − i)
EndIf

EndFor

EndFor

Return result
EndAlgorithm

Subprogramul max(a,b) returnează maximul dintre cele doua numere, unde a s, i b
numere ı̂ntregi.

Care dintre următoarele afirmat, ii sunt adevărate?

A. Algoritmul găses,te distant,a maximă ı̂ntre două elemente egale;

B. Are complexitate O(n);

C. Pentru un vector cu elemente distincte returnează 0;

D. Pentru un vector cu elemente constante returnează n− 1.

148. ✓ ?Se consideră algoritmul ceFace(v, n, k), unde v este un vector de n numere ı̂ntregi
(−109 ≤ v[1], v[2], . . . , v[n] ≤ 109), 1 ≤ n ≤ 103, iar k este un număr natural nenul
(1 ≤ k ≤ n).

Algorithm ceFace(v, n, k)

sum← 0
For i← 1, k execute

sum← sum+ v[i]
EndFor

maxSum← sum
For i← k + 1, n execute

sum← sum+ v[i]− v[i− k]
maxSum← max(maxSum, sum)

EndFor

Return maxSum
EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Algoritmul găses,te suma maximă a k elemente consecutive;

B. Are complexitate O(n · k);
C. Pentru k = 1 returnează maximul din vector;

D. Pentru k = n returnează suma tuturor elementelor.

149. ✓ ?Se consideră algoritmul ceFace(n), unde n este un număr natural (1 ≤ n ≤ 109).

Algorithm ceFace(n)

result← 0
While n > 0 execute

cifra← n mod 10
If cifra mod 2 = 0 then

result← result · 10 + cifra

93

Subprograme Probleme

EndIf

n← n DIV 10
EndWhile

temp← 0
While result > 0 execute

temp← temp · 10 + result mod 10
result← result DIV 10

EndWhile

Return temp
EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Algoritmul păstrează doar cifrele pare din număr ı̂n ordinea lor init, ială;

B. Pentru un număr care cont, ine doar cifre impare returnează 0;

C. Are complexitate O(log n);

D. Modifică ordinea cifrelor ı̂n numărul rezultat.

150. ✓ ?Se consideră algoritmul ceFace(v, n), unde v este un vector de n numere ı̂ntregi
(−109 ≤ v[1], v[2], . . . , v[n] ≤ 109), iar n este un număr natural nenul (1 ≤ n ≤ 106).

Algorithm ceFace(v, n)

result← 0
count← 0
For i← 1, n execute

If v[i] > 0 then

count← count+ 1
If count > result then

result← count
EndIf

Else

count← 0
EndIf

EndFor

Return result
EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Algoritmul găses,te lungimea celei mai lungi secvent,e de numere pozitive conse-
cutive;

B. Pentru un vector cu toate elementele negative returnează 0;

C. Complexitatea este O(n2);

D. Pentru un vector cu toate elementele pozitive returnează n/2.

94

7

Recursivitate

Acest capitol acoperă

• Înt,elegerea conceptului de recursivitate s, i elementele sale fundamentale

• Aplicarea modelului matematic s, i ecuat, iilor de recurent, ă

7.1 Teorie

Recursivitatea este o tehnică fundamentală ı̂n programare care permite rezolvarea proble-
melor complexe prin descompunerea lor ı̂n subprobleme mai simple. Un algoritm recursiv
este un algoritm care se autoapelează pentru a rezolva o problemă mai mică de acelas, i
tip, reprezentând o implementare directă a principiului matematic al induct, iei.[2]

Elementele Fundamentale ale Recursivităt, ii

• Cazul de bază (condit, ia de terminare):

– Reprezintă scenariul trivial al problemei, care poate fi rezolvat direct

– Asigură convergent,a algoritmului, prevenind buclele infinite

– Pot exista unul sau mai multe cazuri de bază

• Pasul recursiv:

– Reduce problema curentă la una sau mai multe instant,e mai simple

– Fiecare apel recursiv apropie execut, ia de cazul de bază

Tipuri de Recursivitate

• Recursivitate liniară:

– Implică un singur apel recursiv per execut, ie

– Exemplu: calculul factorialului, căutare binară

• Recursivitate arborescentă:

– Implică multiple apeluri recursive per execut, ie

– Exemplu: Fibonacci recursiv naiv

• Recursivitate indirectă (mutuală):

– Apare atunci când funct, iile se apelează reciproc

– Este utilă ı̂n procesarea structurilor de date complexe

Recursivitate Teorie

Modelul Matematic s, i Analiza Formală

Recursivitatea poate fi formalizată prin ecuat, ii de recurent, ă, care exprimă relat, ia mate-
matică dintre solut, ia unei probleme s, i solut, iile subproblemelor corespunzătoare.

Pentru factorial:

n! =

{
1 dacă n = 0

n · (n− 1)! dacă n > 0

Pentru Fibonacci:

Fn =


0 dacă n = 0

1 dacă n = 1

Fn−1 + Fn−2 dacă n > 1

Structura Generală a unei Funct, ii Recursive

1: Algorithm FunctieRecursiva(parametri)
2: If condit, ie de oprire then
3: Return rezultat caz bază
4: Else
5: procesare intermediară
6: Return FunctieRecursiva(parametri redus, i)
7: EndIf
8: EndAlgorithm

Analiza Complexităt, ii

Pentru algoritmi recursivi, complexitatea temporală este adesea exprimată prin relat, ii de
recurent, ă:

T (n) = aT (n/b) + f(n)

unde:

• a = numărul de apeluri recursive

• b = factorul de reducere a problemei

• f(n) = costul operat, iilor non-recursive

Calculul factorialului

Pornind de la modelul matematic si structura generală a unei funct, ii recursive, se poate
construi algoritmul pentru calculul factorialului:

96

Recursivitate Teorie

Algoritmul Factorial Recursiv

1: Algorithm Factorial(n)
2: If n = 0 then
3: Return 1 ▷ Cazul de bază
4: Else
5: Return n ∗ Factorial(n− 1) ▷ Pasul recursiv
6: EndIf
7: EndAlgorithm

factorial(0)

factorial(1)

return 1

factorial(2)

return 1 · 1 = 1

factorial(3)

return 2 · 1 = 2

factorial(4)

return 3 · 2 = 6

return 4 · 6 = 24

Figura 7.1 Arbore de apeluri recursive pentru calculul lui 4!. Fiecare nod reprezintă un apel al
funct, iei Factorial, care se reduce până când se atinge cazul de bază.

Aplicat, ii s, i Tipuri de Probleme

Recursivitatea este utilă ı̂n rezolvarea mai multor clase de probleme:

• Probleme de tip Divide et Impera:

– Sortare prin interclasare (Merge Sort)

– Căutare binară

• Parcurgeri ı̂n structuri ierarhice:

– Parcurgerea arborilor binari

– Traversarea grafurilor

• Probleme combinatoriale:

– Generarea permutărilor

– Generarea combinărilor

– Problema turnurilor din Hanoi

97

Recursivitate Probleme

7.2 Probleme

151. ✓ ?Se consideră algoritmul mn(n, d, p, u), unde n, p, d sunt numere ı̂ntregi, iar u este o
variabilă de tip logic (poate lua valorile True sau False).

Algorithm mn(n, d, p, u)

p← n+ 6
Write n
If d ≤ 0 OR n ≤ 0 then

Return

EndIf

If u then

mn(n+ d, d− 2, p, n+ d ≥ p)
Else

mn(n− d, d+ 2, p, False)

EndIf

EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Ultima valoare afis,ată de apelul mn(6, 3, 0, true) este egală cu ultima valoare
afis,ată de apelul mn(1, 3, 0, true).

B. Pentru orice d < 0, algoritmul va afis,a o singură valoare.

C. Algoritmul generează o secvent, ă de numere care alternează ı̂ntre cres,tere (cu d)
s, i descres,tere (cu d+ 2) până când d devine negativ sau n devine negativ.

D. Algoritmul generează toate modalităt, ile posibile de a ajunge de la n la 0 prin
scăderi succesive cu d, d+ 2, d+ 4, etc.

152. ✓ ?Se consideră următorul algoritm care primes,te un vector de bit, i b de lungime n s, i
ı̂ncepe procesarea cu valoarea init, ială ℓ = 1 :

Algorithm c(x, y)

If x MOD 2 = 1 then

Return x · y
Else

Return x+ y
EndIf

EndAlgorithm

Algorithm p(b, k, n, ℓ)
If k > n then

Return ℓ
EndIf

If b[k] = 1 then

n1← p(b, k + 1, n, ℓ+ 3)
n2← p(b, k + 1, n, ℓ · 2)
Return c(n1, n2)

Else

Return p(b, k + 1, n, ℓ)
EndIf

EndAlgorithm

Care dintre următoarele valori pentru vec-
torul b va produce rezultatul 76 când p(b,

1, n, 1) este apelat?

A. b = [0, 0, 1, 1]

B. b = [0, 0, 0, 1]

C. b = [1, 1, 0, 0]

D. b = [0, 1, 1, 1]

98

Recursivitate Probleme

153. ✓ ?Se consideră algoritmul g(x), unde x este un număr natural nenul (1 ≤ x ≤ 105):

Algorithm g(x)

If x > 1 then

Write f(x), " "

g(x DIV 2)
Write x+ 3, " "

g(x DIV 2)
EndIf

EndAlgorithm

Algorithm f(x)

If x = 0 then

Return 0

Else

Return (x MOD 10) + f(x DIV 10)
EndIf

EndAlgorithm

Ce se afis,ează ı̂n urma apelului g(10)?

A. 1 5 2 5 8 3 5 13 5 2 5 8 5 5

B. 1 5 2 5 8 2 5 13 5 2 5 8 2 5

C. 1 5 2 5 8 2 5 13 5 3 5 8 2 5

D. 1 4 3 5 8 2 3 13 5 2 5 8 2 5

154. ✓ ?Se dă algoritmul comp(s, a, l), unde s este un s, ir de caractere, iar a, l sunt numere
ı̂ntregi. Algoritmul vocala(c) returnează true dacă caracterul c este o vocală.

Algorithm comp(s, a, l)

If l ≤ 1 then

If l = 1 then

Return s[a]
Else

Return ””
EndIf

EndIf

m← l DIV 2
If vocala(s[a+m− 1]) then

r1 ← comp(s, a,m)
r2 ←
Return r1 + ” ∗ ” + r2

EndIf

Return comp(s, a, l − 1)
EndAlgorithm

Cu ce secvent, ă de cod trebuie comple-
tat algoritmul, astfel ı̂ncât ı̂n urma apelu-
lui comp("babaeiou", a, l) să se afis,eze
b*b*e*i*o*u?

A. comp(s, a+m− 1, l −m− 1)

B. comp(s, a+m+ 1, l −m)

C. comp(s, a+m, l −m)

D. comp(s, a+m, l −m+ 1)

155. ✓ ?Se consideră algoritmul algo(v, n), unde n este un număr natural (1 ≤ n ≤ 104)
s, i v este un vector cu n elemente naturale (v[1], v[2], . . . , v[n]):

Algorithm algo(v, n)

If n = 0 then

Return 0

EndIf

If n = 1 then

Return v[1]
EndIf

include← v[n]+ algo(v, n− 2)
exclude← algo(v, n− 1)
Return g(include, exclude)

EndAlgorithm

Algorithm g(a, b)

If a > b then

Return a
Else

Return b
EndIf

EndAlgorithm

Precizat, i care dintre afirmat, iile de mai jos sunt adevărate:

99

Recursivitate Probleme

A. Algoritmul determină suma maximă posibilă a unei subsecvent,e de elemente
dintr-un vector, unde suma include cel put, in două elemente aflate pe pozit, ii
consecutive ı̂n s, ir.

B. Pentru apelul algo([3, 2, 7, 10, 20, 1, 5], 7) algoritmul va afis,a valoarea
35.

C. Algoritmul determină suma maximă posibilă a tuturor elementelor dintr-un vec-
tor.

D. Algoritmul determină suma maximă posibilă a unei subsecvent,e de elemente nea-
diacente dintr-un vector.

156. ✓ ?Se consideră matricea pătratică M de dimensiune n care cont, ine numere naturale,
unde n este un număr natural nenul (1 ≤ n ≤ 104) s, i valorile din matrice sunt
astfel ı̂ncât 1 ≤ M [i][j] ≤ 104, pentru i = 1, 2, . . . , n s, i j = 1, 2, . . . , n. Se consideră
următorul algoritm f(M, i, j, n):

Algorithm f(M, i, j, n)

minV al← −109
If i = n AND j = n then

Return M [i][j]
EndIf

If i > n OR j > n then

Return minV al
EndIf

k ← f(M, i, j + 1, n)
l← f(M, i+ 1, j, n)
Return M [i][j]+ g(k, l)

EndAlgorithm

Algorithm g(a, b)

If a > b then

Return a
Else

Return b
EndIf

EndAlgorithm

Precizat, i care dintre afirmat, iile de mai jos sunt adevărate pentru algoritmul prezentat:

A. Funct, ia f calculează suma maximă a unui traseu de la stânga-sus la dreapta-jos
ı̂ntr-o matrice, permit, ând deplasarea doar spre dreapta sau ı̂n jos.

B. Funct, ia f calculează suma minimă a unui traseu de la stânga-sus la dreapta-jos
ı̂ntr-o matrice, permit, ând deplasarea doar spre dreapta sau ı̂n jos.

C. Pentru apelul f(M, 1, 1, 3) s, i matricea M =

5 3 2
1 4 6
0 7 8

 algoritmul va returna

valoarea 27.

D. Funct, ia f returnează ı̂ntotdeauna valoarea cea mai mare din matrice, indiferent
de pozit, ie.

157. ✓ ?Se consideră algoritmul M(n, i, j), unde n, i s, i j sunt numere naturale (1 ≤
n, i, j ≤ 104):

Algorithm M(n, i, j)

If i > j then

Write ’@’

Else

If (i ∗ j) MOD n = 0 then

M(n, i+ 3, j − 2)
Write ’P’

100

Recursivitate Probleme

Else

If (i+ j) MOD n = 1 then

M(n, i, j − 1)
Write ’Q’

Else

M(n, i+ 1, j)
Write ’R’

EndIf

EndIf

EndIf

EndAlgorithm

Ce afis,ează execut, ia apelului M(15, 2, 10)?

A. @QRPRR B. @QRRPR C. @QRPPR D. @QRRPP

158. ✓ ?Se consideră algoritmul F(n), unde n este un număr natural (1 ≤ n ≤ 106):

Algorithm F(n)

If n < 3 then

Return n ∗ 4
EndIf

u← n MOD 6
p← F(n DIV 2)
If (u+ p) MOD 5 = 0 then

Return (u ∗ p+ n) MOD 12
EndIf

If n MOD 4 = 0 then

Return (u+ p ∗ n) MOD 8
EndIf

Return (n− p+ u) MOD 10
EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate:

A. Apelul f(7325) returnează valoarea 8.

B. Apelul f(5147) returnează valoarea 3.

C. Apelul f(8363) returnează valoarea 9.

D. Apelul f(4568) returnează valoarea 5.

159. ✓ ?Se consideră algoritmul f(v, a, b), unde a s, i b sunt numere naturale (1 ≤ a, b ≤
104), iar v este un vector cu b elemente numere ı̂ntregi (v[1], v[2], . . . , v[b]):

Algorithm f(v, a, b)

If a > b then

Return 0

EndIf

If a = b AND a ̸= 0 then

Return v[a] ∗ 2
EndIf

m← (a+ b) DIV 2
s1← f(v, a, m)

s2← f(v, m+ 1, b)

101

Recursivitate Probleme

If (b− a) MOD 2 = 0 then

Return s1 + s2 +m
Else

Return (s1− s2) MOD 7
EndIf

EndAlgorithm

Care este rezultatul apelului f([3, 4, 3, 7, 5, 6, 7], 1, 7)?

A. 12

B. 33

C. 20

D. 15

160. ✓ ?Se consideră matricea pătratică X de dimensiune n care cont, ine numere naturale,
unde n este un număr natural nenul (1 ≤ n ≤ 104), iar valorile sunt astfel ı̂ncât
1 ≤ X[i][j] ≤ 104, pentru i = 1, 2, . . . , n s, i j = 1, 2, . . . , n. Se consideră următorul
algoritm:

Algorithm generate(n, x, i, j)

If i > n then

For p← 1, n execute

For q ← 1, n execute

Write x[p][q]
EndFor

Write newline
EndFor

Return

EndIf

If i = 1 AND j = 1 then

x[i][j]← 1
Else If j > 1 then

x[i][j]← x[i][j − 1] ∗ 2
Else

x[i][j]← x[i− 1][n] ∗ 2
EndIf

If j < n then

generate(n, x, i, j + 1)

Else

generate(n, x, i + 1, 1)

EndIf

EndAlgorithm

În urma apelului generate(3, x, 1, 1),
ce va afis,a algoritmul dat?

A.

 1 2 4
8 16 32
64 128 256



B.

 1 2 4
32 16 8
64 128 256



C.

 1 2 4
128 256 8
64 32 16



D.

 1 2 4
8 16 32
256 128 64



161. ✓ ?Se consideră algoritmul f(v, n), unde n este un număr natural (1 ≤ n ≤ 104), iar
v este un vector cu n elemente naturale (v[1], v[2], . . . , v[n]).

Algorithm f(v, n)

If n = 0 then

Return 0

EndIf

If n MOD 2 = 0 then

Return v[n]+ f(v, n− 1)
Else

Return −v[n]+ f(v, n− 1)
EndIf

102

Recursivitate Probleme

EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate:

A. Algoritmul calculează diferent,a dintre suma elementelor de pe pozit, iile pare s, i
suma elementelor de pe pozit, iile impare dintr-un vector v.

B. Pentru apelul f([72, 34, 120, 56, 44], 5) algoritmul va returna valoarea
-146.

C. Algoritmul calculează suma tuturor elementelor dintr-un vector, modificând sem-
nul fiecărui element pe baza valorii acestuia.

D. Pentru apelul f([89, 50, 33, 70, 20, 63], 6) algoritmul va returna valoarea
40.

162. ✓ ?Se consideră algoritmul Algo(n), unde n este un număr natural (0 ≤ n ≤ 106).

Algorithm Algo(n)

If n = 0 then

Return 0

Else

If (n MOD 10) MOD 2 ̸= 0 then

Return Algo(n DIV 10)
+n MOD 10

Else

Return Algo(n DIV 10)
EndIf

EndIf

EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Apelul algo(1234500) returnează 9.

B. Algoritmul calculează suma cifrelor
aflate pe pozit, ii impare ale numărului
dat.

C. Algoritmul calculează suma cifrelor
impare ale numărului dat.

D. Algoritmul calculează suma tuturor
cifrelor numărului dat.

163. ✓ ?Se consideră algoritmul ceFace(n) unde n este un număr natural (1 ≤ n ≤ 104).

Algorithm ceFace(n)

If n > 0 then

Write n− 1
ceFace(n DIV 2)
Write n+ 1
ceFace(n− 1)
Write n

EndIf

EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt
adevărate referitor la algoritmul ceFace(n):

A. Pentru n = 5, se afis,ează 39 de valori.

B. Pentru n = 6, se afis,ează 54 de valori.

C. Oricare ar fi valoarea lui n, algoritmul
ceFace(n) afis,ează ı̂ntotdeauna un număr mul-
tiplu de 3 de valori.

D. Pentru n = 2, se afis,ează 1 0 2 1 3 0 2 1 2.

164. ✓ ?Se consideră algoritmul afisare(n). S, tiind că n ∈ {3003, 6006, 9009}, care dintre
următoarele variante de răspuns sunt adevărate?

103

Recursivitate Probleme

Algorithm afisare(n)

If n ≥ 1000 then

write(n MOD 10)
afisare(n DIV 3)

Else

If n ≥ 100 then

write(n ∗ 2)
If n < 2000 then

If n MOD 2 = 0 then

afisare(n DIV 3)
Else

afisare(n ∗ 2)
EndIf

EndIf

write(n)
EndIf

EndIf

EndAlgorithm

A. Suma primelor două valori
afis,ate este un multiplu de
4, ∀n ∈ {3003, 6006, 9009}.

B. Cel mai mare număr afis,at este 1332.

C. Valorile afis,ate pentru 3333 sunt
aceleas, i valori afis,ate pentru 9999.

D. Pentru fiecare valoare posibilă a lui n,
ultima cifră a acesteia nu afectează ul-
timul număr afis,at.

165. ✓ ?Se consideră algoritmul g(x), unde x este număr ı̂ntreg.

Algorithm g(x)

If x = 0 then

Return 1
EndIf

If x < 10 then

Return x
EndIf

If x MOD 5 = 0 then

Return g(x DIV 100) ∗ 2
Else

Return g(x DIV 100) + g(x MOD 10)
EndIf

EndAlgorithm

Pentru ce valoare a lui x algoritmul va returna valoarea 8?

A. 12505. B. 10205. C. 23015. D. 30515.

166. ✓ ?Se consideră algoritmul f(n, i, j), unde n, i s, i j sunt numere naturale (1 ≤
n, i, j ≤ 104) la momentul apelului init, ial.

Algorithm f(n, i, j)

If i ≥ j then

Write ’@’

Else

If (n MOD (i+ j)) MOD 3 = 0 then

f(n, i+ 1, j − 2)
Write ’A’

Else If n DIV (i+ 1) MOD 2 = 0 then

f(n, i, j − 1)
Write ’B’

Else

f(n, i+ 2, j − 1)

104

Recursivitate Probleme

Write ’C’

EndIf

EndIf

EndAlgorithm

Ce afis,ează execut, ia apelului f(17, 3, 18)?

A. @BBACABABC

B. @BCAAABCAB

C. @BBACABBBB

D. @BBACACBBA

167. ✓ ?Se consideră algoritmul f(n), unde n este un număr natural (1 ≤ n ≤ 106).

Algorithm f(n)

If n = 0 then

Return 1

EndIf

If n = 1 then

Return 2

EndIf

If n MOD 2 = 0 then

Return f(n - 1) + f(n - 2)

Else

Return f(n - 1) ∗ f(n - 3)

EndIf

EndAlgorithm

Ce va returna algoritmul pentru apelul
f(8)?

A. 165

B. 90

C. 168

D. 215

168. ✓ ?Se consideră algoritmii X(n, i, j) s, i Y(a, b), unde n, i, j sunt numere naturale
nenule, cu 1 ≤ n ≤ 106, 0 ≤ i ≤ 6, 0 ≤ j ≤ 9, iar a, b sunt numere naturale nenule, cu
1 ≤ a, b ≤ 103.

Algorithm Y(a, b)

If b = 0 then

Return 1

EndIf

If b MOD 2 = 0 then

Return Y(a, b DIV 2) * Y(a, b DIV 2)
Else

Return Y(a, b DIV 2) * a * Y(a, b DIV 2)
EndIf

EndAlgorithm

Algorithm X(n, i, j)

p← Y(10, i) DIV 10
Return n+ (n MOD 10) * p+ (n DIV p) * p+ j

EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Pentru apelul X(369, 3, 5), algoritmul returnează 1573.

B. Pentru apelul X(369, 2, 3), algoritmul returnează 822.

C. Pentru apelul Y(6, 3), algoritmul returnează 216.

105

Recursivitate Probleme

D. Algoritmul Y(a, b) returnează ab, complexitatea lui fiind O(log2 b).

169. ✓ ?Se consideră algoritmul F(v, n), unde n este un număr natural (1 ≤ n ≤ 104), iar
v este un vector cu n elemente numere ı̂ntregi (v[1], v[2], . . . , v[n]).

Algorithm f(v, n)

If n = 0 then

Return 0
EndIf

If n MOD 3 = 0 then

Return f(v, n− 1) + v[n] ∗ (n MOD 2)
Else If n MOD 2 = 0 then

Return f(v, n− 2) − v[n]+f(v, n− 1)
Else

Return f(v, n− 1) ∗ v[n]+ f(v, n DIV 2)
EndIf

EndAlgorithm

Ce va returna algoritmul pentru apelul F([2, 8, 7, 9, 2, 8], 6)?

A. −7 B. −44 C. 51 D. 40

170. ✓ ?Se consideră algoritmul meci(a, b), unde a s, i b sunt numere naturale nenule (1 ≤
a, b ≤ 103).

Algorithm meci(a, b)

If a * b = 0 then

Return 1

EndIf

Return meci(a - 1, b) + meci(a, b - 1)

EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Pentru apelul meci(3, 2) algoritmul returnează 10.

B. Pentru apelul meci(5, 5) algoritmul returnează 250.

C. Algoritmul are complexitatea O(2a+b).

D. Algoritmul are complexitatea O(a * b).

171. ✓ ?Se consideră algoritmul F(n), unde n este un număr natural nenul (1 ≤ n ≤ 104).

Algorithm F(n)

Write n DIV 3
If n > 3 then

Write n− 2
F(n DIV 2)
Write n
n← n− 2
F(n+ 1)

Else

If n > 0 then

Write n+ 1
F(n DIV 3)
Write n MOD 2

106

Recursivitate Probleme

EndIf

EndIf

EndAlgorithm

Pentru care dintre următoarele valori ale lui n, algoritmul F(n) afis,ează valoarea
130300512030041402011?

A. n = 7 B. n = 6 C. n = 5 D. n = 8

Problemele 172., 173. se referă la următorii algoritmi sun(i) s, i moon(n), unde i s, i n
sunt numere naturale nenule (1 ≤ i, n ≤ 104).

Algorithm sun(i)

If i > 1 then

k ← i DIV 2
Return sun(k)+1

Else

Return 0

EndIf

EndAlgorithm

Algorithm moon(n)

j ← 1
c← 0
While j < n execute

c← c+ sun(j)
j ← j * 2

EndWhile

Return c
EndAlgorithm

172. ✓ ?Precizat, i care afirmat, ii de mai jos sunt adevărate referitor la algoritmii sun(i) s, i
moon(n).

A. Clasa de complexitate de timp a algoritmului moon(n) este O(log2 n).

B. Clasa de complexitate de timp a algoritmului moon(n) este O(log2(log2 n)).

C. Clasa de complexitate de timp a algoritmului sun(i) este O(log2 i).

D. Clasa de complexitate de timp a algoritmului moon(n) este O(log3 n · log4 n).

173. ✓ ?Precizat, i care dintre următoarele afirmat, ii sunt adevărate referitor la algoritmii
sun(i) s, i moon(n).

A. Pentru apelul sun(40) algoritmul returnează valoarea 5.

B. Pentru apelul moon(128) algoritmul returnează valoarea 20.

C. Pentru apelurile sun(7) s, i moon(7) algoritmii returnează aceeas, i valoare.

D. Pentru apelul moon(2048) algoritmul returnează valoarea 55.

174. ✓ ?Se consideră algoritmul ceFace(n), unde n este un număr natural (1 ≤ n ≤ 30).

Algorithm ceFace(n)

If n ≤ 1 then

Return 1

EndIf

Return ceFace(n-1) +

ceFace(n-2)

EndAlgorithm

Care dintre următoarele afirmat, ii despre
funct, ie sunt adevărate?

A. Algoritmul calculează al n-lea termen
din s, irul lui Fibonacci;

B. Complexitatea este O(2n);

C. Pentru n = 5 rezultatul este 13;

D. Algoritmul poate fi optimizat folosind
programare dinamică.

107

Recursivitate Probleme

175. ✓ ?Se consideră algoritmul ceFace(n, i), unde n s, i i sunt numere naturale (1 ≤ n, i ≤
104).

Algorithm ceFace(n, i)

If n > 1 then

i← i * 2
m← n DIV 2
ceFace(m, i - 2)

ceFace(m, i - 1)

ceFace(m, i + 2)

ceFace(m, i + 1)

Else

For j = 1, n− 1 execute

Write i
EndFor

EndIf

EndAlgorithm

Care este complexitatea de timp a
algoritmului ceFace(n, i)?

A. O(n3)

B. O(n2)

C. O(2n)

D. O(n · log2 n)

176. ✓ ?Se consideră algoritmul S(n), unde n este un număr natural nenul (1 ≤ n ≤ 105).

Algorithm S(n)

If n = 0 then

Return 0
EndIf

c← n MOD 10
s← S(n DIV 10)
If c MOD 3 = 0 then

Return s+ c ∗ c
Else If c MOD 3 = 1 then

Return s− c
Else

Return s+ 2 ∗ c
EndIf

EndAlgorithm

Precizat, i care dintre afirmat, iile următoare
sunt adevărate:

A. Pentru orice număr format doar din
cifre multiplu de 3, rezultatul va fi
suma pătratelor cifrelor

B. Algoritmul S(n) calculează suma ci-
frelor lui n, adăugând pătratul cifrelor
divizibile cu 3.

C. Pentru apelul S(369), valoarea retur-
nată de algoritm este 126.

D. Algoritmul S(n) returnează 0 pentru
orice valoare a lui n care nu cont, ine
cifre divizibile cu 3.

177. ✓ ?Se consideră algoritmul ceFace(n, b), unde n s, i b sunt numere naturale (1 ≤ n, b ≤
105)

Algorithm ceFace(n, b)

If n = 0 then

Return 0
EndIf

c← n MOD b
x← ceFace(n DIV b, b)
If c MOD 2 = 0 then

Return x ∗ 10 + c
Else

y ← 1
temp← x
While temp > 0 execute

y ← y ∗ 10
temp← temp DIV 10

108

Recursivitate Probleme

EndWhile

Return c ∗ y + x
EndIf

EndAlgorithm

Precizat, i care dintre afirmat, iile următoare sunt adevărate:

A. Pentru apelul ceFace(234, 5), valoarea returnată de algoritm este 543.

B. Algoritmul ceFace(n, b) rearanjează cifrele lui n ı̂n baza b, astfel ı̂ncât cifrele
pare apar la final, iar cifrele impare apar la ı̂nceput.

C. Pentru apelul ceFace(5749, 5), valoarea returnată de algoritm este 140444.

D. Pentru apelul ceFace(4423, 8), valoarea returnată de algoritm este 75100.

178. ✓ ?Se consideră algoritmul Exp(a, b), unde a s, i b sunt numere naturale (1 ≤ a, b ≤
105).

Algorithm Exp(a, b)

If b = 0 then

Return a
EndIf

If a MOD 2 = 0 and b MOD 2 = 0 then

Return 2 ∗ Exp(a DIV 2, b DIV 2)
Else If a MOD 2 = 0 then

Return Exp(a DIV 2, b)
Else If b MOD 2 = 0 then

Return Exp(a, b DIV 2)
Else

If a > b then

Return Exp((a - b) DIV 2, b)
Else

Return Exp(a, (b - a) DIV 2)
EndIf

EndIf

EndAlgorithm

Precizat, i care dintre afirmat, iile următoare sunt adevărate:

A. Algoritmul Exp(a, b) returnează cel mai mare divizor comun al numerelor a s, i
b folosind metoda binară.

B. Pentru apelul Exp(48, 36), valoarea returnată este 12.

C. Algoritmul returnează acelas, i rezultat ca algoritmul lui Euclid clasic pentru orice
a s, i b

D. Pentru apelul Exp(28, 7), valoarea returnată este 4.

179. ✓ ?Se consideră algoritmul ceFace(v, n), unde v este un vector de n numere ı̂ntregi
(−109 ≤ v[1], v[2], . . . , v[n] ≤ 109), iar n este un număr natural nenul (1 ≤ n ≤ 106).

Algorithm ceFace(v, n)

If n ≤ 0 then

Return 0

EndIf

If v[n] MOD 2 = 0 then

Return 1 + ceFace(v, n-1)

109

Recursivitate Probleme

EndIf

Return ceFace(v, n-1)

EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Algoritmul numără elementele pare din vector;

B. Algoritmul are complexitatea O(2 ∗ n);
C. Pentru un vector vid, algoritmul returnează −1;
D. Algoritmul se poate rescrie iterativ fără a modifica complexitatea timp.

180. ✓ ?Se consideră algoritmul ceFace(a, n, i = 0, j = 0), unde a este o matrice pătratică
de dimensiune n x n cu elemente ı̂ntregi (−109 ≤ a[0][0], a[0][1], . . . , a[n− 1][n− 1] ≤
109), iar n este un număr natural nenul (1 ≤ n ≤ 100).

Algorithm ceFace(a, n, i = 0, j = 0)

If i ≥ n or j ≥ n then

Return 0

EndIf

If i = n− 1 and j = n− 1 then

Return a[i][j]
EndIf

Return a[i][j] + max(ceFace(a, n, i+1, j), ceFace(a, n, i, j+1))

EndAlgorithm

Care dintre următoarele afirmat, ii despre funct, ie sunt adevărate?

A. Calculează suma maximă pe un drum de la (0, 0) la (n− 1, n− 1);

B. Are complexitate O(2n);

C. Se poate optimiza folosind programare dinamică;

D. Algoritmul face suma elementelor din matrice.

181. ✓ ?Se consideră algoritmul ceFace(n, d = 2), unde n este un număr natural (1 ≤ n ≤
109) s, i d reprezintă un divizor prim folosit ı̂n calcul.

Algorithm ceFace(n, d = 2)

If n < 2 then

Return 0

EndIf

If n MOD d = 0 then

Return 1 + ceFace(n / d, d)

EndIf

If d · d > n then

Return 0

EndIf

Return ceFace(n, d + 1)

EndAlgorithm

Care dintre următoarele afirmat, ii despre funct, ie sunt adevărate?

A. Calculează numărul de factori primi ai lui n;

B. Are complexitate O(
√
n);

110

Recursivitate Probleme

C. Pentru numere prime, returnează 1;

D. Functia calculeaza divizorii proprii a lui n.

182. ✓ ?Se consideră algoritmul ceFace(v, st, dr, x), unde v este un vector de n numere

ı̂ntregi sortate crescător (−109 ≤ v[1], v[2], . . . , v[n] ≤ 109), st s, i dr reprezintă limitele
intervalului de căutare, iar x este numărul căutat.

Algorithm ceFace(v, st, dr, x)

If st > dr then

Return false

EndIf

mid← [(st+ dr)/2]
If v[mid] = x then

Return true

EndIf

If v[mid] > x then

Return ceFace(v, st, mid - 1, x)

EndIf

Return ceFace(v, mid + 1, dr, x)

EndAlgorithm

Care dintre următoarele afirmat, ii despre funct, ie sunt adevărate?

A. Este o implementare recursivă a căutării binare;

B. Complexitatea este O(log n);

C. Funct, ionează doar pe vectori sortat, i strict crescător;

D. Returnează indexul elementului găsit.

183. ✓ ?Se consideră algoritmii combine(a,b) s, i ceFace(a, b, c), unde a, b s, i c sunt
numere ı̂ntregi:

Algorithm combine(a, b)

If a > b then

d← a− b
Else

d← b− a
EndIf

Return (a+ b− d)/2
EndAlgorithm

Algorithm ceFace(a, b, c)

t← combine(a, b)

Return combine(t, c)

EndAlgorithm

Care dintre următoarele afirmat, ii nu sunt
adevărate?

A. Pentru orice x, y, expresia combine(x,y)

este echivalentă cu combine(y,x).

B. Pentru valorile a = 8, b = 5, c = 6, funct, ia
ceFace va returna valoarea 5.

C. Există valori pentru a, b s, i c astfel ı̂ncât
ceFace(a,b,c) să returneze un rezultat
diferit de ceFace(b,a,c).

D. Dacă |a| = |b|, atunci rezultatul apelului
ceFace(a,b,c) va fi ı̂ntotdeauna minimul
dintre a s, i c.

184. ✓ ?Se consideră algoritmul Algo(n), unde n reprezintă un număr natural (1 ≤ n ≤ 105):

111

Recursivitate Probleme

Algorithm Algo(n)

Write n MOD 100
If n ≥ 10 then

Algo(n DIV 10)
EndIf

Write n MOD 10
EndAlgorithm

Ce valoare afis,ează algoritmul ı̂n urma ape-
lului Algo(2024)?

A. 24022024

B. 2422022024

C. 2024202424

D. 242222024

185. ✓ ?Se consideră algoritmul f(n), unde n reprezintă un număr natural (n > 0):

Algorithm f(n)

Write n− 2
If n > 2 then

f(n− 2)
EndIf

Write n+ 2
EndAlgorithm

Ce valoare afis,ează algoritmul ı̂n urma ape-
lului f(10)?

A. 8 8 6 2 0 4 6 8 10 12

B. 8 6 4 2 0 4 6 8 10 12

C. 12 10 8 6 4 0 6 8 10 12

D. 12 10 8 6 4 0 2 4 6 8

186. ✓ ?Se consideră algoritmul spirala(n, sens), unde n este un număr natural (n ≥ 10).
Algoritmul utilizează operatorul <<, definit ca o operat, ie de deplasare pe bit, i spre
stânga (bitwise left shift). Aceasta deplasează tot, i bit, ii unui număr spre stânga cu
un anumit număr de pozit, ii, echivalent cu ı̂nmult, irea numărului init, ial cu 2 ridicat la
puterea specificată.

Algorithm spirala(n, sens)

If n < 10 then

Return n
EndIf

u← n MOD 10
p← n
While p ≥ 10 execute

p← p DIV 10
EndWhile

temp← n DIV 10
mij ← temp MOD (1 <<

(Cifre(temp)− 1))
If sens = 1 then

rez ← u ∗ 10 + p
Else

rez ← p ∗ 10 + u
EndIf

If mij = 0 then

Return rez
EndIf

Return rez+ spirala(mij,
1−sens)∗100
EndAlgorithm

Algorithm Cifre(x)

If x = 0 then

Return 0
EndIf

Return 1+ Cifre(x DIV 10)
EndAlgorithm

Pentru apelul Spirala(67812, 1), ce valoare va returna algoritmul?

112

Recursivitate Probleme

A. 427 B. 527 C. 526 D. 326

187. ✓ ?Se consideră algoritmul F(n), unde n reprezintă un număr natural (1 ≤ n ≤ 105):

Algorithm F(n)

Write n ∗ 2 and "!"

i← 1
While i ≤ n− 1 execute

F(i)
i← i+ 1

EndWhile

Write "*"

EndAlgorithm

Ce valoare afis,ează algoritmul ı̂n urma ape-
lului F(3)?

A. 6!2! ∗ 4!2! ∗ ∗

B. 6!2!4!2! ∗ ∗∗

C. 6!4! ∗ 2!4! ∗ ∗

D. 6!2! ∗ 4!2! ∗ ∗∗

113

8

Metodele Backtracking, Divide et Impera s, i Greedy

Acest capitol acoperă

• Explorarea tehnicilor de backtracking pentru construirea solut, iilor

• Ce este metoda divide et impera s, i de ce este utilă?

• Analiza complexităt, ii algoritmilor divide et impera

• Ce este metoda Greedy? Probleme clasice rezolvate cu această metodă

8.1 Backtracking

8.1.1 Teorie

Algoritmii de backtracking explorează toate posibilităt, ile pentru a construi o solut, ie va-
lidă, revenind la pas, ii anteriori (”

backtracking”) atunci când o anumită cale nu duce la o
solut, ie validă.

Elementele Backtracking-ului

• Spat, iul de căutare:

– Reprezintă toate posibilele configurat, ii ale solut, iei.

– Este organizat sub forma unei structuri de tip arbore, unde fiecare nivel cores-
punde unei decizii sau alegeri.

• Candidatul pentru solut, ie:

– Reprezintă o opt, iune posibilă selectată ı̂ntr-un anumit pas al algoritmului.

– Este definit ca un element dintr-o mult, ime de opt, iuni valide.

• Verificarea validităt, ii:

– La fiecare pas al algoritmului, se verifică dacă alegerea curentă respectă toate
constrângerile problemei.

– În cazul ı̂n care alegerea nu este validă, algoritmul revine la pasul anterior
pentru a explora o altă opt, iune posibilă.

• Cazul de succes:

– Reprezintă o configurat, ie completă care satisface toate constrângerile proble-
mei.

– Poate exista fie o solut, ie unică, fie mai multe solut, ii, ı̂n funct, ie de cerint,e.

Backtracking-ul poate fi descris ca o metodă recursivă care explorează toate posibilităt, ile
ı̂ntr-un mod structurat. Pentru o problemă dată, această metodă construies,te solut, ia pas

Metodele Backtracking, Divide et Impera s, i Greedy Backtracking

cu pas s, i revine la pas, ii anteriori atunci când o alegere nu poate conduce la o solut, ie
validă.

Backtrack(k) =

{
Dacă k > n, salvează solut, ia

Dacă valid(c, k)⇒ x[k] = c⇒ Backtrack(k + 1)

Această ecuat, ie de recurent, ă descrie procesul de construire a solut, iei reprezentat de vec-
torul x. Solut, ia este obt, inută prin selectarea unor candidat, i c din mult, imile Ak, verificare
validităt, ii fiecărei alegeri s, i continuarea recursivă cu pasul următor.

Structura Generală a unui Algoritm de Backtracking

1: Algorithm Backtrack(k)
2: If k > n then
3: Solutie ← x[1..n]
4: Afiseaza(Solutie)
5: Else
6: For fiecare candidat c ı̂n Ak execute
7: If Valid(c, k) then
8: x[k]← c
9: Backtrack(k + 1)

10: EndIf
11: EndFor
12: EndIf
13: EndAlgorithm

8.1.2 Probleme

188. ✓ ?Luca dores,te să ı̂s, i cumpere mâncare de la magazin după ce a terminat ora de

matematică, unde a ı̂nvăt,at despre combinări. În drum spre magazin, Luca este curios
să afle cum poate implementa un algoritm care să ı̂l ajute să determine numărul
combinărilor posibile ale monedelor pe care le are ı̂n buzunar, pentru a atinge suma
dorită.

Se consideră vectorul c cu n elemente (c[1], c[2], . . . , c[n]), unde 1 ≤ n ≤ 104, iar s este
un număr ı̂ntreg care reprezintă suma pe care acesta dores,te să o atingă. Analizat, i
următoarele variante s, i precizat, i care sunt corecte pentru a-l ajuta pe Luca să deter-
mine combinările posibile de monede pentru suma dorită.

A.

Algorithm count(c, n, s)

If s = 0 then

Return 1

EndIf

If n = 0 OR s < 0 then

Return 0

EndIf

include← count(c, n, s−c[n−
2])

exclude← count(c, n− 1, s)
Return include+ exclude

EndAlgorithm

B.

Algorithm count(c, n, s)

If s = 0 then

Return 1

EndIf

If n = 0 then

Return 0

EndIf

include← count(c, n, s−c[n−
1])

exclude← count(c, n− 1, s)
Return include+ exclude

EndAlgorithm

115

Metodele Backtracking, Divide et Impera s, i Greedy Backtracking

C.

Algorithm count(c, n, s)

If s = 0 then

Return 1

EndIf

If n = 0 OR s < 0 then

Return 0

EndIf

include ← count(c, n − 1, s −
c[n− 1])

exclude← count(c, n− 1, s)
Return include+ exclude

EndAlgorithm

D.

Algorithm count(c, n, s)

If s = 0 then

Return 1

EndIf

If n = 0 OR s < 0 then

Return 0

EndIf

include← count(c, n, s−c[n−
1])

exclude← count(c, n− 1, s)
Return include+ exclude

EndAlgorithm

189. ✓ ?Se consideră algoritmul g(v, n, t), unde n este un număr natural (1 ≤ n ≤ 104), v
este un vector cu n elemente naturale (v[1], v[2], . . . , v[n]), iar t este un număr natural.

Algorithm g(v, n, t)

If t = 0 then

Return True

EndIf

If n = 0 then

Return False

EndIf

include← g(v, n− 1, t− v[n− 1])
exclude← g(v, n− 1, t)
Return include OR exclude

EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Pentru apelul g([5, 10, 15, 30,

4, 9], 6, 10) algoritmul va returna
valoarea False.

B. Algoritmul determină dacă există o
submult, ime dintr-un vector care pro-
duce exact o anumită sumă specifi-
cată.

C. Pentru apelul g([3, 34, 4, 12, 5,

2], 6, 9) algoritmul va returna va-
loarea True.

D. Algoritmul returnează valoarea True

numai s, i numai dacă suma tuturor ele-
mentelor vectorului atinge suma spe-
cificată.

190. ✓ ?Se consideră algoritmul xenon(x, n, p), unde n s, i p sunt numere naturale nenule
(1 ≤ n, p ≤ 10) s, i x este un vector cu n + 1 elemente naturale (x[0], x[1], . . . , x[n]).
Presupunem că x[0] este init, ializat cu 0. Algoritmul neon(x, k) este definit alăturat
s, i are ca parametri un vector x s, i un număr natural k (1 ≤ k ≤ 10):

Algorithm xenon(x, n, p)

For i← x[p− 1] + 1, n execute

x[p]← i
neon(x, p)

If p < n then

xenon(x, n, p + 1)

EndIf

EndFor

EndAlgorithm

Algorithm neon(x, k)

For i← 1, k execute

Write x[i], ’ ’

EndFor

Write NewLine

EndAlgorithm

Precizat, i care dintre afirmat, iile de mai jos sunt adevărate:

116

Metodele Backtracking, Divide et Impera s, i Greedy Backtracking

A. Dacă x[0] se init, ializează cu valoarea 2, algoritmul xenon(x, n, 1) apelează
algoritmul neon(x, k) de 2n−2 − 1 ori.

B. Pentru apelul xenon(x, 5, 1), algoritmul afis,ează pe a doisprezecea linie 1 3 4

5.

C. Pentru apelul xenon(x, 4, 1), algoritmul afis,ează pe a s,asea linie 1 3 4.

D. Pentru apelul xenon(x, 3, 1), algoritmul se autoapelează de 7 ori.

191. ✓ ?Se consideră algoritmul ceFace(arr, k, n), unde arr este un vector de n numere
naturale (1 ≤ n ≤ 102), iar k este un număr natural (1 ≤ k ≤ n). Se presupune că
toate elementele vectorului arr sunt egale cu pozit, iile lor la apelul init, ial.

Algorithm ceFace(arr, k, n)

For i← 1, n execute

If k ̸= i then

arr[k]← i
p← 1
For j ← k − 1, 1,−1 execute

If arr[j] = arr[k] then

p← 0
EndIf

EndFor

If p then

If k = n then

For m← 1, n execute

Write arr[m], ’ ’

EndFor

Write ’*’

Write newline

Else

ceFace(arr, k + 1, n)

EndIf

EndIf

EndIf

EndFor

EndAlgorithm

Precizat, i care dintre următoarele
afirmat, ii sunt adevărate referitor la
apelul algoritmului ceFace(arr, 1,

n).

A. Algoritmul afis,ează toate per-
mutările vectorului arr.

B. Pentru apelul ceFace(arr, 1,

4) algoritmul afis,ează 9 stelut,e.

C. Pentru apelul ceFace(arr, 1,

5) pe a opta linie se va afis,a
2 4 5 3 1∗.

D. Pentru apelul ceFace(arr, 1,

5) pe a zecea linie se va afis,a
2 5 4 3 1∗.

192. ✓ ?Luca vrea să determine toate submult, imile mult, imii M = {4, 5, 17, 24, 11, 16} cu 6
elemente (M [1],M [2], . . . ,M [6]), unde suma elementelor din submult, ime nu depăs,es,te
un prag minim s, i un prag maxim. Pentru acest lucru el a creat un algoritm. Mult, imea
este reprezentată cu ajutorul vectoruluiM cu n elemente numere naturale. Submult, imile
generate se afis,ează cu ajutorul funct, iei afis,are, unde v este un vector auxiliar inde-
xat de la 0, iar l reprezintă lungimea vectorului curent v. Înainte de apelarea funct, iei
algo(1, 6, v, M, 0, 20, 40) elementul v[0] a fost init, ializat cu 0.

117

Metodele Backtracking, Divide et Impera s, i Greedy Backtracking

Algorithm algo(i, n, v, M, suma,

s min, s max)

For j ← v[i− 1] + 1, n execute

v[i]← j
suma← suma+M [j]
If s min ≤ suma ≤ s max then

afis,are(i, v,M)

EndIf

If suma < s max then

algo(i + 1, n, v, M,

suma, s min, s max)
EndIf

suma← suma−M [j]
EndFor

EndAlgorithm

Algorithm afis,are(d, v, M)

Write "{", M [v[1]]
For i← 2, d execute

Write ", ", M [v[i]]
EndFor

Write "}", newline

EndAlgorithm

Luca s,tie că primele 4 submult, imi afis,ate sunt, ı̂n această ordine: {4, 5, 17}, {4, 5, 17, 11},
{4, 5, 17, 6}, {4, 5, 24}, dar vrea să s,tie care este a 8-a submult, ime generată. Care dintre
cele de mai jos reprezintă răspunsul corect?

A. {4, 11, 24} B. {4, 17} C. {5, 17} D. {4, 17, 11}

193. ✓ ?Se consideră algoritmul four(c, l, n), unde c, l s, i n sunt numere naturale nenule
(1 ≤ l, n ≤ 9, 1 ≤ c ≤ 109).

Algorithm four(c, l, n)

If l = n then

Write c, ’ ’

Else

For i← 0, 9 execute

cn← 0
For j ← 1, i execute

If i MOD j = 0 then

cn← cn+ 1
EndIf

EndFor

If cn = 2 then

four(c * 10 + i, l + 1, n)
EndIf

EndFor

EndIf

EndAlgorithm

Precizat, i care afirmat, ii sunt adevărate
referitoare la apelul algoritmului
four(0, 0, n).

A. Algoritmul afis,ează 4n valori
ı̂ntotdeauna.

B. Algoritmul afis,ează numere for-
mate din n cifre din mult, imea
{2, 3, 5, 7, 9}.

C. Algoritmul afis,ează toate nume-
rele prime formate din n cifre.

D. Algoritmul afis,ează toate nume-
rele formate din n cifre, iar fie-
care cifră are exact 2 divizori.

118

Metodele Backtracking, Divide et Impera s, i Greedy Divide et impera

8.2 Divide et impera

8.2.1 Teorie

Metoda divide et impera reprezintă o abordare care ı̂mparte o problemă complexă ı̂n
subprobleme mai mici s, i mai simple, le rezolvă, iar apoi combină solut, iile acestora pentru
a obt, ine rezultatul final. De ment, ionat că, ı̂n majoritatea cazurilor, problemele rezolvate
prin această metodă pot fi abordate si cu ajutorul unei bucle simple for, cu anumite
except, ii specifice.

Elementele Fundamentale ale Metodei Divide et Impera

• Divide (̂Imparte): Se ı̂mparte problema init, ială ı̂n una sau mai multe subprobleme
de dimensiuni mai mici, de acelas, i tip ca problema init, ială.

• Conquer (Rezolvă): Se rezolvă subproblemele obt, inute. Dacă subproblemele
sunt suficient de simple, se rezolvă direct.

• Combine (Combină): Se combină solut, iile subproblemelor pentru a forma solut, ia
problemei init, iale.

Implementare

De acum ı̂ncolo vom folosi sintaxa {arr[a:b]}. Conceptul se numes,te slicing s, i este
ı̂ntâlnit ı̂n aproape toate limbajele moderne, cum ar fi Python.

Cum funct, ionează?
Presupunem că avem un vector arr cu numere de la 0 la n. Expresia arr[a:b] ne va
returna sub-vectorul care ı̂ncepe de la pozit, ia a s, i se opres,te la pozit, ia b− 1.

Exemplu:
Dacă arr = {0, 1, 2, 3, 4, 5}, atunci:

• arr[1:4] va returna {1, 2, 3}.

Un exemplu clasic de algoritm divide et impera este algoritmul Merge Sort. Acesta
sortează un vector ı̂mpărt, indu-l ı̂n subsect, iuni mai mici, sortându-le s, i apoi combinându-
le.
Funct, ia de combinare interclasare este definită la capitolul Algoritmi elementari.

Analiza Complexităt, ii

Algoritmii divide et impera sunt eficient, i datorită modului prin care reduc dimensiunea
problemei. În cazul algoritmului Merge Sort, complexitatea temporală este O(n log n).

Alte Exemple cu Metoda Divide et Impera

Un alt exemplu de utilizare a metodei divide et impera este găsirea elementului maxim
dintr-un vector:

119

Metodele Backtracking, Divide et Impera s, i Greedy Divide et impera

Algoritmul Merge Sort

1: Algorithm merge sort(A)
2: If len(A) ≤ 1 then
3: Return A
4: EndIf
5: m← len(A) DIV 2
6: For i← 1,m execute
7: L[i]← A[i]
8: EndFor
9: For i← 1, len(A)−m execute

10: R[i]← A[m+ i]
11: EndFor
12: L← merge sort(L)
13: R← merge sort(R)
14: Return interclasare(L, R)
15: EndAlgorithm

Găsirea Elementului Maxim

1: Algorithm max element(A)
2: If len(A) = 1 then
3: Return A[1]
4: EndIf
5: m← len(A) DIV 2
6: For i← 1,m execute
7: L[i]← A[i]
8: EndFor
9: For i← 1, len(A)−m execute

10: R[i]← A[m+ i]
11: EndFor
12: left max← max element(L)
13: right max← max element(R)
14: Return max(left max, right max)
15: EndAlgorithm

Concluzie

Metoda divide et impera este un concept esent, ial care poate fi aplicat ı̂ntr-o gamă largă
de probleme. Aceasta poate fi utilizată atât ı̂n situat, ii evidente, precum cele prezentate
mai sus, cât s, i ı̂n contexte mai subtile, unde structura metodei nu este imediat evidentă.

8.2.2 Probleme

194. ✓ ?Se consideră algoritmul f(e), unde e este un număr natural nenul (1 ≤ e ≤ 106) s, i
algoritmul g(arr, a, b), unde a s, i b sunt numere naturale nenule (1 ≤ a, b ≤ 103) s, i
arr este un vector de n numere naturale nenule (1 ≤ arr[1], arr[2], . . . , arr[n] ≤ 106).
Operatorul & este operatorul AND pe bit, i; tabelul de adevăr este următorul:

120

Metodele Backtracking, Divide et Impera s, i Greedy Divide et impera

Exemplu:

i. 6&1 convertit ı̂n binar: 110&001 =
000 = 0(10)

ii. 2&7 convertit ı̂n binar: 010&111 =
010 = 2(10)

& 0 1
0 0 0
1 0 1

Algorithm f(e)

k ← 0
While e > 0 execute

k ← k + (e & 1)
e← e DIV 2

EndWhile

Return k MOD 2 = 1
EndAlgorithm

Algorithm g(arr, a, b)

If a = b then

Return f(arr[a])

EndIf

c← (a+ b) DIV 2
Return g(arr, a, c) AND g(arr, c+1, b)

EndAlgorithm

Pentru ce valori ale numărului n s, i ale vectorului arr apelul g(arr, 1, n) returnează
True?

A. n = 5, arr = (14, 7, 11, 1, 4)

B. n = 4, arr = (31, 7, 15, 3)

C. n = 5, arr = (16, 19, 21, 22, 25)

D. Pentru oricare n < 100 s, i elementele vectorului sunt de forma 2k, unde k este un
număr natural (1 ≤ k ≤ 16).

195. ✓ ?Se consideră algoritmul ceFace(ts, td, V), unde ts, td sunt numere naturale
nenule (1 ≤ ts, td ≤ 103) s, i V este un vector de n numere naturale nenule (1 ≤
V [1], V [2], . . . , V [n] ≤ 109).

Algorithm ceFace(ts, td, V)

If ts = td then

x← V [td]
c← 0
While x > 0 execute

x← x DIV 10
c← c+ 1

EndWhile

Return c MOD 2 = 0
EndIf

Return ceFace(ts, (ts+ td) DIV 2, V) AND ceFace((ts+ td) DIV 2 + 1, td, V)

EndAlgorithm

Care dintre următoarele afirmat, ii sunt false?

A. Pentru apelul ceFace(1, 9, [12, 34, 56, 78, 90, 67, 22, 10, 52]) algo-
ritmul returnează True.

B. Pentru apelul ceFace(1, 7, [323, 941, 105, 984, 603, 174, 405]) algorit-
mul returnează True.

C. Pentru apelul ceFace(2, 6, [384, 29 , 9923, 23, 18, 1784, 44, 85]) al-
goritmul returnează False.

121

Metodele Backtracking, Divide et Impera s, i Greedy Divide et impera

D. Algoritmul ceFace(ts, td, V) verifică dacă toate elementele din intervalul in-
dicilor [ts, td] sunt pare.

196. ✓ ?Se consideră algoritmii star(m, n) s, i sky(x, y, arr), unde m s, i n sunt numere
naturale nenule (1 ≤ m,n ≤ 106), iar arr este un vector de n numere naturale nenule
(1 ≤ arr[1], arr[2], . . . , arr[n] ≤ 106).

Algorithm star(m, n)

If n = 0 then

Return m

EndIf

Return star(n, m MOD n)
EndAlgorithm

Algorithm sky(x, y, arr)

If x = y then

Return arr[x]
EndIf

m← (x+ y) DIV 2
a← sky(x, m, arr)

b← sky(m+ 1, y, arr)

Return star(a, b)
EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Pentru apelul sky(1, 5, [12, 72, 78, 42, 90]) algoritmul returnează 6.

B. Pentru apelul sky(1, 4, [10, 20, 30, 40, 55]) algoritmul returnează 10.

C. Algoritmul sky(x, y, arr) are complexitatea O(n).

D. Algoritmul star(m, n) returnează cel mai mare divizor comun al numerelor m
s, i n, doar ı̂n cazul ı̂n care m s, i n nu sunt prime.

197. ✓ ?Se consideră algoritmul ceFace(n, arr), unde n, s sunt numere naturale nenule
(1 ≤ n, s ≤ 103) s, i arr este un vector de n numere naturale nenule (1 ≤ arr[1], arr[2], . . . ,
arr[n] ≤ 106).

Algorithm ceFace(n, arr, s)

If n = 1 then

Return arr[s]

EndIf

a← ceFace(n DIV 2, arr, s)
b← ceFace(n− n DIV 2, arr, s+ n DIV 2)
Return a+ b

EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate referitor la algoritmul ceFace(n,
arr, 1):

A. Pentru apelul ceFace(5, [1, 2, 3, 4, 5], 1), algoritmul returnează 16.

B. Pentru apelul ceFace(7, [32, 12, 45, 67, 23, 11, 9], 1), algoritmul re-
turnează 199.

C. Pentru orice n s, i orice vector arr, algoritmul returnează suma primelor n elemente
din vectorul arr.

D. Algoritmul ceFace(n, arr, s) are complexitatea de timp O(log(n)).

198. ✓ ?Se consideră algoritmul ceFace(st, dr, n, m, matrix), unde n s, i m sunt numere
naturale nenule (1 ≤ n,m ≤ 103), iar matrix este o matrice de n×m numere naturale
nenule (1 ≤ matrix[1][1],matrix[1][2], . . . ,matrix[n][m] ≤ 106).

122

Metodele Backtracking, Divide et Impera s, i Greedy Divide et impera

Algorithm ceFace(st, dr, n, m, matrix)

If st = dr then

Return matrix[st][2]

EndIf

mid← (st+ dr) DIV 2
a← ceFace(st,mid, n,m,matrix)
b← ceFace(mid+ 1, dr, n,m,matrix)
Return a+ b

EndAlgorithm

Pentru care dintre următoarele valori ale lui n, m s, i matrix, apelul ceFace(1, n, n,

m, matrix) returnează 31?

A. n = 3, m = 3,

11 23 3
4 17 10
41 8 18



B. n = 2, m = 4,

[
1 22 3 4
5 9 16 1

]

C. n = 3, m = 2,22 13
37 4
29 6


D. n = 5, m = 5,

13 18 23 28 33
9 5 11 15 17
7 3 8 9 5
5 1 3 14 11
6 4 9 2 4


199. ✓ ?Se consideră algoritmul once(a, b, arr), unde a s, i b sunt numere naturale nenule

(1 ≤ a, b ≤ 103) s, i arr este un vector de n numere naturale (0 ≤ arr[1], arr[2], . . . ,
arr[n] ≤ 109).

Algorithm once(a, b, arr)

If a = b then

x← arr[a]
c← True

While x > 0 execute

x← x DIV 10
c← NOT c

EndWhile

Return c

EndIf

m← (a+ b) DIV 2
Return once(a, m, arr) OR once(m + 1, b, arr)

EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Pentru apelul once(1, 5, [12, 132, 56, 782, 90]) algoritmul returnează True.

B. Pentru apelul once(1, 10, [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]) algoritmul re-
turnează False.

C. Pentru apelurile once(1, 4, [983, 50942, 132, 1]) s, i once(1, 4, [91832,

2, 132, 195, 32]) algoritmul returnează aceeas, i valoare.

123

Metodele Backtracking, Divide et Impera s, i Greedy Divide et impera

D. Pentru apelul once(3, 7, [123, 32, 24, 9043, 2025, 12, 1302, 134, 543])

algoritmul returnează False.

200. ✓ ?Se consideră algoritmul ceFace(il, rl, x), unde il, rl sunt numere naturale nenule
(1 ≤ il, rl ≤ 103) s, i x este un vector de n numere naturale (0 ≤ x[1], x[2], . . . , x[n] ≤
109).

Algorithm ceFace(il, rl, x)

If il = rl then

nr ← x[il]
op← 0
While nr > 0 execute

If nr MOD 3 = 1 then

op← op+ nr MOD 10
EndIf

nr ← nr DIV 10
EndWhile

Return op MOD 2 = 1
EndIf

sl← il * 2 + rl * 2
sl← sl DIV 4
Return ceFace(il, sl, x) AND ceFace(sl + 1, rl, x)

EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Pentru apelul ceFace(1, 7, [374, 12, 39777, 7848, 97, 765, 30282]), al-
goritmul returnează True.

B. Pentru apelul ceFace(1, 8, [85, 1428, 9961, 1119, 9978, 571, 4818,

691]), algoritmul returnează True.

C. Pentru apelul ceFace(1, 8, [1257, 55, 143, 3749, 1369, 7746, 49122,

9846]), algoritmul returnează False.

D. Algoritmul verifică dacă toate numerele din intervalul indicilor [il, rl] au proprie-
tatea că suma cifrelor a căror rest la ı̂mpărt, irea cu 3 este 1 este un număr impar.

201. ✓ ?Se consideră algoritmul ceFace(a, n, m, st i, st j, dr i, dr j), unde a este
o matrice de dimensiune n x m cu elemente ı̂ntregi (−109 ≤ a[i][j] ≤ 109), iar st i,

st j, dr i, dr j sunt indicii care definesc o submatrice.

Algorithm ceFace(a, n, m, st i, st j, dr i, dr j)

If st i > dr i or st j > dr j then

Return 0

EndIf

If st i = dr i and st j = dr j then

Return a[st i][st j]
EndIf

mij i← (st i+ dr i) DIV 2
mij j ← (st j + dr j) DIV 2
Return max(

ceFace(a, n, m, st i, st j, mij i, mij j),

ceFace(a, n, m, st i, mij j+1, mij i, dr j),

ceFace(a, n, m, mij i+1, st j, dr i, mij j),

ceFace(a, n, m, mij i+1, mij j+1, dr i, dr j))

124

Metodele Backtracking, Divide et Impera s, i Greedy Divide et impera

EndAlgorithm

Care dintre următoarele afirmat, ii despre funct, ie sunt adevărate?

A. Găses,te maximul dintr-o matrice ı̂mpărt, ind-o ı̂n 4 submatrice.

B. Are complexitate O(nm log(nm)).

C. Face exact log(nm) apeluri recursive.

D. Se poate optimiza folosind un algoritm iterativ ı̂n O(n ·m).

202. ✓ ?Se consideră algoritmul ceFace(v, st, dr, k), unde v este un vector de n numere
ı̂ntregi sortate crescător (−109 ≤ v[1], v[2], . . . , v[n] ≤ 109), iar k este un număr ı̂ntreg.

Algorithm ceFace(v, st, dr, k)

If st = dr then

Return v[st] = k
EndIf

mij ← (st+ dr) DIV 2
left← ceFace(v, st, mij, k)

right← ceFace(v, mij+1, dr, k)

count← 0
i← mij, j ← mij + 1
While i ≥ st and j ≤ dr execute

If v[i] + v[j] = k then

If v[i] = v[i+ 1] then

count← count+ 1
EndIf

i← i− 1, j ← j + 1
Else If v[i] + v[j] < k then

j ← j + 1
Else

i← i− 1
EndIf

EndWhile

Return left+ right+ count
EndAlgorithm

Care dintre următoarele afirmat, ii despre funct, ie sunt adevărate?

A. Numără perechile de sumă k ı̂ntr-un vector sortat.

B. Are complexitate O(n2).

C. Pentru k = 0 s, i vector vid returnează 0.

D. Funct, ionează corect doar pe vectori sortat, i crescător.

203. ✓ ?Se consideră algoritmul ceFace(v, st, dr), unde v este un vector de n numere
ı̂ntregi (−109 ≤ v[1], v[2], . . . , v[n] ≤ 109), iar st s, i dr sunt limitele indicilor (1 ≤ st ≤
dr ≤ n).

Algorithm ceFace(v, st, dr)

If st = dr then

Return {v[st], v[st]}
EndIf

If dr − st = 1 then

125

Metodele Backtracking, Divide et Impera s, i Greedy Divide et impera

Return {min(v[st], v[dr]), max(v[st], v[dr])}
EndIf

mij ← (st+ dr) DIV 2
p1← ceFace(v, st, mij)

p2← ceFace(v, mij+1, dr)

Return {min(p1.first, p2.first), max(p1.second, p2.second)}
EndAlgorithm

Un pair este o structură de date care ret, ine două valori, notate convent, ional first
s, i second. În contextul algoritmului, notăm un pair ca o pereche ordonată de forma
{a, b}, unde:

i. a reprezintă primul element (first)

ii. b reprezintă al doilea element (second)

iii. a, b ∈ Z s, i a ≤ b

Care dintre următoarele afirmat, ii sunt adevărate?

A. Găses,te minimul s, i maximul dintr-un vector.

B. Face mai put, ine comparat, ii decât metoda clasică(o parcurgere s, i comparat, ii la
fiecare pas).

C. Are complexitate O(n2).

D. Pentru un vector cu elemente egale returnează aceeas, i valoare ı̂n ambele compo-
nente.

204. ✓ ?Se consideră algoritmul ceFace(v, st, dr), unde v este un vector de n numere
ı̂ntregi (−109 ≤ v[1], v[2], . . . , v[n] ≤ 109), iar st s, i dr sunt limitele indicilor (1 ≤ st ≤
dr ≤ n).

Algorithm ceFace(v, st, dr)

If st = dr then

Return v[st]
EndIf

mij ← (st+ dr) DIV 2
s1← ceFace(v, st, mij)

s2← ceFace(v, mij + 1, dr)

Return max(s1, s2)
EndAlgorithm

Care dintre următoarele afirmat, ii despre funct, ie sunt false?

A. Găses,te minimul din vector folosind Divide et Impera.

B. Complexitatea este O(n).

C. Complexitatea este O(nlog(n)).

D. Pentru un vector cu un singur element returnează acel element.

126

Metodele Backtracking, Divide et Impera s, i Greedy Greedy

8.3 Greedy

8.3.1 Teorie

Metoda Greedy este o tehnică fundamentală ı̂n proiectarea algoritmilor, care rezolvă
probleme printr-o serie de alegeri locale optime, ı̂n sperant,a obt, inerii unei solut, ii globale
bune. Ideea principală constă ı̂n a alege, la fiecare pas, varianta considerată cea mai bună
la momentul respectiv, fără a reconsidera ulterior deciziile luate.[2]

Elementele Fundamentale ale Metodei Greedy

• Alegerea local optimă:

– La fiecare pas se selectează solut, ia care pare cea mai bună ı̂n acel moment

– Nu există revenire sau reconsiderarea alegerilor anterioare

• Opt, iunea Greedy:

– Există o structură a problemei care permite ca o alegere local optimă să con-
ducă spre o solut, ie globală optimă (sau suficient de bună)

– Nu toate problemele permit aplicarea cu succes a acestei strategii

• Substructura optimă:

– O solut, ie optimă a problemei poate fi construită din solut, iile optime ale sub-
problemelor rezultate ı̂n urma alegerilor locale

– Nu este necesară explorarea tuturor solut, iilor posibile

Tipuri de Probleme Rezolvate prin Metoda Greedy

• Select, ia activităt, ilor (planificarea intervalelor):

– Alegerea unui set maxim de activităt, i care nu se suprapun

– Exemplu: planificarea spectacolelor ı̂ntr-o sală unică

• Problema fract, ionară a rucsacului:

– Împachetarea obiectelor pentru maximizarea valorii, fiind permisă fract, ionarea
obiectelor

• Probleme de acoperire s, i optimizare pe grafuri:

– Algoritmul lui Prim sau Kruskal pentru arborele part, ial minim

– Algoritmul Dijkstra pentru drum minim

Modelul Matematic s, i Analiza Formală

Metoda Greedy poate fi formalizată prin analiza structurii problemelor ce posedă pro-
prietatea de substructură optimă s, i opt, iunea Greedy. Pentru o problemă de optimizare
cu mult, imea de candidat, i S, la fiecare pas i se alege un element xi ∈ Si (mult, imea de
candidat, i rămas, i la pasul i) care maximizează sau minimizează o anumită funct, ie obiectiv
f . Problema se reduce astfel la:

127

Metodele Backtracking, Divide et Impera s, i Greedy Greedy

xi = argmax
x∈Si

f(x) sau xi = arg min
x∈Si

f(x)

Proprietatea cheie este că prin selectarea acestui xi, nu afectăm capacitatea de a obt, ine
o solut, ie optimă pentru subproblema rămasă.

Structura Generală a unui Algoritm Greedy

Structura Generală a unui Algoritm Greedy

1: Algorithm AlgoritmGreedy(candidat, i)
2: solut,ie← ∅
3: While există candidat,i disponibili execute
4: x← Candidatul cu cea mai bună valoare locală
5: If sePoateAdauga(x, solut, ie) then
6: solut,ie← solut,ie ∪ {x}
7: EndIf
8: elimină x din lista de candidat,i
9: EndWhile

10: Return solut,ie
11: EndAlgorithm

Analiza Complexităt, ii

Complexitatea temporală a algoritmilor Greedy depinde de:

• Sortarea init, ială (dacă este necesară), care poate necesita O(n log n)

• Select, ia repetată a celui mai bun candidat, adesea optimizată prin structuri
de date (grămezi, cozi de priorităt, i)

• În general, se urmăres,te obt, inerea unei solut, ii ı̂n timp polynomial, pentru probleme
altfel dificile

Exemplu Clasic: Select, ia Activităt, ilor

Pentru a ilustra metoda Greedy, considerăm problema select, iei activităt, ilor. Avem o
mult, ime de activităt, i, fiecare cu un interval de timp [Si, Fi]. Scopul este de a selecta un
număr maxim de activităt, i care nu se suprapun.

• Modelul matematic:

max |A| a. ı̂. ∀(i, j) ∈ A, [Si, Fi] ∩ [Sj , Fj] = ∅

• Strategia Greedy:

– Sortează activităt, ile crescător după timpul de finalizare

– Selectează prima activitate (cea cu cel mai mic Fi)

– Pentru fiecare altă activitate, selecteaz-o doar dacă nu se suprapune cu cele
deja alese

128

Metodele Backtracking, Divide et Impera s, i Greedy Greedy

Algoritmul Greedy pentru Select, ia Activităt, ilor

1: Algorithm SelectieActivitati(activităt, i)
2: Sortează activităt, ile după Fi

3: selectate← ∅
4: ultim← −∞
5: For activitate a ı̂n ordine execute
6: If Sa ≥ ultim then
7: selectate← selectate ∪ {a}
8: ultim← Fa

9: EndIf
10: EndFor
11: Return selectate
12: EndAlgorithm

Aplicat, ii s, i Tipuri de Probleme

Metoda Greedy este utilă ı̂n rezolvarea diverselor probleme:

• Probleme de optimizare combinatorică:

– Rucsacul fract, ionar

– Selectarea codurilor cu lungime minimă (Coduri Huffman)

• Probleme pe grafuri:

– Afis,area arborelui part, ial de cost minim (Prim, Kruskal)

– Calcularea drumurilor minime (Dijkstra)

• Probleme de programare orară s, i alocare de resurse:

– Alocarea intervalelor de timp, sarcinilor sau resurselor

8.3.2 Probleme

205. ✓ ?Se dă un s, ir cu n elemente numere ı̂ntregi s, i un număr natural k ≤ n. Se dores,te
determinarea celei mai mari sume care poate fi obt, inută schimbând semnul a exact k
elemente aflate pe pozit, ii distincte din s, irul dat.

Care dintre următoarele strategii nu rezolvă corect problema?

A. Se sortează elementele s, irului crescător după valoarea absolută. Se schimbă sem-
nul primelor k elemente negative din s, ir. Se calculează suma finală a s, irului.

B. Se sortează elementele s, irului crescător. Se schimbă semnul primelor k elemente
negative din s, ir. Se calculează suma finală a s, irului.

C. Se sortează elementele s, irului descrescător după valoarea absolută. Se schimbă
semnul primelor k elemente negative, iar dacă mai rămân schimbări disponibile s, i
elemente pozitive, se schimbă s, i semnul celor mai mici elemente pozitive rămase.
Se calculează suma finală a s, irului.

D. Se sortează elementele s, irului descrescător după valoarea absolută. Se schimbă
semnul primelor k elemente negative, iar dacă numărul de elemente negative
este mai mic decât k, se schimbă semnul celui mai mic număr dintre elementele
pozitive de k ori. Se calculează suma finală a s, irului.

129

Metodele Backtracking, Divide et Impera s, i Greedy Greedy

206. ✓ ?Se dă un s, ir de numere a, având lungimea n, ∀a1, a2, . . . , an ∈ N. Pentru a obt, ine
cel mai mare număr posibil, concatenând aceste cifre, trebuie sortat s, irul respectând
anumite condit, ii. Fiind date funct, iile nrCifre (care returnează numărul de cifre a
unui număr) s, i concat care are implementarea de mai jos, care variantă de răspuns
reprezintă solut, ia optimă?

Algorithm concat(x, y)
p← nrCifre(y)
Return x · 10p + y

EndAlgorithm

A. For i← 1, n− 1 execute

For j ← i+ 1, n execute

x← nrCifre(a[j])
y ← nrCifre(a[i])
If a[i] · 10x < a[j] · 10y then

temp← a[i]
a[i]← a[j]
a[j]← temp

EndIf

EndFor

EndFor

B. For i← 1, n− 1 execute

For j ← i+ 1, n execute

If concat(a[j], a[i]) >
concat(a[i], a[j]) then

temp← a[i]
a[i]← a[j]
a[j]← temp

EndIf

EndFor

EndFor

C. For i← 1, n− 1 execute

For j ← i+ 1, n execute

If a[i] < a[j] then

temp← a[i]
a[i]← a[j]
a[j]← temp

EndIf

EndFor

EndFor

D. For i← 1, n− 1 execute

For j ← i+ 1, n execute

If a[i] mod 10 < a[j] mod 10
then

temp← a[i]
a[i]← a[j]
a[j]← temp

EndIf

EndFor

EndFor

207. ✓ ?Pe o masă sunt as,ezate n bet, is,oare, pentru fiecare din ele cunoscându-se lungimea
acestuia, fiind L[i]. Asupra acestora se pot efectua operat, ii de tăiere, ı̂n care lun-
gimea bet, is,orului se scurtează. Se dores,te ca lungimile bet, is,oarelor să fie ı̂n ordine
descrescătoare, fără a se schimba ordinea acestora. Notăm cu t această lungime.

Pentru care din următoarele seturi de date, lungimea totală minimă pentru a le tăia
este corectă?

A. n=10, L=[18 24 14 43 10 9 8 5 7 3], t=37.

B. n=20, L=[23 15 27 31 15 18 19 19 16 20 29 40 28 42 18 27 49 65 2 86], t=83.

C. n=5, L=[8 13 21 34 55], t=90.

D. n=6, L=[438243 2831231 4304392 8123120 2322138103 21321312], t=2321699842.

208. ✓ ?Se dă o matrice 6× 6 cu costuri de traversare. Care dintre următoarele variante de
răspuns sunt corecte, s,tiind că trebuie să găsim drumul de cost minim de la (1, 1) la
(6, 6) (singurele direct, ii de deplasare valabile fiind sus, jos, stânga, dreapta) ?

A. Pentru matricea dată, costul minim va fi atins prin alegerea minimului dintre
celulele din dreapta s, i jos.

130

Metodele Backtracking, Divide et Impera s, i Greedy Greedy

S

F

7 3 2 4 2

5 5 7 4 7 3

9 5 4 9 2 5

2 4 8 2 9 1

5 2 9 1 2 4

2 4 5 2 9

B. Pentru matricea dată, costul minim va fi atins prin alegerea direct, iei cu suma
minimă până la celula finală.

C. Orice drum valid trebuie să cont, ină exact 10 pas, i.

D. Costul minim pentru matricea dată este 41.

209. ✓ ?Într-o companie, mai multe echipe au solicitat sala de s,edint,e pentru prezentări.
Pentru fiecare prezentare se cunosc:

(a) Ora de ı̂nceput solicitată - vectorul start

(b) Ora de sfârs, it estimată - vectorul finish

Index 1 2 3 4 5 6 7 8 9 10
Start 1 3 0 5 3 5 6 8 8 2
Finish 4 5 6 7 8 9 10 11 12 13

Fiind o singură sală de s,edint,e disponibilă, două prezentări nu pot avea loc ı̂n acelas, i
timp. Care este numărul minim de prezentări care trebuie reprogramate pentru o altă
zi, astfel ı̂ncât să nu existe suprapuneri ı̂n programul sălii?

A. 4. B. 5. C. 6. D. 7.

210. ✓ ?O inversiune ı̂ntr-o permutare p este o pereche (i, j), unde i < j s, i p[i] > p[j]. De
exemplu, ı̂n permutarea [3, 1, 2], inversiunile sunt (1, 2) s, i (1, 3).

Care este complexitatea minimă ı̂n care se poate genera o permutare de lungime n
minim lexicografic, având k inversiuni?

A. O(log n). B. O(n log n). C. O(n). D. O(n2).

211. ✓ ?Într-un magazin sunt n obiecte; pentru fiecare se cunoas,te greutatea G s, i valoarea
V . Un hot, intră ı̂n magazin având un rucsac ce poate transporta o greutate ma-
ximă GMax. El va fura anumite obiecte, sau port, iuni de obiecte, astfel ı̂ncât suma
greutăt, ilor obiectelor furate să nu depăs,ească GMax. Pentru următoarele obiecte,
care este câs,tigul maxim pe care ı̂l poate obt, ine hot,ul, s,tiind că GMax = 30?

131

Metodele Backtracking, Divide et Impera s, i Greedy Greedy

Greutatea (G) Valoarea (V)
10 60
5 50
12 60
20 140

A. 220. B. 200. C. 190. D. 100.

212. ✓ ?Pentru interclasarea a două s, iruri ordonate crescător, A având lungime a, s, i B,
având lungimea b, numărul total de operat, ii va fi a+ b. Fie n s, iruri, fiecare având lun-
gimea L[i]. Toate aceste s, iruri sunt ordonate crescător. Se dores,te interclasarea tuturor
celor n s, iruri, fiind ı̂n total n− 1 interclasări. Pentru n = 7, iar L = [2, 4, 7, 3, 1, 5, 6],
care este numărul minim de operat, ii necesare pentru a realiza interclasarea tuturor
s, irurilor?

A. 173. B. 28. C. 219. D. 375.

213. ✓ ?Într-un cuier există n+1 agăt, ători, numerotate de la 1 la n+1. Primele n agăt, ători
cont, in fiecare câte un palton, fiecare din ele având câte un număr de la 1 la n. Victor
dores,te mutarea lor, astfel ı̂ncât, pentru fiecare i, paltonul cu numărul i să fie pus ı̂n
agăt, ătoarea cu numărul i. O mutare este reprezentată sub forma (i, j), indicând că
paltonul aflat ı̂n agăt, ătoarea i va fi mutat ı̂n agăt, ătoarea j, iar aceasta se poate realiza
doar dacă ı̂n agăt, ătoarea j NU se află niciun palton. Care informat, ii sunt adevărate?

A. Există unele configurat, ii valide pentru care nu vom avea niciodată solut, ie.

B. Pentru n = 6, s, i configurat, ia init, ială [6, 5, 1, 2, 4, 3], o succesiune validă de mutări
este [(1, 7), (3, 1), (6, 3), (7, 6), (2, 7), (4, 2), (5, 2), (6, 3), (7, 6)].

C. O succesiune validă de mutări poate fi reprezentată sub forma unui graf neo-
rientat, ı̂n care fiecare mutare reprezintă o muchie de la un nod spre altul. Fie
c numărul de componente conexe ale acestui graf. Numărul minim de mutări
necesare este egal cu n+ c.

D. Mutarea unui palton deja aflat pe pozit, ia corectă nu ı̂l va ajuta pe Victor să-s, i
realizeze scopul.

214. ✓ ?O tablă de s,ah de dimensiune n× n, n par, este ı̂mpărt, ită ı̂n dreptunghiuri de arii
diferite, iar numărul de pătrăt,ele albe este egal cu numărul de pătrăt,ele negre, pentru
fiecare dreptunghi ı̂n parte. Care este numărul maxim de dreptunghiuri pe care se pot
obt, ine?

A. n B. n2 C. n− 1 D. 2 ∗ n.

215. ✓ ?Un depozit primes,te N comenzi. Pentru comanda i se s,tie: timpul de procesare ti
(minute), deadline-ul di (minute de la ı̂nceputul zilei) s, i profitul pi. O comandă aduce
profit doar dacă e finalizată ı̂nainte de deadline. Dacă comenzile se procesează una
după alta, care dintre următoarele afirmat, ii nu sunt adevărate?

A. Pentru orice set de comenzi, sortarea după deadline produce solut, ia optimă.

132

Metodele Backtracking, Divide et Impera s, i Greedy Greedy

B. Pentru setul [(t = 3, d = 9, p = 6), (t = 2, d = 9, p = 8), (t = 4, d = 9, p = 4), (t =
1, d = 9, p = 7)], profitul maxim este 19.

C. Maximizarea profitului impune o sortare duală a comenzilor: mai ı̂ntâi după
deadline-uri ı̂n ordine descrescătoare pentru a gestiona urgent,a, apoi după ra-
portul profit/timp (descrescător) pentru eficient, ă, asigurând procesarea ı̂n limita
timpului disponibil.

D. Când toate deadline-urile sunt egale, sortarea după raportul profit/timp produce
solut, ia optimă.

216. ✓ ?Se dă un set de n intervale de timp, fiecare interval [ai, bi] reprezentând ı̂nceputul
s, i sfârs, itul unui eveniment. Se dores,te determinarea celui mai lung segment comun
tuturor intervalelor.

Care dintre următoarele strategii nu rezolvă corect problema?

A. Se sortează intervalele ı̂n ordine crescătoare după punctul de ı̂nceput. Se ı̂ncepe
cu intersect, ia primelor două intervale s, i se continuă prin intersect, ia cu fiecare
interval următor.

B. Se sortează intervalele ı̂n ordine descrescătoare după punctul de sfârs, it. Se ia
intersect, ia dintre primul s, i ultimul interval s, i se continuă inter-sect, ionând cu
fiecare interval din mijloc.

C. Se sortează intervalele după punctul de ı̂nceput crescător. Se calculează intersect, ia
dintre primul interval s, i fiecare interval următor, iar dacă intersect, ia devine nulă,
se revine la intersect, ia maximă cunoscută.

D. Se sortează intervalele după punctul de sfârs, it descrescător. Se ia intersect, ia din-
tre primul s, i ultimul interval, apoi se continuă inter-sect, ionând cu fiecare interval,
dar se revine la intersect, ia maximă dacă intersect, ia curentă devine nulă.

133

9

Combinatorică

Acest capitol acoperă

• Produs cartezian

• Submult, imi

• Permutări

• Aranjamente

• Combinări

9.1 Teorie

Introducere

Combinatorica este un domeniu al matematicii care explorează metodele de numărare,
select, ie s, i aranjare a elementelor din mult, imi finite. Multe dintre conceptele specifice
combinatoricii sunt esent, iale s, i ı̂n problemele de algoritmică, având o important, ă majoră
ı̂n informatică. Elementele de combinatorică stau la baza dezvoltării algoritmilor eficient, i,
optimizării solut, iilor pentru probleme complexe s, i ı̂mbunătăt, irii performant,elor sistemelor
informatice.

Produs cartezian

Definit, ie: Produsul cartezian a două mult, imi A s, i B este mult, imea tuturor perechilor
ordonate (a, b), unde a ∈ A s, i b ∈ B. Produsul cartezian se notează A×B s, i se defines,te
formal astfel:

A×B = {(a, b) | a ∈ A s, i b ∈ B}.

Exemplu: Fie A = {1, 2} s, i B = {x, y}. Produsul cartezian A×B este:

A×B = {(1, x), (1, y), (2, x), (2, y)}.

Pas, i pentru generarea produsului cartezian:

• Pentru fiecare element a din mult, imea A, iterăm prin toate elementele din mult, imea
B.

• Construim perechile ordonate (a, b), unde b ∈ B.

• Adăugăm fiecare pereche ı̂n mult, imea rezultat.

Rezultatul: Mult, imea tuturor perechilor ordonate este formată astfel:

A×B = {(a, b) | ∀a ∈ A,∀b ∈ B}.

Exemplu concret: Dacă A = {1, 2} s, i B = {x, y}, atunci produsul cartezian este format
ı̂n pas, i:

Combinatorică Teorie

• Pentru a = 1: (1, x), (1, y).

• Pentru a = 2: (2, x), (2, y).

Rezultatul final este:
{(1, x), (1, y), (2, x), (2, y)}.

Procedură pentru generarea produsului cartezian

Algorithm GenerareProdusCartezian(A,B,n,m)
For i← 0, n− 1 execute ▷ Mult, imea A cu n elemente

For j ← 0,m− 1 execute ▷ Mult, imea B cu m elemente
Scrie (A[i], B[j])

EndFor
EndFor

EndAlgorithm

Submult, imi

Definit, ie: Fie o mult, ime A. O mult, ime B este o submult, ime a lui A dacă fiecare
element al lui B apart, ine s, i mult, imii A. Formal, notăm acest lucru astfel:

B ⊆ A ⇐⇒ ∀x (x ∈ B =⇒ x ∈ A).

Exemplu: Fie A = {1, 2, 3}. Toate submult, imile lui A sunt:

{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}.

Pentru a ı̂ntelege s, i vizualiza formarea submult, imilor, se examinează pe rând fiecare
element al mult, imii A s, i se decide dacă se include sau nu. Acest proces se continuă până
când se obt, in toate submult, imile cu 2 elemente

Start cu
A = {1,2,3}

Include 1

Include 2

Include 3

{1, 2, 3}

Omite 3

{1, 2}

Omite 2

Include 3

{1, 3}

Omite 3

{1}

Omite 1

Include 2

Include 3

{2, 3}

Omite 3

{2}

Omite 2

Include 3

{3}

Omite 3

{}

135

Combinatorică Teorie

Cardinalitatea mult, imii de submult, imi: Omult, ime cu n elemente are 2n submult, imi.
De exemplu, dacă A are 4 elemente, atunci 24 = 16 submult, imi.
Pas, i pentru generarea tuturor submult, imilor:

• Fiecare element poate fi inclus sau exclus dintr-o submult, ime.

• Dacă mult, imea A are n elemente, generăm toate combinat, iile posibile de n bit, i (0
sau 1), unde:

−‘1‘ indică includerea elementului.

−‘0‘ indică excluderea elementului.

• Generăm submult, imile corespunzătoare fiecărei combinat, ii.

Exemplu concret: Fie A = {a, b}.
Generăm submult, imile:
1. Reprezentăm fiecare submult, ime folosind bit, i: 00, 01, 10, 11.
2. Interpretăm combinat, iile:
- 00: {} (submult, imea vidă).
- 01: {b}.
- 10: {a}.
- 11: {a, b}.
3. Rezultatul final este:

{{}, {a}, {b}, {a, b}}.

Algoritmul prezentat mai jos determină generarea tuturor submult, imilor prin intermediul
metodei de backtracking s, i a apelurilor recursive.

Procedură pentru afis,area submult, imilor

Algorithm AfisareSubmultimi(A,x,k)
For i← 1, k execute

If x[i] = 1 then
Scrie A[i]

EndIf
EndFor
Scrie linie nouă

EndAlgorithm

Algorithm GenerareSubmultimi(A,x,k)
For i← 0, 1 execute ▷ Valori posibile: 0 sau 1

x[k]← i
If k = n then

AfisareSubmultimi(A,x,k)
Else

GenerareSubmultimi(A,x,k+1)
EndIf

EndFor
EndAlgorithm

136

Combinatorică Teorie

Procedură pentru generarea iterativă a submult, imilor

1: Algorithm GenerareSubmultimiIterativ(A, n)
2: totalSubmultimi← 1
3: For i← 0, n− 1 execute
4: totalSubmultimi← totalSubmultimi ∗ 2
5: EndFor
6: For masca← 0, totalSubmultimi− 1 execute
7: Scrie ” ”
8: m← masca
9: For i← 0, n− 1 execute

10: If m MOD 2 = 1 then
11: Scrie A[i]
12: EndIf
13: m← m DIV 2
14: EndFor
15: Scrie ””
16: Scrie linie nouă
17: EndFor
18: EndAlgorithm

Permutări

Definit, ie: Fie o mult, ime A = {a1, a2, . . . , an} cu n elemente distincte. O permutare este
orice ı̂ns, iruire a acestor elemente, ı̂n care fiecare element apare o singură dată, iar ordinea
elementelor este luată ı̂n considerare. Fiecare astfel de ı̂ns, iruire reprezintă un aranjament
unic.
O altă definit, ie spune că o permutare a unei mult, imi finite s, i nevide de n elemente este
o aplicat, ie bijectivă, adică atât injectivă, cât s, i surjectivă, de la această mult, ime ı̂n ea
ı̂nsăs, i. Cu alte cuvinte o permutare asupra mult, imii A este o funct, ie f : A → A astfel
ı̂ncât f este bijectivă.
Numărul total de permutări ale unei mult, imi cu n elemente este n!, unde:

n! = n ∗ (n− 1) . . . ∗ 2 ∗ 1.

Exemplu: Fie mult, imea A = {1, 2, 3} s, i n = 3. Permutările posibile ale mult, imii sunt:

(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1).

În total, sunt 3! = 6 permutări pentru o mult, ime de 3 elemente.

Funct, ia ilustrată mai jos are ca scop generarea tuturor permutărilor unei mult, imi utilizând
o abordare recursivă combinată cu tehnica de backtracking. Algoritmul explorează ı̂n
mod sistematic toate permutările posibile, asigurându-se că fiecare dintre acestea este
construită incremental.

137

Combinatorică Teorie

Start cu
A = {1,2,3}

Alege 1
(rest: {2,3})

Alege 2
(rest: {3})

(1,2,3)
Permutare finală

Alege 3
(rest: {2})

(1,3,2)
Permutare finală

Alege 2
(rest: {1,3})

Alege 1
(rest: {3})

(2,1,3)
Permutare finală

Alege 3
(rest: {1})

(2,3,1)
Permutare finală

Alege 3
(rest: {1,2})

Alege 1
(rest: {2})

(3,1,2)
Permutare finală

Alege 2
(rest: {1})

(3,2,1)
Permutare finală

Procedură pentru generarea permutărilor

1: Algorithm GenerarePermutari(sir, n, index)
2: If index = n then
3: For i← 0, n− 1 execute
4: Scrie sir[i]
5: EndFor
6: Scrie linie nouă
7: Return
8: EndIf
9: For i← index, n− 1 execute

10: Interschimba(sir[index], sir[i])
11: GenerarePermutari(sir, n, index + 1)
12: Interschimba(sir[index], sir[i])
13: EndFor
14: EndAlgorithm

Pentru a se putea analiza diferent,ele dintre varianta recursivă s, i cea iterativă, este pre-
zentată mai jos implementarea iterativă a algoritmului. Comparativ cu algoritmul recur-
siv, care explorează toate permutările unei mult, imi construind incremental solut, iile prin
apeluri recursive s, i revenire la stările anterioare, algoritmul iterativ se bazează pe mani-
pularea directă a vectorului s, i inversarea sect, iunilor acestuia pentru a obt, ine următoarea
permutarea ı̂n ordine lexicografică.

138

Combinatorică Teorie

Procedură pentru generarea permutărilor ı̂n ordine lexicografică

1: Algorithm GenerarePermutariLexicografic(sir, n)
2: For i← 0, n− 1 execute
3: Scrie sir[i]
4: EndFor
5: Scrie linie nouă
6: i← n− 2
7: While i ≥ 0 AND sir[i] ≥ sir[i+ 1] execute
8: i← i− 1
9: EndWhile

10: If i < 0 then
11: Return fals
12: EndIf
13: j ← n− 1
14: While sir[j] ≤ sir[i] execute
15: j ← j − 1
16: EndWhile
17: Interschimba(sir[i], sir[j])
18: stanga← i+ 1, dreapta← n− 1
19: While stanga < dreapta execute
20: Interschimba(sir[stanga], sir[dreapta])
21: stanga← stanga+ 1, dreapta← dreapta− 1
22: EndWhile
23: Return adevarat
24: EndAlgorithm

Aranjamente

Definit, ie: Un aranjament de k elemente dintr-o mult, ime A de n elemente este o select, ie
ordonată de k elemente. Numărul total de aranjamente se calculează cu formula:

Ak
n =

n!

(n− k)!
.

Exemplu: Fie A = {1, 2, 3} s, i k = 2. Aranjamentele de 2 elemente sunt:

(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2).

Pentru a vizualiza procesul de generare a aranjamentelor, se explorează toate posibilităt, ile
de select, ie ordonată a elementelor din A. Se alege succesiv câte un element disponibil,
până când se obt, in toate aranjamentele de dimensiune 2.

Funct, ia descrisă mai jos prezintă o metodă recursivă care construies,te toate aranjamentele
posibile ale unei mult, imi date. La fiecare pas, aceasta adaugă un element valid ı̂n solut, ia
curentă s, i continuă recursiv până când solut, ia completă este obt, inută.

139

Combinatorică Teorie

Start cu
A = {1,2,3}, k=2

Alege 1
(rest: {2,3})

Alege 2

(1,2)
Aranjament final

Alege 3

(1,3)
Aranjament final

Alege 2
(rest: {1,3})

Alege 1

(2,1)
Aranjament final

Alege 3

(2,3)
Aranjament final

Alege 3
(rest: {1,2})

Alege 1

(3,1)
Aranjament final

Alege 2

(3,2)
Aranjament final

Procedură pentru generarea aranjamentelor

1: Algorithm GenerareAranjamente(sol, pas, n, k)
2: If pas = k then
3: For i← 0, k − 1 execute
4: Scrie sol[i]
5: EndFor
6: Scrie linie nouă
7: Return
8: EndIf
9: For i← 1, n execute

10: If nu EsteUtilizat(sol, i, pas) then
11: sol[pas]← i
12: GenerareAranjamente(sol, pas+ 1, n, k)
13: EndIf
14: EndFor
15: EndAlgorithm

Pentru a verifica faptul că un element există deja ı̂n solut, ia part, ială generată până la un
anumit pas, se utilizează funct, ia următoare, care este esent, ială pentru evitarea includerii
unor elemente duplicate ı̂n solut, ie.

Funct, ie pentru verificarea elementelor utilizate

1: Algorithm EsteUtilizat(sol, element, pas)
2: For i← 0, pas− 1 execute
3: If sol[i] = element then
4: Return adevarat
5: EndIf
6: EndFor
7: Return fals
8: EndAlgorithm

Următorul algoritm oferă o abordare iterativă, care gestionează solut, ia direct ı̂ntr-un
vector.

140

Combinatorică Teorie

Procedură pentru generarea iterativă a aranjamentelor

1: Algorithm GenerareAranjamenteIterativ(n, k)
2: sol← vector de dimensiune k
3: index← 0
4: element← 1
5: While index ≥ 0 execute
6: gasit← fals
7: While element ≤ n execute
8: If nu EsteUtilizat(sol, index, element) then
9: sol[index]← element

10: gasit← adevarat
11: break
12: EndIf
13: element← element+ 1
14: EndWhile
15: If gasit then
16: If index = k − 1 then
17: For i← 0, k − 1 execute
18: Scrie sol[i]
19: EndFor
20: Scrie linie nouă
21: element← sol[index] + 1
22: Else
23: index← index+ 1
24: element← 1
25: EndIf
26: Else
27: index← index− 1
28: If index ≥ 0 then
29: element← sol[index] + 1
30: EndIf
31: EndIf
32: EndWhile
33: EndAlgorithm

Combinări

Definit, ie: O combinare de k elemente dintr-o mult, ime A de n elemente este o select, ie
neordonată de k elemente. Numărul total de combinări se calculează cu formula:

Ck
n =

n!

k! · (n− k)!
.

Exemplu: Fie A = {1, 2, 3} s, i k = 2. Combinările de 2 elemente sunt:

{1, 2}, {1, 3}, {2, 3}.

Pentru a se putea vizualiza procesul de generare s, i pentru a se ı̂nt,elege mai bine, se
consideră următoare diagramă, unde se observă parcurgerea ı̂n ordine a elementelor din
mult, imea A. La fiecare pas se ia decizia de a include sau nu un element, astfel ı̂ncât la
final să se obt, ină toate combinările posibile de dimensiune 2.

141

Combinatorică Teorie

Start cu
A = {1,2,3}, k=2

Include 1

Include 2

{1,2}
Combinaţie finală

Omite 2

Include 3

{1,3}
Combinaţie finală

Omite 1

Include 2

Include 3

{2,3}
Combinaţie finală

Omite 2

Nu se mai pot
obt,ine 2 elemente

Următorul algoritm descris determină recursiv combinările, prin completarea treptată a
vectorului solut, iei.

Backtracking pentru generarea combinărilor unei mult, imi

1: Algorithm Backtrack(Sol, k, n, p)
2: If k = 1 then
3: start← 1
4: Else
5: start← Sol[k − 1] + 1
6: EndIf
7: For i← start, n execute
8: Sol[k]← i
9: If k = p then

10: For j ← 1, k execute
11: Write Sol[j]
12: EndFor
13: Write newline
14: Else
15: Backtrack(Sol, k + 1, n, p)
16: EndIf
17: EndFor
18: EndAlgorithm

Pentru a oferi o alternativă la abordarea recursivă, următorul algoritm foloses,te o metodă

142

Combinatorică Probleme

iterativă, care utilizează un vector pentru a stoca direct combinarea curentă s, i generează
combinarea următoare pe baza celei actuale.

Generarea iterativă a combinărilor unei mult, imi

1: Algorithm GenerateCombinations(n, p)
2: Sol← un vector de dimensiune p+ 1
3: For i← 1, p execute
4: Sol[i]← i
5: EndFor
6: hasNext← true
7: While hasNext execute
8: For i← 1, p execute
9: Write Sol[i]

10: EndFor
11: Write newline
12: i← p
13: While i > 0 and Sol[i] = n− p+ i execute
14: i← i− 1
15: EndWhile
16: If i = 0 then
17: hasNext← false
18: Else
19: Sol[i]← Sol[i] + 1
20: For j ← i+ 1, p execute
21: Sol[j]← Sol[j − 1] + 1
22: EndFor
23: EndIf
24: EndWhile
25: EndAlgorithm

9.2 Probleme

217. ✓ ?Într-o sală de clasă, toate cele m scaune sunt ocupate de către m elevi. Fiecare
elev are scaunul atribuit după un sistem simplu, elevului i fiindu-i atribuit scaunul
i. Datorită faptului că tot, i elevii sunt buni prieteni, aces,tia ocupă primul loc liber ı̂n
momentul ı̂n care ajung ı̂n sala de clasă, fără a se supăra unul pe celălalt. Care este
numărul posibilităt, ilor de aranjare a elevilor astfel ı̂ncât exact doi elevi nu se află la
locul atribuit?

A.
m(m− 1)(m− 2)

6

B.
m(m− 1)

2

C.
m!

m− 2

D. Nicio variantă.

218. ✓ ?Se consideră algoritmul Find(a, n), unde n este lungimea s, irului a, iar a este un
s, ir de n elemente ı̂ntregi. De asemenea, se consideră existent,a unui algoritm Sort(a,

n) care returnează s, irul a de n elemente ı̂ntregi ordonat crescător.

143

Combinatorică Probleme

Algorithm Find(a, n)

a1← Sort(a, n)

x← 1
For i← 1,n execute

x← x∗ Count(a1, n, a[i])

EndFor

Return x
EndAlgorithm

Algorithm Count(v, n, val)

a← 0
For i← 1,n execute

If v[i] = val then

a← a+ 1
EndIf

EndFor

Return a
EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Algoritmul returnează permutările valide ale s, irului a fără a genera explicit toate
permutările;

B. Algoritmul determină câte permutări ale lui a respectă condit, ia ca pentru orice
pereche (i, j) cu i < j să fie a[i] ≥ a[j];

C. Complexitatea algoritmului nu depinde de sortare;

D. Nicio variantă.

219. ✓ ?În oras,ul tău au avut loc alegeri la care au participat doi candidat, i, candidatul A
s, i candidatul B. Având ı̂n vedere că primul candidat a primit 5 voturi, iar candidatul
B a primit 3, ı̂n câte moduri s-ar fi putut număra voturile astfel ı̂ncât candidatul A
să fie mereu ı̂n fat,a candidatului B sau la egalitate, s,tiind că nu au fost numărate mai
mult de 2 voturi consecutive pentru candidatul A?

A. 12; B. 5; C. 25; D. 56;

220. ✓ ?Fie n un număr natural par, diferit de 0. S, tiind că ‘U’ reprezintă o urcare, iar ‘D’
coborâre, se dores,te să se construiască o secvent, ă validă de n caractere astfel ı̂ncât
pot, i ajunge la nivelul de start (0) cu un număr egal de urcări s, i coborâri, fără a cobor̂ı
sub nivelul 0. Care dintre următoarele afirmat, ii sunt adevărate?

A. Pentru n = 6, există 5 secvent,e valide.

B. Pentru n = 2 există o singură secvent, ă validă.

C. Numărul de secvent,e valide pentru n = 8 este de 2 ori mai mare decât pentru
n = 4.

D. Numărul de secvent,e valide pentru n = 8 este de 3 ori mai mare decât pentru
n = 6

221. ✓ ?Se consideră algoritmul Count(n, k), unde n s, i k sunt două numere naturale cu
0 ≤ k ≤ n.

144

Combinatorică Probleme

Algorithm Count(n, k)

If k = 0 or k = n then

Return 1

EndIf

Return Count(n - 1, k - 1) + Count(n - 1, k)

EndAlgorithm

Ce face algoritmul?

A. Determină toate permutările posibile ale s, irului de n elemente distincte;

B. Determină numărul de submult, imi de dimensiune k care se pot forma dintr-un
s, ir de n elemente distincte;

C. Afis,ează toate submult, imile de dimensiune k care se pot forma din s, ir;

D. Determină toate permutările posibile ale s, irului de n elemente.

222. ✓ ?Se consideră algoritmul back(x, n, k), unde x este un s, ir de cel mult n ≤ 1000
elemente, init, ial toate 0. Algoritmul print(x, n) afis,ează toate elementele din x
ı̂ncepând cu pozit, ia 1 s, i până la pozit, ia n, iar apoi afis,ează caracterul newline. În
metoda principală se realizează, init, ial, apelul back(x, n, 1).

Algorithm back(x, n, k)

For i← n, 1,−1 execute

x[k]← i
If ok(x, k) = 1 then

If k = n then

print(x, n)

Else back(x, n, k+1)

EndIf

EndIf

EndFor

EndAlgorithm

Algorithm ok(x, k)

For i← 1, k − 1 execute

If x[k] = x[i] then

Return 0

EndIf

EndFor

Return True

EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. În urma executării apelului init, ial, pe ecran se vor afis,a toate submult, imile
mult, imii {1, 2, . . . n};

B. În urma executării apelului init, ial, pe ecran se vor afis,a toate permutările mult, imii
{1, 2, . . . n} ı̂n ordine lexicografică s, i are complexitatea O(n!);

C. În urma executării apelului init, ial, pe ecran se vor afis,a toate permutările mult, imii
{1, 2, . . . n}, ı̂n ordine invers lexicografică s, i are complexitatea O(n!);

D. În urma executării apelului init, ial, pe ecran se vor afis,a toate permutările mult, imii
{1, 2, . . . n}, ı̂n ordine invers lexicografică s, i are complexitatea O(n! · n).

223. ✓ ?Se consideră s, irul 1, 2, 3, . . . , n. În câte moduri se pot aranja elementele s, irului astfel
ı̂ncât ı̂n s, irurile rezultate niciun element să nu ı̂s, i păstreze pozit, ia init, ială?

A. n!− (n− 2)!

B.
n!

0!
+

n!

1!
− n!

2!
+ · · ·+ (−1)n+1 * n!

n!

C. n! *
∑n

k=1
(−1)k

k!

D. Niciuna dintre variantele de mai sus.

145

Combinatorică Probleme

Problemele 224., 225. se referă la următorii algoritmi old(a, b) s, i new(a, b), unde
a s, i b sunt numere naturale nenule (1 ≤ a ≤ b ≤ 103).

Algorithm old(a, b)

p← 1
For i← 1, b execute

p← p * (a− i+ 1)
EndFor

Return p
EndAlgorithm

Algorithm new(a, b)

If b = 0 then

Return 1

EndIf

EndAlgorithm

224. ✓ ?Precizat, i cu ce trebuie completat spat, iul liber din algoritmul new(a, b) pentru ca
ambii algoritmi să returneze aceeas, i valoare pentru orice valori ale lui a s, i b:

A. Return new(a - 1, b - 1) + new(a - 1, b)

B. Return new(a - 1, b - 1) * a

C. Return (a - b + 1) * new(a, b - 1)

D. Return new(a - 1, b - 1) * (a - b)

225. ✓ ?Referitor la algoritmii new(a, b) s, i old(a, b) de mai sus, precizat, i care afirmat, ii
nu sunt adevărate:

A. Algoritmul old(a, b) calculează s, i returnează aranjamente de a luate câte b.

B. Pentru apelul old(9, 4) algoritmul returnează 3025.

C. Complexitatea de timp a algoritmului old(a, b) este O(log b).

D. Dacă ı̂n spat, iul liber din algoritmul new(a, b) se completează cu Return a *

new(a, b - 1); atunci algoritmul returnează ab.

226. ✓ ?Se consideră algoritmul generate(arr, c, n, k, idx, st, prod), unde arr este
un vector ce cont, ine n elemente naturale, c este un vector utilizat pentru generarea
combinărilor, prod reprezintă produsul elementelor curente din combinare, iar k s, i idx
sunt două variabile de tip ı̂ntreg, cel mult 105.

Algorithm G(num)

low ← 0, high ← num

result ← 0
While low ≤ high execute

mid ← (low + high) / 2

If mid * mid = num then

Return mid

Else If mid * mid < num then

low ← mid + 1

result ← mid

Else

high ← mid - 1

EndIf

EndWhile

Return result

EndAlgorithm

Algorithm generate(arr, c, n, k, idx,

st, prod)

If idx = k then

r ← G(prod)

If r * r = prod then

For i← 0, k − 1 execute

Write c[i], " "

EndFor

Write newline

EndIf

Return

EndIf

For i← st, n− 1 execute

c[idx] ← arr[i]

generate(arr, c, n, k, idx + 1,

i + 1, prod * arr[i])

EndFor

EndAlgorithm

146

Combinatorică Probleme

Care dintre următoarele afirmat, ii sunt adevărate pentru algoritmul prezentat?

A. Combinările generate sunt sortate lexicografic s, i sunt afis,ate indiferent de condit, ia
asupra produsului lor.

B. Produsul fiecărei combinări generate este verificat pentru a determina dacă este
egal cu suma pătratelor elementelor din combinare.

C. Algoritmul generează toate combinările de k elemente din arr s, i le afis,ează doar
pe cele care au produsul elementelor un pătrat perfect.

D. Dacă funct, ia G returnează un rezultat diferit de rădăcina pătrată exactă, algorit-
mul omite configurat, ia curentă.

227. ✓ ?Se consideră algoritmul f(arr, used, curr, n, index), unde n este un număr
natural (1 ≤ n ≤ 105), arr, curr s, i used sunt vectori cu n elemente naturale, iar index
este un număr natural.

Algorithm f(arr, used, curr, n,

index)

If index = n then

diff ← curr[0] - curr[n -

1]

If diff < 0 then

diff ← -diff

EndIf

If g(diff) then

For i← 1, n execute

Write curr[i], " "

EndFor

Write newline

EndIf

Return

EndIf

For i← 1, n execute

If not used[i] then

used[i] ← 1

curr[index] ← arr[i]

f(arr, used, curr, n,

index + 1)

used[i] ← 0

EndIf

EndFor

EndAlgorithm

Algorithm g(num)

If num ≤ 1 then

Return False

EndIf

For i← 2,
√
num execute

If num MOD i = 0 then

Return False

EndIf

EndFor

Return True

EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate pentru algoritmul prezentat?

A. Algoritmul generează toate permutările posibile ale vectorului arr s, i verifică pen-
tru fiecare permutare dacă valoarea absolută a diferent,ei dintre primul s, i ultimul
element este un număr prim.

B. Funct, ia G(num) verifică dacă un număr este prim, s, i algoritmul afis,ează per-
mutările ı̂n care diferent,a dintre elementele consecutive este primă.

C. Pentru apelul funct, iei f([1,2,3,4,5], [0,0,0,0,0], [0,0,0,0,0], 5, 0) a
cincea permutare afis,ată este {1, 3, 2, 5, 4}

147

Combinatorică Probleme

D. Algoritmul afis,ează doar permutările care respectă condit, ia ca suma elementelor
să fie număr prim.

228. ✓ ?Se consideră expresia: E(x) = a0 + a1 · x + a2 · x2 + · · · + a2024 · x2024, unde
a0, a1, a2, . . . , a2024 sunt numere reale nenule. Precizat, i numărul minim de operat, ii de
adunare s, i ı̂nmult, ire necesare pentru a calcula E(x):

A. 4048

B. 2024

C. 2049300

D. Niciuna dintre variantele de mai sus.

229. ✓ ?Se consideră algoritmul Algo(n, k, idx, s, part), unde n este un număr natural
(1 ≤ n ≤ 105), k este un număr natural, part este un vector cu n elemente naturale
(arr[1], arr[2], . . . , arr[n]), iar s este un număr natural.

Algorithm Algo(n, k, idx, s, part)

If idx = k + 1 then

If s = n then

For i← 1, k execute

Write part[i]

If i ̸= k then

Write " "

EndIf

EndFor

Write newline

EndIf

Return

EndIf

For i← 1, n− s execute

part[idx] ← i

Algo(n, k, idx + 1, s + i,

part)

EndFor

EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii
sunt adevărate pentru algoritmul prezentat

A. Algoritmul generează toate modurile
ı̂n care se poate scrie numărul n ca
sumă de k numere naturale distincte.

B. Algoritmul generează toate modurile
ı̂n care se poate scrie n ca sumă de
k numere naturale, fiecare mai mic
decât n.

C. Dacă k > n, algoritmul nu va genera
nicio solut, ie validă.

D. Algoritmul generează toate com-
binările de k elemente diferite din
intervalul [1, n].

230. ✓ ?Se consideră algoritmul F(arr, used, perm, n, idx), unde arr este un vector cu
n elemente, used este un vector utilizat pentru marcarea elementelor folosite, iar perm
este un vector pentru permutarea curentă. Funct, ia Ok verifică dacă suma elementelor
de pe pozit, iile pare dintr-o permutare este mai mare decât suma celor de pe pozit, iile
impare.

148

Combinatorică Probleme

Algorithm F(arr, used, perm, n,

idx)

If idx > n then

If Ok(perm, n) then

For i← 1, n execute

Write perm[i], " "

EndFor

Write newline

EndIf

Return

EndIf

For i← 1, n execute

If not used[i] then

used[i] ← 1
perm[idx] ← arr[i]

F(arr, used, perm, n, idx

+ 1)

used[i] ← 0
EndIf

EndFor

EndAlgorithm

Algorithm Ok(perm, n)

evenSum ← 0, oddSum ← 0
For i← 1, n execute

If i MOD 2 = 1 then

oddSum ← oddSum + perm[i]

Else

evenSum ← evenSum + perm[i]

EndIf

EndFor

Return evenSum > oddSum

EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate pentru algoritmul prezentat?

A. Algoritmul generează toate permutările vectorului arr care au suma elementelor
de pe pozit, iile pare mai mare decât suma celor de pe pozit, iile impare.

B. Algoritmul Ok returnează true dacă suma pozit, iilor impare este mai mare decât
suma pozit, iilor pare.

C. Algoritmul generează toate permutările vectorului arr s, i afis,ează doar acelea ı̂n
care diferent,a dintre suma elementelor de pe pozit, iile pare s, i suma elementelor
de pe pozit, iile impare este pozitivă.

D. Pentru apelul funct, iei F([1,2,3,4], [0,0,0,0], [0,0,0,0], 4, 0) a s,asea
permutare afis,ată este {3, 2, 1, 4}

231. ✓ ?Se consideră algoritmul generate(current, size, n, k, number), unde unde n

este un număr natural (1 ≤ n ≤ 105),, current este un vector cu n elemente naturale
(current[1], current[2], . . . , current[n]), k, size s, i number sunt numere naturale:

149

Combinatorică Probleme

Algorithm generate(current, size,

n, k, number)

If size = k then

isValid ← true

For i← 1, k − 1 execute

If gcd(current[i],

current[i + 1]) ̸= 1 then

isValid ← false

Break

EndIf

EndFor

If isValid then

For i← 1, k execute

Write current[i]

If i ̸= k then

Write " "

EndIf

EndFor

Write newline

EndIf

Return

EndIf

For i← number + 1, n execute

current[size + 1] ← i

generate(current, size + 1,

n, k, i)

EndFor

EndAlgorithm

Algorithm gcd(a, b)

While b ̸= 0 execute

temp ← b

b ← a MOD b

a ← temp

EndWhile

Return a

EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Algoritmul generează toate secvent,ele strict crescătoare de k numere din mult, imea
1, 2, ..., n cu proprietatea că oricare două numere consecutive sunt prime ı̂ntre ele;

B. Pentru apelul funct, iei Generate(current, 0, 5, 3, 0), secvent,a (2, 3, 5) este
o solut, ie validă;

C. Pentru apelul funct, iei Generate(current, 0, 7, 4, 0), secvent,a (2, 5, 6, 7) nu
este o solut, ie validă;

D. Complexitatea algoritmului este O(nk ∗ k ∗ log n).

Problemele 232. s, i 233. se referă la următorii algoritmi f(n, k) s, i g(n, k), unde n
s, i k sunt numere naturale nenule (1 ≤ k ≤ n ≤ 103).

Algorithm f(n, k)

If n < k then

Return 0

EndIf

If k = 0 OR k = n then

Return 1

EndIf

If k = 1 then

Return n
EndIf

Return n * f(n− 1, k − 1) DIV k
EndAlgorithm

Algorithm g(n, k)

If n < k then

Return 0

EndIf

If k = 0 OR k = n then

Return 1

EndIf

If k = 1 then

Return n
EndIf

EndAlgorithm

150

Combinatorică Probleme

232. ✓ ?Cu ce poate fi completat spat, iul liber din algoritmul g(n, k) pentru ca ambii
algoritmi să returneze aceeas, i valoare pentru orice valori ale lui n s, i k?

A. Return g(n - 1, k) * n DIV (n - k)

B. Return g(n - 1, k - 1) + g(n - 1, k)

C. Return g(n - 1, k - 1) DIV k * n

D. Return f(n - 1, k - 1) * n DIV k

233. ✓ ?Dacă spat, iul liber din algoritmul f(n, k) se completează astfel ı̂ncât funct, ia să
returneze acelas, i rezultat ca algoritmul g(n, k), precizat, i care afirmat, ii sunt false:

A. Pentru apelul f(13, 7) algoritmul returnează 1715.

B. Apelurile f(n, k) s, i f(n, n - k) returnează ı̂ntotdeauna aceeas, i valoare.

C. Algoritmul f(n, k) calculează s, i returnează aranjamente de n luate câte k.

D. Algoritmul f(n, k) calculează s, i returnează combinări de n luate câte k.

234. ✓ ?Teo vrea să aranjeze pe un raft n cărt, i ı̂n as,a fel ı̂ncât nici o carte să nu ı̂s, i păstreze
pozit, ia init, ială. Care dintre următorii algoritmi o ajută pe Teo să afle ı̂n câte moduri
poate aranja cele n cărt, i pe raft? Algoritmul factorial(n) calculează n!.

A.

Algorithm chapter(n)

d← 0
s← 1
For k = 0, n execute

d← d+ s * factorial(n) DIV factorial(k)
s← −s

EndFor

Return d
EndAlgorithm

B.

Algorithm fiction(n)

If n = 0 then

Return 1

EndIf

If n = 1 then

Return 0

EndIf

Return (n− 1) * (fiction(n− 1) + fiction(n− 2))
EndAlgorithm

C.

Algorithm novel(n)

d← 0
s← 1
For k = 0 to n execute

d← d+ s * factorial(n) DIV factorial(n− k)
s← s * (−1)

EndFor

Return d
EndAlgorithm

151

Combinatorică Probleme

D.

Algorithm story(n)

d← 0
s← 1
For k = 1, n execute

d← d+ s * factorial(n) DIV factorial(k)
s← s * (−1)

EndFor

Return d
EndAlgorithm

235. ✓ ?Se consideră toate submulţimile unei mulţimi M cu n elemente şi x ∈ M . De câte
ori apare x ı̂n toate aceste submulţimi?

A.
n!

2
B. n2 C. 2n−1 D. 2n

236. ✓ ?Se consideră o mulţime S cu n elemente şi o submulţime T cu k elemente, deci
k ≤ n. Care este numărul de submulţimi ale mulţimii iniţiale S, ı̂n care sunt incluse
toate elementele submulţimii T?

A. 2
n
k B. 2n−2

C.
2n

k
D. 2n−k

237. ✓ ?Se consideră o mult, ime M cu n elemente distincte din mult, imea numerelor naturale
şi toate submulţimile acesteia. Este aleasă, apoi, o valoare k ≤ n şi submult, imile Ak,
|Ak| = k, iar pentru fiecare Ak, se construieşte mult, imea Bk, astfel ı̂ncât Ak∪Bk = M ,
dar Ak ∩Bk = ∅. Care este suma tuturor elementelor din toate mulţimile Bk?

A. Ck−1
n−1 ·

∑
x∈M

x

B. Ck
n−1 ·

∑
x∈M

x

C. Ck
n ·

∑
x∈M

x

D. (n− k) ·
∑
x∈M

x

152

10

Grafuri

Acest capitol acoperă

• Grafuri neorientate;

• Grafuri orientate;

• Arbori.

• Conceptul de arbore binar, tipurile de arbori s, i metode de reprezentare s, i
parcurgere a arborilor

• Conceptul de arbore binar de căutare, proprietăt, ile acestuia s, i operat, iile
efectuate posibile

10.1 Teorie

10.1.1 Grafuri neorientate

Un graf neorientat este o pereche ordonată G = (V,A), unde:

• V este o mult, ime finită s, i nevidă de elemente, numite noduri (sau vârfuri);

• A este o mult, ime finită de submult, imi cu două elemente din V , numite muchii

Într-un graf neorientat, muchiile sunt bidirect, ionale, ceea ce ı̂nseamnă că existent,a unei
muchii dintr-un nod u ı̂nspre un nod v implică s, i existent,a unei muchii din v ı̂nspre u
Exemplu: Considerăm un graf neorientat G = (V,A) cu:

• V = {1, 2, 3, 4, 5}

• A = {(1, 2), (2, 3), (3, 1), (3, 4)}

Graful poate fi reprezentat astfel:

1 2

34

5

Figura 10.1 Exemplu de graf neorientat

Metode de reprezentare a unui graf neorientat

Există mai multe metode de reprezentare a unui graf neorientat, dintre care cele mai
utilizate sunt:

Grafuri Teorie

• Matricea de adiacent, ă

Matricea de adiacent, ă a unui graf neorientat cu n noduri este o matrice binară A
(deci A[i][j] ∈ {0, 1} ∀i, j) de dimensiune n× n, unde:

A[i][j] = A[j][i] =

{
1 dacă există o muchie ı̂ntre nodurile i s, i j,

0 altfel.

Exemplu: Matricea de adiacent, ă pentru graful anterior este:

A =


0 1 1 0 0
1 0 1 0 0
1 1 0 1 0
0 0 1 0 0
0 0 0 0 0


Se observă că matricea de adiacent, ă a unui graf neorientat este simetrică fat, ă de
diagonala principală.

• Listă de muchii

În această metodă, muchiile sunt stocate ı̂ntr-un tablou static, fiecare element fiind
o pereche de noduri care reprezintă o muchie.

Exemplu: Pentru graful de mai sus, lista de muchii este:

A = {(1, 2), (2, 3), (3, 1), (3, 4)}

• Liste de adiacent, ă

În această metodă, fiecare nod v are atribuită o listă a succesorilor săi, adică nodurile
u pentru care există o muchie de la v la u. Lista de adiacent, ă pentru un graf
neorientat reprezintă pentru fiecare nod lista nodurilor către care există muchii.

Exemplu: Pentru graful de mai sus, lista de adiacent, ă este:

1 : {2, 3}
2 : {1, 3}
3 : {1, 2, 4}
4 : {3}
5 : {}

Gradele nodurilor

Într-un graf neorientat, se numes,te grad al unui vârf numărul de vârful adiacente cu
acesta, care este echivalent cu numărul de muchii incidente cu acesta.
Exemplu: Pentru graful de mai sus, avem:

• Grad nodului 1 egal cu 2

• Grad nodului 2 egal cu 2

• Grad nodului 3 egal cu 3

• Grad nodului 4 egal cu 1

• Grad nodului 5 egal cu 0

154

Grafuri Teorie

Graf part, ial s, i subgraf

• Subgraf : Un graf H = (VH , AH) este un subgraf al grafului G = (V,A) dacă
VH ⊆ V s, i AH ⊆ A.

• Graf part, ial: Un graf part, ial al grafului G este un graf obt, inut prin eliminarea
unor muchii din G, dar păstrând toate nodurile.

Exemplu: Dacă eliminăm muchia (3, 4) din graful de mai sus, obt, inem un graf
part, ial.

Graf complet

• Un graf neorientat ı̂n care există o muchie de la fiecare nod la fiecare alt nod (cu
except, ia arcelor de la un nod la el ı̂nsus, i) se numes,te complet.

Într-un graf complet cu n noduri, numărul total de muchii este dat de formula
combinatorică:

C2
n =

n(n− 1)

2

unde C2
n reprezintă numărul de modalităt, i de a alege două noduri din n, iar fiecare

pereche de noduri va fi conectată printr-o muchie. Aceasta este echivalent cu formula

n(n− 1)

2

deoarece fiecare nod este conectat la celelalte n − 1 noduri, iar fiecare muchie este
numărată de două ori (o dată pentru fiecare nod conectat).

Lant,uri ı̂n grafuri neorientate

• Lant, : Numim lant, o succesiune de noduri L = [v1, v2, v3, . . . vk] cu proprietatea că
oricare două vârfuri consecutive sunt adiacente.

• Vârfurile v1 şi vk se numesc extremităt, ile lant,ului. Lungimea unui lant, este k − 1,
reprezentând numărul total de muchii din care este format.

• Un lant, care cont, ine toate nodurile distincte, două câte două, se numes,te lant,
elementar.

Exemplu: În graful nostru neorientat ment, ionat anterior:

• Lant,ul L = [1, 2, 3] este un lant, cu lungimea 2, deoarece muchiile sunt (1, 2) s, i (2, 3).

• Lant,ul L = [3, 4] este un lant, de lungime 1, având muchia (3, 4).

• Lant,ul L = [1, 2, 3, 4] este un lant, elementar, deoarece toate nodurile sunt distincte
s, i toate muchiile sunt adiacente ı̂ntre ele.

Cicluri ı̂n grafuri neorientate

• Ciclu: Numim ciclu un lant, simplu ı̂n care primul vârf este identic cu ultimul.
Dacă toate vârfurile sunt distincte, mai put, in primul s, i ultimul, se numes,te ciclu
elementar.

155

Grafuri Teorie

• Lungimea unui ciclu este egală cu numărul de muchii din ciclu. Lungimea minimă
a unui ciclu este 3.

• Un graf neorientat care nu cont, ine niciun ciclu se numes,te aciclic.

Exemplu: În graful nostru neorientat, [1, 2, 3, 1] este un ciclu elementar

Componente conexe

• Un graf neorientat este conex dacă, pentru fiecare două noduri distincte din graf,
există un lant, având extremităt, ile ı̂n cele două noduri.

• Se numes,te componentă conexă a unui graf G = (X,U) un subgraf H = (Y, V),
conex, al lui G care are proprietatea că nu există nici un lant, ı̂n G care să lege un
vârf din Y cu un vârf din X–Y . Subgraful H este conex s, i maximal cu această
proprietate (dacă s-ar mai adăuga un vârf nu ar mai fi conex.)

Graf Hamiltonian. Graf Eulerian

• Se numes,te graf Hamiltonian un graf care cont, ine un ciclu Hamiltonian. Se
numes,te ciclu Hamiltonian un ciclu elementar care cont, ine toate vârfurile grafu-
lui.

• Un graf neorientat care are n ≥ 3 vârfuri şi gradul oricărui vârf verifică inegalitatea
este mai mare sau egal cu

⌊
n
2

⌋
, atunci graful este Hamiltonian.

• Se numes,te graf Eulerian un graf care cont, ine un ciclu Eulerian. Se numes,te
ciclu Eulerian un ciclu elementar care cont, ine toate muchiile grafului.

10.1.2 Grafuri orientate

Un graf orientat (sau digraf) este o pereche ordonată G = (V,A), unde:

• V este un set nevid de noduri (sau vârfuri);

• A este un set de arce, fiecare arc fiind o pereche ordonată de noduri (u, v), unde
u, v ∈ V .

Într-un graf orientat, arcele au o direct, ie, ceea ce ı̂nseamnă că (u, v) este diferit de (v, u).
Exemplu: Considerăm un graf orientat G = (V,A) cu:

• V = {1, 2, 3, 4}

• A = {(1, 2), (2, 3), (3, 1), (3, 4)}

Graful poate fi reprezentat astfel:

1 2

34

Figura 10.2 Exemplu de graf orientat

156

Grafuri Teorie

Metode de reprezentare a unui graf orientat

Există mai multe metode de reprezentare a unui graf orientat, dintre care cele mai utilizate
sunt:

• Matricea de adiacent, ă

Matricea de adiacent, ă a unui graf orientat cu n noduri este o matrice binară A (deci
A[i][j] = 0 sau 1 ∀i, j) de dimensiune n× n, unde A[i][j] = 1 dacă există un arc de
la nodul i la nodul j, s, i A[i][j] = 0 ı̂n caz contrar.

Exemplu: Matricea de adiacent, ă pentru graful anterior este:

A =


0 1 0 0
0 0 1 0
1 0 0 1
0 0 0 0


• Listă de arce

În această metodă, arcele sunt stocate ı̂ntr-un tablou static, fiecare element fiind o
pereche de noduri care reprezintă un arc.

Exemplu: Pentru graful de mai sus, lista de arce este:

A = {(1, 2), (2, 3), (3, 1), (3, 4)}

• Liste de adiacent, ă

În această metodă, fiecare nod v are atribuită o listă a succesorilor săi, adică nodurile
u pentru care există un arc de la v la u. Lista de adiacent, ă pentru un graf orientat
reprezintă pentru fiecare nod lista nodurilor către care există arce.

Exemplu: Pentru graful de mai sus, lista de adiacent, ă este:

1 : {2}
2 : {3}
3 : {1, 4}
4 : {}

Gradele nodurilor

Spre deosebire de grafurile neorientate, când vine vorba despre grafurile orientate, fiecare
nod are două grade:

• Gradul intern: numărul de arce care intră ı̂n nod.

• Gradul extern: numărul de arce care ies din nod.

Exemplu: Pentru nodul 3 ı̂n graful de mai sus:

• Grad intern: 1 (arcul (2, 3))

• Grad extern: 2 (arcele (3, 1) s, i (3, 4))

157

Grafuri Teorie

Graf part, ial s, i subgraf

• Subgraf : Un graf H = (VH , AH) este un subgraf al grafului G = (V,A) dacă
VH ⊆ V s, i AH ⊆ A.

• Graf part, ial: Un graf part, ial al grafului G este un graf obt, inut prin eliminarea
unor arce din G, dar păstrând toate nodurile.

Exemplu: Dacă eliminăm arcul (3, 4) din graful de mai sus, obt, inem un graf part, ial.

Graf complet s, i graf turneu

• Graf complet orientat: Un graf orientat ı̂n care există un arc de la fiecare nod la
fiecare alt nod (cu except, ia arcelor de la un nod la el ı̂nsus, i) se numes,te complet.

• Graf turneu: Un graf orientat complet fără cicluri de lungime 2 (adică pentru
orice pereche de noduri u s, i v, există exact un arc ı̂ntre ele, fie (u, v), fie (v, u), dar
nu ambele) se numes,te graf turneu.

Lant, , drum s, i circuit ı̂n grafuri orientate

• Lant, orientat: Numim lant, orientat o succesiune de arce (v1, v2), (v2, v3), . . . , (vk−1, vk)
ı̂n care nodurile pot fi repetate. Lungimea lant,ului este egală cu numărul de arce
din care este alcătuit.

• Drum orientat: Un drum orientat este un lant, orientat ı̂n care nodurile sunt
distincte.

• Circuit orientat: Numim circuit orientat un lant, orientat ı̂n care primul s, i ultimul
nod coincid, s, i toate celelalte noduri sunt distincte.

Exemplu: În graful nostru, (1, 2), (2, 3), (3, 1) formează un circuit orientat.

Componente tare conexe

Un graf orientat este tare conex dacă există un drum orientat de la orice nod la orice
alt nod. O componentă tare conexă este un subgraf tare conex maximal.

Exemplu: În graful de mai sus, nodurile {1, 2, 3} formează o componentă tare conexă,
deoarece există drumuri orientate ı̂ntre oricare două noduri din acest set.
Mai jos este prezentată o implementare ı̂n pseudocod pentru parcurgerea ı̂n adâncime
(DFS - explicată anterior la subsect, iunea Grafuri neorientate) a unui graf orientat, care
poate fi utilizată pentru a determina componentele tare conexe.

DFS pentru grafuri orientate

1: Algorithm DFS(G, v)
2: Marcăm v ca vizitat
3: For fiecare nod u adiacent cu v (adică există un arc (v, u)) execute
4: If u nu este vizitat then
5: DFS(G, u)
6: EndIf
7: EndFor
8: EndAlgorithm

158

Grafuri Teorie

Pentru a găsi componentele tare conexe, se poate utiliza algoritmul lui Kosaraju, care
constă ı̂n două parcurgeri DFS s, i transpunerea grafului.
Complexitate timp: O(n+m), unde n este numărul de noduri s, i m numărul de arce.

10.1.3 Arbori

Introducere

Arborii sunt structuri de date fundamentale, utilizate ı̂n multiple domenii ale informaticii,
fiind utili pentru a reprezenta relat, ii ierarhice ı̂ntre elemente. Aces,tia sunt ı̂ntâlnit, i ı̂n
contextul gestionării bazelor de date, optimizării algoritmilor de căutare s, i sortare.

Arbori liberi

Un arbore este un graf aciclic s, i conex, format dintr-o mult, ime finită de noduri s, i muchii.
Acesta este cunoscut s, i sub denumirea de arbore liber.
Un arbore liber se caracterizează prin următoarele proprietăt, i:

• Un arbore cu un număr de n vârfuri are ı̂ntotdeauna n− 1 muchii

• Acesta respectă proprietatea de minimalitate, adică eliminarea oricărei muchii de-
termină pierderea conexităt, ii grafului

• Într-un arbore, ı̂ntre oricare două vârfuri există un lant, elementar unic

• Respectă proprietatea maximalităt, ii, adică adăugarea oricărei muchii are ca rezultat
generarea unui ciclu

• Orice arbore cu un număr de n ≥ 2 noduri cont, ine cel put, in două noduri terminale

Arbori cu rădăcină

Un arbore cu rădăcină este un arbore ı̂n care unul dintre noduri este desemnat ca
rădăcină.

1

2

3

4 5

6 7

Rădăcina este nodul 1.

a

b c

d e

Rădăcina este nodul a.

x

y z

Rădăcina este nodul x.

O astfel de reprezentare a acestora, care defines,te un punct de referint, ă unic, conferă
arborelui obt, inut o structură ierarhică bine definită. Mai mult decât atât, aceasta permite
introducerea s, i definirea unor concepte precum relat, ia părinte - copil, nivelurile de

159

Grafuri Teorie

adâncime, s, i diverse metode de parcurgere a arborilor cu rădăcină, precum preordine,
inordine s, i postordine s, i structuri mai avansate, cum ar fi arborii binari de căutare,
simpli sau balansat, i.

Proprietăt, ile nodurilor ı̂ntr-un arbore cu rădăcină

Se dă un arbore a s, i un nod x ı̂n arborele dat. Proprietăt, ile s, i conceptele specifice
nodurilor ı̂n astfel de structuri sunt definite după cum urmează:

Ascendent:

• Un nod y este considerat ascendent al unui nod x dacă se află pe lant,ul de la
rădăcină până la x, excluzând ı̂nsus, i x.

• Relat, ia de ascendent, ă respectă următoarele proprietăt, i:

– Rădăcina arborelui este ascendentul tuturor nodurilor din arbore s, i aceasta nu
are ascendent, i

– Dacă există o muchie (y, x), iar y este ascendentul lui x, atunci y este cunoscut
sub denumirea de ascendent direct al lui x sau tatăl nodului x

Descendent

• Un nod y este numit descendent al unui nod x dacă nodul x apart, ine lant,ului care
unes,te rădăcina r cu y.

• Descendent,a poate fi descrisă prin următoarele proprietăt, i:

– Dacă există o muchie (x, y), atunci nodul y se numes,te descendent direct al
lui x sau fiul nodului x

– Un nod fără descendent, i poartă denumirea de frunză

Frate:

• Două noduri care au acelas, i nod părinte sunt denumite noduri frat, i.

Nivel sau adâncimea:

• Lungimea lant,ului care leagă rădăcina arborelui de un nod x defines,te nivelul sau
adâncimea nodului x

Înălt, imea arborelui:

• Lungimea maximă a unui lant, care pornes,te de la rădăcină s, i ajunge la oricare nod
din arbore defines,te ı̂nălt, imea arborelui

Subarbore:

• Orice nod din arbore, ı̂mpreună cu tot, i descendent, ii săi, constituie un subarbore
al arborelui

160

Grafuri Teorie

Exemplu

Se dă arborele următor:

6

1

2 9

4

3

7

8 5

10 12

11

Pe baza acestuia putem exemplifica următoarele:

• Rădăcina arborelui este nodul 6

• Înălt, imea arborelui este 4

• Nodurile 2, 9, 3, 8, 10 s, i 11 reprezintă nodurile frunză ale arborelui

• Nodurile 2 s, i 9 sunt noduri frat, i

• Nodurile 5, 10, 12, 11 formează un subarbore

• Descendent, ii nodului 7 sunt nodurile 5, 8, 9, 10 s, i 11

• Nodurile 10 s, i 12 sunt descendent, ii direct, i ai nodului 5

• Ascendent, ii nodului 10 sunt nodurile 5, 7 s, i 6

• Nodul 4 reprezintă ascendentul direct sau tatăl nodului 3

• Descompunerea arborelui pe niveluri:

– Nivelul 0 cont, ine nodul rădăcină 6

– Nivelul 1 cont, ine nodurile 1, 4 s, i 7

– Nivelul 2 cont, ine nodurile 2, 9, 3, 8 s, i 5

– Nivelul 3 cont, ine nodurile 10 s, i 12

– Nivelul 4 cont, ine nodul 11

Există două modalităt, i prin care un arbore poate fi reprezentat ı̂n memorie: ascendent s, i
descendent

161

Grafuri Teorie

Reprezentarea ascendentă

Această metodă se bazează pe ideea faptului că pentru fiecare nod al arborelui se me-
morează informat, ii despre ascendent, ii direct, i ai acestora. Astfel se obt, ine un vector de
părint, i, unde:

• Fiecare pozit, ie k din vector corespunde unui nod din arbore

• Valoarea p[k] indică părintele nodului k

• Pentru rădăcina arborelui r, valoarea este 0: v[r] = 0

Pentru arborele prezentat ca exemplu mai sus, vectorul de părint, i este:

Nod (k) 1 2 3 4 5 6 7 8 9 10 11 12
Părinte (p[k]) 6 1 4 6 7 0 6 7 1 5 12 5

Observat, ii importante

• Valoarea 0 este unică ı̂n vectorul de părint, i s, i corespunde rădăcinii

• Nodurile frunză sunt acele noduri ale căror valori nu apar ı̂n vectorul de
părint, i

Vectorul părint, ilor este util, deoarece permite determinarea lant,urilor ı̂n arbore, de la
oricare nod spre rădăcină. Acesta presupune pornirea de la un nod dat x, iar mai apoi
identificarea părintelui acestuia, y = v[x], acest proces repetându-se până când algoritmul
ajunge la un nod z pentru care v[z] = 0, aceasta reprezentând rădăcina. Mai jos este
prezentat un exemplu de implementare a determinării lant,urilor

Structura Nod reprezintă un nod individual al arborelui, incluzând următoarele câmpuri:
data: număr ı̂ntreg, care stochează informat, ia asociată nodului corespunzător, s, i pă-
rinte: Nod, care reprezintă un pointer către nodul părinte al nodului curent. Prin inter-
mediul acestui câmp este permisă construirea unei reprezentări a arborelui prin legături
ascendente.

Structura Nod

1: data : număr ı̂ntreg
2: parinte : Nod

Funct, ia ilustrată mai jos construies,te relat, iile ale unui arbore prin actualizarea vectoru-
lui tat,i s, i a vectorului valueToIndex. Pentru fiecare nod din arbore, funct, ia verifică
dacă există un părinte corespunzător. Dacă da, câmpul din vectorul tati este actu-
alizat la valoarea data a părintelui, iar valoarea nodului este asociată cu indexul său
ı̂n valueToIndex. În caz contrar, nodul este considerat ca fiind rădăcina, iar valoarea
atribuită este 0. Valoarea n reprezintă numărul de noduri din arbore.

162

Grafuri Teorie

Construire Vector de Tat, i s, i Corespondent, ă

1: Algorithm construiesteTatiSiCorespondenta(noduri, tati, valueToIndex, n)
2: For i← 0, n− 1 execute
3: nodeV alue← noduri[i].data
4: valueToIndex[nodeV alue]← i
5: If noduri[i].parinte ̸= nul then
6: tati[i]← noduri[i].parinte.data
7: Else
8: tati[i]← 0
9: EndIf

10: EndFor
11: EndAlgorithm

Construirea s, i afis,area lant,ului unui nod x către rădăcina arborelui sunt realizate prin
intermediul funct, iei implmentate mai jos. Vectorul valueToIndex asociază valorile no-
durilor cu indexurile corespunzătoare ı̂n vectorul tat,i.

Funct, ia Determină Lant,

1: Algorithm determinăLant, (x, tati, valueToIndex)
2: Write x
3: While x ̸= 0 execute
4: i← valueToIndex[x]
5: x← tati[i]
6: If x ̸= 0 then
7: Write → x
8: EndIf
9: EndWhile

10: EndAlgorithm

Reprezentarea descendentă

Reprezentarea descendentă a arborilor presupune organizarea informat, iei astfel ı̂ncât fie-
care nod al arborelui să memoreze s, i să fie asociat cu datele despre descendent, ii săi direct, i.
Pentru această reprezentare se pot folosi listele de adiacent, ă, similar cu reprezentarea prin
liste de adiacent, ă a grafurilor. Asta ı̂nseamnă că fiecare nod al arborelui este asociat cu
o listă de descendent, i direct, i.
Pentru exemplul prezentat mai sus, avem următoarea reprezentare descendentă pentru
fiecare nod al arborelui:
{6 : {1, 4, 7}, 1 : {2, 9}, 4 : {3}, 7 : {8, 5}, 5 : {10, 12}, 12 : {11}, 2 : {}, 3 : {}, 8 : {}, 9 : {},
10 : {}, 11 : {}}
În continuare, este prezentat un exemplu detaliat care ilustrează implementarea acestei
reprezentări prin intermediul unor structuri s, i algoritmi specifici. Structurile Descen-
dent s, i Nod sunt esent, iale pentru gestionarea relat, iilor dintre noduri ı̂ntr-un arbore.

Structura Nod defines,te un nod individual al arborelui, incluzând următoarele elemente:
data: număr ı̂ntreg, pentru informat, ia stocată ı̂n nod, s, i descendent,i: Descendent,
un pointer către primul descendent al nodului.

163

Grafuri Teorie

Structura Descendent reprezintă un element al listei de descendent, i ai unui nod s, i
are următoarele câmpuri: nod: Nod, care este un pointer către nodul copil, s, i next:
Descendent, un pointer către următorul descendent.

Structura Nod

1: data : număr ı̂ntreg
2: descendenti : Descendent

Structura Descendent

1: nod : Nod
2: next : Descendent

Adăugarea unui copil nou la lista de descendent, i a unui nod existent este facilitată de
funct, ia prezentată mai jos. Prin modul de implementare prezentat, structura listei de
descendent, i este actualizată ı̂n mod eficient, fără a fi nevoie de o parcurgere a ı̂ntregii
liste.

Funct, ia Adaugă Descendent

1: Algorithm AdaugaDescendent(parinte, copil)
2: nou← Nod
3: nou← copil
4: nou.next← parinte.descendenti
5: parinte.descendenti← nou
6: EndAlgorithm

Funct, ia implementată mai jos are rolul de a afis,a toate nodurile de pe un anumit nivel al
arborelui. Aceasta funct, ionează prin intermediul unor combinat, ii de verificări condit, ionale
s, i apeluri recursive pentru a parcurge arborele pe nivelul specificat.

164

Grafuri Teorie

Funct, ia Afis,ează Nivel

1: Algorithm afiseazaNivel(nod, nivel)
2: If nod = nul then
3: Return
4: EndIf
5: If nivel = 0 then
6: Write nod.data
7: curent← nod.descendenti
8: Write ”[”
9: While curent ̸= nul execute

10: Write curent.nod.data
11: If curent.next ̸= nul then
12: Write ”, ”
13: EndIf
14: curent← curent.next
15: EndWhile
16: Write ”]”
17: Else
18: curent← nod.descendenti
19: While curent ̸= nul execute
20: afiseazaNivel(curent.nod, nivel - 1)
21: curent← curent.next
22: EndWhile
23: EndIf
24: EndAlgorithm

Afis,area pe niveluri a unui arbore, pornind de la rădăcină s, i continuând până la frunzele
arborelui, se realizează cu ajutorul următoarei funct, ii:

Funct, ia Afis,ează Arbore pe Niveluri

1: Algorithm afiseazaArborePeNiveluri(radacina)
2: h← inaltimeArbore(radacina)
3: For nivel← 0, h− 1 execute
4: afiseazaNivel(radacina, nivel)
5: EndFor
6: EndAlgorithm

Funct, ia ilustrată mai jos are rolul de a determina ı̂nălt, imea unui arbore pornind de la un
nod dat. Funct, ia este utilizată ulterior pentru afis,area arborelui pe niveluri. Totodată,
aceasta foloses,te o abordare recursivă, parcurgând lista descendent, ilor pentru fiecare nod.

165

Grafuri Teorie

Funct, ia Înălt, ime Arbore

1: Algorithm InaltimeArbore(nod)
2: If nod = nul then
3: Return 0
4: EndIf
5: maxInaltime← 0
6: curent← nod.descendenti
7: While current ̸= nul execute
8: maxInaltime← max(maxInaltime, inaltimeArbore(curent.nod))
9: current← current.next

10: EndWhile
11: Return maxInaltime+ 1
12: EndAlgorithm

Arbori binari

Un arbore binar este un arbore cu rădăcină ı̂n care fiecare nod are cel mult doi descendent, i
direct, i, denumit, i descendentul sau fiul stâng s, i descendentul sau fiul drept. Alternativ,
un arbore binar poate fi definit recursiv ca fiind fie vid, fie format dintr-un nod rădăcină
s, i doi subarbori binari (stâng s, i drept).
Următorul arbore exemplificat reprezintă un arbore binar:

A

B

D E

C

F G

În exemplul de mai sus:

• nodul A reprezintă rădăcina

• Nodul B este descendentul stâng direct a nodului rădăcină A, iar nodul C este
descendentul direct drept. Similar nodurile D s, i E pentru nodul părinte B s, i nodurile
F s, i G pentru nodul părinte C

• Nodurile D, E, F s, i G sunt frunze

166

Grafuri Teorie

Observat, ie importantă

• Dacă un nod are un singur nod descendent, atunci este necesar să fie precizat
dacă acesta este fie un descendent stâng, fie unul drept. Următorii doi arbori
sunt considerat, i ca fiind distinct, i:

A

B

A

B

Proprietăt, ile arborelui binar

• Într-un arbore binar cu n noduri s, i ı̂nălt, imea h se respectă relat, ia h ≥ log2(n+1)−1.
Această relat, ie spune că fiecare nivel din arbore, trebuie să aibă cel put, in un element,
iar astfel ı̂nălt, imea nu poate fi mai mare decât n.

• Numărul maxim de noduri pe care ı̂l poate avea un nivel i este de 2i noduri.

• Numărul maxim de noduri ı̂ntr-un arbore binar cu ı̂nălt, imea h este 2(h+ 1)− 1

• Într-un arbore binar ı̂n care fiecare nod are fie 0, fie 2 copii, numărul nodurilor
frunză este mereu cu unul mai mare decât numărul nodurilor care au doi copii.

• Într-un arbore binar care cont, ine cel put, in un nod, dacă n este numărul total de
noduri s, i m este numărul total de muchii, atunci se verifică egalitatea m = n − 1.
Fiecare nod dintr-un arbore are exact un părinte, cu except, ia rădăcinii. Astfel,
pentru un număr total de n noduri, n− 1 noduri vor avea exact un părinte.

Tipuri speciale de arbori binari

Arbore binar strict

Un arbore binar strict este un arbore binar ı̂n care fiecare nod care nu este terminal
are exact doi copii.

Proprietăt, i:

• Pentru un arbore binar cu x noduri frunză, numărul de noduri este dat de relat, ia
n = 2 ∗ x− 1.

• Un arbore binar strict are un număr impar de noduri.

167

Grafuri Teorie

A

B

D

F G

E

C

Arbore binar plin

Un arbore binar plin este un arbore binar ı̂n care toate nodurile au doi copii s, i toate
nodurile frunză se află pe acelas, i nivel.

Proprietăt, i:

• Toate nodurile frunză sunt situate pe acelas, i nivel, iar astfel se poate spune că
arborele binar plin este un caz particular al arborelui binar strict.

• Un arbore binar plin de ı̂nălt, ime h cont, ine 2h+1 − 1 noduri.

• Un arbore binar are care un număr de x noduri terminale, are un număr de n =
2 ∗ k − 1 noduri.

A

B

D E

C

F G

Arbore binar complet

Un arbore binar se numes,te arbore binar complet dacă toate nivelurile, cu except, ia
ultimului, sunt complet populate, iar nodurile de pe ultimul nivel sunt pozit, ionate cât
mai la stânga posibil. Totodată, un arbore binar plin este s, i un arbore binar complet. O
proprietate importantă a arborilor binari complet, i este aceea că ı̂nălt, imea unui astfel de
arbore este ⌊log2(n)⌋, unde n reprezintă numărul de noduri.

168

Grafuri Teorie

A

B

D E

C

F

Arborele binar degenerat

Un arbore binar degenrat este un tip special de arbore binar, ı̂n care fiecare nod are fie
0, fie 1 copil. Structura unui arbore degenerat se aseamănă cu cea a unei liste ı̂nlănt,uite,
deoarece fiecare nod are un singur descendent direct, cu except, ia frunzei.

A

B

C

D

E

Reprezentarea arborilor binari

La fel ca ı̂n cazul precedent al arborilor cu rădăcină, aces,tia pot fi reprezentat, i prin
utilizarea unor metode similare deja cunoscute, dar anumite ajustări sunt necesare pentru
a respecta structura specifică arborilor binari

Reprezentarea prin referint,e ascendente

Această reprezentare necesită informat, ii suplimentare fat, ă de arbori cu rădăcină generală.
Pentru fiecare nod al arborelui, ı̂n plus fat, ă de părintele acestuia este nevoie să se cunoască
s, i dacă nodul este un descendent stâng sau drept. As,adar este necesară utilizarea a doi
vectori pentru realizarea reprezentării:

169

Grafuri Teorie

• Vectorul părint, ilor p[k]:

– Stochează părintele nodului k.

– În cazul ı̂n care nodul k este rădăcina arborelui, atunci p[k] = 0

• Vectorul pozit, iei (tip[k]), care indică ce tip de descendent este nodul k:

– Dacă k este rădăcina, atunci tip[k] = 0

– Dacă k este copilul stâng al părintelui din p[k], atunci tip[k] = −1
– Dacă k este copilul drept al părintelui din p[k], atunci tip[k] = 1

1

2

4 5

3

6 7

Pentru arborele dat mai sus ca exemplu vectorii corespunzători reprezentării ascendente
sunt următorii:

k 1 2 3 4 5 6 7
Părinte[p(k)] 0 1 1 2 2 3 3
Tip[tip(k)] 0 -1 1 -1 1 -1 1

Reprezentarea prin referint,e descendente

Pentru realizarea reprezentării prin referint,e descendente este necesară identificarea rădăcinii
arborelui binar, precum s, i stocarea informat, iilor despre copilul stâng s, i copilul drept pen-
tru fiecare nod din arbore. Această reprezentare se poate realiza fie folosind vectori, fie
prin utilizarea alocării dinamice.

• Reprezentarea folosind vectori:

– Vectorul l[k] ret, ine indexul copilului stâng al nodului k. Dacă nodul k nu are
copil stâng, atunci l[k] = −1.

– Vectorul r[k] ret, ine indexul copilului drept al nodului k. Dacă nodul k nu are
copil drept, atunci r[k] = −1.

Reprezentarea descendentă folosind vectori pentru arborele prezentat mai sus ca
exemplu este următoarea:

k 1 2 3 4 5 6 7
l[k] 2 4 6 -1 -1 -1 -1
r[k] 3 5 7 -1 -1 -1 -1

170

Grafuri Teorie

• Reprezentarea folosind alocare dinamică: Fiecare nod al arborelui reprezentat
sub forma unei structuri cont, ine următoarele câmpuri:

– Valoarea nodului valoare stochează informat, ia din nod.

– Pointerii stanga s, i dreapta indică ı̂nspre copilul stâng s, i, respectiv copilul drept
al nodului.

Structura Nod

1: valoare : număr ı̂ntreg
2: stanga : Nod
3: dreapta : Nod

Parcurgerea arborilor binari

Parcurgerea arborilor binari reprezintă procesul prin care fiecare nod al arborelui este
vizitat o singură dată, ı̂ntr-o anumită ordine. Acest proces este esent, ial pentru efectuarea
operat, iilor asupra arborilor, deoarece permite manipularea s, i analiza datelor stocate ı̂n
arbore. Există mai multe tipuri de parcurgeri, printre care se numără: parcurgerea ı̂n
preordine, parcurgerea ı̂n inordine s, i parcurgerea ı̂n postordine

Parcurgerea ı̂n preordine

• Rădăcina este vizitată prima, iar mai apoi este urmată de subarborele stâng s, i apoi
de subarborele drept

• Ordinea vizitării este: Rădăcină → Subarborele stâng → Subarborele drept

Parcurgerea ı̂n inordine

• Subarborele stâng este vizitat primul, urmat de nodul rădăcină s, i apoi subarborele
drept

• Ordinea vizitării este: Subarborele stâng → Rădăcină → Subarborele drept

Parcurgerea ı̂n postordine

• Prima oară este vizitat subarborele stâng, iar mai apoi acesta este urmat de subar-
borele drept s, i, ı̂n final, de rădăcină

• Ordinea vizitării este: Subarborele stâng → Subarborele drept → Rădăcină

171

Grafuri Teorie

A

B

D

H I

E

J

C

F

K

G

L M

Pentru arborele dat ca exemplu mai sus, parcurgerile sunt următoarele:

• Preordine: A → B → D → H → I → E → J → C → F → K → G → L → M

• Inordine: H → D → I → B → J → E → A → K → F → C → L → G → M

• Postordine: H → I → D → J → E → B → K → F → L → M → G → C → A

Construirea unui arbore pe baza metodelor de parcurgere

Un arbore binar poate fi reconstruit ı̂n mod unic atunci când sunt cunoscute parcurgerile
sale ı̂n preordine s, i inordine, sau ı̂n postordine s, i inordine. Acest lucru este posibil
datorită informat, iilor complementare furnizate de fiecare dintre aceste parcurgeri.

Pentru a oferi un contraexemplu, dacă se folosesc parcurgerile ı̂n preordine s, i posto-
rdine, nu putem reconstrui un arbore unic, deoarece ambele parcurgeri descriu ordinea
vizitării nodurilor, dar nu oferă informat, ii suficiente despre relat, iile dintre noduri s, i su-
barborii lor. În consecint, ă, acest lucru poate duce la mai multe configurat, ii valide care
satisfac aceleas, i parcurgeri.

Pentru a ı̂nt,elege mai bine procesul de construire a unui arbore binar, se consideră
următoarele parcurgeri:

• Preordine: 1, 2, 4, 5, 3, 6, 7

• Inordine: 4, 2, 5, 1, 6, 3, 7

Se construies,te arborele pas cu pas:

• Determinarea rădăcinii:
Primul nod din parcurgerea ı̂n preordine este 1. Acesta reprezintă rădăcina arbo-
relui. În parcurgerea ı̂n inordine, pozit, ia nodului 1 ı̂mparte lista ı̂n două subliste:

– Subarborele stâng: [4, 2, 5]

– Subarborele drept: [6, 3, 7]

1

172

Grafuri Teorie

• Construirea arborelui stâng:
Subarborele stâng este definit de lista [4, 2, 5] ı̂n parcurgerea ı̂n inordine. Următorul
nod din preordine este 2, care devine rădăcina subarborelui stâng. În inordine,
nodul 2 ı̂mparte lista ı̂n:

– Subarborele stâng: [4]

– Subarborele drept: [5]

1

2

• Adăugarea nodurilor subarborelui stâng al lui 2:
Subarborele stâng al lui 2 este definit de nodul 4, iar subarborele drept este repre-
zentat de nodul 5. Acestea sunt noduri frunză, deoarece listele lor corespunzătoare
sunt goale.

1

2

4 5

• Construirea subarborelui drept:
Subarborele drept este reprezentat de lista [6, 3, 7] ı̂n parcurgerea ı̂n inordine.
Următorul nod din preordine este 3, care devine rădăcina subarborelui drept. În
parcurgerea ı̂n inordine, nodul 3 ı̂mparte lista ı̂n:

– Subarborele stâng: [6]

– Subarborele drept: [7]

1

2

4 5

3

173

Grafuri Teorie

• Adăugarea nodurilor subarborelui drept al lui 3:
Subarborele stâng al lui 3 este nodul 6, iar subarborele drept este nodul 7. Acestea
sunt noduri terminale sau frunză.

1

2

4 5

3

6 7

Astfel, prin urmarea pas, ilor prezentat, i mai sus, arborele construit este complet.

Arbori binari de căutare

Un arbore binar de căutare este un arbore binar care respectă următoarele proprietăt, i
pentru fiecare nod x:

• Toate valorile din subarborele stâng al lui x sunt mai mici decât valoarea nodului x

• Toate valorile din subarborele drept al lui x sunt mai mari decât valoarea nodului
x

• Fiecare subarbore drept s, i stâng este la rândul său un arbore binar de căutare

• În general, arborele nu cont, ine noduri cu valori duplicate, dar acest lucru poate fi
permis prin ajustarea definit, iilor de comparare

Următorul exemplu ilustrează un arbore binar de căutare, unde se pot observa pro-
prietăt, ile prezentate mai sus:

8

4

2

1 3

6

5 7

12

10

9 11

14

13 15

174

Grafuri Teorie

Observat, ii importante

• Parcurgerea ı̂n inordine a arborelui se realizează ı̂n ordinea crescătoare a
valorilor nodurilor.

• Căutarea unui nod care are o valoarea dată se realizează eficient, deoarece
dacă rădăcina nu este egală cu valoarea căutată, căutarea va continua fie
ı̂n subarborele drept, fie ı̂n subarborele stâng, ı̂n funct, ie de relat, ia dintre
valoarea dată s, i valoarea rădăcinii.

În exemplele implementate ce urmează se va folosi reprezentarea prin alocare dinamică a
unui nod ı̂ntr-un arbore binar de căutare, deoarece aceasta este cel mai des ı̂ntâlnită ı̂n
situat, ii reale când se lucrează cu astfel de structuri de date.

Pentru reamintire, un nod ı̂ntr-un arbore binar de căutare are următoarea structură, unde
valoare reprezintă valoarea stocată ı̂n nod, stanga reprezintă copilul stâng al nodului,
iar dreapta copilul drept al nodului

Structura Nod

1: valoare : număr ı̂ntreg
2: stanga : Nod
3: dreapta : Nod

Principalele operat, ii efectuate cu un arbore binare de căutare sunt:

• Căutarea unui nod ı̂n arbore

• Inserarea unui nod nou

• S, tergerea unui nod din arbore

• Traversarea nodurilor din arbore

Căutarea unui nod din arbore

Căutarea unui nod reprezintă procesul de traversare a arborelui pentru a verifica dacă ı̂n
arbore există un element dat sau nu, utilizând proprietăt, ile specifice ale acestuia.

Pentru a căuta un nod cu o valoare specifică x ı̂ntr-un arbore binar se compară valoarea
căutată x cu valoarea nodului curent y:

• Dacă x = y, atunci nodul căutat a fost găsit s, i căutarea se opres,te

• Dacă x < y, căutarea continuă ı̂n subarborele stâng

• Dacă x > y, căutare continuă ı̂n subarborele drept

În continuare sunt prezentate cele două modalităt, i de căutare a unui element ı̂n arborele
binar de căutare:

175

Grafuri Teorie

Funct, ia de căutare implementată ı̂n mode iterativ

1: Algorithm CautaNod(arbore, x)
2: nod curent← arbore.radacina
3: While nod curent ̸= nul execute
4: If nod curent.valoare = x then
5: Return nod curent
6: Else If x < nod curent.valoare then
7: nod curent← nod curent.stanga
8: Else
9: nod curent← nod curent.dreapta

10: EndIf
11: EndWhile
12: Return nul
13: EndAlgorithm

Funct, ia de căutare implementată ı̂n mod recursiv

1: Algorithm CautaNod(radacina, x)
2: If radacina = nul or radacina.valoare = x then
3: Return radacina
4: EndIf
5: If x < radacina.valoare then
6: Return CautaNod(radacina.stanga, x)
7: Else
8: Return CautaNod(radacina.dreapta, x)
9: EndIf

10: EndAlgorithm

Inserarea unui nod nou

Inserarea unui nod presupune adăugarea unei valori noi ı̂n arbore astfel ı̂ncât acesta să
respecte ı̂n continuare proprietăt, ile specifice arborilor de căutare.
Pentru a insera un nod cu valoarea x ı̂ntr-un arbore binar de căutare se procedează astfel:

• Dacă arborele este vid, se creează un nod nou care devine rădăcina arborelui

• Dacă arborele este nevid, atunci se compară valoarea x cu valoarea nodului curent:

– Dacă x < valoarea nodului curent, atunci inserarea continuă ı̂n subarborele
stâng

– Dacă x > valoarea nodului curent, atunci inserarea continuă ı̂n subarborele
drept

• Când se ajunge la un loc gol (nul), se creează un nod nou ce cont, ine valoarea dorită
x s, i se adaugă ı̂n pozit, ia corespunzătoare din partea stângă sau dreaptă a părintelui
său, astfel ı̂ncât să păstreze strucutra unui arbore binar de căutare

Următoarele două metode ilustrează implementarea funct, iei de inserare a unei valori ı̂n
arborele binar de căutare:

176

Grafuri Teorie

Funct, ia de inserare implementată ı̂n mod iterativ

1: Algorithm InserareIterativa(radacina, valoare)
2: nodNou← Nod()
3: nodNou.valoare← valoare
4: nodNou.stanga← nul
5: nodNou.dreapta← nul
6: If radacina = nul then
7: Return nodNou
8: EndIf
9: nodCurent← radacina

10: parinte← nul
11: While nodCurent ̸= nul execute
12: parinte← nodCurent
13: If valoare < nodCurent.valoare then
14: nodCurent← nodCurent.stanga
15: Else If valoare > nodCurent.valoare then
16: nodCurent← nodCurent.dreapta
17: Else
18: Return radacina
19: EndIf
20: EndWhile
21: If valoare < parinte.valoare then
22: parinte.stanga← nodNou
23: Else
24: parinte.dreapta← nodNou
25: EndIf
26: Return radacina
27: EndAlgorithm

Funct, ia de inserare implementată ı̂n mod recursiv

1: Algorithm Inserare(radacina, valoare)
2: If radacina = NULL then
3: nodNou← Nod
4: nodNou.valoare← valoare
5: nodNou.stanga← nul
6: nodNou.dreapta← nul
7: Return nodNou
8: EndIf
9: If valoare < radacina.valoare then

10: radacina.stanga← Inserare(radacina.stanga, valoare)
11: Else If valoare > radacina.valoare then
12: radacina.dreapta← Inserare(radacina.dreapta, valoare)
13: EndIf
14: Return radacina
15: EndAlgorithm

177

Grafuri Teorie

S, tergerea unui nod din arbore

S, tergerea unui nod dintr-un arbore binar de căutare este o operat, ie ce presupune eli-
minarea unui nod specificat, ment, inând ı̂n acelas, i timp proprietăt, ile arborelui. Această
operat, ie poate fi mai complexă decât operat, iile de căutare s, i inserare, deoarece trebuie să
fie tratate diferite cazuri ı̂n funct, ie de pozit, ia nodului de s,ters.
Pentru realizarea s,tergerii unui nod x din arbore se iau ı̂n considerare următorii pas, i:

• Nodul x este un nod frunză:

– Nodul este eliminat din arbore.

– Referint,a părintelui către nod este actualizată la nul, astfel ı̂ncât părintele să
nu mai indice către nodul s,ters.

– S, tergerea unui nod frunză nu modifică relat, iile dintre celelalte moduri.

• Nodul x are un singur copil:

– Copilul stâng sau drept al nodului s,ters ı̂nlocuies,te nodul s,ters.

– Referint,a părintelui către nodul s,ters este actualizată pentru a indica copilul
existent

– Nodul s,ters este eliminat.

– Subarborele copilului existent devine conectat direct la părintele nodului s,ters.

• Nodul x are doi copii

– Nodul x este ı̂nlocuit fie cu succesorul ı̂n inordine care reprezintă cel mai
mic nod din subarborele drept (acesta nu poate avea copil stâng), fie cu pre-
decesorul ı̂n preordine, care reprezintă cel mai mare nod din subarborele
stâng (acesta nu poate avea copil drept).

– Valoarea nodului succesor sau predecesor este copiată ı̂n locul nodului x, ce
trebuie s,ters.

– Nodul succesor sau predecesor este eliminat din pozit, ia sa init, ială, deoarece
devine duplicat ı̂n arbore.

Pas, ii algoritmului general pentru s,tergerea unui nod din arbore:

• Se aplică algoritmul prezentat de căutare a unui nod ı̂n arbore, pentru a găsi nodul
de s,ters.

• Se identifică unul dintre cele trei cazuri de mai sus s, i se aplică strategia cores-
punzătoare de s,tergere a nodului, pentru a ment, ine structura corectă s, i proprietăt, ile
arborelui.

În cele ce urmează este ilustrată implementarea s,tergerii unui nod dintr-un arbore binar
de căutare:

178

Grafuri Teorie

Funct, ia de s,tergere a unui nod implementată ı̂n mod recursiv

1: Algorithm StergeNod(radacina, valoare)
2: If radacina = nul then
3: Return nul
4: EndIf
5: If valoare < radacina.valoare then
6: Return StergeNod(radacina.stanga, valoare)
7: Else If valoare > radacina.valoare then
8: Return StergeNod(radacina.dreapta, valoare)
9: Else

10: nodSters← radacina.valoare
11: If radacina.stanga = nul and radacina.dreapta = nul then
12: Delete radacina
13: Return nodSters
14: Else If radacina.stanga = nul then
15: temp← radacina.dreapta
16: Delete radacina
17: radacina← temp
18: Return nodSters
19: Else If radacina.dreapta = nul then
20: temp← radacina.stanga
21: Delete radacina
22: radacina← temp
23: Return nodSters
24: Else
25: succesor ← Minimul(radacina.dreapta)
26: radacina.valoare← succesor.valoare
27: StergeNod(radacina.dreapta, succesor.valoare)
28: Return nodSters
29: EndIf
30: EndIf
31: EndAlgorithm

Funct, ia de găsire a succesorului ı̂n inordine, adică a celui mai mic nod din subarborele
drept

1: Algorithm GasesteMinim(radacina)
2: While radacina.stanga ̸= nul execute
3: radacina← radacina.stanga
4: EndWhile
5: Return radacina
6: EndAlgorithm

Traversarea nodurilor din arbore

Nodurile arborilor binari de căutare pot fi traversat, i ı̂n oricare mod prezentat anterior,
adică inordine, preordine s, i postordine. Mai jos se pot observa implementările celor trei
metode:

179

Grafuri Probleme

Traversare ı̂n Preordine

1: Algorithm Preordine(nod)
2: If nod ̸= nul then
3: Write nod.valoare
4: Preordine(nod.stanga)
5: Preordine(nod.dreapta)
6: EndIf
7: EndAlgorithm

Traversare ı̂n Inordine

1: Algorithm Inordine(nod)
2: If nod ̸= nul then
3: Inordine(nod.stanga)
4: Write nod.valoare
5: Inordine(nod.dreapta)
6: EndIf
7: EndAlgorithm

Traversare ı̂n Postordine

1: Algorithm Postordine(nod)
2: If nod ̸= nul then
3: Postordine(nod.stanga)
4: Postordine(nod.dreapta)
5: Write nod.valoare
6: EndIf
7: EndAlgorithm

Concluzie

Arborii reprezintă una dintre structurile de date fundamentale s, i printre cele mai des
utilizate ı̂n informatică, oferind o solut, ie eficientă pentru organizarea s, i manipularea da-
telor ierarhice. Au fost analizate concepte importante, precum arborii liberi, arborii cu
rădăcină, arborii binari s, i cei de căutare. Fiecare dintre aceste structuri are aplicabilităt, i
practice, de la gestionarea bazelor de date până la implementarea s, i optimizarea divers, ilor
algoritmi utilizat, i ı̂n industrie s, i ı̂n situat, ii reale.

10.2 Probleme

238. ✓ ?Se dă următorul arbore binar:

180

Grafuri Probleme

H

E

A F

B T

X

M

K R

Care dintre următoarele s, iruri de noduri corespund traversării arborelui ı̂n inordine?

A. H, E, B, F, X, T, A, K, M, R

B. A, E, B, F, T, X, H, K, M, R

C. A, E, B, F, X, T, K, M, R, H

D. A, E, B, F, X, T, H, K, M, R

239. ✓ ?Care este numărul maxim de noduri ı̂ntr-un arbore binar plin de ı̂nălt, ime h?

A. 2h B. 2h+1 − 1 C. 2h − 1 D. h ∗ 2

240. ✓ ?Într-un arbore binar de căutare se inserează, pe rând, câte un element din mult, imea

{20, 10, 15, 8, 12, 25, 17}. În ce ordine putem insera elementele astfel ı̂ncât să obt, inem
arborele binar definit alăturat?

15

10

8 12

20

17 25

A. 15, 10, 20, 8, 12, 17, 25

B. 10, 15, 20, 8, 12, 25, 17

C. 20, 10, 15, 8, 12, 25, 17

D. 15, 20, 10, 12, 8, 17, 25

241. ✓ ?Se consideră următorul arbore binar:

181

Grafuri Probleme

6

7

9

10 12

5

3

8

4

Care dintre următoarele s, iruri de noduri corespund traversării arborelui ı̂n preordine?

A. 7, 9, 10, 12, 5, 3, 6, 8, 4

B. 6, 7, 9, 10, 12, 5, 3, 8, 4

C. 7, 9, 10, 12, 5, 3, 8, 4, 6

D. 6, 7, 9, 12, 10, 5, 3, 8, 4

242. ✓ ?Se consideră următorul arbore binar:

X

Y

A

B C

F

Z

G

T

R

Care dintre următoarele s, iruri de noduri corespund traversării arborelui ı̂n postordine?

A. X, B, C, A, F, Y, T, G, R, Z

B. B, C, A, F, Y, T, R, G, Z, X

C. B, C, A, F, Y, T, G, R, Z, X

D. X, Y, Z, A, F, G, R, B, C, T

243. ✓ ?În traversarea inordine a unui arbore binar de căutare, ce proprietate este ı̂ntotdeauna
adevărată?

A. Nodurile sunt vizitate ı̂n ordinea descrescătoare.

B. Nodurile sunt vizitate ı̂n ordinea crescătoare.

C. Nodurile frunze sunt ı̂ntotdeauna vizitate primele.

182

Grafuri Probleme

D. Nodurile rădăcină sunt vizitate ultimele.

244. ✓ ?Care este ı̂nălt, imea unui arbore binar complet cu 31 de noduri?

A. 4 B. 5 C. 6 D. 7

245. ✓ ?Într-un arbore binar de căutare, care este succesorul ı̂n inordine al nodului cu va-
loarea 20?

15

10

12

25

20 30

A. 12

B. 25

C. 30

D. 15

246. ✓ ?Dacă traversările preordine s, i inordine ale unui arbore sunt următoarele:

Preordine: A, B, D, E, C, F
Inordine: D, B, E, A, F, C

Care este structura arborelui binar?

A. A are copiii B s, i C; B are copiii D s, i E; C are copil F.

B. A are copiii B s, i C; B are copiii E s, i D; C are copil F.

C. A are copiii B s, i C; C are copiii D s, i F; B are copil E.

D. A are copiii B s, i C; B are copil F; C are copiii D s, i E.

247. ✓ ?Într-un arbore binar complet, care este numărul minim de niveluri pentru a avea
cel put, in 50 de noduri?

A. 5 B. 6 C. 7 D. 8

248. ✓ ?Unei expresii matematice ı̂i corespunde un arbore binar ı̂n care orice nod care este
un nod frunză are ca valoare un operator s, i are exact doi fii. Nodurile terminale sunt
considerate operanzii. Operatorii cu prioritate mai mare sunt plasat, i pe un nivel mai
mare, reflectând ordinea corectă a operat, iilor. Parantezele nu sunt prezente ı̂n arbore,
dar influent,ează ordinea operat, iilor.

183

Grafuri Probleme

+

*

+

+

a b

c

*

d e

f

Pentru arborele ilustrat mai sus, determinat, i expresia corespunzătoare acestuia:

A. (a+ b) + (c ∗ (d ∗ e)) + f

B. (a+ b+ c) ∗ (d+ e+ f)

C. (a+ b+ c) ∗ (d ∗ e) + f

D. (a+ b) ∗ c+ (d+ e) ∗ f

249. ✓ ?Unei expresii matematice ı̂i corespunde un arbore binar care descrie ordinea operat, iilor
pentru evaluarea acesteia. Fiecare nod care nu este o frunză reprezintă un operator s, i
are exact doi fii. Nodurile frunză sunt operanzii expresiei. Structura arborelui reflectă
priorităt, ile operatorilor s, i ordinea ı̂n care aces,tia trebuie evaluat, i. Evaluarea corectă
a expresiei presupune procesarea nodurilor ı̂n ordinea ı̂n care operat, iile devin complet
definite.

Fie arborele binar de mai jos, care reprezintă ordinea operat, iilor ı̂ntr-o expresie mate-
matică:

+

*

a b

*

*

+

c d

e

*

f g

Care dintre următoarele ordini de procesare este corectă pentru evaluarea expresiei
(a ∗ b) + ((c+ d) ∗ e) ∗ (f ∗ g)?

184

Grafuri Probleme

A. a b ∗ c d + e ∗ f g ∗ ∗+
B. a b ∗ c d + e f g ∗ ∗+

C. c d + e ∗ f g ∗ a b ∗ +

D. a b ∗ e f g ∗ c d + ∗+

250. ✓ ?Se consideră algoritmul de mai jos, ı̂mpreună cu arborele binar alăturat acestuia.
Pentru un nod node, prin intermediul câmpurilor node.left şi node.right, poate fi
accesat descendentul stâng, respectiv descendentul drept al acestuia.

Algorithm algorithm(node)

If node = null then

Return -1

EndIf

left← algorithm(node.left)
right← algorithm(node.right)
If left > right then

max← left
Else

max← right
EndIf

Return 1 +max
EndAlgorithm

a

b

d e

h

k l

i

c

f

j

g

Care este valoarea returnată de algoritm, considerând că apelul acestuia a avut ca
parametru rădăcina arborelui?

A. 1 B. 2 C. 3 D. 4

251. ✓ ?Se consideră algoritmul de mai jos, ı̂mpreună cu arborele binar alăturat acestuia.
Pentru un nod node, prin intermediul câmpurilor node.left şi node.right, poate fi
accesat descendentul stâng, respectiv descendentul drept al acestuia.

Algorithm algoritm(node)

If node = null then

Return 0

EndIf

count← 0
If node.left ̸= null then

count← count+ 1
count← count+ algoritm(node.left)

EndIf

If node.right ̸= null then

count← count+ algoritm(node.right)
EndIf

Return count
EndAlgorithm

a

b

d e

h

l m

i

c

f g

j

n o

k

Care este valoarea returnată de algoritm, considerând că apelul acestuia a avut ca
parametru rădăcina arborelui?

185

Grafuri Probleme

A. 5 B. 6 C. 7 D. 8

252. ✓ ?Se consideră arborele binar de mai jos, ı̂mpreună cu algoritmul alăturat acestuia.
Pentru un nod node, prin intermediul câmpurilor node.left şi node.right, poate fi
accesat descendentul stâng, respectiv descendentul drept al acestuia.

Algorithm algorithm(node)

If node = null then

Return 0

EndIf

count← 0
If (node.left ̸= null AND node.right

= null) OR (node.left = null AND

node.right ̸= null) then

count← count+ 1
EndIf

Return count + algorithm(node.left) +
algorithm(node.right)
EndAlgorithm

a

b

d

g

k l

h

m

e

c

f

i

n

j

o

Care este valoarea returnată de algoritm, considerând că apelul acestuia a avut ca
parametru rădăcina arborelui?

A. 3 B. 4 C. 5 D. 6

253. ✓ ?Se consideră următorul algoritm algorithm(node, inf, sup). Pentru un nod node,
prin intermediul câmpurilor node.left, node.right şi node.value poate fi accesat des-
cendentul stâng, descendentul drept, respectiv valoarea acestuia. Ştiind că apelul
iniţial are ca parametri rădăcina unui arbore binar pentru node, cea mai mică valoare
posibilă pentru inf şi cea mai mare valoare posibilă pentru sup, care dintre afirmaţii
sunt adevărate?

Algorithm algoritm(node, inf, sup)

If node = null then

Return true
EndIf

If node.value < inf OR node.value > sup then

Return false
EndIf

Return algoritm(node.left, inf, node.value) AND algoritm(node.right, node.value, sup)
EndAlgorithm

A. Algoritmul verifică dacă arborele binar dat este complet.

B. Algoritmul verifică dacă descendenţii arborelui binar dat au mereu valori mai
mari sau egale cu ascendenţii.

C. Algoritmul verifică dacă arborele binar dat este arbore binar de căutare.

D. Algoritmul verifică dacă ı̂n arborele binar dat valoarea oricărui nod este mai mare
sau egală cu cea a descendentului stâng, ı̂mpreună cu toţi descendeţii lui şi mai
mică sau egală cu cea a descendentului drept, ı̂mpreună cu toţi descendenţii lui.

254. ✓ ?Precizat, i care este numărul ciclurilor hamiltoniene distincte ı̂ntr-un graf neorientat
complet cu 5 noduri. Două cicluri sunt distincte dacă diferă prin cel put, in o muchie.

186

Grafuri Probleme

A. 4!/2 B. 4! C. 41 · 2 + 42 D. 6!/5! · 2!

255. ✓ ?Se consideră algoritmul ceFace() definit alăturat, unde a[][] este un tablou bidi-
mensional care reprezintă matricea de adiacent, ă a unui graf orientat cu n noduri,
n ≤ 1000. Dacă a[i][j] = 1, ı̂nseamnă că există o muchie de la nodul i la nodul
j. v[], comp[] şi order[] sunt tablouri unidimensionale, fiecare cu n elemente, init, ial
toate 0. Metodele d1(i, a, v, n, order, idx) şi d2(i, t, comp, n, c) apelate
de ceFace() sunt, de asemenea, definite mai jos.

Algorithm ceFace(a, n)

idx← 0
For i← 1, n execute

v[i]← 0
comp[i]← 0

EndFor

For i← 1, n execute

If v[i] = 0 then

d1(i, a, v, n, order, idx)
EndIf

EndFor

For i← 1, n execute

For j ← 1, n execute

t[i][j]← a[j][i]
EndFor

EndFor

c← 0
For i← n, 1,−1 execute

u← order[i]
If comp[u] = 0 then

c← c+ 1
d2(u, t, comp, n, c)

EndIf

EndFor

EndAlgorithm

Algorithm d1(i, a, v, n, order, idx)

v[i]← 1
For j ← 1, n execute

If a[i][j] = 1 & v[j] = 0 then

d1(j, a, v, n, order, idx)
EndIf

EndFor

idx← idx+ 1
order[idx]← i

EndAlgorithm

Algorithm d2(i, t, comp, n, c)

comp[i]← c
For j ← 1, n execute

If t[i][j] = 1 & comp[j] = 0 then

d2(j, t, comp, n, c)
EndIf

EndFor

EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Algoritmul ceFace(a,n) verifică dacă graful dat este tare conex;

B. La apelul ceFace(a,n) se vor parcurge atât graful init, ial, cât s, i graful transpus
al grafului init, ial;

C. La finalul execut, iei algoritmului ceFace(a,n), pentru orice nod i, comp[i] va
cont, ine numărul de ordine al componentei tare conexe din care i face parte;

D. Algoritmul produce o sortare topologică asupra grafului.

256. ✓ ?Se consideră următorul arbore binar:

187

Grafuri Probleme

1

2

4

8 9

3

6 7

10

Care dintre următoarele afirmat, ii sunt adevărate?

A. Parcurgerea ı̂n preordine a arborelui este 1, 2, 4, 8, 9, 3, 6, 7, 10.

B. Parcurgerea ı̂n inordine a arborelui este 8, 4, 9, 2, 1, 6, 3, 7, 10.

C. Parcurgerea ı̂n postordine a arborelui este 8, 9, 4, 2, 6, 10, 7, 3, 1.

D. Arborele binar este complet.

257. ✓ ?Se consideră un arbore binar complet cu 1023 noduri, numerotate de la 1 la 1023,
ı̂n ordinea aparit, iei de la stânga la dreapta pe fiecare nivel. Considerând că rădăcina
se află pe nivelul 0 al arborelui, care dintre următoarele afirmat, ii sunt adevărate?

A. Înălt, imea arborelui este 10;

B. Arborele are 512 noduri terminale;

C. Nodul 1000 se află pe nivelul 9 s, i este fiul stâng al unui alt nod;

D. Nodul 8 este strămos, pentru nodul 768.

258. ✓ ?Se consideră algoritmul Transform(node, k, s, c), unde node reprezintă un nod
al arborelui, iar k, s s, i c sunt numere naturale, s, i arborele binar:

188

Grafuri Probleme

Algorithm transform(node, k, s, c)

If node = null then

s← 0
c← 0
Return

EndIf

left s← 0, left c← 0
right s← 0, right c← 0
transform(node.left, k, left s,

left c)
transform(node.right, k, right s,

right c)
If node.left ̸= null AND

node.right ̸= null then

If (left s+right s) MOD k = 0
then

node.value ← left c +

right c
Else

node.value ← left c *

right c
EndIf

s ← left s + right s +

node.value
c← left c+ right c+ 1

Else If node.value MOD 2 = 0
then

s← node.value
c← 1

Else

s← 0
c← 0

EndIf

EndAlgorithm

4

6

2

8 10

12

14

16

20 22

18

Pentru apelul Transform(4, 3, 0, 0), care va fi valoarea nodului rădăcină după
execut, ia algoritmului?

A. 12 B. 15 C. 20 D. 25

259. ✓ ?Se consideră algoritmul Algo(node), unde node reprezintă un nod al arborelui, s, i
arborele binar:

189

Grafuri Probleme

Algorithm Algo(node)

If node = null then

Return 0

EndIf

If node.stanga ̸= null AND

node.dreapta ̸= null then

x← 0
temp← node.stanga
While temp.dreapta ̸= null

execute

temp← temp.dreapta
EndWhile

x← temp.valoare
y ← 0
temp← node.dreapta
While temp.stanga ̸= null

execute

temp← temp.stanga
EndWhile

y ← temp.valoare
If y − x = node.valoare then

Return 1+
Algo(node.stanga) +
Algo(node.dreapta)

EndIf

EndIf

Return Algo(node.stanga) +
Algo(node.dreapta)

EndAlgorithm

15

10

5

3 8

12

22

18

17 21

30

Pentru apelul Algo(node), ce va returna algoritmul, dacă valoarea transmisă ca pa-
rametru este nodul rădăcină al arborelui ?

A. 0 B. 3 C. 1 D. 21

260. ✓ ?Se consideră următorul graf orientat cu 6 noduri.

12

3

4

5

6

Câte componente tare conexe are acest graf?

190

Grafuri Probleme

A. 2; B. 3; C. 1; D. 6.

261. ✓ ?Se consideră algoritmul Algo(node), unde node reprezintă un nod al arborelui, s, i
arborele binar:

Algorithm procesare(nod)

If nod = null then

Return 0

EndIf

nivel st← procesare(nod.stanga)
nivel dr ←

procesare(nod.dreapta)
If nivel st = nivel dr then

n← nivel st+ 1
p← (n > 0 AND (n&(n−1)) = 0)
If p then

nod.valoare← nod.valoare∗2
EndIf

EndIf

Return 1 + max(nivel st, nivel dr)
EndAlgorithm

10

6

4

2 5

8

7

15

12

11

20

18

Pentru apelul Algo(node), cum va arăta parcurgerea ı̂n preordine a arborelui modifi-
cat, dacă valoarea transmisă ca parametru este nodul rădăcină al arborelui ?

A. 4 8 10 6 14 8 20 22 12 15 36 20

B. 20 6 8 4 10 8 14 15 12 22 20 36

C. 4 10 8 14 8 6 22 12 36 20 15 20

D. 20 6 8 4 10 8 15 14 12 22 20 36

262. ✓ ?Se consideră algoritmul Algo(nod), unde nod reprezintă un nod al arborelui binar,
iar arborele binar este definit astfel:

10

6

3

2 4

8

7 9

15

12

11 13

20

18 25

191

Grafuri Probleme

Algorithm Algo(nod)

If nod = null then

Return 0, 0
EndIf

s1, c1 ← Algo(nod.stanga)
s2, c2 ← Algo(nod.dreapta)
If nod.stanga ̸= null AND

nod.dreapta ̸= null then

If Check(s1 + s2) then

nod.valoare← c1 ∗ c2
Else

nod.valoare← c1 + c2
EndIf

Return s1+s2+nod.valoare, c1+
c2 + 1

Else If nod.valoare > 0 then

Return nod.valoare, 1
Else

Return 0, 0
EndIf

EndAlgorithm

Algorithm Check(n)

If n ≤ 1 then

Return False

EndIf

For i← 2,
√
n execute

If n mod i = 0 then

Return False

EndIf

EndFor

Return True

EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate:

A. Valoarea finală a nodului rădăcină va fi produsul numărului de noduri din subar-
borele stâng cu numărul de noduri din subarborele drept

B. Pentru apelul algoritmului Algo(nod), unde nod reprezintă rădăcina arborelui,
ı̂n acest caz, valoarea rădăcinii după procesarea arborelui este 14

C. După execut, ia algoritmului, orice nod intern a cărui sumă a descendent, ilor e
număr prim va avea valoarea egală cu produsul numărului de noduri din subar-
borii săi

D. Algoritmul modifică valorile tuturor nodurilor interne ale arborelui

263. ✓ ?Se consideră algoritmul Algo(nod, k, total), unde nod reprezintă nodul rădăcină
al arborelui binar transmis ca parametru, k s, i total reprezintă numere naturale, s, i
arborele binar corespunzător:

Algorithm Algo(nod, k, total)

If nod = null then

Return 0

EndIf

val st ← Algo(nod.st, k, total)
val dr ← Algo(nod.dr, k, total)
If nod.st ̸= null AND nod.dr ̸=

null then

If (val st ∗ val dr) MOD k =
nod.val MOD k then

total← total + 1
nod.val← val st+ val dr

EndIf

EndIf

Return nod.val
EndAlgorithm

4

6

2

7 6

3

5

8

2

11 12

3

9

192

Grafuri Probleme

Precizat, i care dintre următoarele afirmat, ii sunt adevărate:

A. Pentru apelul Algo(nod, 4, 0), numărul de noduri care ı̂s, i vor schimba valoarea
este 4

B. Pentru orice arbore binar s, i k > 1, valoarea variabilei total după execut, ia algo-
ritmului este strict mai mică decât numărul de noduri interne care au ambii copii
frunze

C. Dacă doi frat, i au valori egale, părintele lor ı̂s, i va modifica valoarea dacă s, i numai
dacă valoarea sa init, ială modulo k este egală cu pătratul valorii copiilor modulo
k

D. Pentru orice k prim, dacă un nod intern ı̂s, i modifică valoarea, atunci cel put, in
unul dintre copiii săi trebuie să aibă o valoare divizibilă cu k

264. ✓ ?Se consideră algoritmul Mister(nod, p, sum, cnt), unde nod reprezintă un nod
al arborelui binar, p, sum, cnt sunt numere naturale, s, i arborele binar definite astfel:

Algorithm Mister(nod, p, sum, cnt)

If nod = null then

sum← 0, cnt← 0
Return

EndIf

s st← 0, c st← 0
s dr ← 0, c dr ← 0
If nod.stanga ̸= null then

Mister(nod.stanga, p, s st, c st)
EndIf

If nod.dreapta ̸= null then

Mister(nod.dreapta, p, s dr, c dr)
EndIf

If nod.stanga ̸= null AND

nod.dreapta ̸= null then

If (s st+ s dr) MOD p = 0 then

nod.val← c st ∗ c dr
Else If nod.val MOD p = 0

then

nod.val← c st+ c dr
EndIf

EndIf

sum← s st+ s dr + nod.val
cnt← c st+ c dr + 1

EndAlgorithm

5

7

3

2 1

4

5

10

6

9 4

8

3

Precizat, i care dintre următoarele afirmat, ii sunt adevărate:

A. Pentru apelul Mister(nod, 3, 0, 0), valorile finale ı̂n urma execut, iei algorit-
mului vor fi sum = 61 s, i cnt = 13

B. Dacă un nod are suma valorilor din subarbori divizibilă cu p, noua sa valoare va
fi strict mai mare decât valoarea sa init, ială

C. Pentru orice p prim mai mare decât maximul din arbore, cel put, in un nod ı̂s, i va
modifica valoarea

D. Dacă un nod ı̂s, i modifică valoarea bazat pe a doua condit, ie (când valoarea sa e
divizibilă cu p), noua valoare va fi ı̂ntotdeauna mai mică decât valoarea init, ială

193

Grafuri Probleme

265. ✓ ?Se consideră algoritmul Algo(nod, dist, val, x), unde nod reprezintă nodul
rădăcină al arborelui binar, dist, val s, i x reprezintă numere naturale, s, i arborele
binar corespunzător:

Algorithm Algo(nod, dist, val, x)

If nod = null then

val← 0
x← 0
Return

EndIf

val st← 0,max st← 0
val dr ← 0,max dr ← 0
If nod.st ̸= null then

Algo(nod.st, dist, val st,max st)
EndIf

If nod.dr ̸= null then

Algo(nod.dr, dist, val dr,max dr)
EndIf

If nod.st ̸= null AND nod.dr ̸= null
then

If (val st − val dr ≤
dist) AND (val dr − val st ≤ dist)
then

If max st > max dr then

nod.val← val st
Else

nod.val← val dr
EndIf

Else

min← 0
If val st < val dr then

min← val st
Else

min← val dr
EndIf

nod.val← min
EndIf

max← 0
If max st > max dr then

max← max st
Else

max← max dr
EndIf

x← max+ 1
val← nod.val

Else

val← nod.val
x← 1

EndIf

EndAlgorithm

15

8

4

2 6

10

9 12

20

16

14 18

25

22 28

Precizat, i care dintre următoarele afirmat, ii sunt adevărate:

A. Pentru apelul Algo(nod, 5, 0, 0), valoarea finală a nodului rădăcină după

194

Grafuri Probleme

execut, ia algoritmului va fi 6.

B. Un nod intern ı̂s, i modifică valoarea cu maximul dintre valorile returnate de su-
barbori dacă s, i numai dacă diferent,a dintre aceste valori nu depăs,es,te dist.

C. Pentru orice dist > 0, cel put, in un nod intern ı̂s, i va modifica valoarea după
execut, ia algoritmului

D. Un nod care ı̂s, i modifică valoarea va prelua ı̂ntotdeauna una dintre valorile re-
turnate de copiii săi

266. ✓ ?Se consideră un arbore cu 10 noduri reprezentat prin vectorul de tat, i t = (2, 3,

0, 1, 3, 1, 10, 5, 6, 5). Care dintre următoarele afirmat, ii sunt adevărate?

A. Nodurile 4, 7, 8 s, i 9 sunt noduri frunză.

B. Nodul 2 este rădăcina arborelui

C. Nodul 10 nu are descendent, i.

D. Nodurile 8 s, i 10 sunt frat, i.

267. ✓ ?Se dă următorul arbore binar. Care din-
tre următoarele şiruri de noduri reprezintă
traversarea acestuia ı̂n inordine?

A. b, d, a, e, h, g, i, f, j, k

B. b, d, e, d, f, g, h, i, j, k

C. b, d, e, a, h, g, i, f, j, k

D. a, b, e, d, f, g, h, i, j, k

a

b

e

d

f

g

h i

j

k

268. ✓ ?Se dă următorul arbore binar. Care din-
tre următoarele şiruri de noduri reprezintă
traversarea acestuia ı̂n postordine?

A. 6, 2, 5, 4, 7, 3, 1

B. 6, 2, 4, 5, 7, 3, 1

C. 2, 6, 5, 4, 7, 3, 1

D. 2, 6, 4, 5, 7, 3, 1

1

3

2

6

7

4

5

269. ✓ ?Se dă următorul arbore binar. Care din-
tre următoarele şiruri de noduri reprezintă
traversarea acestuia ı̂n preordine?

A. 4, 3, 6, 7, 2, 8, 1, 9, 10

B. 4, 3, 6, 7, 8, 2, 1, 9, 10

C. 3, 6, 7, 4, 8, 2, 1, 9, 10

D. 3, 6, 7, 4, 2, 8, 1, 9, 10

4

3

6

7

8

2 1

9

10

195

Partea

II

Teste

11

Admitere 2021 - 2025

Admitere nivel licent, ă, sesiunea septembrie 2025

270. ✓ ?Se consideră algoritmul cauta(a, n, b, m), unde a s, i b sunt două s, iruri de carac-
tere cu n, respectiv m caractere (a[1], a[2], ..., a[n], b[1], b[2], ..., b[m], 1 ≤ n,m ≤ 100
s, i m ≤ n).

Care dintre următoarele implementări ale algoritmului cauta(a, n, b, m) returnează
pozit, ia din s, irul a ı̂ncepând de la care apare prima dată ca subsecvent, ă s, irul b ı̂n s, irul
a sau -1 dacă s, irul b nu apare ı̂n s, irul a?

A.

Algorithm cauta(a, n, b, m)

i← 1
While i < n−m+ 2 execute

j ← 1
While j ≤ m AND

a[i+ j − 1] = b[j] execute

j ← j + 1
EndWhile

If j > m then

Return i
EndIf

i← i+ 1
EndWhile

Return −1
EndAlgorithm

C.

Algorithm cauta(a, n, b, m)

For i← 1, n−m+ 1 execute

k ← True; j ← 1
While k AND j ≤ m execute

If a[i+ j − 1] ̸= b[j] then

k ← False
EndIf

j ← j + 1
EndWhile

If k then

Return i
EndIf

EndFor

Return −1
EndAlgorithm

B.

Algorithm cauta(a, n, b, m)

If n = m then

Return 1
EndIf

For i← 1, n−m+ 1 execute

If a[i] = b[i] AND

a[i+m− 1] = b[m] then

Return i
EndIf

EndFor

Return −1
EndAlgorithm

D.

Algorithm cauta(a, n, b, m)

i← 1
While i ≤ n−m execute

j ← 1
While j ≤ m AND

a[i+ j − 1] = b[j] execute

j ← j + 1
EndWhile

If j > m then

Return i
EndIf

i← i+ 1
EndWhile

Return −1
EndAlgorithm

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

271. ✓ ?Se consideră algoritmul S(n), unde n este un număr ı̂ntreg (0 ≤ n ≤ 104).

Algorithm S(n)

If n = 0 then

Return 0
EndIf

Return n+ S(n DIV 2)
EndAlgorithm

Care dintre afirmat, iile următoare sunt adevărate?

A. Complexitatea timp a algoritmului este O(log n).

B. Algoritmul calculează suma primelor n numere
naturale.

C. În urma apelului S(4) se returnează valoarea 12.

D. Expresia S(2) + S(13) = S(7) + S(8) are valoarea
True.

272. ✓ ?Care dintre următoarele implementări ale algoritmului gcd(a, b) returnează cel
mai mare divizor comun al numerelor naturale a s, i b (1 ≤ a, b ≤ 100)?

A.

Algorithm gcd(a, b)

If b = 0 then

Return b
EndIf

If a > b then

Return gcd(a - b, b)

Else

Return gcd(a, b - a)

EndIf

EndAlgorithm

C.

Algorithm gcd(a, b)

While b > 0 execute

c← a; a← b; b← c MOD a
EndWhile

Return a
EndAlgorithm

B.

Algorithm gcd(a, b)

If b = 0 then

Return 0
EndIf

Return gcd(b, a MOD b)

EndAlgorithm

D.

Algorithm gcd(a, b)

While a MOD b > 0 execute

c← a; a← b; b← c MOD a
EndWhile

Return b
EndAlgorithm

273. ✓ ?Se consideră algoritmul f(n, x, k), unde n este număr natural (1 ≤ n ≤ 103),
x este un vector cu n elemente numere ı̂ntregi (x[1], x[2], ..., x[n], −103 ≤ x[i] ≤ 103

pentru i = 1, 2, ..., n), iar k este număr natural (1 ≤ k ≤ 103).

Algorithm f(n, x, k)

For i← 1, k execute

a← x[1]
j ← 1
While j < n execute

x[j]← x[j + 1]
j ← j + 1

EndWhile

x[n]← a
EndFor

Return x[1]
EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Dacă n = 10, x = [1, 2, 3, ..., 10], iar k = 3,
algoritmul returnează 6.

B. Dacă n = 10, x = [1, 2, 3, ..., 10], iar k = 117,
algoritmul returnează 8.

C. Dacă n = 5, x = [4, 2, 5, 11, 13], iar k = 117,
algoritmul returnează 5.

D. Dacă n = 5, x = [1, 2, 3, 4, 5], algoritmul
returnează aceeas, i valoare dacă k = 3 sau k =
318.

198

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

274. ✓ ?Se consideră algoritmul ceFace(n), unde n este număr natural (1 ≤ n ≤ 103).

Algorithm ceFace(n)

a← 0; b← 0
For i← 0, 9 execute

x← n
c← 0
While x > 0 execute

If x MOD 10 = i then

c← c+ 1
EndIf

x← x DIV 10
EndWhile

If c ̸= 0 then

a← a+ 1
If i MOD 2 = c MOD 2 then

b← b+ 1
EndIf

EndIf

EndFor

Return a = b
EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Algoritmul ceFace(n) returnează True
dacă ı̂n numărul n numărul cifrelor
pare distincte este egal cu numărul ci-
frelor impare distincte.

B. Dacă n = 12235, algoritmul ceFace(n)
returnează True.

C. Dacă n este format doar din cifre im-
pare, algoritmul ceFace(n) returnează
True.

D. Dacă n = 10k unde k este număr par,
algoritmul ceFace(n) returnează True.

275. ✓ ?Se consideră algoritmul numar(n), unde n este număr natural (1 ≤ n ≤ 106).

Algorithm numar(n)

While n > 9 execute

n← n DIV 10 + n MOD 10
EndWhile

Return n
EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Valoarea returnată de algoritm este ı̂n
mult, imea {1, 2, ..., 9}, pentru orice valoare
a lui n.

B. Algoritmul nu returnează valoarea 0 pen-
tru nicio valoare a numărului n.

C. Există 3 valori distincte v pentru care,
dacă numar(n) = v, atunci n este divizi-
bil cu v, indiferent de valoarea lui n.

D. Algoritmul returnează suma cifrelor
numărului n.

276. ✓ ?Considerăm numărul binar b = 110101012.

Care dintre următoarele afirmat, ii sunt adevărate referitoare la numărul b?

A. În baza 4 are valoarea 122310.

B. În baza 8 este un număr palindrom.

C. Este un număr impar.

D. Este un număr divizibil cu 3.

277. ✓ ?Se consideră algoritmul f(a, b, n, d), unde a s, i b sunt numere naturale nenule
(1 ≤ a, b ≤ 105), n = 3 s, i d = [5, 7, 11]:

199

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm f(a, b, n, d)

c← 0
p← 1
g ← False
While NOT g execute

For i← 1, n execute

If (a MOD d[i] = 0) OR

(b MOD d[i] = 0) then

c← c ∗ 10 + 1
p← p+ 1

EndIf

EndFor

g ← NOT g
EndWhile

Return c ∗ 100 + p
EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Dacă a * b nu se divide cu 5 sau cu 7
sau cu 11, ı̂n urma apelului f(a, b, 3,
[5, 7, 11]) se returnează 1.

B. Dacă a * b nu se divide cu 5 sau cu 7
sau cu 11, apelând algoritmul f(a, b,
3, [5, 7, 11]), ultima valoare atribuită
lui c este 10.

C. Dacă a * b se divide cu 5 s, i cu 7 s, i
cu 11, ı̂n urma apelului f(a, b, 3, [5, 7,
11]) se returnează 11106.

D. În urma apelului f(112233, 331122, 3,
[5, 7, 11]) se returnează 1003.

278. ✓ ?Se consideră algoritmul f(x, n), unde n este număr natural (3 ≤ n ≤ 104), iar
x este un vector de n numere naturale (x[1], x[2], ..., x[n], 1 ≤ x[i] ≤ 104 pentru
i = 1, 2, ..., n):

Algorithm f(x, n)

For i← 1, n− 1 execute

If x[i+ 1] < x[i] then

tmp← x[i+ 1]
x[i+ 1]← x[i]
x[i]← tmp

EndIf

EndFor

EndAlgorithm

Care din următoarele afirmat, ii sunt
adevărate?

A. În urma apelului f(x, n), cel mai mare
element din vectorul x va fi pe pozit, ia
n.

B. În urma apelului f(x, n), cel mai mic
element din vectorul x va fi pe pozit, ia
1.

C. În urma apelului f(x, n), vectorul x va
fi sortat crescător.

D. În urma apelului f(x, n), vectorul x va
fi sortat descrescător.

279. ✓ ?Se consideră algoritmul f(n), unde n este număr ı̂ntreg (0 < n < 105).

200

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm f(n)

If n = 0 then

Return 0
Else

If n MOD 2 = 0 then

Return f(n DIV 10) + 1

Else

Return f(n DIV 10) - 1

EndIf

EndIf

EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Dacă n = 543, algoritmul returnează
2.

B. Dacă n = 18, algoritmul returnează 0.

C. Dacă n = 41173, algoritmul retur-
nează 3.

D. Pentru niciun număr n din intervalul
[111, 999], algoritmul f(n) nu retur-
nează 0.

280. ✓ ?Se consideră algoritmul ceFace(x, n), unde n este număr natural (1 ≤ n ≤ 104),
iar x este un vector cu n elemente numere ı̂ntregi (x[1], x[2], ..., x[n], 0 ≤ x[i] ≤ 104

pentru i = 1, 2, ..., n):

Algorithm ceFace(x, n)

i← 1
c← 0
d← 0
While i ≤ n execute

If (x[i] MOD 10) MOD 2 = 0 then

c← c+ 1
Else

If (x[i] MOD 10) MOD 3 = 0 then

d← d+ 1
EndIf

EndIf

i← i+ 1
EndWhile

Return c = d
EndAlgorithm

În care din următoarele condit, ii algorit-
mul ceFace(x, n) returnează True?

A. Dacă numărul de numere pare din
vector este egal cu numărul de nu-
mere impare din vector.

B. Dacă numărul de numere din vec-
tor divizibile cu 2 este egal cu
numărul de numere din vector
multipli ai lui 6.

C. Dacă numărul de numere pare din
vector este egal cu numărul de nu-
mere impare din vector care au ul-
tima cifră multiplu de 3.

D. Dacă numărul de numere din vec-
tor divizibile cu 2 este egal cu
numărul de numere din vector
multipli ai lui 3.

281. ✓ ?Se consideră algoritmul f(n, x, c), unde n este număr natural (1 ≤ n ≤ 104),
x este un vector cu n elemente numere ı̂ntregi (x[1], x[2], ..., x[n], −105 ≤ x[i] ≤ 105

pentru i = 1, 2, ..., n), iar c este un număr natural (1 ≤ c ≤ n):

201

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm f(n, x, c)

For i← 1, c execute

For j ← 1, n− 1 execute

If x[j] > x[j + 1] then

aux← x[j]
x[j]← x[j + 1]
x[j + 1]← aux

EndIf

EndFor

EndFor

Return x[n+ 1− c]
EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. În urma apelului f(5, [5, 4, 30, 5, 1], 3)
algoritmul va returna 5.

B. Dacă x cont, ine valorile 100, 99, 98, ..., 1,
n = 100, iar c = 50, algoritmul f(n, x, c)
va returna 51.

C. Dacă c = n, algoritmul f(n, x, c) va returna
elementul minim din vectorul x.

D. Dacă c = 1, algoritmul f(n, x, c) va returna
elementul minim din vectorul x.

282. ✓ ?Se consideră algoritmul afla(n, x), unde n este număr natural (3 ≤ n ≤ 104), iar
x este un vector cu n elemente numere ı̂ntregi (x[1], x[2], ..., x[n], −100 ≤ x[i] ≤ 100
pentru i = 1, 2, ..., n).

Algorithm afla(n, x)

M ← x[1]
For i← 1, n− 2 execute

For j ← i+ 1, n− 1 execute

For k ← j + 1, n execute

If M < x[i] + x[j] + x[k]
then

M ← x[i] + x[j] + x[k]
EndIf

EndFor

EndFor

EndFor

Return M
EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate ı̂n urma apelului afla(n, x)?

A. Dacă toate elementele vectorului x
sunt negative, se returnează valoarea
elementului x[1].

B. Dacă toate elementele vectorului x
sunt pozitive, dar mai mici sau egale
cu x[1], se returnează valoarea elemen-
tului x[1].

C. Dacă x[1], x[2] s, i x[3] sunt numere po-
zitive, se returnează suma lor.

D. Pentru orice vector cu n elemente,
unde produsul tuturor elementelor
este un număr impar, algoritmul
afla(n, x) returnează un număr impar.

283. ✓ ?Precizat, i câte grafuri neorientate distincte cu 5 noduri, numerotate de la 1 la 5, se
pot construi, astfel ı̂ncât nodul 3 să aibă gradul 1. Două grafuri sunt distincte dacă
matricele lor de adiacent, ă sunt diferite.

A. 28 B. 5! C. 5× C1
4 D. 25

284. ✓ ?Se consideră algoritmul ceFace(A, n), unde n este număr natural (1 < n ≤ 10).
A este o matrice cu n × n elemente numere naturale (A[1][1], A[1][2], ..., A[n][n], 1 ≤
A[i][j] ≤ 10 pentru i, j = 1, 2, ..., n).

202

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm ceFace(A, n)

c← 0
For i← 2, 3 execute

first←
modifica(A, n, i - 1, i, 2, 4)

second←
modifica(A, n, i, i-1, 3, 2)

If first AND second then

c← c+ 1
EndIf

EndFor

Return c
EndAlgorithm

Algorithm modifica(A, n, r, c, x, nr)

If (r + x− 1 > n) OR (c+ x− 1 > n)
then

Return False

EndIf

For i← r, r + x− 1 execute

For j ← c, c+ x− 1 execute

A[i][j]← A[i][j] ∗ nr
EndFor

EndFor

Return True

EndAlgorithm

Dacă n = 4 s, i matricea init, ială A este

4 8 3 4
2 5 6 8
7 3 2 6
5 3 1 7

, care dintre următoarele afirmat, ii

sunt adevărate ı̂n urma apelului ceFace(A, n)?

A. Suma elementelor de pe diagonala principală ı̂n matricea modificată este 95.

B. În matricea modificată există de două ori mai multe elemente divizibile cu 2 decât
ı̂n matricea init, ială.

C. Valoarea returnată este 1.

D. Suma elementelor de pe diagonala principală ı̂n matricea modificată este 67.

285. ✓ ?Se consideră algoritmul buildMatrix(n, x, m, y), unde n s, i m sunt numere na-
turale (1 ≤ n,m ≤ 100), x s, i y sunt vectori cu n, respectiv m elemente numere ı̂ntregi
(x[1], x[2], ..., x[n], unde −105 ≤ x[i] ≤ 105 pentru i = 1, 2, ..., n s, i y[1], y[2], ..., y[m],
unde −105 ≤ y[j] ≤ 105 pentru j = 1, 2, ...,m). Algoritmul max(a, b) returnează
valoarea maximă dintre numerele a s, i b. Algoritmul zeros(n, m) returnează o matrice
cu n linii s, i m coloane, cu toate elementele egale cu 0.

Algorithm buildMatrix(n, x, m, y)

A← zeros(n, m)

For i← 1, n execute

For j ← 1,m execute

If x[i] = y[j] then

A[i+1][j+1]← A[i][j] + 1
Else

A[i+ 1][j + 1]←
max(A[i][j + 1], A[i+ 1][j])

EndIf

EndFor

EndFor

Return A[n+ 1][m+ 1]
EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. În urma apelului buildMatrix(3,
[3,2,3], 3, [2,3,1]) se returnează
valoarea 2.

B. Algoritmul buildMatrix(n, x, m, y)
returnează valoarea 0 dacă s, i numai
dacă x s, i y au aceeas, i nu au niciun
element comun.

C. Dacă n = m, iar elementele vectoru-
lui y reprezintă o permutare a ele-
mentelor vectorului x, atunci algo-
ritmul buildMatrix(n, x, m, y) va
returna valoarea n.

D. Există date de intrare pentru care va-
loarea returnată de algoritm este egală
cu n + m.

203

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

286. ✓ ?Se consideră algoritmul h(A, n, p), unde n s, i p sunt numere naturale (1 ≤ n, p ≤
103), iar A este un vector cu n elemente numere naturale (A[1], A[2], ..., A[n], unde
1 ≤ A[i] ≤ 100 pentru i = 1, 2, ..., n):

Algorithm h(A, n, p)

t← n+ 1; j ← 1; s← 0
For i← 1, n execute

s← s+A[i]
While s > p execute

If t > i− j + 1 then

t← i− j + 1
EndIf

s← s−A[j]
j ← j + 1

EndWhile

EndFor

Return t
EndAlgorithm

În urma căror apeluri se va returna valoarea
3?

A. h([2, 1, 5, 6, 2, 5], 6, 11)

B. h([2, 1, 5, 6, 2, 5], 6, 10)

C. h([7, 8, 1, 2], 4, 15)

D. h([7, 8, 1, 2], 4, 16)

287. ✓ ?Se consideră algoritmul matrice(mat, n), undemat este o matrice cu n linii s, i n co-
loane (3 ≤ n ≤ 200) cu elemente numere naturale (mat[i][j], unde 0 ≤ mat[i][j] ≤ 103

pentru i = 1, 2, ..., n, j = 1, 2, ..., n). Operatorul ”/” reprezintă ı̂mpărt, irea numerelor
ı̂ntregi (de exemplu 7/2 = 3).

Algorithm matrice(mat, n)

For i← 1, n execute

For j ← 1, n execute ... // (1)

EndFor

EndFor... // (2)

EndAlgorithm

Cu ce instruct, iuni trebuie ı̂nlocuite liniile marcate (1) s, i (2) ı̂n algoritmul matrice(mat,
n) astfel ı̂ncât acesta să returneze media elementelor care nu se află pe diagonale ma-
tricei?

A. (1) if i ̸= j AND i ̸= n− j − 1 then

(2) Return c / (n * n - 2 * n + 1)

B. (1) if i ̸= j OR i+ j ̸= n+ 1 then

(2) Return c / (n * n - 2 * n)

C. (1) if i ̸= j AND i+ j ̸= n+ 1 then

(2) Return c / (n * n - 2 * n + n MOD 2)

D. (1) if i ̸= j AND i ̸= n− j − 1 then

(2) Return c / (n * n - 2 * n + n MOD 2)

288. ✓ ?Se consideră algoritmul f(x, n), unde n este număr natural (2 ≤ n ≤ 103), iar x este
un vector cu n elemente numere naturale (x[1], x[2], ..., x[n], 0 ≤ x[i] ≤ 100 pentru
i = 1, 2, ..., n).

204

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm f(x, n)

left← 1
right← n
g ← True
While left < right execute

max← −1
For i← left, right execute

If x[i] > max then

max← x[i]
pozi← i

EndIf

EndFor

If g then

pozz ← left
left← left+ 1

Else

pozz ← right
right← right− 1

EndIf

If pozi ̸= pozz then

x[pozi]← x[pozz] // (*)

x[pozz]← max
EndIf

g ← NOT g
EndWhile

Return x
EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Fiind dat vectorul x cu n elemente,
apelul f(x, n) returnează acelas, i re-
zultat pentru orice permutare a ele-
mentelor vectorului.

B. Dacă n = 10 s, i x = [1, 2, 3, ..., 10], ı̂n
urma apelului f(x, n) linia marcată
cu (*) se execută de 9 ori.

C. Dacă vectorul x este ordonat
crescător, ı̂n urma apelului f(x,

n) linia marcată cu (*) se execută
de acelas, i număr de ori ca s, i ı̂n
cazul ı̂n care vectorul x este ordonat
descrescător.

D. Dacă n = 100 s, i x = [1, 2, 3, ..., 100],
există o singură permutare a elemen-
telor vectorului x, pentru care ı̂n urma
apelului f(x, n) linia marcată cu (*)
nu este executată.

289. ✓ ?Se consideră algoritmul rezultat(azi, zile), unde azi (1 ≤ azi ≤ 5), este un
număr natural care reprezintă o zi lucrătoare a săptămânii (valoarea 1 corespunde
zilei de luni, valoarea 2 corespunde zilei de mart, i, ..., valoarea 5 corespunde zilei de
vineri, respectiv), iar zile (1 ≤ zile ≤ 100) este un număr natural.

Algoritmul rezultat(azi, zile) returnează ziua lucrătoare ı̂n care este eliberat re-
zultatul unei analize, luând ı̂n considerare timpul de procesare necesar, exprimat ı̂n
zile calendaristice prin valoarea variabilei zile. Analizele sunt procesate ı̂n fiecare zi a
săptămânii, iar rezultatele sunt eliberate ı̂n prima zi lucrătoare ı̂n care sunt disponibile.
Dacă procesarea se ı̂ncheie ı̂ntr-o zi de weekend (sâmbătă sau duminică), rezultatul
este eliberat ı̂n următoarea zi de luni.

De exemplu, ı̂n urma apelului rezultat(2, 1) se va returna valoarea 2 (rezultatul se
eliberează ı̂n aceeas, i zi), iar ı̂n urma apelului rezultat(3, 4) se va returna valoarea 1
(rezultatul se eliberează luni).

Algorithm rezultat(azi, zile)

For i← 2, zile execute

azi← azi+ 1
If azi > 7 then

azi← 1
EndIf

EndFor

If azi ≥ 6 then

azi← 1
EndIf

205

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Return azi
EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Algoritmul rezultatRec(azi, zile) returnează aceeas, i valoare ca s, i algoritmul
rezultat(azi, zile) pentru orice date de intrare.

Algorithm rezultatRec(azi, zile)

If zile = 0 then

If azi > 5 then

Return 1
EndIf

Return azi
EndIf

Return rezultatRec(azi + 1, zile - 1)

EndAlgorithm

B. În urma apelului rezultat(4, 25) se returnează valoarea 1.

C. Algoritmul rezultat2(azi, zile) returnează aceeas, i valoare ca algoritmul rezultat(azi,
zile) pentru orice date de intrare, s, i are o complexitate timp mai mică:

Algorithm rezultat2(azi, zile)

v ← ((azi+ zile− 2) MOD 7) + 1
If v > 5 then

v ← 1
EndIf

Return v
EndAlgorithm

D. Complexitatea timp a algoritmului rezultat(azi, zile) este O(1).

290. ✓ ?Se consideră algoritmul suma(A, n, m, x1, y1, x2, y2) care calculează suma
elementelor dintr-o regiune a matricei A. A este o matrice de dimensiuni n×m (A[1][1],
A[1][2], ...,
A[1][m], A[2][1], ..., A[n][m], unde 2 < n,m < 100, 0 ≤ A[i][j] ≤ 103 pentru i =
1, 2, ...n, j = 1, 2, ...,m). Regiunea de interes dreptunghiulară este definită de coordo-
natele colt,ului din stânga sus (x1, y1) s, i ale colt,ului din dreapta jos (x2, y2), unde
1 ≤ x1 < x2 ≤ n, 1 ≤ y1 < y2 ≤ m. Algoritmul zeros(a, b) returnează o matrice cu a
linii s, i b coloane, unde toate elementele sunt init, ializate cu 0.

206

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm compute(A, n, m)

aux← zeros(n, m)

For i← 1, n execute

For j ← 1,m execute

aux[i][j]← A[i][j]
If j > 1 then

aux[i][j]← aux[i][j] + aux[i][j − 1]
EndIf

If i > 1 then

aux[i][j]← aux[i][j] + aux[i− 1][j]
EndIf

If j > 1 AND i > 1 then

aux[i][j]← aux[i][j]−aux[i−1][j−1]
EndIf

EndFor

EndFor

Return aux
EndAlgorithm

1: Algorithm suma(A, n, m, x1,

y1, x2, y2)

2: aux← compute(A, n, m)

3: S1← 0; S2← 0
4: S3← 0; S4← 0
5: If x1 > 1 AND y1 > 1

then

6: S1← aux[x1− 1][y1− 1]
7: EndIf

8: If x1 > 1 then

9: S2← aux[x1− 1][y2]
10: EndIf

11: If y1 > 1 then

12: S3← aux[x2][y1− 1]
13: EndIf

14: S4← aux[x2][y2]
15:

16: EndAlgorithm

Ce instruct, iune trebuie inserată la linia 14 pentru ca algoritmul suma(A, n, m, x1, y1,
x2, y2) să returneze suma cerută?

A. Return S4 - S2 - S3 + S1

B. Return S4 + S2 + S3 + S1

C. Return S4 - S2 + S3 + S1

D. Return S4 - S2 - S3 - S1

291. ✓ ?Se consideră algoritmul f(n, x), unde n este număr natural (3 ≤ n ≤ 104), iar
x este un vector de n numere naturale (x[1], x[2], ..., x[n], 1 ≤ x[i] ≤ 104 pentru
i = 1, 2, ..., n).

Algorithm f(n, x)

For i← 1, n− 1 execute

x[i + 1] ← (x[i + 1] ∗ x[i]) DIV

g(x[i], x[i+ 1])
EndFor

Return x[n]
EndAlgorithm

Algorithm g(a, b)

If a = b then

Return a
EndIf

If a > b then

Return g(a− b, b)
EndIf

Return g(a, b− a)
EndAlgorithm

Care din următoarele afirmat, ii sunt adevărate?

A. În urma apelului f(5, [12, 16, 8, 40, 24]) se returnează valoarea 240.

B. Numărul total de apeluri al algoritmului g(a, b) este mai mare ı̂n cazul apelului
f(5, [8, 12, 16, 24, 40]) decât ı̂n cazul apelului f(5, [40, 24, 16, 12,

8]).

C. Algoritmul calculează cel mai mare divizor comun al tuturor elementelor din
vectorul x.

D. Pentru un vector x cu n = 10 elemente care cont, ine o singură valoare egală cu
17, restul valorilor fiind egale cu 1, numărul maxim de apeluri ale algoritmului
g(a, b), incluzând s, i apelul init, ial, este 153.

207

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

292. ✓ ?Pentru o partidă de fotbal ı̂ntre echipele A s, i B ı̂n care se ı̂nscriu 3 goluri s, i care se
termină cu scorul de 2 - 1 pentru echipa A, golurile pot fi ı̂nscrise ı̂n 3 succesiuni:

(a) 0− 0, 0− 1, 1− 1, 2− 1

(b) 0− 0, 1− 0, 1− 1, 2− 1

(c) 0− 0, 1− 0, 2− 0, 2− 1

De exemplu, ı̂n succesiunea 1., partida
ı̂ncepe de la scorul de 0−0, ı̂nscrie echipa
B (0 − 1), egalizează echipa A (1 − 1),
s, i ı̂nscrie echipa A (2− 1).

Câte succesiuni posibile există pentru o par-
tidă cu 4 goluri?

A. 4!

B. 16

C. 64

D. 1! + 2! + 3! + 2! + 1!

293. ✓ ?Se consideră algoritmul litere(v, n), unde v este un s, ir de caractere cu n elemente
(1 ≤ n ≤ 100) care sunt majuscule din alfabetul englezesc. Pentru fiecare element
de pe pozit, ia i (1 ≤ i ≤ n) din s, irul de caractere se calculează o valoare S[i] care
reprezintă numărul pozit, iilor j ∈ {1, 2, ..., i} pe care se află litere care sunt ı̂n fat,a
literei v[i] ı̂n alfabet. De exemplu, dacă v = [′E′,′ X ′,′ A′,′ M ′,′ E′,′ N ′], valoarea S[6]
este 4, deoarece doar literele ’E’, ’A’ s, i ’M’ sunt ı̂naintea literei ’N’ ı̂n alfabet. Pentru
tipul caracter, operat, iile de comparat, ie s, i scădere se efectuează pe codul ASCII al
operanzilor.

Care dintre următorii algoritmi returnează suma tuturor valorilor S[i] (i = 1, 2, ..., n)?

A.

Algorithm litere(v, n)

sum← 0
For i← 2, n execute

For j ← 1, i execute

If v[j]−′ A′ > v[i]−′ A′ then

sum← sum+ 1
EndIf

EndFor

EndFor

Return n ∗ (n− 1) DIV 2− sum
EndAlgorithm

C.

Algorithm litere(v, n)

sum← 0
For i← 2, n− 1 execute

For j ← i+ 1, n execute

If v[j]−′ A′ < v[i]−′ A′ then

sum← sum+ 1
EndIf

EndFor

EndFor

Return sum
EndAlgorithm

208

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

B.

Algorithm litere(v, n)

sum← 0
For i← 2, n execute

For j ← 1, i execute

If v[j] < v[i] then

sum← sum+ 1
EndIf

EndFor

EndFor

Return sum
EndAlgorithm

D.

Algorithm litere(v, n)

sum← 0
For i← 1, n execute

For j ← 1, i execute

If v[j] < v[i]−′ A′ then

sum← sum+ (v[i]− v[j])
EndIf

EndFor

EndFor

Return sum
EndAlgorithm

209

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Admitere nivel licent, ă, sesiunea iulie 2025

294. ✓ ?Se consideră algoritmul ceFace(n, x), unde n este număr natural (1 ≤ n ≤ 104),
iar x este un vector cu n elemente numere ı̂ntregi (x[1], x[2], ..., x[n], −100 ≤ x[i] ≤ 100,
pentru i = 1, 2, ..., n).

Care dintre următoarele implementări ale algoritmului ceFace(n, x) returnează cea
mai mare valoare din vectorul x?

A.

Algorithm aux(n, x, i, b)

If i > n then

Return b
EndIf

If b < x[i] then

b← x[i]
EndIf

Return aux(n, x, i + 1, b)

EndAlgorithm

Algorithm ceFace(n, x)

Return aux(n, x, 1, x[1])

EndAlgorithm

C.

Algorithm ceFace(n, x)

i← 1
b← x[i]
While i < n execute

If b < x[i+ 1] then

b← x[i+ 1]
EndIf

i← i+ 1
EndWhile

Return b
EndAlgorithm

B.

Algorithm ceFace(n, x)

i← 1
While i < n execute

If x[i] ≥ x[i+ 1] then

Return False

EndIf

i← i+ 1
EndWhile

Return True

EndAlgorithm

D.

Algorithm ceFace(n, x)

i← 1
b← x[i]
While i < n execute

If b > x[i+ 1] then

b← x[i+ 1]
EndIf

i← i+ 1
EndWhile

Return b
EndAlgorithm

295. ✓ ?Se consideră algoritmii f1(a, b) s, i f2(a, b), unde a s, i b sunt numere naturale
(1 ≤ a, b ≤ 104).

210

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm f1(a, b)

While b ̸= 0 execute

temp← b
b← a MOD b
a← temp

EndWhile

Return a
EndAlgorithm

Algorithm f2(a, b)

Return f1(a, b) = 1
EndAlgorithm

În ce situat, ii returnează True algoritmul
f2(a, b)?

A. Dacă s, i numai dacă numerele a s, i b
sunt numere din s, irul lui Fibonacci.

B. Dacă s, i numai dacă suma cifrelor
numărului a + b este egal cu suma
cifrelor numărului a – b.

C. Dacă s, i numai dacă numărul cifrelor
pare ale numărului a – b este egal cu
numărul cifrelor impare ale numărului
a + b.

D. Dacă s, i numai dacă numerele a s, i b
sunt două numere relativ prime.

296. ✓ ?Se consideră algoritmul f(n), unde n este un număr natural (3 ≤ n ≤ 103).

Algorithm f(n)

If n = 1 then

Return 0

Else

Return (2 ∗ n − 3) ∗ (2 ∗ n − 1) +
f(n− 1)

EndIf

EndAlgorithm

Care dintre sumele date sunt calculate de
algoritmul f(n)?

A.
∑n

k=1(2k − 3)(2k − 1)

B.
∑n−1

k=1(2k − 1)(2k + 1)

C.
∑n−1

k=2(2k − 1)(2k + 1)

D.
∑n

k=2(2k − 3)(2k − 1)

297. ✓ ?Se consideră algoritmul f(x, y), unde x s, i y sunt numere naturale (3 ≤ x, y ≤ 103):

Algorithm f(x, y)

If x = 1 then

Return y
EndIf

If x MOD 2 = 0 then

If x > 0 then

Return f(x DIV 2, y * 2)

Else

Return 0

EndIf

EndIf

Return y+ f(x DIV 2, y * 2)

EndAlgorithm

Care dintre următorii algoritmi retur-
nează aceeas, i valoare ca algoritmul
f(x, y) pentru orice valori ale lui x s, i
y?

211

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

A.

Algorithm a(x, y)

If x = 0 then

Return 0

EndIf

If x MOD 2 = 0 then

Return 2∗ a(x DIV 2, y)

EndIf

Return y+ a(x - 1, y)

EndAlgorithm

C.

Algorithm c(x, y)

If x = 0 then

Return 0

EndIf

Return y+ c(x - 1, y)

EndAlgorithm

B.

Algorithm b(x, y)

If x = 0 then

Return y
EndIf

If x MOD 2 = 0 then

Return b(x DIV 2, y)

EndIf

Return y+ b(x - 1, y)

EndAlgorithm

D.

Algorithm d(x, y)

s← 0
While x > 0 execute

s← s+ y
x← x− 1

EndWhile

Return s
EndAlgorithm

298. ✓ ?Se consideră algoritmul ceFace(x, n), unde n este număr natural (1 ≤ n ≤ 104),
iar x este un vector cu n elemente numere ı̂ntregi (x[1], x[2], ..., x[n], −100 ≤ x[i] ≤ 100,
pentru i = 1, 2, ..., n):

Algorithm ceFace(x, n)

For i← 1, 10 execute

For j ← 1, n− 1 execute

If x[j] > x[j + 1] then

tmp← x[j]
x[j]← x[j + 1]
x[j + 1]← tmp

EndIf

EndFor

EndFor

EndAlgorithm

Care dintre următoarele afirmat, ii vor fi
adevărate după apelul ceFace(x, n)?

A. Prima pozit, ie a vectorului x este ocu-
pată de elementul minim al vectorului.

B. Ultima pozit, ie a vectorului x este ocu-
pată de elementul maxim al vectoru-
lui.

C. Vectorul x este sortat crescător.

D. Dacă n > 10, atunci primele 10 ele-
mente ale vectorului x sunt ordonate
crescător.

299. ✓ ?Se consideră numărul natural n (1 ≤ n ≤ 104) s, i vectorul x cu n elemente numere
naturale (x[1], x[2], ..., x[n], 1 ≤ x[i] ≤ 103, pentru i = 1, 2, ..., n). Algoritmul gcd(a,
b) returnează cel mai mare divizor comun al numerelor naturale a s, i b.

Care din următoarele implementări ale algoritmului gcdVector(x, n) returnează cel
mai mare divizor comun al celor n elemente din vectorul x?

212

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

A.

Algorithm gcdVector(x, n)

If n = 1 then

Return 1

EndIf

Return gcd(x[n], gcdVector(x, n -

1))

EndAlgorithm

C.

Algorithm gcdVector(x, n)

result← gcd(x[1], x[n])

i← 2; j ← n− 1
While i ≤ j execute

result ← gcd(result, gcd(x[i],

x[j]))

i← i+ 1
j ← j − 1

EndWhile

Return result

EndAlgorithm

B.

Algorithm gcdVector(x, n)

result← x[1]
For i← 2, n execute

result← gcd(x[i - 1], x[i])

EndFor

Return result

EndAlgorithm

D.

Algorithm gcdVector2(x, n, i)

If i = n then

Return x[n]

EndIf

Return gcd(x[i], gcdVector2(x, n,

i + 1))

EndAlgorithm

Algorithm gcdVector(x, n)

Return gcdVector2(x, n, 1)

EndAlgorithm

300. ✓ ?Se consideră algoritmul afla(n, x), unde n este număr natural (1 ≤ n ≤ 104), iar
x este un vector cu n elemente numere ı̂ntregi (x[1], x[2], ..., x[n], −100 ≤ x[i] ≤ 100,
pentru i = 1, 2, ..., n):

Algorithm afla(n, x)

M ← x[1]
For i← 1, n execute

For j ← i, n execute

For k ← j, n execute

If M < x[i] + x[j] + x[k] then

M ← x[i] + x[j] + x[k]
EndIf

EndFor

EndFor

EndFor

Return M
EndAlgorithm

Care este complexitatea timp a algorit-
mului?

A. O(3 ∗ n)

B. O(n3)

C. O(n/3)

D. O(log3 n)

301. ✓ ?Se consideră algoritmul ceFace(n), unde n este număr natural (1 ≤ n ≤ 100).
Algoritmul min(a, b) returnează valoarea minimă dintre numerele a s, i b.

213

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm ceFace(n)

c1← 0
c2← 0
For i← 1, n execute

v ← i
While v MOD 2 = 0 execute

c1← c1 + 1
v ← v DIV 2

EndWhile

While v MOD 5 = 0 execute

c2← c2 + 1
v ← v DIV 5

EndWhile

EndFor

Return min(c1, c2)

EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Algoritmul returnează numărul numerelor
pare din intervalul [1, n].

B. Algoritmul returnează numărul numerelor
divizibile cu 5 din intervalul [1, n].

C. Algoritmul returnează numărul de cifre 0
consecutive aflate la finalul sumei primelor
n numere naturale.

D. Niciunul dintre răspunsurile de mai sus nu
este corect.

302. ✓ ?Se dă vectorul x cu n elemente (2 ≤ n ≤ 105) numere ı̂ntregi (x[1], x[2], ..., x[n],
−100 ≤ x[i] ≤ 100, pentru i = 1, 2, ..., n). Algoritmul max(a, b) returnează valoarea
maximă dintre numerele a s, i b.

Care dintre implementările următoare ale algoritmului maxPePozitiePara(x, n) re-
turnează cel mai mare element aflat pe o pozit, ie pară ı̂n vector?

A.

Algorithm maxPePozitiePara(x, n)

maxV al← x[2]
For i← 4, n, 2 execute

If x[i] > maxV al then

maxV al← x[i]
EndIf

EndFor

Return maxVal

EndAlgorithm

C.

Algorithm maxPePozitiePara2(x, n, i)

If i > n then

Return -100

EndIf

maxRest ← maxPePozitiePara2(x,

n, i + 2)

Return max(x[i], maxRest)

EndAlgorithm

Algorithm maxPePozitiePara(x, n)

Return maxPePozitiePara2(x, n, 1)

EndAlgorithm

B.

Algorithm maxPePozitiePara(x, n)

maxV al← −100
For i← 1, n, 2 execute

If x[i] > maxV al then

maxV al← x[i]
EndIf

EndFor

Return maxVal

EndAlgorithm

D.

Algorithm maxPePozitiePara2(x, n, i)

If i > n then

Return -100

EndIf

maxRest ← maxPePozitiePara2(x,

n, i + 2)

Return max(x[i], maxRest)

EndAlgorithm

Algorithm maxPePozitiePara(x, n)

Return maxPePozitiePara2(x, n, 2)

EndAlgorithm

214

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

303. ✓ ?Considerăm următoarele ipoteze ca fiind adevărate:

(a) Ana merge la plimbare doar dacă e soare.

(b) Maria merge la plimbare doar dacă merge s, i Ana.

(c) Dacă e soare, Tudor merge la plimbare.

Care dintre următoarele concluzii se deduc din ipoteze?

A. Dacă Maria merge la plimbare, atunci s, i Tudor merge.

B. Dacă nu e soare, atunci Ana nu merge la plimbare.

C. Dacă e soare, atunci Maria merge la plimbare.

D. Dacă nu e soare, atunci Tudor nu merge la plimbare.

304. ✓ ?Se consideră numărul x = 10000110111(2) dat ı̂n baza 2 s, i numărul y = 11011(4)
dat ı̂n baza 4.

Care este valoarea sumei x+ y ı̂n baza 10?

A. 1079

B. 1404

C. 2285

D. Niciuna din variantele A, B s, i C

305. ✓ ?Se consideră algoritmul ceFace(n, a), unde n este un număr natural (1 ≤ n ≤ 104),
iar a este un vector cu n elemente numere naturale (a[1], a[2], ..., a[n], 1 ≤ a[i] ≤ 109,
pentru i = 1, 2, ..., n).

1: Algorithm ceFace(n, a)

2: m← 0
3: For i← 1, n execute

4: nr ← 1
5: While a[i] > 9 execute

6: nr ← nr ∗ 10
7: a[i]← a[i] DIV 10
8: EndWhile

9: If m < a[i] ∗ nr then

10: m← a[i] ∗ nr
11: EndIf

12: EndFor

13: Return m
14: EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. În urma apelului ceFace(5, [222,

2043, 29, 2, 20035]), algoritmul
returnează valoarea 2000.

B. Indiferent de valorile lui n s, i a, algo-
ritmul ceFace(n, a) returnează un
număr care nu face parte din vectorul
a.

C. În urma apelului ceFace(5, [34,

254, 21, 543, 123]), algoritmul
returnează valoarea 500.

D. Dacă instruct, iunea de pe rândul 10
se execută de n ori, rezultă că vec-
torul a, dat init, ial, era sortat strict
crescător.

306. ✓ ?Construim un graf neorientat ı̂n modul următor: pentru fiecare număr natural n,
astfel ı̂ncât 2 ≤ n ≤ 20, adăugăm un nod etichetat cu acel număr, iar ı̂ntre două
noduri cu etichete x s, i y adăugăm o muchie, dacă y este divizor propriu al lui x.

Care dintre următoarele afirmat, ii sunt adevărate?

A. Graful construit are 5 componente conexe.

215

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

B. Doar nodurile 12, 18 s, i 20 au gradul maxim.

C. Pentru oricare 2 numere neprime x, y (2 ≤ x ≤ y ≤ n), gradul lui x este mai
mare sau egal decât gradul lui y.

D. Există un singur nod cu gradul 1.

307. ✓ ?Se consideră algoritmul ceva(n, v), unde v este un vector de n (10 ≤ n ≤ 105)
numere ı̂ntregi (v[1], v[2], ..., v[n], −10 ≤ v[i] ≤ 10, pentru i = 1, 2, ..., n). Algoritmul
zero(k) returnează un vector cu k elemente, toate egale cu zero.

1: Algorithm ceva(n, v)

2: fr ← zero(21)

3: s← 0
4: For i← 1, n execute

5: If fr[v[i] + 11] = 0 then

6: s← s+ 1
7: EndIf

8: fr[v[i] + 11]← 1
9: EndFor

10: Write s
11: p← 1
12: For i← 1, n execute

13: If fr[v[i] + 11] = 1 then

14: p← p ∗ v[i]
15: fr[v[i] + 11]← 0
16: EndIf

17: EndFor

18: Return p
19: EndAlgorithm

Care din următoarele afirmat, ii sunt
adevărate?

A. Dacă valoarea afis,ată pe linia 10 este
mai mare ca 10, rezultatul returnat
este un număr par.

B. Dacă valoarea afis,ată pe linia 10 este
mai mare ca 11, rezultatul returnat
este un număr negativ.

C. Dacă valoarea afis,ată pe linia 10 este
21, rezultatul returnat este egal cu
(10!)2.

D. Cea mai mare valoare posibilă afis,ată
pe linia 10, pentru care produsul re-
turnat nu se termină cu cifra 0, este
16.

308. ✓ ?Se consideră algoritmul f(x), unde x este număr natural (0 ≤ x ≤ 105).

Algorithm f(x)

If x ≤ 1 then

Return 1

EndIf

Return f(x - 1) + f(x - 2)

EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. În urma apelului f(10) se vor efectua
ı̂n total 177 de apeluri ale algoritmului
f(x), incluzând apelul init, ial.

B. Valoarea returnată ı̂n urma apelului
f(x) face parte din s, irul Fibonacci (1,
1, 2, 3, 5, 8, 13, ...).

C. Valoarea returnată ı̂n urma apelului
f(10) este 89.

D. În urma apelului f(5) se vor efectua
ı̂n total 4 adunări.

309. ✓ ?Se consideră algoritmul ceva(A, n, r, c, nr, x), unde n este număr natural
(1 < n ≤ 10), A este o matrice cu n×n elemente numere naturale (A[1][1], A[1][2], ..., A[n][n]),
r, c, x sunt numere naturale (1 ≤ r, c, x ≤ 10), iar nr este număr ı̂ntreg (−103 ≤ nr ≤
103). Dacă n = 4 s, i init, ial A[3][2] = 5 s, i A[1][4] = 8, care din secvent,ele de apeluri

216

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

de mai jos va modifica elementele matricei A astfel ı̂ncât A[3][2] să fie egal cu 50 s, i
A[1][4] să fie egal cu 16?

Algorithm ceva(A, n, r, c, nr, x)

If (r + x − 1 ≤ n) AND (c + x − 1 ≤ n)
then

For i← r, r + x− 1 execute

For j ← c, c+ x− 1 execute

A[i][j]← A[i][j] ∗ nr
EndFor

EndFor

EndIf

EndAlgorithm

A. ceva(A, n, 3, 2, 5, 1)
ceva(A, n, 2, 1, 4, 3)
ceva(A, n, 3, 3, 16, 2)

B. ceva(A, n, 1, 3, 2, 2)
ceva(A, n, 3, 2, 2, 3)
ceva(A, n, 2, 1, 10, 3)

C. ceva(A, n, 2, 3, 4, 2)
ceva(A, n, 1, 1, 2, 4)
ceva(A, n, 3, 1, 2, 1)
ceva(A, n, 2, 1, 5, 3)

D. Niciuna din secvent,ele de apeluri
nu produce modificarea precizată
ı̂n enunt, .

310. ✓ ?Se consideră algoritmul cauta(x, n, e), unde x este un vector cu n (1 ≤ n ≤ 104)
elemente numere naturale (x[1], x[2], ..., x[n], pentru i = 1, 2, ..., n, 0 ≤ x[i] ≤ 104) s, i e
este un număr natural (1 ≤ e ≤ 104).

Care dintre următorii algoritmi returnează True dacă s, i numai dacă numărul e se
găses,te ı̂n vectorul x?

A.

Algorithm cauta(x, n, e)

g ← False; i← 1
While i ≤ n execute

g ← (x[i] = e)
i← i+ 1

EndWhile

Return g
EndAlgorithm

C.

Algorithm cauta(x, n, e)

c← 0
For i← 1, n execute

If x[i] = e then

c← c+ 1
Else

c← c− 1
EndIf

EndFor

Return n ̸= −c
EndAlgorithm

B.

Algorithm cauta(x, n, e)

g ← False; i← 1
While NOT g AND i ≤ n execute

g ← (x[i] = e)
i← i+ 1

EndWhile

Return g
EndAlgorithm

D.

Algorithm cauta(x, n, e)

g ← False; i← 1
While i ≤ n execute

If x[i] < e + 1 AND x[i] MOD e = 0
then

g ← True

EndIf

i← i+ 1
EndWhile

Return g
EndAlgorithm

311. ✓ ?Se consideră numerele naturale m s, i n (0 ≤ m,n ≤ 10) s, i algoritmul Ack(m, n)

care calculează valoarea funct, iei Ackerman pentru parametrii m s, i n.

217

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm Ack(m, n)

If m = 0 then

Return n+ 1
EndIf

If m > 0 AND n = 0 then

Return Ack(m - 1, 1)

EndIf

If m > 0 AND n > 0 then

Return Ack(m - 1, Ack(m, n -

1))

EndIf

EndAlgorithm

Câte autoapeluri se vor efectua ı̂n urma ape-
lului Ack(1, 4)?

A. Se vor efectua 9 autoapeluri.

B. Acelas, i număr de autoapeluri ca ı̂n
urma apelului Ack(1, 2)

C. Cu 4 autoapeluri mai mult decât ı̂n
urma apelului Ack(1, 2)

D. Se vor efectua 11 autoapeluri.

312. ✓ ?Se consideră algoritmul P(s, n), unde s este un s, ir de n caractere (3 < n ≤ 100).
Algoritmul copy(s, poz, cate) returnează o subsecvent, ă a s, irului s, formată din
cate caractere, ı̂ncepând de la pozit, ia poz, unde 0 ≤ cate ≤ n, respectiv 1 ≤ poz ≤ n−
cate+1. Pentru s, iruri de caractere, operatorul ”+” reprezintă operat, ia de concatenare.

Algorithm P(s, n)

i← n DIV 2
j ← n DIV i
If n MOD 2 = 0 then

s ← copy(s, i, i - 1) +

copy(s, j, j - 1)

Else

s ← copy(s, i, i - 2) +

copy(s, j, j - 2) + copy(s, 1, 1)

EndIf

Return s
EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Dacă s1 s, i s2 sunt două s, iruri de
caractere de lungime n respectiv m,
n ̸= m, ı̂n urma apelurilor P(s1, n) s, i
P(s2, m), algoritmul va returna două
s, iruri de caractere de lungimi diferite.

B. Dacă s, irul de caractere s de lungime n
cont, ine doar caracterele ’a’, ’b’ s, i ’c’,
există 252 de valori distincte pentru
s, pentru care, ı̂n urma apelului P(s,
n), algoritmul va returna s, irul ”ac”.

C. În urma apelului P("concurs de

admitere", 19), algoritmul retur-
nează valoarea ”de admic”.

D. Dacă s, irul de caractere s de lungime n
cont, ine doar caractere ’0’ s, i ’1’, există
72 de valori distincte pentru s, pentru
care, ı̂n urma apelului P(s, n), algo-
ritmul va returna s, irul ”101”.

313. ✓ ?Has,urăm ariile acoperite de două dreptunghiuri A s, i B. Fiecare dreptunghi este
definit de colt,ul său din stânga jos s, i colt,ul din dreapta sus. Pentru dreptunghiul A,
coordonatele sunt (ax1, ay1) s, i (ax2, ay2), iar pentru dreptunghiul B, coordonatele
sunt (bx1, by1) s, i (bx2, by2), 0 ≤ ax1, ay1, ax2, ay2, bx1, by1, bx2, by2 ≤ 104, ax1 <
ax2, ay1 < ay2, bx1 < bx2, by1 < by2. Algoritmii min(a, b) s, i max(a, b) returnează
valoarea minimă, respectiv maximă, dintre două numere a s, i b.

Care dintre algoritmii de mai jos calculează aria suprafet,ei has,urate?

218

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

A.

Algorithm calculArie(ax1, ay1, ax2,

ay2, bx1, by1, bx2, by2)

a1← (ax2− ax1) ∗ (ay2− ay1)
a2← (bx2− bx1) ∗ (by2− by1)
xSup ← max(0, min(ax2, bx2) -

max(ax1, bx1))

ySup ← max(0, min(ay2, by2) -

max(ay1, by1))

aSup← xSup ∗ ySup
arie← a1 + a2− aSup
Return arie

EndAlgorithm

C.

Algorithm calculArie(ax1, ay1, ax2,

ay2, bx1, by1, bx2, by2)

arie← (ax2− ax1) ∗ (ay2− ay1)
If ax2 ≤ bx1 OR bx2 ≤ ax1 OR

ay2 ≤ by1 OR by2 ≤ ay1 then

arie← arie+(bx2−bx1)∗(by2−by1)
EndIf

Return arie

EndAlgorithm

B.

Algorithm calculArie(ax1, ay1, ax2,

ay2, bx1, by1, bx2, by2)

a1← (ax2− ax1) ∗ (ay2− ay1)
a2← (bx2− bx1) ∗ (by2− by1)
If ax2 ≤ bx1 OR bx2 ≤ ax1 OR

ay2 ≤ by1 OR by2 ≤ ay1 then

aSup← 0
Else

xSup ← min(ax2, bx2) -

max(ax1, bx1)

ySup ← min(ay2, by2) -

max(ay1, by1)

aSup← xSup ∗ ySup
EndIf

arie← a1 + a2− aSup
Return arie

EndAlgorithm

D.

Algorithm calculArie(ax1, ay1, ax2,

ay2, bx1, by1, bx2, by2)

a1← (ax2− ax1) ∗ (ay2− ay1)
a2← (bx2− bx1) ∗ (by2− by1)
aSup ← (min(ax2, bx2) - max(ax1,

bx1)) + (min(ay2, by2) - max(ay1,

by1))
arie← a1 + a2− aSup
Return arie

EndAlgorithm

314. ✓ ?Se consideră algoritmul f(A, B, m, n, k), unde m, n s, i k sunt numere naturale
(1 ≤ m,n, k ≤ 100), iarA este un vector cu n elemente numere ı̂ntregi (A[1], A[2], ..., A[n],
unde −100 ≤ A[i] ≤ 100, pentru i = 1, 2, ..., n), iar B este un vector cu n elemente,
toate egale cu zero.

Algorithm f(A, B, m, n, k)

aux← 0
For j ← 1, k − 1 execute

aux← aux+B[j] ∗A[j]
EndFor

If aux = m then

Write "Solutie: "

For j ← 1, k − 1 execute

If B[j] = 1 then

Write A[j], " "

EndIf

EndFor

Write new line

Else

If k ̸= n+ 1 then

For i← 0, 1 execute

B[k]← i

219

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

f(A, B, m, n, k + 1)

EndFor

EndIf

EndIf

EndAlgorithm

Dacă A = [4, 5, 8, 9, 3, 12, 15, 7], ı̂n urma apelului f(A, B, 12, 8, 1) prima solut, ie
afis,ată va fi Solutie: 12.

Care va fi a doua s, i a treia solut, ie afis,ată?

A. Solutie: 4 8
Solutie: 4 5 3

B. Solutie: 4 8
Solutie: 5 7

C. Solutie: 9 3
Solutie: 5 7

D. Solutie: 9 3
Solutie: 4 8

315. ✓ ?Se consideră algoritmul oareCe(n1), unde n1 este număr natural (0 ≤ n1 ≤ 106).

Algorithm oareCe(n1)

n2← 0
While n1 > n2 execute

n3← n1 MOD 10
n2← n2 ∗ 10 + n3
n1← n1 DIV 10

EndWhile

If n1 = n2 then

Return True // (*)

EndIf

Return n1 = (n2 DIV 10)
EndAlgorithm

Care din următoarele afirmat, ii sunt
adevărate?

A. În urma apelului oareCe(1210), algo-
ritmul va returna valoarea False.

B. Apelul oareCe(282) duce la executa-
rea liniei marcate (*)

C. Există 4 valori distincte ale lui n,
număr natural din intervalul [101, 500]
pentru care apelul oareCe(n) duce la
executarea liniei marcate (*).

D. Dacă algoritmul se apelează sub
forma oareCe(((i * 6) DIV 7)

* ((j * 7) DIV (i + j))), unde
i = 1 s, i j = 2, algoritmul returnează
True.

316. ✓ ?Se consideră algoritmul interesant(a, b, c, n), unde c s, i n sunt numere na-
turale (1 ≤ n ≤ 100, 1 ≤ c ≤ 104), iar a s, i b sunt doi vectori de lungime n, cu
elemente numere ı̂ntregi (a[1], a[2], ..., a[n] s, i b[1], b[2], ..., b[n], 1 ≤ a[i], b[i] ≤ 100, pen-
tru i = 1, 2, ..., n). Algoritmul max(x, y) returnează valoarea maximă dintre numerele
x s, i y.

220

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm interesant(a, b, c, n)

If n = 0 OR c = 0 then

Return 0

EndIf

If a[n] > c then

Return interesant(a, b, c, n - 1)

EndIf

x← b[n]+ interesant(a, b, c - a[n], n - 1)

y ← interesant(a, b, c, n - 1)

Return max(x, y)

EndAlgorithm

Ce valoare se retur-
nează ı̂n urma apelului
interesant([2, 3, 1],

[6, 10, 3], 5, 3)?

A. 13

B. 10

C. 16

D. 19

317. ✓ ?Se consideră algoritmul divide(x, y) care calculează câtul ı̂mpărt, irii ı̂ntregi a
numărului x la y, unde x s, i y sunt numere ı̂ntregi (−105 ≤ x, y ≤ 105, y ̸= 0). Operat, ia
a << n deplasează bit, ii numărului a spre stânga cu n pozit, ii, care este echivalent cu
ı̂nmult, irea numărului cu 2n.

Algorithm divide(x, y)

negativ ← 1
If x < 0 then

negativ ← −negativ
x← −x

EndIf

If y < 0 then

negativ ← −negativ
y ← −y

EndIf

cat← 0
While x ≥ y execute

temp← y
multiplu← 1
While x ≥ (temp << 1) execute

temp← temp << 1
... // (1)

EndWhile

x← x− temp
... // (2)

EndWhile

... // (3)

Return cat

EndAlgorithm

Ce instruct, iuni trebuie inserate pe liniile
marcate cu (1), (2) s, i (3) pentru ca algorit-
mul divide(x, y) să returneze rezultatul
corect?

A. (1): multiplu← multiplu << 1
(2): cat← cat+multiplu
(3):

If negativ = −1 then

cat← −cat
EndIf

B. (1): multiplu← multiplu << 1
(2): cat← cat+ 1
(3): cat← −negativ ∗ cat

C. (1): multiplu← multiplu ∗ 2

221

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

(2): cat← cat+ 1
(3): cat← −negativ ∗ cat

D. (1): multiplu← multiplu ∗ 2
(2): cat← cat+multiplu
(3): cat← negativ ∗ cat

222

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Admitere nivel licent, ă, sesiunea septembrie 2024

318. ✓ ?Se consideră algoritmul decide(n, x), unde n este număr natural (1 ≤ n ≤ 104),
iar x este un vector cu n elemente numere ı̂ntregi (x[1], x[2], ..., x[n]), unde −100 ≤
x[i] ≤ 100, pentru i = 1, 2, ..., n):

Algorithm decide(n, x)

b← True

i← 1
While b AND (i < n) execute

b← (x[i] < x[i+ 1])
i← i+ 1

EndWhile

Return b
EndAlgorithm

Pentru care din următoarele situat, ii algoritmul
returnează True?

A. Dacă vectorul x este format din valorile
1, 2, 3, ..., 10

B. Dacă vectorul x este strict crescător

C. Dacă vectorul x nu are elemente negative

D. Dacă vectorul x are elementele negative si-
tuate ı̂naintea celor pozitive

319. ✓ ?Se consideră algoritmul afiseaza(n, a), unde n este număr natural (1 ≤ n ≤ 103),
iar a este un vector cu n elemente numere ı̂ntregi (a[1], a[2], ..., a[n]), unde −100 ≤
a[i] ≤ 100, pentru i = 1, 2, ..., n):

Algorithm afiseaza(n, a)

i← 1; j ← n
While i ≤ j execute

If a[i] < a[j] then

Write a[i], " "

i← i+ 1
Else

Write a[j], " "

j ← j − 1
EndIf

EndWhile

EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Dacă vectorul dat este sortat crescător, valorile
din vector se afis,ează ı̂n ordine descrescătoare.

B. Dacă vectorul dat este sortat descrescător, ul-
timul element afis,at este elementul maxim.

C. Dacă n = 10 s, i a = [0, 2, 4, 6, 8, 10, 8, 6, 4, 2],
valorile din vector se afis,ează ı̂n ordine
crescătoare.

D. Dacă elementul maxim este pe prima pozit, ie,
valorile din vector se afis,ează ı̂n ordine inversă.

320. ✓ ?Care este relat, ia dintre numerele X = 6543(8) ı̂n baza 8 s, i Y = CEF(16) ı̂n baza
16?

A. X > Y B. X < Y C. X ≥ Y D. X = Y

321. ✓ ?Se consideră algoritmul f(n), unde n este număr natural nenul (1 ≤ n ≤ 15).

Algorithm f(n)

x← 10; y ← 13
While n ̸= 0 execute

z ← (x+ y) MOD 2
n← n DIV 2
If z MOD 2 = 0 then

x← (x ∗ 3 + y ∗ 4) MOD z
y ← (y + x) ∗ z

Else

x← x+ 1

223

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

y ← y − 1
EndIf

EndWhile

Return z
EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Algoritmul returnează aceeas, i valoare pentru orice număr natural 1 ≤ n ≤ 15.

B. Algoritmul returnează valori distincte pentru numerele naturale n cu proprietatea
1 ≤ n ≤ 10.

C. Dacă n = 11, algoritmul returnează 0.

D. Dacă schimbăm instruct, iunea de pe linia 10 cu x← x−1, s, i cea de pe linia 11 cu
y ← y + 1 algoritmul returnează aceeas, i valoare ca ı̂n varianta originală pentru
orice număr natural 1 ≤ n ≤ 15.

322. ✓ ?Se consideră algoritmul numere(n, x), unde n este număr natural (1 ≤ n ≤ 104),
iar x este un vector cu n elemente numere ı̂ntregi (x[1], x[2], ..., x[n]), unde −100 ≤
x[i] ≤ 100, pentru i = 1, 2, ..., n):

Algorithm numere(n, x)

i← 1; nr ← n
While i ≤ n execute

If (x[i] MOD 10) MOD 2
= 0 then

nr ← nr + 1
Else

nr ← nr − 1
EndIf

i← i+ 1
EndWhile

Return nr = n
EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Apelul numere(3, [1, 2, 3]) retur-
nează True.

B. Apelul numere(3, [1, -2, 3]) re-
turnează False.

C. Apelul numere(4, [1, 2, 3, -4])

returnează False.

D. Apelul numere(4, [1, 2, 3, 4])

returnează True.

323. ✓ ?Se consideră algoritmul ceFace(v, n), unde v este un vector de n (1 ≤ n ≤ 104)
numere naturale (v[1], v[2], ..., v[n]), unde 1 ≤ v[i] ≤ 104, pentru i = 1, 2, ..., n).

Algorithm ceFace(v, n)

a← 0; b← 1
For i← n, 2,−1 execute

If v[i] = v[i − 1] + 1
then

b← b+ 1
Else

b← 1
EndIf

If b > a then

a← b
EndIf

EndFor

Return a
EndAlgorithm

Ce returnează algoritmul ceFace(v, n)?

A. Lungimea celei mai lungi subsecvent,e formate
din numere consecutive crescătoare din vecto-
rul v.

B. Lungimea celei mai lungi subsecvent,e formate
din numere consecutive descrescătoare din vec-
torul v.

C. Numărul subsecvent,elor crescătoare din vecto-
rul v.

D. Lungimea celei mai lung subs, ir format din nu-
mere consecutive crescătoare din vectorul v.

224

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

324. ✓ ?Se consideră următorul arbore binar:

5

3

2 4

8

6 9

Care dintre următoarele s, iruri de noduri corespund traversării arborelui ı̂n postordine?

A. 2, 3, 4, 5, 6, 8, 9 B. 4, 3, 2, 9, 8, 6, 5 C. 2, 4, 3, 6, 9, 8, 5 D. 9, 6, 8, 5, 3, 2, 4

325. ✓ ?Se consideră algoritmul prelucrare(n, m, x), unde n s, i m sunt numere naturale
(1 ≤ n ≤ 100, 1 ≤ m ≤ 100), iar x este o matrice cu n * m elemente numere
naturale (x[1][1], x[1][2], ..., x[n][m]), unde init, ial x[i][j] = 0, pentru i = 1, 2, ..., n; j =
1, 2, ...,m):

Algorithm prelucrare(n, m, x)

k ← 1; i← k
While i ≤ n execute

j ← k + 1
While j ≤ m execute

If k MOD 2 = 0 then

x[i][j]← k ∗ k
EndIf

Write x[i][j], " "

k ← k + 1; j ← j + 1
EndWhile

i← i+ 1
EndWhile

EndAlgorithm

Ce afis,ează acest algoritm?

A. Un s, ir de n valori.

B. Dacă m este par, un s, ir de valori ı̂n
care valoarea 0 alternează cu valori
care reprezintă pătrate perfecte pare,
iar prima s, i ultima valoare sunt 0.

C. Un s, ir de m - 1 valori.

D. Un s, ir de valori ı̂n care valoarea 0
alternează cu valori care reprezintă
pătrate perfecte impare.

326. ✓ ?Se consideră doi vectori de bit, i, x cu n, s, i y cu m elemente, unde n s, i m sunt
numere naturale nenule (0 < n,m ≤ 64). Elementele vectorilor sunt 0 sau 1. Fie b1

s, i b2 doi bit, i pentru care definim operat, ia op(b1, b2) =

{
1 dacă b1 = b2

0 dacă b1 ̸= b2
. Definim

operat, ia os ca aplicare a operat, iei op pe elementele din x s, i y, dar pornind de la finalul
vectorilor (deci prima dată aplicăm op pe x[n] s, i y[m]). Dacă cei doi vectori au număr
diferit de elemente, elementele de la ı̂nceputul vectorului cu lungime mai mare, care
nu au pereche ı̂n celălalt vector, rămân nemodificate. De exemplu, pentru vectorii
[1, 1, 0, 1, 0] s, i [1, 1, 1, 0], rezultatul operat, iei os va fi [1, 1, 0, 1, 0, 0]. Algoritmul creează
un vector r cu max(n,m) elemente.

225

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

1: Algorithm OperatieSpeciala(x, n, y,

m)

2: length← n
3: lenF← m
4: r ← Zero(m)
5: If m < n then

6: length← m
7: lenF← n
8: r ← Zero(n)
9: EndIf

10: For i← 1, length execute

11: If (x[i] + y[i]) MOD 2 = 0 then

12: r[i]← 0
13: Else

14: r[i]← 1
15: EndIf

16: EndFor

17: For i← length+ 1,m execute

18: r[i]← y[i]
19: EndFor

20: For i← length+ 1, n execute

21: r[i]← x[i]
22: EndFor

23: Return r, lenF

24: EndAlgorithm

Care dintre afirmat, iile de mai jos sunt
adevărate?

A. Algoritmul
OperatieSpeciala(x, n, y,

m) implementează corect operat, ia
os s, i returnează vectorul rezultat
la lungimea lui.

B. Pentru acele date de intrare pen-
tru care instruct, iunile de pe
rândul 18 s, i 21 se execută de
acelas, i număr de ori, rezultatul
returnat este corect.

C. Implementarea ar deveni corectă,
dacă ı̂nlocuim instruct, iunea de
pe rândul 11 cu If (x[n - i] +

y[m - i]) MOD 2 = 0 then

D. Rezultatul algoritmului
OperatieSpeciala(x, n, y,

m) nu este corect, iar vectorul
returnat cont, ine elementele ı̂n
ordine inversă.

327. ✓ ?Se consideră algoritmul ceFace(x, m, y, n), unde x este un s, ir de caractere de
lungime m (1 ≤ m ≤ 100) iar y un s, ir de caractere de lungime n (1 ≤ n ≤ 100), astfel
ı̂ncât m < n.

1: Algorithm ceFace(x, m, y, n)

2: i← 1
3: ok ← True

4: While ok AND i ≤ m execute

5: If i ≤ m AND x[i] ̸= y[i] then

6: ok ← False

7: Else

8: i← i+ 1
9: EndIf

10: EndWhile

11:

12: EndAlgorithm

Ce instruct, iune ar trebui să cont, ină linia 11,
astfel ı̂ncât algoritmul să returneze True ı̂n
cazul ı̂n care s, irul x este prefix al s, irului y?
Exemplu: dacă x = ”abc” s, i y = ”abcd”, x
este prefix al lui y s, i algoritmul returnează
True.

A. Return (i = m) OR (i = n)

B. Return i = m

C. Return i > m

D. Return ok

328. ✓ ?Se consideră o matrice A cu m linii s, i n coloane (A[1][1], A[1][2], ..., A[m][n]), unde
m s, i n sunt numere naturale (1 < m ≤ 25, 1 < n ≤ 25), s, i 1 ≤ A[i][j] ≤ 103, pentru
i = 1, 2, ...,m; j = 1, 2, ..., n.

Care dintre următorii algoritmi returnează suma elementelor de pe coloana k (1 < k ≤
n)?

226

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

A. Algorithm suma(A, m, n, k)

s← 0
For i← n, 1,−1 execute

s← s+A[i][k]
EndFor

Return s
EndAlgorithm

B. Algorithm suma(A, m, n, k)

s← 0; i← 1
While i ≤ m execute

s← s+A[i][k]
i← i+ 1

EndWhile

Return s
EndAlgorithm

C. Algorithm suma(A, m, n, k)

s← 0
For i← 1,m execute

s← s+A[k][i]
EndFor

Return s
EndAlgorithm

D. Algorithm suma(A, m, n, k)

s← 0; k ← 1
While k ≤ n execute

s← s+A[k][k]
k ← k + 1

EndWhile

Return s
EndAlgorithm

329. ✓ ?Se consideră algoritmul F(n), unde n este număr natural nenul (1 ≤ n ≤ 106).
Algoritmul sqrt(n) returnează radicalul lui n s, i are complexitatea O(1). Notat, ia [a]
reprezintă partea ı̂ntreagă a valorii lui a. Operatorul ”/” reprezintă ı̂mpărt, irea reală,
de exemplu: 3 / 2 = 1.5.

Algorithm F(n)

If n = 1 then

Return 1
EndIf

i← [n/sqrt(n)]
Return 1 + F (i)

EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Algoritmul F(n) are complexitatea timp O(log log n).

B. În urma apelului F(200) se obt, ine valoarea 4.

C. În urma apelului F(250) se obt, ine valoarea 5.

D. Algoritmul F(n) are complexitatea timp O(1).

330. ✓ ?Se consideră algoritmul check(n, x), unde n este număr natural (1 ≤ n ≤ 104), iar
x este un vector cu n elemente numere ı̂ntregi (x[1], x[2], ..., x[n],−100 ≤ x[i] ≤ 100,
pentru i = 1, 2, ..., n):

227

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm check(n, x)

If n < 3 then

Return False

EndIf

p← select(n, x)
If p = 1 OR p = n then

Return False

EndIf

For i← 2, p execute

If x[i] ≥ x[i− 1] then

Return False

EndIf

EndFor

For i← p+ 1, n− 1 execute

If x[i] ≥ x[i+ 1] then

Return False

EndIf

EndFor

Return True

EndAlgorithm

Algorithm select(n, x)

r ← 0
v ← x[1]
For i← 2, n execute

If x[i] < v then

r ← i
v ← x[i]

EndIf

EndFor

Return r
EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Dacă vectorul x este ordonat des-
crescător s, i are cel put, in 3 elemente,
algoritmul check(n, x) returnează
True.

B. Dacă vectorul x =
[12, 10, 8, 5, 9, 11, 15, 18] s, i n = 8
algoritmul check(n, x) returnează
True.

C. Dacă vectorul x =
[20, 10, 5, 1, 2, 4, 6, 10, 8] s, i n = 9
algoritmul check(n, x) returnează
False.

D. Dacă vectorul x este ordonat strict
crescător s, i are cel put, in 3 elemente,
algoritmul check(n, x) returnează
True.

331. ✓ ?Se consideră algoritmul f(x, n), unde n este număr natural (3 ≤ n ≤ 104), iar
x este un vector de n numere naturale (x[1], x[2], ..., x[n], 1 ≤ x[i] ≤ 104, pentru
i = 1, 2, ..., n). Prin [] s-a notat un vector vid, iar prin [a, b] s-a notat un vector cu 2
elemente a s, i b.

228

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm f(x, n)

If n < 2 then

Return []

EndIf

If n = 2 then

If x[1] > x[2] then

Return [x[1], x[2]]
Else

Return [x[2], x[1]]
EndIf

EndIf

y ← f(x, n− 1)
If x[n] > y[1] then

Return [x[n], y[1]]
Else

If x[n] > y[2] then

Return [y[1], x[n]]
Else

Return y
EndIf

EndIf

EndAlgorithm

Ce va returna algoritmul pentru apelul
f([4, 15, 5, 8, 10, 18, 16, 19, 1,

12], 10)?

A. [19, 18]

B. [18, 19]

C. [16, 19]

D. [19, 16]

332. ✓ ?Se consideră algoritmul numere(x, n, e), unde n este număr natural (1 ≤ n ≤
104), x este un vector cu n elemente numere ı̂ntregi (x[1], x[2], ..., x[n],−100 ≤ x[i] ≤
100, pentru i = 1, 2, ..., n), iar e este valoarea unui element din vector:

Algorithm numere(x, n, e)

i← 1
c← 0
b← True

If n MOD 2 = 0 then

Return False

EndIf

While (i ≤ n) AND b execute

If x[i] < e then

c← c+ 1
Else

b← False

EndIf

i← i+ 1
EndWhile

Return c = (n− i+ 1)
EndAlgorithm

În care din următoarele situat, ii returnează
algoritmul True?

A. Dacă vectorul are număr par de ele-
mente s, i este ordonat descrescător
până la elementul cu valoarea e inclu-
siv, care se află pe pozit, ia n DIV 2.

B. Dacă vectorul are număr impar de ele-
mente s, i este ordonat strict crescător
până la elementul cu valoarea e inclu-
siv, care se află pe pozit, ia n DIV 2+1.

C. Dacă vectorul are număr impar de
elemente s, i este ordonat descrescător
până la elementul cu valoarea e inclu-
siv, care se află pe pozit, ia n DIV 2+1.

D. Dacă vectorul are număr impar de ele-
mente, iar valoarea e se găses,te pe
pozit, ia n DIV 2 + 1 s, i ı̂nainte de e
sunt doar valori mai mici, iar după e
sunt doar valori mai mari.

333. ✓ ?Care dintre algoritmii următori afis,ează reprezentarea numărului a ı̂n baza b, unde
a, b sunt numere naturale date ı̂n baza 10 (1 ≤ a ≤ 104, 2 ≤ b ≤ 9, a > b)?

229

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

A. Algorithm afiseaza(a, b)

If a ̸= 0 then

Write a MOD b
afiseaza(a DIV b, b)

EndIf

EndAlgorithm

B. Algorithm afiseaza(a, b)

If a ̸= 0 then

afiseaza(a DIV b, b)

Write a MOD b
EndIf

EndAlgorithm

C. Algorithm afiseaza(a, b)

While a > 0 execute

Write a MOD b
a← a DIV b

EndWhile

EndAlgorithm

D. Algorithm afiseaza(a, b)

nrNou← 0
putere← 1
While a > 0 execute

nrNou← nrNou+
(a MOD b) ∗ putere

a← a DIV b
putere← putere ∗ b

EndWhile

Write nrNou
EndAlgorithm

334. ✓ ?Se consideră algoritmul f(x, y), unde x s, i y sunt două numere naturale (1 ≤ x ≤
100, 1 ≤ y ≤ 100).

Algorithm f(x, y)

If x = y then

Write "start: "

Else

If x MOD y = 0 then

f(x+ 1, y + 2)
Else

If (x DIV y) MOD 2
= 0 then

f(x+ 2, y + 1)
Write "∗"

Else

f(x− 1, y + 1)
Write "#"

EndIf

EndIf

EndIf

EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Ca urmare a apelurilor f(12, 15) s, i
f(8, 12) nu se afis,ează acelas, i s, ir de
caractere

B. Ca urmare a apelurilor f(15, 12) s, i
f(12, 8) se afis,ează acelas, i s, ir de ca-
ractere

C. Ca urmare a apelului f(17, 23) nu se
afis,ează niciun caracter ”#”

D. Ca urmare a apelului f(23, 17) s, irul
de caractere afis,at cont, ine cel put, in un
caracter ”#”

335. ✓ ?Se consideră algoritmul decide(n, x, t), unde x este un vector de n numere
naturale (2 ≤ n ≤ 104, 1 ≤ x[i] ≤ 104, pentru i = 1, 2, ..., n) iar t este un număr
natural (1 ≤ t ≤ 104).

230

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm decide(n, x, t)

left← 1; right← n
While x[left] + x[right] ̸= t execute

If x[left] + x[right] < t then

left← left+ 1
Else

right← right− 1
EndIf

EndWhile

Return left, right
EndAlgorithm

În care dintre următoarele situat, ii algo-
ritmul decide(n, x, t) determină indicii
left, right (1 ≤ left < right ≤ n) astfel
ı̂ncât x[left] + x[right] = t?

A. Dacă s, i numai dacă vectorul x cont, ine
numere distincte.

B. Dacă s, i numai dacă vectorul x este or-
donat crescător.

C. Dacă vectorul x este ordonat des-
crescător s, i cont, ine numere distincte.

D. Dacă vectorul x este ordonat crescător
s, i ı̂n vector există cel put, in o pereche
de elemente având suma t.

336. ✓ ?Se consideră algoritmul perechi(x, y), unde x s, i y sunt numere naturale nenule
(1 ≤ x, y ≤ 100):

Algorithm perechi(x, y)

nr ← 0; d← 2
While d ≤ x AND d ≤ y execute

If (x MOD d = 0) AND

(y MOD d = 0) then

nr ← nr + 1
x← x DIV d
y ← y DIV d

Else

d← d+ 1
EndIf

EndWhile

Write nr, " ", x, " ", y
EndAlgorithm

În care dintre următoarele variante de
răspuns avem doar perechi de numere
(x, y) pentru care algoritmul perechi(x,

y) afis,ează valorile 1 7 11?

A. (14, 22), (21, 33), (35, 55), (49, 77)

B. (7, 11), (14, 22), (21, 33), (28, 44)

C. (1, 7), (1, 11)

D. (2, 2), (3, 3), (4, 4), (5, 5)

337. ✓ ?Se consideră algoritmul first(x, n), unde n este un număr natural nenul (2 ≤ n ≤
104), iar x este un vector de n numere naturale (x[1], x[2], ..., x[n], unde 1 ≤ x[i] ≤ 104,
pentru i = 1, 2, ..., n).

1: Algorithm first(x, n)

2: f1← False

3: f2← False

4: For i← 1, n execute

5: If x[i] = 1 then

6: f1← True

7: EndIf

8: If x[i] = n then

9: f2← True

10: EndIf

11: If x[i] ≥ n then

12: x[i]← 1
13: EndIf

14: EndFor

231

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

15: If NOT f1 then

16: Return 1
17: EndIf

18: For i← 1, n execute

19:

20: EndFor

21: If f2 then

22: x[n]← n
23: EndIf

24: For i← 1, n execute

25: If then

26: Return i
27: EndIf

28: EndFor

29: Return n+ 1
30: EndAlgorithm

Cu ce ar trebui ı̂nlocuite liniile 19 s, i 25, astfel ı̂ncât algoritmul să returneze cel mai
mic număr natural nenul care nu se află ı̂n vectorul x?

A. 19: x[x[i] MOD (n+ 1)]← x[x[i] MOD (n+ 1)] + n
25: x[i] DIV (n+ 1) = 0

B. 19: x[x[i] MOD n]← x[x[i] MOD n] + n
25: x[i] DIV n = 0

C. 19: x[x[i] MOD n]← 1
25: x[i] = 1

D. 19: x[x[i] MOD n]← x[x[i] MOD n] + n
25: x[i] MOD n = 0

338. ✓ ?Se consideră algoritmul ceFace(arr, n) unde arr este un vector cu n (1 ≤ n ≤ 100)
elemente numere ı̂ntregi (arr[1], arr[2], ..., arr[n], unde − 105 ≤ arr[i] ≤ 105, pentru
i = 1, 2, ..., n).

Algorithm ceFace(arr, n)

sum← 0
For i← 1, n execute

sum← sum+ arr[i]
EndFor

If sum MOD 2 ̸= 0 then

Return False

EndIf

Return

auxiliar(arr, n, sum DIV 2)

EndAlgorithm

Algorithm auxiliar(arr, n, sum)

If sum = 0 then

Return True

EndIf

If n = 1 AND sum ̸= 0 then

Return False

EndIf

If arr[n− 1] > sum then

Return auxiliar(arr, n - 1, sum)

EndIf

Return auxiliar(arr, n - 1, sum) OR

auxiliar(arr, n - 1, sum - arr[n - 1])

EndAlgorithm
Care din următoarele afirmat, ii sunt adevărate?

A. Apelul ceFace([11, 5, 6, 22, 0, 7, 6, 13], 8) returnează True.

B. Apelul ceFace([-5, -6, -22, -7, -6, -13], 6) NU returnează True.

C. Dacă vectorul arr cont, ine doar valori negative, algoritmul auxiliar(arr, n,

sum) va intra ı̂n ciclu infinit.

232

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

D. Dacă s, i numai dacă elementele din arr pot fi partit, ionate ı̂n două mult, imi astfel
ı̂ncât media elementelor din cele două mult, imi să fie egală, algoritmul ceFace(arr,
n) returnează True.

339. ✓ ?Se consideră algoritmul f(n, x), unde n este număr natural (3 ≤ n ≤ 104), iar x
este un vector de n numere naturale (x[1], x[2], ..., x[n], unde 1 ≤ x[i] ≤ 104, pentru
i = 1, 2, ..., n):

Algorithm f(n, x)

s1← h(n, x)
For i← 1, 2 ∗ n execute

x[((i+ 1) MOD n) + 1]←
g(x[(i MOD n) + 1],
x[((i+ 1) MOD n) + 1])

EndFor

s2← h(n, x)
Return x[n]

EndAlgorithm

Algorithm g(a, b)

If a ∗ b = 0 then

Return a+ b
EndIf

If a = b then

Return a
EndIf

If a > b then

Return g(a− b, b)
EndIf

Return g(a, b− a)
EndAlgorithm

Algorithm h(n, x)

s← 0
For i← 1, n execute

s← s+ x[i]
EndFor

Return s
EndAlgorithm

Care din următoarele afirmat, ii sunt
adevărate?

A. În cazul apelului f(6, [12, 16, 80,

40, 28, 144]) algoritmul returnează
valoarea 4.

B. Pentru orice vector de intrare, valoa-
rea s1 (calculată pe rândul 2 din algo-
ritmul f(n, x)) va fi strict mai mare
ca valoarea s2 (calculată pe rândul 6
din algoritmul f(n, x)).

C. Dacă ı̂n algoritmul f(n, x) ı̂nlocuim
instruct, iunile de de pe liniile 3, 4 s, i 5
cu secvent,a de mai jos, la finalul exe-
cutării algoritmului f(n, x) vectorul
x va avea acelas, i cont, inut ca ı̂n algo-
ritmul original.

For j ← 1, 2 execute

For i← 1, n− 1 execute

x[i+ 1]← g(x[i], x[i+ 1])
EndFor

EndFor

D. Există vector de intrare cu n elemente
pentru care complexitatea timp a al-
goritmului f(n, x) este O(n).

340. ✓ ?Se consideră un număr natural nenul par n (2 ≤ n ≤ 12). Dorim să generăm ı̂n
s, irul de caractere x toate s, irurile formate din n paranteze rotunde care se deschid s, i
se ı̂nchid corect. Algoritmul paranteze(i, desc, inc, x, n) se apelează sub forma
paranteze(2, 1, 0, x, n), s,tiind că au avut loc init, ializările x[1] ← ’(’ s, i x[n]
← ’)’. Algoritmul afisare(n, x) afis,ează s, irul de caractere x de lungime n.

233

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

1: Algorithm paranteze(i, desc, inc,

x, n)

2: If i = n then

3: afisare(n, x)

4: Else

5: If then

6: x[i]← ’(’

7: paranteze(i + 1, desc +

1, inc, x, n)

8: EndIf

9: If then

10: x[i]← ’)’

11: paranteze(i + 1, desc,

inc + 1, x, n)

12: EndIf

13: EndIf

14: EndAlgorithm

Cu ce ar trebui completate liniile precizate
mai jos, astfel ı̂ncât algoritmul să afis,eze
doar s, irurile de caractere corecte conform
cerint,ei?

A. Linia 5 trebuie completată cu desc <

n, iar linia 9 trebuie completată cu inc

< desc

B. Linia 5 trebuie completată cu desc <

n DIV 2, iar linia 9 trebuie comple-
tată cu inc < desc

C. Linia 5 trebuie completată cu desc <

n, iar linia 9 trebuie completată cu inc

< n DIV 2

D. Indiferent de comparat, iile cu care se
completează liniile 5 s, i 9, algoritmul
nu va afis,a toate s, irurile de caractere
conforme cerint,ei.

341. ✓ ?La ora de educat, ie fizică n copii stau unul lângă altul, cu fat,a către profesorul lor

când acesta le cere să se ı̂ntoarcă tot, i la stânga. Încă o dată când se ı̂ntorc cu fat,a către
profesor. Într-o unitate de timp, tot, i copiii se vor ı̂ntoarce ı̂ntr-o direct, ie. Dacă un
copil se ı̂ntoarce la stânga, el va face acest lucru (̂ıntorcându-se cu 180°), fiecare copil
făcând câte un ı̂ntoarce. Mis,carea copiilor continuă până nu mai sunt copii situat, i fat, ă
ı̂n fat, ă. Precizăm că ı̂n urma acestui proces, algoritmul intoarceri(n, c) determină
numărul unităt, ilor de timp t care trebuie până când nu mai sunt copii situat, i fat, ă ı̂n
fat, ă. Variabila n este număr natural nenul (1 ≤ n ≤ 100), iar s, irul de caractere c are n
elemente, unde c[i] este fie ’s’ (reprezentând stânga), fie ’d’ (reprezentând dreapta)
ı̂n funct, ie de direct, ia ı̂n care se ı̂ntorc copiii după comanda profesorului. Exemplu:
dacă n = 6 s, i c = ”sdsssd” atunci t = 3; dacă n = 3 s, i c = ”sdd” atunci t = 0.
Algoritmul copiza(c, n) returnează o copie a vectorului c cu n elemente.

Care din următoarele algoritmi intoarceri(n, c) determină numărul unităt, ilor de
timp t corect?

A.

Algorithm intoarceri(n, c)

t← 0; aux← copiza(c, n); ok ← False

While NOT ok execute

ok ← True

For i← 1, n− 1 execute

If (aux[i] =′ d′) AND (aux[i+ 1] =′ s′) then

c[i]←′ s′; c[i+ 1]←′ d′

ok ← False

EndIf

EndFor

aux← copiza(c, n)

If NOT ok then

t← t+ 1
EndIf

234

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

EndWhile

Return t
EndAlgorithm

B.

Algorithm intoarceri(n, c)

stop← False; t← 0
While NOT stop execute

stop← True

i← 1
While i < n execute

If (c[i] =′ d′) AND (c[i+ 1] =′ s′) then

c[i]←′ s′; c[i+ 1]←′ d′

i← i+ 2
stop← False

Else

i← i+ 1
EndIf

EndWhile

If NOT stop then

t← t+ 1
EndIf

EndWhile

Return t
EndAlgorithm

C. Algorithm intoarceri(n, c)

t← 0; dr ← 0; st← 0
For i← 1, n execute

If c[i] =′ d′ then

If dr > 0 then

t← t+ st
st← st+ 1

Else

dr ← dr + 1
EndIf

Else

If st > 0 then

t← t+ dr
dr ← dr + 1

Else

st← st+ 1
EndIf

EndIf

EndFor

Return t
EndAlgorithm

D. Algorithm intoarceri(n, c)

t← 0; dr ← 0; st← 0
For i← 1, n execute

If c[i] =′ d′ then

If st > 0 then

t← t+ st
st← st− 1

Else

235

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

dr ← dr + 1
EndIf

Else

If dr > 0 then

t← t+ dr
dr ← dr − 1

Else

st← st+ 1
EndIf

EndIf

EndFor

Return t
EndAlgorithm

236

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Admitere nivel licent, ă, sesiunea iulie 2024

342. ✓ ?Se consideră algoritmul ceFace(A, m, n), unde m este număr natural (1 ≤ m ≤
100), iar A este un vector cu m elemente numere ı̂ntregi (A[1], A[2], ..., A[m],−105 ≤
A[i] ≤ 105, pentru i = 1, 2, ...,m), iar n este un număr natural (n ≤ m):

Algorithm ceFace(A, m, n)

For i← 1 , n execute

min idx← i
For j ← i+ 1 ,m execute

If A[min idx] > A[j] then

min idx← j
EndIf

EndFor

aux← A[i]
A[i]← A[min idx]
A[min idx]← aux

EndFor

EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii
sunt adevărate:

A. Dacă n = m, atunci după execu-
tarea algoritmului ceFace(A, m, n)

elementele vectorului vor fi ordonate
crescător.

B. Dacă n = m, atunci după execu-
tarea algoritmului ceFace(A, m, n)

elementele vectorului vor fi ordonate
descrescător.

C. Dacă A = [4, 64, 1, 25, 12, 22, 2, 11]
n = 2 s, i m = 8, după executarea algo-
ritmului ceFace(A, m, n) cel put, in
primele 3 elemente din vectorul A vor
fi ordonate crescător.

D. Dacă n < m, după executarea algorit-
mului ceFace(A, m, n) cel put, in pri-
mele n+1 elemente din vectorul A vor
fi ordonate crescător.

343. ✓ ?Se consideră algoritmul h(n, a), unde n este un număr natural (1 ≤ n ≤ 103) s, i
a este un vector cu n elemente numere ı̂ntregi (a[1], a[2], ..., a[n]), unde −100 ≤ a[i] ≤
100, pentru i = 1, 2, ..., n):

Algorithm h(n, a)

If n = 1 then

Return a[n]
Else

If a[n] > a[n− 1] then

a[n− 1]← a[n]− a[n− 1]
Else

a[n− 1]← a[n] + a[n− 1]
EndIf

Return h(n− 1, a)
EndIf

EndAlgorithm

Pentru ce valori ale numărului n s, i a vecto-
rului a apelul h(n, a) va returna valoarea
1?

A. n = 6, a = [1, 2, 3, 4, 5, 6]

B. n = 6, a = [6, 5, 4, 3, 2, 1]

C. n = 5, a = [1, 5, 4, 2, 3]

D. n = 2, a = [1, 2]

344. ✓ ?Se consideră expresia

E = (x MOD 3 = 0) OR ((y < x) OR NOT ((y ∗ 3) MOD 7 ≤ 3))

Care este valoarea expresiei, dacă x = 10 s, i y = 41?

237

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

A. True

B. False

C. Aceeas, i valoare ca expresia E1, unde E1 = NOT ((y MOD 3 = 0) OR ((x <
y) OR NOT ((x ∗ 3) MOD 7 ≤ 3)))

D. Aceeas, i valoare ca expresia E2, unde E2 = (x MOD 3 = 0) OR ((x < y) AND
((y ∗ x) MOD 3 ≤ 7))

345. ✓ ?Ion implementează următorul algoritm pentru a verifica dacă numărul natural nr
(0 < nr < 106) este prim.

Algorithm prim(nr)

If nr < 2 then

Return False
EndIf

If (nr > 2) AND

(nr MOD 2 = 0) then

Return False
EndIf

d← 3
While d ∗ d < nr execute

If nr MOD d = 0 then

Return False
EndIf

d← d+ 2
EndWhile

Return True
EndAlgorithm

Ion testează corectitudinea algorit-
mului pe numerele din mult, imea
M = {2, 3, 4, 5, 10, 11, 13}. Care dintre
următoarele afirmat, ii sunt adevărate?

A. Algoritmul este corect s, i returnează
rezultat corect atât pentru numerele
din M , cât s, i pentru orice alt număr
conform specificat, iilor.

B. Algoritmul este incorect, dar retur-
nează rezultat corect pentru numerele
din M .

C. Algoritmul este incorect, s, i returnează
rezultat incorect pentru toate nume-
rele din M .

D. Algoritmul este incorect, dar retur-
nează rezultat corect pentru cel put, in
un număr din M s, i rezultat incorect
pentru cel put, in un alt număr din M .

346. ✓ ?Se consideră algoritmul f(n, x), unde n este număr natural (1 ≤ n ≤ 104), iar x este
un vector cu n elemente numere ı̂ntregi (x[1], x[2], ..., x[n],−200 ≤ x[i] ≤ 200, pentru
i = 1, 2, ..., n):

Algorithm f(n, x)

a← True

i← 1
While a AND

(i < n) execute

a← (x[i] > x[i+ 1])
i← i+ 1

EndWhile

Return a
EndAlgorithm

Pentru care din următoarele date de intrare algorit-
mul f(n, x) returnează True?

A. Pentru orice vector care cont, ine elementele po-
zitive urmate de elementele negative

B. Pentru orice vector strict descrescător

C. Pentru orice vector care nu cont, ine elemente
pozitive

D. Pentru vectorul x = [5, 4, 3, 2, 1, 0,−1,−2,−3,
− 4,−5] s, i n = 11

347. ✓ ?Fie expresia E = AB(16) + 120(3) − 120(4), unde notat, ia x(b) semnifică numărul x
scris ı̂n baza b.

238

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Care valoare corespunde expresiei E?

A. 162(10) B. 278(8) C. 1000101(2) D. 242(8)

348. ✓ ?Se consideră algoritmul f(a, b), unde a s, i b sunt numere naturale nenule (0 < a, b <
104).

Algorithm f(a, b)

If a = 0 then

Return b
EndIf

x← f(a− 1, b+ 1)
Return f(a− 1, x− 2)

EndAlgorithm

Care este cel mai mic număr natural a pentru care
ı̂n urma apelului f(a, 15) algoritmul returnează un
număr strict negativ?

A. 3 B. 4 C. 5 D. 6

349. ✓ ?Se consideră algoritmul compute(n), unde n este număr natural (1 ≤ n ≤ 104).

Algorithm compute(n)

x← 0
While n > 0 execute

If n MOD 2 = 1 then

x← x+ 1
EndIf

n← n DIV 2
EndWhile

Return x
EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Dacă n este impar, algoritmul compute(n)
returnează o valoare mai mare decât 1.

B. Algoritmul compute(n) returnează suma ci-
frelor din reprezentarea lui n ı̂n baza 2.

C. Algoritmul compute(n) returnează numărul
divizorilor impari (proprii s, i improprii) ai
numărului natural n.

D. Algoritmul compute(n) returnează numărul
de bit, i 1 din reprezentarea lui n ı̂n baza 2.

350. ✓ ?Se consideră algoritmul f(p, q, r), unde p, q s, i r sunt valori booleene:

Algorithm f(p, q, r)

While (p AND (NOT r))
OR (NOT q) execute

Write (q AND (p OR r))
p← NOT p
r ← q OR p

EndWhile

EndAlgorithm

Care din următoarele afirmat, ii sunt
adevărate pentru apelul f(True, False,

True)?

A. Algoritmul intră ı̂n ciclu infinit,
afis, ând False ı̂n mod repetat.

B. Algoritmul nu afis,ează nimic.

C. Algoritmul afis,ează valoarea False o
singură dată.

D. Algoritmul afis,ează valorile False True
False.

239

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

351. ✓ ?Se consideră următorul arbore binar:

1

2

4 5

3

Care dintre următoarele s, iruri de noduri
corespund traversării arborelui ı̂n preor-
dine?

A. 1, 2, 4, 5, 3

B. 4, 2, 5, 1, 3

C. 1, 2, 3, 4, 5

D. 4, 5, 2, 3, 1

352. ✓ ?Se consideră algoritmul mark(n, m, a), unde n s, i m sunt numere naturale nenule
(1 ≤ n,m ≤ 10), iar a este un vector de numere naturale cu n elemente (a[1], a[2], ...,
a[n]). Algoritmul tuple(i, j, k), unde i, j s, i k sunt numere naturale nenule (1 ≤ i, j, k ≤
10) returnează True sau False.

Algorithm mark(n, m, a)

a[1]← 1
For i← 2, n execute

a[i]← 0
EndFor

ready ← False
While NOT ready execute

ready ← True
For i← 1, n execute

For j ← 1, n execute

For s← 1,m execute

If a[i] = 1 AND

tuple(i, s, j) AND

a[j] = 0 then

a[j]← 1
ready ← False

EndIf

EndFor

EndFor

EndFor

EndWhile

EndAlgorithm

Presupunem că pentru toate tripletele
de mai jos algoritmul tuple(i, j, k) re-
turnează True. Pentru care perechi de
triplete va fi efectul apelului mark(3, 3,
a) acela de setare a tuturor elementelor
vectorului a la valoarea 1?

A. (1, 1, 2) s, i (2, 2, 3)

B. (1, 1, 2) s, i (3, 2, 2)

C. (1, 2, 2) s, i (1, 3, 3)

D. (1, 2, 2) s, i (3, 3, 1)

353. ✓ ?Se consideră o matrice mat cu n linii s, i n coloane (1 ≤ n ≤ 200,mat[1][1], . . . ,mat[1][n],
mat[2][1], . . . ,mat[2][n], . . . ,mat[n][1], . . . ,mat[n][n]) s, i algoritmul matrice(mat, n).

240

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm matrice(mat, n)

k ← 1
For i← 1, n execute

For j ← 1, n execute

mat[i][j]← k
k ← k ∗ (−1)

EndFor

EndFor

Return mat
EndAlgorithm

Care din afirmat, iile de mai jos sunt adevărate pen-
tru matricea returnată ı̂n urma apelului matrice(mat,
n)?

A. Dacă n = 31, produsul elementelor de pe dia-
gonala principală este 1.

B. Dacă n = 32, produsul elementelor de pe prima
linie este 1.

C. Dacă n = 127, elementul de pe ultima linie s, i
ultima coloană este -1.

D. Dacă n = 128, suma elementelor de pe prima
coloană este 1.

354. ✓ ?Se consideră algoritmul modifica(n, a), unde n este număr natural (1 ≤ n ≤ 103),
iar a este un vector cu n elemente numere ı̂ntregi (a[1], a[2], ..., a[n],−100 ≤ a[i] ≤
100, i = 1, ..., n):

Algorithm modifica(n, a)

x← a[n]
i← 0
For j ← 1, n− 1 execute

If a[j] ≤ x then

i← i+ 1
t← a[i]
a[i]← a[j]
a[j]← t

EndIf

EndFor

t← a[i+ 1]
a[i+ 1]← a[n]
a[n]← t
Return a

EndAlgorithm

Care din afirmat, iile de mai jos sunt adevărate?

A. Dacă vectorul a este sortat crescător, acesta
va rămâne sortat crescător la terminarea exe-
cutării algoritmului.

B. Dacă vectorul a este sortat strict descrescător,
atunci ı̂n vectorul returnat de algoritm elemen-
tul maxim va fi pe ultima pozit, ie.

C. În vectorul returnat de algoritm, elementul ma-
xim va fi ı̂ntotdeauna pe ultima pozit, ie.

D. Dacă n = 100, iar elementele din vectorul a
au proprietatea că a[i] = i MOD 2, pentru
i = 1, 2, ..., n, atunci la terminarea executării
algoritmului vectorul va fi sortat crescător.

355. ✓ ?Se consideră algoritmul f(v, n), unde n este număr natural (2 ≤ n ≤ 104) s, i v este un
vector cu n numere naturale (v[1], v[2], ..., v[n], 1 ≤ v[i] ≤ 103, pentru i = 1, 2, ..., n).

241

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm f(v, n)

a← 0; b← 0; i← 1
While i < n execute

If v[i] mod 3 = 0 then

a← a+ v[i]
b← b+ 1

EndIf

i← i+ 1
EndWhile

If b = 0 then

Return 0
EndIf

i← 0
While a ≥ b execute

a← a− b
i← i+ 1

EndWhile

Return i
EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Algoritmul returnează media aritmetică a
elementelor care sunt multiplii de 3 din
vectorul v sau 0 dacă vectorul nu cont, ine
multiplii de 3.

B. Algoritmul returnează cel mai mare divizor
comun al elementelor care sunt multiplii
de 3 din vectorul v sau 0 dacă vectorul nu
cont, ine multiplii de 3.

C. Algoritmul returnează numărul elemente-
lor multiplii de 3 din vectorul v sau 0 dacă
vectorul nu cont, ine multiplii de 3.

D. Niciunul dintre răspunsurile A., B., C nu
este adevărat.

356. ✓ ?Pentru a determina toate submult, imile mult, imii A = {4, 8, 9, 12, 15} cu 5 elemente,
un elev a scris algoritmul generare(i, n, x, A). Mult, imea este reprezentată prin vectorul
A cu n elemente numere naturale. Submult, imile generate se afis,ează cu ajutorul
algoritmului afis(m, x, A), x fiind un vector auxiliar indexat de la 0 iar m un număr
natural reprezentând lungimea vectorului x curent. Înainte de apelul generare(1, 5, x,
A) elementul x[0] a fost init, ializat cu 0.

Algorithm generare(i, n, x, A)

For j ← n, x[i− 1] + 1 execute

x[i]← j
afis(i, x, A)

generare(i + 1, n, x, A)

EndFor

EndAlgorithm

Algorithm afis(m, x, A)

Write ‘‘{’’, A[x[1]]
For i← 2 to m execute

Write ‘‘,’’, A[x[i]]
EndFor

Write ‘‘}’’, newline

EndAlgorithm

S, tiind că primele 4 submult, imi afis,ate sunt, ı̂n această ordine: {15}, {12}, {12, 15},
{9} care va fi a 8-a submult, ime generată (submult, imea vidă nu se ia ı̂n considerare)?

A. {9, 12} B. {8} C. {9, 12, 15} D. {8, 15}

357. ✓ ?Se consideră algoritmul f(x, n, k) unde n s, i k sunt numere naturale (3 ≤ n ≤ 104, 1 ≤
k ≤ 104), iar x este un vector de n numere naturale (x[1], x[2], ..., x[n], 1 ≤ x[i] ≤ 104,
pentru i = 1, 2, ..., n):

Algorithm f(x, n, k)

If k > n then

Return 0
EndIf

For i← 1, n− 1 execute

x[i+ 1]← x[i+ 1] + x[i]
EndFor

Return x[k]
EndAlgorithm

Pentru care din următoarele apeluri algoritmul
va returna valoarea 10?

A. f([1, 4, 6], 3, 3)

B. f([1, 2, 3, 4, 5], 5, 3)

C. f([1, 2, 3, 4], 4, 4)

D. f([10, 15, 25], 3, 1)

242

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

358. ✓ ?Se consideră algoritmul decide(n), unde n este număr natural (104 ≤ n ≤ 107):

Algorithm decide(n)

m← 10
abc← n DIV m
While abc ≥ 1000 execute

m← m ∗ 10
abc← n DIV m

EndWhile

bc← abc MOD 100
f ← (bc < 2)
i← 2
While i ≤ bc DIV 2 execute

If bc MOD i = 0 then

f ← True

i← bc
EndIf

i← i+ 1
EndWhile

Return f
EndAlgorithm

Pentru care din următoarele apeluri algoritmul
va returna True?

A. decide(865756)

B. decide(72387)

C. decide(103983)

D. decide(10405)

359. ✓ ?Se consideră algoritmul ceFace(n), unde n este număr natural nenul (1 ≤ n < 103).

Algorithm ceFace(n)

Return ceFaceRecursiv(n, 1, 1)

EndAlgorithm

Algorithm ceFaceRecursiv(n, a, b)

If n = 0 then

Return 1
Else

If n < 0 OR b > n then

Return 0
Else

Return ceFaceRecursiv(n, a + b, a) +
ceFaceRecursiv(n - a, a + b, a)

EndIf

EndIf

EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. În intervalul [11, 16] există o singură valoare x, pentru care algoritmul ceFace(x)
returnează 1.

B. Pentru orice număr n, algoritmul ceFace(n) va returna valoarea 0 sau 1.

C. Algoritmul ceFace(n) returnează numărul de moduri de a scrie numărul n ca sumă
de numere consecutive.

D. Algoritmul ceFace(n) returnează numărul de mult, imi diferite ale căror elemente
sunt numere Fibonacci diferite de 0 s, i care au suma egală cu n.

360. ✓ ?Se consideră algoritmul ceFace(x, n), unde n este număr natural (1 ≤ n ≤ 104), x
este un vector cu n elemente cifre (x[1], x[2], ..., x[n], 1 ≤ x[i] ≤ 9, pentru i = 1, 2, ..., n),
iar algoritmul Zero(k) returnează un vector cu k elemente, toate egale cu zero:

243

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm ceFace(x, n)

f ← Zero(9)
For i← 1, n execute

f [x[i]]← f [x[i]] + 1
EndFor

i← 9
nr ← 0
While i > 0 execute

If f [i] = 0 then

nr ← nr ∗ 10 + i
EndIf

i← i− 1
EndWhile

Return 10 ∗ nr
EndAlgorithm

Ce returnează algoritmul dat?

A. Un număr format din cifrele vectorului x

B. Un număr format din cifrele vectorului x,
luată fiecare cifră o singură dată

C. Cel mai mare număr posibil de format din
cifre distincte care nu apar ı̂n vectorul x

D. Cel mai mic număr posibil de format din
cifre distincte care nu apar ı̂n vectorul x

361. ✓ ?Se consideră numerele naturale nenule n s, i m, (1 ≤ n,m ≤ 100) s, i matricea
matrix cu n linii s, i m coloane, elementele ei fiind 0 sau 1. Se consideră algorit-
mii prelucrare(matrix, row, col, n, m) s, i num(matrix, n, m), unde row s, i col
sunt numere naturale (1 ≤ row ≤ n, 1 ≤ col ≤ m).

Algorithm prelucrare(matrix, row, col, n, m)

If row ≥ 1 AND row ≤ n AND col ≥ 1 AND col ≤ m
AND matrix[row][col] = 1 then

matrix[row][col]← 0
prelucrare(matrix, row - 1, col, n, m)

prelucrare(matrix, row + 1, col, n, m)

prelucrare(matrix, row, col - 1, n, m)

prelucrare(matrix, row, col + 1, n, m)

EndIf

EndAlgorithm

Algorithm num(matrix, n, m)

c← 0
For row ← 1, n execute

For col← 1,m execute

If matrix[row][col] = 1 then

c← c+ 1
prelucrare(matrix, row, col, n, m)

EndIf

EndFor

EndFor

Return c
EndAlgorithm

Considerând că o insulă este formată din elemente identice vecine pe orizontală sau
pe verticală, care dintre următoarele afirmat, ii sunt adevărate?

A. Dacă n ̸= m algoritmul num(matrix, n, m) nu verifică toate elementele din ma-
trice.

B. Pentru matricea cu 5 linii s, i 5 coloane:

matrix =

1 1 0 0 0

1 1 0 0 0

244

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

0 0 1 0 0

0 0 0 1 1

0 0 0 1 1

apelul num(matrix, 5, 5) returnează 3.

C. Algoritmul num(matrix, n, m) returnează numărul de insule formate din 0 ı̂n
matricea dată.

D. Algoritmul num(matrix, n, m) returnează numărul de insule formate din 1 ı̂n
matricea dată.

362. ✓ ?Se consideră două s, iruri de caractere r s, i s de lungimea Lung (1 ≤ Lung ≤ 256). Se
consideră următorii algoritmi:

(a) Algoritmul copiere(a, primul, ultimul) returnează s, irul de caractere format din
elementele s, irului de caractere a, ı̂ncepând cu pozit, ia primul până la pozit, ia
ultimul inclusiv.

(b) Algoritmul egale(a, b, k) returnează True, dacă s, irurile de caractere a s, i b, ambele
de lungime k, sunt identice, s, i False ı̂n caz contrar.

(c) Algoritmul lungime(a) returnează lungimea s, irului de caractere a.

(d) Algoritmul concatenare(a, b) returnează s, irul de caractere obt, inut prin concate-
narea s, irului a cu s, irul b, ı̂n această ordine.

Precizat, i care dintre următorii algoritmi returnează valoarea True dacă s, irul de carac-
tere r se poate obt, ine prin rotirea de 0, 1, sau de mai multe ori a s, irului s. De exemplu,
s, irul de caractere ”abcde” poate fi obt, inut prin rotirea s, irului ”cdeab”.

A.

Algorithm check(s, r, Lung)

For i← 1, Lung execute

If egale(s, r, Lung) then

Return True

EndIf

aux← s[1]
For j ← 2, Lung execute

s[j − 1]← s[j]
EndFor

s[Lung]← aux
EndFor

Return False

EndAlgorithm

B.

Algorithm check(s, r, Lung)

ss← concatenare(s, s)
i← 1
sf ← Lung + 1
While i ≤ sf execute

k ← i
j ← 1
While j ≤ Lung AND ss[k] =

r[j] execute

j ← j + 1
k ← k + 1

EndWhile

If j > Lung then

Return True

EndIf

i← i+ 1
EndWhile

Return False

EndAlgorithm

245

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

C.

Algorithm check(s, r, Lung)

ss← concatenare(r, s)
i← 1
While i ≤ Lung execute

k ← i
j ← 1
While j ≤ Lung AND ss[k] =

r[j] execute

j ← j + 1
k ← k + 1

EndWhile

If j > Lung then

Return True

EndIf

i← i+ 1
EndWhile

Return False

EndAlgorithm

D.

Algorithm check(s, r, Lung)

pos1← 1
ok ← False

While r[pos1] ̸= s[1] execute

pos1← pos1 + 1
EndWhile

If pos1 > 0 then

ok ← egale(s, r, Lung)
EndIf

If NOT ok then

pos2← Lung − pos1 + 1
ok ← (r[1] = s[pos2])
ss← copiere(s, pos2, Lung)
rr ← copiere(r, 1, pos1)
ok ← ok AND egale(rr, ss,

lungime(ss))
EndIf

Return ok
EndAlgorithm

363. ✓ ?Se consideră algoritmul ceFace(a, n) unde n este număr natural (2 < n ≤ 104)

s, i a este un vector cu n numere naturale (a[1], a[2], ..., a[n], 0 ≤ a[i] ≤ 104 pentru
i = 1, 2, ..., n). Considerăm algoritmul nrPalindromuri(b, p, r), unde b este un vector
de m numere naturale (b[1], b[2], ..., b[m], 0 ≤ b[j] ≤ 104 pentru j = 1, 2, ...,m, 2 < m <
104). Parametrii p s, i r sunt numere naturale astfel ı̂ncât 1 ≤ p < r ≤ m. Algoritmul
nrPalindromuri(b, p, r) returnează numărul de numere palindrom din subsecvent,a
b[p], ..., b[r] a vectorului b.

Algorithm ceFace(a, n)

b← 0; c← b; e← 0; d← 0
For i← 1, n− 2 execute

If nrPalindromuri(a, i, i + 2) > 1 then

If c = 0 then

d← i
EndIf

c← c+ 1
Else

If c > b then

b← c; e← d
EndIf

c← 0
EndIf

EndFor

If c > b then

b← c; e← d
EndIf

If b = 0 then

Write 0, " ", 0
Else

Write e, " ", e+ b+ 1
EndIf

EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

246

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

A. Dacă ı̂n cazul unui vector a de lungime 104 se afis,ează 7381 7384, rezultă că
printre cele 4 numere situate ı̂n vector ı̂n intervalul de pozit, ii [7381, ..., 7384]
există exact două numere palindrom.

B. Dacă n = 12 s, i a = [11, 33, 45, 103, 121, 343, 33, 99, 100, 22, 44, 45] algoritmul ce-
Face(a, n) afis,ează: 5 8

C. Dacă la terminarea executării algoritmului valoarea lui b este 0, rezultă că ı̂n
vectorul a nu există niciun număr palindrom.

D. Dacă n = 12 s, i a = [11, 33, 45, 103, 121, 343, 33, 99, 100, 22, 44, 45] algoritmul ce-
Face(a, n) afis,ează: 4 12

364. ✓ ?Se consideră algoritmul fun(a, b, len), unde len este un număr natural (1 ≤ len ≤
100), iar a s, i b sunt doi vectori având aceeas, i lungime len (a[1], a[2], ..., a[len], b[1], b[2],
..., b[len], 1 ≤ a[i], b[i] ≤ len, i = 1, 2, ..., len).

Algorithm fun(a, b, len)

For i← 1, len execute

k ← a[b[i]]
a[b[i]]← b[a[i]]
b[a[i]]← k

EndFor

EndAlgorithm

Fie len = 7, a = [6, 2, 5, 4, 1, 3, 4] s, i b =
[1, 2, 3, 5, 6, 4, 4]. În cei doi vectori ı̂nainte de
executarea algoritmului fun(a, b, len) există
câte două elemente având aceeas, i valoare, situ-
ate pe pozit, ii identice (a[2] = b[2] s, i a[7] = b[7]).
Care din următoarele afirmat, ii sunt adevărate ı̂n
urma apelului fun(a, b, len)?

A. Vectorii a s, i b vor avea elemente identice pe pozit, iile 3 s, i 6.

B. Vectorii a s, i b vor avea câte trei elemente având aceeas, i valoare, situate pe pozit, ii
identice.

C. Vectorul b va avea valorile: [1, 2, 3, 4, 6, 5, 4].

D. Vectorul a va avea valorile: [4, 2, 6, 3, 6, 1, 4].

365. ✓ ?Se consideră algoritmul calculeaza(v, b, n, i), unde b, n, i sunt numere natu-
rale nenule (1 ≤ b, n, i ≤ 103), iar v este un vector cu n elemente numere naturale
(v[1], v[2], ..., v[n], 0 ≤ v[i] ≤ 103, pentru i = 1, 2, ..., n):

Algorithm calculeaza(v, b, n, i)

If b = 0 then

Return True

EndIf

If i = n then

Return False

EndIf

Return

calculeaza(v, b - v[i], n, i + 1)

OR calculeaza(v, b, n, i + 1)

EndAlgorithm

Pentru care din următoarele date de in-
trare algoritmul returnează True?

A. v = [3, 1, 7, 4, 2], b = 10, n = 5,
i = 1

B. v = [2, 6, 4, 8, 12], b = 12, n = 5,
i = 1

C. v = [3, 1, 7, 4, 2], b = 10, n = 5,
i = 2

D. v = [2, 6, 4, 8, 12], b = 12, n = 5,
i = 3

247

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Admitere nivel licent, ă, sesiunea septembrie 2023

366. ✓ ?Se consideră algoritmul ceFace(a, b), unde a s, i b sunt numere naturale (0 ≤ a, b ≤
104):

Algorithm ceFace(a, b)

c← 0
bc← b
While bc ̸= 0 execute

c← c ∗ 10 + bc MOD 10
bc← bc DIV 10

EndWhile

If c ̸= a then

Return ceFace(a− 1, b− 1)
EndIf

Return a
EndAlgorithm

Care este efectul apelului ceFace(a, a)?

A. Algoritmul returnează cel mai mic pa-
lindrom mai mare sau egal cu a.

B. Algoritmul returnează cel mai mare
palindrom mai mic sau egal cu a.

C. Algoritmul returnează cel mai mic pa-
lindrom mai mare decât a.

D. Algoritmul returnează cel mai mare
număr par mai mic sau egal cu a.

367. ✓ ?Se consideră algoritmul creareTablou(n, m, x), unde n, m sunt numere naturale
(1 ≤ n,m ≤ 100), iar x este un tablou bidimensional cu n∗m elemente numere ı̂ntregi
(x[1][1], x[1][2], ..., x[n][m], 0 ≤ x[i][j] ≤ 104, pentru i = 1, 2, ..., n; j = 1, 2, ...,m):

Algorithm creareTablou(n, m, x)

k ← 0
For i← 1, n execute

For j ← 1,m execute

If k MOD 2 ̸= 0 then

x[i][j]← k ∗ k
EndIf

Write x[i][j], " "

k ← k + 1
EndFor

Write new line

EndFor

EndAlgorithm

Ce afis,ează acest algoritm dacă elementele
tabloului x sunt init, ializate cu 0?

A. Algoritmul afis,ează elementele tablo-
ului bidimensional x, ı̂n care se află
valori egale cu 0 s, i primele (n ∗
m) DIV 2 pătrate perfecte impare.

B. Algoritmul afis,ează elementele tablou-
lui bidimensional x, ı̂n care se află va-
lori egale cu 0 s, i primele pătrate per-
fecte pare.

C. Algoritmul afis,ează elementele tablo-
ului bidimensional x, ı̂n care se află
s, irul primelor (n ∗m) DIV 2 pătrate
perfecte pare.

D. Algoritmul afis,ează elementele tablo-
ului bidimensional x, ı̂n care - dacă
am as,eza elementele linie după linie -
pătratele perfecte impare ar apărea ı̂n
ordine crescătoare, eventual precedate
s, i/sau urmate de valori egale cu 0.

368. ✓ ?Se consideră algoritmul something(n, x), unde n este număr natural (1 ≤ n ≤
104), iar x este un vector de n numere naturale (x[1], x[2], ..., x[n], 1 ≤ x[i] ≤ 106,
pentru i = 1, 2, ..., n):

248

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm something(n, x)

s← 0
For i← 1, n execute

nr ← 1
While x[i] > 9 execute

nr ← nr + 1
x[i]← x[i] DIV 10

EndWhile

s← s+ nr
EndFor

Return s
EndAlgorithm

Ce returnează apelul something(5, [222,

2043, 29, 2, 20035])?

A. 16

B. 10

C. 11

D. 15

369. ✓ ?Fie algoritmul ceFace(n, v, a), unde n s, i v sunt două numere naturale (1 ≤
n, v ≤ 104), iar a este un s, ir de numere naturale cu n elemente (a[1], a[2], ..., a[n]):

Algorithm ceFace(n, v, a)

For i← 1, n execute

d← v
If a[i] ̸= 0 then

gasit← False
While (d ≤ v ∗ a[i]) AND (NOT gasit) execute

If ((d DIV a[i]) ∗ a[i] = d) AND ((d DIV v) ∗ v = d) then

gasit← True
Else

d← d+ 1
EndIf

EndWhile

EndIf

v ← d
EndFor

Return v
EndAlgorithm

Care este valoarea returnată de algoritm, dacă n = 4, v = 3 s, i a = [5, 4, 2, 10]?

A. 20 B. 120 C. 60 D. 15

370. ✓ ?Se consideră algoritmul calcul(v, n), unde n este număr natural (1 ≤ n ≤ 104),
iar v este un vector cu n elemente numere naturale (v[1], v[2], ..., v[n], 1 ≤ v[i] ≤ 104,
pentru i = 1, 2, ..., n):

249

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm calcul(v, n)

i← 1
While i ≤ n DIV 2 execute

p← 0
While v[i] ̸= 0 execute

p← p+ 1
v[i]← v[i] DIV 10

EndWhile

q ← 0
While v[n+ 1− i] ̸= 0 execute

q ← q + 1
v[n+ 1− i]← v[n+ 1− i] DIV 10

EndWhile

If p ̸= q then

Return False
EndIf

i← i+ 1
EndWhile

Return True
EndAlgorithm

În care din următoarele situat, ii algo-
ritmul returnează True?

A. Dacă vectorul v este
format din valorile
[12, 12, 2, 5466, 3, 111, 1, 3, 44] s, i
n = 9.

B. Dacă vectorul v este
format din valorile
[12, 345, 2, 5466, 3, 111, 10]
s, i n = 7.

C. Dacă elementele vectorului v au
acelas, i număr de cifre.

D. Dacă vectorul format din
numărul cifrelor elementelor
vectorului v formează un
palindrom; de exemplu, din
v = [8, 37, 3] se formează
vectorul [1, 2, 1], care este
palindrom.

371. ✓ ?Se consideră algoritmul alg(n), unde n este număr natural (0 ≤ n ≤ 104):

Algorithm alg(n)

If n = 0 then

Return 0
Else

If n MOD 2 = 0 then

Return alg(n DIV 10) +
n MOD 10

Else

Return alg(n DIV 10)
EndIf

EndIf

EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Apelul alg(123) returnează 6.

B. Algoritmul calculează suma cifrelor
aflate pe pozitii pare ale numărului
dat.

C. Algoritmul calculează suma cifrelor
pare ale numărului dat.

D. Algoritmul calculează suma cifrelor
numărului dat.

372. ✓ ?Se consideră algoritmul f(x), unde x este un număr natural nenul (1 ≤ x ≤ 105):

Algorithm f(x)

If x > 0 then

x← x DIV 2
f(x)
Write x, " "

x← x DIV 2
f(x)

EndIf

EndAlgorithm

Precizat, i ce se afis,ează ı̂n urma apelului
f(10).

A. 0 1 2 0 5 0 1

B. 0 1 2 5 1 0

C. 1 2 1 5 2 1

D. 1 2 1 1 5 1 2

373. ✓ ?Se consideră matricea pătrată M de dimensiune n care cont, ine numere naturale,

250

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

unde n este număr natural nenul (1 ≤ n ≤ 104,M [1][1], ...,M [1][n],M [2][1], ...,M [2][n],
...,M [n][1], ...,M [n][n], 1 ≤M [i][j] ≤ 104, pentru i = 1, 2, ..., n, j = 1, 2, ..., n). Se con-
sideră următorul algoritm:

Algorithm what(M, n)

up← 1
down← n
left← 1
right← n
While left ≤ right AND up ≤

down execute

For i← left, right execute

Write M [up][i], " "

EndFor

up← up+ 1
For i← up, down execute

Write M [i][right], " "

EndFor

right← right− 1
For i← right, left,−1 execute

Write M [down][i], " "

EndFor

down← down− 1
For i← down, up,−1 execute

Write M [i][left], " "

EndFor

left← left+ 1
EndWhile

EndAlgorithm

Ce se afis,ează pentru următoarea matrice
M ?

✓ ?

1 2 3
8 9 4
7 6 5

A. 1 2 3 4 9 8 7 6 5

B. 1 2 3 4 5 6 7 8 9

C. 1 2 3 4 5 8 9 7 6

D. 1 8 7 6 5 4 3 2 9

374. ✓ ?Fie algoritmul ceFace(a, b), unde a s, i b sunt numere naturale (1 ≤ a, b ≤ 104):

Algorithm ceFace(a, b)

If a = 1 then

Return 1
Else

If a MOD b = 0 then

Return ceFface(a DIV b, b)
Else

Return 0
EndIf

EndIf

EndAlgorithm

Precizat, i afirmat, iile adevărate:

A. În cazul apelului ceFace(1, 2) algo-
ritmul returnează 1.

B. În cazul apelului ceFace(24, 2) al-
goritmul returnează 0.

C. În cazul apelului ceFace(2024, 4)

algoritmul returnează 4.

D. În cazul apelului ceFace(8, 3) algo-
ritmul returnează 2.

375. ✓ ?Fie algoritmii decide(n) s, i compute(m), unde n s, i m sunt numere naturale nenule
(1 ≤ n,m ≤ 104):

251

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm decide(n)

result← −1
m← 0
While n > 0 execute

m← m ∗ 10 + n MOD 10
n← n DIV 10

EndWhile

If m MOD 3 = 0 then

result← 1
EndIf

Return result
EndAlgorithm

Algorithm compute(m)

cnt← 0
For k ← 0,m− 1 execute

cnt← cnt+ decide(k)
EndFor

Return cnt
EndAlgorithm

Pentru ce valori ale lui m algoritmul
compute(m) va returna -33?

A. 100

B. 99

C. 98

D. 101

376. ✓ ?Se consideră algoritmul f(n, x), unde n s, i x sunt numere naturale (1 ≤ n ≤
105, 2 ≤ x ≤ 10):

Algorithm f(n, x)

If n > 0 then

f(n DIV x, x)
Write n MOD x

EndIf

EndAlgorithm

Care din următoarele afirmat, ii sunt adevărate?

A. Algoritmul afis,ează reprezentarea numărului n
ı̂n baza de numerat, ie x.

B. Algoritmul afis,ează restul ı̂mpărt, irii ı̂ntregi a
numărului x la numărul n.

C. Algoritmul afis,ează numărul de cifre al repre-
zentării ı̂n baza x a numărului n.

D. Algoritmul verifică dacă numărul n este divizi-
bil cu x.

377. ✓ ?Se consideră algoritmul ceFace(n), unde n este număr natural (1 ≤ n ≤ 109):

Algorithm ceFace(n)

If n ≤ 9 then

If n MOD 2 = 0 then

Return n
Else

Return −1
EndIf

EndIf

x← n MOD 10
y ← ceFace(n DIV 10)
If x MOD 2 ̸= 0 then

Return y
EndIf

If x > y then

Return x

252

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

EndIf

Return y
EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Algoritmul returnează un număr format dintr-o singură cifră, sau -1.

B. Algoritmul returnează un număr impar.

C. Algoritmul returnează cifra impară maximă a numărului n, sau -1.

D. Algoritmul returnează cifra pară maximă a numărului n, sau -1.

378. ✓ ?Se consideră algoritmul decide(n, x), unde n este număr natural (1 ≤ n ≤ 104),
iar x este un vector cu n elemente numere ı̂ntregi (x[1], x[2], ..., x[n],−100 ≤ x[i] ≤ 100,
pentru i = 1, 2, ..., n):

Algorithm decide(n, x)

b← True
i← 1
While b = True AND

i < n execute

If x[i] < x[i+ 1] then

b← True
Else

b← False
EndIf

i← i+ 1
EndWhile

Return b
EndAlgorithm

În care din următoarele situat, ii algoritmul
returnează True?

A. Dacă vectorul x =
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] s, i n = 10

B. Dacă n > 1 s, i elementele vectorului x
sunt ı̂n ordine strict crescătoare

C. Dacă vectorul x nu are elemente nega-
tive

D. Dacă vectorul x are elemente pozitive
situate ı̂naintea celor negative

379. ✓ ?Fie x s, i y două numere naturale pozitive cu proprietăt, ile: x este putere a lui 2 s, i y
este multiplu de 3. Fie expresia logică ((x∗y+3) DIV 6 = 10) OR ((x∗y) MOD 6 =
0) AND ((x + y) MOD 4 = 0)) Care dintre următoarele afirmat, ii sunt adevărate
pentru perechi de numere care respectă proprietăt, ile din enunt, :

A. Există o pereche (x, y) pentru care expresia este adevărată.

B. Există o pereche (x, y) pentru care expresia este falsă.

C. Există perechile (x1, y1) s, i (x2, y2), cu x1 ̸= x2 s, i y1 ̸= y2 ı̂n as,a fel ı̂ncât expresia
este adevărată pentru ambele perechi.

D. Expresia este falsă pentru orice pereche (x, y).

380. ✓ ?Se consideră două numere naturale n s, i m (1 ≤ n,m ≤ 256) respectiv s, irurile
de caractere a, având n caractere (a[1], a[2], ..., a[n]) s, i s, irul b având m caractere
(b[1], b[2], ..., b[m]). Care dintre următorii algoritmi returnează True dacă s, irul a poate
fi format pornind de la s, irul b prin eliminarea unor caractere, fără a modifica pozit, ia
relativă a caracterelor rămase, s, i False ı̂n caz contrar. De exemplu, s, irul ”ace” poate
fi format prin eliminarea de caractere din s, irul ”abcde”, dar s, irul ”aec” nu poate fi
obt, inut prin acest procedeu.

253

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

A.

Algorithm hasProperty(a, b, n,

m)

If n = 0 then

Return True
EndIf

If m = 0 then

Return False
EndIf

If a[n] = b[m] then

Return hasProperty(a, b, n −
1,m− 1)

EndIf

Return hasProperty(a, b, n,m −
1)
EndAlgorithm

B.

Algorithm hasProperty(a, b, n,

m)

i← 1
j ← 1
While i ≤ n AND j ≤ m

execute

If a[i] = b[j] then

i← i+ 1
EndIf

j ← j + 1
EndWhile

If i > n then

Return True
Else

Return False
EndIf

EndAlgorithm

C.

Algorithm hasProperty(a, b, n,

m)

i← n
j ← m
While i ∗ j > 0 execute

If a[i] = b[j] then

i← i− 1
EndIf

j ← j − 1
EndWhile

If i = 0 then

Return True
Else

Return False
EndIf

EndAlgorithm

D.

Algorithm hasProperty(a, b, n,

m)

If n > m then

Return False
EndIf

i← 1
j ← 1
While i < n execute

If a[i] = b[j] then

i← i+ 1
EndIf

j ← j + 1
EndWhile

If i > m then

Return True
Else

Return False
EndIf

EndAlgorithm

381. ✓ ?Se consideră algoritmul ceva(x, n, e), unde x este un vector cu n elemente dis-
tincte ı̂ntregi (x[1], x[2], ..., x[n], 1 ≤ n ≤ 103 s, i x[i] ̸= x[j], pentru 1 ≤ i < j ≤ n) s, i e
este un număr ı̂ntreg. Algoritmul caută elementul e ı̂n vectorul x, s, i dacă ı̂l găses,te,
mută elementul pe prima pozit, ie din vector s, i returnează True, nemodificând ordinea
relativă a celorlalte elemente. Dacă e nu se găses,te ı̂n x, algoritmul returnează False
s, i nu modifică cont, inutul vectorului. De exemplu, pentru vectorul x cu elementele
[−100, 2, 71, 31,−62, 51] s, i e = 31, algoritmul va returna True s, i vectorul x va deveni
[31,−100, 2, 71,−62, 51]. Care dintre următoarele variante este o implementare corectă
pentru algoritmul ceva(x, n, e) s, i are complexitate timp O(n)?

254

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

A.

Algorithm ceva(x, n, e)

index← 1
While index ≤ n execute

If x[index] = e then

tmp← x[index]
x[index]← x[1]
x[1]← tmp
Return True

EndIf

index← index+ 1
EndWhile

Return False
EndAlgorithm

B.

Algorithm ceva(x, n, e)

index← 2
tmp← x[1]
While index ≤ n execute

If x[index] = e then

x[1]← e
x[index]← tmp
Return True

EndIf

tmp2← x[index]
x[index]← tmp
tmp← tmp2
index← index+ 1

EndWhile

Return False
EndAlgorithm

C.

Algorithm ceva(x, n, e)

index← n
While index > 1 execute

If x[index] = e then

index2← index
While index2 > 1

execute

x[index2]←
x[index2− 1]

index2← index2− 1
EndWhile

x[index2]← e
EndIf

index← index− 1
EndWhile

If x[1] = e then

Return True
Else

Return False
EndIf

EndAlgorithm

D. Niciuna dintre variantele A, B, C

382. ✓ ?Se consideră algoritmul expresie(x, y, z), unde x, y, z sunt numere naturale
(0 ≤ x, y, z ≤ 104):

Algorithm expresie(x, y, z)

If x = 0 then

Return z
Else

Return expresie(x − 1, y, x ∗ x +
y ∗ y + z)

EndIf

EndAlgorithm

Precizat, i expresia a cărei valoare o calcu-
lează s, i returnează algoritmul:

A.
x∑

i=1

i2 +
y∑

i=1

x ∗ y +
z∑

k=1

1

B.
x∑

i=1

i2 +
y∑

j=1

j2 + z

C.
x∑

i=1

i2 + x ∗ y2 + z

D.
x∑

i=1

i2 +
y∑

j=1

j2 +
z∑

k=1

k

383. ✓ ?Se consideră algoritmul ceFace(v, a, b), unde v este un vector cu n elemente din
mult, imea 0, 1, (1 ≤ n ≤ 104, v[1], ..., v[n]), iar a s, i b sunt numere naturale nenule.
Vectorul v este ordonat crescător.

255

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm ceFace(v, a, b)

If b− a+ 1 = 0 then

Return 0
EndIf

If v[a] = 1 then

Return b− a+ 1
EndIf

If v[b] = 0 then

Return 0
EndIf

c← (a+ b) DIV 2
Return ceFace(v, a, c)+

ceFace(v, c+ 1, b)
EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate, considerând că apelul init, ial este
ceFace(v, 1, n)?

A. Dacă vectorul v cont, ine cel put, in o va-
loare de 1, atunci se returnează lungi-
mea vectorului.

B. Dacă vectorul v cont, ine doar valori de
1, atunci se returnează valoarea lui n.

C. Dacă vectorul v cont, ine doar valori de
0, atunci se returnează 0.

D. Se returnează numărul de valori 1
cont, inute de vectorul v.

384. ✓ ?Se s,tie că numărul total de s, iruri binare (care cont, in doar caracterele 0 s, i 1) de
lungime n este 2n. De exemplu, pentru n = 2 acestea sunt 00, 01, 10 s, i 11, numărul
lor fiind 22 = 4. S, irul 100011 are lungimea 6 s, i cont, ine ca subsecvent, ă toate cele 4
s, iruri posibile de lungime n = 2, fiindcă ı̂ncepând cu prima pozit, ie apare 10, ı̂ncepând
cu a doua pozit, ie apare 00, ı̂ncepând cu a patra pozit, ie apare 01 s, i ı̂ncepând cu a cincea
pozit, ie apare 11. Care este lungimea minimă a unui s, ir, care cont, ine ca subsecvent, ă
toate cele 2n s, iruri binare posibile pentru n = 4?

A. 18 B. 19 C. 20 D. 21

385. ✓ ?Se consideră algoritmul t(q, x, y), unde q este un caracter oarecare, iar x s, i y
sunt numere naturale nenule (1 ≤ x, y ≤ 100):

Algorithm t(q, x, y)

If x ≤ y then

Write q
Else

If x MOD y = 0 then

t(q, x+ 1, y − 2)
Else

If (x DIV y) MOD

2 ̸= 0 then

t(q, x− 1, y + 2)
Write ’c’

Else

t(q, x− 1, y − 1)
Write "cc"

EndIf

EndIf

EndIf

EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii
sunt adevărate:

A. În urma apelurilor t(’c’, 33, 28),
t(’c’, 10, 6) s, i t(’c’, 22, 16) se
afis,ează aceleas, i caractere.

B. În urma apelurilor t(’c’, 33, 28)

s, i t(’c’, 45, 40) nu se afis,ează
aceleas, i caractere.

C. În urma apelului t(’c’, 11, 8) se
afis,ează ”cc”.

D. În urma apelului t(’c’, 25, 16) nu
se afis,ează ”ccccc”.

386. ✓ ?Se consideră algoritmul hIndex(x, n), unde x este un vector cu n (1 ≤ n ≤ 105)
elemente numere naturale nenule (x[1], x[2], ..., x[n]). Definim h-index -ul vectorului x,
ca fiind cea mai mare valoare v pentru care este adevărat că există cel put, in v valori ı̂n

256

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

x care sunt mai mari sau egale cu v. De exemplu, pentru x = [3, 10, 2, 7, 10, 8, 50, 1, 1, 5]
h-index -ul este 5.

1: Algorithm hIndex(x, n)

2: h← 1
3: cont← True
4: While cont = True AND h ≤ n

execute

5: pos← h
6: For i← h+ 1, n execute

7: If x[i] > x[pos] then

8: pos← i
9: EndIf

10: EndFor

11: If pos ̸= h then

12: tmp← x[pos]
13: x[pos]← x[h]
14: x[h]← tmp
15: EndIf

16: If x[h] ≥ h then

17: h← h+ 1
18: Else

19: cont← False
20: EndIf

21: EndWhile

22: ...

23: EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. În momentul ı̂n care s-ar executa linia
22 vectorul x este sortat descrescător.

B. Algoritmul hIndex(x, n) returnează
h-index -ul vectorului x dacă pe linia
22 scriem instruct, iunea Return h.

C. Algoritmul hIndex(x, n) returnează
h-index -ul vectorului x dacă pe linia
22 scriem instruct, iunea Return h -

1.

D. Dacă algoritmul hIndex(x, n) se
apelează pentru un vector x sortat
strict descrescător, atunci algoritmul
nu returnează h-index -ul vectorului x,
indiferent ce instruct, iune adăugăm pe
linia 22.

387. ✓ ?Se consideră algoritmul ceFace(n, k, x, p), unde n, k s, i p sunt numere naturale
nenule (1 ≤ n, k, p ≤ 10, p ≤ n), iar x este un vector cu p + 1 elemente numere
naturale (x[0], x[1], ..., x[p]). Presupunem că x[0] este init, ializat cu 0.

Algorithm ceFace(n, k, x, p)

If k > p then

For i← 1, p execute

Write x[i]
EndFor

Write " " ▷ un singur spat,iu

Else

For i← x[k − 1] + 1, n execute

x[k]← i
ceFace(n, k + 1, x, p)

EndFor

EndIf

EndAlgorithm

Precizat, i care dintre următoarele variante
de răspuns sunt corecte.

A. După ce algoritmul se apelează sub
forma ceFace(3, 1, x, 3) acesta se
va mai autoapela de 6 ori.

B. Dacă x[0] se init, ializează cu o va-
loare diferită de 0, ı̂n urma apelu-
lui ceFace(5, 1, x, 3) numărul de
spat, ii afis,ate este diferit de 10.

C. Dacă algoritmul se apelează sub forma
ceFace(5, 1, x, 4) se afis,ează nu-
merele 1245 1234 1345 1235 2345, dar
ı̂n altă ordine.

D. Dacă algoritmul se apelează sub forma
ceFace(5, 1, x, 3) rezultatul afis,at
este 123 124 125 134 135 145 234 235
ı̂n această ordine.

257

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

388. ✓ ?Se consideră algoritmul f(sir, s, d, p), unde sir este un s, ir de caractere, iar
s, d, p sunt numere naturale nenule (0 < s, d, p < 106). Operatorul ”+” reprezintă
operatorul de concatenare a două s, iruri de caractere. Algoritmul print(a) afis,ează
s, irul de caractere a, apoi trece la o linie nouă.

1: Algorithm f(sir, s, d, p)

2: If s = p AND d = p then

3: print(sir)
4: EndIf

5: If s < p then

6: f(sir + "-1 ", s+ 1, d, p)
7: EndIf

8: If s > d then

9: f(sir + "1 ", s, d+ 1, p)
10: EndIf

11: EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii
sunt adevărate ı̂n urma apelului f("", 0,

0, 2):

A. Se afis,ează două s, iruri de caractere pe
linii separate, fiecare cont, inând 4 nu-
mere a căror sumă este 0 (de exemplu,
suma numerelor din s, irul de caractere
”-1 1 -1 1” este 0)

B. Se afis,ează doar ”-1 -1 1 1”.

C. Se afis,ează doar ”-1 -1 1 1”, dar al-
goritmul nu ı̂s, i termină execut, ia din
cauza unei erori.

D. Dacă pe linia 2 s-ar ı̂nlocui operatorul
AND cu OR , atunci s-ar afis,a doar
”-1 -1”.

389. ✓ ?Se consideră algoritmul ceFace(a, i, n), unde i s, i n sunt numere naturale (1 ≤
i, n ≤ 100), iar a este un vector cu n elemente numere ı̂ntregi (a[1], a[2], ..., a[n],−100 ≤
a[i] ≤ 100). În s, irul a se află cel put, in un număr pozitiv. Algoritmul max(x, y, z)

returnează maximul dintre trei numere ı̂ntregi x, y s, i z (−104 ≤ x, y, z ≤ 104). Algo-
ritmul ceFace(a, 1, n) apelează algoritmul intermediar(a, i, m, n), unde para-
metrii a, i s, i n au semnificat, ia de mai sus, iar m este un număr natural (1 ≤ m ≤ n).

Algorithm intermediar(a, i, m, n)

s← 0
left← a[m]
For k ← m, i,−1 execute

s← s+ a[k]
If s > left then

left← s
EndIf

EndFor

s← 0
right← a[m]
For i← m,n execute

s← s+ a[i]
If s > right then

right← s
EndIf

EndFor

Return max(left, right, left+ right− a[m])
EndAlgorithm

Algorithm ceFace(a, i, n)

If i > n then

Return a[i]
EndIf

m← (i+ n) DIV 2
v1← ceFace(a, i,m− 1)
v2← ceFace(a,m+ 1, n)
v3← intermediar(a, i,m, n)
Return max(v1, v2, v3)

EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate dacă algoritmul se apelează
sub forma ceFace(a, i, n):

258

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

A. Algoritmul identifică o pozit, ie m a vectorului a astfel ı̂ncât fie suma elementelor
de pe pozit, iile 1, 2, ...,m, fie suma elementelor de pe pozit, iile m,m + 1, ..., n să
fie maximul care se poate obt, ine pentru orice 1 ≤ m ≤ n, s, i returnează suma
maximă obt, inută astfel.

B. Algoritmul returnează suma maximă care se poate obt, ine ı̂nsumând elementele
unei submult, imi a valorilor vectorului a.

C. Algoritmul returnează suma maximă care se poate obt, ine pentru o subsecvent, ă
a vectorului a.

D. În cazul ı̂n care toate elementele vectorului a sunt pozitive, algoritmul returnează
suma tuturor elementelor vectorului a.

259

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Admitere nivel licent, ă, sesiunea iulie 2023

390. ✓ ?Se consideră algoritmul F(x), unde x este număr natural (1 ≤ x ≤ 106):

Algorithm F(x)

If x = 0 then

Return 0
Else

If x MOD 3 = 0 then

Return F (x DIV 10) + 1
Else

Return F (x DIV 10)
EndIf

EndIf

EndAlgorithm

Pentru care dintre următoarele apeluri se re-
turnează 4?

A. F(21369)

B. F(6933)

C. F(4)

D. F(16639)

391. ✓ ?Se consideră algoritmul ceFace(a, b), unde a s, i b sunt numere naturale (1 ≤ a, b ≤
104) care nu cont, in cifra 0:

Algorithm ceFace(a, b)

p← 0
While a ̸= 0 execute

c← a MOD 10
p← p ∗ 10 + c
a← a DIV 10

EndWhile

If p = b then

Return True
Else

Return False
EndIf

EndAlgorithm

Algoritmul ceFace(a, b) returnează True
dacă s, i numai dacă:

A. numerele a s, i b sunt egale

B. a s, i b sunt numere palindrom

C. numărul a este oglinditul numărului b

D. ultima cifră a lui a este egală cu ultima
cifră a lui b

392. ✓ ?Se consideră algoritmul ceFace(n), unde n este un număr natural (1 ≤ n ≤ 103).
Operatorul

”
/” reprezintă ı̂mpărt, irea reală, de exemplu: 3/2 = 1.5.

Algorithm ceFace(n)

s← 0
For i← 1, n execute

p← (i+ 1) ∗ (i+ 2)
s← s+ (i/p)

EndFor

Return s
EndAlgorithm

Precizat, i expresia a cărei valoare este retur-
nată de algoritm.

A. 1
1 + 1

1+2 + · · ·+ 1
1+2+···+n

B. 1
2·3 + 2

3·4 + · · ·+ n
(n+1)(n+2)

C. 1
1 + 1

1·2 + · · ·+ 1
1·2·...·n

D. 1
2·3 + 2

3·4 + · · ·+ n−1
n(n+1)

393. ✓ ?Se consideră algoritmul f(n, x), unde n este număr natural (3 ≤ n ≤ 104), iar
x este un vector de n numere naturale (x[1], x[2], ..., x[n], 1 ≤ x[i] ≤ 104, pentru
i = 1, 2, ..., n):

260

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm f(n, x)

k ← 0
For i← 1, n− 1 execute

If k = 0 then

If x[i] = x[i+ 1] then

Return False
EndIf

If x[i] < x[i+ 1] then

k ← 1
EndIf

EndIf

If k = 1 then

If x[i] ≥ x[i+ 1] then

Return False
EndIf

EndIf

EndFor

If x[n− 1] ≥ x[n] then

Return False
EndIf

Return True
EndAlgorithm

Pentru care din următoarele apeluri algorit-
mul va returna True?

A. f(6, [1000, 512, 23, 22, 1, 2])

B. f(6, [6, 4, 1, 1, 2, 3])

C. f(8, [3000, 2538, 799, 424, 255, 256,
299, 1001])

D. f(3, [3, 2, 1])

394. ✓ ?Se dă algoritmul calcul(a, b, c, d), unde a, b, c, d sunt numere naturale nenule
(1 ≤ a, b, c, d ≤ 100):

Algorithm calcul(a, b, c, d)

x← a ∗ b
y ← c ∗ d
While y ̸= 0 execute

z ← x MOD y
x← y
y ← z

EndWhile

Return x
EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Algoritmul returnează cel mai mare
divizor comun al numerelor a, b, c, d.

B. Algoritmul returnează cel mai mare
divizor comun al numerelor a∗b s, i c∗d.

C. Algoritmul returnează cel mai mic
multiplu comun al numerelor a, b, c,
d.

D. Algoritmul returnează cel mai mic
multiplu comun al numerelor a ∗ b s, i
c ∗ d.

395. ✓ ?Se consideră algoritmul p(na, a, nb, b), unde na s, i nb sunt numere naturale (0 ≤
na, nb ≤ 104), a s, i b sunt vectori cu na, respectiv nb numere naturale (a[1], a[2], ..., a[na], 1 ≤
a[i] ≤ 104, pentru i = 1, 2, ..., na s, i b[1], b[2], ..., b[nb], 1 ≤ b[i] ≤ 104, pentru i =
1, 2, ..., nb). Variabila locală c este un vector.

261

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm p(na, a, nb, b)

i← 1
j ← 1
nc← 0
While i ≤ na AND j ≤ nb

execute

nc← nc+ 1
If a[i] < b[j] then

c[nc]← a[i]
i← i+ 1

Else

c[nc]← b[j]
j ← j + 1

EndIf

EndWhile

Return nc
EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Dacă na = 0 s, i nb = 0, atunci valoarea
returnată prin nc este egală cu 0.

B. Dacă elementele din a s, i b sunt sortate
crescător, atunci elementele depuse ı̂n
c sunt sortate crescător.

C. Valoarea returnată prin nc este
ı̂ntotdeauna egală cu na+ nb.

D. Dacă na, nb > 0 s, i cel mai mare ele-
ment din a este mai mic decât toate
elementele din b, atunci c va avea
exact aceleas, i elemente ca s, i a.

396. ✓ ?Se dă algoritmul suma(n, a, m, b), unde n s, i m sunt numere naturale (1 ≤ n,m ≤
105), iar a s, i b sunt două s, iruri ordonate crescător cu n, respectiv m elemente numere
naturale (a[1], a[2], ..., a[n] s, i b[1], b[2], ..., b[m]):

Algorithm suma(n, a, m, b)

s← 0
For i← 1, n, 2 execute

j ← 1
While j ≤ a[i] AND j ≤ m

execute

s← s+ b[j]
j ← j + 1

EndWhile

EndFor

Return s
EndAlgorithm

Ce valoare va returna algoritmul, dacă
n = 4, a = [1, 3, 4, 7], m = 6 s, i b =
[2, 4, 6, 8, 10, 12]?

A. 42

B. 22

C. 20

D. Nu se poate determina ce valoare va
returna

397. ✓ ?Se consideră algoritmul verifica(n, p1, p2), unde n, p1 s, i p2 sunt numere na-
turale (1 ≤ n, p1, p2 ≤ 106):

Algorithm verifica(n, p1, p2)

bt← (p1 + p2) DIV 2
If p1 > p2 then

Return False
EndIf

If bt ∗ bt = n then

Return True
EndIf

If bt ∗ bt > n then

Return verifica(n, p1, bt− 1)
EndIf

Return verifica(n, bt+ 1, p2)
EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

262

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

A. Dacă numerele p1, p2 s, i n sunt prime ı̂ntre ele, atunci apelul verifica(n, p1,

p2) returnează True.

B. Algoritmul foloses,te metoda căutării binare s, i dacă numărul n este prim, apelul
verifica(n, 1, n) returnează True.

C. Pentru apelul verifica(n, 1, n) algoritmul returnează True dacă s, i numai
dacă numărul n este pătrat perfect.

D. Dacă p1 ≤ n ≤ p2 s, i ı̂n intervalele [p1, n] s, i [n, p2] există cel put, in câte un pătrat
perfect, atunci apelul verifica(n, p1, p2) returnează True.

398. ✓ ?Se consideră algoritmul ceFace(n), unde n este un număr natural (1 ≤ n ≤ 3000):

Algorithm ceFace(n)

s← 0
i← 1
While s < n execute

s← s+ i
If s = n then

Return True
Else

i← i+ 2
EndIf

EndWhile

Return False
EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Dacă n = 36, algoritmul returnează
True.

B. Dacă n este egal cu o sumă de numere
impare consecutive ı̂ncepând de la 1,
algoritmul returnează True.

C. Dacă n este pătrat perfect, algorit-
mul returnează True, altfel returnează
False.

D. Dacă n = 64, algoritmul returnează
False.

399. ✓ ?Se consideră algoritmul ceFace(a), unde a este număr natural (1 ≤ a ≤ 104):

Algorithm ceFace(a)

ok ← 0
While ok = 0 execute

b← a
c← 0
While b ̸= 0 execute

c← c ∗ 10 + b MOD 10
b← b DIV 10

EndWhile

If c = a then

ok ← 1
Else

a← a+ 1
EndIf

EndWhile

Return a
EndAlgorithm

Precizat, i efectul algoritmului.

A. Algoritmul returnează cel mai mic pa-
lindrom mai mare sau egal cu a.

B. Algoritmul returnează cel mai mare
palindrom mai mic sau egal cu a.

C. Algoritmul returnează cel mai mic pa-
lindrom mai mare decât a.

D. Algoritmul returnează cel mai mic
număr par mai mare decât a.

400. ✓ ?Se consideră algoritmul calcul(v, n), unde n este număr natural (1 ≤ n ≤ 104),
iar v este un vector cu n elemente numere naturale (v[1], v[2], ..., v[n], 1 ≤ v[i] ≤ 104,
pentru i = 1, 2, ..., n):

263

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm calcul(v, n)

i← 2
x← 0
If v[1] MOD 2 ̸= 0 then

Return False
EndIf

While i ≤ n execute

If x = 0 AND

v[i] MOD 2 = 0 then

Return False
Else

If x = 1 AND

v[i] MOD 2 = 1 then

Return False
Else

i← i+ 1
x← (x+ 1) MOD 2

EndIf

EndIf

EndWhile

Return True
EndAlgorithm

În care din următoarele situat, ii algoritmul
returnează True?

A. Dacă vectorul v este format din valo-
rile [2, 3, 10, 7, 20, 5, 18] s, i n = 7

B. Dacă vectorul v are valori după
următorul model: impar, par, impar,
par...

C. Dacă vectorul v este format din valo-
rile [3, 8, 17, 20, 15, 10] s, i n = 6

D. Dacă vectorul v are valori după
următorul model: par, impar, par, im-
par...

401. ✓ ?Se consideră algoritmul ceFace(a, n), unde n este număr natural nenul (2 ≤ n ≤
104) s, i a este un vector cu n numere ı̂ntregi (a[1], a[2], ..., a[n],−100 ≤ a[i] ≤ 100, i =
1, 2, ..., n). În vectorul a există cel put, in un număr pozitiv.

Algorithm ceFace(a, n)

b← 0
c← b
For i← 1, n execute

b← b+ a[i]
If b < 0 then

b← 0
EndIf

If b > c then

c← b
EndIf

EndFor

Return c
EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii
sunt adevărate:

A. Algoritmul returnează suma tuturor
elementelor din vectorul a.

B. Algoritmul returnează suma
subsecvent,ei de lungime maximă
care cont, ine doar elemente pozitive
din vectorul a.

C. Algoritmul returnează suma tuturor
elementelor pozitive din vectorul a.

D. Algoritmul returnează suma unei
subsecvent,e cu suma maximă din vec-
torul a.

402. ✓ ?Se consideră o matrice A de numere ı̂ntregi cu n linii s, i m coloane (1 ≤ n,m ≤ 104).

În condit, iile ı̂n care n∗m = p∗q, dorim să redimensionăm această matrice ı̂ntr-o matrice
B de numere ı̂ntregi cu p linii s, i q coloane (1 ≤ p, q ≤ 104), conform exemplului de
mai jos, unde n = 4, m = 6, p = 3 s, i q = 8. Liniile s, i coloanele sunt numerotate
ı̂ncepând de la 1.

264

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

A:

1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18
19 20 21 22 23 24

B:

1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24

Care din următoarele variante prezintă un algoritm care pentru perechea de numere
naturale i s, i j (1 ≤ i ≤ n, 1 ≤ j ≤ m) reprezentând indici ı̂n matricea A va returna
perechea de indici din matricea B corespunzătoare valorii A[i][j]?

A.

Algorithm reshape(i, j, n, m,

p, q)

Return (i ∗m+ j) DIV q, (i ∗
m+ j) MOD q
EndAlgorithm

B.

Algorithm reshape(i, j, n, m,

p, q)

i← i− 1
j ← j − 1
Return (i ∗m+ j) DIV q, (i ∗

m+ j) MOD q
EndAlgorithm

C.

Algorithm reshape(i, j, n, m,

p, q)

i← i− 1
j ← j − 1
Return (i ∗m+ j) DIV q + 1,

(i ∗m+ j) MOD q + 1
EndAlgorithm

D.

Algorithm reshape(i, j, n, m,

p, q)

Return (i∗m+j−1) DIV q+1,
(i∗m+j−1) MOD q+1

EndAlgorithm

403. ✓ ?Se consideră algoritmul ceFace(n, m), unde n este număr natural (1 ≤ n ≤ 104),
iar m este o matrice cu n linii s, i n coloane, iar elementele sunt numere naturale
(m[1][1], ...,m[1][n],m[2][1], ...,m[2][n], ...,m[n][1], ...,m[n][n]). Considerăm că elemen-
tele matricei m sunt init, ial egale cu 0.

Algorithm ceFace(n, m)

a← 0
b← 1
For j ← 1, n execute

i← 1
While i+ j ≤ n− 1 execute

If (i MOD 2 = 1) AND

(j MOD 2 = 1) then

m[i][j]← b
c← a+ b
a← b
b← c

EndIf

i← i+ 1
EndWhile

EndFor

EndAlgorithm

Care dintre următoarele afirmat, ii sunt
FALSE?

A. Dacă n = 11, valoarea lui m[6][4] este
21

B. Dacă n = 7, valoarea lui m[3][5] este
4

C. Dacă n = 10, valoarea lui m[6][4] este
21

D. Dacă n = 7, valoarea maximă din ma-
trice este 8

404. ✓ ?Algoritmii de mai jos prelucrează un vector x ordonat crescător, având n elemente
numere naturale (1 ≤ n ≤ 104, x[1], x[2], ..., x[n]). Parametrii first s, i last sunt numere
naturale (1 ≤ first ≤ last ≤ n). Aleget, i algoritmii care au complexitatea timp cea
mai scăzută, dacă se apelează sub forma A(x, 1, n, n).

265

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

A.

Algorithm A(x, first, last, n)

If first > last then

Return 0
EndIf

m← (first+ last) DIV 2
If x[m] = n then

Return m
Else

If x[m] > n then

Return

A(x, first,m− 1, n)
Else

If x[m] < n then

Return

A(x,m+ 1, last, n)
EndIf

EndIf

EndIf

EndAlgorithm

B.

Algorithm A(x, first, last, n)

While first < last execute

m← (first+ last) DIV 2
If x[m] = n then

Return m
Else

If x[m] > n then

last← m− 1
Else

If x[m] < n then

first← m+ 1
EndIf

EndIf

EndIf

EndWhile

Return 0
EndAlgorithm

C.

Algorithm A(x, first, last, n)

For i← first, last execute

If x[i] = n then

Return i
EndIf

EndFor

Return 0
EndAlgorithm

D.

Algorithm A(x, first, last, n)

For i← first, last execute

If x[i] = n then

x[i]← 3 ∗ n
EndIf

EndFor

EndAlgorithm

405. ✓ ?Andrei se joacă cu următorul algoritm, unde n s, i m sunt numere naturale nenule
(1 ≤ n,m ≤ 104). Algoritmul abs(x) returnează valoarea absolută a lui x.

Algorithm problema(n, m)

b← abs(m− n)
c← n−m
If b− c = 0 then

a← n MOD m
Else

a← (m+ 2) MOD n
EndIf

Return a
EndAlgorithm

El observă că indiferent de valoarea variabi-
lei n corespunzătoare specificat, iei, există cel
put, in două valori ale lui m ı̂n cazul cărora
algoritmul problema(n, m) returnează 0.
Care sunt aceste valori ale lui m?

A. 1 s, i n

B. 1 s, i n+ 2

C. n s, i n+ 2

D. 1 s, i n− 2

406. ✓ ?Un elev dores,te să genereze, folosind metoda backtracking, toate numerele impare
cu câte trei cifre, cifre care iau valori din vectorul [4, 3, 8, 5, 7, 6], ı̂n ordinea dată. S, tiind
că primele 5 numere generate sunt, ı̂n această ordine: 443, 445, 447, 433, 435, care va
fi cel de-al zecelea număr generat?

266

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

A. 487 B. 453 C. 457 D. 455

407. ✓ ?Se consideră algoritmul f(k, n, x), unde k, n sunt numere naturale (1 ≤ k, n ≤
103) s, i x este un vector de n numere naturale (x[1], x[2], ..., x[n], 1 ≤ x[i] ≤ 104, pentru
i = 1, 2, ..., n):

Algorithm f(k, n, x)

If n = 0 then

Return 0
Else

d← 0
For i← 2, x[n] DIV 2 execute

If (x[n] MOD i) = 0 then

d← d+ 1
EndIf

EndFor

If d = k then

Return 1 + f(k, n− 1, x)
Else

Return f(k, n− 1, x)
EndIf

EndIf

EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Pentru x = [4, 9, 26, 12] rezultatul
apelului f(1, 4, x) va fi 3.

B. Pentru x = [4, 8, 6, 144] rezultatul
apelului f(2, 4, x) va fi 3.

C. Pentru x = [4, 9, 25, 144] rezultatul
apelului f(1, 4, x) va fi 3.

D. Pentru x = [8, 27, 25, 121] rezultatul
apelului f(2, 4, x) va fi 3.

408. ✓ ?Fie algoritmul check(n), unde n este număr natural (1 ≤ n ≤ 105):

Algorithm check(n)

While n > 0 execute

If n MOD 3 > 1 then

Return False
EndIf

n← n DIV 3
EndWhile

Return True
EndAlgorithm

Precizat, i efectul algoritmului.

A. Algoritmul returnează True dacă n este o pu-
tere a lui 3 s, i False ı̂n caz contrar.

B. Algoritmul returnează True dacă scrierea ı̂n
baza 3 a lui n cont, ine doar cifrele 0 s, i 1 s, i False
ı̂n caz contrar.

C. Algoritmul returnează True dacă n poate fi
scris ca o putere a lui 3 sau ca sumă de pu-
teri distincte ale lui 3 s, i False ı̂n caz contrar.

D. Algoritmul returnează True dacă scrierea ı̂n
baza 3 a lui n cont, ine doar cifra 2 s, i False ı̂n
caz contrar.

409. ✓ ?Un eveniment trebuia să aibă loc ı̂ntr-o anumită sală I, dar trebuie mutat ı̂n sala

II, unde numerotarea scaunelor diferă. În ambele săli există L rânduri de scaune
(2 ≤ L ≤ 50), fiecare rând fiind ı̂mpărt, it la mijloc de un culoar s, i având K scaune
(2 ≤ K ≤ 50) ı̂n fiecare parte a culoarului (deci, sala cont, ine ı̂n total 2 ∗ K ∗ L
scaune). În sala I fiecare loc este identificat printr-un singur număr. Locurile din
stânga culoarului au numere pare, iar numerotarea scaunelor ı̂ncepe pe rândul din
fat,a scenei. Deci scaunele din primul rând au numerele (pornind dinspre culoar spre
marginea sălii) 2, 4, 6 etc. După ce toate scaunele de pe un rând au fost numerotate,
pe rândul următor se continuă numerotarea, rêıncepând cu scaunul de lângă culoar
cu următorul număr par. Locurile din partea dreaptă a culoarului sunt numerotate la

267

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

fel, dar folosind numere impare. Deci scaunele din primul rând au numerele (pornind
dinspre culoar spre marginea sălii) 1, 3, 5 etc. În sala II fiecare loc este identificat
prin trei valori. Numărul rândului (o valoare ı̂ntre 1 s, i L, rândul 1 fiind cel din fat,a
scenei), direct, ia locului fat, ă de culoar (valoarea ”stânga” sau ”dreapta”) s, i numărul
scaunului ı̂n cadrul rândului (o valoare ı̂ntre 1 s, i K, scaunul 1 fiind cel de lângă culoar).
Din cauza mutării spectacolului, locurile de pe bilete din sala I (reprezentate printr-un
singur număr) trebuie transformate ı̂n locuri valabile ı̂n sala II (reprezentate prin rând,
loc, direct,ie). Care dintre următorii algoritmi, având ca date de intrare L, K, nrLoc
conform enunt,ului execută ı̂n mod corect transformarea? O transformare este corectă
dacă fiecare spectator va avea un loc unic ı̂n sala II.

A.

Algorithm transforma(L, K,

nrLoc)

If nrLoc MOD 2 = 1 then

directie← "dreapta"

nrLoc← nrLoc+ 1
Else

directie← "stanga"

EndIf

If nrLoc MOD (2 ∗K) = 0 then

rand← nrLoc DIV (2 ∗K)
Else

rand← nrLoc DIV (2∗K)+1
EndIf

loc ← (nrLoc − (rand − 1) ∗ 2 ∗
K) DIV 2

Return rand, loc, directie
EndAlgorithm

B.

Algorithm transforma(L, K,

nrLoc)

If nrLoc MOD 2 = 1 then

directie← "dreapta"

Else

directie← "stanga"

EndIf

If nrLoc MOD (2 ∗K) = 0 then

rand← nrLoc DIV (2 ∗K)
Else

rand← nrLoc DIV (2∗K)+1
EndIf

loc ← (nrLoc − (rand − 1) ∗ 2 ∗
K) DIV 2

Return rand, loc, directie
EndAlgorithm

C.

Algorithm transforma(L, K,

nrLoc)

If nrLoc MOD 2 = 1 then

directie← "dreapta"

nrLoc← nrLoc+ 1
Else

directie← "stanga"

EndIf

rand← nrLoc DIV (2 ∗K) + 1
loc ← (nrLoc − (rand − 1) ∗ 2 ∗

K) DIV 2
Return rand, loc, directie

EndAlgorithm

D.

Algorithm transforma(L, K,

nrLoc)

If nrLoc MOD 2 = 1 then

directie← "dreapta"

nrLoc← nrLoc+ 1
Else

directie← "stanga"

EndIf

If nrLoc MOD (2 ∗K) = 0 then

rand← nrLoc DIV (2 ∗K)
Else

rand← nrLoc DIV (2∗K)+1
EndIf

loc ← (nrLoc − (rand − 1) ∗ 2 ∗
K) DIV 2 + 1

Return rand, loc, directie
EndAlgorithm

410. ✓ ?Se consideră algoritmul p(x, n, k, final), unde x este un vector de n + 1 numere
naturale (x[0], x[1], x[2], ..., x[n]). Init, ial x[i] = 0, pentru i = 0, 1, 2, ..., n. Variabilele
n s, i k sunt numere naturale nenule (1 ≤ n, k ≤ 20), iar final este de tip boolean.
Algoritmul Afis(x, 1, n) afis,ează elementele x[1], x[2], ..., x[n].

268

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm p(x, n, k, final)

While final = False execute

While x[k] < n execute

x[k]← x[k] + 1
If OK(x, k) = True then

If k = n then

Afis(x, 1, n)
Else

k ← k + 1
x[k]← 0

EndIf

EndIf

EndWhile

EndWhile

EndAlgorithm

Algorithm OK(x, k)

For i← 1, k − 1 execute

If x[k] = x[i] then

Return False
EndIf

EndFor

Return True
EndAlgorithm

Cu ce secvent, ă de cod trebuie completat
algoritmul, astfel ı̂ncât ı̂n urma apelului
p(x, n, 1, False) să se afis,eze toate per-
mutările de ordin n, fiecare o singură dată.

A.

If k > 1 then

k ← k − 1
Else

final← True
EndIf

B.

If k > 0 then

k ← k − 1
Else

final← True
EndIf

C.

final← True

D.

If k > 1 then

k ← k − 1
final← True

EndIf

411. ✓ ?Se dau algoritmii problema(n) s, i calcul(a, b), unde n, a, b sunt numere naturale
(0 ≤ n, a, b ≤ 9):

Algorithm problema(n)

rezultat← 0
For k ← 0, n execute

For p← 0, n execute

For j ← 0, n execute

If p MOD 2 = 0 then

rezultat← rezultat+ 1
EndIf

EndFor

EndFor

EndFor

Return rezultat
EndAlgorithm

Algorithm calcul(a, b)

t← 0
For cifra← a, b execute

t← t+ problema(cifra)
EndFor

269

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Write t
EndAlgorithm

Care din următoarele afirmat, ii sunt adevărate?

A. În urma apelului calcul(1, 8) se afis,ează 1095.

B. În urma apelului calcul(1, 8) se afis,ează 1094.

C. În urma apelului calcul(0, 9) se afis,ează 1095.

D. În urma apelului calcul(0, 9) se afis,ează 1595.

412. ✓ ?Se consideră algoritmul checkAcc(n, f, w, lw), unde n este un număr natural
nenul (1 ≤ n ≤ 104), f este număr natural, w este un s, ir de lw (1 ≤ lw ≤ 104) numere
naturale (w[1], w[2], ..., w[lw], unde 0 ≤ w[p] ≤ 104, pentru p = 1, 2, ..., lw). Algoritmul
checkAcc(n, f, w, lw) apelează algoritmul t(i, j, k), unde i, j s, i k sunt numere
naturale. Algoritmul t(i, j, k) returnează rezultat boolean.

Algorithm checkAcc(n, f, w, lw)

acc← True
If lw = 0 AND f ̸= 1 then

acc← False
Else

index← 1
q ← 1
While (acc = True) AND

(index ≤ lw) execute

crt← 1
changed← False
While (changed = False)

AND (crt ≤ n)
execute

If t(q, w[index], crt) then

q ← crt
changed← True

Else

crt← crt+ 1
EndIf

EndWhile

If changed = False then

acc← False
Else

index← index+ 1
EndIf

EndWhile

If (index > lw) AND

(acc = True) AND

(q ̸= f) then

acc← False
EndIf

EndIf

Return acc
EndAlgorithm

În care dintre situat, iile de mai jos algoritmul
checkAcc(2, f, w, lw) va returna True,
s,tiind că algoritmul t(i, j, k) returnează
True ı̂n cazurile din tabel, altfel returnează
False?

✓ ?

i j k
1 0 1
1 1 2
2 1 2

A. w = [0, 0, 1, 1], lw = 4 s, i f = 1

B. w = [1, 1, 1, 0], lw = 4 s, i f = 2

C. w = [0, 0, 1, 1], lw = 4 s, i f = 2

D. w = [0, 0, 0, 0], lw = 4 s, i f = 1

413. ✓ ?Se consideră vectorul de cifre a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]. Cu scopul de a afis,a

270

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

elementele vectorului a ı̂ntr-o altă ordine, se construies,te vectorul b (init, ial vid). La
fiecare pas, se poate alege una din următoarele două operat, ii:

(a) Adaugă – se adaugă primul element din vectorul a la finalul vectorului b s, i se
elimină din vectorul a.

(b) S, terge – se afis,ează, apoi se s,terge ultimul element din vectorul b.

Observat, ii:

(a) Elementele vectorului a se prelucrează ı̂n ordinea dată.

(b) Nu se poate folosi operat, ia Adaugă dacă vectorul a este vid s, i nu se poate folosi
operat, ia S, terge, dacă vectorul b este vid.

(c) Prelucrarea se termină când vectorii a s, i b sunt vizi.

Respectând regulile de mai sus, ı̂n ce ordine NU pot fi afis,ate cifrele?

A. 0 1 2 3 4 5 6 7 8 9

B. 9 8 7 6 5 4 3 2 1 0

C. 2 4 6 5 3 7 0 1 9 8

D. 2 3 1 4 5 0 8 9 7 6

271

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Admitere nivel licent, ă, sesiunea septembrie 2022

414. ✓ ?Se consideră algoritmul decide(n, x), unde n este număr natural (1 ≤ n ≤ 10000),
iar x este un vector cu n elemente numere ı̂ntregi (x[1], x[2], . . . , x[n], −100 ≤ x[i] ≤
100,∀i):
Algorithm decide(n, x)

b← True

i← 1
While b = True & i < n execute

If x[i] < x[i+ 1] then

b← True

Else

b← False

EndIf

i← i+ 1
EndWhile

Return b
EndAlgorithm

Pentru care dintre următoarele situat, ii algoritmul returnează True?

A. Dacă vectorul x este format din valorile 1, 2, 3, . . . , 10.

B. Dacă vectorul x este strict crescător.

C. Dacă vectorul x nu are elemente negative.

D. Dacă vectorul x are elemente pozitive situate ı̂naintea celor negative.

415. ✓ ?Se consideră un număr natural fără cifre egale cu zero, dat prin s, irul a (a[1], . . . , a[n])
ı̂n care se află cele n cifre ale sale (1 ≤ n ≤ 10 la momentul apelului init, ial). Precizat, i
care dintre următorii algoritmi returnează True dacă un număr dat sub această formă
este palindrom s, i False ı̂n caz contrar. Un număr este palindrom dacă citit de la
stânga la dreapta are aceeas, i valoare ca atunci când se cites,te de la dreapta la stânga.

A.

Algorithm palindrom1(a, x)

i← 1
j ← n
k ← True

While (i ≤ j) AND (k = True)
execute

If a[i] = a[j] then

i← i+ 1
j ← j − 1

Else

k ← False

EndIf

EndWhile

Return k
EndAlgorithm

B.

Algorithm translatare(a, n)

For i← 1, n− 1 execute

a[i]← a[i+ 1]
EndFor

EndAlgorithm

Algorithm palindrom2(a, n)

j ← n
If (j = 0) OR (j = 1) then

Return True

EndIf

If a[1] = a[j] then

translatare(a, n)
Return palindrom2(a, n− 2)

EndIf

Return False

EndAlgorithm

272

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

C.

Algorithm palindrom3(a, n)

i← n
j ← 1
k ← True

sum1← 0
sum2← 0
While (i > n DIV 2) AND (j ≤

n DIV 2) execute

sum1← sum1 + a[i]
sum2← sum2 + a[j]
i← i− 1
j ← j + 1

EndWhile

If sum1 = sum2 then

k ← True

Else

k ← False

EndIf

Return k
EndAlgorithm

D.

Algorithm palindrom4(a, n)

i← 1
j ← n
k ← True

While (i ≤ j) AND (k = True)
execute

If (a[i] = a[j]) AND (i MOD 2 =
0) AND (j MOD 2 = 0) then

i← i+ 1
j ← j − 1

Else

k = False

EndIf

EndWhile

Return k
EndAlgorithm

416. ✓ ?Se consideră algoritmul F(n), unde n este număr natural (1 ≤ n ≤ 109):

Algorithm F(n)

If n < 10 then

Return n
EndIf

u← n MOD 10
p← F(n DIV 10)
If u MOD 5 ≤ p MOD 5 then

Return u
EndIf

Return p
EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt corecte:

A. Dacă n = 812376, valoarea returnată de algoritm este 6.

B. Dacă n = 8237631, valoarea returnată de algoritm este 1.

C. Dacă n = 4868, valoarea returnată de algoritm este 8.

D. Dacă n = 51, valoarea returnată de algoritm este 0.

417. ✓ ?Se consideră algoritmul f(n), unde parametrul n este număr natural (1 ≤ n ≤ 109):

Algorithm f(n)

v ← 0; z ← 0
For c← 0, 9 execute

x← n
k ← 0
While x > 0 execute

If x MOD 10 = c then

k ← k + 1
EndIf

x← x DIV 10

273

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

EndWhile

If k > v then

v ← k
z ← c

EndIf

EndFor

Return z
EndAlgorithm

Care dintre afirmat, iile următoare sunt adevărate?

A. Algoritmul returnează numărul cifrelor numărului n.

B. Algoritmul returnează numărul de aparit, ii ale cifrei cu valoarea cea mai mare ı̂n
numărul n.

C. Algoritmul returnează una dintre cifrele cu cel mai mare număr de aparit, ii ı̂n
numărul n.

D. Algoritmul returnează numărul cifrelor având cel mai mare număr de aparit, ii ı̂n
numărul n.

418. ✓ ?Care dintre următorii algoritmi afis,ează reprezentarea binară a numărului natural
x dat ca parametru (0 < x ≤ 109) la momentul apelului init, ial)?

A.

Algorithm imp(x)

If x = 0 then

r ← x MOD 2
imp(x DIV 2)
write r

EndIf

EndAlgorithm

B.

Algorithm imp(x)

If x ̸= 0 then

r ← x MOD 2
imp(x DIV 2)
write r

EndIf

EndAlgorithm

C.

Algorithm imp(x)

If x = 0 then

r ← x DIV 2
imp(x DIV 2)
write r

EndIf

EndAlgorithm

D.

Algorithm imp(x)

If x ̸= 0 then

r ← x MOD 2
imp(x)
write r

EndIf

EndAlgorithm

419. ✓ ?Care dintre următoarele afirmat, ii referitoare la variantele de răspuns ale problemei
418. sunt adevărate?

A. În timpul execut, iei algoritmului de la varianta A nu se afis,ează nimic.

B. Algoritmul de la varianta B nu se va apela recursiv pentru nicio valoare validă a
parametrului x

C. Algoritmul de la varianta C ar fi corect, dacă am schimba ”=” cu ”̸=”

D. Algoritmul de la varianta D ar fi corect, dacă am schimba ”imp(x)” cu ”imp(x
DIV 2)”.

274

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

420. ✓ ?Se consideră numerele ı̂ntregi a s, i b (−1000 ≤ a, b ≤ 1000) s, i expresia:

NOT ((a > 0) AND (b > 0)).

Care dintre următoarele expresii sunt echivalente cu expresia dată mai sus:

A. (NOT (a < 0)) AND (NOT (b < 0))

B. (a ≤ 0) AND (b ≤ 0)

C. (NOT (a > 0)) OR (NOT (b > 0))

D. NOT ((a > 0) OR (b < 0))

421. ✓ ?Se consideră algoritmul s(n), unde n este număr natural (2 ≤ n ≤ 10). Operatorul
/ reprezintă ı̂mpărt, irea reală (ex. 3/2 = 1, 5).

Algorithm s(n)

p← 1
x← 0
For k = 0, n− 1 execute

p← p ∗ (k + 1)
x← x+ 1/p

EndFor

Return x
EndAlgorithm

Precizat, i care dintre următoarele sume este
returnată de algoritmul dat.

A.
∑n

k=0
1
k!

B.
∑n

k=0
1
k

C.
∑n−1

k=0
1
k!

D.
∑n

k=1
1
k!

422. ✓ ?Se consideră algoritmul ceFace(n), unde n este număr natural pozitiv (1 ≤ n ≤
10000).

Algorithm ceFace(n)

m← 0
p← 10
While p < n execute

r ← n MOD p
m← m+ r
p← p ∗ 10

EndWhile

Return m
EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii
sunt adevărate:

A. Pentru n = 125 algoritmul returnează
valoarea 521.

B. Algoritmul ceFace(n) returnează
oglinditul numărului n.

C. Pentru n = 125 algoritmul returnează
valoarea 155.

D. Pentru n = 340 algoritmul returnează
valoarea 40.

423. ✓ ?Se consideră algoritmul f(v, n), unde n este număr natural nenul (1 ≤ n ≤ 10000)
s, i v este un vector cu n numere naturale pozitive (v[1], v[2], ..., v[n]). Presupunem că
algoritmul prim(d) returnează True dacă d (număr natural) este prim s, i False ı̂n caz
contrar.

275

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm f(v, n)

x← 1
a← 0
For i← 1, n execute

For d ← 2, (v[i] DIV 2)
execute

If (prim(d) = True) AND

(v[i] MOD d = 0) then

x← x ∗ d
EndIf

EndFor

EndFor

For d← 2, (x DIV 2) execute

If (x MOD d = 0) AND

(prim(d) = True) then

a← a+ 1
EndIf

EndFor

Return a
EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii
sunt adevărate:

A. Algoritmul returnează numărul divi-
zorilor proprii primi distinct, i ai tutu-
ror numerelor din vectorul v.

B. Algoritmul returnează produsul divi-
zorilor primi ai numerelor din vectorul
v.

C. Algoritmul returnează numărul nume-
relor prime din vectorul v.

D. Algoritmul returnează numărul total
al tuturor divizorilor numerelor din
vectorul v.

424. ✓ ?Se consideră algoritmul f(n), unde n este număr natural (0 < n ≤ 109 la momentul
apelului). Variabila locală v este un vector.

Algorithm f(n)

m← 0
While n > 0 execute

m← m+ 1
v[m]← n MOD 10
n← n DIV 10

EndWhile

x← 0
mx← 0
While mx > −1 execute

x← x ∗ 10 +mx
mx← −1
j ← 1
For i = 1,m execute

If v[i] > mx then

j ← i
mx← v[i]

EndIf

EndFor

v[j]← −1
EndWhile

Return x
EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii
sunt adevărate:

A. Algoritmul returnează cel mai mare
număr care se poate obt, ine folosind ci-
frele lui n.

B. Algoritmul returnează cea mai mare
putere a lui 10 care divide numărul n.

C. Algoritmul returnează prima cifră din
stânga a numărului n.

D. Algoritmul returnează suma cifrelor
numărului n.

425. ✓ ?Se consideră algoritmul f(n), unde parametrul n este număr natural (1 ≤ n ≤ 10002

la momentul apelului).

Algorithm f(n)

z ← 0; p← 1
While n ̸= 0 execute

276

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

c← n MOD 10
n← n DIV 10
If c MOD 3 = 0 then

z ← z + p ∗ (9− c)
p← p ∗ 10

EndIf

EndWhile

Return z
EndAlgorithm

Care este valoarea returnată dacă algoritmul se apelează pentru n = 103456?

A. 639 B. 963 C. 693 D. 369

426. ✓ ?Se consideră algoritmul f(n) dat ı̂n enunt,ul problemei 425., dar acum parametrul
n este număr natural cu două cifre (10 ≤ n ≤ 99 la momentul apelului).

Care dintre următoarele variante cont, in doar numere pentru care algoritmul returnează
valoarea 3?

A. 61, 65, 67 B. 62, 66, 68 C. 16, 56, 76 D. 26, 66, 86

427. ✓ ?Se dă algoritmul ceFace(a, b), unde a s, i b sunt numere naturale pozitive (1 ≤
a, b ≤ 10000).

Algorithm ceFace(a, b)

For i← 2, a, 2 execute

If a MOD i = 0 then

If b MOD i = 0 then

write i
write new line

EndIf

EndIf

EndFor

EndAlgorithm

Dacă a = 600, precizat, i pentru care valori ale lui b se afis,ează 4 numere ı̂n urma
executării algoritmului ceFace(a, b):

A. b = 20 B. b = 50 C. b = 12 D. b = 90

428. ✓ ?Considerând algoritmul de la problema 427., precizat, i care dintre următoarele
afirmat, ii sunt adevărate:

A. Algoritmul afis,ează divizorii comuni ai numerelor a s, i b.

B. Algoritmul afis,ează divizorii proprii comuni ai numerelor a s, i b.

C. Algoritmul afis,ează divizorii impari comuni ai numerelor a s, i b.

D. Algoritmul afis,ează divizorii pari comuni ai numerelor a s, i b.

429. ✓ ?Fie un program care generează, ı̂n ordine crescătoare, toate numerele naturale de
exact 5 cifre distincte care se pot forma cu cifrele 2, 3, 4, 5, 6.

Precizat, i numărul generat imediat ı̂nainte s, i numărul generat imediat după secvent,a
următoare: 34256, 34265, 34526, 34562.

277

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

A. 32645 s, i 34625 B. 32654 s, i 34655 C. 32654 s, i 34625 D. 32645 s, i 34655

430. ✓ ?Fie s, irul x = (1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, ...), care se continuă conform regulii care se poate observa
din elementele enumerate.

Considerând că primul element din s, ir este pe pozit, ia 1, ı̂n care dintre următoarele
subsecvent,e va apărea doar valoarea 11?

A. x[100], . . . , x[109]

B. x[113], . . . , x[120]

C. x[140], . . . , x[152]

D. x[123], . . . , x[132]

431. ✓ ?Câte din primele 100 de elemente ale s, irului x descris ı̂n problema 430. sunt numere
prime?

A. 4 B. 34 C. 36 D. 30

432. ✓ ?Se consideră numerele naturale a s, i n (1 ≤ a, n ≤ 1000), vectorul V cu n elemente
numere naturale (V [1], V [2], ..., V [n]) s, i algoritmii one(a, n, V) s, i two(a, n, V):

Algorithm one(a, n, V)

p← 1; i← 1
While (i ≤ n) AND (a > V [p])

execute

p← p+ 1
i← i+ 1

EndWhile

Return p
EndAlgorithm

Algorithm two(a, n, V)

p← 1; i← 1
While i ≤ n execute

If a > V [i] then

p← p+ 1
EndIf

i← i+ 1
EndWhile

Return p
EndAlgorithm

Ce proprietate poate avea vectorul V, astfel ı̂ncât, pentru orice n s, i V cu proprietatea
dată, cei doi algoritmi să returneze valori egale pentru orice valoare a lui a?

A. În vectorul V toate elementele sunt egale.

B. În vectorul V toate elementele sunt distincte s, i sortate crescător.

C. În vectorul V toate elementele sunt distincte s, i sortate descrescător.

D. În vectorul V elementele sunt sortate crescător, dar nu sunt neapărat distincte.

433. ✓ ?Se consideră algoritmul suma(n) unde n este număr natural (0 < n ≤ 10000) la
momentul apelului init, ial).

Algorithm suma(n)

If n = 0 then

Return 0
Else

Return suma(n− 1) + n DIV (n+ 1) + (n+ 1) DIV n
EndIf

EndAlgorithm

Care dintre afirmat, iile de mai jos NU sunt adevărate?

A. Algoritmul returnează valoarea n + 1

278

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

B. Algoritmul calculează s, i returnează suma divizorilor proprii ai lui n

C. Apelul suma(1) returnează 2

D. Algoritmul calculează s, i returnează dublul părt, ii ı̂ntregi a mediei aritmetice a
primelor n numere naturale

434. ✓ ?Fie următorul algoritm, având ca parametri de intrare numerele naturale a s, i b
(0 ≤ a, b ≤ 10000) la momentul apelului init, ial):

Algorithm ceFace(a, b)

While a ∗ b ̸= 0 execute

If a > b then

Return ceFace(a MOD b, b)
Else

Return ceFace(a, b MOD a)
EndIf

EndWhile

Return a+ b
EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate:

A. Algoritmul returnează suma numerelor a s, i b.

B. Algoritmul returnează numărul nenul x ı̂n urma apelului ceFace(x, 0) sau
ceFace(0, x), respectiv 0 pentru ceFace(0, 0).

C. Algoritmul returnează cel mai mare divizor comun al numerelor a s, i b.

D. Algoritmul returnează a la puterea b.

435. ✓ ?Se consideră algoritmul afis,are(n) unde n este număr natural (1 ≤ n ≤ 109):

Algorithm afis,are(n)

For i = 1, n− 1 execute

For j = i+ 1, n execute

If (j − i) < (n DIV 2) then

write i, " ", j − i
write new line

Else

If (j − i) ̸= (n DIV 2) then

write j − i, " ", i
write new line

EndIf

EndIf

EndFor

EndFor

EndAlgorithm

Câte perechi de numere se vor afis,a ı̂n urma execut, iei algoritmului pentru n = 7?

A. 21 B. 15 C. 11 D. 17

436. ✓ ?Considerând secvent,a de cod de mai jos, determinat, i de câte ori se afis,ează s, irul de

caractere UBB, s,tiind că n = 3k, unde k este număr natural (1 ≤ k ≤ 30)?

279

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

j ← n
While j > 1 execute

i← 1
While i ≤ n execute

i← 3 ∗ i
write ’UBB’

EndWhile

j ← j DIV 3
EndWhile

A. k2

B. k ∗ 3k

C. k ∗ (k + 1)

D. 3 ∗ k

437. ✓ ?Se dau următoarele secvent,e de cod s, i numerele naturale i, j, a, b (1 < a, b ≤ 109).

Secvent,a 1 (S1):

i← 1
While i ̸= b execute

j ← 1
While j ̸= a execute

write ’*’

j ← j + 1
EndWhile

i← i+ 1
EndWhile

Secvent,a 2 (S2):

i← 1
While i ̸= a execute

j ← 1
While j ̸= b execute

write ’*’

j ← j + 1
EndWhile

i← i+ 1
EndWhile

Care dintre afirmat, iile următoare sunt adevărate?

A. Numărul de caractere afis,ate de secvent,a S1 este diferit fat, ă de numărul de ca-
ractere afis,ate de secvent,a S2.

B. Ambele secvent,e au aceeas, i complexitate timp.

C. Numărul de caractere afis,ate de secvent,a S1 este (a− 1) ∗ (b− 1).

D. Numărul de caractere afis,ate de secvent,a S2 este a ∗ b.

438. ✓ ?Se consideră algoritmul ceFace(nr), unde nr este un număr natural (100 ≤ nr ≤
2 ∗ 109 la momentul apelului).

Algorithm testProprietateNr(n)

If n ≤ 1 then

Return False

EndIf

d← 2
While d ∗ d ≤ n execute

If n MOD d = 0 then

Return False

EndIf

d← d+ 1
EndWhile

Return True

EndAlgorithm

Algorithm ceFace(nr)

s← 0
c1← nr MOD 10
nr ← nr DIV 10
c2← nr MOD 10
nr ← nr DIV 10
While nr ̸= 0 execute

c3← nr MOD 10
t← c3 ∗ 100 + c2 ∗ 10 + c1
If testProprietateNr(t) then

s← s+ c1 + c2 + c3
EndIf

c1← c2
c2← c3
nr ← nr DIV 10

EndWhile

Return s
EndAlgorithm

Precizat, i valoarea pe care o returnează algoritmul ceFace(nr) pentru nr = 1271211312?

280

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

A. 31 B. 32 C. 33 D. 34

439. ✓ ?Care dintre următorii algoritmi determină corect s, i returnează valoarea rădăcinii
pătrate a numărului natural n (0 < n < 105), rotunjit ı̂n jos la cel mai apropiat ı̂ntreg.
Operatorul / reprezintă ı̂mpărt, irea reală (ex. 3/2 = 1, 5).

A.

Algorithm radical A(n)

x← 0
z ← 1
While z ≤ n execute

x← x+ 1
z ← z + 2 ∗ x
z ← z + 1

EndWhile

Return x
EndAlgorithm

B.

Algorithm radical B(n)

s← 1
d← n DIV 2
While s < d execute

k ← (s+ d) DIV 2
If k ∗ k ≥ n then

d← k
Else

s← k + 1
EndIf

EndWhile

If s ∗ s ≤ n then

Return s+ 1
Else

Return s− 1
EndIf

EndAlgorithm

C.

Algorithm radical C(n, x)

//Algoritmul se apelează init,ial

//ı̂n forma radical C(n, n)

eps← 0.001
y ← 0.5 ∗ (x+ n/x)
If x− y < eps then

//se returnează partea

//ı̂ntreagă a lui x

Return [x]
EndIf

Return radical C(n, y)
EndAlgorithm

D.

Algorithm radical D(n)

s← 0
p← 0

281

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

k ← 0
While k < n execute

k ← k + 3 + p
p← p+ 2
s← s+ 1

EndWhile

Return s
EndAlgorithm

440. ✓ ?S, tiind că x este număr natural, care dintre următoarele expresii au valoarea True
dacă s, i numai dacă x este număr par care NU apart, ine intervalului deschis (10, 20)?

A. NOT ((x > 10) AND (x < 20)) AND (NOT (x MOD 2 = 1))

B. (x MOD 2 = 0) AND ((x < 10) OR (x > 20))

C. NOT (x MOD 2 = 1) AND ((x > 10) AND (x < 20))

D. NOT ((x MOD 4 = 1) OR (x MOD 4 = 3) OR ((x > 10) AND
(x < 20)))

441. ✓ ?Se dă un s, ir a de n numere naturale distincte (a[1], a[2], ..., a[n], 2 ≤ n ≤ 1000)

ordonate strict crescător. Într-un s, ir se numes,te vârf local un număr cu proprietatea
că este strict mai mare decât numărul de pe pozit, ia anterioară, dar s, i decât numărul
de pe pozit, ia următoare. Primul s, i ultimul element din s, ir nu pot fi vârfuri locale. Se
dores,te un algoritm rearanjare(a, n) care rearanjează valorile din s, ir astfel ı̂ncât
s, irul să aibă un număr maxim de vârfuri locale s, i returnează noul s, ir. Variabila locală
b este un s, ir. Care dintre următorii algoritmi sunt corect, i?

A.

Algorithm rearanjare(a, n)

i← n
For p← 2, n, 2 execute

b[p]← a[i]
i← i− 1

EndFor

For p← 1, n, 2 execute

b[p]← a[i]
i← i− 1

EndFor

Return b
EndAlgorithm

B.

Algorithm rearanjare(a, n)

i← n
For p← 2, n, 2 execute

b[p]← a[i]
i← i− 1
b[p− 1]← a[i]
i← i− 1

EndFor

If n MOD 2 = 1 then

b[n]← a[i]
EndIf

Return b
EndAlgorithm

282

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

C.

Algorithm rearanjare(a, n)

i← n
For p← 2, n, 2 execute

b[p]← a[i]
i← i− 1

EndFor

i← 1
For p← 1, n, 2 execute

b[p]← a[i]
i← i+ 1

EndFor

Return b
EndAlgorithm

D.

Algorithm rearanjare(a, n)

i← n
For p← 2, n, 3 execute

b[p]← a[i]
i← i− 1
b[p− 1]← a[i]
i← i− 1
If p+ 1 ≤ n then

b[p+ 1]← a[i]
i← i− 1

EndIf

EndFor

If n MOD 3 = 1 then

b[n]← a[i]
EndIf

Return b
EndAlgorithm

442. ✓ ?Se consideră algoritmul f(n, p1, p2), unde n, p1 s, i p2 sunt numere naturale strict
pozitive (1 < n, p1, p2 ≤ 104) la momentul apelului).

Algorithm f(n, p1, p2)

c← 0
While p1 ≤ n execute

c← c+ n DIV p1
p1← p1 ∗ p2

EndWhile

Return c
EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate:

A. Dacă cei trei parametri au valori egale (n = p1 = p2), atunci algoritmul retur-
nează ı̂ntotdeauna valoarea 1.

B. Dacă p1 = 5 s, i p2 = 5, algoritmul returnează numărul de cifre de 0 pe care le are
n! la sfârs, it.

C. Dacă p1 s, i p2 au valori egale s, i mai mari decât 2, atunci algoritmul returnează
[logp1 n].

D. Niciuna dintre celelalte trei afirmat, ii nu este adevărată.

443. ✓ ?Care dintre următorii algoritmi returnează numărul de numere sumative din inter-
valul [a, b] (0 < a < b < 106)? Un număr natural nenul n este sumativ dacă n2 se
poate scrie ca sumă a n numere naturale nenule consecutive. De exemplu, 1 s, i 7 sunt
sumative deoarece 1 = 1, respectiv 49 = 4 + 5 + 6 + 7 + 8 + 9 + 10.

A.

Algorithm sumative(a, b)

k ← 0
For i← a, b execute

If i MOD 2 ̸= 0 then

k ← k + 1
EndIf

283

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

EndFor

Return k
EndAlgorithm

B.

Algorithm sumative(a, b)

Return (b− a) DIV 2 + (b− a) MOD 2 + (a MOD 2 + b MOD 2) DIV 2
EndAlgorithm

C.

Algorithm sumative(a, b)

k ← 0
For i← a, b execute

i2← i ∗ i
For j ← 2, i− 1 execute

If i2 = j ∗ i+ (i ∗ (i+ 1) DIV 2) then

k ← k + 1
EndIf

EndFor

EndFor

Return k
EndAlgorithm

D.

Algorithm sumative(a, b)

k ← 0
For i← a, b execute

i2← i ∗ i
For j ← 2, i DIV 2 execute

If i2 = j ∗ i+ (i ∗ (i+ 1) DIV 2) then

k ← k + 1
EndIf

EndFor

EndFor

Return k
EndAlgorithm

284

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Admitere nivel licent, ă, sesiunea iulie 2022

444. ✓ ?Se consideră algoritmul ceFace(a, b), unde a s, i b sunt numere naturale (1 ≤ a, b ≤
10000) la momentul apelului).

Algorithm ceFace(a, b)

While (a MOD 10 = b MOD 10) AND (a ̸= 0) AND (b ̸= 0) execute

a← a DIV 10
b← b DIV 10

EndWhile

If (a = 0 AND b = 0) then

Return True

Else

Return False

EndIf

EndAlgorithm

Algoritmul ceFace(a, b) returnează True dacă s, i numai dacă:

A. numerele a s, i b au acelas, i număr de cifre

B. a s, i b sunt egale

C. a s, i b sunt formate din aceleas, i cifre, dar asezate ı̂n altă ordine

D. ultima cifră a lui a este egală cu ultima cifră a lui b

445. ✓ ?Se consideră algoritmul f(a, n) unde n este număr natural nenul (2 ≤ n ≤ 10000)
s, i a este un vector cu n numere ı̂ntregi (a[1], a[2], ..., a[n],−100 ≤ a[i] ≤ 100, pentru
i = 1, 2, ..., n). Variabila locală b este vector.

Algorithm f(a, n)

i← 2
b[1]← a[1]
While i ≤ n execute

b[i]← b[i− 1] + a[i]
i← i+ 1

EndWhile

Return b[n]
EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate:

A. Algoritmul returnează suma tuturor elementelor din vectorul a.

B. Algoritmul returnează suma ultimelor două elemente din vectorul a.

C. Algoritmul returnează ultimul element din vectorul a.

D. Algoritmul returnează suma ultimelor n - 1 elemente din vectorul a.

446. ✓ ?Care dintre algoritmii următori returnează numărul factorilor primi distinct, i ai unui
număr natural n dat (5 < n < 105) la momentul apelului).

A.

// Vectorul prime are lungimea n

// prime[i] are valoarea True, dacă

// numărul i este prim s,i False altfel

Algorithm nrFactoriPrimi A(n, prime)

d← 2
nr ← 0

285

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

p← 0
While n > 0 execute

While n MOD d = 0 execute

p← p+ 1
n← n DIV d

EndWhile

If p ̸= 0 then

nr ← nr + 1
EndIf

d← d+ 1
While prime[d] = False execute

d← d+ 1
EndWhile

p← 0
EndWhile

Return nr
EndAlgorithm

B.

Algorithm nrFactoriPrimi B(n)

d← 2
nr ← 0
While n > 1 execute

p← 0
While n MOD d = 0 execute

p← p+ 1
n← n DIV d

EndWhile

If p > 0 then

nr ← nr + 1
EndIf

If d = 2 then

d← d+ 1
Else

d← d+ 2
EndIf

EndWhile

Return nr
EndAlgorithm

C.

Algorithm nrFactoriPrimi C(n)

nr ← 0
For d← 2, n execute

If n MOD d = 0 then

nr ← nr + 1
EndIf

While n MOD d = 0 execute

n← n DIV d
EndWhile

EndFor

Return nr
EndAlgorithm

D.

Algorithm nrFactoriPrimi D(n)

286

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

nr ← 0
d← 2
While d ∗ d ≤ n execute

If n MOD d = 0 then

nr ← nr + 1
EndIf

While n MOD d = 0 execute

n← n DIV d
EndWhile

d← d+ 1
EndWhile

Return nr
EndAlgorithm

447. ✓ ?Se consideră algoritmul ceFace(n, m), unde n este număr natural (0 ≤ n ≤ 1000)
cu ultima cifră diferită de 0.

Algorithm ceFace(n, m)

If n = 0 then

Return m
Else

Return ceFace(n DIV 10,m ∗ 10 + n MOD 10)
EndIf

EndAlgorithm

Care este rezultatul apelului ceFace(n, 0)?

A. 0 (indiferent de valoarea lui n)

B. n (indiferent de valoarea lui n)

C. Suma cifrelor numărului n

D. Oglinditul numărului n

448. ✓ ?Se consideră algoritmul f(x, n) unde n este număr natural (2 ≤ n ≤ 10000),
iar x este un s, ir de n numere naturale (x[1], x[2], ..., x[n], 1 ≤ x[i] ≤ 10000), pentru
i = (1, 2, ..., n).

Algorithm f(x, n)

For i = 1, n− 1 execute

If x[i] = x[i+ 1] then

Return False

EndIf

EndFor

Return True

EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate:

A. Algoritmul returnează False dacă două elemente oarecare din s, irul x sunt dis-
tincte.

B. Algoritmul returnează False dacă două elemente oarecare din s, irul x sunt egale.

C. Algoritmul returnează False dacă două elemente consecutive din s, irul x sunt
egale.

D. Algoritmul returnează False dacă primele două elemente din s, irul x sunt egale.

287

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

449. ✓ ?Se consideră algoritmul f(x, n) unde x s, i n sunt numere naturale (0 ≤ n ≤
10000, 0 < x ≤ 10000).

1: Algorithm f(x, n)

2: If n = 0 then

3: Return 1
4: EndIf

5: m← n DIV 2
6: p← f(x,m)
7: If n MOD 2 = 0 then

8: Return p ∗ p
9: EndIf

10: Return x ∗ p ∗ p
11: EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Algoritmul returnează x la puterea n.

B. Dacă pe linia 7, ı̂n loc de n MOD 2 ar fi m MOD 2, atunci algoritmul ar
returna x la puterea n.

C. Din cauza autoapelului de pe linia 6, liniile 7, 8, 9, 10 nu se vor executa niciodată.

D. Algoritmul returnează 1 dacă n este număr par sau x dacă n este număr impar.

450. ✓ ?Considerând că toate operat, iile de ı̂nmult, ire s, i ı̂mpărt, ire se realizează ı̂n timp con-
stant, ce putem spune despre complexitatea timp a algoritmului din enunt,ul problemei
449.?

A. Complexitatea timp depinde de parametrii x s, i n.

B. Complexitatea timp nu depinde de parametrul x.

C. Complexitatea timp este O(log log n).

D. Complexitatea timp este logaritmică ı̂n raport cu parametrul n (O(log n)).

451. ✓ ?Se consideră algoritmul afis,are(n), unde n este număr natural (1 ≤ n ≤ 10000).

Algorithm afis,are(n)

If n ≤ 4000 then

write n, " "

afis,are(2 ∗ n)
write n, " "

EndIf

EndAlgorithm

Ce se afis,ează pentru apelul afis,are(1000)?

A. 1000 2000 4000

B. 1000 2000 4000 4000 2000 1000

C. 1000 2000 4000 2000 1000

D. 1000 2000 2000 1000

452. ✓ ?Care ar putea fi elementele unui vector astfel ı̂ncât, aplicând metoda căutării binare
pentru valoarea 36, aceasta să fie comparată succesiv cu valorile 12, 24, 36:

288

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

A. [2, 4, 7, 12, 24, 36, 50]

B. [2, 4, 8, 9, 12, 16, 20, 24, 36, 67]

C. [4, 8, 9, 12, 16, 24, 36]

D. [12, 24, 36, 42, 54, 66]

453. ✓ ?Care dintre următoarele expresii sunt echivalente cu x MOD y pentru toate
numerele naturale strict pozitive x s, i y (0 < x, y ≤ 10000)?

A. x DIV y

B. x− (y ∗ (x DIV y))

C. x− (x ∗ (x DIV y))

D. x DIV y + y DIV x

454. ✓ ?Fie variabila n care memorează un număr natural. Care dintre expresiile de mai
jos are valoarea True dacă s, i numai dacă n este divizibil cu 2 s, i cu 3?

A. (n DIV 2 = 0) OR (n DIV 3 ̸= 0)

B. (n MOD 3 = 2) OR (n MOD 2 = 3)

C. (n MOD 2 ̸= 1) AND (n MOD 3 = 0)

D. (n MOD 2 = 0) AND (n MOD 3 ̸= 1)

455. ✓ ?Fie variabila n care memorează un număr natural. Care dintre expresiile de mai
jos are valoarea True dacă s, i numai dacă n este divizibil cu 2 s, i cu 3?

A. (n MOD 2)− (n MOD 3) = 0

B. (n MOD 2)− (n MOD 3) < 0

C. (n MOD 2) + (n MOD 3) > 0

D. (n MOD 2) + (n MOD 3) = 0

456. ✓ ?Se consideră algoritmul f(n), unde n este număr natural (1 ≤ n ≤ 100). Operatorul
”/” reprezintă ı̂mpărt, irea reală (ex. 3/2 = 1, 5). Precizat, i efectul algoritmului.

Algorithm f(n)

s← 0; p← 1
For i← 1, n execute

s← s+ i
p← p ∗ (1/s)

EndFor

Return p
EndAlgorithm

A. Evaluează expresia 1/1 ∗ 1/2 ∗ 1/3 ∗ ... ∗ 1/n
B. Evaluează expresia 1/1 ∗ 1/(1 ∗ 2) ∗ 1/(1 ∗ 2 ∗ 3) ∗ ... ∗ 1/(1 ∗ 2 ∗ 3 ∗ ... ∗ n)
C. Evaluează expresia 1/1 ∗ 1/(1 + 2) ∗ 1/(1 + 2 + 3) ∗ ... ∗ 1/(1 + 2 + 3 + ...+ n)

D. Evaluează expresia 1/1 + 1/(1 ∗ 2) + 1/(1 ∗ 2 ∗ 3) + ...+ 1/(1 ∗ 2 ∗ 3 ∗ ... ∗ n)

457. ✓ ?Se consideră algoritmul prelucrare(s1, lung1, s2, lung2), unde s1 s, i s2 sunt
două s, iruri de caractere de lungime lung1, respectiv lung2 (1 ≤ lung1, lung2 ≤ 1000).
Cele două s, iruri cont, in doar caractere, având codul ASCII din intervalul [1, 125].
Variabila locală x este vector. Considerăm algoritmul ascii(s, i) care returnează
codul ASCII al celui de-al i -lea caracter al s, irului de caractere s.

Algorithm prelucrare(s1, lung1, s2, lung2)

For i = 1, 125 execute

x[i]← 0
EndFor

289

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

For i = 1, lung1 execute

x[ascii(s1, i)]← x[ascii(s1, i)] + 1
EndFor

For i = 1, lung2 execute

x[ascii(s2, i)]← x[ascii(s2, i)]− 1
EndFor

ok ← True

For i = 1, 125 execute

If x[i] ̸= 0 then

ok ← False

EndIf

EndFor

Return ok
EndAlgorithm

Precizat, i efectul algoritmului.

A. Algoritmul returnează True dacă s, irurile de caractere s1 s, i s2 au aceeas, i lungime
s, i False ı̂n caz contrar.

B. Algoritmul returnează True dacă s, irurile de caractere s1 s, i s2 sunt formate din
aceleas, i caractere având aceleas, i frecvent,e corespunzătoare, s, i False ı̂n caz con-
trar.

C. Algoritmul returnează True dacă ı̂n fiecare dintre cele două s, iruri de caractere s1
s, i s2 apar toate caracterele având codul ASCII din intervalul [1, 125] s, i False ı̂n
caz contrar.

D. Algoritmul returnează True dacă cele două s, iruri de caractere s1 s, i s2 sunt for-
mate din caractere diferite s, i False ı̂n caz contrar.

458. ✓ ?Care este rezultatul conversiei numărului binar 1001011001111 ı̂n baza 10?

A. 2407

B. 2408

C. 1203

D. Niciunul dintre A., B., C.

459. ✓ ?Se consideră un vector a cu n numere naturale (a[1], a[2], ..., a[n]), numărul natural
n (1 ≤ n ≤ 10000) s, i un număr natural x. Care din următoarele secvent,e de cod
afis,ează pozit, ia cu indicele minim unde se află valoarea x ı̂n vectorul a, sau afis,ează
-1 dacă x nu apare ı̂n vectorul a?

A.

i← 1
While (i ≤ n) AND

(a[i] = x) execute

i← i+ 1
EndWhile

If i ≤ n then

write i
Else

write −1
EndIf

B.

i← 1
While (i ≤ n) AND

(a[i] ̸= x) execute

i← i+ 1
EndWhile

If i = n+ 1 then

write i
Else

write −1
EndIf

290

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

C.

i← 1
While (i ≤ n) AND

(a[i] = x) execute

i← i+ 1
EndWhile

If i = n+ 1 then

write i
Else

write −1
EndIf

D.

i← 1
While (i ≤ n) AND

(a[i] ̸= x) execute

i← i+ 1
EndWhile

If i ≤ n then

write i
Else

write −1
EndIf

460. ✓ ?Se consideră algoritmul f(x), unde x este număr ı̂ntreg:

Algorithm f(x)

If x = 0 then

Return 0
Else

If x MOD 3 = 0 then

Return f(x DIV 10) + 1
Else

Return f(x DIV 10)
EndIf

EndIf

EndAlgorithm

Pentru ce valoare a lui x algoritmul va re-
turna valoarea 4?

A. 13369

B. 21369

C. 4

D. 1233

461. ✓ ?Se consideră algoritmul f(n, i, j) unde n, i s, i j sunt numere naturale (1 ≤
n, i, j ≤ 10000 la momentul apelului init, ial).

Algorithm f(n, i, j)

If i > j then

write ’*’

Else

If n MOD i = 0 then

f(n, i− 1, j)
Else

If n DIV i ̸= j then

f(n, i+ 1, j − 1)
write ’0’

Else

f(n, i+ 2, j − 2)
write ’#’

EndIf

EndIf

EndIf

EndAlgorithm

Ce se afis,ează ı̂n urma execut, iei apelului
f(15, 3, 10)?

A. *000000

B. *0#000

C. *0#0000

D. *0000000

462. ✓ ?Se consideră algoritmul ceFace(n, x), unde n este număr natural (1 ≤ n ≤ 100)
s, i x este un vector cu n elemente numere naturale (x[1], x[2], ..., x[n]).

Algorithm ceFace(n, x)

For i = 1, n execute

c← x[i]
x[i]← x[n− i+ 1]

291

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

x[n− i+ 1]← c
EndFor

EndAlgorithm

Care va fi noul cont, inut al vectorului x după executarea algoritmului dat dacă n = 6
s, i x = [5, 3, 2, 1, 1, 1]?

A. [1, 1, 2, 1, 3, 5]

B. [1, 1, 1, 2, 3, 5]

C. [5, 3, 2, 1, 1, 1]

D. Niciuna dintre variante.

463. ✓ ?Se consideră algoritmul what(n), unde n este număr natural (1 ≤ n ≤ 1000 la
apelul init, ial).

Algorithm what(n)

If n = 0 then

Return True

EndIf

If (n MOD 10 = 3) OR (n MOD 10 = 7) then

Return what(n DIV 10)
Else

Return False

EndIf

EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Algoritmul returnează True dacă s, i numai dacă fie n este format doar din cifre
de 3, fie n este format doar din cifre de 7

B. Algoritmul returnează False dacă n cont, ine cel put, in o cifră pară

C. Algoritmul returnează False dacă s, i numai dacă n cont, ine cel put, in o cifră c unde
c ̸= 3 s, i c ̸= 7

D. Algoritmul returnează True dacă s, i numai dacă n nu cont, ine nicio cifră din
mult, imea {0, 1, 2, 4, 5, 6, 8, 9}

464. ✓ ?Se consideră algoritmul calcul(x, n), unde x s, i n sunt numere naturale (1 ≤ x ≤
10000, 1 ≤ n ≤ 10000), s, i x ≤ n.

Algorithm calcul(x, n)

b← 1
For i← 1, n− x execute

b← b ∗ i
EndFor

a← b
For i← n− x+ 1, n execute

a← a ∗ i
EndFor

Return a DIV b
EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate:

A. Dacă x = 2 s, i n = 5, atunci algoritmul returnează 10.

B. Algoritmul returnează numărul acelor submult, imi ale mult, imii {1, 2, ..., n} care
au câte x elemente.

292

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

C. Algoritmul returnează numărul aranjamentelor de n elemente, luate câte x.

D. Algoritmul returnează numărul combinărilor de n elemente, luate câte x.

465. ✓ ?O fermă cres,te găini s, i iepuri, fiecare găină având două picioare s, i fiecare iepure pa-
tru picioare. Numărul total de capete este n s, i numărul total de picioare al animalelor
din fermă este m (0 ≤ n,m ≤ 104). Care dintre următorii algoritmi returnează True
s, i afis,ează toate perechile de numere posibile pentru numărul găinilor s, i al iepurilor
din fermă, sau returnează False dacă nu există solut, ie?

A.

Algorithm ferma A(n, m)

found ← False

For i← 0, n execute

j ← n− i
If 2 ∗ i+ 4 ∗ j = m then

found ← True

write i, ’ ’, j
write newline

EndIf

EndFor

Return found

EndAlgorithm

B.

Algorithm ferma B(n, m)

found ← False

For i← 0, n execute

For j ← 0, n execute

If 2 ∗ i+ 4 ∗ j = m AND

i+ j = n then

found ← True

write i, ’ ’, j
write newline

EndIf

EndFor

EndFor

Return found

EndAlgorithm

C.

Algorithm ferma C(n, m)

found ← False

For i← 0, n execute

For j ← 0, n− i execute

If 2 ∗ i+ 4 ∗ j = m AND

i+ j = n then

found ← True

write i, ’ ’, j
write newline

EndIf

EndFor

EndFor

Return found

EndAlgorithm

D.

Algorithm ferma D(n, m)

found ← False

For i← 0, n execute

For j ← 0, i execute

If 2 ∗ i+ 4 ∗ j = m AND

i+ j = n then

found ← True

write i, ’ ’, j
write newline

EndIf

EndFor

EndFor

Return found

EndAlgorithm

466. ✓ ?Se dă un număr natural n, care poate fi scris ca produs de trei numere naturale a,
b, c, (n = a ∗ b ∗ c). Care dintre următoarele expresii are ca valoare restul ı̂mpărt, irii
lui n la numărul natural d (1 ≤ n, a, b, c, d ≤ 10000)?

A. (a MOD d) ∗ b ∗ c
B. ((a MOD d) ∗ (b MOD d) ∗ (c MOD d)) MOD d

C. (a MOD d) ∗ (b MOD d) ∗ (c MOD d)

D. (a DIV d) ∗ (b DIV d) ∗ (c DIV d)

467. ✓ ?Se consideră algoritmul det(a, n, m), unde a este un s, ir de n numere naturale
(a[1], a[2], ..., a[n] dacă n ≥ 1) sau s, ir vid dacă n = 0. n s, i m sunt numere naturale
(0 ≤ n < 100, 0 ≤ m < 106).

293

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

1: Algorithm det(a, n, m)

2: For i← 1, n− 1 execute

3: For j ← i+ 1, n execute

4: If a[i] > a[j] then

5: tmp ← a[i]
6: a[i]← a[j]
7: a[j]← tmp

8: EndIf

9: EndFor

10: EndFor

11: i← 1
12: j ← n
13: b← False

14: While i < j execute

15: If a[i] + a[j] = m then

16: b← True

17: EndIf

18: If a[i] + a[j] < m then

19: i← i+ 1
20: Else

21: j ← j − 1
22: EndIf

23: EndWhile

24: Return b
25: EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii
sunt adevărate:

A. Algoritmul returnează True dacă ı̂n
s, irul a există o pereche de numere care
au suma egală cu m.

B. Algoritmul returnează ı̂ntotdeauna
False.

C. Algoritmul returnează False dacă n =
0.

D. În liniile 2, ..., 10 algoritmul sortează
crescător s, irul a.

468. ✓ ?Se consideră algoritmul magic(n, a), unde a este un vector cu n numere naturale
(a[1], a[2], ..., a[n], 1 ≤ n ≤ 10000).

Algorithm magic(n, a)

If n < 2 then

Return False

EndIf

For i← 2, n execute

If a[i − 1] = a[i]
then

Return True

EndIf

EndFor

Return False

EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt
adevărate:

A. Pentru magic(5, [2, 5, 4, 5, 4]) algoritmul
returnează False.

B. Algoritmul indică dacă există duplicate ı̂n s, irul
a, dacă s, i numai dacă vectorul a este sortat
crescător/descrescător.

C. Pentru magic(9, [1, 2, 3, 4, 4, 5, 6, 7,

9]) algoritmul returnează True.

D. Pentru magic(5, [9, 5, 5, 2, 4]) algoritmul
returnează True.

469. ✓ ?Fie algoritmul f(n, a, b, c) unde n este număr natural (n ≤ 20) s, i a, b, c trei
numere ı̂ntregi.

Algorithm f(n, a, b, c)

If n = 0 then

Return 1
Else

Return f(n− 1, a ∗ a, b+ 1, c ∗ 2)+ f(n− 1, a− 1, b ∗ b, c+ 1) + 1
EndIf

EndAlgorithm

294

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Care este rezultatul returnat la apelul f(n, 1, 1, 2)?

A. 2n+1 − 1

B. n

C. 20 + 21 + 22 + ...+ 2n

D. 2n+1

470. ✓ ?Se consideră algoritmii f(n, p) s, i g(n), unde n s, i p sunt init, ial numere naturale
(1 ≤ n, p ≤ 106 la momentul apelului init, ial).

Algorithm g(n)

If n < 2 then

Return False

EndIf

i← 2
While i ∗ i ≤ n execute

If n MOD i = 0 then

Return False

EndIf

i← i+ 1
EndWhile

Return True

EndAlgorithm

Algorithm f(n, p)

If n = 0 then

Return 1
EndIf

If n > 0 AND n ≥ p then

c← 0
If g(p) = True then

c← c+ f(n− p, p+ 1)
EndIf

Return c+ f(n, p+ 1)
EndIf

Return 0
EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate:

A. Algoritmul g(n) returnează True dacă numărul n este prim s, i False ı̂n caz contrar.

B. Pentru apelul f(n, 2) se returnează numărul de moduri diferite ı̂n care numărul
n poate fi scris ca sumă de cel put, in un termen de numere prime distincte ı̂n
ordine strict crescătoare.

C. Pentru apelul f(n, 2) se returnează suma divizorilor primi ai numărului n.

D. Apelurile f(n, 1) s, i f(n, 2) vor returna acelas, i rezultat, oricare ar fi n.

471. ✓ ?Se consideră algoritmul AlexB(value, n, k, p), unde value este un s, ir cu n nu-
mere naturale (value[1], value[2], ..., value[n]), iar n, k s, i p sunt numere naturale.
Init, ial s, irul value are n elemente egale cu zero. Algoritmul afis,are(value, n)

afis,ează pe o linie s, irul value.

Algorithm AlexB(value, n, k, p)

p← p+ 1
value[k]← p
If p = n then

afis,are(value, n)
Else

For i← 1, n execute

If value[i] = 0 then

AlexB(value, n, i, p)
EndIf

EndFor

EndIf

p← p− 1
value[k]← 0

EndAlgorithm

Precizat, i s, irul afis,at pe a zecea linie, dacă
n = 5 s, i algoritmul se apelează sub forma
AlexB(value, 5, 1, 0).

A. 1 5 2 3 4

B. 1 5 4 0 4

C. 5 5 5 5 5

D. 1 2 5 4 3

295

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

472. ✓ ?Se consideră algoritmul f(n) unde n este număr natural (1 ≤ n ≤ 10000) la mo-
mentul apelului).

Algorithm f(n)

c← 0
If n ̸= 0 then

c← c+ 1
n← n & (n−1) // and pe bit,i

While n ̸= 0 execute

c← c+ 1
n ← n & (n − 1) // and pe

bit,i

EndWhile

EndIf

Return c
EndAlgorithm

Operatorul & este operatorul AND pe bit, i;
tabelul de adevăr este următorul:

✓ ?

& 0 1
0 0 0
1 0 1

Exemplu: 2 & 7 convertit ı̂n binar: 010 &
111 = 010 care este 2 ı̂n baza 10. 6 & 1
convertit ı̂n binar: 110 & 001 = 000 care
este 0 ı̂n baza 10.

Care dintre afirmat, iile de mai jos NU sunt adevărate?

A. Dacă n este o putere a lui 2, atunci f(n) returnează valoarea 1.

B. Dacă n > 16 s, i n < 32, atunci valoarea returnată de f(n) apart, ine mult, imii
{2, 3, 4, 5}.

C. Algoritmul returnează numărul de numere pare strict mai mici decât n.

D. Algoritmul returnează numărul de numere impare mai mici decât n.

473. ✓ ?Se consideră algoritmul calcul(v, n), unde n este număr natural nenul (1 ≤ n ≤
10000) s, i v este un s, ir cu n numere ı̂ntregi (v[1], v[2], ..., v[n]). Instruct, iunea return

x, y returnează perechea de valori (x, y).

Algorithm calcul(v, n)

i← n DIV 2 + 1
j ← i+ 1
k ← i
p← j
While j ≤ n execute

While (j ≤ n) AND (v[i] =
v[j]) execute

j ← j + 1
EndWhile

If j − i > p− k then

k ← i
p← j

EndIf

i← j
j ← j + 1

EndWhile

If j − i > p− k then

k ← i
p← j

EndIf

Return p− k, k
EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii
sunt adevărate:

A. Dacă s, irul are un singur element, al-
goritmul returnează valorile 0, -1

B. Dacă n = 2 s, i cele două elemente ale
s, irului sunt simetrice fat, ă de 0 (de ex.
-5, 5), rezultatul va fi -1, 1

C. Dacă n = 2 s, i cele două elemente ale
s, irului au valori consecutive (de ex. 3,
4), se returnează ı̂ntotdeauna valorile
1, 2

D. Unul dintre numerele returnate de al-
goritm reprezintă lungimea celei mai
lungi secvent,e cu valori egale, din a
doua jumătate a s, irului, pentru orice
n > 1 număr par

296

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Admitere nivel licent, ă, sesiunea septembrie 2021

474. ✓ ?Se consideră subalgoritimul ceFace(n), unde n este un număr natural (1 ≤ n ≤
10000).

Algorithm ceFace(n)

nr ← 0
For d← 1, n execute

If n MOD d = 0 then

nr ← nr + 1
EndIf

EndFor

If nr = 2 then

Return adevărat

Else

Return fals

EndIf

EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate:

A. Subalgoritimul returnează adevărat dacă numărul n este impar.

B. Subalgoritimul returnează adevărat dacă numărul n este par.

C. Subalgoritimul returnează adevărat dacă numărul n este prim.

D. Subalgoritimul returnează adevărat dacă numărul n este pătrat perfect.

475. ✓ ?S, tiind că x < y (x s, i y sunt numere reale), care din următoarele expresii are valoa-
rea adevărat dacă s, i numai dacă numărul memorat ı̂n t (t număr real) NU apart, ine
intervalului (x, y)?

A. (t > x) SAU (t < y)

B. (t ≤ x) SAU (t ≥ y)

C. (t ≤ x) S, I (t ≥ y)

D. (t > x) S, I (t < y)

476. ✓ ?Fie subalgoritimul f(n) unde n este un număr natural (1 ≤ n ≤ 10000).

Algorithm f(n)

r ← 0
While n > 0 execute

r ← r + (n MOD 10) ∗ (n MOD 2)
n← n DIV 10

EndWhile

Return r
EndAlgorithm

Aleget, i variantele care completează corect spat, iul subliniat din subalgoritimul de mai
jos astfel ı̂ncât cei doi subalgoritmi să returneze mereu aceeas, i valoare.

Algorithm fr(n)

If n > 0 then

Return

EndIf

Return 0
EndAlgorithm

A. (n MOD 2) ∗ (n MOD 10)+ fr(n DIV 10)

297

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

B. (n MOD 2) ∗ (n MOD 10)∗ fr(n DIV 10)

C. (n MOD 10)+ fr(n DIV 10)

D. (n MOD 2) ∗ (n MOD 10)+ fr(n MOD 10)

477. ✓ ?Fie subalgoritimul f(n) unde n este un număr natural (1 ≤ n ≤ 10000).

Algorithm f(n)

For i← 1, n execute

For j ← 1, 2 ∗ i− 1 execute

write ’*’

EndFor

EndFor

EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate:

A. Pentru n = 3 subalgoritimul afis,ează 3 stelut,e

B. Pentru n = 3 subalgoritimul afis,ează 9 stelut,e

C. Pentru ca subalgoritimul să afis,eze 1154 de stelut,e valoarea lui n trebuie să fie 34

D. Pentru ca subalgoritimul să afis,eze 289 de stelut,e valoarea lui n trebuie să fie 17

478. ✓ ?Subalgoritimul de mai jos are ca parametri de intrare un vector v cu n numere natu-
rale (v[1], v[2], ..., v[n]) s, i numărul ı̂ntreg n (2 ≤ n ≤ 10000). Operatorul / reprezintă
ı̂mpărt, irea reală (ex. 3/2 = 1, 5). Vectorul v cont, ine cel put, in un număr par s, i cel
put, in un număr impar.

Algorithm fn(v, n)

a← 0
b← 0
For i← 1, n execute

If v[i] MOD 2 = 0 then

a← a+ v[i]
b← b+ 1

EndIf

EndFor

Return a/b
EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate:

A. Subalgoritimul returnează numărul de elemente pare din vectorul v

B. Subalgoritimul returnează media elementelor pare din vectorul v

C. Subalgoritimul returnează suma elementelor pare din vectorul v

D. Subalgoritimul returnează media elementelor impare din vectorul v

479. ✓ ?Subalgoritimul de mai jos are ca parametri de intrare un vector v cu n numere
naturale (v[1], v[2], ..., v[n]) s, i numărul ı̂ntreg n (1 ≤ n ≤ 10000).

Algorithm fn(v, n)

a← 0
For i← 1, n execute

ok ← 1
b← v[i]
While (b ̸= 0) SI (ok = 1) execute

298

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

If b MOD 2 = 0 then

ok ← 0
EndIf

b← b DIV 10
EndWhile

If ok = 1 then

a← a+ v[i]
EndIf

EndFor

Return a
EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate:

A. Subalgoritimul returnează suma elementelor impare din vectorul v

B. Subalgoritimul returnează suma elementelor din vectorul v care sunt puteri ale
lui 2

C. Subalgoritimul returnează suma elementelor din vectorul v care au ı̂n component,a
lor doar cifre pare

D. Subalgoritimul returnează suma elementelor din vectorul v care au ı̂n component,a
lor doar cifre impare

480. ✓ ?Precizat, i care dintre următorii subalgoritmi calculează modulul (valoarea absolută)
unui număr ı̂ntreg. Vom presupune că o expresie logică are valoarea 1 dacă este
adevărată s, i 0 dacă este falsă.

A.

Algorithm modul(n)

Return n ∗ (−2 ∗ (n < 0) + 1)
EndAlgorithm

B.

Algorithm modul(n)

If n < 0 then

Return n ∗ (−1)
EndIf

Return n
EndAlgorithm

C.

Algorithm modul(n)

If n < 0 then

Return n ∗ (−1)
Else

Return n
EndIf

EndAlgorithm

D.

Algorithm modul(n)

If n > 0 then

Return n ∗ (−1)
Else

Return n
EndIf

EndAlgorithm

481. ✓ ?Care este valoarea expresiei de mai jos, dacă x = 15 s, i y = 17?

(NU(x MOD 10 = 0)) S, I (y MOD 2 = 0) S, I (x < y)

A. adevărat

B. fals

C. Eroare

D. Expresia nu poate fi evaluată

482. ✓ ?Se consideră subalgoritmul recursiv ceFace(n, i), unde n este un număr natural
(2 ≤ n ≤ 1000).

299

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm ceFace(n, i)

If i = 1 then

Return i
Else

If n MOD i = 0 then

Return i+ ceFace(n, i - 1)

Else

Return ceFace(n, i - 1)

EndIf

EndIf

EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate pentru apelul ceFace(n,
n).

A. Subalgoritmul returnează succesorul celui mai mare divizor al lui n

B. Subalgoritmul returnează suma numerelor naturale neprime, până la n inclusiv

C. Subalgoritmul returnează suma divizorilor proprii ai numărului n

D. Subalgoritmul returnează suma divizorilor proprii s, i improprii ai numărului n

483. ✓ ?Subalgoritmul magic(s, n) are ca parametri de intrare un s, ir s cu n caractere
(s[1], s[2], ..., s[n]) s, i numărul ı̂ntreg n (1 ≤ n ≤ 10000).

Algorithm magic(s, n)

i← 1
f ← 1
While i ≤ n DIV 2 execute

If s[i] ̸= s[n− i+ 1] then

f ← 0
EndIf

i← i+ 1
EndWhile

Return f
EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate:

A. Subalgoritmul returnează 1 dacă s are un număr par de caractere.

B. Subalgoritmul returnează 1 dacă s are un număr impar de caractere.

C. Subalgoritmul returnează 1 dacă s este un palindrom.

D. Subalgoritmul returnează 1 dacă s cont, ine doar caractere distincte.

484. ✓ ?Care dintre următoarele expresii au valoarea adevărat dacă s, i numai dacă x este
număr impar s, i negativ? Notăm cu |x| valoarea absolută a lui x (modulul lui x).

A. (|x| MOD 2 = 1) S, I (x < 0)

B. NU((|x| MOD 2 = 0) S, I (x ≥ 0))

C. NU((|x| MOD 2 = 0) SAU (x ≥ 0))

D. (|x| MOD 2 ̸= 0) SAU (x < 0)

485. ✓ ?Subalgoritmul ceFace(n) are ca parametru de intrare un număr natural n (0 ≤
n ≤ 10000).

300

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm ceFace(n)

s← 0
While n > 0 execute

c← n MOD 10
If c MOD 2 ̸= 0 then

s← s+ c
EndIf

n← n DIV 10
EndWhile

Return s
EndAlgorithm

Ce va returna apelul ceFace(1234)?

A. 4 B. 10 C. 60 D. 0

486. ✓ ?Considerăm un s, ir de caractere s, i o funct, ie f care primes,te ca parametru un caracter
s, i returnează 1 dacă acel caracter este cifră s, i 0 altfel. Care dintre următoarele abordări
determină dacă s, irul de caractere este format numai din cifre?

A. Verificăm dacă funct, ia f, aplicată pe fiecare caracter al s, irului de caractere, re-
turnează ı̂ntotdeauna 1.

B. Verificăm dacă suma valorilor returnate de f, aplicată pe fiecare caracter al s, irului
de caractere, este egală cu lungimea s, irului de caractere.

C. Verificăm dacă funct, ia f, aplicată pe fiecare caracter al s, irului de caractere, re-
turnează cel put, in o dată 1.

D. Aplicăm funct, ia f pe caractere alese aleatoriu din s, ir până când sunt returnate
un număr de valori egale cu 1 egal cu lungimea s, irului.

487. ✓ ?Care dintre algoritmii următori pot fi implementat, i ı̂n as,a fel ı̂ncât să aibă comple-
xitate de timp liniară (O(n))?

A. Algoritmul de căutare secvent, ială a unui element ı̂ntr-un vector de n numere

B. Algoritmul de sortare prin insert, ie a unui tablou unidimensional de n numere

C. Algoritmul de căutare al numărului maxim ı̂ntr-un vector nesortat de n numere

D. Algoritmul de determinare a sumei elementelor de pe diagonala principală a unei
matrice pătratice cu n linii s, i n coloane.

488. ✓ ?Se consideră subalgoritmul f(a, b), unde a s, i b sunt numere naturale (1 ≤ a, b ≤
10000).

Algorithm f(a, b)

m← a
While b MOD m > 0 execute

m← m+ 1
EndWhile

Return m
EndAlgorithm

Pentru care dintre următoarele apeluri corpul buclei While se va executa cel mult o
dată?

301

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

A. f(10, 11) B. f(10, 10) C. f(10, 9) D. f(10, 15)

489. ✓ ?Se consideră subalgoritmul f(a, b), unde a s, i b sunt numere naturale (1 ≤ a, b ≤
10000).

Algorithm f(a, b)

c← 0
d← 0
p← 1
While a+ b+ c > 0 execute

c← a MOD 10 + b MOD 10 + c
d← d+ (c MOD 10) ∗ p
p← p ∗ 10
a← a DIV 10
b← b DIV 10
c← c DIV 10

EndWhile

Return d
EndAlgorithm

Ce va returna apelul f(493, 1836)?

A. 2329 B. 2229 C. 2430 D. 3292

490. ✓ ?Se consideră subalgoritmul afisare(M, n) care primes,te ca s, i parametru un s, ir M
cu n (n ≤ 10) numere ı̂ntregi (M [1],M [2], ...,M [n]) reprezentând o mult, ime.

Algorithm afisare(M, n)

nr ← 2n

k ← 0
While k < nr execute

curent← k
Scrie ’’

For j = 1, n execute

r ← curent MOD 2
curent← curent DIV 2
If r = 1 then

Scrie M [j]
EndIf

EndFor

Scrie ’’

Scrie linie nouă

k ← k + 1
EndWhile

EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate:

A. Subalgoritmul afis,ează toate permutările mult, imii M.

B. Subalgoritmul afis,ează toate combinările elementelor mult, imii M luate câte i,
i = 0, 1, ..., n (nu neapărat ı̂n această ordine).

C. Subalgoritmul afis,ează toate aranjamentele elementelor mult, imii M luate câte i,
i = 0, 1, ..., n (nu neapărat ı̂n această ordine).

302

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

D. Subalgoritmul afis,ează toate submult, imile mult, imii M.

491. ✓ ?Se dă subalgoritmul s(a, b, c), unde a, b, c sunt numere naturale pozitive (1 ≤
a, b, c ≤ 10000).

Algorithm s(a, b, c)

If (a = 1) SAU (b = 1) SAU (c = 1) then

Return 1
Else

If a > b then

Return a∗ s(a - 1, b, c)

Else

If a < b then

Return b∗ s(a, b - 1, c)

Else

Return c∗ s(a - 1, b - 1, c - 1)

EndIf

EndIf

EndIf

EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate ı̂n cazul ı̂n care a = b s, i
a < c:

A. Subalgoritmul calculează s, i returnează c!

B. Subalgoritmul calculează s, i returnează c!/(c− a+ 1)!

C. Subalgoritmul calculează s, i returnează c!/(c− a− 1)!

D. Subalgoritmul calculează s, i returnează aranjamente de c luate câte (a− 1)

492. ✓ ?Subalgoritmul de mai jos are ca parametri de intrare un s, ir A cu n numere naturale
(A[1], A[2], ..., A[n]) s, i numărul natural n (1 ≤ n ≤ 10000). Pentru numerele naturale
x s, i y, xy semnifică x la puterea y (xy).

Algorithm h(A, n)

If n = 0 then

Return 0
Else

Return A[n] ∗ (−1)(1−A[n] MOD 2)+ h(A, n - 1)

EndIf

EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate:

A. Subalgoritmul returnează diferent,a dintre suma elementelor de pe pozit, ii pare s, i
suma elementelor de pe pozit, iile impare din s, irul A

B. Subalgoritmul returnează diferent,a dintre suma elementelor pare s, i suma elemen-
telor impare din s, irul A

C. Subalgoritmul returnează diferent,a dintre suma elementelor impare s, i suma ele-
mentelor pare din s, irul A

D. Niciunul din celelalte răspunsuri nu este corect

303

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

493. ✓ ?Un fis, ier Excel cont, ine n ı̂nregistrări cu număr de ordine de la 1 la n. Aceste
ı̂nregistrări trebuie copiate ı̂ntr-un fis, ier Word ı̂n care ı̂nregistrările se vor aranja ı̂n
maxim r rânduri s, i exact c coloane pe fiecare pagină. Se garantează că valoarea lui n
ı̂ntotdeauna permite aranjarea pe exact c coloane.

Să notăm cu x1, ..., xc numărul de ı̂nregistrări, care sunt copiate pe fiecare coloană pe
o anumită pagină.

Pe prima pagină a documentului Word, datorită prezent,ei unui antet, numărul de
rânduri este r1, r1 < r (numărul de rânduri prezent pe prima pagina este mai mic),
adică xp = r1, ∀1 ≤ p ≤ c.

Înregistrările vor fi aranjate ı̂n fis, ierul Word pe fiecare pagină de sus ı̂n jos pe fiecare
coloană, coloanele fiind completate de la stânga la dreapta: dacă prima ı̂nregistrare de
pe o pagină are numărul de ordine i, ı̂nregistrarea cu numărul de ordine (i + 1) va fi
prezentă sub ea, iar ı̂nregistrarea cu numărul de ordine (i+x1) va fi prima ı̂nregistrare
de pe coloana 2 de pe pagina respectivă s, .a.m.d.

Pe ultima pagină a documentului Word se dores,te ca pe toate coloanele numărul
ı̂nregistrărilor să fie echilibrat, adică diferent,a dintre numărul ı̂nregistrărilor de pe
oricare două coloane să fie cel mult 1 (|xj − xk| ≤ 1, ∀1 ≤ j, k ≤ c, j ̸= k).

În cazul celorlalte pagini (̂ın afară de prima s, i ultima) xp = r, ∀1 ≤ p ≤ c.

Pentru n = 5883, r = 46, r1 = 12 s, i c = 2 pe ce rând al paginii se poate regăsi ultima
ı̂nregistrare din document (cea cu număr de ordine i = 5883)?

A. 29 B. 30 C. 31 D. 32

494. ✓ ?Se consideră subalgoritmul prelucreaza(a, b, c, d, e), care primes,te ca para-
metri cinci numere ı̂ntregi a, b, c, d s, i e (1 ≤ a, b ≤ 10000, 2 ≤ c ≤ 16, 1 ≤ d < c).

Algorithm prelucreaza(a, b, c, d, e)

If a = 0 S,I b = 0 then

If e = 0 then

Return 1
Else

Return 0
EndIf

EndIf

If (a MOD c = d) S,I (b MOD c = d) then

Return prelucreaza(a DIV c, b DIV c, c, d, e)

EndIf

If a MOD c = d then

Return prelucreaza(a DIV c, b DIV c, c, d, e + 1)

EndIf

If b MOD c = d then

Return prelucreaza(a DIV c, b DIV c, c, d, e - 1)

EndIf

Return prelucreaza(a DIV c, b DIV c, c, d, e)

EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate pentru apelul prelucreaza(a,
b, c, d, 0):

304

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

A. Returnează 1 dacă reprezentările ı̂n baza c a numerelor a s, i b cont, in cifra d de
număr egal de ori, 0 ı̂n caz contrar

B. Returnează 1 dacă cifra d apare ı̂n reprezentarea ı̂n baza c a numărului a s, i ı̂n
reprezentarea ı̂n baza c a numărului b, 0 ı̂n caz contrar

C. Returnează 1 dacă cifra d apare ı̂n reprezentarea ı̂n baza c a numărului a sau ı̂n
reprezentarea ı̂n baza c a numărului b, 0 ı̂n caz contrar

D. Returnează 1 dacă cifra d nu apare deloc ı̂n reprezentările ı̂n baza c a numerelor
a s, i b, 0 ı̂n caz contrar

495. ✓ ?Se consideră subalgoritmii val(p, s, i, n, x) s, i val exp(p, n, x) a căror pa-
rametri au următoarea specificat, ie: un s, ir p cu n numere ı̂ntregi (p[1], p[2], ..., p[n]),
numerele naturale s, i s, i n (n ≤ 1000, n = 2k, k < 10), s, i numărul real x. Valorile s, irului
p reprezintă coeficient, ii expresiei ı̂n ordine crescătoare a exponent, ilor, exponentul ma-
xim fiind egal cu n−1, ı̂ntr-o expresie de forma p[1]+p[2] ·x+p[3] ·x2+ ...+p[n] ·xn−1

Exemplu: p = [1, 2, 3, 4] corespunde expresiei E(x) = 1 + 2x+ 3x2 + 4x3.

Algorithm val(p, s, i, n, x)

If s+ i ≤ n then

Return

Else

Return p[s]
EndIf

EndAlgorithm

Algorithm val exp(p, n, x)

Return val(p, 1, 1, n, x)

EndAlgorithm

Care dintre următoarele variante completează corect spat, iul subliniat astfel ı̂ncât su-
balgoritmul val exp(p, n, x) să returneze valoarea expresiei E(x)?

A. Return p[s] + x∗ val(p, s + i, i * 2, n, x * x)

B. Return val(p, s, i * 2, n - i, x * x) + x * val(p, s + i, i * 2, n,

x * x)

C. Return val(p, s + i, i * 2, n, x * x) + x * val(p, s, i * 2, n - i,

x * x)

D. Return p[s] + x∗ val(p, s + i, i, n, x)

496. ✓ ?Se consideră subalgoritmul f(a), care primes,te ca s, i parametru un număr natural a
(2 ≤ a < 1000000) s, i returnează adevărat dacă există un număr natural d, 1 < d < a
cu proprietatea că d divide a, s, i fals ı̂n caz contrar. Notat, ia [

√
x] reprezintă partea

ı̂ntreagă a numărului x.

Care dintre variantele următoare ale subalgoritmului f(a) sunt corecte?

305

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

A.

Algorithm f(a)

If a = 2 then

Return fals

EndIf

If a MOD 2 = 0 then

Return adevărat

EndIf

For d← 3, [
√
a]− 1, 2 execute

If a MOD d = 0 then

Return adevărat

EndIf

EndFor

Return fals

EndAlgorithm

B.

Algorithm f(a)

For d← 2, [
√
a] execute

If a MOD d = 0 then

Return adevărat

EndIf

EndFor

Return fals

EndAlgorithm

C.

Algorithm f(a)

If a ≤ 2 then

Return fals

EndIf

If a MOD 2 = 0 then

Return adevărat

EndIf

For d← 3, [
√
a], 2 execute

If a MOD d = 0 then

Return adevărat

EndIf

EndFor

Return fals

EndAlgorithm

D.

Algorithm f(a)

d← a− 1
While adevărat execute

If a MOD d = 0 then

Return adevărat

EndIf

d← d− 1
EndWhile

Return fals

EndAlgorithm

497. ✓ ?Fie expresia de mai jos, unde 1 < A < 2021 s, i 1 < n < 10202110.

E(A,n) = (A+A2 +A3 + ...+An) MOD 2021

Care dintre următorii subalgoritmi calculează corect valoarea E(A,n) s, i are comple-
xitatea timp specificată?

Presupunet, i că toate calculele se realizează pe tipuri de date pe 32 de bit, i. Presupunet, i
că xk se calculează ı̂n O(log k).

A.

Algorithm E(A, n)

Return (A ∗ (An − 1) DIV (A− 1)) MOD 2021
EndAlgorithm

Complexitatea timp: O(logn)

B.

Algorithm E(A, n)

Return ((A ∗ (An − 1)) MOD 2021) DIV ((A− 1) MOD 2021)
EndAlgorithm

Complexitatea timp: O(logn)

306

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

C.

Algorithm E1(A, n)

If n = 1 then

Return (A,A) //returnează o pereche de valori

EndIf

If n MOD 2 = 1 then

(t1, t2)← E1(A, n - 1)

p← (t1 ∗A) MOD 2021
Return (p, (p+ t2) MOD 2021)

Else

(t1, t2)← E1(A, n DIV 2)

p← (t1 ∗ t1) MOD 2021
Return (p, ((1 + t1) ∗ t2) MOD 2021)

EndIf

EndAlgorithm

Algorithm E(A, n)

(aux1, aux2)← E1(A, n)

Return aux2
EndAlgorithm

Complexitatea timp: O(logn)

D.

Algorithm E(A, n)

raspuns← A
For i = 2, n execute

raspuns← raspuns+Ai

EndFor

Return raspuns MOD 2021
EndAlgorithm

Complexitatea: O(n · logn)

498. ✓ ?Pe un cerc se scriu, ı̂n ordine crescătoare, toate numerele de la 1 la 1000, ı̂n sensul

acelor de ceasornic. Începând de la 1, colorăm, ı̂n sensul acelor de ceasornic, fiecare
al k -lea număr (1, k + 1, 2 · k + 1, ...). Procedeul se continuă până când ajunge la un
număr deja colorat, fiind colorate la final x numere. Care dintre următoarele afirmat, ii
sunt adevărate?

A. Dacă k = 15 atunci x = 300

B. Dacă k = 45 atunci x = 200

C. Dacă k = 25 atunci x = 40

D. Dacă k = 30 atunci x = 150

499. ✓ ?Se consideră subalgoritmul ceFace(n, k) unde n s, i k sunt numere naturale (1 ≤
n, k ≤ 1000000).

Algorithm ceFace(n, k)

nr ← 0
p← 1
While (n ̸= 0) S,I (k ̸= 0) execute

If n MOD 2 ̸= 0 then

nr ← nr + ((n DIV 10) MOD 10) ∗ p
p← p ∗ 10

Else

k ← k − 1

307

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

EndIf

n← n DIV 10
EndWhile

Return nr
EndAlgorithm

Care dintre următoarele perechi de apeluri returnează valori identice?

A. ceFace(32345, 3) s, i ceFace(321458, 7)

B. ceFace(321458, 4) s, i ceFace(2314587, 4)

C. ceFace(2314, 3) s, i ceFace(23145, 4)

D. ceFace(23145, 3) s, i ceFace(231458, 4)

500. ✓ ?Se consideră subalgoritmii: * putere(b, p) – determină bp (b la puterea p), b, p
- numere naturale (1 ≤ b ≤ 20, 1 ≤ p ≤ 20); * nrCifre(nr) – returnează numărul
cifrelor unui număr natural nenul nr (0 < nr ≤ 1000000), sau valoarea 0 atunci când
nr = 0; * produs(st, dr) – subalgoritmul de mai jos, unde st, dr – numere naturale
(100 < st < 1000000, 0 ≤ dr < 1000000, st – număr care, reprezentat ı̂n baza 10, are
cel put, in două cifre nenule).

Algorithm produs(st, dr)

If st > 0 then

drCrt←
stCrt← st DIV 10
If st ∗ dr < stCrt ∗ drCrt then

Return produs(stCrt, drCrt)

Else

Return st ∗ dr
EndIf

Else

Return st ∗ dr
EndIf

EndAlgorithm

Care dintre următoarele variante completează corect spat, iul subliniat astfel ı̂ncât su-
balgoritmul produs(st, dr) prin executarea secvent,ei de instruct, iuni

scrie produs(1092, 0)

scrie produs(75981, 0)

să se afis,eze 920 s, i 73575?

A. (st MOD 10)∗ putere(10, nrCifre(dr)) +dr

B. (st MOD 10)∗ putere(10, dr) +dr

C. (st MOD 10)∗ putere(10, nrCifre(dr))

D. (st MOD 10)∗ nrCifre(dr)

501. ✓ ?Se consideră subalgoritmul ceFace(a, n, i, f), care primes,te ca parametru un s, ir
a cu n numere ı̂ntregi (a[1], a[2], ..., a[n]) s, i numerele ı̂ntregi i, f s, i n (2 ≤ n ≤ 10000).

Algorithm ceFace(a, n, i, f)

If (i = n) S,I (f = 2) then

Return ADEVĂRAT

Else

308

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

If (i = n) then

Return FALS

Else

If (f ≤ 1) S,I (a[i] < a[i+ 1]) then

Return ceFace(a, n, i + 1, 1)

EndIf

If (1 ≤ f) S,I (a[i] > a[i+ 1]) then

Return ceFace(a, n, i + 1, 2)

EndIf

Return FALS

EndIf

EndIf

EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate, considerând apelul init, ial
ceFace(a,n,1,0).

A. Subalgoritmul returnează adevărat dacă s, i numai dacă maximul s, irului a se află
pe o pozit, ie i, 1 < i < n.

B. Subalgoritmul returnează adevărat dacă s, i numai dacă ∃k, (1 < k < n), astfel
ı̂ncât a[1] < a[2] < ... < a[k] > a[k + 1] > ... > a[n].

C. Subalgoritmul returnează fals dacă s, irul a este strict crescător.

D. Subalgoritmul returnează adevărat dacă s, i numai dacă ∃k, (1 < k < n), astfel
ı̂ncât a[k] > a[k + 1] > ... > a[n].

502. ✓ ?Fie următorul subalgoritm, având ca parametru numărul natural nenul n s, i care
returnează un număr natural.

Algorithm f(n)

j ← n
While j > 1 execute

i← 1
While i ≤ n4 execute

i← 4 ∗ i
EndWhile

j ← j DIV 2
EndWhile

Return j
EndAlgorithm

În care dintre următoarele clase de complexitate se ı̂ncadrează complexitatea timp a
algoritmului?

A. O(log2 n
2) B. O(log22 n

2) C. O(log24 n) D. O(log2 log4 n)

503. ✓ ?Se dă un s, ir s de n caractere din alfabetul englez, (s[1], s[2], ..., s[n]). Dorim să
aflăm cel mai lung sufix al său care este palindrom. Un sufix al unui s, ir de caractere
este o subsecvent, ă a s, irului care cont, ine ultimul caracter. De exemplu, pentru s, irul
abab, cel mai lung sufix palindrom al său este bab.

Presupunem că avem definit următorul subalgoritm: * ascii(c) - returnează codul
ASCII al caracterului c.

309

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Presupunem că operat, iile aritmetice nu produc depăs, ire pe mult, imea numerelor ı̂ntregi.
Care dintre următoarele implementări returnează lungimea acestui sufix la apelul
sufix(s, n)?

A.

Algorithm sufix(s, n)

hf ← 0
hb← 0
raspuns← 1
For i← n, 1,−1 execute

hf ← ascii(s[i]) + 2021 ∗ hf
hb← hb+ascii(s[i])∗2021n−i

If hf = hb then

raspuns← n− i+ 1
EndIf

EndFor

Return raspuns
EndAlgorithm

B.

Algorithm sufix(s, n)

hf ← 0
hb← 0
raspuns← 1
For i← n, 1,−1 execute

hf ← ascii(s[i]) + 3 ∗ hf
hb← hb+ ascii(s[i]) ∗ 3n−i

If hf = hb then

raspuns← n− i+ 1
EndIf

EndFor

Return raspuns
EndAlgorithm

C.

Algorithm sufix(s, n)

hf ← 0
hb← 0
raspuns← 1
For i← n, 1,−1 execute

hf ← ascii(s[i]) + 2021 ∗ hb
hb← hf+ascii(s[i])∗2021n−i

If hf = hb then

raspuns← n− i+ 1
EndIf

EndFor

Return raspuns
EndAlgorithm

D. Niciuna dintre celelalte variante nu
este corectă.

310

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Admitere nivel licent, ă, sesiunea iulie 2021

504. ✓ ?Fie următorul subalgoritm, având ca parametru de intrare numărul natural n s, i
care returnează un număr natural.

Algorithm calcul(n)

E ← 1
P ← 1
i← 2
While i ≤ n execute

P ← (−1) ∗ P ∗ i
E ← E + P
i← i+ 1

EndWhile

Return E
EndAlgorithm

Care este valoarea returnată de subalgoritm, ı̂n condit, iile ı̂n care n ≥ 1?

A. 1!− 2! + 3!− 4! + ...+ (−1)n+1 · n!
B. 1− 1! + 2!− 3! + ...+ (−1)n · n!
C. 1− 1 · 2 + 1 · 2 · 3− 1 · 2 · 3 · 4 + ...+ (−1)n+1 · 1 · 2 · ... · n
D. 1 + 1 · 2− 1 · 2 · 3 + 1 · 2 · 3 · 4 + ...+ (−1)n · 1 · 2 · ... · n

505. ✓ ?Un fis, ier Excel cont, ine n ı̂nregistrări numerotate de la 1 la n. Aceste ı̂nregistrări
trebuie copiate ı̂ntr-un fis, ier Word ı̂n care ı̂nregistrările se vor aranja ı̂n câte r rânduri
s, i c coloane pe fiecare pagină (cu except, ia primei s, i ultimei pagini). Pe prima pagină a
documentului Word, datorită prezent,ei unui antet, numărul de rânduri este r1, r1 < r
(numărul de rânduri prezent pe prima pagina este mai mic).

Înregistrările vor fi aranjate ı̂n fis, ierul Word pe fiecare pagină de sus ı̂n jos pe fiecare
coloană, coloanele fiind completate de la stânga la dreapta: dacă prima ı̂nregistrare de
pe o pagină are numărul de ordine i, ı̂nregistrarea cu numărul de ordine (i + 1) va fi
prezentă sub ea, iar ı̂nregistrarea cu numărul de ordine (i+ r) va fi prima ı̂nregistrare
de pe coloana 2 de pe pagina respectivă s, .a.m.d.

Pentru n = 5000, r = 46, r1 = 12 s, i c = 2 pe ce pagină a documentului Word s, i pe ce
coloană se va regăsi ı̂nregistrarea cu număr de ordine i = 3245?

A. Pagina 36, ultima coloană

B. Pagina 37, prima coloană

C. Pagina 37, ultima coloană

D. Pagina 38, prima coloană

506. ✓ ?Se consideră subalgoritmul ceFace(m), unde m este un număr natural (10 ≤ m ≤
10000).

Algorithm ceFace(m)

If m = 0 then

Return 0
EndIf

If m MOD 9 = 0 then

Return 9
EndIf

Return m MOD 9

311

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate:

A. Subalgoritmul returnează restul ı̂mpărt, irii numărului m la 9.

B. Subalgoritmul returnează numărul divizorilor care sunt divizibili cu 9 ai numărului
m.

C. Subalgoritmul returnează cifra de control a numărului m (suma cifrelor sale, apoi
suma cifrelor acestei sume, până când suma obt, inută este un număr format dintr-
o singură cifră).

D. Subalgoritmul returnează cifra de control a numărului m (suma cifrelor sale, apoi
suma cifrelor acestei sume, până când suma obt, inută este un număr format dintr-
o singură cifră) dacă s, i numai dacă numărul m este divizibil cu 9.

507. ✓ ?Pentru a genera numerele cu n cifre formate doar din cifrele 0, 2, 9, se utilizează un
algoritm care, pentru n = 2, generează ı̂n ordine crescătoare numerele 20, 22, 29, 90,
92, 99. Dacă n = 4 s, i se utilizează acelas, i algoritm, care este numărul generat imediat
după numărul 2009?

A. 2022

B. 2090

C. 2010

D. Niciuna dintre celelalte variante

508. ✓ ?Se consideră subalgoritmul cauta(n), unde n este un număr natural (0 ≤ n ≤
1000000).

Algorithm cauta(n)

v ← 0
If n = 0 then

Return 1
Else

m← n
While m > 0 execute

If m MOD 10 = 0 then

v ← v + 1
EndIf

m← m DIV 10
EndWhile

Return v
EndIf

EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate:

A. Subalgoritmul determină s, i returnează câte cifre are numărul n.

B. Subalgoritmul returnează 1 dacă numărul n este o putere a lui 10 s, i 0 altfel.

C. Subalgoritmul returnează 1 dacă numărul n se termină cu cifra 0 s, i 0 altfel.

D. Subalgoritmul determină s, i returnează numărul de cifre 0 din numărul n.

509. ✓ ?Se consideră subalgoritmul abc(a, n, p), unde n este număr natural (1 ≤ n ≤
10000), p este număr ı̂ntreg (−10000 ≤ p ≤ 10000), iar a este un s, ir cu n numere
naturale nenule (a[1], a[2], ..., a[n]).

312

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm abc(a, n, p)

If n < 1 then

Return 0
Else

If (1 ≤ p) S,I (p ≤ n) then

Return a[p]
Else

Return −1
EndIf

EndIf

EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate:

A. Subalgoritmul returnează -1 dacă s, i numai dacă p este negativ sau mai mare
decât n.

B. Subalgoritmul returnează elementul de pe pozit, ia p dacă p este strict mai mare
decât 0 s, i mai mic sau egal decât lungimea s, irului.

C. Subalgoritmul nu returnează niciodată 0 pentru valori ale parametrilor care res-
pectă precondiţiile din enunţ.

D. Subalgoritmul returnează elementul de pe pozit, ia p dacă p este mai mare sau
egal cu 0 s, i mai mic strict decât lungimea s, irului. În cazul ı̂n care p nu este ı̂ntre
1 s, i n, returnează -1.

510. ✓ ?Care dintre secvent,ele următoare determină ı̂n variabila i lungimea unui s, ir de
caractere care se termină cu caracterul ’*’ (asterisc)? Primul caracter se află la indicele
1, iar caracterul asterisc este parte a s, irului de caractere.

A.

i← 1
While x[i] ̸= ’*’ execute

i← i+ 1
EndWhile

B.

i← 1
While x[i] = ’*’ execute

i← i+ 1
EndWhile

i← i− 1

C.

i← 1
While x[i] ̸= ’*’ execute

i← i+ 1
EndWhile

i← i+ 1

D.

i← 1
While x[i] ̸= ’*’ execute

i← i+ 1
EndWhile

i← i− 1

511. ✓ ?Fie următorul subalgoritm, având ca parametru numărul natural nenul n s, i care
returnează un număr natural.

Algorithm f(n)

j ← n
While j > 1 execute

i← 1
While i ≤ n execute

i← 2 ∗ i
EndWhile

j ← j DIV 3

313

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

EndWhile

Return j
EndAlgorithm

În care dintre următoarele clase de complexitate se ı̂ncadrează complexitatea timp a
algoritmului?

A. O(log2 n) B. O(log22 n) C. O(log3 n) D. O(log2 log3 n)

512. ✓ ?Subalgoritmul cate(n, m) primes,te ca parametri numerele naturale n s, i m.

Algorithm cate(n, m)

If n ≤ m then

If (n MOD 2 = 0) S,I (n MOD 3 ̸= 0) then

Return 1+ cate(n + 1, m)

Else

Return cate(n + 1, m)

EndIf

Else

Return 0
EndIf

EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate:

A. Dacă n = 0 s, i m = 1, subalgoritmul returnează valoarea 0.

B. Dacă n = 4 s, i m = 21, subalgoritmul returnează valoarea 6.

C. Dacă n = 7 s, i m = 120, subalgoritmul returnează valoarea 36.

D. Dacă n = 1 s, i m = 215, subalgoritmul returnează valoarea 72.

513. ✓ ?Se consideră subalgoritmul verifica(n), unde n este un număr natural (1 ≤ n ≤
100000).

Algorithm verifica(n)

While n > 0 execute

If (n MOD 3) > 1 then

Return 0
EndIf

n← n DIV 3
EndWhile

Return 1
EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate:

A. Subalgoritmul returnează 1 dacă n este o putere a lui 3, 0 ı̂n caz contrar.

B. Subalgoritmul returnează 1 dacă scrierea ı̂n baza 3 a lui n cont, ine doar cifrele 0
s, i/sau 1, 0 ı̂n caz contrar.

C. Subalgoritmul returnează 1 dacă n poate fi scris ca sumă a puterilor distincte ale
lui 3, 0 ı̂n caz contrar.

D. Subalgoritmul returnează 1 dacă scrierea ı̂n baza 3 a lui n cont, ine doar cifra 2, 0
ı̂n caz contrar.

314

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

514. ✓ ?Pentru un număr natural nr (1000 ≤ nr ≤ 1000000), definim operat, ia de decre-
mentare ı̂n modul următor: dacă ultima cifră a lui nr nu este 0, scădem 1 din nr,
altfel, ı̂mpărt, im nr la 10 s, i păstrăm doar partea ı̂ntreagă. Care dintre următorii su-
balgoritmi returnează, la apelul decrementare(nr, k), numărul obt, inut aplicând de
k ori (0 ≤ k ≤ 100) operat, ia de decrementare pe numărul nr? De exemplu, pentru
nr = 15243 s, i k = 10, rezultatul este 151.

A.

Algorithm decrementare(nr, k)

If k = 0 then

Return nr
Else

If nr MOD 10 ̸= 0 then

Return decrementare(nr

DIV 10, k - 1)

Else

Return decrementare(nr

- 1, k - 1)

EndIf

EndIf

EndAlgorithm

B.

Algorithm decrementare(nr, k)

While k > 0 execute

If nr MOD 10 = 0 then

nr ← nr DIV 10
Else

nr ← nr − 1
EndIf

EndWhile

Return nr
EndAlgorithm

C.

Algorithm decrementare(nr, k)

For i← 1, k execute

If nr MOD 10 > 0 then

nr ← nr − 1
Else

nr ← nr DIV 10
EndIf

EndFor

Return nr
EndAlgorithm

D.

Algorithm decrementare(nr, k)

If k = 0 then

Return nr
Else

If k > nr MOD 10 then

nr1← nr DIV 10
Return decrementare(nr1,

k - nr MOD 10 - 1)

Else

Return decrementare(nr

- k, 0)

EndIf

EndIf

EndAlgorithm

515. ✓ ?Se dă următorul subalgoritm care are ca parametri de intrare un s, ir x cu n numere
naturale (x[1], x[2], ..., x[n]) s, i numărul ı̂ntreg n.

Algorithm f(x, n)

If n = 1 then

Return 100
Else

If x[n] > f(x, n - 1) then

Return x[n]
Else

Return f(x, n - 1)

EndIf

EndIf

EndAlgorithm

Care va fi rezultatul execut, iei subalgoritmului pentru x = [101, 7, 6, 3] s, i n = 4?

315

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

A. 101

B. 3

C. 100

D. 7

516. ✓ ?Subalgoritmul de mai jos are ca parametri de intrare un s, ir a cu n numere naturale
(a[1], a[2], ..., a[n]) s, i numărul natural n (2 ≤ n ≤ 10000).

Algorithm h(a, n)

If n ≤ 0 then

Return 0
EndIf

If (n MOD 2 = 0) S,I (a[n] MOD 2 = 0) then

Return h(a, n - 1) + a[n]
EndIf

Return h(a, n - 1) - a[n]
EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate:

A. Subalgoritmul returnează diferent,a dintre suma elementelor care au aceeas, i pa-
ritate cu pozit, ia pe care se află s, i suma elementelor care au paritate diferită fat, ă
de pozit, ia pe care se află din s, irul a.

B. Subalgoritmul returnează diferent,a dintre suma elementelor pare de pe pozit, iile
pare s, i suma elementelor impare de pe pozit, iile impare din s, irul a.

C. Subalgoritmul returnează diferent,a dintre suma elementelor pare s, i suma elemen-
telor impare din s, irul a.

D. Subalgoritmul returnează diferent,a dintre suma elementelor pare de pe pozit, ii
pare s, i suma celorlalte elemente din s, irul a.

517. ✓ ?Se consideră subalgoritmul ceFace(n), cu parametrul n număr natural nenul.

Algorithm ceFace(n)

i← 1
While n > 0 execute

If n MOD 2 ̸= 0 then

scrie i
EndIf

i← i+ 1
n← n DIV 2

EndWhile

EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate:

A. Subalgoritmul afis,ează secvent,a: 12345 pentru n = 31.

B. Subalgoritmul afis,ează secvent,a: 234 pentru n = 14.

C. Subalgoritmul afis,ează 1 la ı̂nceputul secvent,ei, pentru n impar.

D. Subalgoritmul afis,ează un singur număr pentru n = 2k, unde k este un număr
natural.

518. ✓ ?Se dă o mult, ime S, care cont, ine n intervale specificate prin capătul stâng si s, i capătul
drept di (si < di ∀ i = 1...n). Se dores,te determinarea unei submult, imi S′ ⊆ S de m
elemente, astfel ı̂ncât să nu existe două intervale ı̂n S′ care se intersectează s, i m să
aibă cea mai mare valoare posibilă.

Care dintre următoarele strategii rezolvă corect problema?

316

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

A. Se sortează intervalele din mult, imea S crescător după capătul stâng. Se adaugă
primul interval din s, irul sortat ı̂n S′. Se parcurg celelalte elemente din s, ir ı̂n ordi-
nea sortată s, i când se ı̂ntâlnes,te un interval care nu se intersectează cu intervalul
care a fost adăugat ultima oară ı̂n S′, se adaugă s, i acesta ı̂n S′.

B. Se sortează intervalele din mult, imea S crescător după capătul drept. Se adaugă
primul interval din s, irul sortat ı̂n S′. Se parcurg celelalte elemente din s, ir ı̂n ordi-
nea sortată s, i când se ı̂ntâlnes,te un interval care nu se intersectează cu intervalul
care a fost adăugat ultima oară ı̂n S′, se adaugă s, i acesta ı̂n S′.

C. Se sortează intervalele din mult, imea S crescător după lungimea intervalului. Se
adaugă primul interval din s, irul sortat ı̂n S′. Se parcurg celelalte elemente din
s, ir ı̂n ordinea sortată s, i când se ı̂ntâlnes,te un interval care nu se intersectează cu
intervalul care a fost adăugat ultima oară ı̂n S′, se adaugă s, i acesta ı̂n S′.

D. Se sortează intervalele din mult, imea S crescător după numărul de intervale din
S cu care se intersectează. Se adaugă primul interval din s, irul sortat ı̂n S′.
Se parcurg celelalte elemente din s, ir ı̂n ordinea sortată s, i când se ı̂ntâlnes,te un
interval care nu se intersectează cu intervalul care a fost adăugat ultima oară ı̂n
S′, se adaugă s, i acesta ı̂n S′.

519. ✓ ?Se consideră subalgoritmul f(a, b), care primes,te ca parametri două numere na-
turale a s, i b (1 ≤ a < b ≤ 1000).

Algorithm f(a, b)

m← 0
For n← a, b execute

c← 0
For d← 1, n execute

If n MOD d = 0 then

c← c+ 1
EndIf

EndFor

If c > m then

m← c
EndIf

EndFor

For n← a, b execute

c← 0
For d← 1, n execute

If n MOD d = 0 then

c← c+ 1
EndIf

EndFor

If c = m then

scrie n
EndIf

EndFor

EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate:

A. Subalgoritmul afis,ează maximul dintre numărul de divizori ai lui a s, i numărul de
divizori ai lui b.

B. Subalgoritmul afis,ează numerele naturale din intervalul [a, b] care au proprietatea
că au cel mai mare număr de divizori.

317

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

C. Subalgoritmul afis,ează numărul de divizori pentru fiecare număr natural din in-
tervalul [a, b].

D. Subalgoritmul afis,ează numerele naturale din intervalul [a, b] care au proprietatea
că au cel mai mare număr de divizori proprii.

520. ✓ ?Fie numerele naturale a s, i b, cu b ̸= 0. Care dintre următoarele variante calculează:
a DIV b, dacă a MOD b = 0 sau (a/b) rotunjit ı̂n sus către cel mai apropiat
ı̂ntreg, dacă a MOD b ̸= 0.

A. (a− 1) DIV b

B. (a+ b+ 1) DIV b

C. (a+ b− 1) DIV b

D. ((a+ 2 ∗ b− 1) DIV b)− 1

521. ✓ ?Ionel trebuie să implementeze algoritmul de căutare binară a unui element a ı̂ntr-un
s, ir V cu n (1 ≤ n ≤ 1000) numere ı̂ntregi ordonate crescător (V [1], V [2], ..., V [n]). El
scrie următorul subalgoritm:

Algorithm CautareBinara(a, n, V)

st← 1
dr ← n
While dr − st > 1 execute

m← (st+ dr) DIV 2
If a ≤ V [m] then

dr ← m
Else

st← m
EndIf

EndWhile

Return dr
EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate:

A. Dacă n = 1 atunci valoarea returnată de subalgoritm este ı̂ntotdeauna 1.

B. Pentru orice n ≥ 1, subalgoritmul scris de Ionel returnează valoarea 1 atunci când
a este mai mic decât toate elementele din s, ir.

C. Atunci când elementul a apare ı̂n s, ir, subalgoritmul scris de Ionel NU returnează
ı̂ntotdeauna pozit, ia (indicele ı̂n vectorul V) pe care acesta apare.

D. Pentru orice n > 1, subalgoritmul scris de Ionel returnează valoarea n atunci
când a este mai mare decât toate elementele din s, ir.

522. ✓ ?Se consideră subalgoritmul calcul(x, n), unde parametrii de intrare sunt numerele
naturale n s, i x, cu condit, ia 1 ≤ x ≤ n < 10.

Algorithm calcul(x, n)

b← 1
For i← 1, n− x execute

b← b ∗ i
EndFor

a← b
For i← n− x+ 1, n execute

a← a ∗ i
EndFor

318

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Return a DIV b
EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate:

A. Dacă n = 5 s, i x = 2, atunci subalgoritmul returnează 20.

B. Dacă n = 3 s, i x = 2, atunci subalgoritmul returnează 6.

C. Subalgoritmul returnează cardinalitatea mult, imii {c1c2...cx : ci ̸= cj∀1 ≤ i, j ≤
x, i ̸= j, 1 ≤ ci ≤ n}

D. Subalgoritmul efectuează n operat, ii de ı̂nmult, ire.

523. ✓ ?Se consideră subalgoritmul ceFace(n, k), care primes,te ca s, i parametru două nu-
mere naturale nenule n s, i k (1 ≤ n, k ≤ 1000000).

Algorithm ceFace(n, k)

While n ≥ 1 execute

If k ≤ n then

i← k
Else

i← n
EndIf

n← n− i
x← 1
While i ≥ 1 execute

scrie x, ’ ’

x← x+ 1
i← i− 1

EndWhile

EndWhile

EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate:

A. Pentru n = 8 s, i k = 3 subalgoritmul afis,ează s, irul 1 2 3 1 2 3 1 2

B. Pentru k = 2, cea mai mică valoare a lui n pentru care se afis,ează de 3 ori valoarea
1 pe ecran este n = 3.

C. Pentru k = 5, cea mai mică valoare a lui n pentru care se afis,ează de 37 ori
valoarea 2 pe ecran este n = 182.

D. Pentru n = 7 s, i k = 3 subalgoritmul afis,ează 1 2 3 1 2 3

524. ✓ ?Se consideră subalgoritmul calculeaza(a, b, c), cu parametrii de intrare numere
naturale nenule, care calculează cel mai mare divizor comun al celor trei numere.

Care dintre următoarele sunt implementări corecte ale subalgoritmului:

319

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

A.

Algorithm calculeaza(a, b, c)

While (a ̸= b) SAU (a ̸= c) SAU

(b ̸= c) execute

x← a
If a ̸= x then

a← a− x
EndIf

If b ̸= x then

b← b− x
EndIf

If c ̸= x then

c← c− x
EndIf

EndWhile

Return x
EndAlgorithm

B.

Algorithm calculeaza(a, b, c)

x← a
y ← b
While x ̸= y execute

If x > y then

x← x− y
Else

y ← y − x
EndIf

EndWhile

z ← c
While x ̸= z execute

If x > z then

x← x− z
Else

z ← z − x
EndIf

EndWhile

Return x
EndAlgorithm

C.

Algorithm calculeaza(a, b, c)

While (a ̸= b) SAU (a ̸= c) SAU

(b ̸= c) execute

x← a
If b < x then

x← b
EndIf

If c < x then

x← c
EndIf

If a ̸= x then

a← a− x
EndIf

If b ̸= x then

b← b− x
EndIf

If c ̸= x then

c← c− x
EndIf

EndWhile

Return x
EndAlgorithm

D.

Algorithm calculeaza(a, b, c)

x← a
y ← b
r ← x MOD y
While r ̸= 0 execute

x← y
y ← r
r ← x MOD y

EndWhile

z ← c
r ← y MOD z
While r ̸= 0 execute

y ← z
z ← r
r ← y MOD z

EndWhile

Return z
EndAlgorithm

525. ✓ ?Subalgoritmul ceFace(n) are ca parametru numărul natural n (1 ≤ n ≤ 100).

Algorithm ceFace(n)

s← 0
If n MOD 2 = 0 then

a← 1
While a < n execute

s← s+ a

320

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

a← a+ 2
EndWhile

Else

b← 2
While b < n execute

s← s+ b
b← b+ 2

EndWhile

EndIf

Return s
EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate:

A. Dacă n este par, subalgoritmul returnează suma numerelor naturale mai mici
strict decât n; dacă n este impar, returnează suma numerelor naturale pare mai
mici decât n.

B. Dacă n este par, subalgoritmul returnează suma numerelor naturale pare mai mici
strict decât n; dacă n este impar, returnează suma numerelor naturale impare
mai mici decât n.

C. Dacă n este par, subalgoritmul returnează suma numerelor naturale impare mai
mici decât n; dacă n este impar, returnează suma numerelor naturale pare mai
mici decât n.

D. Dacă n este par, subalgoritmul returnează suma numerelor naturale pare mai
mici strict decât n; dacă n este impar, returnează suma numerelor naturale mai
mici strict decât n.

526. ✓ ?Subalgoritmul ceFace(a) primes,te ca parametru numărul natural a (1 ≤ a ≤
100000).

Algorithm ceFace(a)

b← 0
c← 0
d← 0
e← 1
While a > 0 execute

d← a MOD 10
If (d ̸= 4) S,I (d < 7) then

b← b+ e ∗ (d DIV 2)
c← c+ e ∗ (d− d DIV 2)

Else

b← b+ e
c← c+ e ∗ (d− 1)

EndIf

a← a DIV 10
e← e ∗ 10

EndWhile

scrie b
scrie c

EndAlgorithm

Care dintre următoarele perechi de valori nu vor fi afis,ate pentru nicio valoare de
intrare validă?

321

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

A. 1112 s, i 11233

B. 1111 s, i 88888

C. 21001 s, i 33011

D. 3141 s, i 3258

527. ✓ ?Se consideră subalgoritmii f(n, c) s, i g(n, c), care primesc ca parametri numerele
naturale n s, i c.

Algorithm f(n, c)

If n ≤ 9 then

If n = c then

Return 1
Else

Return 0
EndIf

Else

If n MOD 10 = c then

Return f(n DIV 10, c) + 1

Else

Return f(n DIV 10, c)

EndIf

EndIf

EndAlgorithm

Algorithm g(n, c)

If c = 0 then

Return 0
Else

If f(n, c) > 0 then

Return g(n, c - 1) + 1

Else

Return g(n, c - 1)

EndIf

EndIf

EndAlgorithm

Ce returnează apelul g(n, 9)?

A. Returnează numărul de cifre ale
numărului n.

B. Returnează numărul de cifre dis-
tincte ale numărului n.

C. Returnează numărul de cifre mai
mari decât 1 ale numărului n.

D. Niciunul dintre celelalte răspunsuri
nu este corect.

528. ✓ ?Pe un site fiecare utilizator ı̂nregistrat are ı̂n loc de parolă un cod secret alcătuit din
n cifre. Pentru a se loga pe site, utilizatorul nu trebuie să introducă codul complet,
ci pagina generează aleator 3 pozit, ii distincte, p1, p2 s, i p3, astfel ı̂ncât 1 ≤ p1 <
p2 < p3 ≤ n iar utilizatorul trebuie să introducă doar cifrele de pe acele 3 pozit, ii. De
exemplu, dacă codul utilizatorului este 987654321 s, i pagina generează aleator pozit, iile
2, 5 s, i 7, utilizatorul trebuie să introducă cifrele 8, 5, 3.

Mai jos avet, i valorile introduse de un utilizator pentru 9 logări pe această pagină:
1, 2, 3
2, 9, 0
6, 3, 2
2, 0, 2
1, 4, 7
9, 3, 2
4, 4, 3
4, 3, 1
5, 6, 0

322

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Presupunând că toate cele 9 logări sunt valide s, i codul utilizatorului nu a fost schimbat
ı̂ntre timp, precizat, i care dintre următoarele afirmat, ii sunt adevărate.

A. Codul utilizatorului sigur nu cont, ine cifra 8.

B. Cel mai scurt cod posibil are 12 cifre.

C. Cel mai scurt cod posibil cont, ine cifra 2 de minimum 3 ori.

D. Suma cifrelor ı̂n cel mai scurt cod posibil poate fi 44.

529. ✓ ?Se consideră subalgoritmul f(x, n) unde x, n sunt numere naturale s, i x > 0.

Algorithm f(x, n)

If n = 0 then

Return 1
EndIf

m← n DIV 2
p← f(x, m)

If n MOD 2 = 0 then

Return p ∗ p
EndIf

Return x ∗ p ∗ p
EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate:

A. Subalgoritmul returnează xn.

B. Dacă ı̂n loc de ”n MOD 2” ar fi ”m MOD 2” atunci subalgoritmul ar returna
xn.

C. Liniile după autoapelul funct, iei nu se vor executa niciodată.

D. Subalgoritmul returnează xn dacă s, i numai dacă n este par.

530. ✓ ?Se consideră subalgoritmul f2(a,b) cu parametrii a s, i b numere naturale, s, i subalgo-
ritmul f(arr, i, n, p) având ca parametri s, irul arr cu n numere ı̂ntregi (arr[1], arr[2],
..., arr[n]), s, i numerele ı̂ntregi i s, i p:

Algorithm f2(a, b)

If a > b then

Return a
Else

Return b
EndIf

EndAlgorithm

Algorithm f(arr, i, n, p)

If i = n then

Return 0
EndIf

n1← f(arr, i+ 1, n, p)
n2← 0
If p+ 1 ̸= i then

n2← f(arr, i+ 1, n, i) + arr[i]
EndIf

Return f2(n1, n2)
EndAlgorithm

Precizat, i care este rezultatul apelului f(arr, 1, 9, -10), dacă s, irul arr cont, ine va-
lorile (10, 1, 3, 4, 8, 12, 1, 11, 6).

323

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

A. 24 B. 37 C. 26 D. 56

531. ✓ ?Fie subalgoritmul verifica(n), care primes,te ca parametru un număr ı̂ntreg n
(1 ≤ n ≤ 100000) s, i returnează adevărat dacă n cont, ine o cifră care este egală cu
suma celorlalte cifre. De exemplu, verifica(1517) returnează adevărat pentru că
7 = 1 + 5 + 1.

Care din următoarele variante reprezintă implementări corecte ale subalgoritmului
verifica(n)?

A.

Algorithm verifica(n)

s← 0
c← n
r ← fals

While c > 0 execute

s← s+ c MOD 10
c← c DIV 10

EndWhile

c← n
While c > 0 execute

d← c MOD 10
If d = s− d then

r ← adevărat

Else

r ← fals

EndIf

c← c DIV 10
EndWhile

Return r
EndAlgorithm

B.

Algorithm verifica(n)

m← −1
c← n
r ← fals

While c > 0 execute

d← c MOD 10
c← c DIV 10
If d > m then

m← d
EndIf

EndWhile

c← n
s← 0
While c > 0 execute

d← c MOD 10
If d ̸= m then

s← s+ d
EndIf

c← c DIV 10
EndWhile

If s = m then

r ← adevărat

EndIf

Return r
EndAlgorithm

C.

Algorithm verifica(n)

v ← [0, 0, 0, 0, 0, 0, 0, 0, 0]
r ← fals

While n > 0 execute

d← n MOD 10
If d > 0 then

v[d]← v[d] + 1
EndIf

n← n DIV 10
EndWhile

m← 9
While v[m] = 0 execute

m← m− 1
EndWhile

If v[m] = 1 then

d← m ▷ Continuarea var. C

s← 0
m← m− 1
While m > 0 execute

s← s+ v[m] ∗m
m← m− 1

EndWhile

If d = s then

r ← adevărat

EndIf

EndIf

Return r
EndAlgorithm

324

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

D. Niciuna dintre celelalte variante nu este corectă.

532. ✓ ?Se consideră subalgoritmul f(x, n, e, y, m), care primes,te ca parametri un s, ir x
cu n elemente numere ı̂ntregi (x[1], x[2], ..., x[n]), un s, ir y cum elemente numere ı̂ntregi
(y[1], y[2], ..., y[m]), s, i un număr ı̂ntreg e care nu apart, ine s, irului y. Subalgoritmul
returnează un s, ir s, i un număr natural. Se dau subalgoritmii:

1. (c, p)← concatenare(a, n, b, m) care are ca parametri de intrare un s, ir a cu n
elemente numere ı̂ntregi s, i un s, ir b cu m elemente numere ı̂ntregi, s, i returnează s, irul
c cu p elemente numere ı̂ntregi care reprezintă concatenarea celor două s, iruri a s, i b,
adică: a[1], a[2], ..., a[n], b[1], b[2], ..., b[m]

2. (c, p) ← diferent, ă(a, n, b, m) care are ca parametri de intrare un s, ir a cu n
elemente numere ı̂ntregi s, i un s, ir b cu m elemente numere ı̂ntregi, s, i returnează s, irul
c cu p elemente numere ı̂ntregi care cont, ine toate elementele din s, irul a (elementele
rămase ı̂n s, ir păstrându-s, i ordinea init, ială) care nu sunt ı̂n s, irul b

Algorithm f(x, n, e, y, m)

If n = 0 then

Return [], 0
EndIf

If x[1] ̸= e then

s← []
s[1]← x[1]
(r1, l1)← diferent, ă(x, n, s, 1)
(r2, l2)← f(r1, l1, e, y,m)
(r3, l3)← concatenare(s, 1, r2, l2)
Return r3, l3

Else

(r1, l1)← f(y,m, e, x, n)
s← []
s[1]← x[1]
(r2, l2)← diferent, ă(x, n, s, 1)
(r3, l3)← f(r2, l2, e, y,m)
(r4, l4)← concatenare(r1, l1, r3, l3)
Return r4, l4

EndIf

EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate:

A. Subalgoritmul f(x, n, e, y, m) construies,te un tablou unidimensional pornind
de la s, irul x ı̂n care aparit, iile elementului e sunt s,terse s, i ı̂n locul fiecărei aparit, ii
sunt inserate elementele din y. Subalgoritmul returnează tabloul construit s, i
dimensiunea acestuia.

B. Dacă s, irurile x s, i y nu au elemente comune, atunci s, irul returnat de subalgoritmul
f(x, n, e, y, m) va cont, ine doar elemente distincte.

C. Lungimea s, irului returnat de subalgoritmul f(x, n, e, y, m), având ca para-
metri de intrare s, irurile x s, i y nevide, poate fi mai mică decât n.

D. Dacă pe linia 18, ı̂n loc de r1 s, i l1 am avea y s, i m atunci funct, ia ar returna un
tablou unidimensional (s, i dimensiunea lui) care ar ı̂ncepe cu elementele din y,
urmate de elementele din x, aparit, iile lui e fiind ı̂nlocuite de elementele din y.

533. ✓ ?Se dă subalgoritmul s(a, b, c), unde a, b, c sunt numere naturale nenule, b ≥ a

325

Admitere 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm s(a, b, c)

If c = 0 then

Return 1
Else

If a > b then

Return (1/a) ∗ s(a− 1, b, c)
Else

If a < b then

Return (1/b) ∗ s(a, b− 1, c)
Else

Return c ∗ s(a− 1, b− 1, c− 1)
EndIf

EndIf

EndIf

EndAlgorithm

Care trebuie să fie relat, ia dintre a, b s, i c pentru a se obt, ine 1/Ca
b (unde Ca

b reprezintă
combinări de b elemente luate câte a)

A. a+ b = c

B. a+ c = b

C. b− c = a

D. b+ c = a− b

326

12

Concurs 2021 - 2025

Subiect Concurs Mate-Info UBB 2025

534. ✓ ?Se consideră algoritmul calcul(n, c1, c2), unde n este număr natural (1 ≤ n ≤
104), iar c1 s, i c2 sunt cifre (0 ≤ c1, c2 ≤ 9):

Algorithm calcul(n, c1, c2)

If n = 0 then

Return 0

EndIf

If n MOD 10 = c1 then

Return calcul(n DIV 10, c1, c2) * 10 + c2

Else

Return calcul(n DIV 10, c1, c2) * 10 +

n MOD 10
EndIf

EndAlgorithm

Ce returnează algoritmul pentru
n = 1999, c1 = 1 s, i c2 = 0?

A. 1000

B. 999

C. 1099

D. 1990

535. ✓ ?Se consideră algoritmul ceFace(m, n), unde m s, i n sunt numere naturale (1 ≤
m,n ≤ 100):

1: Algorithm ceFace(m, n)

2: c← 1; i← n
3: While i > 0 execute

4: If i MOD 2 = 1 then

5: c← c ∗m
6: i← i− 1
7: Else

8: m← m ∗m
9: i← i DIV 2
10: EndIf

11: EndWhile

12: Return c

13: EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. În urma apelului ceFace(2, 5) algoritmul
returnează 30.

B. Dacă ı̂n urma apelului ceFace(m, n) al-
goritmul returnează valoarea x, nu există
altă pereche de valori m1, n1 (m1 ̸= m s, i
n1 ̸= n) pentru care apelul ceFace(m1,
n1) să returneze aceeas, i valoare x.

C. Singura valoare a lui n pentru care linia 6
se execută de 2 ori ı̂n urma apelului algo-
ritmului ceFace(m, n) este 5.

D. În urma apelului ceFace(5, 8) linia 6 se
execută o singură dată.

536. ✓ ?Se consideră algoritmul ceFace(b, n, a), unde b s, i n sunt numere naturale (2 ≤
b, n ≤ 100), iar a este un vector cu n elemente numere naturale (a[1], a[2], ..., a[n], 0 ≤
a[i] < b pentru i = 2, 3, ..., n s, i 0 < a[1] < b):

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm ceFace(b, n, a)

v ← a[1]
For i← 2, n execute

v ← v ∗ b+ a[i]
EndFor

Return v

EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Apelul ceFace(2,6,[1,0,1,0,1,1]) re-
turnează valoarea 43.

B. Apelul ceFace(9,3,[7,6,5]) returnează
valoarea 626.

C. Dacă a[n] = 0, apelul ceFace(b, n, a)

returnează un număr par.

D. Dacă b1 > b2, atunci apelul ceFace(b1,
n, a) returnează un număr mai mare
decât ceFace(b2, n, a).

537. ✓ ?Se consideră numărul ı̂ntreg n, (−100 ≤ n ≤ 100). Care dintre următoarele expresii
au valoarea True dacă s, i numai dacă n NU apart, ine mult, imii: {−8}∪{−4,−3, ..., 8}?

A. (n ≤ −8) AND (n ≥ −8) AND (n ≤ −4) AND (n ≥ 8)

B. (n < −8) OR ((n > −8) AND (n < −4)) OR (n > 8)

C. (n < −8) OR ((n > −8) OR (n < −4)) AND (n > 8)

D. ((n < −4) AND (n ̸= −8)) OR (n > 8)

538. ✓ ?placeholder 5

539. ✓ ?Se consideră algoritmul calculeaza(x, n), unde n este număr natural (1 ≤ n ≤
104), iar x este un vector cu n elemente numere ı̂ntregi (x[1], x[2], ..., x[n],−100 ≤
x[i] ≤ 100, pentru i = 1, 2, ..., n):

Algorithm calculeaza(x, n)

If n MOD 2 = 1 then

s← x[n]
Else

s← 0
EndIf

For i← 1, n− 2, 2 execute

s← s+ x[i] + x[i+ 1]
EndFor

Return s

EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. În urma apelului calculeaza([3,

-8, -2, 15, -1, 0, 3, 1, 3],

9), algoritmul returnează 11.

B. În urma apelului calculeaza([2,

-1, 7, 5, -9, 0, 3, 1, 12], 9),
algoritmul returnează 4.

C. În urma apelului calculeaza([10,

2, 5, 78, 23, 4, 11], 7), algorit-
mul returnează 133.

D. În urma apelului calculeaza([-3,

8, -2, 15, -1, 10], 6), algorit-
mul returnează 27.

540. ✓ ?Se consideră algoritmul f(n, a, p), unde n s, i p sunt numere naturale (1 ≤ n, p ≤
105) s, i a este un vector (a[1], a[2], ..., a[n], 0 ≤ a[i] ≤ 9, pentru i = 1, 2, ..., n) de n cifre,
unde cel put, in o cifră diferă de 0:

328

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm f(n, a, p)

s← 0
For i← 1, n execute

s← s+ a[i]
EndFor

For i← 1, p execute

If s MOD 3 = 0 then

s← s DIV 3
Else

Return False

EndIf

EndFor

Return True

EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Algoritmul returnează True dacă s, i
numai dacă suma elementelor vecto-
rului a este multiplu de 3p.

B. Algoritmul returnează True dacă s, i
numai dacă suma elementelor vecto-
rului a este o putere a lui 3.

C. Algoritmul returnează False dacă s, i
numai dacă suma elementelor vecto-
rului a nu este divizibil cu 3.

D. În urma apelului f(6, [9, 1, 8,

8, 4, 6], 2) algoritmul returnează
True.

541. ✓ ?Numărul maxim de muchii dintr-un graf neorientat cu n noduri s, i p (0 < p ≤ n)
componente conexe este:

A.
(n− p)× (n− p+ 1)

2

B. (n− p)× (n− p+ 1)

C.
(n− p)× (n− p+ 1)

4

D.
(n− p)× (n+ p+ 1)

2

542. ✓ ?Se dă un număr natural n (10 ≤ n ≤ 104). Care dintre următoarele implementări
ale algoritmului f(n) returnează oglinditul numărului n?

A.

Algorithm f(n)

If n > 0 then

Return n MOD 10 + 10 ∗
f(n DIV 10)

EndIf

Return 0

EndAlgorithm

B.

Algorithm f1(n, ogl)

If n > 0 then

Return f1(n DIV 10, n MOD 10+
10 ∗ ogl)

EndIf

Return ogl

EndAlgorithm

Algorithm f(n)

Return f1(n, 0)

EndAlgorithm

C.

Algorithm f(n)

ogl← 0
While n > 0 execute

ogl← (n MOD 10) ∗ 10 + ogl
n← n DIV 10

EndWhile

Return ogl

EndAlgorithm

D.

Algorithm f(n)

ogl← 0
While n > 0 execute

ogl← ogl ∗ 10 + n MOD 10
n← n DIV 10

EndWhile

Return ogl

EndAlgorithm

543. ✓ ?Se consideră algoritmul ceFace(x1, y1, x2, y2, x3, y3), unde (x1, y1), (x2, y2)
s, i (x3, y3) sunt coordonatele a trei puncte geometrice distincte:

329

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm ceFace(x1, y1, x2, y2,

x3, y3)

t← x1 ∗ (y2− y3)
v ← x2 ∗ (y1− y3)
z ← x3 ∗ (y1− y2)
Return (t− v + z) ̸= 0

EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate pentru apelul algoritmului
ceFace(x1, y1, x2, y2, x3, y3)?

A. Returnează True dacă punctele date
formează un triunghi nedegenerat.

B. Returnează False dacă punctele date
sunt coliniare.

C. Returnează False dacă punctele date
formează un triunghi nedegenerat.

D. Returnează True dacă punctele date
sunt coliniare.

544. ✓ ?Se consideră algoritmul h(A, n), unde n este număr natural (1 ≤ n ≤ 103), iar A
este un vector cu n elemente numere ı̂ntregi (A[1], A[2], ..., A[n], 0 ≤ A[i] ≤ 100, pentru
i = 1, 2, ..., n):

Algorithm h(A, n)

If n = 0 then

Return 0

EndIf

Return h(A,n − 1) + (A[n] MOD 2) ∗
(A[n] MOD 10) ∗ (n MOD 2)
EndAlgorithm

În urma căror apeluri se returnează valoarea
0?

A. h([25, 14, 35, 26, 2, 10], 6)

B. h([14, 25, 26, 2, 10, 35], 6)

C. h([12, 5, 22, 4, 32, 8, 46, 9,

54, 3], 10)

D. h([3, 4, 7], 3)

545. ✓ ?Se consideră algoritmul ceFace(n), unde n este un număr natural (0 ≤ n ≤ 10):

Algorithm ceFace(n)

e← 1
For f ← 1, n execute

s← 0
For j ← 1, f execute

s← s+ j
EndFor

e← e ∗ s
EndFor

Return e

EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. În urma apelului ceFace(5), algorit-
mul returnează valoarea 2700.

B. Indiferent de valoarea lui n, algorit-
mul ceFace(n) nu returnează nicio-
dată valoarea 0.

C. Valoarea returnată ı̂n urma apelului
ceFace(9) are acelas, i număr de ze-
rouri la final ca valoarea returnată ı̂n
urma apelului ceFace(10).

D. În urma apelului ceFace(10) rândul
6 se execută de 45 de ori.

546. ✓ ?Se consideră algoritmul ceva(n) unde n este un număr natural (1 ≤ n ≤ 109).

330

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm aux(n)

v1← 1
v2← 1
While v1 < n execute

v3← v1 + v2
v1← v2
v2← v3

EndWhile

Return v1 = n
EndAlgorithm

Algorithm ceva(n)

If aux(n) then

Return True

EndIf

p← 10
gata← False

While (n DIV p ̸= 0) AND

(NOT gata) execute

nr1← n MOD p
nr2← (n− nr1) DIV p
If aux(nr1) then

gata← ceva(nr2)
EndIf

p← p ∗ 10
EndWhile

Return gata
EndAlgorithm

Considerând că primele s,ase numere din
s, irul Fibonacci sunt 1, 1, 2, 3, 5, 8, care din-
tre următoarele afirmat, ii sunt adevărate?

A. Algoritmul ceva(n) returnează True
dacă s, i numai dacă n este un număr
Fibonacci.

B. Algoritmul ceva(n) verifică dacă n
poate fi scris ca sumă de numere Fi-
bonacci.

C. Algoritmul ceva(n) verifică dacă n
poate fi scris ca produs de numere Fi-
bonacci.

D. Dacă n = 1234589, atunci algoritmul
ceva(n) returnează True.

547. ✓ ?Se consideră algoritmul ceFace(n, f, p), unde n este număr natural (0 ≤ n ≤
1010), p este număr natural (0 ≤ p ≤ 100) s, i f este număr ı̂ntreg (−1 ≤ f ≤ 1):

331

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm ceFace(n, f, p)

If n = 0 then

Return f = 1
EndIf

c← n MOD 10
n← n DIV 10
If f = −1 then

If c < p then

Return ceFace(n, 0, c)

Else

Return False

EndIf

EndIf

If f = 0 then

If c < p then

Return ceFace(n, 0, c)

Else

If c > p then

Return ceFace(n, 1, c)

Else

Return False

EndIf

EndIf

EndIf

If f = 1 then

If c > p then

Return ceFace(n, 1, c)

Else

Return False

EndIf

EndIf

EndAlgorithm

Care dintre următoarele afirmat, ii referi-
toare la rezultatul apelului ceFace(n DIV

10, -1, n MOD 10) sunt adevărate?

A. Pentru orice valoare a lui n < 101 se
returnează False.

B. Pentru n = 8976532014 se returnează
True.

C. Dacă n cont, ine cel put, in două cifre
egale se returnează False.

D. Dacă n nu cont, ine cifra 0 s, i apelul
returnează True, atunci apelul va re-
turna True s, i pentru oglinditul lui n.

548. ✓ ?Pentru a determina o cifră care apare de cele mai multe ori ı̂ntr-un număr, imple-
mentăm trei algoritmi: cifreA(n), cifreB(n) s, i cifreC(n) unde n este un număr
natural (1 ≤ n ≤ 1012).

Algorithm cifreA(n)

c← n
maxf ← −1; maxd← −1
While c > 0 execute ▷ (*)

d← c MOD 10
copie← n
cnt← 0
While copie > 0 execute

If copie MOD 10 = d then

cnt← cnt+ 1
EndIf

copie← copie DIV 10
EndWhile

If cnt > maxf then

maxf ← cnt
maxd← d

EndIf

332

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

c← c DIV 10
EndWhile

Return maxd
EndAlgorithm

Algorithm cifreB(n)

maxf ← −1
maxd← −1
For i← 0, 9 execute ▷ (*)

c← n
cnt← 0
While c > 0 execute

If c MOD 10 = i then

cnt← cnt+ 1
EndIf

c← c DIV 10
EndWhile

If cnt > maxf then

maxf ← cnt
maxd← i

EndIf

EndFor

Return maxd
EndAlgorithm

Algorithm cifreC(n)

maxf ← −1; maxd← −1
For i← 9, 0,−1 execute

c← n; cnt← 0
While c > 0 execute

If c MOD 10 = i then

cnt← cnt+ 1
EndIf

c← c DIV 10
EndWhile

If cnt > maxf then

maxf ← cnt
maxd← i

EndIf

EndFor

Return maxd
EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. cifreA(123453) = cifreB(123453) = cifreC(123453)

B. cifreA(123456) = cifreB(123456) = cifreC(123456)

C. Există cel put, in un număr n pentru care cei trei algoritmi returnează trei valori
diferite.

D. Pentru orice număr n, ciclul While marcat cu (*) din algoritmul cifreA(n)
se execută de mai put, ine ori decât ciclul For marcat cu (*) din algoritmul
cifreB(n).

549. ✓ ?Se consideră algoritmul getSomeMax(n, x), unde n este număr natural (1 ≤ n ≤
103), iar x este un vector cu n elemente numere ı̂ntregi (x[1], x[2], ..., x[n],−103 ≤

333

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

x[i] ≤ 103, pentru i = 1, 2, ..., n). Algoritmul zero(k) returnează un vector cu k
elemente, toate egale cu zero:

Algorithm getSomeMax(n, x)

y ← zero(n+ 1)
For i← 1, n execute

y[i+ 1]← y[i] + x[i]
EndFor

sm← y[2]
For i← 2, n execute

For j ← i, n execute

s← y[j]− y[i− 1]
If s > sm then

sm← s
EndIf

EndFor

EndFor

Return sm

EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Dacă n = 1, valoarea returnată de al-
goritmul getSomeMax(n, x) este va-
loarea lui x[1].

B. Valoarea returnată de algoritm, ı̂n ca-
zul apelului getSomeMax(8, [5, 7,

-4, 6, -3, -2, 6, -7]) este 10.

C. Dacă n = 100 s, i x = [1, 2, 3, ..., 99,
100], valoarea returnată de algoritmul
getSomeMax(n, x) este 4950.

D. Dacă toate valorile din vectorul
x sunt strict negative, algoritmul
getSomeMax(n, x) returnează cel mai
mare element din vector.

550. ✓ ?Se consideră algoritmul afla(n, x), unde n este număr natural (3 ≤ n ≤ 104), iar
x este un vector cu n elemente numere ı̂ntregi (x[1], x[2], ..., x[n],−100 ≤ x[i] ≤ 100,
pentru i = 1, 2, ..., n):

Algorithm afla(n, x)

M1← x[1];M2← x[2];M3← x[3]
For i← 1, n execute

If x[i] > M1 then

M3←M2
M2←M1
M1← x[i]

Else

If x[i] > M2 then

M3←M2
M2← x[i]

Else

If x[i] > M3 then

M3← x[i]
EndIf

EndIf

EndIf

EndFor

Return M1,M2,M3
EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. În urma apelului afla(6, [1, 2, 3,

4, 5, 6]) algoritmul returnează 6, 5,
4.

B. Dacă instruct, iunile de pe liniile 8
s, i 12 ar fi ı̂nlocuite cu EndIf, iar
instruct, iunile de pe liniile 16 s, i 17 ar
fi s,terse, atunci algoritmul ar returna
acelas, i rezultat ca algoritmul init, ial.

C. Dacă la ı̂nceput M1,M2 s, i M3 ar lua
valorile x[3], x[2], x[1], atunci algorit-
mul ar returna acelas, i rezultat ca al-
goritmul init, ial.

D. Dacă ı̂n linia 3 ı̂n loc de For i ←
1, n execute am avea For i ← 4,

n execute, atunci algoritmul ar re-
turna acelas, i rezultat ca algoritmul
init, ial.

551. ✓ ?Se consideră algoritmul ceFace(A, n), unde n este un număr natural (1 ≤ n ≤ 20),
iar A este o matrice pătratică cu n linii s, i n coloane, care cont, ine numere naturale:

334

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

(A[1][1], A[1][2], ..., A[n][n]), unde 0 ≤ A[i][j] ≤ 200, pentru i = 1, 2, ..., n s, i j =
1, 2, ..., n.

Algorithm ceFace(A, n)

// Început partea 1

For i← 1, n execute

For j ← i+ 1, n execute

temp← A[i][j]
A[i][j]← A[j][i]
A[j][i]← temp

EndFor

EndFor

// Sfârs,it partea 1

// Început partea 2

For i← 1, n execute

For j ← 1, n DIV 2 execute

temp← A[i][j]
A[i][j]← A[i][n− j + 1]
A[i][n− j + 1]← temp

EndFor

EndFor

// Sfârs,it partea 2

EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. În urma executării algoritmului ceFace(A, 3), matricea A =

1 2 3
4 5 6
7 8 9

, va

deveni

7 4 1
8 5 2
9 6 3

.
B. Dacă matricea de intrare A este matricea de identitate de ordinul 3, atunci ea nu

se modifică ı̂n urma executării algoritmului ceFace(A, 3).

C. Algoritmul ceFace(A, n) aplică o rotat, ie cu 90◦ la dreapta asupra matricei date,
pe care o modifică corespunzător.

D. Dacă interschimbăm partea din algoritm cuprinsă ı̂ntre Început partea 1 s, i
Sfârs, it partea 1 cu cea cuprinsă ı̂ntre Început partea 2 s, i Sfârs, it partea 2,
algoritmul ceFace(A, n) returnează acelas, i rezultat ca algoritmul init, ial.

552. ✓ ?Se consideră algoritmul ceFace(n), unde n este un număr natural (0 ≤ n ≤ 200):

335

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

1: Algorithm ceFace(n)

2: e← 0
3: For i← 1, n execute

4: If i MOD 2 = 0 then

5: e← e− 2 ∗ i ∗ i
6: Else

7: e← e+ 2 ∗ i ∗ i
8: EndIf

9: EndFor

10: Return e

11: EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Pentru orice număr n par, algoritmul
va returna o valoare negativă.

B. Algoritmul calculează valoarea expre-
siei 0 + 1 ∗ 2 − 2 ∗ 4 + 3 ∗ 6 − 4 ∗ 8 +
· · ·+ (−1)n−1 ∗ n ∗ 2 ∗ n.

C. Dacă algoritmul ceFace(n) retur-
nează o valoare negativă, n este un
număr par.

D. Există o singură valoare pentru n,
pentru care instruct, iunea de pe linia
7 se execută de exact 7 ori.

553. ✓ ?Se consideră algoritmul ceFace(n, x), unde n este număr natural (2 ≤ n ≤ 103),
iar x este un vector cu n elemente numere ı̂ntregi (x[1], x[2], ..., x[n],−100 ≤ x[i] ≤
100, pentru i = 1, 2, ..., n). Algoritmul zero(k) returnează un vector cu k elemente,
toate egale cu zero. Algoritmii minim(n, x), maxim(n, x) returnează valoarea mi-
nimă, respectiv maximă din vectorul x cu n elemente.

01. Algorithm ceFace(n, x):

02. min ← minim(n, x)

03. max ← maxim(n, x)

04. r ← max - min + 1

05. y ← zero(r)

06. For i ← 1, n execute

07. y[x[i] - min + 1] ← y[x[i] -

min + 1] + 1

08. EndFor

09. idx ← 1

10. For i ← 1, r execute

11. While y[i] > 0 execute

12. x[idx] ← i + min - 1

13. idx ← idx + 1

14. y[i] ← y[i] - 1

15. EndWhile

16. EndFor

17. EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Dacă vectorul x cont, ine s, i numere
negative, algoritmul va ı̂ncerca să
acceseze pozit, ii inexistente ı̂n vec-
torul y.

B. Dacă am ı̂nlocui instruct, iunile de
la rândurile 9 s, i 10 cu secvent,a
de instruct, iuni de mai jos, al-
goritmul ceFace(n, x) ar re-
turna acelas, i rezultat ca algorit-
mul init, ial.

x[1] ← min

idx ← 2

y[1] ← y[1] - 1

For i ← 2, r execute

C. În urma apelului ceFace(2, [5,

8]) vectorul x devine: x = [6, 9].

D. După executarea algoritmu-
lui ceFace(n, x) elementele
vectorului x vor reprezenta o
permutare a elementelor init, iale
ale vectorului.

336

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

554. ✓ ?Se consideră algoritmul p(x, n, a, b, c, d), unde x este un vector cu n (0 ≤
n ≤ 100) elemente ı̂ntregi (x[1], x[2], ..., x[n],−100 ≤ x[i] ≤ 100, pentru i = 1, 2, ..., n),
iar a, b, c s, i d sunt numere ı̂ntregi (0 ≤ a, b, c, d ≤ 100):

Algorithm p(x, n, a, b, c, d)

If n = 0 then

Return a = b AND c = d
EndIf

p1← p(x, n− 1, a+ x[n], b, c ∗ x[n], d)
p2← p(x, n− 1, a, b+ x[n], c, d ∗ x[n])
Return p1 OR p2

EndAlgorithm

S, tiind că x = [2, 9, 5, 6, 8, 4, 1, 2, 5, 3, 4, 1,
9, 6, 8, 3], care dintre următoarele afirmat, ii
sunt adevărate?

A. În urma apelului p(x, 16, 0, 0, 1,

1), algoritmul returnează True.

B. În urma apelului p(x, 16, 0, 0, 1,

1), algoritmul returnează False.

C. Corespunzător apelului p(x, 16, 0,

0, 1, 1), algoritmul intră ı̂n ciclu in-
finit.

D. În urma apelului p(x, 16, 0, 0, 1,

1), algoritmul returnează acelas, i re-
zultat pentru oricare permutare a ele-
mentelor vectorului x.

555. ✓ ?Se consideră algoritmii rec(n, x, i, j) s, i ceFace(n, x), unde n este număr na-
tural (1 ≤ n ≤ 103), iar x este un vector cu n elemente numere ı̂ntregi (x[1], x[2], ..., x[n],−100 ≤
x[k] ≤ 100, pentru k = 1, 2, ..., n), iar i s, i j sunt numere ı̂ntregi ı̂n intervalul [0, n].
Algoritmul maxim(a, b) returnează valoarea mai mare dintre a s, i b.

Algorithm rec(n, x, i, j)

If i = n then

Return 0
EndIf

a← rec(n, x, i+ 1, j)
b← 0
If j = 0 then

b← 1+ rec(n, x, i+ 1, i)
Else

If x[i] > x[j] then

b← 1+ rec(n, x, i+ 1, i)
EndIf

EndIf

Return maxim(a, b)
EndAlgorithm

Algorithm ceFace(n, x)

Return rec(n, x, 1, 0)
EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Pentru un vector x ordonat strict
crescător algoritmul ceFace(n, x) va
returna valoarea n.

B. Complexitatea de timp a algoritmu-
lui ı̂n cazul cel mai defavorabil este
O(n2).

C. În urma apelului ceFace(8, [10,

15, 9, 30, 21, 50, 42, 60])

algoritmul returnează valoarea 5.

D. În urma apelului ceFace(2, [3, 2])

algoritmul returnează valoarea 1.

556. ✓ ?Un număr n se numes,te special dacă are ca divizori primi doar numerele 2, 3 s, i
5. De exemplu, numere speciale sunt 1 (1 = 20 × 30 × 50), 12 (12 = 22 × 3) sau 30
(30 = 2× 3× 5). Algoritmul zero(k) returnează un vector cu k elemente egale cu 0.

Care dintre secvent,ele de instruct, iuni din răspunsurile A, B, C, D trebuie inserate
ı̂n algoritmul special(n) ı̂n locul punctelor de suspensie, astfel ı̂ncât algoritmul să

337

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

returneze al n-lea număr special, unde n este un număr natural (1 ≤ n ≤ 105)?

Algorithm special(n)

v ← zero(n)

v[1]← 1; c2← 1; c3← 1; c5← 1
nr ← 1
While nr < n execute

val1← v[c2] ∗ 2
val2← v[c3] ∗ 3
val3← v[c5] ∗ 5
If val1 ≤ val2 AND val1 ≤ val3 then

elem← val1
c2← c2 + 1

Else

If val2 ≤ val1 AND val2 ≤ val3 then

elem← val2; c3← c3 + 1
Else

elem← val3
c5← c5 + 1

EndIf

EndIf

..........
EndWhile

Return v[n]
EndAlgorithm

A.

v[nr]← elem
nr ← nr + 1

B.

If v[nr] < elem then

v[nr + 1]← elem
nr ← nr + 1

EndIf

C.

nr ← nr + 1
v[nr]← elem

D.

tmp← nr
While elem < v[tmp] AND

tmp ≥ 1 execute

v[tmp+ 1]← v[tmp]
tmp← tmp− 1

EndWhile

v[tmp+ 1]← elem
nr ← nr + 1

557. ✓ ?Se dă un număr natural n (0 ≤ n ≤ 231) s, i se dores,te determinarea numărului de bit, i
din reprezentarea ı̂n baza 2 a numărului n care este reprezentat folosind exact 32 de
bit, i, care au valoarea k ∈ {0, 1}. În algoritmi se utilizează operat, iile pe bit, i: & (AND),
<< (deplasare la stânga a reprezentării) s, i >> (deplasare la dreapta a reprezentării)
având următoarele semnificat, ii:

• ✓ ?Dacă x s, i y sunt două numere naturale, atunci x&y aplică operat, ia AND pe bit, i
ı̂n reprezentarea lor binară: fiecare bit din rezultat este 1 doar dacă ambii bit, i
corespunzători din x s, i y sunt 1; ı̂n caz contrar este 0.

• ✓ ?Dacă x este un număr natural, operat, ia x << i este echivalentă cu ı̂nmult, irea
cu 2 de i ori a numărului x, iar operat, ia x >> i este echivalentă cu ı̂mpărt, irea
ı̂ntreagă cu 2 de i ori a numărului x.

Care dintre variantele de algoritmi de mai jos returnează valoarea cerută?

A.

Algorithm countBits A(n, k)

count← 0
For i← 0, 31 execute

If ((n&(1 << i)) >> i) = k
then

count← count+ 1
EndIf

EndFor

Return count

EndAlgorithm

B.

Algorithm countBits B(n, k)

count← 0
While n > 0 execute

If (n&1) = 1 then

count← count+ 1
EndIf

n← n >> 1
EndWhile

If k = 0 then

count← 32− count

338

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

EndIf

Return count

EndAlgorithm

C.

Algorithm countBits C(n, k)

If n = 0 then

If k = 0 then

Return 32

Else

Return 0

EndIf

Else

If (n&1) = k then

Return 1+countBits C(n >>
1, k)

Else

Return countBits C(n >>
1, k)

EndIf

EndIf

EndAlgorithm

D.

Algorithm countBits(n, k, poz)

If poz < 0 then

Return 0

Else

If ((n&(1 << poz)) >>
poz) = k then

Return 1+countBits(n, k, poz−
1)

Else

Return countBits(n, k, poz−
1)

EndIf

EndIf

EndAlgorithm

Algorithm countBits D(n, k)

Return countBits(n, k, 31)

EndAlgorithm

339

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Subiect Concurs Mate-Info UBB 2024

558. ✓ ?Se consideră algoritmul calcul(v, n), unde n este număr natural (1 ≤ n ≤ 104),
iar v este un vector cu n elemente numere naturale (v[1], v[2], ..., v[n], 1 ≤ v[i] ≤ 104,
pentru i = 1, 2, ..., n):

Algorithm calcul(v, n)

i← 1; j ← n
While i < j execute

While i < j AND v[i] mod 2 =
1 execute

i← i+ 1
EndWhile

While i < j AND v[j] mod 2 =
1 execute

j ← j − 1
EndWhile

If v[i] ̸= v[j] then

Return False
EndIf

i← i+ 1
j ← j − 1

EndWhile

Return True
EndAlgorithm

Pentru care din următoarele situat, ii algorit-
mul returnează True?

A. Dacă vectorul v este format din valo-
rile [1, 11, 2, 4, 3, 4, 7, 6, 4, 21, 23, 25, 2]
s, i n = 13

B. Dacă vectorul v este format din valo-
rile [1, 11, 2, 4, 3, 7, 6, 4, 21, 23, 25, 2] s, i
n = 12

C. Dacă s, i numai dacă valoarea absolută
a diferent,ei dintre două elemente pare
ale vectorului v ı̂ntre care există cel
put, in un element impar, este egală cu
2

D. Dacă vectorul format din elementele
pare ale vectorului v parcurs de la
stânga la dreapta este egal cu vectorul
format din elementele pare ale vecto-
rului v parcurs de la dreapta la stânga

559. ✓ ?Se consideră algoritmul g(a, b) unde a s, i b sunt numere naturale (0 ≤ a, b ≤ 104):

Algorithm g(a, b)

If a = b then

Return a
EndIf

If a > b then

Return g(a− b, b)
Else

Return g(a, b− a)
EndIf

EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Pentru apelul g(2, 2) algoritmul re-
turnează 2.

B. Dacă a = b, algoritmul nu se autoape-
lează niciodată.

C. Dacă a = 0 s, i 0 ≤ b ≤ 104, algoritmul
se autoapelează o singură dată.

D. Dacă a ̸= 0, b ̸= 0 s, i a ̸= b, algoritmul
se autoapelează de a+ b− 1 ori.

560. ✓ ?Un graf orientat are 8 vârfuri, numerotate de la 1 la 8, s, i arcele (1, 7), (1, 8), (3, 5),
(3, 7), (4, 3), (4, 7), (6, 3), (6, 5), (6, 7), (6, 8), (8, 5), (8, 7). Numărul vârfurilor care au
gradul extern nul este:

A. 1 B. 2 C. 3 D. 4

561. ✓ ?Care este valoarea expresiei NOT ((x mod 2 = 0) AND (NOT ((y > x)
AND (x mod 7 ̸= 5)))), dacă x = 12 s, i y = 23?

340

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

A. True

B. False

C. Aceeas, i valoare ca a expresiei NOT ((x mod 2 = 0) AND (NOT ((x > y)
AND (x mod 7 ̸= 5))))

D. Aceeas, i valoare ca a expresiei NOT ((y mod 2 = 0) AND (NOT ((x > y)
AND (y mod 7 ̸= 5))))

562. ✓ ?Se consideră algoritmul ghici(n), unde n este număr natural (1 ≤ n ≤ 109):

Algorithm ghici(n)

f ← 0; y ← −1
For c← 0, 9 execute

x← n
k ← 0
While x > 0 execute

If x mod 10 = c then

k ← k + 1
EndIf

x← x DIV 10
If k > f then

f ← k
y ← c

EndIf

EndWhile

EndFor

Return y
EndAlgorithm

Precizat, i ce returnează algoritmul:

A. Numărul de cifre al numărului n

B. Frecvent,a maximă a frecvent,elor cifre-
lor din numărul n

C. Una dintre cifrele cu frecvent,a ma-
ximă din numărul n

D. Una dintre cifrele cu valoare maximă
din numărul n

563. ✓ ?Se consideră algoritmul divizori(n), unde n este număr ı̂ntreg (−103 ≤ n ≤ 103):

Algorithm divizori(n)

nr ← 0; d← 1
While d ∗ d ≤ n execute

If n mod d = 0 then

nr ← nr + 1
EndIf

d← d+ 1
EndWhile

Return 2 ∗ nr
EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Dacă n = 5, algoritmul returnează 2.

B. Dacă n > 1, algoritmul returnează
numărul tuturor divizorilor (proprii s, i
improprii) ai numărului n.

C. Dacă n = 0, algoritmul returnează 0.

D. Dacă n < 0, algoritmul returnează
numărul tuturor divizorilor (proprii s, i
improprii) corespunzător valorii abso-
lute a lui n.

564. ✓ ?Se consideră algoritmul ceReturneaza(a, b), unde a s, i b sunt numere naturale
(0 ≤ a, b ≤ 103):

341

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm ceReturneaza(a, b)

If a > b then

c← a; a← b; b← c
EndIf

d← 0
For i← a, b execute

If i MOD 2 = 0 then

d← d+ 1
EndIf

EndFor

Return d
EndAlgorithm

În care din următoarele situat, ii rezultatul
returnat este 0?

A. a = 11, b = 11

B. a = 4, b = 8

C. a = 12, b = 12

D. a = 0, b = 0

565. ✓ ?Se consideră algoritmul ceFace(n), unde n este număr natural (1 ≤ n ≤ 104):

Algorithm ceFace(n)

k ← 0; s← 0
While k ̸= n execute

k ← k + 1
s← s+ 2 ∗ k − 1
Write s, " "

EndWhile

EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Pentru n = 3, algoritmul va afis,a: 0 9

B. Pentru n = 10, penultima valoare atri-
buită variabilei s ı̂n timpul executării
este 81

C. Algoritmul afis,ează pătratele numere-
lor naturale 1, 2, ..., n

D. Pentru n = 4, algoritmul va afis,a: 1 4
8 16

566. ✓ ?Se consideră algoritmii verificareAux(a, b) s, i verificare(a, b), unde a s, i b
sunt numere naturale (1 ≤ a, b ≤ 109):

Algorithm verificareAux(a, b)

c← b
While a > 0 execute

While (c > 0) AND (a mod
10 ̸= c mod 10) execute

c← c DIV 10
EndWhile

If c = 0 then

Return False
EndIf

c← b
a← a DIV 10

EndWhile

Return True
EndAlgorithm

Algorithm verificare(a, b)

Return verificareAux(a, b) AND

verificareAux(b, a)
EndAlgorithm

Pentru care dintre condit, iile următoare
algoritmul verificare(a, b) returnează
True?

A. Dacă a s, i b au acelas, i număr de cifre.

B. Dacă a = 1001 s, i b = 10.

C. Dacă vectorul de frecvent, ă a cifre-
lor lui a este identic cu vectorul de
frecvent, ă a cifrelor lui b.

D. Dacă a = 123 s, i b = 321.

567. ✓ ?Se consideră algoritmul verifica(n), unde n este număr natural (1 ≤ n ≤ 104):

342

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm verifica(n)

a← n mod 10
n← n DIV 10
While n > 0 execute

b← n mod 10
If a ≤ b then

Return False
EndIf

a← b
n← n DIV 10

EndWhile

Return True
EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. În urma apelului verifica(2024) al-
goritmul returnează False.

B. Algoritmul returnează True dacă s, i
numai dacă n este un număr ı̂n care ci-
frele sunt ı̂n ordine strict crescătoare.

C. Algoritmul returnează True dacă s, i
numai dacă n este un număr ı̂n
care cifrele sunt ı̂n ordine strict des-
crescătoare.

D. Algoritmul returnează True dacă s, i
numai dacă cifra cea mai semnificativă
a numărului n este mai mică decât ci-
fra sa cea mai nesemnificativă.

568. ✓ ?Se consideră algoritmul F(x, n, i, s, k), unde x este un vector de n (1 ≤ n ≤
104) numere ı̂ntregi (x[1], x[2], ..., x[n],−103 ≤ x[i] ≤ 103 pentru i = 1, 2, ..., n), S este
număr real, iar i s, i k sunt numere naturale. Operatorul ”/” reprezintă ı̂mpărt, irea
reală, de exemplu: 3/2 = 1.5.

Algorithm F(x, n, i, s, k)

If n < i then

If k = n then

Return 0
Else

Return s/(n− k)
EndIf

Else

If x[i] mod 2 = 0 then

Return F (x, n, i+1, s+x[i], k)
Else

Return F (x, n, i+ 1, s, k + 1)
EndIf

EndIf

EndAlgorithm

S, tiind că algoritmul se apelează ı̂n forma
F(x, n, 1, 0.0, 0), precizat, i care dintre
următoarele afirmat, ii sunt adevărate?

A. Algoritmul returnează suma numere-
lor pare din vectorul x, ı̂mpărt, ită la
numărul numerelor impare din vector.

B. Dacă n = 10 s, i x =
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10], algoritmul
returnează valoarea 6.0.

C. Algoritmul returnează media aritme-
tică a numerelor pare din vectorul x.

D. Dacă n = 10 s, i x =
[1, 3, 5, 7, 9, 11, 13, 15, 17, 19], algo-
ritmul returnează valoarea 0.

569. ✓ ?Se consideră o matrice pătrată x de dimensiunea n cu elemente numere naturale
distincte (2 ≤ n ≤ 50, x[1][1], ..., x[1][n], x[2][1], ..., x[2][n], ..., x[n][1], ..., x[n][n], 1 ≤
x[i][j] ≤ 104, pentru i = 1, 2, ..., n, j = 1, 2, ..., n). Elementele fiecărei linii s, i ele-
mentele fiecărei coloane sunt ordonate crescător. Algoritmul cauta(n, x, v) caută o
valoare v ı̂n matricea x s, i returnează perechea formată din indicele de linie s, i indicele
de coloană a pozit, iei pe care se află valoarea v ı̂n matrice sau (−1,−1) dacă valoarea v
nu se află printre elementele matricei. Presupunem că algoritmul cautareBinara(t,
n, v) implementează algoritmul căutării binare pentru a determina dacă un număr v
este prezent ı̂n vectorul t cu n elemente ordonate crescător. Dacă v nu se află ı̂n a i -a

343

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

linie a matricei, ı̂n urma apelului cautareBinara(x[i], n, v) se returnează -1. Care
dintre următorii algoritmi sunt cei mai eficient, i din punct de vedere al complexităt, ii
timp s, i realizează cerint,ele descrise?

A.

Algorithm cauta(n, x, v)

a← −1
b← −1
For i← 1, n execute

For j ← 1, n execute

If x[i][j] = v then

a← i
b← j

EndIf

EndFor

EndFor

Return a, b
EndAlgorithm

B.

Algorithm cauta(n, x, v)

a← −1
b← −1
For i← 1, n execute

j ← cautareBinara(x[i], n, v)
If j ̸= −1 then

a← i
b← j

EndIf

EndFor

Return a, b
EndAlgorithm

C.

Algorithm cauta(n, x, v)

a← −1
b← −1
i← 1; j ← n
While i ≤ n AND j > 0

execute

If x[i][j] = v then

a← i
b← j

EndIf

If x[i][j] > v then

j ← j − 1
Else

i← i+ 1
EndIf

EndWhile

Return a, b
EndAlgorithm

D.

Algorithm cauta(n, x, v)

a← −1
b← −1
i← 1; j ← 1
While i ≤ n AND x[i][j] < v

execute

i← i+ 1
EndWhile

While j ≤ n AND x[i][j] < v
execute

j ← j + 1
EndWhile

If x[i][j] = v then

a← i
b← j

EndIf

Return a, b
EndAlgorithm

344

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

570. ✓ ?Fiind dată o matrice pătrată M de 3×3 elemente, care dintre următoarele secvent,e
de cod implementează corect o rotire cu 90 de grade ı̂n sens trigonometric a matricei
ı̂n jurul elementului de pe pozit, ia (2, 2)?

A. For i← 0, 1 execute

X ←M [1][1]
M [1][1]←M [1][2]
M [1][2]←M [1][3]
M [1][3]←M [2][3]
M [2][3]←M [3][3]
M [3][3]←M [3][2]
M [3][2]←M [3][1]
M [3][1]←M [2][1]
M [2][1]← X

EndFor

B. For i← 0, 2 execute

X ←M [1][1]
M [1][1]←M [1][2]
M [1][2]←M [1][3]
M [1][3]←M [2][3]
M [2][3]←M [3][3]
M [3][3]←M [3][2]
M [3][2]←M [3][1]
M [3][1]←M [2][1]
M [2][1]← X

EndFor

C. For i← 1, 2 execute

X ←M [1][1]
M [1][1]←M [1][2]
M [1][2]←M [1][3]
M [1][3]←M [2][3]
M [2][3]←M [3][3]
M [3][3]←M [3][2]
M [3][2]←M [3][1]
M [3][1]←M [2][1]
M [2][1]← X

EndFor

D. For i← 1, 3 execute

X ←M [1][1]
M [1][1]←M [1][i]
M [1][i]←M [1][3]
M [1][3]←M [i][3]
M [i][3]←M [3][3]
M [3][3]←M [3][i]
M [3][1]←M [3][1]
M [3][1]←M [i][1]
M [i][1]← X

EndFor

571. ✓ ?Se consideră algoritmul rearanjeaza(x, n), unde n este număr natural (1 ≤ n ≤
200), iar x este un vector de n numere ı̂ntregi distincte (x[1], x[2], ..., x[n],−100 ≤
x[i] ≤ 100, pentru i = 1, 2, ..., n). Algoritmul interschimba(x, i, j) interschimbă
elementele x[i] s, i x[j].

Algorithm rearanjeaza(x, n)

v ← x[n]
i← 0; j ← 1
While j ≤ n− 1 execute

If x[j] ≤ v then

i← i+ 1
interschimba(x, i, j)

EndIf

j ← j + 1
EndWhile

i← i+ 1
interschimba(x, i, n)
Return i

EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Algoritmul sortează ı̂n ordine
crescătoare elementele vectorului
x.

B. Dacă vectorul x este sortat crescător,
nu se va modifica ordinea elementelor
din vector.

C. Vectorul x va fi rearanjat astfel ı̂ncât
ultimul element din vectorul init, ial va
avea ı̂n stânga sa doar elemente cu va-
loare mai mică s, i ı̂n dreapta doar ele-
mente cu valoare mai mare.

D. Algoritmul returnează indicele init, ial
al elementului cu valoarea minimă din
vectorul x.

345

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

572. ✓ ?Se consideră algoritmul calcul(v, n), unde n este număr natural (1 ≤ n ≤ 104),
iar v este un vector cu n elemente numere naturale (v[1], v[2], ..., v[n], 1 ≤ v[i] ≤ 200,
pentru i = 1, 2, ..., n):

Algorithm calcul(v, n)

If n = 1 then

Return v[1]
EndIf

If v[1] mod v[n] = 0 then

v[1]← v[n]
n← n− 1
Return calcul(v, n)

Else

aux← v[n]
v[n]← v[1] mod v[n]
v[1]← aux
Return calcul(v, n)

EndIf

EndAlgorithm

Pentru care din următoarele valori algorit-
mul returnează valoarea 12?

A. v = [60, 96, 120, 84], n = 4

B. v = [75, 24, 12, 84], n = 4

C. v = [75, 24, 49, 80], n = 4

D. v = [60, 24, 12, 84], n = 4

573. ✓ ?Se consideră algoritmul ceFace(n), unde n este număr ı̂ntreg (−104 ≤ n ≤ 104):

Algorithm ceFace(n)

If n = 0 then

Return "0"

EndIf

If n < 0 then

Return "-" + ceFace(−n)
EndIf

If n mod 3 = 0 then

Return ceFace(n DIV 3) + "0"

EndIf

If n mod 3 = 1 then

Return ceFace(n DIV 3) + "1"

EndIf

Return ceFace(n DIV 3) + "2"

EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Dacă numărul n este o putere a lui 3,
s, irul de caractere returnat cont, ine un
singur caracter ”1”.

B. Pentru n = 3 s, i n = −3 algoritmul
ceFace(n) returnează valori identice.

C. Dacă n = 82, algoritmul returnează
”010001”.

D. Dacă n este număr negativ, algoritmul
intră ı̂n ciclu infinit.

574. ✓ ?Se consideră algoritmul decide(n, x), unde n este număr natural (1 ≤ n ≤ 104),
iar x este un vector cu n elemente numere naturale (x[1], x[2], ..., x[n], 0 ≤ x[i] ≤ 100,
pentru i = 1, 2, ..., n). Care dintre următoarele afirmat, ii sunt adevărate?

Algorithm decide(n, x)

a← x[1]
i← 2; j ← 1
While i ≤ n execute

If x[i] = a then

j ← j + 1
Else

If j > 0 then

j ← j − 1
Else

a← x[i]
j ← 1

346

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

EndIf

EndIf

i← i+ 1
EndWhile

i← 1; j ← 0
While i ≤ n execute

If x[i] = a then

j ← j + 1
EndIf

i← i+ 1
EndWhile

If j > (n DIV 2) then

Return a
Else

Return −1
EndIf

EndAlgorithm

A. Dacă n = 5 s, i x = [1, 2, 1, 3, 1] algoritmul returnează 1.

B. Dacă n = 5 s, i x = [1, 2, 2, 3, 1] algoritmul returnează -1.

C. Pentru orice vector de intrare algoritmul returnează -1.

D. Algoritmul returnează primul element al vectorului x.

575. ✓ ?Se consideră algoritmul ceFace(n), ı̂n cadrul căruia se vor citi n numere, unde n
este număr natural (1 ≤ n ≤ 109):

Algorithm ceFace(n)

nr ← 0
Read a
For i← 2, n execute

Read b
If a ̸= b then

nr ← nr + 1
EndIf

a← b
EndFor

Return nr
EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Algoritmul returnează numărul numerelor care
se repetă printre numerele citite (de exemplu,
dacă numerele sunt 3, 34, 34, 7, 3, 34, atunci
valoarea returnată este 2).

B. Algoritmul returnează lungimea celei mai lungi
subsecvent,e de numere citite ce au valori egale
(de exemplu, dacă numerele sunt 2, 34, 34, 34,
5, atunci valoarea returnată este 3).

C. Algoritmul returnează numărul perechilor de
elemente consecutive cu valori diferite printre
numerele citite (de exemplu, dacă numerele
sunt 2, 34, 34, 7, atunci (2, 34), (34, 7) sunt
perechi de elemente consecutive cu valori dife-
rite s, i se returnează 2).

D. Algoritmul returnează numărul perechilor de
elemente consecutive cu valori egale printre nu-
merele citite (de exemplu, dacă numerele sunt
2, 2, 3, 3, atunci (2, 2), (3, 3) sunt perechi de
elemente consecutive cu valori egale s, i se retur-
nează 2).

347

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

576. ✓ ?Se consideră algoritmul f(a), unde a este un număr natural (0 ≤ a ≤ 104):

Algorithm f(a)

n← 0
While a > 1 execute

b← 1
While b ≤ a execute

b← 3 ∗ b
n← n+ 1

EndWhile

a← a DIV 3
EndWhile

Return n
EndAlgorithm

Care este valoarea returnată de algoritm
dacă se apelează pentru a = 81?

A. 0

B. 14

C. 16

D. 9

577. ✓ ?Se consideră algoritmul h(n, a), unde n este număr natural (1 ≤ n ≤ 103), iar
a este un vector cu n elemente numere ı̂ntregi (a[1], a[2], ..., a[n],−104 ≤ a[i] ≤ 104,
pentru i = 1, 2, ..., n) ordonate crescător.

Algorithm h(n, a)

t← 0; i← n
While i > 2 execute

k ← 1
j ← i− 1
b← a[i]
While k < j execute

If a[k] + a[j] = b then

t← t+ 1
k ← k + 1
j ← j − 1

Else

If a[k] + a[j] < b then

k ← k + 1
Else

j ← j − 1
EndIf

EndIf

EndWhile

i← i− 1
EndWhile

Return t
EndAlgorithm

Care dintre următoarele apeluri va returna
valoarea 4?

A. h(5, [1, 2, 3, 4, 5])

B. h(6, [2, 4, 6, 10, 18, 20])

C. h(7, [2, 2, 3, 4, 6, 9, 13])

D. h(5, [2, 2, 2, 4, 6])

578. ✓ ?Se consideră algoritmul f(x, n, m), unde n s, i m sunt numere naturale (1 ≤ n,m ≤
104), iar x este un vector de n numere naturale (x[1], x[2], ..., x[n], 1 ≤ x[i] ≤ 104,
pentru i = 1, 2, ..., n):

348

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm f(x, n, m)

If m = 0 then

Return 1
EndIf

If n = 0 then

Return 0
EndIf

If x[n] > m then

Return f(x, n− 1,m)
Else

Return f(x, n − 1,m) + f(x, n −
1,m− x[n])

EndIf

EndAlgorithm

Ce valoare va returna algoritmul, dacă ape-
lul are forma f(x, 9, 41), unde x =
[41, 15, 5, 8, 10, 1, 16, 18, 19]?

A. 1 B. 3 C. 5 D. 7

579. ✓ ?Se consideră algoritmul select(v, x, n), unde n este număr natural (1 ≤ n ≤
104), v este un vector cu n elemente numere ı̂ntregi (v[1], v[2], ..., v[n],−100 ≤ v[i] ≤
100, pentru i = 1, 2, ..., n), iar x este un număr ı̂ntreg, −100 ≤ x ≤ 100:

Algorithm select(v, x, n)

i← 1; j ← n
While i ≤ j execute

k ← (i+ j) DIV 2
If v[k] = x then

Return k
EndIf

If v[i] ≤ v[k] then

If v[i] ≤ x AND x < v[k]
then

j ← k − 1
Else

i← k + 1
EndIf

Else

If v[k] < x AND x ≤ v[j]
then

i← k + 1
Else

j ← k − 1
EndIf

EndIf

EndWhile

Return −1
EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. În cazul apelului select([0, 1, 2,

4, 5, 8, 9, 10, 7, 6], 10, 10),
algoritmul returnează 10.

B. Algoritmul returnează pozit, ia pe care
apare elementul x ı̂n vectorul v dacă
s, i numai dacă vectorul v este sortat
crescător.

C. Complexitatea algoritmului este
O(log n).

D. În cazul apelului select([0, 1, 2,

4, 5, 8, 9, 10, 7, 6], 7, 10),
algoritmul returnează -1.

580. ✓ ?Se consideră algoritmul maiMare(n) unde n este număr natural nenul (1 ≤ n < 106)
alcătuit din cifre distincte. Algoritmul ar trebui să returneze numărul numerelor strict
mai mari ca n, formate din cifrele lui n. De exemplu, maiMare(213) = 3. Presupunem
că n nu are cifre 0 la ı̂nceput s, i că avem următorii algoritmi implementat, i conform
specificat, iilor:

• ✓ ?factorial(n) – returnează factorialul numărului natural n (1 ≤ n ≤ 10)

• ✓ ?nrCifre(n) – returnează numărul cifrelor numărului natural n (1 ≤ n < 106)

349

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

• ✓ ?imparte(n) – returnează un vector având ca elemente cifrele numărului natural
n (1 ≤ n < 106), ı̂n ordine inversă. De exemplu: imparte(1352) returnează
vectorul [2, 5, 3, 1].

1: Algorithm maiMare(n)

2: cifre ← imparte(n)
3: nrCif ← nrCifre(n)
4: Return calculeaza(cifre,

nrCif)

5: EndAlgorithm

1: Algorithm calculeaza(v, n)

2: If n < 2 then

3: Return 0
4: EndIf

5: mm← 0
6: For i← 1, n− 1 execute

7: If v[i] > v[n] then

8: mm← mm+ 1
9: EndIf

10: EndFor

11: ...

12: EndAlgorithm

Care dintre următoarele instruct, iuni tre-
buie scrisă la linia 11 a algoritmului
calculeaza(v, n)?

A. Return factorial(n) - ((n -

mm - 1) * factorial(n - 1) +

calculeaza(v, n - 1))

B. Return calculeaza(v, n - 1) *

mm + factorial(n - 1)

C. Return (mm * factorial(n) +

calculeaza(v, n - 1)) DIV n

D. Return calculeaza(v, n - 1) +

mm * factorial(n - 1)

581. ✓ ?Un eveniment trebuia să aibă loc ı̂n sala I, dar trebuie mutat ı̂n sala II, unde

numerotarea scaunelor diferă. În ambele săli există L rânduri de scaune (2 ≤ L ≤ 50),
fiecare rând fiind ı̂mpărt, it la mijloc de un culoar s, i având K scaune (2 ≤ K ≤ 50)
ı̂n fiecare parte a culoarului (deci, sala cont, ine ı̂n total 2 ∗ K ∗ L scaune). În sala
II fiecare loc este identificat printr-un singur număr. Locurile din stânga culoarului
au numere pare, iar numerotarea scaunelor ı̂ncepe pe rândul din fat,a scenei. Deci
scaunele din primul rând au numerele (pornind dinspre culoar spre marginea sălii) 2,
4, 6 etc. După ce toate scaunele de pe un rând au fost numerotate, pe rândul următor
se continuă numerotarea, rêıncepând cu scaunul de lângă culoar cu următorul număr
par. Locurile din partea dreaptă a culoarului sunt numerotate la fel, dar folosind
numere impare. Deci scaunele din primul rând au numerele 1, 3, 5, etc, pornind
dinspre culoar spre marginea sălii. În sala I fiecare loc este identificat prin trei valori.
Numărul rândului (o valoare ı̂ntre 1 s, i L inclusiv, rândul 1 fiind cel din fat,a scenei),
direct, ia locului fat, ă de culoar (valoarea ”stanga” sau ”dreapta”) s, i numărul scaunului
ı̂n cadrul rândului (o valoare ı̂ntre 1 s, i K inclusiv, scaunul 1 fiind cel de lângă culoar).
Din cauza mutării spectacolului, locurile de pe bilete din sala I (reprezentate prin rand,
loc, directie) trebuie transformate ı̂n locuri valabile ı̂n sala II (un singur număr). Care
dintre algoritmii de mai jos, având ca date de intrare K, rand, loc, directie conform
enunt,ului, execută ı̂n mod corect transformarea (o transformare este corectă dacă
fiecare spectator va avea un loc unic ı̂n sala II)?

350

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

A.

Algorithm transforma(K, rand,

loc, directie)

If directie = "stanga" then

rez ← 2∗(loc+K∗(rand−1))
Else

rez ← 2 ∗ (loc +K ∗ (rand −
1) + 1)

EndIf

Return rez

EndAlgorithm

B.

Algorithm transforma(K, rand,

loc, directie)

rez ← rand ∗ (K − 1) ∗ 2
rez ← rez + (loc ∗ 2)
If directie = "dreapta" then

rez ← rez − 1
EndIf

Return rez

EndAlgorithm

C.

Algorithm transforma(K, rand,

loc, directie)

rez ← (rand− 1) ∗K ∗ 2
rez ← rez + (loc ∗ 2)
If directie = "dreapta" then

rez ← rez − 1
EndIf

Return rez

EndAlgorithm

D.

Algorithm transforma(K, rand,

loc, directie)

rez ← (rand− 1) ∗K ∗ 2
rez ← rez + (loc ∗ 2)
If directie = "dreapta" then

rez ← rez + 1
EndIf

Return rez

EndAlgorithm

351

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Subiect Concurs Mate-Info UBB 2023

582. ✓ ?Se consideră algoritmul f(a, b), unde a s, i b sunt numere naturale nenule (1 ≤
a, b ≤ 109):

1: Algorithm f(a, b)

2: If a = b then

3: Return a
4: EndIf

5: If a > b then

6: Return f(a− b, b)
7: EndIf

8: Return f(a, b− a)
9: EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt
adevărate.

A. În urma apelului f(2000, 21) algoritmul re-
turnează 1.

B. În cazul apelului f(2000, 21) algoritmul nu ı̂s, i
termină execut, ia din cauza condit, iei de pe linia
2.

C. Pentru ca algoritmul să returneze cel mai mare
divizor comun al lui a s, i b, linia 8 ar trebui
schimbată astfel: Return f(b - a, b).

D. Pentru ca ı̂n cazul apelului f(2000, 21) algo-
ritmul să returneze valoarea 1, linia 8 ar trebui
schimbată astfel: Return f(b - a, b - a).

583. ✓ ?Se consideră următoarea secvent, ă de algoritm, unde a este un vector de n numere
naturale (a[1], a[2], ..., a[n], 1 ≤ a[i] ≤ 104, pentru i = 1, 2, ..., n), iar n este un număr
natural nenul (1 ≤ n ≤ 104):

For i← 1, n− 1 execute

poz ← i
For j ← i+ 1, n execute

If a[j] < a[poz] then

poz ← j
EndIf

EndFor

If poz ̸= i then

temp← a[i]
a[i]← a[poz]
a[poz]← temp

EndIf

EndFor

Care dintre următoarele afirmat, ii sunt
adevărate ı̂n momentul ı̂n care i devine 2?

A. a[1] ≤ a[k] pentru orice k ∈ 1, 2, ..., n

B. a[n] ≤ a[k] pentru orice k ∈ 1, 2, ..., n

C. a[1] ≥ a[k] pentru orice k ∈ 1, 2, ..., n

D. a[k] ≤ a[k + 1] pentru orice k ∈
1, 2, ..., n− 1

584. ✓ ?Se consideră algoritmul alg(n), unde n este un număr natural (0 ≤ n ≤ 109):

Algorithm alg(n)

If n MOD 2 = 0 then

Return n+ alg(n− 1)
Else

Return n
EndIf

EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Dacă n = 4, valoarea returnată de algoritm
este 7.

B. Algoritmul returnează suma numerelor natu-
rale mai mici decât n.

C. Algoritmul returnează suma numerelor natu-
rale mai mici sau egale cu n.

D. Dacă n = 7, valoarea returnată de algoritm
este 7.

352

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

585. ✓ ?Se consideră algoritmul f(nr), unde nr este un număr ı̂ntreg (−104 ≤ nr ≤ 104):

Algorithm f(nr)

If nr < 0 then

Return f(−nr)
EndIf

If (nr = 0) OR (nr = 7) then

Return 1
EndIf

If nr < 10 then

Return 0
EndIf

Return f((nr DIV 10) − 2 ∗
(nr MOD 10))
EndAlgorithm

Pentru ce valori ale lui nr algoritmul retur-
nează valoarea 1?

A. 308

B. −7

C. 7098

D. 57

586. ✓ ?Se consideră algoritmul afis(n), unde n este un număr natural (1 ≤ n ≤ 104):

Algorithm afis(n)

If n > 9 then

If n MOD 2 = 0 then

afis(n DIV 100)
Write n MOD 10, " "

Else

afis(n DIV 10)
EndIf

EndIf

EndAlgorithm

Pentru care dintre următoarele apeluri se
afis,ează valorile 2 4, ı̂n această ordine?

A. afis(1234)

B. afis(1224)

C. afis(4224)

D. afis(4321)

587. ✓ ?Se consideră algoritmul Afis,are(a), unde a este un număr natural (1 ≤ a ≤ 104):

Algorithm Afis,are(a)

If a < 9000 then

Write a, " "

Afis,are(3 ∗ a)
Write a, " "

EndIf

EndAlgorithm

Ce se afis,ează pentru apelul
Afis,are(1000)?

A. 1000 3000 9000 9000 3000 1000

B. 1000 3000 9000 3000 1000

C. 1000 3000 3000 1000

D. 1000 3000 9000

588. ✓ ?Se consideră algoritmul f(n, x), unde n este un număr natural (3 ≤ n ≤ 104),
iar x este un vector de n numere naturale (x[1], x[2], ..., x[n], 1 ≤ x[i] ≤ 104, pentru
i = 1, 2, ..., n):

Algorithm f(n, x)

For i← 1, n− 2 execute

If x[i] + x[i+ 1] ̸= x[i+ 2] then

Return False
EndIf

EndFor

Return True
EndAlgorithm

Pentru care dintre următoarele apeluri algoritmul va returna True?

353

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

A. f(3, [10, 15, 251])

B. f(4, [0, 0, 0, 0])

C. f(5, [100, 535, 635, 1170, 1805])

D. f(4, [0, 1, 0, 1])

589. ✓ ?Care este rezultatul conversiei numărului zecimal 210 − 25 − 1 ı̂n baza 2?

A. 1111011111

B. 1010011001

C. 1000011001

D. Niciunul dintre răspunsurile A, B, C

590. ✓ ?Se consideră algoritmii one(a, b) s, i two(n, m) unde parametrii de intrare a, b, n
s, i m sunt numere naturale (2 ≤ a, b, n,m ≤ 106, n < m).

Algorithm one(a, b)

s← 0
For i← 1, a execute

If a MOD i = 0 then

s← s+ i
EndIf

EndFor

For i← 1, b execute

If b MOD i = 0 then

s← s+ i
EndIf

EndFor

Return s
EndAlgorithm

Algorithm two(n, m)

For i← n,m execute

If one(i, i) = 2 ∗ i+ 2 then

Write i, " "

EndIf

EndFor

EndAlgorithm

Care dintre afirmat, iile de mai jos sunt
adevărate?

A. Algoritmul two(n, m) nu afis,ează ni-
mic, indiferent de valoarea parametri-
lor de intrare.

B. Algoritmul two(n, m) afis,ează nume-
rele prime din intervalul [n,m].

C. Algoritmul two(n, m) afis,ează nu-
merele divizibile cu 2 din intervalul
[n,m].

D. Nici una din celelalte variante nu este
corectă.

591. ✓ ?Se consideră algoritmul decide(n, x), unde n este un număr natural nenul (1 ≤
n ≤ 104), iar x este un vector cu n elemente numere naturale (x[1], x[2], ..., x[n], 0 ≤
x[i] ≤ 100, pentru i = 1, 2, ..., n):

354

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm decide(n, x)

i← 1
j ← n
While i < j AND

x[i] = x[j] execute

i← i+ 1
j ← j − 1

EndWhile

If i ≥ j then

Return True
Else

Return False
EndIf

EndAlgorithm

Când returnează True algoritmul
decide(n, x)?

A. Întotdeauna

B. Dacă elementele vectorului x sunt
[1, 2, 3]

C. Dacă elementele vectorului x sunt
[1, 1, 1]

D. Dacă elementele vectorului x for-
mează un palindrom, adică x[i] =
x[n− i+ 1] pentru orice i = 1, 2, ..., n

592. ✓ ?Se consideră algoritmul alg(a, b), unde a s, i b sunt numere naturale (1 ≤ a, b ≤
103):

Algorithm alg(a, b)

If b = 0 then

Return 1
Else

Return a ∗ alg(a, b− 1)
EndIf

EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Pentru apelul alg(2, 3) algoritmul returnează
7.

B. Pentru apelul alg(2, 3) algoritmul se ape-
lează de 4 ori, luând ı̂n calcul s, i apelul init, ial.

C. Algoritmul calculează s, i returnează valoarea
ab−1.

D. Algoritmul calculează s, i returnează valoarea ab.

593. ✓ ?Se consideră algoritmul ceFace(a, b), unde a s, i b sunt numere naturale (1 < a, b ≤
105). Algoritmul prim(n) returnează True dacă numărul n ¿ 1 este prim s, i False altfel.

Algorithm ceFace(a, b)

If prim(a) = True then

Write a, " "

Else

If prim(b) ̸= True then

ceFace(a, b+ 1)
Else

If b > a then

Write a, " "

Else

If a MOD b = 0 then

Write b, " "

ceFace(a DIV b, b)
Else

ceFace(a, b+ 1)
EndIf

EndIf

EndIf

EndIf

EndAlgorithm

Ce se afis,ează pentru apelul ceFace(100,
2)?

A. 2 5 5 5

B. 5 5 2 2

C. 2 2 2 5

D. 2 2 5 5

355

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

594. ✓ ?Se consideră algoritmul f(n, p) unde n este un număr natural nenul (1 ≤ n ≤ 109),
iar p este un număr natural (0 ≤ p ≤ 109):

Algorithm f(n, p)

If n ≤ 9 then

If n MOD 2 = 0 then

Return 10 ∗ p+ n
Else

Return p
EndIf

Else

If n MOD 2 = 0 then

p← p ∗ 10 + n MOD 10
EndIf

Return f(n DIV 10, p)
EndIf

EndAlgorithm

Care din următoarele apeluri vor returna
valoarea 22?

A. f(23572, 0)

B. f(23527, 0)

C. f(2, 0)

D. f(1242, 0)

595. ✓ ?Se consideră algoritmul cifre(n), unde n este un număr natural (0 ≤ n ≤ 103):

Algorithm cifre(n)

If n ≥ 1 then

If (n ∗ 5) MOD 10 = 0 then

Return cifre(n DIV 10)
Else

Return n MOD 10
EndIf

Else

Return −1
EndIf

EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Algoritmul returnează ı̂ntotdeauna un
număr mai mic decât 10.

B. Algoritmul returnează -1 dacă s, i nu-
mai dacă valoarea init, ială a lui n este
0.

C. Pentru n ≥ 1, algoritmul returnează
cifra cea mai put, in semnificativă a
lui n care este impară, sau -1, dacă
aceasta nu există.

D. Pentru n ≥ 1 algoritmul returnează
cifra cea mai semnificativă a lui n care
este impară, sau −1, dacă aceasta nu
există.

596. ✓ ?Se consideră algoritmul ceFace(a, b), unde a s, i b sunt două numere naturale
(0 ≤ a, b ≤ 106):

Algorithm ceFace(a, b)

c← 0
p← 1
While a ∗ b ̸= 0 execute

If (a MOD 10) = (b MOD 10) then

c← (a MOD 10) ∗ p+ c
Else

If (a MOD 10) < (b MOD 10) then

c← ((b MOD 10− a MOD 10) DIV 2) ∗ p+ c
Else

c← ((a MOD 10− b MOD 10) DIV 2) ∗ p+ c
EndIf

356

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

EndIf

p← p ∗ 10
a← a DIV 10
b← b DIV 10

EndWhile

Return c
EndAlgorithm

Care dintre următoarele afirmat, ii sunt corecte?

A. Dacă a = 0 s, i b = 0, algoritmul returnează 1.

B. Dacă a = 11 s, i b = 111, algoritmul returnează 11.

C. Dacă a = 5678 s, i b = 5162738, algoritmul returnează 1024.

D. Dacă a = 112233 s, i b = 331122, algoritmul returnează 110000.

597. ✓ ?Se consideră algoritmii ceva(n, m) s, i altceva(n, m), unde n s, i m sunt numere
naturale nenule (1 ≤ n,m ≤ 1012 s, i m ≤ n):

Algorithm ceva(n, m)

nc← n
mc← m
While nc > 0 AND

mc > 0 execute

nc← nc DIV 10
mc← mc DIV 10

EndWhile

If nc = mc then

Return True
Else

Return False
EndIf

EndAlgorithm

Algorithm altceva(n, m)

c← 0
While ceva(n,m) = False execute

m← m ∗ 10 + 1
c← c+ 1

EndWhile

Write n, " ", m
Return c

EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Complexitatea timp a algoritmului
ceva(n, m) este O(logm).

B. Algoritmul altceva(n, m) retur-
nează 0 dacă s, i numai dacă n = m.

C. Avem nevoie de precondit, iam ≤ n din
enunt, , deoarece dacă m > n algorit-
mul altceva(n, m) intră ı̂ntotdeauna
ı̂n ciclu infinit.

D. Există numere n s, i m (care respectă
precondit, ia) pentru care algoritmul
altceva(n, m) afis,ează două valori ı̂n
ordine crescătoare.

598. ✓ ?Se consideră algoritmul h(s, d, A), unde s s, i d sunt numere naturale nenule (1 ≤
s, d ≤ 103) s, i A este un vector de n numere naturale nenule (A[1], A[2], ..., A[n], 1 ≤
A[i] ≤ 103, pentru i = 1, 2, ..., n):

357

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm h(s, d, A)

If s = d then

x← A[s]
y ← x MOD 10
x← x DIV 10
While x > 0 execute

z ← x MOD 10
If z − y ̸= 2 then

Return 0
EndIf

y ← z
x← x DIV 10

EndWhile

Return 1
Else

Return h(s, (s+ d) DIV 2, A)+
h((s+ d) DIV 2 + 1, d, A)

EndIf

EndAlgorithm

Pentru ce valori ale numărului n s, i a vec-
torului A apelul h(1, n, A) va returna va-
loarea 5?

A. n = 7, A = (20, 53, 10, 42, 31, 131, 42)

B. n = 10, A = (420, 75, 68, 86, 97,
975, 53, 64, 24, 57)

C. n = 10, A = (402, 75, 6, 86, 7, 9,
35, 46, 24, 57)

D. n = 10, A = (642, 97, 6, 64, 7, 9,
75, 4, 53, 31)

599. ✓ ?Se consideră algoritmul f(a, x), unde x este un număr natural nenul (1 ≤ x ≤ 104)
s, i a este un vector cu 10 numere naturale nenule (a[1], a[2], ..., a[10]):

Algorithm f(a, x)

i ← 1, j ← 10

k ← 1

While a[k] ̸= x AND i < j execute

k ← (i + j) DIV 2

If a[k] < x then

i ← k

Else

j ← k

EndIf

EndWhile

If a[k] = x then

Return True

Else

Return False

EndIf

EndAlgorithm

Pentru care dintre următoarele date de intrare algoritmul intră ı̂n ciclu infinit?

A. a = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3] s, i x > 3

B. a = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] s, i x < 10

C. a = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20] s, i 1 < x < 20, x - număr impar

D. a = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20] s, i 1 < x < 20, x - număr par

600. ✓ ?Se consideră algoritmul f(a), unde a este un număr natural (1 ≤ a ≤ 109):

Algorithm f(a)

x ← a MOD 10

If x = a then

If x MOD 2 = 0 then

Return a

358

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Else

Return 0

EndIf

EndIf

If x MOD 2 = 0 then

Return 10 * f(a DIV 10) + x

EndIf

Return f(a DIV 10)

EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Pentru a = 253401976 algoritmul f(a) se apelează de 8 ori. Se numără s, i apelul
init, ial.

B. Pentru a = 253401976 algoritmul f(a) se apelează de 9 ori. Se numără s, i apelul
init, ial.

C. Pentru a = 253401976 rezultatul returnat de algoritm este 2406.

D. Rezultatul returnat de algoritmul f(a) pentru numărul a format doar din cifre
pare este egal cu a.

601. ✓ ?Se consideră algoritmul A(k), unde parametrul k este un număr natural nenul (1 ≤
k ≤ 109):

Algorithm A(k)

gr ← (-1 + radical(1 + 8 * k))

/ 2

If gr = [gr] then

p ← gr

Else

p ← [gr] + 1

EndIf

Return p - (k - p * (p - 1)

DIV 2 - 1)

EndAlgorithm

Cu [gr] s-a notat partea ı̂ntreagă din gr.
Algoritmul radical(x) returnează valoarea
radicalului lui x.
Operatorul / reprezintă ı̂mpărt, irea numere-
lor reale, de exemplu: 7 / 2 = 3.5

Care dintre următoarele afirmat, ii sunt corecte?

A. Algoritmul A1(k), definit mai jos, este echivalent cu algoritmul A(k).

Algorithm A1(k)

c ← 0

i ← 1

While c < k execute execute

j ← 1

While j ≤ i execute execute

If c < k then

c ← c + 1

If c = k then

Return j

Else

j ← j + 1

EndIf

Else

Return j

EndIf

359

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

EndWhile

i ← i + 1

EndWhile

EndAlgorithm

B. Algoritmul A2(k), definit mai jos, este echivalent cu algoritmul A(k).

Algorithm A2(k)

c ← 0

i ← 1

While c < k execute execute

j ← i

While j ≥ 1 execute execute

If c < k then

c ← c + 1

If c = k then

Return j

Else

j ← j - 1

EndIf

Else

Return j

EndIf

EndWhile

i ← i + 1

EndWhile

EndAlgorithm

C. Algoritmul A(k) returnează al k -lea termen din s, irul format din concatenarea
s, irurilor de forma [1, 2, ..., i], pentru fiecare i = 1, 2, ..., k, ı̂n această ordine
(adică s, irul [1, 1, 2, 1, 2, 3, 1, 2, 3, 4, ...]).

D. Algoritmul A(k) returnează al k -lea termen din s, irul format din concatenarea
s, irurilor de forma [i, ..., 2, 1] pentru fiecare i = 1, 2, ..., k, ı̂n această ordine
(adică s, irul [1, 2, 1, 3, 2, 1, 4, 3, 2, 1, ...])

602. ✓ ?Se consideră algoritmul ceFace(a, lung), unde lung este un număr natural (1 ≤
lung ≤ 105), iar a este un vector cu lung elemente numere ı̂ntregi (a[1], a[2], ..., a[lung]).
În vectorul a se află cel put, in un număr pozitiv.

360

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm ceFace(a, lung)

value1 ← 0

value2 ← 0

For i ← 1, lung execute

execute

value2 ← value2 + a[i]

If value1 < value2 then

value1 ← value2

EndIf

If value2 < 0 then

value2 ← 0

EndIf

EndFor

Return value1

EndAlgorithm

S, tiind că o subsecvent, ă a vectorului x =
[x[1], x[2], ..., x[n]] este formată din elemente
ale vectorului x care ocupă pozit, ii consecu-
tive (de exemplu y = [x[3], x[4], x[5], x[6]]
este o subsecvent, ă a vectorului x de lun-
gime 4) precizat, i care dintre următoarele
afirmat, ii sunt adevărate:

A. Dacă ı̂n vectorul a există un singur
număr pozitiv, algoritmul returnează
valoarea acestuia.

B. Algoritmul returnează lungimea uneia
dintre subsecvent,ele care au suma ma-
ximă ı̂n vectorul a.

C. Algoritmul returnează suma uneia
dintre subsecvent,ele care au sumă ma-
ximă ı̂n vectorul a.

D. Algoritmul returnează suma numere-
lor pozitive aflate pe pozit, ii consecu-
tive la finalul vectorului a.

603. ✓ ?Se consideră algoritmul ceFace(sir, a, b), unde sir este un vector format din n
(1 ≤ n ≤ 100) numere naturale nenule distincte ordonate crescător (sir[1], sir[2], ..., sir[n]),
a s, i b sunt numere naturale (1 ≤ a, b ≤ n):

Algorithm ceFace(sir, a, b)

If a > b then

Return a

EndIf

c ← a + (b - a) DIV 2

If sir[c] = c then

Return ceFace(sir, c + 1, b)

Else

Return ceFace(sir, a, c - 1)

EndIf

EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate, considerând că apelul init, ial este
ceFace(sir, 1, n)?

A. Dacă vectorul sir este format din primele n numere naturale distincte, atunci
algoritmul returnează valoarea n + 1.

B. Algoritmul returnează cea mai mare pozit, ie p mai mică sau egală cu n DIV 2
pentru care sir [p] = p sau 1, dacă nu există o astfel de pozit, ie (1 ≤ p ≤ n).

C. Algoritmul returnează cea mai mare pozit, ie p mai mică sau egală cu n DIV 2
pentru care sir [p] ̸= p sau n + 1, dacă nu există o astfel de pozit, ie (1 ≤ p ≤ n).

D. Algoritmul returnează cel mai mic număr natural nenul care nu apare ı̂n vectorul
sir.

604. ✓ ?Se consideră algoritmul ceFace(s, x, c, y, n, m, k), unde s este s, ir de ca-
ractere (s[1], s[2], ..., s[x]) de lungime x, iar c este s, ir de caractere (c[1], c[2], ..., c[y])

361

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

de lungime y. Identificatorii x, y, n, m s, i k memorează numere naturale nenule
(1 ≤ x, y, n,m, k ≤ 100).

1: Algorithm ceFace(s, x, c, y, n, m, k)

2: If (n ≥ 0) AND (m ≥ 0) AND (n ≤ x) AND (m ≤ y) then

3: If k MOD 2 = 0 then

4: Write s[(n + k) MOD x + 1]

5: ...

6: ceFace(s, x, c, y, n - 1, m, k)

7: EndIf

8: If k MOD 2 = 1 then

9: Write c[(m + k) MOD y + 1]

10: ...

11: ceFace(s, x, c, y, n, m - 1, k)

12: EndIf

13: EndIf

14: EndAlgorithm

Dorim, ca ı̂n urma apelului ceFace(”+-”, 2, ”123”, 3, 2, 2, 4) să obt, inem o expresie
aritmetică validă (adică o expresie aritmetică reprezentând o alternant, ă din câte un
operator s, i câte un operand; poate să ı̂nceapă cu unul din operatorii ’+’ sau ’-’ s, i
trebuie să se termine cu un operand). Care dintre următoarele afirmat, ii NU sunt
adevărate?

A. Liniile 5 s, i 10 pot fi completate cu instruct, iunea k ← k + 7.

B. Linia 5 poate fi completată cu instruct, iunea k← k + 2, iar linia 10 cu instruct, iunea
k ← k + 5.

C. Liniile 5 s, i 10 pot fi completate cu instruct, iunea k ← k + 2.

D. Linia 5 poate fi completată cu instruct, iunea k← k + 7, iar linia 10 cu instruct, iunea
k ← k - 1.

605. ✓ ?Se consideră numărul natural n (1 ≤ n ≤ 50) s, i vectorul x având n elemente numere
ı̂ntregi (x[1], x[2], ..., x[n]). Care dintre următoarele afirmat, ii sunt adevărate, indiferent
de valoarea lui n s, i de valorile elementelor vectorului?

A. Există un număr natural k (1 ≤ k ≤ n), astfel ı̂ncât suma x[1] + x[2] + ...+ x[k]
să fie divizibilă cu n.

B. Există (i, j), 0 ≤ i < j ≤ n, astfel ı̂ncât suma x[i+ 1] + x[i+ 2] + ...+ x[j] să fie
divizibilă cu n.

C. Niciuna dintre afirmat, iile A s, i B nu este adevărată.

D. S, tiind că o subsecvent, ă a vectorului x = [x[1], x[2], ..., x[n]] este formată din ele-
mente ale vectorului x care ocupă pozit, ii consecutive (de exemplu, y = [x[3], x[4],
x[5], x[6]] este o subsecvent, ă a vectorului x de lungime 4), există un număr natu-
ral k, (1 ≤ k ≤ n), astfel ı̂ncât ı̂n vectorul x există o subsecvent, ă de k elemente
(1 ≤ k ≤ n) a căror sumă este divizibilă cu n.

362

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Subiect Concurs Mate-Info UBB 2022

606. ✓ ?Se consideră algoritmul magic(x), unde x este un număr natural (1 ≤ x ≤ 32000).

Algorithm magic(x)

st← 1
dr ← x
While st ≤ dr execute

mj ← (st+ dr) DIV 2
If mj ∗mj = x then

Return True

EndIf

If mj ∗mj < x then

st← mj + 1
Else

dr ← mj − 1
EndIf

EndWhile

Return False

EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii
sunt adevărate:

A. Pentru orice valoare de intrare x strict
mai mică decât 10 algoritmul retur-
nează False.

B. Algoritmul descompune numărul x ı̂n
factorii săi primi.

C. Algoritmul returnează True dacă
numărul x este pătrat perfect.

D. Algoritmul nu returnează True pen-
tru nici o valoare validă a parametru-
lui de intrare x.

607. ✓ ?Se consideră algoritmul calculeaza(a,b), unde a s, i b sunt numere naturale (1 ≤
a, b ≤ 10000).

Algorithm calculeaza(a, b)

x← 1
For i← 1 to b execute

x← (x MOD 10) ∗ a
EndFor

Return x
EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate:

A. Dacă a = 107 s, i b = 101, valoarea returnată este 107.

B. Dacă a = 1001 s, i b = 101, valoarea returnată este 1001.

C. Pentru toate apelurile algoritmului cu 1 ≤ a ≤ 10000 s, i b = 101, valoarea retur-
nată este valoarea lui a.

D. Pentru toate apelurile algoritmului cu a = 1001 s, i 1 ≤ b ≤ 10000, valoarea
returnată este 1001.

608. ✓ ?Se consideră algoritmul afis(n), unde n este un număr natural (0 ≤ n ≤ 10000).

Algorithm afis(n)

Write n, " "

If n > 0 then

afis(n DIV 2)

Write n, ", "

EndIf

EndAlgorithm

Ce se va afis,a la apelul afis(n)?

A. Se afis,ează un s, ir de numere ı̂n care primul element este egal cu ultimul, al doilea
cu penultimul etc. (cu except, ia elementului din mijloc).

363

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

B. Se afis,ează un s, ir de numere pare.

C. Se afis,ează un s, ir de numere ı̂n ordine crescătoare urmate de numere ı̂n ordine
descrescătoare.

D. Se afis,ează un s, ir de numere ı̂n ordine descrescătoare urmate de numere ı̂n ordine
crescătoare.

609. ✓ ?Se consideră algoritmul cauta(n, b), unde n s, i b sunt numere naturale (0 ≤ n ≤
106, 2 ≤ b < 10).

Algorithm cauta(n, b)

v ← 0
If n = 0 then

Return 1
Else

m← n
While m > 0 execute

If m MOD b = 0 then

v ← v + 1
EndIf

m← m DIV b
EndWhile

Return v
EndIf

EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii
sunt adevărate:

A. Algoritmul determină s, i returnează
câte cifre are numărul n.

B. Algoritmul returnează 1 dacă numărul
n este o putere a lui b s, i 0 altfel.

C. Algoritmul determină s, i returnează
numărul de cifre 0 din reprezentarea
ı̂n baza b a numărului n.

D. Algoritmul returnează 1 dacă numărul
n se termină cu cifra b s, i 0 altfel.

610. ✓ ?Se consideră algoritmul abc(a, n, p), unde n este număr natural (1 ≤ n ≤ 10000),
p este număr ı̂ntreg (−10000 ≤ p ≤ 10000), iar a este un s, ir cu n numere naturale
nenule (a[1], a[2], ..., a[n]).

Algorithm abc(a, n, p)

If n < 1 then

Return −1
Else

If (1 ≤ p) AND (p ≤ n) then

Return a[p]
Else

Return 0
EndIf

EndIf

EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate:

A. Algoritmul returnează 0 dacă s, i numai dacă p este negativ sau mai mare decât
n.

B. Algoritmul returnează elementul de pe pozit, ia p dacă p este strict mai mare decât
0 s, i mai mic sau egal decât lungimea s, irului.

C. Algoritmul nu returnează niciodată 0 pentru valori ale parametrilor care respectă
precondiţiile din enunt, .

D. Algoritmul returnează elementul de pe pozit, ia p dacă p este mai mare sau egal
cu 0 s, i mai mic strict decât lungimea s, irului.

364

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

611. ✓ ?Pentru a genera numerele cu n cifre formate doar din cifrele 0, 6, 7, se utilizează un
algoritm care, pentru n = 2, generează ı̂n ordine crescătoare numerele 60, 66, 67, 70,
76, 77. Dacă n = 4 s, i se utilizează acelas, i algoritm, care este numărul generat imediat
după numărul 6767?

A. 7667

B. 6760

C. 6776

D. Niciuna dintre celelalte variante

612. ✓ ?Pentru un număr natural nr (1000 ≤ nr ≤ 1000000), definim operat, ia de decre-
mentare ı̂n modul următor: dacă ultima cifră a lui nr nu este 0, scădem 1 din nr,
altfel, ı̂mpărt, im nr la 10 s, i păstrăm doar partea ı̂ntreagă. Care dintre următorii al-
goritmi returnează, la apelul decrementare(nr, k), numărul obt, inut aplicând de k
ori (0 ≤ k ≤ 100) operat, ia de decrementare pe numărul nr? De exemplu, pentru
nr = 15243 s, i k = 10, rezultatul este 151.

A.

Algorithm decrementare(nr, k)

If k = 0 then

Return nr
Else

If nr MOD 10 ̸= 0 then

Return decrementare(nr

- 1, k - 1)

Else

Return decrementare(nr

DIV 10, k - 1)

EndIf

EndIf

EndAlgorithm

B.

Algorithm decrementare(nr, k)

While k > 0 execute

If nr MOD 10 = 0 then

nr ← nr DIV 10
Else

nr ← nr − 1
EndIf

k ← k − 1
EndWhile

Return nr
EndAlgorithm

C.

Algorithm decrementare(nr, k)

For i← 1 to k execute

If nr MOD 10 > 0 then

nr ← nr DIV 10
Else

nr ← nr − 1
EndIf

EndFor

Return nr
EndAlgorithm

D.

Algorithm decrementare(nr, k)

If k = 0 then

Return nr
Else

If k > nr MOD 10 then

nr1← nr DIV 10
Return decrementare(nr1,

k - nr MOD 10 - 1)

Else

Return decrementare(nr

- k, 0)

EndIf

EndIf

EndAlgorithm

613. ✓ ?Algoritmul de mai jos are ca parametri de intrare un vector v cu n numere naturale
(v[1], v[2], ..., v[n]) s, i numărul ı̂ntreg n (1 ≤ n ≤ 10000).

Algorithm fn(v, n)

a← 0
For i← 1 to n execute

ok ← True

b← v[i]
While (b ̸= 0) AND (ok = True) execute

365

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

If b MOD 2 = 1 then

ok ← False

EndIf

b← b DIV 10
EndWhile

If ok = True then

a← a+ 1
EndIf

EndFor

Return a
EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate:

A. Algoritmul returnează numărul elementelor impare din vectorul v.

B. Algoritmul returnează numărul elementelor din vectorul v care sunt puteri ale lui
2.

C. Algoritmul returnează numărul elementelor din vectorul v care au ı̂n component,a
lor doar cifre pare.

D. Algoritmul returnează numărul elementelor din vectorul v care au ı̂n component,a
lor doar cifre impare.

614. ✓ ?Algoritmul magic(s, n) are ca parametri de intrare un s, ir s cu n caractere (s[1], s[2],
..., s[n]) s, i numărul ı̂ntreg n (1 ≤ n ≤ 10000).

Algorithm magic(s, n)

i← n
While 1 ≤ i execute

If s[i] ̸= s[n− i+ 1] then

Return 0
EndIf

i← i− 1
EndWhile

Return 1
EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii
sunt adevărate:

A. Algoritmul returnează 1 dacă s are un
număr par de caractere.

B. Algoritmul returnează 1 dacă s este
un palindrom.

C. Algoritmul are o eroare deoarece ex-
presia n − i + 1 poate avea valori ne-
gative ı̂n cursul execut, iei.

D. Algoritmul returnează 1 dacă s
cont, ine doar caractere alfanumerice.

615. ✓ ?Se consideră următoarea secvent, ă de cod ı̂n pseudocod:

Read a
For i← 1 to a− 1 execute

For j ← i+ 2 to a execute

If i+ j > a− 1 then

Write a, " ", i, " ", j
Write new line

EndIf

EndFor

EndFor

Câte perechi de solut, ii se vor afis,a ı̂n urma
execut, iei secvent,ei de cod pentru a = 9?

A. 13

B. 15

C. 19

D. Niciuna dintre celelalte variante

366

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

616. ✓ ?Algoritmul ceFace(n) are ca parametru de intrare un număr natural n (0 ≤ n ≤
10000).

Algorithm ceFace(n)

s← 0
While n > 0 execute

c← n MOD 10
If c MOD 2 = 0 then

s← s+ c
EndIf

n← n DIV 10
EndWhile

Return s
EndAlgorithm

Ce va returna apelul ceFace(9876)?

A. 16

B. 48

C. 14

D. 63

617. ✓ ?Algoritmul generare(n) prelucrează un număr natural n (0 < n < 100).

Algorithm generare(n)

nr ← 0
For i← 1 to 1801 execute

used[i]← False

EndFor

While not used[n] execute

sum← 0
used[n]← True

While n ̸= 0 execute

digit← n MOD 10
n← n DIV 10
sum ← sum + digit ∗ digit ∗

digit
EndWhile

n← sum
nr ← nr + 1

EndWhile

Return nr
EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii
sunt adevărate:

A. Dacă n = 10, valoarea returnată este
2.

B. Dacă n = 10, valoarea returnată este
1.

C. Dacă n = 3, valoarea returnată este 4.

D. Cele două apeluri generare(3) s, i
generare(30) vor returna aceeas, i va-
loare.

618. ✓ ?Se dă algoritmul f(a, b) care primes,te ca parametri două numere naturale a s, i b
(1 ≤ a < b ≤ 1000):

Algorithm f(a, b)

If a > 0 then

Return b+ f(a DIV 2, b ∗ 2)
EndIf

Return b+ f(a ∗ 2, b DIV 2)
EndAlgorithm

Din păcate, algoritmul se autoapelează de o infinitate de ori. Precizat, i care este
valoarea pe care o va avea parametrul b, atunci când parametrul a devine 0 pentru
prima dată. Algoritmul se apelează cu instruct, iunea: c← f(20, 10)

A. 100 B. 160 C. 320 D. 640

619. ✓ ?Precizat, i care dintre următoarele expresii are valoarea adevărat dacă s, i numai dacă
numărul natural n este divizibil cu 3 s, i are ultima cifră 4 sau 6:

367

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

A. (n MOD 3 = 0) OR ((n MOD 10 = 4) AND (n MOD 10 = 6))

B. (n MOD 6 = 0) AND ((n MOD 10 = 4) OR (n MOD 10 = 6))

C. ((n MOD 9 = 0) AND (n MOD 10 = 4)) OR ((n MOD 3 = 0)
AND (n MOD 10 = 6))

D. (n MOD 3 = 0) AND (((n MOD 2 = 0) AND (n MOD 5 = 0)) OR
((n MOD 2 = 0) AND (n MOD 5 = 1)))

620. ✓ ?Se consideră următoarea expresie logică (X OR Z) AND (X OR Y). Aleget, i
valorile pentru X, Y, Z astfel ı̂ncât evaluarea expresiei să dea rezultatul True:

A. X ← False; Y ← False; Z ← True;

B. X ← True; Y ← False; Z ← False;

C. X ← False; Y ← True; Z ← False;

D. X ← True; Y ← True; Z ← True;

621. ✓ ?Se consideră toate s, irurile de lungime l ∈ {1, 2, 3} formate din litere din mult, imea
{a, b, c, d, e}. Câte dintre aceste s, iruri au elementele ordonate strict crescător (conform
alfabetului) s, i un număr impar de consoane? (b, c s, i d sunt consoane)

A. 14 B. 13 C. 26 D. 81

622. ✓ ?Se dores,te afis,area unui pătrat ı̂mpreună cu diagonalele sale folosind doar caracterele
* (asterisc) s, i . (punct) (pentru spat, iul din interiorul pătratului cu except, ia diagona-
lelor). Exemplul de mai jos ilustrează un pătrat având laturile de n = 6 asteriscuri.
Pentru acesta a fost necesară utilizarea a 28 asteriscuri s, i 8 puncte.

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗.. ∗ ∗
∗ . ∗ ∗. ∗
∗ . ∗ ∗. ∗
∗ ∗.. ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

Care din afirmat, iile de mai jos sunt adevărate?

A. Pentru n = 5, este nevoie de exact 22 asteriscuri s, i 4 puncte.

B. Pentru n = 7, este nevoie de exact 34 asteriscuri s, i 15 puncte.

C. Pentru n = 7, este nevoie de exact 33 asteriscuri s, i 16 puncte.

D. Pentru n = 18, este nevoie de exact 100 asteriscuri s, i 224 puncte.

623. ✓ ?Se consideră algoritmul ceFace(T, n, e), care primes,te ca s, i parametru un s, ir T
cu n numere naturale ordonate crescător (T [1], T [2], ..., T [n]) s, i numerele naturale n s, i
e (1 ≤ n, e ≤ 10000).

368

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm ceFace(T, n, e)

If e MOD 2 = 0 then

a← 1
b← n
While a ≤ b execute

m← (a+ b) DIV 2
If e < T [m] then

b← m− 1
Else

If e > T [m] then

a← m+ 1
Else

Return m
EndIf

EndIf

EndWhile

Return 0
Else

c← 1
g ← 0
While (c ≤ n) AND (g = 0)

execute

If e = T [c] then

g = c
EndIf

c← c+ 1
EndWhile

Return g
EndIf

EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii
sunt adevărate:

A. Algoritmul returnează 0 dacă numărul
e nu se află ı̂n s, irul T.

B. Dacă numărul e este impar s, i se află ı̂n
s, irul T, algoritmul returnează pozit, ia
din s, irul T pe care se află e folosind
algoritmul de căutare binară.

C. Dacă numărul e este impar s, i se află ı̂n
s, irul T, algoritmul returnează pozit, ia
din s, irul T pe care se află e folosind
algoritmul de căutare secvent, ială.

D. Algoritmul returnează pozit, ia din
s, irul T pe care se află numărul e.

624. ✓ ?Se consideră algoritmul calcul(x, n), unde parametrii de intrare sunt numerele
naturale n s, i x, având proprietatea 1 ≤ x ≤ n < 10.

Algorithm calcul(x, n)

b← 1
For i← 1 to n− x execute

b← b+ i
EndFor

a← b
For i← n− x+ 1 to n execute

a← a+ i
EndFor

Return a− b
EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii
sunt adevărate:

A. Dacă n = 5 s, i x = 2, atunci algoritmul
returnează 20.

B. Dacă n = 3 s, i x = 2, atunci algoritmul
returnează 5.

C. Algoritmul returnează cardinalitatea
mult, imii {c1c2...cx : ci ̸= cj∀1 ≤ i, j ≤
x, i ̸= j, 1 ≤ ci ≤ n}

D. Algoritmul returnează ı̂ntotdeauna o
valoare strict mai mare decât 0.

Problemele 625. şi 626. se referă la algoritmul s(a, b, c), unde a, b, c sunt numere
naturale pozitive (1 ≤ a, b, c ≤ 10000).

369

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm s(a, b, c)

If (a = 1) OR (b = 1) OR (c = 1)
then

Return 1
Else

If a > b then

Return a ∗ s(a− 1, b, c)
Else

If a < b then

Return b ∗ s(a, b− 1, c)
Else

Return c∗s(a−1, b−1, c−
1)

EndIf

EndIf

EndIf

EndAlgorithm

625. ✓ ?Precizat, i care dintre următoarele
afirmat, ii sunt adevărate ı̂n cazul ı̂n care
a = b s, i a < c:

A. Algoritmul calculează s, i returnează
c!/(c− a)!

B. Algoritmul calculează s, i returnează
c!/(c− a+ 1)!

C. Algoritmul calculează s, i returnează
c!/(c− a− 1)!

D. Algoritmul calculează s, i returnează
combinări de c luate câte (a− 1)

626. ✓ ?Pentru a = 3, b = 4, c = 7, algoritmul returnează:

A. 224 B. 56 C. 336 D. 168

627. ✓ ?Se consideră algoritmul numere(a, b, c, d, e), care primes,te ca parametri cinci
numere ı̂ntregi a, b, c, d s, i e (1 ≤ a, b ≤ 10000, 2 ≤ c ≤ 16, 1 ≤ d < c).

Algorithm numere(a, b, c, d, e)

If a = 0 AND b = 0 then

If e = 0 then

Return True

Else

Return False

EndIf

EndIf

If a MOD c = d then

e← e+ 1
EndIf

If b MOD c = d then

e← e− 1
EndIf

Return numere(a DIV c, b DIV c, c, d, e)

EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate pentru apelul numere(a,
b, c, d, 0):

A. Algoritmul returnează True dacă reprezentările ı̂n baza c a numerelor a s, i b
cont, in cifra d de număr egal de ori, False ı̂n caz contrar

B. Algoritmul returnează True dacă cifra d apare ı̂n reprezentarea ı̂n baza c a
numărului a s, i ı̂n reprezentarea ı̂n baza c a numărului b, False ı̂n caz contrar

C. Apelul numere(a, b, c, d, 0) returnează aceeas, i valoare ca s, i apelul numere(b,
a, c, d, 0)

370

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

D. Algoritmul returnează True dacă cifra d apare pe aceleas, i pozit, ii ı̂n reprezentarea
ı̂n baza c a numerelor a s, i b, False ı̂n caz contrar

628. ✓ ?Fie s un s, ir de numere naturale unde elementele si sunt de forma:

si =


x, dacă i = 1

x+ 1, dacă i = 2

s(i−1)@s(i−2) dacă i > 2

, (i = 1, 2, ...)

unde operatorul @ concatenează cifrele operandului stâng cu cifrele operandului drept,
ı̂n această ordine (cifre aferente reprezentării ı̂n baza 10), iar x este un număr natural
(1 ≤ x ≤ 99). De exemplu, dacă x = 3, s, irul s va cont, ine valorile 3, 4, 43, 434, 43443,
... .

Pentru un număr natural k (1 ≤ k ≤ 30) precizat, i numărul cifrelor acelui termen din
s, irul s care precede termenul format din k1 cifre, unde k1 este cel mai mic număr cu
proprietatea că k ≤ k1 ≤ 30 s, i există un termen format din k1 cifre.

A. dacă x = 15 s, i k = 8, numărul cifrelor termenului căutat este 6.

B. dacă x = 2 s, i k = 6, numărul cifrelor termenului căutat este 6.

C. dacă x = 14 s, i k = 27, numărul cifrelor termenului căutat este 26.

D. dacă x = 5 s, i k = 12, numărul cifrelor termenului căutat este 8.

629. ✓ ?Se consideră următorul algoritm recursiv fibonacci(n), unde n este un număr
natural (1 ≤ n ≤ 100). Să se determine de câte ori se afis,ează mesajul ”Aici” ı̂n cazul
unui apel fibonacci(n).

Algorithm fibonacci(n)

If n ≤ 1 then

Write "Aici"

Return 1
Else

Return fibonacci(n - 1) +

fibonacci(n - 2)

EndIf

EndAlgorithm

A. De fibonacci(n) ori.

B. De fibonacci(n-1) ori.

C. De fibonacci(n)-1 ori.

D. De fibonacci(n) - fibonacci(n-1)
ori.

630. ✓ ?Se consideră expresia: E(x) = a0 + a1 ∗ x + a2 ∗ x2 + a3 ∗ x3 + a4 ∗ x4, unde
a0, a1, a2, a3, a4 s, i x sunt numere reale nenule. Numărul minim de ı̂nmult, iri necesare
pentru a calcula valoarea expresiei E(x) este:

A. 4 B. 5 C. 7 D. 3

Problemele 631. şi 632. se referă la algoritmul f(x, n) unde x, n sunt numere naturale
s, i x > 0.

1: Algorithm f(x, n)

2: If n = 0 then

3: Return 1
4: EndIf

5: m← n DIV 2
6: p← f(x,m)
7: If n MOD 2 = 0 then

371

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

8: Return p ∗ p
9: EndIf

10: Return x ∗ p ∗ p
11: EndAlgorithm

631. ✓ ?Precizat, i care dintre următoarele afirmat, ii sunt adevărate:

A. Algoritmul returnează xn efectuând aproximativ n apeluri recursive.

B. Algoritmul returnează xn efectuând aproximativ log2 n apeluri recursive.

C. Algoritmul returnează xn dacă s, i numai dacă n este putere a lui 2.

D. Algoritmul returnează xn dacă s, i numai dacă n este par.

632. ✓ ?Considerăm linia 10 ı̂nlocuită cu:

10. return x * f(x, n - 1)

Precizat, i care dintre următoarele afirmat, ii sunt adevărate:

A. Algoritmul nu mai returnează xn

B. Algoritmul returnează xn+1

C. Algoritmul efectuează aproximativ n2 apeluri recursive.

D. Algoritmul returnează xn

633. ✓ ?Se consideră algoritmul f2(a,b) cu parametrii a s, i b numere naturale, s, i algoritmul
f(arr, i, n, p) având ca parametri s, irul arr cu n numere ı̂ntregi (arr[1], arr[2], ...,
arr[n]), s, i numerele ı̂ntregi i s, i p:

Algorithm f2(a, b)

If a > b then

Return a
Else

Return b
EndIf

EndAlgorithm

Algorithm f(arr, i, n, p)

If i = n then

Return 0
EndIf

n1← f(arr, i+ 1, n, p)
n2← 0
If p+ 1 ̸= i then

n2← f(arr, i+ 1, n, i) + arr[i]
EndIf

Return f2(n1, n2)
EndAlgorithm

Precizat, i care este rezultatul apelului
f(arr, 1, 9, -10), dacă s, irul arr cont, ine
valorile (10, 1, 5, 4, 7, 12, 1, 12, 6).

A. 24

B. 37

C. 39

D. 56

Problemele 634. şi 635. se referă la algoritmul f(n), care are ca parametru numărul
natural nenul n s, i care returnează un număr natural.

Algorithm f(n)

j ← n
While j > 1 execute

i← 1

372

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

While i ≤ n4 execute

i← 4 ∗ i
Write "*"

EndWhile

If j DIV 2 > 1 then

Write " "

EndIf

j ← j DIV 2
EndWhile

Return j
EndAlgorithm

634. ✓ ?În care dintre următoarele clase de complexitate se ı̂ncadrează complexitatea timp
a algoritmului?

A. O(log2 n) B. O(log22 n) C. O(log24 n) D. O(log2 log4 n)

635. ✓ ?Care dintre afirmat, iile de mai jos sunt adevărate?

A. Dacă n = 10, algoritmul afis,ează grupuri formate din câte 7 stelut,e, grupurile
fiind despărt, ite prin câte un spat, iu.

B. Dacă n = 20, algoritmul afis,ează 4 grupuri de stelut,e s, i 4 caractere spat, iu.

C. Dacă n = 25, algoritmul afis,ează 48 de stelut,e, iar după fiecare grup afis,ează un
spat, iu.

D. Dacă n = 100, algoritmul afis,ează 84 de stelut,e s, i 5 caractere spat, iu.

373

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Subiect Concurs Mate-Info UBB 2021

636. ✓ ?Se consideră expresia următoare, ı̂n care a este un număr natural.

((a < 4) SAU (a < 5)) S, I (a > 2)

Pentru ce valori ale lui a va avea expresia valoarea ADEVĂRAT?

A. a = 3

B. a = 4

C. a = 2

D. Expresia nu va avea niciodată valoarea ADEVĂRAT

637. ✓ ?Subalgoritmul de mai jos are ca parametri de intrare un s, ir v cu n numere naturale
nenule (v[1], v[2], ..., v[n]) s, i numărul ı̂ntreg n (1 ≤ n ≤ 10000).

Algorithm f(v, n)

x← 0
For i← 1 to n execute

c← v[i]
While c MOD 3 = 0 execute

x← x+ 1
c← c DIV 3

EndWhile

EndFor

Return x
EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate:

A. Subalgoritmul returnează numărul numerelor divizibile cu 3 din s, irul v

B. Subalgoritmul returnează cel mai mare număr k astfel ı̂ncât v[1] ∗ v[2] ∗ ... ∗ v[n]
este divizibil cu 3k

C. Subalgoritmul returnează cel mai mare număr k astfel ı̂ncât v[1]+ v[2]+ ...+ v[n]
este divizibil cu 3k

D. Subalgoritmul returnează suma numerelor divizibile cu 3 din s, irul v

638. ✓ ?Se consideră expresia următoare, ı̂n care x este un număr natural pozitiv.

(x MOD 2) + ((x+ 1) MOD 2)

Care din afirmat, iile de mai jos sunt adevărate?

A. Expresia are valoarea 1 pentru orice număr natural pozitiv x.

B. Expresia are valoarea 1 dacă s, i numai dacă x este un număr par.

C. Expresia are valoarea 1 dacă s, i numai dacă x este un număr impar.

D. Există număr natural x pentru care expresia are o valoare strict mai mare decât
1.

639. ✓ ?Fie subalgoritmul prelucrare(x, n) definit mai jos, care primes,te ca s, i parametru
un s, ir x cu n numere reale nenule (x[1], x[2], ..., x[n]) s, i numărul ı̂ntreg n (1 ≤ n ≤
10000). Operatorul / reprezintă ı̂mpărt, irea reală (ex. 3/2=1,5).

Algorithm prelucrare(x, n)

374

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

p← 1
For k ← 1 to n− 1 execute

p← p+ 1
For i← 1 to n− 1 execute

If x[i] > x[i+ 1] then

x[i]← x[i] ∗ x[i+ 1]
x[i+ 1]← x[i]/x[i+ 1]
x[i]← x[i]/x[i+ 1]

EndIf

EndFor

EndFor

n← p
EndAlgorithm

Care dintre următoarele afirmat, ii descriu modificarea aplicată s, irului x ı̂n urma ape-
lului subalgoritmului prelucrare(x, n)?

A. Elementele s, irului x vor rămâne nemodificate

B. Elementele s, irului x vor fi ı̂n ordine descrescătoare

C. Elementele s, irului x vor fi ı̂n ordine crescătoare

D. Numărul n este decrementat cu o unitate

640. ✓ ?Se consideră subalgoritmul calcul(a, n), care primes,te ca parametru un s, ir a cu
n numere naturale (a[1], a[2], ..., a[n]) s, i numărul ı̂ntreg n (1 ≤ n ≤ 10000).

Algorithm calcul(a, n)

If n = 0 then

Return 0
Else

Return a[n] ∗ (a[n] MOD 2) + calcul(a, n− 1)
EndIf

EndAlgorithm

Pentru ce valori a numărului n s, i a s, irului a funct, ia calcul(a,n) va returna valoarea
10?

A. n = 4, a = (2, 4, 7, 5)

B. n = 6, a = (3, 1, 2, 5, 8, 1)

C. n = 6, a = (2, 4, 5, 3, 8, 5)

D. n = 7, a = (1, 1, 2, 1, 1, 1, 3)

641. ✓ ?Se consideră subalgoritmul calcul(v, n), care primes,te ca parametru un s, ir v cu
n numere naturale (v[1], v[2], ..., v[n]) s, i numărul ı̂ntreg n (1 ≤ n ≤ 10000).

Algorithm calcul(v, n)

m← 0
x← 0
s← 0
For i← 1 to n execute

s← s+ v[i]
m← m+ (s MOD 2 + x) MOD 2
x← s MOD 2

EndFor

375

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Return m
EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate:

A. Subalgoritmul calculează s, i returnează suma numerelor impare din s, irul v

B. Subalgoritmul calculează s, i returnează suma numerelor pare din s, irul v

C. Subalgoritmul calculează s, i returnează numărul de numere impare din s, irul v

D. Subalgoritmul calculează s, i returnează numărul de numere pare din s, irul v

642. ✓ ?Se consideră subalgoritmul magic(x), unde x este un număr natural (1 ≤ x ≤
32000).

Algorithm magic(x)

st← 1
dr ← x
While st ≤ dr execute

mj ← (st+ dr) DIV 2
If mj ∗mj = x then

Return adevărat

EndIf

If mj ∗mj < x then

st← mj + 1
Else

dr ← mj − 1
EndIf

EndWhile

Return fals

EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate:

A. Subalgoritmul verifică dacă există un pătrat perfect mai mic decât x.

B. Subalgoritmul numără divizorii primi ai numărului x.

C. Subalgoritmul verifică dacă numărul x este prim.

D. Subalgoritmul verifică dacă numărul x este pătrat perfect.

643. ✓ ?Se consideră subalgoritmul ceFace(n), unde n este un număr natural (1 ≤ n ≤
10000).

Algorithm ceFace(n)

a← n
b← 0
While a ̸= 0 execute

b← b ∗ 10 + a MOD 10
a← a DIV 10

EndWhile

If n = b then

Return adevărat

Else

Return fals

EndIf

EndAlgorithm

376

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Precizat, i care dintre următoarele afirmat, ii sunt adevărate:

A. Subalgoritmul verifică dacă numărul n este prim.

B. Subalgoritmul verifică dacă numărul n este palindrom.

C. Subalgoritmul returnează ı̂ntotdeauna adevărat.

D. Subalgoritmul verifică dacă numărul n este divizibil cu 10.

644. ✓ ?Se consideră subalgoritmul calculeaza(a,b), unde a s, i b sunt numere naturale
(1 ≤ a, b ≤ 10000).

Algorithm calculeaza(a, b)

x← 1
For i← 1 to b execute

x← (x MOD 10) ∗ a
EndFor

Return x
EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate:

A. Dacă a = 2021 s, i b = 2021, valoarea returnată de subalgoritm este 2021.

B. Pentru toate apelurile subalgoritmului cu a = 2021 s, i 1 ≤ b ≤ 10000, valoarea
returnată este 2021.

C. Dacă a = 7777 s, i b = 2021, valoarea returnată este 7777.

D. Pentru toate apelurile subalgoritmului cu 1 ≤ a ≤ 10000 s, i b = 2021, valoarea
returnată este valoarea lui a.

645. ✓ ?Câte elemente se găsesc pe cele două diagonale ale unei matrice pătratice cu n linii
s, i n coloane (10 ≤ n ≤ 1000)? Se numără elementele de pe pozit, ii distincte.

A. 2 ∗ n
B. n ∗ n

C. 2 ∗ n− 1

D. 2 ∗ n− (n MOD 2)

646. ✓ ?Care dintre expresiile logice următoare au valoarea ADEVĂRAT pentru a = 1 s, i
b = 0?

A. NU (((a > 0) S, I (b < 1)) SAU (a > 1))

B. ((b > 0) S, I (b < 1)) SAU ((a > 0) S, I (a < 2))

C. (NU (a > b)) SAU (NU (b > 0))

D. (a > 0) SAU ((b > 0) S, I (b < 0)) SAU (a < 1)

647. ✓ ?Subalgoritmii calculi(e, n), 1 ≤ i ≤ 4, primesc ca parametri o matrice e de n linii
s, i n coloane (e[1][1], ..., e[1][n], e[2][1], ..., e[n][n]) s, i un număr natural n (1 ≤ n ≤ 1000).
Aleget, i variantele de răspuns care cont, in definit, ia subalgoritmului calculi(e, n),
care are rezultat diferit fat, ă de toate celelalte trei variante, adică calculi(e, n) ̸=
calculj(e, n) ∀ e, n, j, 1 ≤ j ≤ 4, i ̸= j (e s, i n conform specificat, iei anterioare).

377

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

A.

Algorithm calcul1(e, n)

s← 0
For i← 1 to n execute

s← s+ e[1][i]
EndFor

Return s
EndAlgorithm

B.

Algorithm calcul2(e, n)

s← 0
For i← 1 to n execute

For j ← 1 to n execute

If i = j then

s← s+ e[i][j]
EndIf

EndFor

EndFor

Return s
EndAlgorithm

C.

Algorithm calcul3(e, n)

s← 0
i← 1
While i ≤ n execute

s← s+ e[i][i]
i← i+ 1

EndWhile

Return s
EndAlgorithm

D.

Algorithm calcul4(e, n)

s← 0
For i← 1 to n execute

For j ← i+ 1 to n execute

If i = j then

s← s+ e[i][j]
EndIf

EndFor

EndFor

Return s
EndAlgorithm

648. ✓ ?Se consideră subalgoritmul ceFace(a,b), unde a s, i b sunt numere naturale (1 ≤
a < b ≤ 10000).

Algorithm ceFace(a, b)

m← a
While b MOD m > 0 execute

m← m+ 1
EndWhile

Return m
EndAlgorithm

Ce va returna apelul ceFace(47, 100)?

A. 48 B. 50 C. 3 D. 100

649. ✓ ?Se consideră subalgoritmul afis(n), unde n este un număr natural (0 ≤ n ≤ 10000).

Algorithm afis(n)

Scrie n
If n > 0 then

afis(n - 1)

Scrie n
EndIf

EndAlgorithm

Ce se va afis,a la apelul afis(4)?

378

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

A. 43210123 B. 123401234 C. 12340043 D. 43201234

650. ✓ ?Care dintre următoarele baze de numerat, ie x satisfac condit, ia 232(x) ≤ 67(10)?

A. x = 5 B. x = 3 C. x = 4 D. x = 6

651. ✓ ?Subalgoritmul mutaZero(a, n) primes,te ca s, i parametru un s, ir a de numere ı̂ntregi,
(a[1], a[2], ..., a[n]) s, i numărul ı̂ntreg n (1 ≤ n ≤ 10000). Subalgoritmul mută valorile
de zero la finalul s, irului, păstrând ordinea relativă a elementelor diferite de zero. De
exemplu, dacă a este [4, 0, 2, 5, 1, 0, 7, 11, 0, 3], după apelarea subalgoritmului,
elementele lui a sunt [4, 2, 5, 1, 7, 11, 3, 0, 0, 0]. Care din implementările următoare
ale subalgoritmului mutaZero(a, n) sunt corecte?

A.

Algorithm mutaZero(a, n)

s← ADEVĂRAT

While s = ADEVĂRAT execute

s← FALS

For i← 1 to n− 1 execute

If a[i] = 0 then

tmp← a[i]
a[i]← a[i+ 1]
a[i+ 1]← tmp
s← ADEVĂRAT

EndIf

EndFor

EndWhile

EndAlgorithm

B.

Algorithm mutaZero(a, n)

c← 0
For i← 0 to n execute

If a[i] = 0 then

c← c+ 1
EndIf

EndFor

i← n
While c > 0 execute

a[i]← 0
i← i− 1
c← c− 1

EndWhile

EndAlgorithm

C.

Algorithm mutaZero(a, n)

d← 0
i← 1
While i+ d ≤ n execute

While (i+ d ≤ n) S,I (a[i+ d] =
0) execute

d← d+ 1
EndWhile

If i+ d ≤ n then

a[i]← a[i+ d]
i← i+ 1

EndIf

EndWhile

While i ≤ n execute

a[i]← 0
i← i+ 1

EndWhile

EndAlgorithm

D.

Algorithm mutaZero(a, n)

i← 1
f ← n
While i < f execute

While (i < f) S,I (a[i] ̸= 0)
execute

i← i+ 1
EndWhile

While (i < f) S,I (a[f] = 0)
execute

f ← f − 1
EndWhile

If i < f then

tmp← a[i]
a[i]← a[f]
a[f]← tmp

EndIf

EndWhile

EndAlgorithm

652. ✓ ?Fie s, irul X = 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, ..., ı̂n care fiecare
număr n apare de n ori pe pozit, ii consecutive. Considerând că primul element din s, ir
este pe pozit, ia 1, pe ce pozit, ii din s, ir apare valoarea 21?

379

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

A. Pe pozit, iile din intervalul [210,230]

B. Pe pozit, iile din intervalul [211,231]

C. Pe pozit, iile din intervalul [212,232]

D. Pe pozit, iile din intervalul [209,229]

653. ✓ ?Se consideră subalgoritmul f(a, b), unde a s, i b sunt numere ı̂ntregi (−10000 ≤
a, b ≤ 10000).

Algorithm f(a, b)

Scrie "FMI"

If (a = 0) SAU (b = 0) then

Return 1
EndIf

If a > b then

Return f(a− b ∗ b, a ∗ (a− b)− b ∗ (a− b))
EndIf

If a ≤ b then

Return f(b− a ∗ a, a ∗ (a− b)− b ∗ (a− b))
EndIf

EndAlgorithm

Precizat, i de câte ori se scrie textul FMI la executarea secvent,ei de cod: f(f(3, 2),

f(2, 3))

A. De 8 ori B. De 6 ori C. De 3 ori D. De o infinitate
de ori

654. ✓ ?Se consideră subalgoritmul recursiv ceFace(n, i), unde n este un număr natural
(2 ≤ n ≤ 1000).

Algorithm ceFace(n, i)

If i ∗ i > n then

Return 0
EndIf

If i ∗ i = n then

Return i
EndIf

If n MOD i = 0 then

Return i+ n DIV i+ ceFace(n, i+ 1)
Else

Return ceFace(n, i + 1)

EndIf

EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate pentru apelul ceFace(n,
2):

A. Subalgoritmul calculează s, i returnează dublul sumei tuturor divizorilor proprii ai
numărului n.

B. Subalgoritmul calculează s, i returnează suma divizorilor proprii ai numărului n.

C. Subalgoritmul calculează s, i returnează suma divizorilor proprii s, i improprii ai
numărului n.

380

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

D. Subalgoritmul verifică dacă n este pătrat perfect. În caz afirmativ, returnează
rădăcina lui pătrată. Altfel, returnează 0.

655. ✓ ?Se consideră subalgoritmul ceFace(T, n, e), care primes,te ca s, i parametru un s, ir
T cu n numere naturale ordonate crescător (T [1], T [2], ..., T [n]) s, i numerele naturale
n s, i e (1 ≤ n, e ≤ 10000).

Algorithm ceFace(T, n, e)

If e MOD 2 = 0 then

a← 1
b← n
While a ≤ b execute

m← (a+ b) DIV 2
If e < T [m] then

b← m− 1
Else If e > T [m] then

a← m+ 1
Else

Return adevărat

EndIf

EndWhile

Return fals

Else

c← 1
While c ≤ n execute

If e = T [c] then

Return adevărat

EndIf

c← c+ 1
EndWhile

Return fals

EndIf

EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii
sunt adevărate:

A. Subalgoritmul nu verifică dacă
numărul e se află pe o pozit, ie pară ı̂n
s, irul T.

B. Subalgoritmul verifică dacă numărul e
se află ı̂n s, irul T, iar dacă numărul e
este impar, algoritmul de căutare fo-
losit este căutarea binară.

C. Subalgoritmul verifică dacă numărul e
se află ı̂n s, irul T, iar dacă numărul e
este par, algoritmul de căutare folosit
este căutarea binară.

D. Subalgoritmul verifică dacă numărul e
se află ı̂n s, irul T doar dacă numărul e
este impar.

656. ✓ ?Se dores,te afis,area triunghiurilor echilaterale folosind doar caracterele * (asterisc)
s, i . (punct). Exemplul de mai jos ilustrează un triunghi având latura de n = 5
asteriscuri. Pentru acesta a fost necesară utilizarea a 12 asteriscuri s, i 23 de puncte.

.... ∗

... ∗ . ∗

.. ∗ ... ∗

. ∗ ∗
∗ . ∗ . ∗ .∗
Care din afirmat, iile de mai jos sunt adevărate?

A. Pentru n = 2, este nevoie de exact 3 asteriscuri s, i 4 puncte.

B. Pentru n = 7, este nevoie de exact 18 asteriscuri s, i 52 puncte.

C. Pentru n = 7, este nevoie de exact 18 asteriscuri s, i 48 puncte.

D. Pentru n = 15, este nevoie de exact 42 asteriscuri s, i 288 puncte.

657. ✓ ?Spunem că un s, ir având n caractere este antipalindrom dacă toate perechile de
caractere egal depărtate de extremităt, i sunt distincte două câte două (cu except, ia

381

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

celui din mijloc dacă n este impar). De exemplu, asdfg s, i xlxe sunt antipalindroame,
dar asdsg nu este.

Fie subalgoritmul antipalindrom(s, stânga, dreapta) care primes,te ca s, i parame-
tru un s, ir s cu n (1 ≤ n ≤ 10000) caractere (s[1], s[2], ..., s[n]), s, i numerele naturale
stânga s, i dreapta.

Care din următoarele implementări vor returna adevărat pentru apelul antipalin-
drom(s, 1, n) dacă s, i numai dacă s, irul s este antipalindrom?

A.

Algorithm antipalindrom(s, stânga, dreapta)

If stânga = dreapta then

Return adevărat

Else

prim ← s[stânga]

ultim ← s[dreapta]

If prim = ultim then

Return fals

Else

Return antipalindrom(s, stânga + 1, dreapta - 1)

EndIf

EndIf

EndAlgorithm

B.

Algorithm antipalindrom(s, stânga, dreapta)

If stânga ≥ dreapta then

Return adevărat

EndIf

prim ← s[stânga]

ultim ← s[dreapta]

If prim = ultim then

Return fals

Else

Return antipalindrom(s, stânga + 1, dreapta - 1)

EndIf

EndAlgorithm

C.

Algorithm antipalindrom(s, stânga, dreapta)

If stânga > dreapta then

Return adevărat

Else

prim ← s[stânga]

ultim ← s[dreapta]

If prim ̸= ultim then

Return fals

Else

Return antipalindrom(s, stânga + 1, dreapta - 1)

EndIf

EndIf

EndAlgorithm

382

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

D.

Algorithm antipalindrom(s, stânga, dreapta)

If stânga > dreapta then

Return adevărat

EndIf

prim ← s[stânga]

ultim ← s[dreapta]

If prim ̸= ultim then

Return adevărat

EndIf

Return antipalindrom(s, stânga + 1, dreapta - 1)

EndAlgorithm

658. ✓ ?Fie subalgoritmul ordo(n, a) care primes,te ca s, i parametru un număr natural n
(1 ≤ n ≤ 10000) s, i un s, ir a având 2n elemente numere naturale (a[1], a[2], ..., a[2n]).

Considerând că numărul de elemente pare ale s, irului a este egal cu numărul de elemente
impare, care din următorii subalgoritmi rearanjează elementele s, irului a astfel ı̂ncât
elementele impare să aibă indici impari, iar elementele pare să aibă indici pari?

A.

Algorithm ordo(n, a)

For i ← 1, 2 * n - 1 execute

If a[i] MOD 2 ̸= i MOD 2 then

For j ← i + 1, 2 * n execute

If a[j] MOD 2 ̸= j MOD 2 then

a[i] ← a[i] + a[j]

a[j] ← a[i] - a[j]

a[i] ← a[i] - a[j]

EndIf

EndFor

EndIf

EndFor

EndAlgorithm

B.

Algorithm ordo(n, a)

For i ← 1, 2 * n - 1 execute

If a[i] MOD 2 ̸= i MOD 2 then

For j ← i + 1, 2 * n execute

If (a[i] MOD 2 ̸= i MOD 2) S,I (a[j] MOD 2 ̸= j MOD 2)

then

a[i] ← a[i] + a[j]

a[j] ← a[i] - a[j]

a[i] ← a[j] - a[i]

EndIf

EndFor

EndIf

EndFor

EndAlgorithm

C.

Algorithm ordo(n, a)

For i ← 1, 2 * n - 1 execute

If a[i] MOD 2 ̸= i MOD 2 then

383

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

For j ← i + 1, 2 * n execute

If (a[i] MOD 2 ̸= i MOD 2) S,I

(a[j] MOD 2 ̸= j MOD 2) S,I

(a[i] MOD 2 ̸= a[j] MOD 2) then

a[i] ← a[i] + a[j]

a[j] ← a[i] - a[j]

a[i] ← a[i] - a[j]

EndIf

EndFor

EndIf

EndFor

EndAlgorithm

D.

Algorithm ordo(n, a)

For i ← 1, 2 * n - 1 execute

For j ← i + 1, 2 * n execute

If (a[j] MOD 2 = 0) S,I

((a[j] MOD 2 ̸= 0) SAU (a[j] MOD 2 ̸= 0)) S,I

(a[j] MOD 2 = 0) then

a[i] ← a[i] + a[j]

a[j] ← a[i] - a[j]

a[i] ← a[i] - a[j]

EndIf

EndFor

EndFor

EndAlgorithm

659. ✓ ?Dorim să partit, ionăm un s, ir de n (1 ≤ n ≤ 1000) valori ı̂n k (1 ≤ k ≤ n) subsecvent,e
adiacente de lungimi egale (fiecare element al s, irului apart, ine exact unei subsecvent,e).
Dacă n nu este divizibil cu k, acceptăm ca diferent,a de lungime ı̂ntre oricare două
subsecvent,e să fie cel mult 1. Se dau mai jos patru variante de a genera indicii primelor
elemente ale tuturor subsecvent,elor j (1 ≤ j ≤ k). Numerotând elementele s, irului de
la 1, care dintre aceste variante satisfac cerint,a de mai sus?

A. ((j ∗ n− 1) DIV k)− 1

B. ((j − 1) ∗ n) DIV k + 1

C. (j − 1) ∗ (n DIV k)

D. ((j − 1) ∗ n+ k) DIV k

660. ✓ ?Fie bnbn−1...b0 reprezentarea binară a numărului natural B, 2021 ≤ B ≤ 20212021.
Care dintre următoarele afirmat, ii sunt adevărate?

A. Dacă valoarea expresiei b0−b1+b2−
b3 + ...+ (−1)nbn este zero, atunci B
este divizibil cu 3

B. Dacă valoarea expresiei b0−b1+b2−
b3+ ...+(−1)nbn este divizibilă cu 3,
atunci B este divizibil cu 3

C. B este divizibil cu 3 dacă suma cifre-
lor binare este divizibilă cu 3, dar nu
cu 9

D. Dacă B este divizibil cu 3, atunci va-
loarea expresiei b0−b1+b2−b3+ ...+
(−1)nbn este divizibilă cu 3

661. ✓ ?Considerăm subalgoritmul prefix(n), care dat fiind numărul natural n (9 < n <
1020 − 1), caută cel mai lung prefix al său care se regăses,te s, i ı̂n interiorul numărului
(exceptând prima s, i ultima cifră a sa). Subalgoritmul returnează lungimea acestui
prefix.

384

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Exemplu:

i. pentru n = 12133121, prefixul este 12 s, i are lungimea 2.

ii. pentru n = 34534536, prefixul este 3453 s, i are lungimea 4.

iii. pentru n = 1223, un astfel de prefix nu există (considerăm că are lungime 0).

S, tiind că indexarea s, irurilor ı̂ncepe de la 1, care din următoarele variante reprezintă
implementări corecte ale subalgoritmului prefix(n)?

A.

Algorithm prefix(n)

nr ← n

c ← 0

p ← 1

While nr > 0 execute

c ← c + 1

nr ← nr DIV 10

p ← p * 10

EndWhile

f1 ← 100

f2 ← p DIV 100

k ← 1

ok ← 0

While ok = 0 execute

n1 ← n DIV f1

f3 ← 10

For i ← 1, k execute

n2 ← (n DIV f3) MOD

f2

If n1 = n2 then

ok ← 1

Return c - k - 1

EndIf

f3 ← f3 * 10

EndFor

f1 ← f1 * 10

f2 ← f2 DIV 10

k ← k + 1

EndWhile

Return -1

EndAlgorithm

B.

Algorithm prefix(n)

c ← [0] ∗ 20 ▷ 20 de pozit,ii cu

valoarea 0

nr ← n

p ← 0

While nr > 0 execute

c[p + 1] ← nr MOD 10

nr ← nr DIV 10

p ← p + 1

EndWhile

For i ← 1, p - 2 execute

For j ← p - 1, i + 1, -1

execute

ok ← 1

For k ← 0, i - 1 execute

If c[p - 1 - k] ̸= c[j

- k] then

ok ← 0

EndIf

EndFor

If ok = 1 then

Return i

EndIf

EndFor

EndFor

Return -1

EndAlgorithm

385

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

C.

Algorithm prefix(n)

c ← [0] ∗ 20 ▷ 20 de pozit,ii cu

valoarea 0

nr ← n

p ← 0

While nr > 0 execute

c[p + 1] ← nr MOD 10

nr ← nr DIV 10

p ← p + 1

EndWhile

For i ← p - 2, 1, -1 execute

For j ← p - 1, i + 1, -1

execute

ok ← 1

For k ← 0, i - 1 execute

If c[p - k] ̸= c[j -

k] then

ok ← 0

EndIf

EndFor

If ok = 1 then

Return j

EndIf

EndFor

EndFor

Return 0

EndAlgorithm

D.

Algorithm prefix(n)

nr ← n

c ← 0

p ← 1

While nr > 0 execute

c ← c + 1

nr ← nr DIV 10

p ← p * 10

EndWhile

f1 ← p DIV 10

f2 ← 10

k ← c - 2

ok ← -1

For t ← 1, c - 2 execute

n1 ← n DIV f1

f3 ← 10

For i ← 1, k execute

n2 ← (n DIV f3) MOD

f2

If n1 = n2 then

If ok < c - k - 1

then

ok ← c - k - 1

EndIf

EndIf

f3 ← f3 * 10

EndFor

f1 ← f1 DIV 10

f2 ← f2 * 10

k ← k - 1

EndFor

If ok < 0 then

Return 0

EndIf

Return ok

EndAlgorithm

662. ✓ ?Se consideră tabelul de mai jos, având 16 celule (4 linii notate cu 1, 2, 3, 4, s, i 4
coloane notate cu A, B, C, D). Unele celule cont, in valori constante (de ex. celula
B3), altele, care ı̂ncep cu ”=” cont, in rezultatul unei expresii aritmetice cu 2 termeni.
Fiecare termen este fie o valoare constantă, fie, dacă termenul ı̂ncepe cu simbolul $, o
referint, ă către valoarea dintr-o altă celulă. De exemplu, ı̂n celula A4 avem rezultatul
operat, iei aritmetice de scădere din valoarea constantă 5 a valorii din celula A2. Pentru
o anumită celulă i, notăm cu X(i) numărul minim de celule (inclusiv cele care cont, in
valori constante) ale căror valori trebuie cunoscute ı̂nainte de a calcula valoarea din
celula i. Similar, notăm cu Y(i) numărul maxim de celule (inclusiv cele care cont, in
valori constante, dar excluzând celula i) ale căror valori pot fi calculate fără a cunoas,te
valoarea din celula i. Care dintre următoarele afirmat, ii sunt adevărate despre valorile
lui X(A2) s, i Y(A2)?

386

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

✓ ?

A B C D
1 = $B4 - $C1 =$B3 + $D3 3 = $A4 * $C3
2 = $B1 + $B2 = $D3 + 11 = $D3 + $D2 2
3 = $B1 - $D3 11 = $D4 * $D4 = $D2 + 2
4 = 5 - $A2 = $C1 * $C1 = $A3 / 2 =15 / 3

A. X(A2) = 2 s, i Y(A2) = 1

B. X(A2) = 5 s, i Y(A2) = 13

C. X(A2) = 6 s, i Y(A2) = 4

D. X(A2) = X(C4) s, i Y(A2) = Y(B2) + 1

663. ✓ ?Subalgoritmul simplifică(nr, num) obt, ine fract, ia ireductibilă aux1/aux2 cu pro-
prietatea că aux1/aux2 = nr/num (aux1, aux2, nr, num numere naturale, num, aux2 ̸=
0).

Algorithm simplifică(nr, num)

d ← funct,ie(nr, num)

aux1 ← nr DIV d

aux2 ← num DIV d

EndAlgorithm

Care dintre variantele următoare ale subalgoritmului funct,ie(a, b) sunt corecte?

A.

Algorithm funct,ie(a, b)

d ← 1

While adevărat execute

If (a MOD d = 0) S,I

(b MOD d = 0) then

Return d

EndIf

d ← d + 1

EndWhile

EndAlgorithm

B.

Algorithm funct,ie(a, b)

While b ̸= 0 execute

c ← a MOD b

a ← b

b ← c

EndWhile

Return a

EndAlgorithm

C.

Algorithm funct,ie(a, b)

While a ̸= b execute

If a > b then

a ← a - b

Else

b ← b - a

EndIf

EndWhile

Return a

EndAlgorithm

D.

Algorithm funct,ie(a, b)

d ← a

While ((a MOD d ̸= 0) SAU

(b MOD d ̸= 0)) execute

d ← d - 1

EndWhile

Return d

EndAlgorithm

664. ✓ ?Se consideră următorul subalgoritm recursiv fibonacci(n), unde n este un număr
natural (1 ≤ n ≤ 100). Să se determine de câte ori se afis,ează mesajul ”Aici” ı̂n
cazul unui apel fibonacci(n) (considerând ı̂mpreună apelul init, ial s, i toate apelurile
recursive generate).

Algorithm fibonacci(n)

If n ≤ 1 then

Return 1

387

Concurs 2021 - 2025 Universitatea Babes,-Bolyai Cluj-Napoca

Else

Scrie "Aici"

Return fibonacci(n - 1) + fibonacci(n - 2)

EndIf

EndAlgorithm

A. De fibonacci(n) ori.

B. De fibonacci(n-1) ori.

C. De fibonacci(n)-1 ori.

D. De fibonacci(n) - fibonacci(n-1)

ori.

665. ✓ ?Se consideră expresia: E(x) = a0 + a1 ∗ x+ a2 ∗ x2 + a3 ∗ x3 + a5 ∗ x5, unde a0, a1,
a2, a3, a5 s, i x sunt numere reale nenule. Numărul minim de ı̂nmult, iri necesare pentru
a calcula valoarea expresiei E(x) este:

A. 4 B. 5 C. 7 D. 11

388

13

Antrenament

Testul 1

666. ✓ ?Se consideră algoritmul ceFace(a, len, N), unde N s, i len sunt două numere natu-
rale (2 ≤ N, len ≤ 103) s, i a este un vector cu N elemente numere ı̂ntregi (a[1], a[2], ...,
a[N]), unde −105 ≤ a[i] ≤ 105, pentru i = 1, 2, ..., N . Operat, ia ” ⊕ ” reprezintă
operat, ia XOR pe bit, i (0 ⊕ 1 = 1; 0 ⊕ 0 = 0; 1 ⊕ 0 = 1; 1 ⊕ 1 = 0). Instruct, iunea
continue indică trecerea la următoarea iterat, ie a structurii repetitive ı̂n care apare.

Algorithm ceFace(a, N):

i← 1
len← N
While len ≥ 1 execute

len← len− 1
If i ≥ N then

i← 1
continue

EndIf

If a[i] > a[i+ 1] then

a[i]← a[i]⊕ a[i+ 1]
a[i+ 1]← a[i+ 1]⊕ a[i]
a[i]← a[i]⊕ a[i+ 1]
len← N

EndIf

i← i+ 1
EndWhile

EndAlgorithm

Care dintre următoarele variante de răspuns
sunt adevărate?

A. Pentru a = [5, 2, 8, 1, 9], N = 5, vectorul
rezultat va fi ordonat crescător.

B. Dacă vectorul este init, ial sortat crescător,
algoritmul va executa bucla while de exact
len ori.

C. Algoritmul sortează vectorul descrescător.

D. Algoritmul va reseta valoarea lui len la va-
loarea init, ială la fiecare execut, ie a buclei
while.

667. ✓ ?Se consideră expresia E = ABCD(16)+132(8)+24(6)+A28B(14), unde x(b) reprezintă
numărul x scris ı̂n baza b. Care este valoarea expresiei E ı̂n baza 10?

A. 51022 B. 72042 C. 36021 D. 27955

668. ✓ ?Se consideră următorul arbore binar:

1

2

4

6

7

5

3

8

9

10

Care dintre următoarele s, iruri de no-
duri corespund traversării arborelui ı̂n
preordine?

A. 7, 6, 4, 2, 5, 1, 3, 9, 10, 8

B. 1, 2, 4, 6, 7, 5, 3, 8, 9, 10

C. 7, 6, 4, 5, 2, 10, 9, 8, 3, 1

D. 7, 6, 4, 5, 2, 10, 9, 1, 3, 8

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

669. ✓ ?Se consideră algoritmul ceFace(a, n, k), unde n s, i k sunt numere naturale (1 ≤
k ≤ n ≤ 102), iar a este o matrice de dimensiune n × n, cu 0 ≤ a[i][j] ≤ 105,
i = 1, n, j = 1, n. Algoritmul returnează o pereche de numere naturale (ans, cnt).

Algorithm ceFace(a, n, k):

For i← 1, n execute

For j ← 1, n execute

a[i][j]← a[i][j] + a[i][j − 1] + a[i− 1][j]− a[i− 1][j − 1]
EndFor

EndFor

ans← 0
cnt← 0
For i← k, n execute

For j ← k, n execute

sum← a[i][j] + a[i− k][j − k]− a[i][j − k]− a[i− k][j]
If sum > ans then

ans← sum
cnt← 1

Else If sum = ans then

cnt← cnt+ 1
EndIf

EndFor

EndFor

Return (ans, cnt)
EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Una din valorile returnate de algoritm reprezintă ı̂ntotdeauna numărul de sume
maximale de lungime k de pe prima linie a matricei a.

B. Dacă a este o matrice ı̂n care toate elementele au valoarea 0 sau 1, de dimensiune
3 × 3, ı̂n care doar celulele (1, 1), (1, 2), (2, 1), (2, 2) cont, in valoarea 1 (celelalte
cont, in 0), apelul ceFace(a, 3, 2) va returna (4, 1).

C. Complexitatea timp a algoritmului este O(n2 · k).
D. Algoritmul calculează numărul maxim de valori de 1 din orice submatrice k × k

a unei matrice ı̂n care toate elementele au valoarea 0 sau 1, precum s, i numărul
de astfel de submatrice care ating acest maxim.

670. ✓ ?Se consideră algoritmul ceFace(a, poz, s, n), unde poz, s s, i n sunt numere na-
turale (1 < poz < n ≤ 103), iar a este un vector de n numere naturale distincte (0 <
a[1], . . . , a[n] ≤ 104) sortat crescător. Pentru o pereche de indici i, j(1 ≤ i < j < n), ne
dorim să determinăm un indice k ≤ n, astfel ı̂ncât valorile a[i], a[j] s, i a[k] să reprezinte
lungimile laturilor unui triunghi.

Algorithm ceFace(a, poz, s, n)

If a[n] < s then

Return n
EndIf

If a[poz] ≥ s then

Return poz − 1
EndIf

lb← poz, rb← n, p← poz − 1
While lb ≤ rb execute

390

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

mb← (lb+ rb) DIV 2
If a[mb] < s then

p← mb
lb← mb+ 1

Else

rb← mb− 1
EndIf

EndWhile

Return p
EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Pentru doi indici (i, j) din vectorul a (i < j < n), apelul ceFace(a, j+1, a[i] +

a[j], n) va returna ı̂ntotdeauna cel mai mare indice k ≤ n astfel ı̂ncât a[i], a[j]
s, i a[k] să reprezinte lungimile laturilor unui triunghi.

B. Pentru vectorul a = [2, 5, 7, 9], ı̂n urma apelului ceFace(a, 3, 7, 3), structura
repetitivă while se va executa de 12 ori.

C. Dacă pentru doi indici (i, j) din vectorul a (i < j < n), apelul ceFace(a, j+1,

a[i] + a[j], n) returnează n, atunci nu există niciun triplet de indici (i, j, k)
astfel ı̂ncât a[i], a[j] s, i a[k] să reprezinte lungimile laturilor unui triunghi.

D. Pentru vectorul a = [3, 4, 5, 6, 7], putem obt, ine valoarea returnată 4 dacă apelul
init, ial al algoritmului este ceFace(a, 2, 9, 5).

671. ✓ ?Se consideră algoritmul factor(n), unde n este un număr natural pozitiv.

Algorithm factor(n)

a← 0
i← 5
While i ≤ n execute

a← a+ n DIV i
i← i ∗ 5

EndWhile

Return a
EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Pentru orice n ≥ 625, apelul factor(n) va returna o valoare mai mare decât
suma cifrelor lui n.

B. În urma apelurilor factor(24) s, i factor(25), se va returna aceeas, i valoare.

C. În urma apelului factor(125), valoarea returnată va fi 31.

D. Valoarea returnată de apelul factor(n) reprezintă numărul maxim de factori
primi ai numărului n strict mai mari decât 5.

391

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

672. ✓ ?Se consideră algoritmul ceFace(k), unde k este un număr natural nenul. sol este
un vector de cel mult 3 cifre (sol[1], sol[2], sol[3]).

Algorithm ceFace(k, sol)

If k = 4 then

For i← 1, k − 1 execute

Afis,ează sol[i]
EndFor

Return

EndIf

For i← 0, 9 execute

If k = 1 AND i ̸= 0 AND

i MOD 2 = 0 then

sol[k]← i
ceFace(k + 1, sol)

Else If k > 1 AND

i > sol[k − 1] then

sol[k]← i
ceFace(k + 1, sol)

EndIf

EndFor

EndAlgorithm

Care dintre următoarele variante de
răspuns sunt adevărate la finalul
execut, iei apelului ceFace(1, sol)?

A. Vor fi afis,ate mai put, in de 30 de
numere.

B. 265 se va afla printre numerele
afis,ate.

C. Vor fi afis,ate mai mult de 30 de
numere.

D. Secvent,a de numere 289, 456,
457, 458, 459 se va regăsi printre
numerele afis,ate.

673. ✓ ?Se consideră algoritmii ceFace1(a, b) s, i ceFace2(a, b) unde a s, i b sunt două
numere naturale, cu proprietatea că 0 < a ≤ 20, b ≤ 12. Operat, ia << k reprezintă
operat, ia de shiftare la stânga a variabilei cu k bit, i, iar & reprezintă operat, ia AND

(bitwise).

Algorithm ceFace1(a, b)

If b = 0 then

Return 1

EndIf

If b MOD 2 = 1 then

Return a ∗ ceFace1(a, b-1)

EndIf

s← ceFace1(a, b DIV 2)

Return s ∗ s
EndAlgorithm

Algorithm ceFace2(a, b)

s← 1
i← 1
While i ≤ b execute

If (b & i) then

s← s ∗ a
EndIf

a← a ∗ a
i← i<<1

EndWhile

Return s
EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Apelul ceFace1(4, 4) va returna valoarea 256.

B. Apelul ceFace1(a, b) va returna mereu aceeas, i valoarea ca apelul ceFace2(a,b).

C. Algoritmul ceFace2(a, b) este mai eficient din punct de vedere al timpului de
execut, ie decât algoritmul ceFace1(a, b).

D. Structura repetitivă din algoritmul ceFace2(a, b) se va executa mereu de b ori.

674. ✓ ?Se consideră următoarea expresie logică:

((A⊕B) AND (C ⊕D)) OR (NOT (A AND B)⊕ (C OR D))

392

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

unde ”⊕” reprezintă operat, ia XOR pe bit, i (0⊕ 1 = 1; 0⊕ 0 = 0; 1⊕ 0 = 1; 1⊕ 1 = 0).
Precizat, i pentru care dintre următoarele valori ale lui A,B,C,D, expresia de mai sus
are valoarea True.

A. A = False, B = False, C = True, D = False

B. A = True, B = False, C = True, D = True

C. A = True, B = True, C = True, D = True

D. A = True, B = True, C = True, D = False

675. ✓ ?Se consideră algoritmul ceFace(n), cu n ≤ 109. Algoritmul zeros(n) returnează
un vector cu n elemente nule.

Algorithm ceFace(n)

v ← zeros(n)
v[1]← 1
For i← 2,

√
n execute

If v[i] = 0 then

For j ← 2, n DIV i execute

v[i ∗ j]← 1
EndFor

EndIf

EndFor

EndAlgorithm

Care dintre afirmat, ii sunt adevărate la
finalul executării apelului ceFace(n)?

A. În s, irul v, v[i] = 1 dacă s, i numai
dacă i este număr compus (are di-
vizori proprii).

B. În s, irul v, v[i] = 0 dacă s, i numai
dacă i este număr prim.

C. Complexitatea timp a algoritmu-
lui este O(

√
n).

D. Complexitatea timp a algoritmu-
lui este O(log n).

676. ✓ ?În cadrul unui festival de muzică sunt n artis,ti care trebuie să sust, ină un spectacol,
cu 1 ≤ n ≤ 103. Pentru fiecare artist i, se cunosc două valori: di - durata spectacolului
ı̂n minute s, i fi - numărul de fani prezent, i la spectacolul său, cu 1 ≤ di, fi ≤ 106. Or-
ganizatorii vor să determine ordinea optimă a artis,tilor pentru a maximiza satisfact, ia
generală a publicului. Funct, ia swap(x, y) interschimbă valorile a celor două varia-
bile. De asemenea, operatorul / reprezintă ı̂mpărt, irea numerelor reale (3/2 = 1.5).
Care dintre următoarele strategii sunt corecte, s,tiind că un fan devine nemult,umit
proport, ional cu timpul de as,teptare până la artistul său favorit?

A. For i← 1, n− 1 execute

For j ← i+ 1, n execute

If f [i] ∗ d[i] > f [j] ∗ d[j] then

swap(d[i], d[j])
swap(f [i], f [j])

EndIf

EndFor

EndFor

B. For i← 1, n− 1 execute

For j ← i+ 1, n execute

If f [i] > f [j] then

swap(d[i], d[j])
swap(f [i], f [j])

EndIf

EndFor

EndFor

C. For i← 1, n− 1 execute

For j ← i+ 1, n execute

If d[i] > d[j] then

swap(d[i], d[j])
swap(f [i], f [j])

EndIf

EndFor

EndFor

393

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

D. For i← 1, n− 1 execute

For j ← i+ 1, n execute

If d[i] / f [i] >
d[j] / f [j] then

swap(d[i], d[j])

swap(f [i], f [j])
EndIf

EndFor

EndFor

677. ✓ ?Se consideră algoritmul ceFace(x), unde x este număr natural, cel mult 109.

Algorithm ceFace(x)
If x < 10 then

If x MOD 2 = 0 then

Return x
Else

Return -1

EndIf

Else

If x MOD 2 = 0 then

c← ceFace(x DIV 10)
If c = −1 OR c > x MOD 10 then

Return x MOD 10
Else

Return c
EndIf

Else

Return ceFace(x DIV 10)
EndIf

EndIf

EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Algoritmul returnează cea mai
mare cifră pară a numărului x

B. Pentru x = 719480888, apelul
ceFace(x) va returna valoarea 8

C. Pentru x = 11317915, apelul
ceFace(x) va returna valoarea
−1

D. Complexitatea timp a algoritmu-
lui este O(log x)

678. ✓ ?Se consideră algoritmul X(n), unde n este număr natural (n ≥ 4). Operatorul ”/”
reprezintă ı̂mpărt, irea numerelor reale (ex. 3/2 = 1.5).

Algorithm X(n)
r ← n
For i← 2,

√
n execute

If n MOD i = 0 then

While n MOD i = 0 execute

n← n DIV i
EndWhile

r ← r ∗ (1− 1/i)
EndIf

EndFor

If n > 1 then

r ← r ∗ (1− 1/n)
EndIf

Return r
EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Apelul X(12) returnează valoarea 4.

B. Apelul X(5) returnează valoarea 5.

C. Dacă p este un număr prim, atunci
apelul X(p) returnează valoarea p−1.

D. Funct, ia X este multiplicativă, adică
pentru orice numere naturale a s, i b
prime ı̂ntre ele, X(a∗b) = X(a)∗X(b).

679. ✓ ?Se consideră algoritmul ceFace(v, n) definit alăturat, unde v este un s, ir de n
numere naturale nenule (v[1], v[2], . . . , v[n]), cu n ≤ 109, iar toate elementele sale sunt
mai mici sau egale cu 105. Algoritmul zeros(n) returnează un vector cu n elemente
nule. Vectorul o are la apel init, ial toate elementele nule.

394

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm ceFace(v, n)
m← 0
f ← zeros(105 + 1)
For i← 1, n execute

If v[i] > m then

m← v[i]
EndIf

EndFor

For i← 1, n execute

f [v[i]]← f [v[i]] + 1
EndFor

For i← 2,m execute

f [i]← f [i− 1] + f [i]
EndFor

For i← n, 1,−1 execute

o[f [v[i]]− 1]← v[i]
f [v[i]]← f [v[i]]− 1

EndFor

EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Algoritmul ceFace(v,n) determină
suma maximă a unei subsecvent,e din
v până la un indice i s, i o ret, ine ı̂n final
la pozit, ia o[i]

B. La finalul execut, iei algoritmului, s, irul
o va ret, ine forma sortată crescător a
s, irului init, ial v

C. Pentru n = 5 s, i s, irul v = [1, 2, 2, 6, 5],
la finalul algoritmului, primele 6 valori
din f vor fi [1, 2, 0, 0, 1, 1]

D. Algoritmul ceFace(v, n) are comple-
xitatea timp O(n)

680. ✓ ?Să considerăm un vector de litere l = [A,B,C,D,E]. Se construies,te un vector m
(init, ial vid). La fiecare pas, se poate alege una din următoarele două operat, ii:

• Mută - se mută primul element din l la finalul lui m, apoi se elimină primul
element din l.

• Duplică - se adaugă ultimul element din m la ı̂nceputul lui m.

Observat, ii:

• Elementele vectorului l se prelucrează ı̂n ordinea dată.

• Operat, ia Mută nu poate fi folosită dacă l este vid.

• Operat, ia Duplică nu poate fi folosită dacă m este vid.

• Prelucrarea se termină când vectorul l este vid.

Respectând regulile de mai sus, ı̂n ce ordine pot fi afis,ate literele?

A. DCBAAABCDE

B. CDDAABCDE

C. CBABCDE

D. CBBBAAAABCDE

681. ✓ ?Se consideră algoritmul P(n, m, i, j, s), unde n s, i m sunt dimensiunile unei ma-
trice (1 ≤ n,m ≤ 10), i s, i j sunt indicii pozit, iei curente ı̂n matrice, iar s este un vector
de dimensiune maximă 104 ce are ca elemente s, iruri de caractere. De asemenea, se
consideră existent,a algoritmilor append(a,x) care adaugă la finalul s, irului a elementul
x, x fiind un s, ir de caractere de dimensiune maximă egală cu 99, s, i remove(a) care
s,terge ultimul element din s, irul a. Algoritmul print(s) afis,ează elementele vectorului
s, separate printr-un spat, iu.

Algorithm P(n, m, i, j, s)

If i > n AND j > m then

print(s)

Return

EndIf

395

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

If j ≤ m then

append(s, "dreapta")

P(n, m, i, j + 1, s)

remove(s)

EndIf

If i ≤ n then

append(s, "jos")

P(n, m, i + 1, j, s)

remove(s)

EndIf

EndAlgorithm

Ce face algoritmul pentru i = 1 s, i j = 1?

A. Afis,ează un traseu posibil de la colt,ul din stânga sus la colt,ul din dreapta jos al
unei matrici s, i se opres,te la primul traseu găsit;

B. Afis,ează toate traseele posibile de la colt,ul din stânga sus la colt,ul din dreapta
jos al unei matrici;

C. Afis,ează numărul de trasee posibile de la colt,ul din stânga sus la colt,ul din dreapta
jos al unei matrici;

D. Determină dacă matricea cont, ine un număr impar de celule s, i decide traseul pe
baza acestui fapt.

682. ✓ ?Fie algoritmii A, B, C, D, fiecare având ca parametrii v s, i n, unde v este un vector
de n elemente (v[1], v[2], . . . , v[n]). Pentru s, irul v = [456, 123, 998, 763] s, i n = 4, care
dintre aces,ti algoritmi vor avea acelas, i efect asupra s, irului v?

A. Algorithm A(v, n)
A1(v, 1, n)

EndAlgorithm

Algorithm A1(v, l, h)
If v[l] > v[h] then

aux← v[l]
v[l]← v[h]
v[h]← aux

EndIf

If (h− l + 1) ≥ 3 then

t← (h− l + 1) DIV 3
A1(v, l, h− t)
A1(v, l + t, h)
A1(v, l, h− t)

EndIf

EndAlgorithm

B. Algorithm B(v, n)
For i← 1, n− 1 execute

For j ← i+ 1, n execute

ok ← false
If v[i] DIV 100 >

v[j] DIV 100 then

ok ← true
EndIf

If ok then

aux← v[i]
v[i]← v[j]
v[j]← aux

EndIf

EndFor

EndFor

EndAlgorithm

C. Algorithm C(v, n)
For i← 1, n− 1 execute

For j ← i+ 1, n execute

ok ← false
If (v[i] DIV 100) ∗ (v[i] mod 7) >

(v[j] DIV 100) ∗ (v[j] mod 7) then

ok ← true
Else If (v[i] DIV 100) ∗ (v[i] mod 7) =

396

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

(v[j] DIV 100) ∗ (v[j] mod 7) AND

(v[i] > v[j]) then

ok ← true
EndIf

If ok then

aux← v[i]
v[i]← v[j]
v[j]← aux

EndIf

EndFor

EndFor

EndAlgorithm

D. Algorithm D(v, n)
For q ← 1, n− 1,q ← q ∗ 2 execute

For lb← 1, n− q,lb← 2 ∗ q execute

mb← lb+ q
If mb+ q ≤ n then

rb← mb+ q
Else

rb← n+ 1
EndIf

i← lb
j ← mb
While i < mb AND j < rb execute

If v[i] ≤ v[j] then

i← i+ 1
Else

aux← v[j]
For k ← j, i+ 1,−1 execute

v[k]← v[k − 1]
EndFor

v[i]← aux
i← i+ 1
mb← mb+ 1
j ← j + 1

EndIf

EndWhile

EndFor

EndFor

EndAlgorithm

683. ✓ ?Se dă algoritmul Comp(a, b, c), unde a, b, c sunt numere naturale (0 ≤ a, b, c ≤
10000).

1: Algorithm Comp(a, b, c)

2: If (a+ b = 0) then

3: Return 1
4: Else If (a = c) OR (b = c) then

5: Return 0
6: Else If a ≥ b then

7: Return c ∗ Comp(a− 1, b, c− 1)
8: Else

9: Return Comp(a, b− 1, c− 1) + Comp(a, b, c− 1)
10: EndIf

397

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

11: EndAlgorithm

S, tiind că la apel init, ial a + b = c s, i a ̸= b, care dintre următoarele afirmat, ii sunt
adevărate?

A. Algoritmul calculează numărul de partit, ii neordonate ale unui set de c elemente.

B. Rezultatul este ı̂ntotdeauna 0 dacă a > b.

C. Valoarea returnată de algoritm este ı̂ntotdeauna Ca−1
c−1 .

D. Apelurile recursive generează coeficient, i binomiali.

684. ✓ ?Fie algoritmul F(n), unde n este un număr ı̂ntreg.

Algorithm F(n)
If n ≤ 1 then

Write 1

Else

m← n DIV 2
F(m)
F(m)

EndIf

EndAlgorithm

Care este complexitatea timp a algoritmului?

A. O(n2)

B. O(2log2 n)

C. O(n)

D. O(log2 n)

685. ✓ ?Se consideră algoritmul Desc(n, k, m), unde n, k, m sunt numere naturale (1 ≤
n, k,m ≤ 104).

Algorithm Desc(n, k, m)

If (n = 0) AND (m = 0) then

Return 1
Else

If (n < 0) OR (m ≤ 0) OR (k2 > n) then

Return 0
Else

If k MOD 2 = 1 then

Return Desc(n− k2, k + 2,m− 1) + Desc(n, k + 2,m)
Else

Return Desc(n, k + 1,m)
EndIf

EndIf

EndIf

EndAlgorithm

S, tiind că, init, ial, n este un pătrat perfect impar, iar m = 1 s, i k impar, care dintre
următoarele afirmat, ii sunt adevărate?

A. algoritmul returnează 1 dacă s, i numai dacă k ≤
√
n.

B. Pentru n = 25, k = 3, m = 1, valoarea returnată este 0.

C. Numărul de descompuneri ale lui n ı̂n suma dem pătrate perfecte impare distincte
este Cm

⌊
√
n⌋.

D. Apelul Desc(n, 1, 1) verifică dacă n este un pătrat perfect impar.

398

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

686. ✓ ?Doi jucători A s, i B elimină pietre dintr-un morman, alternând mutările. La fi-

ecare mutare, un jucător poate elimina 2k pietre, unde k ≥ 0 (adică 1, 2, 4, 8, . . .).
Câs,tigătorul este jucătorul care elimină ultima piatră. S, tiind că ambii jucători vor
alege cea mai bună strategie disponibilă la fiecare mutare, care afirmat, ii sunt adevărate
pentru orice număr init, ial de pietre n ≥ 1?

A. Dacă n este o putere a lui 2, jucătorul A (primul) poate câs,tiga dintr-o singură
mutare.

B. Dacă la ı̂nceputul mutării numărul de pietre rămase n este multiplu de 3, jucătorul
aflat la mutare va pierde.

C. Toate numerele de forma 4t+ 3, t ≥ 0 sunt pozit, ii pierzătoare pentru A.

D. Numărul minim de mutări ı̂n care A poate câs,tiga este egal cu numărul de bit, i
de 1 din reprezentarea binară a lui n.

687. ✓ ?Se consideră algoritmul ceFace(s, a, n), unde s este un vector de n numere

ı̂ntregi, sortate crescător (s[1], s[2], . . . , s[n]), n ≤ 105, s[i] ≤ 109∀i = 1, n. a este
număr ı̂ntreg, cel mult 109. Operatorul >> reprezintă operat, ia de shiftare la dreapta
pe bit, i.

1: Algorithm ceFace(s, a, n)

2: poz ← 0
3: x← 1
4: y ← n
5: While x ≤ y execute

6: m←
7: If s[m] ≤ a then

8: poz ← m
9: x← m+ 1
10: Else y ← m− 1
11: EndIf

12: EndWhile

13: Return poz
14: EndAlgorithm

Cu ce instruct, iune poate fi ı̂nlocuită linia 6
astfel ı̂ncât algoritmul să determine pozit, ia
celui mai mare număr din smai mic sau egal
cu a?

A. m← (x+ y) DIV 2

B. m← x+ ((y − x) DIV 2)

C. m← (x+ y) >> 1

D. m← (x DIV 2 + y DIV 2)

688. ✓ ?Se consideră algoritmul ceFace(n), unde n este un număr natural (n ≥ 0).

Algorithm ceFace(n)

If n = 0 then

Return 1

Else

If n = 1 then

Return 2

Else

Return ceFace(n - 1) + ceFace(n - 2)

EndIf

EndIf

EndAlgorithm

Ce calculează acest algoritm?

A. Numărul de s, iruri binare de lungime n care nu cont, in două zerouri consecutive.

B. Numărul de s, iruri binare de lungime n care nu cont, in doi de 1 consecutive.

399

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

C. Al n-lea termen din s, irul lui Fibonacci (F0 = 0, F1 = 1, . . . , Fn = Fn−1 + Fn−2).

D. Numărul de permutări ale unei mult, imi cu n elemente.

689. ✓ ?Considerăm G un graf neorientat cu n noduri, numerotate 1, 2, . . . , n. În graf există
muchii:

a) Între oricare două noduri cu identificatori pari;

b) Între oricare două noduri cu identificatori impari;

c) Între oricare două noduri cu identificatori de forma 2k, respectiv 2k + 1.

S, tiind că n este un număr par, câte muchii cont, ine graful G?

A.
n2

4
− 1 B.

n2

4
+ 1 C.

n2 − 1

4
D. (n−2)(n+2)

4

400

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

Testul 2

690. ✓ ?Se consideră algoritmul G(arr, m, n, i), unde m este un număr natural (1 ≤ m ≤
100), iar arr este un vector cum elemente numere ı̂ntregi nenule (arr[1], arr[2], . . . , arr[m],
−105 ≤ arr[i] ≤ 105, pentru i = 1, 2, . . . ,m) s, i n s, i i sunt două numere naturale
(1 ≤ n, i ≤ m).

Algorithm G(arr, m, n, i)

If i ≤ n then

For j ← 1,m− i execute

If arr[j] > arr[j + 1] then

arr[j]← arr[j] * arr[j + 1]
arr[j + 1]← arr[j] DIV arr[j + 1]
arr[j]← arr[j] DIV arr[j + 1]

EndIf

EndFor

G(arr, m, n, i + 1)

EndIf

EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. După executarea apelului G(arr, m, m, 1), vectorul arr va fi sortat crescător.

B. Dacă arr = [17, 47, 13, 8, 4, 11, 68, 30, 14], n = 5 s, i m = 9, elementele din vectorul
arr vor fi sortate ı̂n ordine crescătoare ı̂n urma apelului G(arr, m, n, 1).

C. Dacă n < m, după executarea algoritmului G(arr, m, n, 1), primele n elemente
din vector vor fi sortate ı̂n ordine crescătoare.

D. Dacă n < m, după executarea algoritmului G(arr, m, n, 1), ultimele n + 1
elemente din vector vor fi sortate ı̂n ordine crescătoare.

691. ✓ ?Se consideră algoritmul ceFace(x, y), unde x s, i y sunt numere naturale (0 ≤ x, y ≤
103).

Algorithm ceFace(x, y)

If x > y then

x← x− y
y ← y + x
x← y − x

EndIf

z ← 0
For i← x, y execute

If i MOD 3 = 0 AND i MOD 2 ̸= 0 then

z ← z + i
EndIf

EndFor

Return z
EndAlgorithm

În care dintre următoarele situat, ii
algoritmul returnează valoarea 24?

A. x = 4, y = 19

B. x = 15, y = 8

C. x = 6, y = 14

D. x = 20, y = 9

692. ✓ ?Fie expresia E = 10C(16) + 136(7) + 433(5) − 5(10) ∗ 33(9).

Care valoare corespunde expresiei E?

401

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

A. 3AE9(16)

B. 312(10)

C. 624(7)

D. Niciuna din variantele de mai sus

693. ✓ ?Se consideră algoritmii f(arr, n, i) s, i call(arr, n), unde arr este un vector cu
n elemente numere naturale (1 ≤ n ≤ 104, 1 ≤ arr[i] ≤ 106, pentru i = 1, 2, . . . , n) s, i
i este un număr natural (1 ≤ i ≤ n).

Algorithm f(arr, n, i)

If i = 1 then

Return False

EndIf

If i < n AND arr[i] < arr[i+ 1] then

Return f(arr, n, i + 1)

EndIf

If i > 1 AND arr[i] > arr[i− 1] then

If i = n OR arr[i] > arr[i+ 1] then

Return True

EndIf

Return f(arr, n, i + 1)

EndIf

Return False

EndAlgorithm

Algorithm call(arr, n)

If n < 3 then

Return False

EndIf

If arr[1] < arr[2] then

Return f(arr, n, 2)

EndIf

Return False

EndAlgorithm

În care dintre următoarele situat, ii algoritmul call(arr, n) returnează True?

A. Dacă vectorul arr este format din valorile [14, 16, 123, 22, 48, 15, 102, 723, 800]
s, i n = 9

B. Dacă vectorul arr este format din valorile [14, 345, 123, 5414, 32, 15, 102, 723]
s, i n = 8

C. Dacă vectorul arr are toate elementele ordonate strict crescător

D. Dacă s, i numai dacă vectorul arr are valori după următorul model: a, a+ 1, . . . ,
a+ k, a+ k − 1, . . . , a+ 1, a, unde k este un număr natural nenul

694. ✓ ?Se consideră algoritmul redirect(n), unde n este un număr ı̂ntreg nenul (−105 ≤
n ≤ 105, n ̸= 0). Operatorul / realizează ı̂mpărt, irea reală (ex: 3/2 = 1.5).

Algorithm redirect(n)

If n < 0 then

n← −n
EndIf

p← 0; a← 0; b← 0
cp← n
While cp > 0 execute

a← a+ cp MOD 10
b← b+ 1
p← cp MOD 10
cp← cp DIV 10

EndWhile

Return a / b ≥ p
EndAlgorithm

Care din următoarele afirmat, ii sunt adevărate?

402

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

A. Algoritmul redirect(n) returnează True dacă s, i numai dacă media aritmetică a
cifrelor lui n este strict mai mare decât prima cifră a lui n

B. Algoritmul redirect(n) returnează True dacă s, i numai dacă media aritmetică a
ultimelor p − 1 cifre ale lui n este mai mare sau egală decât prima cifră a lui n,
unde p este numărul de cifre ale lui n

C. Pentru n = −5825, algoritmul returnează True

D. Complexitatea de timp a algoritmului este O(log10 n)

695. ✓ ?Se consideră algoritmul ceFace(a, b), unde a s, i b sunt numere naturale (1 ≤ a, b ≤
106).

1: Algorithm ceFace(a, b)

2: If b = 0 then

3: Return a
4: Else

5: k ← a MOD b
6: Return ceFace(b, k)

7: EndIf

8: EndAlgorithm

Precizat, i care din următoarele afirmat, ii sunt adevărate:

A. În urma apelului ceFace(2025, 21) algoritmul returnează 1

B. Algoritmul returnează cel mai mare divizor comun al numerelor a s, i b, doar dacă
a sau b nu sunt prime

C. Pentru ca algoritmul să returneze cel mai mare divizor comun al numerelor a s, i
b, linia 6 trebuie schimbată astfel: Return ceFace(a MOD b, b)

D. Algoritmul returnează 1 dacă a s, i b sunt prime ı̂ntre ele

696. ✓ ?Se consideră următorul arbore binar:

1

2

4 5

7 8

9

3

6

Care din următoarele afirmat, ii sunt
adevărate?

A. Parcurgerea ı̂n postordine este 4 7
9 8 5 2 6 3 1

B. Parcurgerea ı̂n preordine este 1 2
4 5 7 8 9 3 6

C. Parcurgerea ı̂n inordine este 6 3 9
8 7 5 4 2 1

D. Arborele binar nu este strict

697. ✓ ?Se consideră algoritmul ceFace(n, p), unde n s, i p sunt numere naturale nenule
(1 ≤ n ≤ 106 s, i 1 ≤ p ≤ 109).

Algorithm ceFace(n, p)

If n = 0 then

Return 0

EndIf

If n MOD 2 = 0 then

Return n MOD 10 ∗ p ∗ 10 + n MOD 10 DIV 2 ∗ p+ ceFace(n DIV 10, p ∗ 100)

403

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

EndIf

Return n MOD 10 ∗ p+ ceFace(n DIV 10, p ∗ 10)
EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate referitor la apelul ceFace(n, 1)?

A. Algoritmul poate returna valoarea lui n

B. Algoritmul poate returna valoarea 1213425

C. Algoritmul poate returna valoarea 1223

D. Algoritmul returnează numărul format prin dublarea cifrelor pare ale lui n s, i
păstrarea cifrelor impare

698. ✓ ?Se consideră algoritmul sim(x, y, z), unde x, y s, i z sunt valori booleene:

Algorithm sim(x, y, z)

While NOT x AND (y OR NOT z) execute

Write (z OR NOT (x AND y)) OR y, ’ ’

y ← NOT y
z ← NOT (x OR y)

EndWhile

EndAlgorithm

Care din următoarele afirmat, ii sunt false?

A. Dacă x = False, y = False s, i z = False, algoritmul afis,ează True

B. Există 3 perechi de valori (x, y, z) pentru care algoritmul afis,ează True

C. Algoritmul afis,ează ı̂ntotdeauna cel put, in o valoare booleană

D. Pentru apelurile sim(False, True, False) s, i sim(False, True, True) algoritmul
afis,ează aceeas, i valoare

699. ✓ ?Se consideră algoritmul ceFace(a, n, b, m), unde n s, i m sunt numere naturale
(0 ≤ n,m ≤ 104), iar a s, i b sunt vectori cu n, respectiv m elemente numere naturale
(a[1], a[2], . . . , a[n], 1 ≤ a[i] ≤ 104, pentru i = 1, 2, . . . , n s, i b[1], b[2], . . . , b[m], 1 ≤
b[i] ≤ 104, pentru i = 1, 2, . . . ,m). Variabila c este un vector fără niciun element la
apelul init, ial. Vectorii a s, i b sunt sortat, i crescător.

Algorithm ceFace(a, n, b, m)

i← 1; j ← 1; k ← 0
While j ≤ m execute

If i ≤ n AND a[i] < b[j] then

i← i+ 1
Else

If i ≤ n AND a[i] = b[j] then

j ← j + 1
Else

k ← k + 1
c[k]← b[j]
j ← j + 1

EndIf

EndIf

EndWhile

EndAlgorithm

404

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

Precizat, i efectul algoritmului asupra vectorului c ı̂n urma apelului ceFace(a, n, b,

m).

A. Vectorul c va cont, ine toate elementele din vectorul b care nu sunt ı̂n vectorul a

B. Vectorul c va cont, ine toate elementele din vectorul a care nu sunt ı̂n vectorul b

C. Vectorul c va cont, ine toate elementele din vectorul a care sunt ı̂n vectorul b

D. Vectorul c va cont, ine toate elementele din vectorul b care sunt ı̂n vectorul a

700. ✓ ?Se consideră algoritmul pg(arr, n), unde n este un număr natural nenul (1 ≤ n ≤
104), iar arr este un vector de n elemente numere naturale (1 ≤ arr[i] ≤ 106, pentru
i = 1, 2, . . . , n).

Algorithm pg(arr, n)

If n < 3 then

Return True

EndIf

d← arr[2]− arr[1]
For i← 2, n− 1 execute

If arr[i+ 1]− arr[i] ̸= d then

Return False

EndIf

EndFor

Return True

EndAlgorithm

Pentru care dintre următoarele situat, ii se
va returna valoarea True ı̂n urma apelului
pg(arr, n)?

A. Dacă arr = [2, 4, 8, 16, 32, 64, 128,
256, 512, 1024] s, i n = 10

B. Dacă arr = [19, 38, 57, 76, 95, 114,
132, 151] s, i n = 8

C. Dacă elementele vectorului arr for-
mează o progresie aritmetică

D. Dacă elementele vectorului arr for-
mează o progresie geometrică

701. ✓ ?Se consideră algoritmul ceFace(arr, n), unde arr este un vector de n numere
naturale (1 ≤ n ≤ 105, 1 ≤ arr[i] ≤ 105, arr[1], arr[2], . . . , arr[n], pentru
i = 1, 2, . . . , n). Se presupune că toate elementele vectorului arr sunt nule la apelul
init, ial.

Algorithm ceFace(arr, n)

p← 0
For i← 2, n− 1 execute

If arr[i] = 0 then

If i ∗ i < n then

arr[i ∗ i]← 2
EndIf

k ← i+ 1
While k ∗ i < n execute

arr[k ∗ i]← 1
k ← k + 1

EndWhile

EndIf

If arr[i] = 2 then

p← p+ 1
EndIf

EndFor

Return p
EndAlgorithm

Care din următoarele afirmat, ii sunt
adevărate referitor la apelul algoritmului
ceFace(arr,n)?

A. Pentru apelul ceFace(arr, 100) al-
goritmul returnează 5

B. Pentru apelul ceFace(arr, 256) al-
goritmul returnează 6

C. Algoritmul returnează numărul de nu-
mere care au exact 3 divizori, mai mici
decât n

D. Algoritmul returnează numărul de
pătrate perfecte mai mici decât n

405

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

702. ✓ ?Se consideră algoritmul frozen(n), unde n este un număr natural nenul (1 ≤ n ≤
102).

Algorithm frozen(n)

For i← n, 2,−3 execute

frozen(n - 1)

Write i− 2
frozen((i + 1) DIV 2)

Write n+ 3
EndFor

EndAlgorithm

În urma apelului frozen(6) se afis,ează un
s, ir de cifre. Care sunt cifrele de pe pozit, iile
16 - 20, prima pozit, ie fiind numerotată cu
1?

A. 10568

B. 80510

C. 62057

D. 56805

703. ✓ ?Se consideră algoritmul ceFace(arr, n, k, idx), unde n, k s, i idx sunt numere
naturale (3 ≤ n ≤ 104, 1 ≤ k, idx ≤ n), iar arr este un vector de n elemente numere
naturale (1 ≤ arr[i] ≤ 104, pentru i = 1, 2, . . . , n).

Algorithm ceFace(arr, n, k, idx)

If idx = n− 1 then

Return arr[k]
EndIf

arr[idx+ 1]← arr[idx] + arr[idx+ 1] + arr[idx+ 2] DIV 3
Return ceFace(arr, n, k, idx + 1)

EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate pentru apelul ceFace(arr, n, k,

idx)?

A. Pentru apelul ceFace([17, 23, 55, 31, 22, 103, 245, 322, 129, 100], 10,

3, 1) algoritmul returnează 93

B. Pentru apelul ceFace([14, 191, 32, 10, 77, 2, 12, 22, 72], 9, 7, 1) al-
goritmul returnează 387

C. Pentru apelul ceFace([30, 44, 121, 19, 35, 144, 2], 7, 5, 2) algoritmul
returnează 284

D. Pentru apelul ceFace([30, 44, 121, 19, 35, 144, 2], 7, 5, 3) algoritmul
returnează 234

704. ✓ ?Precizat, i care dintre următorii algoritmi afis,ează numărul tuturor divizorilor lui
n, unde n este un număr natural nenul (2 ≤ n ≤ 106). Presupunem că apelul lui
divisors3(n, i, c) este făcut sub forma divisors3(n, 1, 0).

A.

Algorithm divisors1(n)

c ← 0

For i← 1, i * i ≤ n execute

If n MOD i = 0 then

c ← c + 2

EndIf

EndFor

Return c

EndAlgorithm

B.

Algorithm divisors2(n)

d ← 2

k ← 1

While n > 1 execute

p ← 0

While n MOD d = 0 execute

p ← p + 1

n ← n DIV d

EndWhile

d ← d + 1

k ← k * (p + 1)

406

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

EndWhile

Return k

EndAlgorithm

C.

Algorithm divisors3(n, i, c)

If i * i > n then

Return c

EndIf

If n MOD i = 0 then

If i * i = n then

c ← c + 1

Else

c ← c + 2

EndIf

EndIf

Return divisors3(n, i + 1, c)

EndAlgorithm

D.

Algorithm divisors4(n)

d ← 2

k ← 1

While d * d ≤ n execute

e ← 0

While n MOD d = 0 execute

e ← e + 1

n ← n DIV d

EndWhile

d ← d + 1

If e > 0 then

k ← k * (e + 1)

EndIf

EndWhile

If n > 1 then

k ← k * 2

EndIf

Return k

EndAlgorithm

705. ✓ ?Se consideră algoritmul matrix(A, n, k), unde A este o matrice cu n linii s, i n
coloane (A[1][1], ..., A[1][n], ..., A[n][n]) s, i n, k sunt numere naturale nenule (4 ≤ n ≤
102, 1 ≤ k ≤ 9). Se presupune că matricea A are toate elementele egale cu 0 la apelul
init, ial.

Algorithm matrix(A, n, k)

A[1][1]← 1
For j ← 2, n execute

A[1][j]← A[1][j − 1] · k
For i← 2, j execute

A[i][j]← k · (A[i][j− 1]+A[i− 1][j− 1])
EndFor

EndFor

Return A[n− 3][n− 2]
EndAlgorithm

Ce valoare returnează algoritmul
pentru apelul matrix(A, 9, 3)?

A. 4374

B. 4377

C. 4380

D. Niciuna din variantele de mai
sus

706. ✓ ?Se consideră algoritmul sec(arr, n, k), unde n este un număr natural nenul (2 ≤
n ≤ 105), iar arr este un vector de n numere naturale (0 ≤ arr[i] ≤ 105, pentru
i = 1, 2, . . . , n) s, i k este un număr natural nenul (1 ≤ k ≤ 105).

407

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm sec(arr, n, k)

a← 0; b← 0; c← 0
For i← 1, n execute

If arr[i] MOD k = 0 then

a← a+ 1
Else

If a > b then

b← a
c← 1

Else

If a = b then

c← c+ 1
EndIf

EndIf

a← 0
EndIf

EndFor

Write b, ’ ’, c
EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate referitor la apelul sec(arr, n,

k)?

A. Pentru apelul sec([7, 3, 200,

100, 10, 9, 6, 100, 1000, 40,

1002, 20, 30], 13, 10) algoritmul
afisează 3 2

B. Pentru apelul sec([8, 92, 35, 91,

14, 18, 21, 7, 4, 105, 28, 63],

12, 7) algoritmul afisează 3 2

C. Dacă arr = [2, 6, 15, 35, 63,

72, 4, 1, 48, 144, 5] s, i n = 11,
pentru orice k din mult, imea M =

{2,3,4,5,6,7,8,9}, prima valoare
pe care o afis,ează algoritmul este 2

D. Algoritmul determină lungimea ma-
ximă a unei secvent,e de numere din
vector care sunt multipli de k s, i
numără câte secvent,e de lungime ma-
ximă sunt ı̂n vector s, i afis,ează cele
două valori

707. ✓ ?Se consideră algoritmul ceFace(a, b), unde a s, i b sunt numere naturale nenule
(1 ≤ a ≤ 102, 0 ≤ b ≤ 25).

1: Algorithm ceFace(a, b)

2: If b = 0 then

3: Return 1

4: EndIf

5: c← ceFace(a, b DIV 2)
6: If b MOD 2 = 0 then

7: Return c ∗ c
8: Else

9: Return c∗ ceFace(a, b DIV 2) *

a

10: EndIf

11: EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate referitor la apelul algoritmului
ceFace(a, b)?

A. În urma apelului ceFace(2, 14)

algoritmul returnează 16384, algo-
ritmul autoapelându-se de 14 ori

B. Algoritmul returnează ab, ı̂n com-
plexitatea de timp O(log2(b))

C. Algoritmul returnează ab, ı̂n com-
plexitatea de timp O(b)

D. Dacă linia 9 ar fi ı̂nlocuită ast-
fel: Return ceFace(a, b - 1) *

a, apelul ceFace(2, 6) se autoa-
pelează de 8 ori

708. ✓ ?Se consideră algoritmul X(a, b, c, arr), unde a, b, c sunt numere naturale nenule
(1 ≤ a, b, c ≤ 103) s, i arr este un vector de n numere naturale nenule (1 ≤ arr[i] ≤ 103,
pentru i = 1, 2, ..., n).

408

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm X(a, b, c, arr)

If a = b then

d← arr[a]
f ← arr[b]
While d execute

e← d MOD 10
If e = c then

Return 0

EndIf

d← d DIV 10
EndWhile

If f ̸= b then

Return 1

Else

Return 0

EndIf

Else

Return X(a, (a + b) DIV 2,

c, arr) +

X((a + b) DIV 2 + 1, b,

c, arr)

EndIf

EndAlgorithm

Pentru care dintre următoarele apeluri ale
algoritmului X(a, b, c, arr) se va re-
turna valoarea 5?

A. X(1, 9, 3, [91, 23, 4, 12, 33,

403, 87, 60, 302])

B. X(1, 9, 4, [34, 201, 39, 404,

77, 14, 7, 42, 92])

C. X(1, 6, 4, [85, 104, 872, 602,

44, 73, 92])

D. X(1, 13, 7, [28, 103, 694, 4,

333, 901, 19, 844, 24, 10, 11,

77, 13])

709. ✓ ?Se consideră algoritmul ceFace(arr, l, r, val), unde arr este un vector ordonat
descrescător, având n elemente numere naturale (1 ≤ n ≤ 104, 1 ≤ arr[i] ≤ 106,
pentru i = 1, 2, . . . , n) s, i val este un număr natural (1 ≤ val ≤ 106 s, i arr[n] ≤ val ≤
arr[1]). Parametrii l s, i r sunt numere naturale (1 ≤ l ≤ r ≤ n).

Algorithm ceFace(arr, l, r, val)

If l > r then

Return arr[l]
EndIf

m← (l + r) DIV 2

EndAlgorithm

Cu ce secvent, ă de cod trebuie completat algoritmul, astfel ı̂ncât ı̂n urma apelului
ceFace(arr, 1, n, val) să se returneze valoarea maximă mai mică sau egală cu
val din vectorul arr?

A.

If arr[m] = val then

Return arr[m]
EndIf

If arr[m] < val then

Return ceFace(arr, l, m - 1,

val)

Else

Return ceFace(arr, m + 1, r,

val)

EndIf

B.

If arr[m] = val then

Return arr[m]
EndIf

If arr[m] < val then

Return ceFace(arr, m + 1, r,

val)

Else

Return ceFace(arr, l, m - 1,

val)

EndIf

409

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

C.

If arr[m] ≤ val then

Return ceFace(arr, l, m - 1,

val)

Else

Return ceFace(arr, m + 1, r,

val)

EndIf

D.

If arr[m] ≥ val then

Return ceFace(arr, m + 1, r,

val)

Else

Return ceFace(arr, l, m - 1,

val)

EndIf

710. ✓ ?Se consideră algoritmul algo(q, w, arr, z), unde q, w, z + 1 sunt numere na-
turale nenule (1 ≤ q, w, z ≤ 10, z ≤ q) s, i arr este un vector cu z elemente naturale
(arr[1], . . . , arr[z]).

Algorithm algo(q, w, arr, z)

If w ≤ z then

If w = 1 then

low ← 1
Else

low ← arr[w − 1] + 1
EndIf

For i← low, q − z + w execute

arr[w]← i
algo(q, w + 1, arr, z)

EndFor

Else

For i← 1, z execute

Write arr[i]
EndFor

Write ’ ’ ▷ **Spat,iu**

EndIf

EndAlgorithm

Care dintre următoarele afirmat, ii sunt
false referitoare la algoritmul alăturat?

A. În urma apelului algo(8, 1,

arr, 3), algoritmul afis,ează 55
caractere de spat, iu

B. În urma apelului algo(4, 1,

arr, 2), algoritmul afis,ează 12
13 14 23 24 34

C. Apelul algo(q, 1, arr, z)

afis,ează toate aranjamentele de
q luate câte z

D. Pentru orice număr natural k
(1 ≤ k ≤ n), ı̂n urma
apelurilor algo(n, 1, arr, k)

s, i algo(n, 1, arr, n - k), se
afis,ează aceleas, i valori

711. ✓ ?Care dintre algoritmii următori pot fi implementat, i ı̂n as,a fel ı̂ncât să aibă comple-
xitate de timp liniară (O(n))?

A. Algoritmul care returnează suma elementelor dintr-un vector, folosind Divide et
Impera

B. Algoritmul de descompunere ı̂n factori primi a unui număr

C. Algoritmul de sortare a unui vector cu elemente doar cifre folosind metoda numărării

D. Algoritmul de căutare a unui element ı̂ntr-un vector sortat folosind metoda căutării
binare

712. ✓ ?Se consideră algoritmul ceFace(arr, n, k), unde n s, i k sunt numere naturale (1 ≤
n, k ≤ 104), iar arr este un vector de n numere naturale (arr[1], arr[2], . . . , arr[n], 1 ≤
arr[i] ≤ 104, pentru i = 1, 2, . . . , n).

Algorithm ceFace(arr, n, k)

If k = 0 then

Return 1

EndIf

410

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

If n ≤ 0 then

Return 0

EndIf

t1← ceFace(arr, n - 1, k)

If arr[n] mod 2 = 0 then

Return t1+ ceFace(arr, n - 3, k - arr[n] * 2)

EndIf

Return t1+ ceFace(arr, n - 3, k - arr[n] * 3)

EndAlgorithm

Care afirmat, ii sunt adevărate ı̂n urma apelului ceFace([8, 15, 11, 3, 3, 7, 6,

10, 12], 9, k)?

A. Pentru k = 45, algoritmul returnează 5

B. Pentru k = 33, algoritmul returnează 3

C. Pentru k = 33, algoritmul returnează 4

D. Pentru k = 29, algoritmul returnează 2

713. ✓ ?Se consideră algoritmul ceFace(n), unde n este un număr natural nenul (1 ≤ n ≤
106).

Algorithm ceFace(n)

k ← 0
For i← 1, n execute

p← i
While p > 0 execute

k ← k + p MOD 2
p← p DIV 2

EndWhile

EndFor

Return k
EndAlgorithm

Ce se afis,ează ı̂n urma apelului
ceFace(2046)?

A. 11242

B. 11257

C. 11249

D. 11253

411

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

Testul 3

714. ✓ ?Se consideră algoritmul ceFace(a, n), unde a este o matrice pătratică de dimen-

siune n
(
1 ≤ n ≤ 103

)
cu elemente numere ı̂ntregi (−109 ≤ a[1][1], a[1][2], . . . , a[n][n] ≤

109).

Algorithm ceFace(a, n)

m← −∞
For i← 1, n execute

x← 0, y ← 0
For j ← 1, n execute

x← x+ a[i][j]
y ← y + a[i][n− j + 1]

EndFor

m← max(m, |x− y|)
EndFor

Return m
EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Algoritmul returnează valoarea 0 dacă si
numai daca toate elementele matricei sunt
egale

B. Numărul minim de comparat, ii necesare
pentru a găsi valoarea maximă din matrice
este n

C. Valoarea init, ială a lui m poate sa fie 1

D. Algoritmul are complexitatea de timp
O(n2)

715. ✓ ?Se consideră algoritmul ceFace(n, k), unde n s, i k sunt numere naturale (1 ≤ n ≤
100, 0 ≤ k ≤ n).

1: Algorithm ceFace(n, k)

2: If k = 0 OR k = n then

3: Return 1
4: EndIf

5: Return +

6: EndAlgorithm

Cu ce apeluri ar trebui ı̂nlocuite spat, iile libere astfel ı̂ncât algoritmul să returneze
rezultatul Ck

n?

A. ceFace(n - 1, k - 1); ceFace(n - 1, k)

B. ceFace(n - 1, k); ceFace(n - 1, n - k)

C. ceFace(n - 1, n - k); ceFace(n - 1, n - k - 1)

D. ceFace(n - 1, k); ceFace(n, k - 1)

716. ✓ ?Se consideră algoritmul ceFace(v, n, k), unde v este un vector de n numere ı̂ntregi
(−109 ≤ v[1], v[2], . . . , v[n] ≤ 109), iar n s, i k sunt numere naturale nenule (1 ≤ k ≤
n ≤ 105).

412

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm ceFace(v, n, k)

m← −∞, s← 0
For i← 1, n execute

s← s+ v[i]
If i ≥ k then

m← max(m, s)
s← s− v[i− k + 1]

EndIf

EndFor

Return m
EndAlgorithm

În care dintre cazurile de mai jos rezultatul algorit-
mului ceFace(v, n, k) va fi diferit de rezultatul
algoritmului nemodificat?

A. Init, ializarea lui m cu 0 ı̂n loc de −∞

B. Schimbarea condit, iei de la i ≥ k la i > k

C. Eliminarea liniei s← s− v[i− k + 1]

D. Niciuna dintre variantele de răspuns nu sunt
corecte.

717. ✓ ?Se consideră algoritmul F(n, k), unde n s, i k sunt numere naturale (1 ≤ n ≤
109, 0 ≤ k ≤ n).

Algorithm F(n, k)

If k > (n DIV 2) then

k ← n− k
EndIf

r ← 1
For i← 0, k − 1 execute

r ← r ∗ (n− i) DIV (i+ 1)
EndFor

Return r
EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Algoritmul calculează numărul submult, imilor
cu k elemente dintr-o mult, ime cu n elemente

B. Algoritmul efectuează 3 ı̂nmult, iri ı̂n urma ape-
lului F(100, 97)

C. Algoritmul optimizează calculul coeficientu-
lui binomial aplicând proprietatea de simetrie
C(n, k) = C(n, n− k)

D. Algoritmul efectuează 97 ı̂nmult, iri ı̂n urma
apelului F(100, 97)

718. ✓ ?Se consideră algoritmul ceFace(v, n, t), unde v este un vector sortat de n numere
ı̂ntregi (−109 ≤ v[1], v[2], . . . , v[n] ≤ 109), iar t este un număr ı̂ntreg (n, t ≤ 109).

Algorithm ceFace(v, n, t)

a← 1, b← n, r ← −1
While a ≤ b execute

m← a+ (b− a) DIV 2
If v[m] = t then

r ← m
b← m− 1

Else If v[m] < t then

a← m+ 1
Else

b← m− 1
EndIf

EndWhile

Return r
EndAlgorithm

Care dintre următoarele afirmat, ii nu au sens din
punct de vedere logic ı̂n acest algoritm?

A. Calculul lui m cu formula a+ (b− a)DIV2

B. Algoritmul returnează −1 când găses,te valoa-
rea t, ı̂n loc să returneze pozit, ia

C. Dacă n = 231 − 1, algoritmul intră ı̂n buclă
infinită din cauza overflow-ului la calculul lui
m

D. Condit, ia a ≤ b din while permite accesarea
unor elemente din afara vectorului de numere

719. ✓ ?Se consideră algoritmul ceFace(v, n), unde v este un vector de n numere ı̂ntregi
(−109 ≤ v[1], v[2], . . . , v[n] ≤ 109), iar n este un număr natural nenul (1 ≤ n ≤ 105).

Algorithm ceFace(v, n)

For i← 1, n execute

413

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

x← v[i]
For j ← i+ 1, n execute

If v[j] < x then

x← v[j]
EndIf

EndFor

r[i]← x
EndFor

Return r
EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Dacă v = [5, 3, 4, 2, 6], ı̂n urma apelului ceFace(v, 5) se obt, ine rezultatul [2, 2, 2, 2, 6].

B. Dacă v este, init, ial, sortat strict crescător, rezultatul returnat va fi diferit de
varianta init, ială a lui v.

C. Complexitatea timp a algoritmului este O(n2).

D. Complexitatea timp a algoritmului poate fi redusă la O(n), fără a schimba efectul
algoritmului.

720. ✓ ?Se consideră algoritmul ceFace(v, n, x), unde v este un vector de n numere ı̂ntregi
(−109 ≤ v[1], v[2], . . . , v[n] ≤ 109), iar x este un număr ı̂ntreg (n, x ≤ 109).

Algorithm ceFace(v, n, x)

a← −1
b← −1
For i← 1, n execute

If v[i] = x then

If a = −1 then

a← i
EndIf

b← i
EndIf

EndFor

Return b− a+ 1
EndAlgorithm

Fie n = 7. Pentru care dintre următoarele date de
intrare nu se returnează valoarea 5?

A. v = [1, 42, 42, 42, 42, 42, 1], x = 42

B. v = [7, 1, 7, 7, 7, 2, 7], x = 7

C. v = [3, 7, 7, 7, 7, 7, 1], x = 7

D. v = [1, 2, 42, 42, 1, 42, 2], x = 42

721. ✓ ?Se consideră algoritmul X(v, n), unde v este un vector de n numere ı̂ntregi (−109 ≤
v[1], v[2], . . . , v[n] ≤ 109), iar n este un număr natural nenul (1 ≤ n ≤ 105).

Algorithm X(v, n)

For i← 2, n execute

v[i]← v[i] ∗ v[i− 1]
EndFor

Return v[n]
EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Algoritmul calculează produsul tuturor elemen-
telor vectorului

B. După executare, vectorul de numere va cont, ine
la fiecare index i produsul tuturor numerelor
dinainte de pozit, ia respectivă

C. Complexitatea algoritmului este O(n)

D. Dacă v = [2, 3, 4, 5], vectorul final va fi
[2, 6, 24, 120]

414

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

722. ✓ ?Se consideră algoritmul F(v, n), unde v este un vector de n numere ı̂ntregi (−109 ≤
v[1], v[2], . . . , v[n] ≤ 109), iar n este un număr natural nenul (1 ≤ n ≤ 105).

Algorithm f(v, n)

m← v[1]
For i← 2, n execute

If v[i] < m then

v[i− 1]← m
m← v[i]

EndIf

EndFor

v[n]← m
Return m

EndAlgorithm

Care dintre următoarele afirmat, ii sunt false?

A. Algoritmul modifică vectorul original ı̂nlocuind
fiecare element cu minimul precedent

B. Algoritmul returnează valoarea minimă din
vectorul de numere

C. Complexitatea algoritmului este O(n)

D. Ultimul element al vectorului rămâne nemodi-
ficat indiferent de valorile celorlalte elemente
din vector

723. ✓ ?Se consideră algoritmul ceFace(v, n), unde v este un vector de n numere ı̂ntregi
(−109 ≤ v[1], v[2], . . . , v[n] ≤ 109), iar n este un număr natural nenul (1 ≤ n ≤
106). Care dintre următoarele instruct, iuni pot ı̂nlocui liniile 5 s, i 6 astfel ı̂ncât la
finalul execut, iei algoritmului, dacă v = [4, 1, 5, 2, 3, 7, 6], să se creeze vectorul r =
[3, 0, 4, 1, 2, 6, 5] ?

1: Algorithm ceFace(v, n)

2: For i← 1, n execute

3: c← 0
4: For j ← 1, n execute

5: If then

6:

7: EndIf

8: EndFor

9: r[i]← c
10: EndFor

11: Return r
12: EndAlgorithm

A. 5: v[j] < v[i]

6: c ← c + 1

B. 5: v[i] > v[j]

6: c ← c + 2

C. 5: v[j] ≥ v[i]

6: c ← c + 2

D. 5: v[i] ≥ v[i]

6: c ← c + 1

724. ✓ ?Se consideră algoritmul ceFace(s, t, n, m), unde s s, i t sunt s, iruri de caractere
cu lungimile n s, i m (1 ≤ n,m ≤ 103).

415

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm ceFace(s, t, n, m)

For i← 1, n+ 1 execute

a[i][1]← 0
EndFor

For j ← 1,m+ 1 execute

a[1][j]← 0
EndFor

For i← 2, n+ 1 execute

For j ← 2,m+ 1 execute

If s[i− 1] = t[j − 1] then

a[i][j]← a[i− 1][j − 1] + 1
Else

a[i][j]←
max(a[i−1][j], a[i][j−1])

EndIf

EndFor

EndFor

Return a[n+ 1][m+ 1]
EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Dacă s = "abcde" s, i t = "ace", algo-
ritmul returnează valoarea 3

B. Algoritmul construies,te o ma-
trice pentru a determina lungimea
subs, irului comun de lungime maximă

C. Algoritmul calculează numărul de
operat, ii de inserare necesare pentru a
transforma s ı̂n t

D. Algoritmul necesită O(n + m) spat, iu
de memorie

725. ✓ ?Se consideră algoritmul ceFace(v, n, target), unde v este un vector sortat de n
numere ı̂ntregi (−109 ≤ v[1], v[2], . . . , v[n] ≤ 109), iar target este un număr ı̂ntreg, cel
mult 109.

Algorithm ceFace(v, n, target)

a← 1, b← n, pos← −1
While a ≤ b execute

m← (a+ b) DIV 2
If v[m] ≤ target then

pos← m
a← m+ 1

Else

b← m− 1
EndIf

EndWhile

Return pos
EndAlgorithm

Care dintre următoarele afirmat, ii sunt false?

A. Algoritmul returnează pozit, ia celui mai mare număr din vectorul v mai mic sau
egal decât target

B. Complexitatea algoritmului este O(n log n)

C. Pentru target < 0 algoritmul returnează mereu -1

D. Algoritmul returnează mereu indicele primei aparit, ii a lui target

726. ✓ ?Fie două liste de elemente Q s, i S. Pentru lista de elemente Q se definesc următoarele
operat, ii:

(a) Put(Q, a) - inserează variabila a la sfârs, itul listei.

(b) Remove(Q) - returnează s, i extrage din listă prima valoare.

(c) First(Q) - returnează prima valoare din listă fără să o extragă.

416

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

Pentru lista de elemente S se definesc operat, iile:

(a) Push(S, a) - inserează variabila a ı̂naintea primului element din listă.

(b) Pop(S) - returnează s, i extrage valoarea primului element din listă.

(c) Top(S) - returnează valoarea primului element fără să ı̂l elimine din listă.

Dacă lista S este goală, de câte ori se execută bucla while ı̂n secvent,a de cod de mai
jos, pentru Q = [16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1]?

While Q execute

If !S OR Top(S) ≤ First(Q) then

x← Remove(Q)
Push(S, x)

Else

x← Pop(S)
Put(Q, x)

EndIf

EndWhile

A. 128

B. 256

C. 64

D. 32

727. ✓ ?Se consideră algoritmul ceFace(v, n), unde v este un vector de n numere ı̂ntregi
(−109 ≤ v[1], v[2], . . . , v[n] ≤ 109), iar n este un număr natural nenul (1 ≤ n ≤ 106).

Algorithm ceFace(v, n)

p[1]← v[1]
For i← 2, n execute

p[i]← p[i− 1] + v[i]
EndFor

Return p[n]
EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Algoritmul permite obt, inerea sumei unei
subsecvent,e, fără parcurgerea acesteia

B. Algoritmul egalează vectorul p cu v după fina-
lizarea algoritmului

C. Valoarea returnată este suma tuturor elemen-
telor din vectorul v

D. Algoritmul efectuează n2 operat, ii pentru calcu-
larea sumei finale

728. ✓ ?O navă spat, ială trebuie să se deplaseze din punctul de plecare (sx, sy) către punctul
de destinat, ie (dx, dy), ı̂nsă poate efectua doar două tipuri de mis,cări: din orice pozit, ie
(x, y), nava poate ajunge fie ı̂n (x, x + y), fie ı̂n (x + y, y). Algoritmul PATH(sx, sy,
dx, dy) de mai jos returnează 1 dacă nava poate ajunge de la punctul de plecare la
punctul de destinat, ie s, i 0 ı̂n caz contrar. Toate coordonatele sunt pozitive. A s, i B
reprezintă câte o expresie logică.

Algorithm Path(sx, sy, dx, dy)

If (A) then

Return 0

EndIf

If sx = dx AND sy = dy then

Return 1

EndIf

Return (B)

EndAlgorithm

Aleget, i variantele corecte pentru A s, i B:

417

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

A. A : sx > dx OR sy > dy

B : Path(sx+ sy, sy, dx, dy) AND Path(sx, sy + sx, dx, dy).

B. A : sx > dx AND sy > dy

B : Path(sx+ sy, sy, dx, dy) AND Path(sx, sy + sx, dx, dy)

C. A : sx > dx OR sy > dy

B : Path(sx+ sy, sy, dx, dy) OR Path(sx, sy + sx, dx, dy)

D. A : sx > dx AND sy > dy

B : Path(sx+ sy, sy, dx, dy) OR Path(sx, sy + sx, dx, dy)

729. ✓ ?Ce valoare va returna apelul F(35) pentru algoritmii F s, i G de mai jos?

Algorithm G(x)

If x < 10 then

Return 2 ∗ x
Else

Return 2 ∗ F (x DIV 2)
EndIf

EndAlgorithm

Algorithm F(x)

If x < 8 then

Return (2 + x)
Else

Return 2 +G(x− 2)
EndIf

EndAlgorithm

A. 34 B. 42 C. 43 D. 35

730. ✓ ?Se consideră algoritmul F(v, st, dr), unde v este un vector de n numere ı̂ntregi
(−109 ≤ v[1], v[2], . . . , v[n] ≤ 109), n este un număr natural nenul (0 < n < 105), iar
st s, i dr reprezintă limitele intervalului de căutare (1 ≤ st, dr ≤ n).

1: Algorithm f(v, st, dr)

2: If st = dr then

3: Return v[st]
4: EndIf

5: m← (st+ dr) DIV 2
6: x← f(v, st,m)
7: y ← f(v,m+ 1, dr)
8: Return max(x, y)
9: EndAlgorithm

Care dintre următoarele afirmat, ii sunt false pentru
apelul F(v, 1, n)?

A. Algoritmul determină suma elementelor din
vector

B. Algoritmul este echivalent dacă schimbam linia
5 cu m← st+ (st+ dr)DIV2

C. Vectorul trebuie să fie sortat pentru ca algorit-
mul sa parcurgă toate elementele

D. st = dr = 1 se va ı̂ntâmpla măcar o dată pentru
orice vector care respecta condit, iile din enunt,

731. ✓ ?Se consideră algoritmul F(x), unde v este un vector de 10 elemente, astfel ı̂ncât
v = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], iar x este un număr natural cuprins ı̂n intervalul [1, 11].

Algorithm f(x)

If x ≤ 10 then

If v[x] MOD 2 ̸= 0 then

Write v[x], ’ ’

EndIf

If x ≤ 8 then

v[x]← 0
f(v[x+ 2])
Write x

418

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

EndIf

EndIf

EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate pentru F(1)?

A. Algoritmul afis,ează 1 3 5 7 9 7531

B. După finalizarea algoritmului vectorul va fi v = [0, 2, 0, 4, 0, 6, 0, 8, 0, 10]

C. Algoritmul afis,ează 2 4 6 8 10 7531

D. După finalizarea algoritmului vectorul va fi v = [1, 0, 3, 0, 5, 0, 7, 0, 9, 0]

732. ✓ ?Se consideră algoritmul Maxim(v,n), unde n este un număr natural (n < 103),
care determină valoarea maximă din vectorul v de n elemente numere ı̂ntregi (−103 <
v[1], v[2], . . . , v[n] < 103). Init, ial, vectorul v cont, ine elementele v = [13, 113, 97, 6,−1, 69, 74, 31, 111, 97].

1: Algorithm Maxim(v, n)

2: i← 1
3: j ← n
4: While execute

5: If v[i] ≤ v[j] then

6: i← i+ 1
7: Else

8: j ← j − 1
9: EndIf

10: EndWhile

11: Return v[i]
12: EndAlgorithm

Algorithm estePrim(x)

If x ≤ 1 then

Return False

EndIf

For d← 2,
√
x execute

If x MOD d = 0 then

Return False

EndIf

EndFor

Return True

EndAlgorithm

Cu ce condit, ie trebuie ı̂nlocuit spat, iul de la linia 4 astfel ı̂ncât algoritmul să returneze
valoarea maximă din vector ?

A. j = i

B. j ≥ i AND estePrim(v[i])

C. j ̸= i

D. i < j − 1 OR estePrim(v[i])

733. ✓ ?Se consideră algoritmul D(n), unde n este un număr natural nenul (1 ≤ n ≤ 109).

Algorithm D(n)

suma← 0
For d← 1,

√
n execute

If n MOD d = 0 then

suma← suma+ d
If d ̸= n DIV d then

suma← suma− (n DIV d)
EndIf

EndIf

EndFor

Return suma
EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Algoritmul calculează suma tuturor divizorilor lui 2 ∗ n
B. Rezultatul este mereu negativ pentru 3 ≤ n

419

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

C. Algoritmul calculează rădăcina numărului dacă este pătrat perfect

D. Complexitatea algoritmului este O(
√
n)

734. ✓ ?Se consideră algoritmul functieRecursiva(n, k), unde n s, i k sunt numere naturale
nenule (1 ≤ n, k ≤ 103).

Algorithm functieRecursiva(n, k)

If n ≤ 1 then

Return 1
EndIf

If k = 0 then

Return 1
EndIf

Return functieRecursiva(n-1, k)

+ functieRecursiva(n-1, k-1) ∗ n
EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Dacă n = 5 s, i k = 2, algoritmul func-
tieRecursiva se autoapeleaza de 13 ori

B. Solut, ia obt, inută poate fi optimizată
prin memorarea solut, iilor calculate cel
put, in o dată

C. Algoritmul returnează aranjamente de
n luate câte k

D. Complexitatea de timp poate fi apro-
ximata la O(2n)

735. ✓ ?Se consideră algoritmul F(x, n), unde x este un vector de n valori de tip bool

(0 ≤ n ≤ 1000).

1: Algorithm f(x, n)

2: rezultat← true

3: For i← 1, n− 1 execute

4: For j ← i+ 1, n execute

5: rezultat← rezultat AND (x[i] OR NOT x[j])
6: EndFor

7: EndFor

8: Return rezultat
9: EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Pentru orice doi indici i s, i j (i < j), algoritmul verifică dacă nu există perechea
(x[i], x[j]), unde x[i] = 0, x[j] = 1

B. Formula x[i] OR NOT x[j] poate fi redusă la x[i] prin principiul absorbt, iei

C. Dacă se schimbă AND cu OR , atunci algoritmul returnează True pentru
orice valori din x

D. Dacă rezultat se init, ializează cu 0, iar linia 5 se modifică ı̂n rezultat← rezultat+
1. Algoritmul ar calcula numărul de comparat, ii din algoritmul de sortare prin
select, ie

736. ✓ ?Se consideră algoritmul f(n, m), unde m,n sunt numere ı̂ntregi cu m > n. Care
este complexitatea timp a acestui algoritm?

420

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm f(n, m)

s← 100
For i← 1, n execute

For j ← i+ 1,m execute

s← s+ j DIV 2
EndFor

EndFor

For i← n,m execute

s← s+ 1
EndFor

EndAlgorithm

A. O(n2)

B. O(n ∗ (m− n))

C. O(n ∗m)

D. O(m− n)

737. ✓ ?Pe o tablă sunt scrise numerele de la 1 la N . La fiecare pas, se aleg două numere
x s, i y s, i se ı̂nlocuiesc cu numărul (x+ y) MOD 10. Procesul continuă până când pe
tablă va fi scris de N ori acelas, i număr pe care ı̂l considerăm rezultat. Care dintre
următoarele afirmat, ii sunt adevărate?

A. Rezultatul final va fi acelas, i indiferent de ordinea ı̂n care numerele sunt alese

B. Dacă N = 93, rezultatul va fi 1

C. Dacă N = 432, rezultatul va fi 6

D. Dacă alegem doar perechi de numere consecutive, rezultatul fiecărei operat, ii efec-
tuate va fi un număr natural par

421

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

Testul 4

738. ✓ ?Se consideră algoritmul generare(a, n), unde n este un număr natural nenul (1 ≤
n ≤ 102) s, i a este o matrice pătratică cu n linii s, i n coloane cu elementele init, ial nule
(a[1][1], a[1][2], . . . , a[n][n]).

Algorithm generare(a, n)

val← 0
For i← 1, (n+ 1) DIV 2 execute

For j ← i, n− i execute

val← val + 1
a[i][j]← val

EndFor

For j ← i, n− i execute

val← val + 1
a[j][n− i+ 1]← val

EndFor

For j ← n− i+ 1, i+ 1, −1 execute

val← val + 1
a[n− i+ 1][j]← val

EndFor

For j ← n− i+ 1, i+ 1, −1 execute

val← val + 1
a[j][i]← val

EndFor

EndFor

EndAlgorithm

Considerând apelul init, ial generare(a, 20), care dintre următoarele afirmat, ii sunt
adevărate cu privire la valorile elementelor matricei la finalul executării algoritmului?

A. a[5][4] = 256 B. a[17][20] = 37 C. a[20][2] = 57 D. a[2][1] = 76

739. ✓ ?Fie expresia E = AB(16) + 120(3) − 120(4) + 2 ∗ 44(5), unde x(a) reprezintă valoarea
numărului x ı̂n baza de numerat, ie a.

Care dintre următoarele valori este egală cu valoarea expresiei E?

A. 322(8) B. 162(10) C. 1000101(2) D. 278(8)

740. ✓ ?Se consideră algoritmul ceFace(v, n), unde n este un număr natural (1 ≤ n ≤ 103)
iar v este un vector de n numere naturale (1 ≤ v[i] ≤ 105, i← 1, 2, . . . , n):

Algorithm ceFace(v, n)

For i← 1, n− 1 execute

For j ← i+ 1, n execute

u1← v[i] MOD 10
u2← v[j] MOD 10
check ← False

If u1 > u2 then

check ← True

Else If u1 = u2
AND v[i] > v[j] then

check ← True

422

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

EndIf

If check then

aux← v[i]
v[i]← v[j]
v[j]← aux

EndIf

EndFor

EndFor

Return v
EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Algoritmul sortează elementele vectorului ı̂n ordine descrescătoare după ultima
cifră a fiecărui element

B. Dacă două elemente au aceeas, i ultimă cifră, algoritmul le sortează ı̂n ordine
crescătoare

C. Algoritmul utilizează metoda de sortare prin select, ie pentru a ordona elementele
vectorului

D. Complexitatea timp a algoritmului este O(n log n)

741. ✓ ?Se consideră algoritmul Process(v, n), unde n este un număr natural nenul (1 ≤
n ≤ 105), iar v este un vector cu n elemente numere naturale, s, i 1 ≤ v[i] ≤ 109 pentru
orice i = 1, 2, . . . , n:

423

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm Process(v, n)

r ← 0
smax← 1
lcurr ← 1
s← v[1]
For i← 2, n execute

If Check(v[i-1], v[i]) then

lcurr ← lcurr + 1
s← s+ v[i]

Else

If lcurr > smax then

smax← lcurr
r ← s

Else

If lcurr = smax AND

s > r then

r ← s
EndIf

lcurr ← 1
s← v[i]

EndIf

EndIf

EndFor

If lcurr > smax then

r ← s
Else

If lcurr = smax AND s > r then

r ← s
EndIf

EndIf

Return r
EndAlgorithm

Algorithm Check(a, b)

suma← 0
sumb← 0
x← a
y ← b
While x > 0 execute

suma← suma+ (x MOD 10)
x← x DIV 10

EndWhile

While y > 0 execute

sumb← sumb+ (y MOD 10)
y ← y DIV 10

EndWhile

Return |suma− sumb| ≤ 2
EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Algoritmul găses,te suma maximă a unei secvent,e de lungime maximă cu proprie-
tatea că diferent,a dintre sumele cifrelor a oricare două elemente consecutive este
cel mult 2

B. Algoritmul returnează suma uneia dintre cele mai lungi secvent,e de elemente con-
secutive cu proprietatea că diferent,a dintre sumele cifrelor oricăror două elemente
din secvent, ă este mai mică decât 3

C. Pentru orice vector ı̂n care toate elementele au aceeas, i sumă a cifrelor, rezultatul
va fi suma tuturor elementelor

D. Dacă există mai multe secvent,e de lungime maximă cu proprietatea că diferent,a
dintre sumele cifrelor a oricare două elemente consecutive este cel mult 2 algorit-
mul returnează suma cea mai mare dintre sumele acestora

742. ✓ ?Se consideră algoritmul ceFace(v, st, dr, x), unde v este un vector de n numere
naturale (1 ≤ v[1], v[2], . . . , v[n] ≤ 105, 1 ≤ n ≤ 100), iar st, dr s, i x sunt numere
naturale (1 ≤ st, dr ≤ n), cel mult 105:

424

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm ceFace(v, st, dr, x)

If st = dr then

Return v[st]
EndIf

mid← (st+ dr) DIV 2
sumSt← 0, sumDr ← 0
For i← st, mid execute

sumSt← sumSt+ v[i]
EndFor

For i← mid+ 1, dr execute

sumDr ← sumDr + v[i]
EndFor

If sumSt < sumDr then

For i← 1, (dr −mid) execute

tmp← v[st+ i− 1]
v[st+ i− 1]← v[mid+ i]
v[mid+ i]← tmp

EndFor

EndIf

lV al← ceFace(v, st, mid, 1 - x)

rV al← ceFace(v, mid + 1, dr, 1 - x)

If x = 1 then

Return lV al + rV al
EndIf

If lV al ̸= 0 AND rV al ̸= 0 then

Return lV al ∗ rV al
Else

Return lV al + rV al
EndIf

EndAlgorithm

Precizat, i care dintre afirmat, iile de
mai jos sunt adevărate:

A. Algoritmul reorganizează cele
două jumătăt, i din vector com-
parând suma elementelor din
prima jumătate cu cea din a
doua. Dacă suma elementelor
din segmentul stâng este mai
mică decât cea din segmentul
drept, atunci se interschimbă
elementele corespunzătoare ale
celor două segmente

B. Algoritmul utilizează parame-
trul x pentru a determina ordi-
nea reorganizării segmentelor,
comparând sumele elementelor
din jumătăt, ile vectorului

C. În urma apelului ceFace([3,
1, 4, 1, 5, 9], 1, 6, 1)

algoritmul va returna valoarea
30

D. În urma apelului ceFace([7,
5, 8, 3, 6, 2], 1, 6, 1)

algoritmul va returna valoarea
115

743. ✓ ?Se consideră algoritmul Build(n, k, ant), unde n este un număr natural (1 ≤ n ≤
105), k reprezintă un număr natural s, i ant este un număr natural sau −1, ambele cel
mult 10:

425

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm Build(n, k, ant)

If k = 0 then

Return 1
EndIf

If n = 0 then

Return 0
EndIf

s← 0
ult← n MOD 10
rest← n DIV 10
v ← 1
If ant ≥ 0 then

If ult > ant then

v ← ((ult− ant) MOD 2 = 1)
Else

v ← ((ant− ult) MOD 2 = 1)
EndIf

EndIf

If v then

s← s+ Build(rest, k − 1, ult)
EndIf

s← s+ Build(rest, k, ant)
Return s

EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii
sunt adevărate:

A. În urma apelului Build(12345, 3,

-1) algoritmul va returna valoarea 5

B. În urma apelului Build(65678, 4,

-1) algoritmul va returna valoarea 3

C. În urma apelului Build(356438, 2,

-1) subsecvent,a cu numărul s,apte este
34

D. În urma apelului Build(97546, 2,

-1) algoritmul va returna valoarea 6

744. ✓ ?Se consideră algoritmul ceFace(n, k, a, b), unde n s, i k sunt numere naturale
(1 ≤ n, k ≤ 109), iar a s, i b sunt doi vectori cu câte n elemente (−103 < a[1], a[2], . . . , a[n],
b[1], . . . , b[n] < 103). Init, ial, toate elementele vectorului b sunt egale cu 0.

Algorithm ceFace(n, k, a, b)

b[1]← a[1]
For i← 2, n execute

b[i]← b[i− 1] + a[i]
EndFor

st← 0
dr ← 0
c← 0
For i← k, n execute

If b[i]− b[i− k] > c then

c← b[i]− b[i− k]
st← i− k + 1
dr ← i

EndIf

EndFor

For i← st, dr execute

Write a[i], " "

EndFor

EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Algoritmul afis,ează secvent,a de lun-
gime maximă din vectorul a aflată ı̂n
ordine crescătoare.

B. Algoritmul afis,ează secvent,a de lun-
gime s, i sumă maximă din vectorul a.

C. Algoritmul afis,ează secvent,a de lun-
gime k din vectorul a cu suma elemen-
telor maximă.

D. Algoritmul afis,ează secvent,a de lun-
gime k din vectorul a cu suma elemen-
telor exact egală cu k (dacă există, alt-
fel st > dr, deci nu se va afis,a nimic).

745. ✓ ?Se consideră algoritmul f(n), unde n este un număr natural (1 ≤ n ≤ 106).

Algorithm f(n)

For i← 1, n execute

j ← 1

426

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

While j < n execute

j ← j + i
EndWhile

EndFor

EndAlgorithm

Care este complexitatea timp a acestui algoritm?

A. O(n) B. O(n2) C. O(n ∗ log2 n) D. O(log2 n)

746. ✓ ?Se consideră algoritmul Prime(n), unde n este un număr natural nenul (1 ≤ n ≤
109).

Algorithm Prime(n)

r ← 0
p← 1
d← 2
While n > 1 execute

c← 0
While n MOD d = 0 execute

c← c+ 1
n← n DIV d

EndWhile

If c > 0 then

If c > 1 then

r ← r + d ∗ p
Else

r ← r + d ∗ d ∗ p
EndIf

p← p ∗ 10
EndIf

If d ∗ d > n AND n > 1 then

d← n
Else

d← d+ 1
EndIf

EndWhile

Return r
EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Pentru n = 72, algoritmul returnează
423

B. Pentru n = 100, algoritmul returnează
425

C. Algoritmul construies,te un număr ı̂n
care fiecare factor prim p care apare
de k ori ı̂n descompunere contribuie la
ı̂nceputul numărului cu p2 dacă k = 1,
respectiv cu p dacă k > 1

D. Pentru orice număr prim p, algoritmul
va returna p2

747. ✓ ?Se consideră algoritmul Base(n), unde n este un număr natural nenul (1 ≤ n ≤ 109).

427

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm Base(n)

r ← 0
For b← 2, 9 execute

nr ← n
s← 0
cifp← 0
While nr > 0 execute

c← nr MOD b
s← s+ c
If c MOD 2 = 0 AND c > 0 then

cifp← cifp+ 1
EndIf

nr ← nr DIV b
EndWhile

If s MOD b = 0 then

If cifp > 0 then

r ← r + b ∗ 10 + cifp
Else

r ← r + s
EndIf

EndIf

EndFor

Return r
EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Pentru fiecare bază de la 2 la 9,
dacă suma cifrelor numărului ı̂n
acea bază este divizibilă cu baza,
atunci se adaugă la rezultat, care
init, ial este 0, valoarea formată
din baza ı̂nmult, ită cu 10 s, i se
adună cu numărul de cifre pare
nenule, dacă există astfel de ci-
fre. În caz contrar, se adaugă
doar suma cifrelor

B. În urma apelului Base(16), algo-
ritmul returnează 62

C. În urma apelului Base(15), algo-
ritmul returnează 21

D. Pentru orice putere a lui 2, rezul-
tatul va cont, ine cel put, in o cifră
impară

748. ✓ ?Într-o bibliotecă, toate cele m cărt, i sunt aranjate pe un raft, fiecare carte având un
loc specific atribuit conform unui sistem de organizare. Fiecare carte i are pozit, ia sa
i pe raft. Deoarece bibliotecarii nu sunt strict, i cu ordinea, atunci când rearanjează
cărt, ile, acestea sunt plasate ı̂n primul spat, iu disponibil fără a respecta exact pozit, iile
init, iale.

Care este numărul posibilităt, ilor de rearanjare a cărt, ilor astfel ı̂ncât cel mult două
cărt, i să nu fie pe locul lor init, ial?

A.
m(m− 1)(m− 2)

6
+

m(m− 1)

2
+ 1

B.
m(m− 1)

2
+ 1

C.
m!

m− 2
+ 1

D. Nicio variantă de mai sus nu este co-
rectă.

749. ✓ ?Se consideră algoritmul Search(v, n), unde v este un vector sortat crescător cu n

elemente numere naturale (1 ≤ n ≤ 105), (1 ≤ v[1], v[2], . . . , v[n] ≤ 109).

428

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm Search(v, n)

c← 0
For i← 1, n execute

s← Algo(v[i])

st← i+ 1
dr ← n
While st ≤ dr execute

m← (st+ dr) DIV 2
If v[m] = v[i] * s then

c← c+ 1
Break

Else If v[m] < v[i] * s

then

st← m+ 1
Else

dr ← m− 1
EndIf

EndWhile

EndFor

Return c
EndAlgorithm

Algorithm Algo(x)

s← 0
While x > 0 execute

s← s+ (x MOD 10)
x← x DIV 10

EndWhile

Return s
EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Algoritmul numără câte elemente din vector au proprietatea că există un element
ulterior egal cu produsul dintre elementul curent s, i suma cifrelor sale

B. În urma apelului Search([2, 4, 8, 16, 32, 64], 6), algoritmul va returna
valoarea 3

C. Complexitatea algoritmului este O(n ∗ log n)
D. Pentru orice vector care cont, ine doar puteri ale lui 2, rezultatul va fi 0

750. ✓ ?Se consideră algoritmul ceFace(A, n) unde A este o matrice de dimensiune n *
n, iar n este număr natural nenul (1 ≤ n ≤ 105) s, i elementele matricei sunt numere
naturale astfel ı̂ncât (1 ≤ A[1][1], A[1][2], . . . , A[1][n], A[2][1], . . . , A[n][n] ≤ 105).

Algorithm ceFace(A, n)

r ← 0
For i← 1, n execute

maxl← A[i][1]
p← 1
For j ← 2, n execute

If A[i][j] > maxl then

maxl← A[i][j]
p← j

EndIf

EndFor

If Check(A, n, p, i, maxl)

then

r ← r +maxl
EndIf

EndFor

Return r
EndAlgorithm

Algorithm Check(A, n, c, exlin, val)

For i← 1, n execute

If i ̸= exlin AND A[i][c] ≥ val
then

Return False

EndIf

EndFor

Return True

EndAlgorithm

429

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

Care dintre următoarele afirmat, ii sunt adevărate?

A. Algoritmul calculează suma elementelor care au valoarea maximă atât pe linia
cât s, i pe coloana lor

B. Pentru matricea:

3 7 2
1 5 8
4 6 9

 s, i apelul algoritmului Algo(A, 3), acesta retur-

nează valoarea 16

C. Complexitatea algoritmului este O(n2)

D. Pentru orice matrice ı̂n care toate elementele de pe diagonala principală sunt
strict mai mari decât restul elementelor de pe coloanele lor, acestea vor fi incluse
ı̂n sumă

751. ✓ ?Se consideră algoritmul Cool(v, n), unde n este un număr natural nenul (1 ≤ n ≤
105), iar v este un vector cu n elemente numere naturale (0 ≤ v[1], v[2], . . . , v[n] ≤ 100).

Algorithm Cool(v, n)

r ← 0
For i← 1, n− 1 execute

If v[i] < v[i+1] then

temp← Algo(v[i])

If temp = Algo(v[i+1]) then

r ← r + 1
EndIf

EndIf

EndFor

Return r
EndAlgorithm

Algorithm Algo(x)

s← 0
While x > 0 execute

s← s+ (x MOD 10)
x← x DIV 10

EndWhile

Return s
EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Algoritmul numără câte perechi de elemente consecutive din vector sunt ı̂n ordine
strict crescătoare s, i au aceeas, i sumă a cifrelor

B. În urma apelului Cool([12, 21, 13, 31, 15], 5), algoritmul returnează 2,
adică perechile (12,21) s, i (13,31)

C. Pentru un vector sortat crescător ı̂n care toate elementele au aceeas, i sumă a
cifrelor, rezultatul va fi n-1

D. În urma apelului Cool([21, 30, 15, 24, 42, 51], 6), algoritmul returnează
valoarea 5

752. ✓ ?Se consideră algoritmul ceFace(a, n), unde a reprezintă matricea de adiacent, ă a
unui graf neorientat cu n noduri (2 ≤ n ≤ 1000). Dacă a[i][j] = 1, rezultă că există o
muchie de la nodul i la nodul j. v este un vector cu n elemente, init, ial toate egale cu
0.

430

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm ceFace(a, n)

c← 1
For i← 1, n execute

If v[i] = 0 then

d(i, a, v, n, c)
c← c+ 1

EndIf

EndFor

EndAlgorithm

Algorithm d(i, a, v, n, c)

v[i]← c
For j ← 1, n execute

If a[i][j] = 1 AND v[j] = 0 then

d(j, a, v, n, c)
EndIf

EndFor

EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Algoritmul ceFace(a,n) verifică dacă graful dat este conex;

B. Algoritmul d(i, a, v, n, c) realizează o parcurgere ı̂n adâncime a grafului,
notând ı̂n vectorul v un număr diferit pentru fiecare două noduri (i, j) care nu se
află ı̂n aceeas, i componentă conexă;

C. Algoritmul ceFace(a,n) verifică dacă graful dat este bipartit;

D. La finalul executării algoritmului ceFace(a,n), pentru orice nod i, v[i] va cont, ine
numărul de ordine al componentei conexe ı̂n care i se află ı̂n graf.

753. ✓ ?Se consideră doi vectori, A s, iB, de lungime n (1 ≤ n ≤ 100, iar 0 < A[1], . . . , A[n], B[1],
. . . , B[n] < 103). Fiecare două elemente aflate pe pozit, ii corespunzătoare ı̂n cei doi
vectori formează o pereche. Notăm cu d diferent,a dintre numărul de perechi ı̂n care
elementul din vectorul A este mai mare decât elementul din vectorul B s, i numărul de
perechi ı̂n care elementul din vectorul B este mai mare decât elementul din vectorul
A. Elementele celor doi vectori se rearanjează, astfel ı̂ncât valoare lui d să fie cât mai
mare.

Pentru care din următoarele seturi de date, valoarea finală a lui d este corectă?

A. n=5, A=[5 3 8 6 2], B=[7 4 5 9 3], d=2.

B. n=5, A=[5 3 8 6 2], B=[7 4 5 9 3], d=1.

C. n=10, A=[12 4 18 7 13 6 15 3 9 10], B=[8 14 11 6 16 5 17 2 10 7], d=8.

D. n=15, A=[50 10 25 35 5 40 15 60 75 55 30 65 70 45 20], B=[60 25 80 15 10 45
75 30 35 55 50 20 65 70 5], d=11.

754. ✓ ?Se consideră algoritmul Verifica(n, a), unde n este un număr natural (1 ≤ n ≤
103) s, i a este un vector cu n elemente numere ı̂ntregi (a[1], a[2], ..., a[n]), unde −100 ≤
a[i] ≤ 100, pentru i = 1, 2, ..., n:

431

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm Verifica(n, a)

m← n DIV 2
If n MOD 2 = 0 then

k ← 1
Else

k ← 2
EndIf

For i← m+ k,n execute

j ← n− (i−m) + k
If i < j then

aux← a[i]
a[i]← a[j]
a[j]← aux

EndIf

EndFor

For i← 1,m execute

If a[i] ̸= a[n− i+ 1] then

Return False

EndIf

EndFor

Return True

EndAlgorithm

Se cere să se determine pentru ce valori ale
vectorului a, ı̂n urma apelului, algoritmul
Verifica(n, a) returnează True.

A. a = [1, 2, 3, 4, 3, 2, 1];

B. a = [1, 2, 3, 3, 3, 1, 2, 1];

C. a = [1, 2, 3, 1, 2];

D. a = [3, 6, 3, 6, 3, 6, 3, 6].

755. ✓ ?Se consideră algoritmul ceFace(n, p), unde n este un număr natural nenul (1 ≤
n ≤ 105), iar p este un număr natural nenul.

Algorithm ceFace(n, p)

c← 0
For i← 1, n execute

ndiv ← Counter(i)
If ndiv ≥ p then

c← c+ 1
EndIf

EndFor

Return c
EndAlgorithm

Algorithm Counter(n)

t← 0
i← 1
While i ∗ i ≤ n execute

If n MOD i = 0 then

If i ∗ i ̸= n then

t← t+ 2
Else

t← t+ 1
EndIf

EndIf

i← i+ 1
EndWhile

Return t
EndAlgorithm

Precizat, i care dintre afirmat, iile următoare referitoare la algoritmul ceFace(n, p) sunt
adevărate:

A. Algoritmul numără câte numere din intervalul [1, n] au cel put, in p divizori

B. Algoritmul ceFace(n, p) determină numărul cu cei mai mult, i divizori

C. În urma apelului ceFace(10, 4), algoritmul returnează 3

D. În urma apelului ceFace(16, 2), algoritmul returnează 15

756. ✓ ?Se consideră algoritmul Magic(n, p), unde n este un număr natural nenul (1 ≤
n ≤ 106), iar p este un număr natural nenul.

432

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm Magic(n, p)

r ← 0
For i← 1, n execute

d← Find(i)
If d MOD p = 0 then

r ← r + 1
EndIf

EndFor

Return r
EndAlgorithm

Algorithm Find(n)

s← 1 + n
i← 2
While i ∗ i ≤ n execute

If n MOD i = 0 then

If i ∗ i ̸= n then

s← s+ i+(n DIV i)
Else

s← s+ i
EndIf

EndIf

i← i+ 1
EndWhile

Return s
EndAlgorithm

Ce valoare va fi returnată ı̂n urma apelului Magic(45, 2) ?

A. 35 B. 20 C. 17 D. 47

757. ✓ ?Se consideră algoritmul X(v, n, k), unde n este un număr natural (1 ≤ n ≤ 104),
v este un vector cu n elemente numere ı̂ntregi (−100 ≤ v[1], v[2], . . . , v[n] ≤ 100), iar
k este un număr natural (0 ≤ k ≤ 103):

Algorithm X(v, n, k)

s← Build(v, n)
c← 0
For i← 1, n execute

For j ← 1, i execute

If s[i]− s[j − 1] = k then

c← c+ 1
EndIf

EndFor

EndFor

Return c
EndAlgorithm

Algorithm Build(v, n)

s[1]← 0
For i← 2, n execute

s[i]← s[i− 1] + v[i]
EndFor

Return s
EndAlgorithm

Care dintre următoarele afirmat, ii referitoare la algoritmul X(v, n, k) sunt adevărate?

A. În urma apelului X([1, 2, 3, 4, 5], 5, 2), algoritmul returnează 2

B. Algoritmul numără câte subsecvent,e ale vectorului v au suma exact k

C. În urma apelului X([2, -1 ,3, 5, -2, 4], 6, 4), algoritmul returnează 2

D. Algoritmul are o complexitate de timp de O(n2)

758. ✓ ?Se consideră algoritmul ceFace(v, n, idx, sumc, k, c), unde n este un număr
natural (1 ≤ n ≤ 104), v este un vector cu n elemente numere ı̂ntregi (v[1], . . . , v[n]),
iar k, sumc, c s, i idx sunt numere naturale:

433

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm ceFace(v, n, idx, sumc, k)

If sumc = k then

Return 1
EndIf

If idx > n OR sumc > k then

Return 0
EndIf

res1 ← ceFace(v , n , idx + 1 , sumc +
v[idx] , k)

res2← ceFace(v , n , idx+ 1 , sumc , k)
Return res1 + res2

EndAlgorithm

Algorithm Start(v, n, k)

res← ceFace(v , n , 1 , 0 , k)
Return res

EndAlgorithm

Precizat, i care dintre afirmat, iile următoare sunt adevărate:

A. Algoritmul Start(v, n, k) returnează numărul de subseturi ale vectorului v a
căror sumă este exact k

B. Complexitatea de timp a algoritmului este O(2n)

C. Algoritmul funct, ionează corect doar dacă toate elementele vectorului v sunt nu-
mere pozitive

D. Pentru apelul Start([2, 5, 4, 6, 7, 9], 6, 15), algoritmul returnează 4

759. ✓ ?Luca a ı̂nvăt,at la ora de informatică despre backtracking s, i cum poate fi utilizat
pentru a genera toate submult, imile unui vector de numere ı̂ntregi. Luca trebuie să
identifice un algoritm care determină toate submult, imile unui vector ale căror sume să
fie pozitive s, i să se ı̂ncadreze ı̂ntr-o limită maximă m. Algoritmul căutat de Luca tre-
buie să returneze toate submult, imile valide. Variabilele p, s, t, m sunt numere naturale
(1 ≤ p, s, t,m ≤ 104). Vectorul v are n elemente numere naturale (v[1], v[2], . . . , v[n])
s, i reprezintă mult, imea numerelor din care se pot forma submult, imile, iar vectorul sol
este un vector ı̂n care fiecare element are valoarea 0 sau 1, utilizat pentru a marca
elementele incluse ı̂ntr-o submult, ime.

Care dintre algoritmii de mai jos este cel care identifică corect s, i eficient toate submult, imile
care respectă condit, iile date?

A.
Algorithm Find(p, s, t, m)

If p > n then

If s > 0 AND s ≤ m then

For i← 0, n− 1 execute

If sol[i] = 1 then

Write v[i] ” ”
EndIf

EndFor

Write newLine
t← t+ 1

EndIf

Return

EndIf

sol[p]← 1
Find(p + 1, s + v[p], t, m)

sol[p]← 0
Find(p + 1, s, t, m)

EndAlgorithm

B.
Algorithm Find(p, s, t, m)

If p = n then

If s > 0 AND s ≤ m then

For i← 1, n execute

If sol[i] = 1 then

Write v[i] ” ”
EndIf

EndFor

Write newLine
t← t+ 1

EndIf

Return

EndIf

sol[p]← 1
news← s+ v[p]
If news ≤ m then

Find(p + 1, news, t, m)

EndIf

EndAlgorithm

434

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

C.
Algorithm Find(p, s, t, m)

If p > n then

If s > 0 AND s ≤ m then

For i← 1, n execute

If sol[i] = 1 then

Write v[i] ” ”
EndIf

EndFor

Write newLine
t← t+ 1

EndIf

Return

EndIf

If s+ v[p] ≤ m then

sol[p]← 1
Find(p + 1, s + v[p], t, m)

EndIf

sol[p]← 0
Find(p + 1, s, t, m)

EndAlgorithm

D.
Algorithm Find(p, s, t, m)

If p > n then

If s > 0 AND s ≤ m then

For i← 1, n execute

If sol[i] = 1 then

Write v[i] ” ”
EndIf

EndFor

Write newLine
t← t+ 1

EndIf

Return

EndIf

sol[p]← 1
Find(p + 1, s + v[p], t, m)

If s+ v[p] ≤ m then

For i← 1, n execute

If sol[i] = 1 then

Write v[i]
EndIf

EndFor

Write newLine
t← t+ 1

EndIf

sol[p]← 0
Find(p + 1, s, t, m)

EndAlgorithm

760. ✓ ?Se consideră algoritmul func(mat, v, x, y, d) unde x s, i y reprezintă linia, res-
pectiv coloana unui element dintr-o matricemat, de dimensiuni n×n (mat[1][1],mat[1][2],
. . . ,mat[n][n]). Dacă pe pozit, ia (x, y) (1 ≤ x, y ≤ n)din matricea mat se află valoarea
0, atunci considerăm că acesta reprezintă o cale validă. Dacă pe pozit, ia (x, y) se află
valoarea 1, atunci acesta este un obstacol, iar dacă pe pozit, ia (x, y) se află valoarea
2, atunci aceasta reprezintă o comoară ce trebuie găsită. Variabila d este un număr
natural (1 ≤ d ≤ 105). De asemenea, se dă o matrice adit, ională v, de dimensiuni n×n
(v[1][1], v[1][2], . . . , v[n][n]), cu toate elementele, init, ial, egale cu 0. Variabila m este
init, ializată cu 106.

Algorithm func(mat, v, x, y, d, n, m)

If x < 1 OR y < 1 OR x > n OR y > n OR mat[x][y] = 1 OR v[x][y] then

Return

EndIf

If mat[x][y] = 2 then

If d < m then

m← d
EndIf

Return

EndIf

v[x][y]← True

func(mat, v, x + 1, y, d + 1, n, m)

func(mat, v, x - 1, y, d + 1, n, m)

func(mat, v, x, y + 1, d + 1, n, m)

func(mat, v, x, y - 1, d + 1, n, m)

v[x][y]← false

EndAlgorithm

435

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

Care dintre următoarele afirmat, ii sunt adevărate?

A. Algoritmul func(mat, v, x, y, d, n, m) găses,te cel mai lung drum posibil ı̂n
matricea mat pentru a ajunge la comoară.

B. Pentru matricea mat:


0 0 1 0 2
1 0 1 0 1
0 0 0 0 0
1 0 1 1 0
0 0 0 1 0

, după apelul func(mat, v, 3, 1, 0,

5, m), variabila m va avea valoarea 6.

C. Algoritmul func(mat, v, x, y, d, n, m) găses,te cel mai scurt drum posibil
ı̂n matricea mat pentru a ajunge la comoară

D. Algoritmul func(mat, v, x, y, d, n, m) compară, pe rând, fiecare element
din matricea mat s, i ret, ine ı̂n d cea mai mică valoare din matrice.

761. ✓ ?Se consideră algoritmul ceFace(n, x, len, last), unde n este un număr natural
(1 ≤ n ≤ 104) s, i x, len, last sunt, de asemenea, numere naturale. sol este un vector
(sol[1], sol[2], . . . , sol[n])

Algorithm ceFace(n, x, len, last)

If len = n then

For i← 0, n− 1 execute

Write sol[i+ 1]
EndFor

Write newLine

Return 1
EndIf

count← 0
For d← 1, x execute

If x MOD d = 0 AND (len = 0 OR last ∗ d < x) then

sol[len+ 1]← d
count← count+ ceFace(n, x, len + 1, d)

EndIf

EndFor

Return count
EndAlgorithm

Care dintre următoarele afirmat, ii referitoare la algoritmul ceFace(n, x, len, last)

sunt adevărate?

A. Pentru apelul ceFace(4, 9, 0, 1), algoritmul returnează valoarea 9

B. Algoritmul ceFace(n, x, len, last) determină toate s, irurile de n elemente
ale mult, imii divizorilor lui x, ordonate crescător, pentru care suma oricăror două
elemente consecutive este mai mică decât x

C. În urma apelului ceFace(5, 10, 0, 1), s, irul al 8-lea care va fi generat este
11212

D. Algoritmul ceFace(n, x, 0, 1) determină toate secvent,ele de lungime n for-
mate din divizori ai lui x, ı̂n care produsul oricăror două elemente consecutive
este mai mic decât x

436

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

Testul 5

762. ✓ ?Fie variabilele x = 14, y = 5 şi z = 2. Ce valoare va avea expresia următoare?(
(x+ 1) MOD (y − 1) + z

)
DIV

(
(x+ 1) DIV (z + 1)

)
+ ((y − 1) MOD z)

A. 2 B. 1 C. 4 D. 5

763. ✓ ?Se consideră un arbore cu 12 noduri reprezentat prin vectorul de tat, i t = (5, 1, 5,

3, 0, 4, 1, 7, 11, 7, 3, 4). Care dintre următoarele afirmat, ii sunt adevărate?

A. Există un lanţ ı̂ntre nodurile 6 şi 9 care nu conţine rădăcina arborelui

B. Nodurile 2 şi 10 se află ı̂n subarbori diferiţi ai rădăcinii arborelui

C. Suma valorilor cu care sunt marcate frunzele arborelui este 47

D. Lungimea lanţului dintre nodurile 6 şi 10 este 5

764. ✓ ?Se consideră expresia logică: (E1 AND E2) OR (NOT (E3 OR E4)), unde
E1, E2, E3, E4 sunt expresii logice cu valorile adevărat (1) sau fals (0). Pentru ce valori
ale variabilelor E1, E2, E3, E4 de mai jos, expresia este adevărată?

A. E1 = 1, E2 = 0, E3 = 1, E4 = 0

B. E1 = 1, E2 = 1, E3 = 0, E4 = 0

C. E1 = 1, E2 = 1, E3 = 1, E4 = 1

D. E1 = 1, E2 = 0, E3 = 1, E4 = 1

765. ✓ ?Se consideră algoritmul What(a, n, i, j), unde n este lungimea unui vector a
format din n elemente ı̂ntregi (a[1], a[2], ..., a[n], 1 ≤ i ≤ j ≤ n ≤ 103).

Algorithm What(a, n, i, j)

aux[1]← a[1]
For k ← 2,n execute

aux[k]← aux[k − 1] + a[k]
EndFor

If i = 1 then

Return aux[j]
Else

Return aux[j]− aux[i− 1]
EndIf

EndAlgorithm

Ce face algoritmul?

A. Calculează suma elementelor din in-
tervalul [i, j]

B. Determină numărul de elemente im-
pare din intervalul [i, j]

C. Găses,te valoarea maximă dintre ele-
mentele din intervalul [i, j]

D. Inversează ordinea elementelor din
vectorul init, ial

766. ✓ ?Se consideră algoritmul Maze(m, n, i, j), unde n este dimensiunea unei matrice
pătratice m de dimensiune n x n (1 ≤ i, j ≤ n ≤ 102), iar m este o matrice binară
(m[1][1],m[1][2], ...,m[n][n]) ı̂n care 1 reprezintă drum s, i 0 reprezintă obstacol.

Algorithm Maze(m, n, i, j)

If i = n AND j = n then

Return True

EndIf

If i ≤ n AND j ≤ n AND m[i][j] = 1 then

If Maze(m, n, i + 1, j) OR Maze(m, n, i, j + 1) then

437

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

Return True

EndIf

EndIf

Return False

EndAlgorithm

Ce face algoritmul Maze(m, n, i, j)?

A. Maze(m, n, 1, 1) determină dacă există un drum de la (1, 1) la (n, n) doar prin
deplasări spre dreapta s, i ı̂n jos

B. Maze(m, n, 1, 1) determină dacă există un drum de la (n, n) la (1, 1) doar prin
deplasări spre stânga s, i ı̂n sus

C. Calculează numărul de drumuri posibile până la ies, ire

D. Afis,ează drumul optim găsit ı̂n matrice

767. ✓ ?Se consideră o matrice pătratică de dimensiune n × n s, i un algoritm g(nr) care
primes,te ca parametru un număr s, i returnează 1 dacă nr este par s, i 0 altfel. Care
dintre următoarele abordări determină dacă matricea este formată numai din numere
pare?

A. Verificăm dacă algoritmul g(nr), aplicată pe fiecare element al matricei, retur-
nează ı̂ntotdeauna 1

B. Verificăm dacă suma valorilor returnate de algoritmul g(nr), aplicată pe fiecare
element al matricei, este egală cu numărul total de elemente ale matricei

C. Verificăm dacă algoritmul g(nr), aplicată pe fiecare element al matricei, retur-
nează cel put, in o dată 1

D. Aplicăm algoritmul g(nr) pe elemente alese aleatoriu din matrice până când suma
valorilor egale cu 1 este mai mică decât numărul total de elemente ale matricei

768. ✓ ?Se consideră algoritmul algorithm(n),
unde n este număr natural nenul (1 ≤ n ≤
103).
Care dintre următoarele afirmaţii sunt
adevărate?

A. Algoritmul marchează ı̂n vectorul p va-
lorile prime cu 0, iar pe cele compuse
cu 1

B. Algoritmul determină numărul de divi-
zori ai fiecărui număr mai mic sau egal
cu n

C. Dacă n = 20, atunci p[2] = 1

D. Dacă n = 20, atunci p[10] = 1

Algorithm algorithm(n)

For i← 1, n execute

p[i]← 0
EndFor

p[1]← 1
For i← 2,

√
n execute

If p[i] = 0 then

For j ← 2, n DIV i execute

p[i ∗ j]← 1
EndFor

EndIf

EndFor

EndAlgorithm

438

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

769. ✓ ?Se consideră algoritmul J(n,m), unde n şi m sunt
numere naturale nenule(1 ≤ n,m ≤ 100).
Ce complexitate timp are algoritmul?

A. O(mlog3n)

B. O(3logmn)

C. O(3lognm)

D. O(nlogm3)

Algorithm J(n, m)

If n ≤ 1 then

Return 1

Else

n← n DIV m
J(n,m)
J(n,m)
J(n,m)

EndIf

EndAlgorithm

770. ✓ ?Se consideră algoritmii A(a, n) s, i B(a, n), unde n este lungimea unui vector (1 ≤
n ≤ 103)a format din n elemente ı̂ntregi (−100 ≤ a[1], a[2], ..., a[n] ≤ 100).

Algorithm A(a, n)

For i← 1, n execute

For j ← 1, n− i execute

If a[j]≥a[j + 1] then

swap(a[j], a[j + 1])
EndIf

EndFor

EndFor

EndAlgorithm

Algorithm B(a, n)

For i← 1, n execute

min← i
For j ← i+ 1, n execute

If a[j] < a[min] then

min← j
EndIf

EndFor

If min ̸= i then

swap(a[i], a[min])
EndIf

EndFor

EndAlgorithm

Ce instruct, iune ar putea fi ı̂nlocuită ı̂n algoritmul A(a, n) astfel ı̂ncât rezultatul final
al vectorului să fie acelas, i ca cel obt, inut din B(a, n)?

A. Înlocuirea a[j]≥a[j + 1] cu a[j] > a[j + 1]

B. Înlocuirea a[j]≥a[j + 1] cu a[j] < a[j + 1]

C. Nu trebuie ı̂nlocuit nimic, algoritmii sunt deja echivalent, i

D. Înlocuirea a[j]≥a[j + 1] cu a[j] ̸= a[j + 1]

771. ✓ ?Se consideră algoritmul P (k, n, a, f), unde k este un număr natural (k ≤ 20) cu
valoarea iniţială egală cu 1, n număr natural (n ≤ 20), iar a şi f sunt 2 vectori de
numere naturale de lungime n, f având elementele iniţializate cu 0.

Algorithm P(k, n, a, f)

If k = n+ 1 then

For i← 1, n execute

Write a[i], ’ ’

EndFor

Write newline

Else

For i← 1, n execute

If f [i] = 0 AND i ̸= k then

a[k]← i
f [i]← 1
P (k + 1, n, a, f)

439

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

f [i]← 0
EndIf

EndFor

EndIf

EndAlgorithm

Care dintre următoarele afirmaţii sunt adevărate?

A. Algoritmul va afişa 2 soluţii dacă n = 3

B. Algoritmul va afişa 24 de soluţii dacă n = 4

C. Algoritmul generează permutările şirului numerelor de la 1 la n {1, 2, ..., n}, pen-
tru care valoarea elementului este diferită de poziţia pe care se află aceasta

D. Algoritmul generează permutările şirului numerelor de la 1 la n {1, 2, ..., n}, pen-
tru care valoarea fiecărui element este mai mare decât pozit, ia sa

772. ✓ ?Se consideră algoritmul Counter(a, n), unde n este un număr natural nenul (1 ≤
n ≤ 103), iar a este un vector cu n elemente numere naturale (a[1], a[2], . . . , a[n], 0 ≤
a[i] ≤ 104, i← 1, 2, . . . , n). Algoritmul swap(x, y), unde x s, i y sunt numere naturale,
interschimbă cele două numere.

Algorithm Counter(a, n)

For i← 1, n execute

For j ← 1, n− i execute

If a[j] > a[j + 1] then

swap(a[j], a[j + 1])
EndIf

EndFor

EndFor

EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Dacă toate elementele sunt egale, se
vor efectua 0 interschimbări

B. Dacă s, irul este sortat crescător, se vor
efectua 0 interschimbări

C. Dacă s, irul este sortat descrescător, se
vor efectua n(n− 1) interschimbări

D. Nicio variantă nu este adevărată

773. ✓ ?Se consideră algoritmul Sky(a, n), unde n este un număr natural (1 ≤ n ≤ 104),
iar a este un vector cu n elemente numere ı̂ntregi (−109 < a[1], a[2], . . . , a[n] < 109).
Care dintre următoarele afirmat, ii sunt adevărate?

Algorithm Sky(a, n)

For i← 1, n− 1 execute

min← i
For j ← i+ 1, n execute

If a[j] < a[min] then

min← j
EndIf

EndFor

If min ̸= i then

swap(a[i], a[min])
EndIf

EndFor

EndAlgorithm

A. Complexitatea ı̂n cel mai rău caz este
O(n2)

B. Complexitatea ı̂n cel mai bun caz este
O(n log n)

C. Complexitatea ı̂n cel mai bun caz este
O(n2)

D. Algoritmul face ı̂ntotdeauna acelas, i
număr de comparat, ii, indiferent de or-
dinea elementelor

774. ✓ ?Se consideră algoritmul Order(a, n), unde n este număr natural (1 ≤ n ≤ 104),
iar a este un vector cu n elemente numere naturale (a[1], a[2], ..., a[n], unde 1 ≤ a[i] ≤

440

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

103 pentru i = 1, 2, ..., n). Valoarea lui n este de forma 2k, unde k este un număr
natural.
Care dintre următoarele afirmat, ii sunt adevărate?

Algorithm Order(a, n)

If n = 1 then

Return

EndIf

For i← 1, n DIV 2 execute

b[i]← a[2 ∗ i− 1]
c[i]← a[2 ∗ i]

EndFor

Order(b, n DIV 2)
Order(c, n DIV 2)
For i← 1, n DIV 2 execute

a[i]← b[i]
a[n DIV 2 + i]← c[i]

EndFor

EndAlgorithm

A. Pentru n = 16, elementul init, ial aflat
pe pozit, ia 7 ı̂n a se va afla la final pe
pozit, ia 6

B. Dacă n = 512, elementul init, ial aflat
pe pozit, ia 124 ı̂n a se va afla la final
tot pe pozit, ia 124

C. Numărul de pozit, ii pe care ,după exe-
cutarea algoritmului, se vor afla ele-
mentele identice este 2k/2

D. Numărul de pozit, ii pe care ,după exe-
cutarea algoritmului, se vor afla ele-
mentele identice este 2(k+1)/2

775. ✓ ?Fie enunt,ul de la problema 37. Care este complexitatea algoritmului Order(a, n)?

A. O(n log n) B. O(n2) C. O(n ∗ k) D. O(n)

776. ✓ ?Se dă algoritmul ceFace(n, s), ı̂n care n este un număr natural (1 ≤ n ≤ 106).
Vectorul s cont, ine n elemente, fiecare fiind init, ializat cu valoarea 0.

Algorithm ceFace(n, s)

For i← 1, n execute

For j ← i, n, i execute

s[j]← s[j] + i
EndFor

EndFor

EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Pentru n = 10000, s[518] = 394

B. Pentru n = 10000, s[518] = 912

C. Pentru n = 10000, s[12] = 28

D. Pentru n = 12132, s[7129] = 7130

777. ✓ ?Fie algoritmul Repeta(n), unde n este un număr natural (1 ≤ n ≤ 109).

Algorithm Repeta(n)

If n < 10 then

Return n

EndIf

s← Repeta(n DIV 10)
+n MOD 10

If s ≥ 10 then

Return Repeta(s)
EndIf

EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Pentru n = 178342, algoritmul returnează
valoarea 7

B. Pentru n = 178342, algoritmul returnează
valoarea 6

C. Pentru n = 2213812438213124398431223,
algoritmul returnează valoarea 1

D. Algoritmul returnează valoare lui n MOD 9

441

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

778. ✓ ?Se dă următorul arbore binar. Care din-
tre următoarele şiruri de noduri reprezintă
traversarea acestuia ı̂n inordine?

A. 6, 1, 5, 7, 2, 8, 9, 3, 4, 10, 11

B. 2, 7, 5, 1, 6, 4, 3, 8, 9, 11, 10

C. 1, 6, 5, 7, 2, 8, 9, 3, 4, 10, 11

D. 1, 6, 5, 7, 2, 9, 8, 3, 4, 10, 11

2

7

5

1

6

4

3

8

9

11

10

Problemele 779. s, i 780. se referă la următorul scenariu. Oamenii de s,tiint, ă au con-
struit un labirint special pentru s,oricelul Algernon, reprezentat sub forma unei matrice
de dimensiuni n× n. Fiecare celulă a matricei are dimensiunea 1× 1, iar pozit, ia unei
celule este identificată prin coordonatele (i, j), unde i este linia, iar j este coloana.

Algernon ı̂ncepe traseul din celula (1, 1) (colt,ul stânga-sus) s, i se deplasează conform
următoarelor reguli:

(a) Se deplasează spre dreapta cât timp nu iese din matrice sau ajunge ı̂ntr-o celulă
deja vizitată

(b) La finalul liniei, schimbă direct, ia s, i se deplasează ı̂n jos

(c) Când atinge marginea de jos sau o celulă deja vizitată, continuă spre stânga

(d) La finalul liniei, schimbă direct, ia s, i se deplasează ı̂n sus, cât timp nu ı̂ntâlnes,te
o celulă deja vizitată

Algernon continuă acest traseu ı̂n spirală, schimbând direct, ia după regulile de mai sus,
până când ajunge la ultima celulă nevizitată.

Observat, ie: Algernon nu poate trece de două ori prin aceeas, i celulă.

779. ✓ ?Care dintre următoarele afirmat, ii este adevărată?:

A. Pentru n = 7, ultima celulă vizitată de Algernon este situată la coordonatele
(4, 4)

B. Pentru n = 7, ultima celulă vizitată de Algernon este situată la coordonatele
(3, 3)

C. Pentru n = 6, ultima celulă vizitată de Algernon este situată la coordonatele
(4, 3)

D. Pentru n = 6, ultima celulă vizitată de Algernon este situată la coordonatele
(3, 4)

780. ✓ ?Pentru n = 50, a 1710-a celulă vizitată de Algernon este situată la coordonatele:

A. (19, 5) B. (12, 14) C. (18, 11) D. (14, 23)

Problemele 781. s, i 782. se referă la următorii algoritmi: Find(a, n, x) s, i Next(n) ,
unde vectorul a are lungimea n, iar n s, i x sunt numere naturale nenule(1 ≤ n, x ≤ 106).
Pentru fiecare i de la 1 la n, a[i] = i.

442

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm Next(n)

first ← 1
While first < n execute

first ← first ∗2
EndWhile

If first ≥ n then

first ← first DIV 2
EndIf

Return first

EndAlgorithm

Algorithm Find(a, n, x)

poz ← 0
i ← Next(n)

While i ̸= 0 execute

If a[poz + i] ≤ x then

poz ← poz + i

EndIf

i ← i DIV 2

EndWhile

If a[poz] = x then

Return poz

EndIf

Return -1

EndAlgorithm

781. ✓ ?Complexitatea algoritmului Find este:

A. O(log n)

B. O(n)

C. O(n log n)

D. O(n2)

782. ✓ ?Pentru n = 13254, x = 8342, de câte ori
se va schimba valoarea lui poz ı̂n algoritmul
Find (init, ializarea variabilei nu se consideră
schimbare)?

A. 5 B. 6 C. 7 D. 8

783. ✓ ?Se consideră algoritmul F (n), unde n este
număr natural(1 ≤ n ≤ 104).
Care dintre următoarele afirmat, ii sunt
adevărate?

A. Şirul de valori generate este identic cu
cel al lui Fibonacci

B. Complexitatea ca timp de executare a
algoritmului este O(2n)

C. F(5) = 3

D. F(7) = 8

Algorithm F(n)
If n ≤ 2 then

Return 1

Else

s← 0
If (n− 1) MOD 3 ̸= 0 then

s← s+ F (n− 1)
EndIf

If (n− 2) MOD 3 ̸= 0 then

s← s+ F (n− 2)
EndIf

If (n− 3) MOD 3 ̸= 0 then

s← s+ F (n− 3)
EndIf

Return s
EndIf

EndAlgorithm

443

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

784. ✓ ?Se consideră algoritmul alt(n), unde n este
număr natural (1 ≤ n ≤ 106).
Care va fi rezultatul afişat ı̂n urma apelului
alt(123456)?

A. 024357

B. 357420

C. 420357

D. 420753

Algorithm alt(n)

If n ̸= 0 then

If n MOD 2 = 0 then

alt(n DIV 10)
Write (n MOD 10 + 1)

Else

Write (n MOD 10− 1)
alt(n DIV 10)

EndIf

EndIf

EndAlgorithm

785. ✓ ?Se consideră un număr natural n şi n matrice Mp,q cu p linii şi q coloane, p, q ∈ N∗.
Fie produsul matricelor P [p1][qn] = M [p1][q1] ∗ M [p2][q2] ∗ ... ∗ M [pn][qn], cu q1 =
p2, q2 = p3, ..., qn−1 = pn. Prin produs scalar, vom ı̂nţelege produsul dintre o linie a
primei matrice şi o coloană a celei de a doua matrice.
Care dintre următoarele afirmaţii sunt adevărate?

A. Pentru n = 4 şi matricele M6,5,M5,4,M4,3 şi M3,2, numărul minim de produse
scalare necesare pentru calcularea matricei P6,2 este 124

B. Pentru n = 3 şi matricele M1,2,M2,3 şi M3,2, numărul minim de produse scalare
necesare pentru calcularea matricei P1,2 este 16

C. Numărul total de moduri ı̂n care pot fi făcute ı̂nmulţirile a n + 1 matrice, prin
parantetizarea expresiei produsului acestora, fără a schimba ordinea matricelor

este
1

n+ 1
Cn

2n

D. Numărul total de moduri ı̂n care pot fi făcute ı̂nmulţirile a n + 1 matrice, prin
parantetizarea expresiei produsului acestora, fără a schimba ordinea matricelor
este Cn

2n+1

444

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

Testul 6

786. ✓ ?Fie variabilele x = 15, y = 6 şi z = 3. Ce valoare va avea expresia următoare?(
x MOD y + z

)
DIV

(
(x− 2) + y

)
+

(
(z + 1) MOD (y + 2)

)
A. 2 B. 3 C. 4 D. 5

787. ✓ ?Se consideră un arbore cu 12 noduri reprezentat prin vectorul de tat, i t = (2, 7,

7, 6, 1, 3, 0, 9, 6, 9, 2, 8). Care dintre următoarele afirmat, ii sunt adevărate?

A. Arborele dat are numărul frunzelor egal cu cel al nodurilor interioare

B. Nodurile 4 şi 9 sunt fraţi

C. Există un lanţ ı̂ntre nodurile 10 şi 11 care nu conţine rădăcina arborelui

D. Lungimea lanţului dintre nodurile 5 şi 9 este 6

788. ✓ ?Se consideră algoritmul Star(a, n, i, j), unde n este lungimea unui vector a
(1 ≤ i ≤ j ≤ n < 100) format din n elemente ı̂ntregi (−105 < a[1], a[2], ..., a[n] < 105).

Algorithm Star(a, n, i, j)

If a[1] MOD 2 = 0 then

l[1]← a[1]
Else

l[1]← 0
EndIf

For k ← 2 , n execute

If a[k] MOD 2 = 0 then

l[k]← l[k − 1] + a[k]
Else

l[k]← l[k − 1]
EndIf

EndFor

If i = 1 then

Return l[j]
Else

Return l[j]− l[i− 1]
EndIf

EndAlgorithm

Ce face algoritmul?

A. Calculează suma tuturor elementelor din vector

B. Calculează suma elementelor pare din intervalul [i, j]

C. Determină numărul elementelor pare din intervalul [i, j]

D. Sortează vectorul crescător

789. ✓ ?Se consideră numerele reale x, a s, i b, unde a < b. Care dintre următoarele expresii
logice este adevărată dacă s, i numai dacă x ∈ (a, b)?

445

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

A. (x > a) AND (x < b)

B. NOT ((x > a) AND (x < b))

C. (x > a) OR (x < b)

D. NOT (x ≤ a) AND NOT (x ≥
b)

790. ✓ ?Se consideră algoritmul s(m, n), unde n este dimensiunea unei matrice pătratice m
de dimensiune n x n, iarm este o matrice cu elemente ı̂ntregi (−104 < m[1][1],m[1][2], ...,
m[n][n] < 104):

Algorithm s(m, n)

For i← 1 , n execute

For j ← i+ 1 , n execute

temp← m[i][j]
m[i][j]← m[j][i]
m[j][i]← temp

EndFor

EndFor

EndAlgorithm

Ce face algoritmul s(m, n)?

A. Transformă matricea prin interschimbarea liniilor cu coloanele, transpunând ma-
tricea

B. Inversează elementele matricei pe diagonală principală s, i secundară

C. Schimbă doar elementele de deasupra diagonalei principale cu cele de sub diago-
nala principală

D. Permută aleator elementele matricei fără a păstra vreo proprietate specifică

791. ✓ ?Se consideră algoritmul Compute(A, B, C, n), undeA (A[1][1], A[1][2], . . . , A[n][n])
s, i B (B[1][1], B[1][2], . . . , B[n][n]) sunt două matrice de dimensiune n x n s, i C este
matricea rezultat.(C[1][1], C[1][2], . . . , C[n][n])

Algorithm Compute(A, B, C, n)

For i← 1 , n execute

For j ← 1 , n execute

C[i][j]← 0
For k ← 1 , n execute

C[i][j]← C[i][j] +A[i][k] ∗B[k][j]
EndFor

EndFor

EndFor

EndAlgorithm

Ce face algoritmul Compute(A, B, C, n)?

A. Sortează elementele din matricea A s, i B ı̂nainte de adunarea lor

B. Calculează suma elementelor din matricea A s, i matricea B

C. Înmult,es,te elementele corespunzătoare din A s, i B fără combinare

D. Înmult,es,te cele două matrice pătratice folosind metoda standard de ı̂nmult, ire a
matricelor

446

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

792. ✓ ?Se dă următorul arbore binar. Care din-
tre următoarele şiruri de noduri reprezintă
traversarea acestuia ı̂n preordine?

A. 7, 2, 5, 11, 8, 4, 9, 6, 3, 1, 10

B. 7, 2, 5, 11, 8, 4, 3, 9, 6, 1, 10

C. 5, 11, 2, 4, 8, 7, 9, 6, 3, 1, 10

D. 11, 5, 4, 8, 2, 6, 9, 10, 1, 3, 7

7

2

5

11

8

4

3

9

6

1

10

793. ✓ ?Se consideră algoritmul Complex(a, n), unde a este un vector de n elemente numere
ı̂ntregi (−104 < a[1], a[2], . . . , a[n] < 104) s, i numărul natural n (1 ≤ n ≤ 104).

Algorithm Complex(a, n)

done← False

m← n
While not done execute

done← True

p← m
For i← 1, p− 1 execute

If a[i] > a[i+ 1] then

swap(a[i], a[i+ 1])
done← False

m← i
EndIf

EndFor

EndWhile

EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Algoritmul efectuează exact n−1 comparat, ii pentru un vector a ordonat crescător

B. Algoritmul efectuează acelas, i număr de comparat, ii indiferent de valorile vectoru-
lui a

C. Variabila done permite oprirea execut, iei mai devreme ı̂n cazul ı̂n care vectorul
devine sortat

D. Numărul total de comparat, ii este acelas, i ca ı̂n varianta clasică a algoritmului
BubbleSort, indiferent de valorile vectorului

794. ✓ ?Se dă algoritmul skip(start, position, k, n, a), unde start este un număr natural cu
valoarea iniţială egală cu 1, position un număr natural cu valoarea iniţială egală cu 1,
k este un număr natural (k ≤ n ≤ 20), n număr natural (n ≤ 20), iar a un vector de
numere naturale de lungime n (a[1], a[2], . . . , a[n]), cu init, ial toate elementele egale
cu 0.

Algorithm skip(start, position, k, n, a)

If position = k + 1 then

For i← 1, k execute

Write a[i], ’ ’

EndFor

Write newline

447

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

Else

For i← start, n execute

a[position]← i
skip(i+ 2, position+ 1, k, n, a)

EndFor

EndIf

EndAlgorithm

Care dintre următoarele afirmaţii sunt adevărate?

A. ∃i, j ∈ N, 1 ≤ i < j ≤ n, |a[i]− a[j]| = 1

B. ∃i, j ∈ N, 1 ≤ i < j ≤ n, a[i] ≥ a[j]

C. ∀i, j ∈ N, 1 ≤ i < j ≤ n, a[i] < a[j]

D. ∀i, j ∈ N, 1 ≤ i < j ≤ n, a[i] + 2 = a[j]

795. ✓ ?Se consideră algoritmul Sort(a, n), unde n este un număr natural (1 ≤ n ≤ 104),
iar a este un vector cu n elemente numere ı̂ntregi (−103 < a[1], a[2], . . . , a[n] < 103).

Algorithm Sort(a, n)

For i← 1, n− 1 execute

For j ← 1, n− i execute

If a[j] > a[j + 1] then

swap(a[j], a[j + 1])
EndIf

EndFor

EndFor

EndAlgorithm

Pentru care din următorii vectori, operat, ia de interschimbare se efectuează cel mult o
dată?

A. a = [1, 0, 5, 7, 2, 3, 8]

B. a = [1, 0, 1, 1, 1]

C. a = [1, 2, 3, 4, 5, 6]

D. a = [1, 0, 1, 0, 1, 0, 1]

796. ✓ ?Se consideră algoritmul CeFace(a, n), unde n este un număr natural (1 ≤ n ≤ 104),
iar a este un vector cu n elemente numere naturale (a[1], a[2], . . . , a[n] < 103).

Algorithm Maybe(x)

If x < 2 then

Return 0
EndIf

For i← 2, x− 1 execute

If x MOD i = 0 then

Return 0
EndIf

EndFor

Return 1
EndAlgorithm

Algorithm CeFace(a, n)

p← 1
For i← 1, n execute

If Maybe(a[i]) = 1 then

swap(a[i], a[p])

448

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

p← p+ 1
EndIf

EndFor

For i← 1, p− 2 execute

For j ← 1, p− i− 1 execute

If a[j] > a[j + 1] then

swap(a[j], a[j + 1])
EndIf

EndFor

EndFor

For i← p, n execute

key ← a[i]
j ← i− 1
While j ≥ p and a[j] < key execute

a[j + 1]← a[j]
j ← j − 1

EndWhile

a[j + 1]← key
EndFor

EndAlgorithm

Ce face algoritmul CeFace(a, n)?

A. Algoritmul sortează ı̂ntregul vector ı̂n ordine crescătoare, mutând numerele prime
la sfârs, itul vectorului

B. Algoritmul sortează ı̂ntregul vector ı̂n ordine crescătoare, mutând numerele prime
la ı̂nceputul vectorului

C. Algoritmul verifică dacă ı̂n component,a vectorului există doar elemente prime s, i
le sortează crescător

D. Algoritmul separă numerele prime de cele neprime, apoi sortează numerele prime
ı̂n ordine crescătoare, iar numerele neprime ı̂n ordine descrescătoare

797. ✓ ?Se dă algoritmul Z(n,m), unde n,m ∈
N∗,m > 1. Care dintre următoarele este
complexitatea ca timp de executare a aces-
tuia?

A. O(nm)

B. O(m
n∗(n+1)

2)

C. O(mlogn)

D. O(logmn)

Algorithm Z(n, m)

If n ≤ 1 then

Write 1

Else

n2← n DIV 2
For i← 2,m+ 1 execute

Z(n2,m)
EndFor

EndIf

EndAlgorithm

798. ✓ ?Se consideră algoritmul Compute(n, s), unde n este un număr natural. Vectorul s
cont, ine n elemente (s[1], s[2], . . . , s[n]), fiecare fiind init, ializat cu valoarea 0.

449

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm Compute(n, s)

For i← 2, n execute

If s[i] = 0 then

For j ← i, n, i execute

s[j]← s[j] + i
EndFor

EndIf

EndFor

EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Pentru n =
10000, s[518] =
32

B. Pentru n =
10000, s[518] =
46

C. Pentru n =
10000, s[12] =
5

D. Pentru n =
12132, s[7129] =
7129

799. ✓ ?Se consideră algoritmul algorithm(n), n ∈ N∗. Care dintre următoarele afirmaţii
sunt adevărate?

Algorithm algorithm(n)

For i← 1, n execute

p[i]← 0
EndFor

p[1]← 1
For i← 2, n execute

If p[i] = 0 then

p[i]← i
For j ← i ∗ i, n, i execute

If p[j] = 0 then

p[j]← i
EndIf

EndFor

EndIf

EndFor

EndAlgorithm

A. Algoritmul marchează ı̂n vectorul
p fiecare număr prim cu valoarea
acestuia şi numerele compuse cu
0, pentru n ≥ 2

B. Algoritmul marchează ı̂n vectorul
p fiecare număr cu valoarea celui
mai mic factor prim al acestuia,
pentru n ≥ 2

C. Dacă n = 25, atunci p[10] = 0

D. Dacă n = 25, atunci p[5] = 5

800. ✓ ?Andra are o pungă cu n tipuri de buline, fiecare tip de bulină i aflându-se ı̂n cantitate
ai. Ea dores,te să as,eze bulinele pe care le are ı̂n format, ii. O format, ie reprezintă o
formă similară cu un triunghi, in care, pe rândul k se află 2k−1 buline. O format, ie
poate să cont, ină s, i un singur rând. Andra dores,te să formeze format, ii, folosind toate
bulinele pe care le are la dispozit, ie.

Figura 13.1 Aranjamentul bulinelor ı̂ntr-o format, ie triunghiulară cu 5 rânduri

Pentru n = 8, a = [9, 2, 45, 23, 5, 12, 54, 32], care este numărul minim de format, ii pe
care Andra le poate forma folosind toate bulinele pe care le are la dispozit, ie?

A. 4 B. 8 C. 6 D. 12

801. ✓ ?Se consideră algoritmul C(n, k), unde n, k sunt numere naturale (0 ≤ k ≤ n < 102).

450

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm C(n, k)

If n < k then

Return 0

EndIf

If n = k OR k = 0 then

Return 1

EndIf

Return C(n - 1, k - 1) + C(n - 1, k)

EndAlgorithm

Pentru n = 10, k = 7, de câte ori se autoapelează funct, ia C?

A. 120 B. 142 C. 238 D. 207

802. ✓ ?Într-un sistem de coordonate, se află punctul de start S(0, 0), s, i punctul de final
F (a, b), unde a, b sunt numere naturale (a, b < 10). Dorim să ne deplasăm de la S
la F folosind doar mis,cări de tipul (x, y) → (x + 1, y) sau (x, y) → (x, y + 1). Două
drumuri se consideră distincte dacă există cel put, in un punct ı̂n care acestea diferă.
Câte drumuri distincte există de la S la F?

A. a+ b B. a ∗ b C. Ca
a+b D. (a+ b)!

803. ✓ ?Se defineşte şirul Fibonacci {Fn}, cu F1 = 1, F2 = 1, Fn = Fn−1 + Fn−2, n ≥ 3.
Care dintre următoarele formule reprezintă suma F1 + F2 + ...+ Fn?

A. F1 + F2 + ...+ Fn = Fn+1 − 1

B. F1 + F2 + ...+ Fn = Fn+1

C. F1 + F2 + ...+ Fn = Fn+2 − Fn+1

D. F1 + F2 + ...+ Fn = Fn+2 − 1

Problemele 804. şi 805. se referă la următorul algoritm T (n), n număr natural:

Algorithm T(n)

r ← n
For i← 2,

√
n execute

If n MOD i = 0 then

r ← r · (i− 1) DIV i
While n MOD i = 0 execute

n← n DIV i
EndWhile

EndIf

EndFor

If n > 1 then

r ← r · (n− 1) DIV n
EndIf

Return r
EndAlgorithm

804. ✓ ?Care dintre următoarele afirmaţii sunt adevărate?

A. Algoritmul calculează numărul de factori primi ai lui n

B. Algoritmul calculează numărul de valori mai mici sau egale cu n care sunt prime
cu n

451

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

C. Formula matematică folosită este T (n) = n ∗
n∏

p=2

(
1− 1

p

)
D. T (n) = n− 1, pentru n număr prim

805. ✓ ?Care dintre următoarele afirmaţii sunt adevărate?

A. T (10) = 4 B. T (7) = 2 C. T (1) = 1 D. T (25) = 15

806. ✓ ?Se consideră algoritmul Transform(i1, i2, j1, j2, cnt), unde cnt este un pa-
rametru transmis prin referint, ă, având valoarea init, ială 0. Care dintre următoarele
afirmat, ii sunt adevărate?

A. Pentru apelul Transform(1, 2, 1, 2, cnt), cnt va avea valoarea 5

B. Pentru apelul Transform(1, 9, 1, 9, cnt), cnt va avea valoarea 48

C. Pentru apelul Transform(1, 7, 1, 7, cnt), cnt va avea valoarea 29

D. Pentru apelul Transform(1, 13, 1, 13, cnt), cnt va avea valoarea 59

Algorithm Transform(i1, i2, j1, j2, cnt)

If i2− i1 = j2− j1 then

cnt← cnt+ 1
If i1 ̸= i2 OR j1 ̸= j2 then

imid← (i1 + i2) DIV 2
jmid← (j1 + j2) DIV 2
If i1 = i2 then

Transform(i1, i2, j1, jmid, cnt)

Transform(i1, i2, jmid + 1, j2, cnt)

Else If j1 = j2 then

Transform(i1, imid, j1, j2, cnt)

Transform(imid + 1, i2, j1, j2, cnt)

Else

Transform(i1, imid, j1, jmid, cnt)

Transform(i1, imid, jmid + 1, j2, cnt)

Transform(imid + 1, i2, j1, jmid, cnt)

Transform(imid + 1, i2, jmid + 1, j2, cnt)

EndIf

EndIf

EndIf

EndAlgorithm

452

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

807. ✓ ?Se consideră algoritmul Split(s, l,

r), unde n este un număr natural (1 ≤
l, r ≤ n < 103) s, i s este un vector
cu n elemente numere ı̂ntregi (−103 <
a[1], a[2], . . . , a[n] < 103). Care din-
tre următoarele afirmat, ii sunt adevărate ı̂n
urma apelului Split(s, 1, n)?

A. Algoritmul calculează suma valorilor
din vectorul s

B. Algoritmul are complexitatea de
timp O(n)

C. Algoritmul are complexitatea de
timp O(n log n)

D. Algoritmul are complexitatea de
timp O(log n)

Algorithm Split(s, l, r)

If l > r then

Return 0

EndIf

If l = r then

Return s[l]
EndIf

mid← (l + r) DIV 2
Return Split(s, l, mid) +

Split(s, mid + 1, r)

EndAlgorithm

Problemele 808. s, i 809. se referă se referă la următorul scenariu. Într-o ı̂ncăpere se
află n becuri. Init, ial, la momentul 0, toate becurile sunt stinse. Fiecare bec i pâlpâie
tot la câte s[i] secunde pentru o fract, iune de secundă, după care se stinge automat.

808. ✓ ?Pentru n = 10 s, i s = [7, 6, 4, 2, 8, 9, 3, 10, 12, 14], la ce moment vor lumina toate
becurile deodată?

A. 2520 B. 1020 C. 2040 D. 5040

809. ✓ ?Dacă fiecare bec luminează pentru 2 secunde din momentul aprinderii, după care
se stinge, pentru n = 6 s, i s = [7, 9, 4, 2, 8, 6], la ce moment vor lumina toate becurile
deodată?

A. 3959 B. 108 C. 504 D. 2520

453

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

Testul 7

810. ✓ ?Fie variabilele a = 12, b = 5 şi c = 4. Ce valoare va avea expresia următoare?(
a DIV (b− 1)

)
∗
(
c+ ((a+ 1) MOD (b− 1))

)
−

(
(c+ 1) MOD (b− 1)

)
A. 14 B. 15 C. 18 D. 20

811. ✓ ?Se consideră algoritmul Trick1(c, ok, v, n, x, i, j) s, i algoritmul Trick2(v,
x, i, j) unde n este un număr natural (0 < n < 103), iar v s, i c sunt vectori cu n
elemente numere ı̂ntregi (0 < v[1], v[2], ..., v[n] < 105), s, i ok ,x sunt numere ı̂ntregi
(0 < x < 105, ok ∈ {0, 1}), iar i, j numere naturale nenule (i ≤ j). Fiecare algoritm
este apelat de q ori pentru acelas, i vector v, dar cu valori diferite ale parametrilor i s, i
j. Trick1(c, ok, v, n, x, i, j) va fi apelat init, ial cu ok = 0. Funct, ia zeros(n)
returnează un vector cu n elemente, fiecare egal cu 0.

Algorithm Magic(a, n, x)

c← zeros(n)
If a[1] = x then

c[1]← 1
Else

c[1]← 0
EndIf

For k ← 2,n execute

If a[k] = x then

c[k]← c[k − 1] + 1
Else

c[k]← c[k − 1]
EndIf

EndFor

Return c
EndAlgorithm

Algorithm Trick1(c, ok, v, n, x, i,

j)

If ok = 0 then

c← Magic(v,n,x)

ok ← 1
EndIf

If i = 1 then

Return c[j]
Else

Return c[j]− c[i− 1]
EndIf

EndAlgorithm

Algorithm Trick2(v, x, i, j)

c← 0
For k ← i,j execute

If v[k] = x then

c← c+ 1
EndIf

EndFor

Return c
EndAlgorithm

Ce concluzii putem trage ı̂n urma executării celor doi algoritmi pentru q interogări
(2 ≤ q < 10), s,tiind că se apelează cu aceleas, i valori ale parametrilor i, j?

A. Ambii algoritmi returnează acelas, i rezultat pentru o prelucrare

B. Algoritmul Trick2(v, x, i, j) este mai eficient decât Trick1(c, ok, v, n, x, i, j)
pentru orice valoare a lui q

454

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

C. Algoritmul Trick1(c, ok, v, n, x, i, j) este mai eficient decât Trick2(v, x, i, j)
pentru orice valoare a lui q > 1

D. Trick1(c, ok, v, n, x, i, j) s, i Trick2(v, x, i, j) au aceeas, i complexitate
s, i performant, ă, indiferent de numărul de interogări

812. ✓ ?Se consideră algoritmul X(m, n), unde n este un număr natural nenul (0 < n < 105),
iar m este o matrice patratică de dimensiune n x n cu elemente ı̂ntregi (−100 <
m[1][1],m[1][2], ...,m[n][n] < 100):

Algorithm X(m, n)

For i← 1,n execute

For j ← 1,n DIV 2 execute

temp← m[i][j]
m[i][j]← m[i][n− j + 1]
m[i][n− j + 1]← temp

EndFor

EndFor

EndAlgorithm

Ce face algoritmul X(m, n)?

A. Inversează liniile matricei de sus ı̂n jos

B. Oglindes,te matricea fat, ă de axa verti-
cală, schimbând coloanele ı̂ntre ele

C. Oglindes,te matricea fat, ă de diagonala
principală

D. Rotunjes,te toate elementele matricei
la cel mai apropiat multiplu de 10

813. ✓ ?Fie algoritmul Fix(m, n, p) unde n s, i p sunt numere naturale (1 ≤ n, p < 100), iar
m este o matrice cu n linii s, i p coloane (−100 < m[1][1], m[1][2], . . . , m[n][p] < 100).

Algorithm Fix(m, n, p)

s← 0
For i← 1,n execute

For j ← 1,p execute

temp← m[i][j]
s← s+ (temp MOD 10)

EndFor

EndFor

Return s
EndAlgorithm

1: Algorithm FixIT(m, n, p, i, j)

2: If i > n then

3: Return 0
4: EndIf

5: If j == p then

6: Return

7: Else

8: If j < p then

9: Return

10: EndIf

11: EndIf

12: EndAlgorithm

Aleget, i varianta care completează corect spat, iile subliniate din rândurile 6, 9 din
algoritmul FixIT(m, n, p, i, j) astfel ı̂ncât cei doi algoritmi să returneze mereu
aceeas, i valoare, luând ı̂n considerare că algoritmul FixIT(m,n, p, i, j) se va apela sub
forma FixIT(m, n, p, 1, 1).

A. 6:(m[i][j] MOD 10) + FixIT (m,n, p, i+ 1, 1)

9:(m[i]][j] MOD 10) + FixIT (m,n, p, i, j)

B. 6:(m[i][j] DIV 10) + FixIT (m,n, p, i+ 1, 1)

9:(m[i]][j] DIV 10) + FixIT (m,n, p, i, j + 1)

C. 6:(m[i][j] MOD 10) + FixIT (m,n, p, i+ 1, 1)

9:(m[i]][j] MOD 10) + FixIT (m,n, p, i, j + 1)

D. 6:(m[i][j] DIV 10) + FixIT (m,n, p, i− 1, 1)

9:(m[i]][j] DIV 10) + FixIT (m,n, p, i, j + 1)

455

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

814. ✓ ?Fie variabilele a = 3, b = 5, c = 2 s, i d = 8. Ce valoare va avea expresia următoare?

(a > b ? b : (c < d ? d− c : a+ b)) + (d < a ?b− c : (c > a ? c : a+ d))

A. 15 B. 14 C. 17 D. 16

815. ✓ ?Se dă următorul arbore binar. Care din-
tre următoarele şiruri de noduri reprezintă
traversarea acestuia ı̂n postordine?

A. 4, 5, 1, 7, 10, 2, 11, 6, 8, 9

B. 11, 1, 4, 5, 10, 7, 2, 6, 8, 9

C. 5, 4, 7, 2, 10, 1, 6, 8, 9, 11

D. 5, 4, 7, 2, 10, 1, 9, 8, 6, 11

11

1

4

5

10

7 2

6

8

9

816. ✓ ?Se consideră algoritmul algorithm(n),
unde n este un număr natural (1 < n <
105). Care dintre următoarele afirmat, ii sunt
adevărate?

A. Algoritmul calculează numărul divizori-
lor proprii ai numerelor mai mici sau
egale decât n

B. Algoritmul calculează numărul divizori-
lor ai numerelor mai mici sau egale decât
n

C. Dacă n = 25, atunci d[10] = 1

D. Dacă n = 25, atunci d[24] = 8

Algorithm algorithm(n)

For i← 1, n execute

d[i]← 0
EndFor

For i← 1, n execute

For j ← i, n, i execute

d[j]← d[j] + 1
EndFor

EndFor

EndAlgorithm

817. ✓ ?Se consideră algoritmul Y (n,m), unde
n, m sunt numere naturale (1 < n, m < 103)
. În care dintre următoarele clase de com-
plexitate se ı̂ncadrează complexitatea timp a
algoritmului?

A. O(nm)

B. O(mlogmn)

C. O(n)

D. O(n ∗m)

Algorithm Y(n, m)

If n ≤ 1 then

Return m

Else

n← n DIV m
For i← 1,m execute

Return Y (n,m)
EndFor

EndIf

EndAlgorithm

818. ✓ ?Se consideră algoritmul evenp(k, n, a, f), unde k este un număr natural (k ≤ 20)
cu valoarea iniţială egală cu 1, n număr natural (n ≤ 20), iar a şi f , 2 vectori de
numere naturale de lungime n, f având elementele iniţializate cu 0. Numerotarea
indicilor vectorilor ı̂ncepe de la 1.

456

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm evenp(k, n, a, f)

If k = n+ 1 then

For i← 1, n execute

Write a[i], ’ ’

EndFor

Write newline

Else

For i← 1, n execute

If f [i] = 0 AND (k + i) MOD 2 = 1 then

a[k]← i
f [i]← 1
evenp(k + 1, n, a, f)
f [i]← 0

EndIf

EndFor

EndIf

EndAlgorithm

Care dintre următoarele afirmaţii sunt adevărate?

A. Pentru orice număr natural n par, primul element al fiecărei soluţii va fi mereu
un număr impar

B. Pentru orice număr natural n impar, nu există nicio soluţie

C. Algoritmul generează permutările şirului format din numere naturale de la 1 la
n, ı̂n care paritatea unei valori este diferită de cea a poziţiei pe care se află

D. Pentru orice număr natural n impar, primul element al fiecărei soluţii va fi mereu
un număr impar

819. ✓ ?Se consideră arborele binar reprezentat prin vectorul de taţi t = {4, 1, 1, 6, 4,

0, 8, 6, 8, 9, 10}. Care dintre următoarele afirmaţii sunt adevărate?

A. Rădăcina arborelui este nodul marcat cu valoarea 6

B. Arborele dat are numărul de frunze egal cu cel al nodurilor interioare

C. Toate frunzele arborelui sunt marcate cu numere prime

D. Înălţimea arborelui este 3

820. ✓ ?Se consideră un poligon regulat cu 12 laturi, reprezentând traseul zilnic al curierului
Jimmy pentru livrarea coletelor. Pornind dintr-un vârf fixat ca depozit (originea),
Jimmy trebuie să parcurgă, ı̂n ordine, adresele dintr-un s, ir dat. Mai exact, dacă
valorile a1, a2, a3, . . . , ak determină distant,ele (̂ın număr de laturi) dintre adrese,
atunci:

Prima adresă: a1 laturi de la origine,

A doua adresă: a1 + a2 laturi de la origine,

A treia adresă: a1 + a2 + a3 laturi de la origine,

...

A k-a adresă: a1 + a2 + · · ·+ ak laturi de la origine.

După fiecare deplasare către o adresă, Jimmy se ı̂ntoarce la depozit.

Mod de calcul al energiei consumate:

457

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

(a) Deplasarea de la depozit către o adresă. Să considerăm o deplasare de n
laturi parcurse ı̂n sensul acelor de ceasornic. Energia consumată este determinată
prin “scrierea” unui octet (8 bit, i, numerotat, i de la 7 la 0) după cum urmează:

• Dacă n ≤ 8: se setează n bit, i consecutivi cu valoarea 1, ı̂ncepând de la stânga
(adică de la pozit, ia 7). Valoarea ı̂n baza 10 a octetului obt, inut reprezintă
energia consumată.

Exemplu: pentru n = 3, octetul este

Pozit, ie 7 6 5 4 3 2 1 0
Bit 1 1 1 0 0 0 0 0

care corespunde valorii 224 ı̂n baza 10.

• Dacă n > 8: se procedează astfel:

a) Pentru primele 8 laturi se setează tot, i cei 8 bit, i, obt, inându-se octetul
11111111, ce corespunde valorii 255.

b) Imediat după parcurgerea acestor 8 laturi se efectuează o pauză ce con-
sumă 128 unităt, i de energie.

c) Pentru cele n−8 laturi suplimentare, se setează câte un bit de 1 ı̂ncepând
de la dreapta (pozit, ia 0), iar energia suplimentară este egală cu valoarea
obt, inută, adică:

2n−8 − 1.

Astfel, energia consumată pentru deplasarea spre adresă, când n > 8, este:

E→ = 255 + 128 +
(
2n−8 − 1

)
.

(b) Întoarcerea la depozit. Pentru revenirea la depozit se alege drumul cel mai
scurt (fie ı̂n sensul acelor de ceasornic, fie ı̂n sens invers). Dacă drumul ales
presupune parcurgerea a n laturi, se “scrie” un octet ı̂n care se setează n bit, i
consecutivi cu valoarea 1, ı̂ncepând de la dreapta (de la pozit, ia 0). Valoarea ı̂n
baza 10 a acestui octet reprezintă energia consumată la ı̂ntoarcere.

Exemplu: pentru n = 3, octetul este

Pozit, ie 7 6 5 4 3 2 1 0
Bit 0 0 0 0 0 1 1 1

ceea ce corespunde valorii 7 ı̂n baza 10.

Câtă energie va consuma azi (valoare ı̂n baza 10) Jimmy dacă are pachete de livrat la
adresele 1, 2, 3 s, i 9?

A. 1076 B. 810 C. 1183 D. 1192

821. ✓ ?Se consideră algoritmul C(n, k), unde n, k sunt numere naturale, 0 ≤ k < n < 102.

Algorithm C(n, k)

If n = k OR k = 0 then

Return 1

EndIf

Return C(n - 1, k - 1) + C(n - 1, k)

EndAlgorithm

Pentru n = 10, k = 7, care este valoarea returnată de către algoritmul C(n, k)?

458

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

A. 120 B. 142 C. 238 D. 207

822. ✓ ?Se consideră algoritmul g(n), unde n este un număr natural (1 < n < 105).

Algorithm g(n)

k ← n
While k > 1 execute

a← 1
While a ≤ n3 execute

a← 3 ∗ a
EndWhile

k ← k DIV 7
EndWhile

Return k
EndAlgorithm

În care dintre următoarele clase de comple-
xitate se ı̂ncadrează complexitatea timp a
algoritmului?

A. O(log3 n
3)

B. O(log23 n
2)

C. O(log27 n)

D. O(log3 log3 n)

823. ✓ ?Se consideră algoritmul New(n, k), unde n s, i k sunt numere naturale (1 ≤ n, k ≤
106).

Algorithm Zone(n)

If n < 2 then

Return 0
EndIf

For i← 2, n− 1 execute

If n MOD i = 0 then

Return 0
EndIf

EndFor

Return 1
EndAlgorithm

Algorithm New(n, k)

s← 0
p← 1
While n > 99 AND k > 0 execute

If Zone(n MOD 10) then

s← s+
p ∗ (n DIV 10 MOD 100)

p← p ∗ 100
Else

k ← k − 1
EndIf

n← n DIV 10
EndWhile

Return s
EndAlgorithm

Care dintre următoarele perechi de apeluri
returnează valori identice?

A. New(32345, 3) s, i New(321458, 7)

B. New(321458, 1) s, i New(318468, 7)

C. New(2314, 3) s, i New(321358, 3)

D. New(32145, 3) s, i New(321458, 7)

459

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

824. ✓ ?Se consideră algoritmul M(n), unde n este un
număr natural (n ≤ 103). Care dintre următoarele
afirmaţii sunt adevărate?

A. Algoritmul returnează aceeaşi valoare pentru
orice număr natural n, n ≤ 101.

B. Algoritmul returnează n, pentru orice număr
natural n, n > 101.

C. M(523) = 513

D. M(102) = 102

Algorithm M(n)

If n > 100 then

Return n− 10
Else

Return M(M(n+ 11))
EndIf

EndAlgorithm

825. ✓ ?Se consideră algoritmul F(n), unde n este
un număr natural (n < 10). Care dintre
următoarele afirmat, ii sunt adevărate?

A. F (4) = 8

B. F (5) = 13

C. F (2) = 3

D. Nu este posibilă calcularea valorilor
pentru F (n), n ≥ 5

Algorithm F(n)

If n = 0 then

Return 1

Else

Return F (F (n− 1)− 1) ∗ n
EndIf

EndAlgorithm

826. ✓ ?Se consideră algoritmul
Transform(p, n), unde n este un
număr natural (n < 103) s, i p este un
vector de n elemente numere naturale
(0 < p[1], p[2], . . . , p[n] < 105). Fie s, irul
p = [7, 4, 6, 5, 10, 3, 8, 1, 2, 9] (p[1], p[2], . . .).
Care dintre următoarele afirmat, ii sunt
adevărate pentru apelul Transform(p,

10)?

A. Algoritmul returnează valoarea 30

B. După bucla ı̂n care cnt devine 8, q =
[7, 2, 3, 4, 5, 6, 8, 1, 9, 10]

C. După bucla ı̂n care cnt devine 17, q =
[1, 10, 3, 9, 2, 6, 7, 8, 5, 4]

D. După bucla ı̂n care cnt devine 31, q =
[8, 5, 3, 10, 9, 6, 1, 7, 4]

Algorithm Transform(p, n)

cnt← 0
ok ← True

For i← 1 , n execute

q[i]← p[i]
EndFor

While ok execute

ok ← False

cnt← cnt+ 1
For i← 1 , n execute

q[i]← p[q[i]]
EndFor

For i← 1 , n execute

If q[i] ̸= p[i] then

ok ← True

EndIf

EndFor

EndWhile

Return cnt
EndAlgorithm

460

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

827. ✓ ?Se consideră o suprafat, ă de dimensiune n ×m, unde n,m ∈ N. Această suprafat, ă
este acoperită cu parchet, fiecare placă având dimensiunea d × d, unde d ∈ N. Dacă
o placă nu ı̂ncape, atunci aceasta va fi tăiată la dimensiunea necesară pentru a se
potrivi. O placă care a fost tăiată nu se poate refolosi pentru a acoperi o altă port, iune
a suprafet,ei. Câte plăci sunt necesare?

A.
[n ·m

d2

]
B.

[n
d

]
·
[m
d

] C.
[n+ d− 1

d

]
·
[m+ d− 1

d

]
D.

[n
d
+ 1

]
·
[m
d

+ 1
]

828. ✓ ?Se consideră o urnă, care conţine bile albe şi bile negre. La fiecare pas, se extrag
câte două bile din urnă respectând regulile de mai jos până ı̂n momentul ı̂n care ı̂n
interiorul urnei se află o singură bilă:

(a) dacă bilele extrase sunt de aceeaşi culoare, se introduce o bilă de culoare neagră

(b) dacă bilele extrase sunt de culori diferite, se introduce o bilă de culoare albă.

Care dintre următoarele afirmaţii sunt adevărate?

A. Oricare ar fi distribut, ia init, ială de bile albe s, i negre, nu putem s,ti cu certitudine
culoarea ultimei bile

B. Dacă la ı̂nceput se află 3 bile albe şi 3 bile negre ı̂n urnă, atunci ultima bilă va fi
albă

C. Dacă numărul iniţial de bile albe este par, atunci ultima bilă va fi mereu neagră

D. Dacă numărul iniţial de bile albe este impar, atunci ultima bilă va fi mereu neagră

829. ✓ ?Într-un oras, se organizează un concurs de ghicit un număr, aflat ı̂n intervalul [1, n].

În cadrul concursului, participant, ii pot forma echipe, pentru a ghici numărul. Init, ial,
fiecare participant dintr-o echipă completează un bilet,el pe care scrie oricâte numere
dores,te, iar dacă numărul câs,tigător se află pe bilet,elul participantului, atunci par-
ticipantul va fi informat că a selectat numărul câs,tigător, altfel, va fi informat că
nu a ghicit numărul. Fiecare participant poate să completeze un singur bilet,el. La
final, echipa trebuie să ghicească numărul câs,tigător. Care este numărul minim de
participant, i pe care o echipă trebuie să ı̂i aibă, pentru a fi sigură că va ghici numărul
câs,tigător, indiferent care ar fi acesta?

A. n

B. n− 1

C. [log2 (n− 1)] + 1

D. [log2 n]

830. ✓ ?Un lac ı̂nconjurat de două maluri are n stânci, fiecare dintre ele aflându-se de-a
lungul unei linii s, i la distant,a 1 fat, ă de cealaltă, sau de mal. Broscut,a Broski dores,te
să sară de pe o stâncă pe alta, până ajunge de la un mal la celălalt. Init, ial, Broski
sare de pe mal pe stânca 1, efectuând un salt de o unitate. La următoarele sărituri,
Broski poate fie să sară o unitate, fie dublul distant,ei pe care a sărit-o anterior. Broski
trebuie neapărat să ajungă pe celălalt mal, neputând să depăs,ească printr-un salt
capătul celălalt (spre exemplu, dacă mai are 7 stânci, nu va putea efectua un salt de
lungime 16). Pentru 120 de stânci, care este numărul minim de sărituri pe care Broski
trebuie să le facă pentru a ajunge pe celălalt mal?

461

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

A. 7 B. 8 C. 22 D. 21

831. ✓ ?Se consideră algoritmul Split(s, l,

r), unde s este un vector care cont, ine n
numere pozitive (0 < s[1], s[2], . . . , s[n] <
105). Pentru apelul Split(s, 1, n),
care dintre următoarele afirmat, ii sunt
adevărate?

A. Algoritmul determină valoarea ma-
ximă din vectorul s

B. Algoritmul are complexitatea timp
O(n)

C. Algoritmul are complexitatea timp
O(n log n)

D. Algoritmul are complexitatea timp
O(log n)

Algorithm Split(s, l, r)

If l > r then

Return -1

EndIf

If l = r then

Return s[l]
EndIf

mid← (l + r) DIV 2
left← Split(s, l,mid)
right← Split(s,mid+ 1, r)
If left > right then

Return left
Else

Return right
EndIf

EndAlgorithm

832. ✓ ?Într-un sistem solar, n planete se rotesc ı̂n jurul unei stele, ı̂n sens trigonometric.
Fiecare planetă are orbita ı̂n formă de cerc, având centrul ı̂n jurul stelei. Planeta i
are perioada orbitală de z[i] zile. În ziua 0, toate planetele sunt aliniate de-a lungul
aceleias, i drepte.

Figura: Planete orbitând ı̂n jurul stelei, aliniate ı̂n ziua 0.

Figura 13.2 Planetele sunt aliniate pe aceeas, i dreaptă ı̂n ziua 0.

Dacă n = 8, z = {3, 4, 6, 12, 8, 5, 20, 9}, după câte zile se vor afla planetele din nou
aliniate ı̂n pozit, ia init, ială?

462

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

A. 9 B. 720 C. 360 D. 180

833. ✓ ?Se consideră algoritmii NDiv(n) s, i
Compute(m), unde m este un număr natu-
ral. Care dintre următoarele afirmat, ii sunt
adevărate dacă m = 153?

A. 25 face parte din rezultatul algorit-
mului Compute(m).

B. 144 face parte din rezultatul algorit-
mului Compute(m).

C. Algoritmul Compute(m) returnează
toate numerele pătrate perfecte din
intervalul [2,m].

D. 169 face parte din rezultatul algorit-
mului Compute(m).

Algorithm Ndiv(n)

cnt ← 0
For i← 1,

√
n execute

If n MOD i = 0 then

cnt ← cnt +2
If i× i = n then

cnt ← cnt −1
EndIf

EndIf

EndFor

Return cnt

EndAlgorithm

Algorithm Compute(m)

idx← 1
For i← 2,m execute

If Ndiv(i) = 3 then

res[idx]← i
idx← idx+ 1

EndIf

EndFor

Return res
EndAlgorithm

463

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

Testul 8

834. ✓ ?Se consideră algoritmul f(x, n), unde x s, i n sunt două numere naturale (1 ≤ x, n ≤
104)

Algorithm f(x, n)

If n = 0 then

Return 1

EndIf

m← n DIV 2
p← f(x, m)

If n MOD 2 = 0 then

Return p ∗ p
EndIf

Return x ∗ p ∗ p
EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. În urma apelului f(2, 5) algoritmul
va returna valoarea 10.

B. În urma apelului f(3, 4) algoritmul
va returna valoarea 81.

C. Algoritmul calculează valoarea expre-
siei xn

D. Algoritmul are complexitatea timp
O(log2 n)

835. ✓ ?Se consideră algoritmul calcul(a, b), unde a s, i b sunt numere naturale nenule

(1 ≤ a, b ≤ 104).

Algorithm calcul(a, b)

D ← ([0] ∗ (b+ 1)) ∗ (a+ 1)
D[1][1]← 1
For i← 2, a execute

For j ← 1, i execute

If j = 1 then

D[i][j]← 1
Else

D[i][j]← D[i− 1][j − 1] +D[i− 1][j]
EndIf

EndFor

EndFor

Return D[a][b]

EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate?

A. calcul(10, 7) = 84

B. calcul(10, 7) = 120

C. calcul(20, 18) = 171

D. calcul(13, 11) = 65

836. ✓ ?Se consideră algoritmul ceFace(n), unde n este un număr natural (1 ≤ n ≤ 109).
Algoritmii nrCif(n) s, i pow(a, b) se consideră cunoscut, i s, i returnează numărul de
cifre a unui număr natural n s, i, respectiv, rezultatul ridicării numărului natural a la
puterea b, de asemenea număr natural.

Algorithm ceFace(n)

cnt← nrCif(n)
For i← 1, cnt execute

p← pow(10, i− 1); cmin← 10
put← 1; power ← p ∗ 10
While p ≤ n execute

464

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

cif ← n MOD (p ∗ 10) DIV p
If cif < cmin then

cmin← cif
put← p

EndIf

p← p ∗ 10
EndWhile

currcif ← (n MOD power) DIV (power DIV 10)
n← (n DIV (put ∗ 10) ∗ 10 + currcif) ∗ put+ n MOD put
n← (n DIV power ∗ 10 + cmin) ∗ (power DIV 10) + n MOD (power DIV 10)

EndFor

Return n

EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate:

A. Algoritmul ceFace(n) rearanjează cifrele numărului n ı̂n ordine crescătoare.

B. Algoritmul ceFace(n) rearanjează cifrele numărului n ı̂n ordine descrescătoare.

C. Algoritmul ceFace(n) construies,te s, i returnează un număr care are la fel de
multe cifre ca numărul n s, i este format doar din cea mai mică cifră din numărul
n.

D. Niciuna dintre afirmat, iile de mai sus nu este adevărată.

837. ✓ ?Care este ı̂nălt, imea unui arbore binar complet cu 100 de noduri?

A. 6 B. 7 C. 8 D. 9

838. ✓ ?În arborele binar de căutare alăturat, care este succesorul ı̂n traversarea ı̂n inordine
al nodului cu valoarea 28?

25

10

5 22

40

28 45

A. 22

B. 40

C. 45

D. 25

839. ✓ ?Se consideră algoritmul f(N), unde N este un număr natural (1 ≤ N ≤ 106).

Algorithm f(N)

For i← −N,N execute

For j ← −N,N execute

If max(|i|, |j|) = N then

Write ’*’

EndIf

EndFor

EndFor

EndAlgorithm

465

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

Precizat, i care dintre următoarele afirmat, ii sunt adevărate:

A. Pentru N = 3 algoritmul afis,ează 24 stelut,e

B. Pentru N = 3 algoritmul afis,ează 36 stelut,e

C. Pentru ca algoritmul să afis,eze 5784 de stelut,e, valoarea lui N trebuie să fie 723

D. Pentru ca algoritmul să afis,eze 2116 de stelut,e, valoarea lui N trebuie să fie 23

840. ✓ ?Se consideră expresia logică (A ⊕ B) mod 5, unde ⊕ reprezintă operat, ia XOR pe
bit, i (exemplu: 3⊕ 5 = 6, deoarece 0112 ⊕ 1012 = 1102). A este numărul de bit, i setat, i
(1) ı̂n reprezentarea binară a lui 14. B este numărul de zerouri finale ı̂n reprezentarea
binară a lui 28.

Care este valoarea expresiei?

A. 1 B. 3 C. 4 D. 0

841. ✓ ?Se consideră algoritmul X(N), unde N este un număr natural (1 ≤ N ≤ 106).

Algorithm X(N)

s← 0
m← 0
t← N
While t > 0 execute

c← t MOD 10
t← t DIV 10
s← s+ c
k ← 1
tmp← s
While tmp ≥ 10 execute

tmp← tmp DIV 10
k ← k + 1

EndWhile

m← m× 10k + s
EndWhile

total← 0
While m > 0 execute

total← total + (m MOD 10)
m← m DIV 10

EndWhile

Return total
EndAlgorithm

Ce calculează acest algoritm pentru un N
dat?

A. Suma cifrelor lui N

B. Suma sumelor part, iale ale cifrelor lui
N

C. Suma cifrelor numărului format din
sumele part, iale ale cifrelor lui N

D. Produsul cifrelor lui N

842. ✓ ?Care este complexitatea de timp a următorului algoritm?

466

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm Z(n)

If n ≤ 1 then

Return

EndIf

s← 0
For i← 1, log2 n execute

For k ← 1, n execute

s← k ∗ 2
EndFor

For j ← 1, log2 n execute

s← s+ s MOD 10
EndFor

EndFor

Z(n DIV 2)
Z(n DIV 2)

EndAlgorithm

A. O(n(log n)2)

B. O(n log(n+ 1) log n)

C. O(n2)

D. O(n(log n+ log log n))

843. ✓ ?Se consideră algoritmul F(n, M, T),unde n este un număr natural (0 < n < 103)
, T este un număr ı̂ntreg s, i M este o matrice cu n linii s, i n coloane (−103 <
T,M [1][1],M [1][2], . . . ,M [n][n] < 103) cu următoarele proprietăt, i: Fiecare linie este
sortată ı̂n ordine strict crescătoare; Primul element al liniei i+ 1 este strict mai mare
decât ultimul element al liniei i.

Algorithm F(n, M, T)

a← 0
lb← 1
rb← n ∗ n
While lb ≤ rb execute

mid← lb+ (rb− lb) DIV 2
row ← (mid− 1) DIV n+ 1
col← (mid− 1) MOD n+ 1
If M [row][col] = T then

a← lb ∗ rb
lb← rb+ 1

Else If M [row][col] < T then

lb← mid+ 1
Else

rb← mid− 1
EndIf

EndWhile

Return a > 0
EndAlgorithm

Ce determină acest algoritm?

A. Verifică existent,a lui T ı̂n matrice

B. Găses,te prima aparit, ie a lui T ı̂n ma-
trice

C. Calculează numărul de aparit, ii ale lui
T

D. Verifică dacă există două numere a s, i
b astfel ı̂ncât a ∗ b = T

844. ✓ ?S-a notat cu xa numărul x ı̂n baza de numerat, ie a. Valoarea ı̂n baza 10 a expresiei
BD16 + 2156 + 45 + 213 este:

A. 280 B. 281 C. 282 D. 283

845. ✓ ?Se consideră un afis,aj digital cu 7 segmente. Cu ajutorul acestuia, se generează
un cod prin transformarea fiecărui caracter dintr-un cuvânt ı̂ntr-un număr ı̂ntreg. De
exemplu, cuvântul acasa a fost transformat ı̂n 119—78—119—109—119.
Care dintre următoarele variante de răspuns corespund transformării cuvântului con-
curs?

467

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

a

g

d

b

c

f

e

Display gol Litera A

Figura 13.3 Fiecare literă (a,b,c,d,e,f,g) corespunde cu un bit ı̂n reprezentarea ı̂n baza 2 (de
la stânga la dreapta, ı̂n ordinea dată). A cont, ine a,b,c,e,f,g, astfel transformarea va genera:
11101112 = 11910

A. 78—126—118—78—62—119—109

B. 78—126—118—78—62—127—119

C. 78—126—118—78—62—127—109

D. 78—126—118—78—62—119—119

846. ✓ ?Se consideră algoritmul ceFace(n, k), unde n, k sunt numere naturale (0 ≤ k, n ≤
102).

Algorithm ceFace(n, k)

If n = 0 then

If k = 0 then

Return 1
Else

Return 0
EndIf

Else If k < 0 then

Return 0
Else

Return ceFace(n− 1, k) + ceFace(n, k − n)
EndIf

EndAlgorithm

Ce calculează acest subalgoritm?

A. Numărul de moduri de a scrie k ca sumă de cel mult n numere naturale

B. Numărul de partit, ii ale lui k ı̂n exact n termeni diferit, i

C. Numărul de moduri de a descompune k ı̂ntr-o sumă de termeni din mult, imea
{1, 2, . . . , n}

D. Numărul de solut, ii pentru ecuat, ia x1 + x2 + · · ·+ xn = k, unde xi ≤ i

847. ✓ ?Care ar putea fi elementele unui vector astfel ı̂ncât, aplicând metoda de căutare
binară modificată pentru valoarea 42, aceasta să fie comparată succesiv cu valorile 11,
53, 48?

A. [48, 11, 53] B. [53, 11, 48] C. [11, 48, 53] D. [11, 53, 48]

468

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

848. ✓ ?Se consideră algoritmul Q(n), unde n este un număr natural (0 ≤ n ≤ 102).

Algorithm Q(n)

If n = 0 then

Return 1

Else

s← 0
For k ← 1, n execute

s← s+ Q(k − 1) ∗ Q(n− k)
EndFor

Return s
EndIf

EndAlgorithm

Ce calculează acest algoritm?

A. Numărul de arbori binari de căutare
cu n noduri

B. Numărul de modalităt, i de a paranteza
n+ 1 operatori

C. Numărul de posibilităt, i de a desena n
coarde care nu se intersectează, pe un
cerc care are 2 ∗ n puncte

D. Numărul de partit, ii ale lui n ı̂n sume
de numere prime

849. ✓ ?Care este lungimea maximă posibilă a unui subs, ir strict crescător ı̂ntr-un vector
format doar din valori 0 s, i 1?

A. 1

B. 2

C. Numărul de elemente 1 din vector

D. Numărul de elemente 0 din vector

850. ✓ ?Se consideră algoritmul Z(A, n), unde n este un număr natural impar (n ≥ 3) s, i o
matriceA cu n linii s, i n coloane cu elemente numere ı̂ntregi (−103 < A[1][1], A[1][2], . . . , A[n][n] <
103).

Algorithm Z(A, n)

c← (n+ 1)DIV 2
For i← 1, n execute

For j ← 1, n execute

If (j < c AND i+ j < n+ 1) OR (j > c AND i+ j > n+ 1) then

Write A[i][j]

EndIf

EndFor

EndFor

EndAlgorithm

În ce ordine se vor afis,a elementele matricei dacă n = 5?

A. Elementele de sub diagonala secundară s, i deasupra diagonalei principale, parcurse
pe linii

B. Elementele din stânga centrului parcurse pe coloane de sus ı̂n jos, apoi cele din
dreapta pe linii de la dreapta la stânga

C. Toate elementele din stânga centrului s, i deasupra de diagonala secundară s, i din
dreapta centrului s, i sub diagonala secundară, parcurse pe linii

D. Elementele din stânga centrului pe coloane, apoi cele din dreapta centrului pe
linii, ambele de sus ı̂n jos

851. ✓ ?Se consideră algoritmul Miracol(x,n) unde x este un vector de cel mult 109 numere
ı̂ntregi, iar n (0 < n < 103) este lungimea vectorului x (−105 < x[1], x[2], . . . , x[n] <
105).

469

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

1: Algorithm Miracol(x, n)

2: s← False
3: Do

4: s← True
5: For i← 2, n execute

6: If x[i] < x[i− 1] then

7: s← False
8: break

9: EndIf

10: EndFor

11: While NOT (s)
12: EndAlgorithm

13:

14: Afis,ează Ok

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Pentru x = [3, 2, 4, 1] s, i n = 4, ı̂n urma
executării algoritmului, x = [4, 3, 2, 1]

B. Pentru x = [2, 0, 1, 5, 7] s, i n = 5,
ı̂n urma executării algoritmului, x =
[0, 1, 2, 5, 7]

C. Algoritmul sortează crescător vectorul
x s, i afis,ează ı̂ntotdeauna mesajul Ok

D. Niciuna dintre afirmat, iile de mai sus.

852. ✓ ?Se consideră algoritmul f(a, b) unde a s, i b sunt două numere naturale (1 ≤ a, b ≤
10, b ≤ a).
Cu ce instruct, iune trebuie completată zona punctată pentru ca algoritmul să calculeze
corect numărul de aranjamente de a luate câte b?

Algorithm f(a, b)

If b = 0 then

Return 1
EndIf

If b > a then

Return 0
EndIf

Return f(a− 1, b) + ...
EndAlgorithm

A. a ∗ f(a− 1, b− 1)

B. a ∗ f(a− 1, b)

C. b ∗ f(a− 1, b− 1)

D. b ∗ f(a− 1, b)

853. ✓ ?Se consideră expresia E(x) = a0 + a1 · x+ a2 · x2 + a3 · x3 + a4 · x4 + a5 · x5, unde
a0, a1, a2, a3, a4, a5 s, i x sunt numere reale nenule.
Numărul minim de ı̂nmult, iri necesare pentru a calcula valoarea expresiei E(x) este:

A. 5 B. 6 C. 20 D. 22

Problemele 854. s, i 855. se referă la algoritmul g(x, n), unde x s, i n sunt numere
naturale, 0 < x, n < 102:

1: Algorithm g(x, n)

2: If n = 0 then

3: Return 1

4: EndIf

5: m← n DIV 3
6: p← g(x,m)
7: If n MOD 3 = 0 then

8: Return p ∗ p ∗ p
9: EndIf

10: If n MOD 3 = 1 then

11: Return x ∗ p ∗ p ∗ p
12: EndIf

13: Return x ∗ x ∗ p ∗ p ∗ p

470

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

14: EndAlgorithm

854. ✓ ?Care dintre următoarele afirmat, ii sunt adevărate?

A. Algoritmul returnează xn efectuând aproximativ n apeluri recursive

B. Algoritmul returnează xn efectuând aproximativ log3 n apeluri recursive

C. Algoritmul returnează xn doar dacă n este multiplu de 3

D. Algoritmul returnează xn+1 atunci când n mod 3 = 2

855. ✓ ?Considerăm că linia 13 este ı̂nlocuită cu:

13. Return x + x * p * p * p

Precizat, i care dintre următoarele afirmat, ii sunt adevărate pentru noua versiune a
algoritmului:

A. Algoritmul nu mai returnează xn

B. Algoritmul returnează tot xn

C. Algoritmul efectuează aproximativ n2 apeluri recursive

D. Algoritmul returnează o valoare mai mare decât xn (pentru n > 0)

856. ✓ ?Folosind metoda backtracking, se generează, pe rând, toate numerele pare de 4
cifre, cifre care iau valori din s, irul [1, 6, 2, 7, 4, 5], ı̂n ordinea dată. S, tiind că primele
trei solut, ii sunt 1116, 1112, 1114, care va fi cea de-a 8-a solut, ie generată?

A. 1126 B. 1122 C. 1221 D. 1124

857. ✓ ?Se dă algoritmul F(n, k), unde n > 0, k ≥ 2, s, i Fib(k) este al k-lea termen din
s, irul Fibonacci (Fib(1) = 1,Fib(2) = 1,Fib(3) = 2, . . .).

Algorithm F(n, k)

If n = 0 then

Return 1

Else If k < 2 then

Return 0

Else

fib← Fib(k)
If fib > n then

Return F(n, k - 1)

Else

Return F(n - fib, k - 2)

+ F(n, k - 1)

EndIf

EndIf

EndAlgorithm

Ce nu calculează acest algoritm pentru k =

⌊logϕ(
√
5n)⌋+ 2, unde ϕ = 1+

√
5

2 ?

A. Numărul de moduri de a scrie n ca
sumă de numere Fibonacci distincte s, i
neconsecutive

B. Numărul de partit, ii ale lui n ı̂n ter-
meni Fibonacci neconsecutivi

C. Numărul de s, iruri binare de lungime
k fără doi de 1 consecutivi

D. Numărul de descompuneri ale lui n ı̂n
sume de puteri ale lui 2

471

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

Testul 9

858. ✓ ?Funct, ia transform(cuvant) ia ca parametru un singur cuvânt de cel mult 255
de caractere s, i ı̂i atribuie acestuia o valoare ı̂ntreagă, după o regulă necunoscută.
Totus, i, se cunoas,te faptul că apelul transform("CEAS") returnează valoarea 28, ape-
lul transform("MASA") returnează valoarea 34, iar transform("LUNA") valoarea 48.
Pentru care dintre cuvintele de mai jos, la apelarea funct, iei transform(), este posibil
să fie returnată valoarea 28?

A. CASE B. SECA C. CASA D. CEAI

859. ✓ ?Se dă algoritmul Build(A), unde A este vector de numere naturale, care returnează
un triplet de 3 numere (r, lb, rb). Algoritmul len(X) returnează lungimea s, irului X.

Notat, ia de tipul A[i . . . j] semnifică toate elementele dintre pozit, iile i s, i j a vectorului
A .

Algorithm Build(A)

If len(A) = 0 then

Return ∅
EndIf

r ← A[1]
i← 2
While i ≤ len(A)

AND A[i] ≤ A[1] execute

i← i+ 1
EndWhile

lb← Build(A[2 . . . i− 1])
rb← Build(A[i . . . len(A)])
Return (r, lb, rb)

EndAlgorithm

Care numere reprezintă frunzele arborelui con-
struit pentru A = [5, 3, 1, 4, 8, 7, 9]?

A. Elementele din vectorul A mai mici decât
5

B. Elementele din vectorul A care apar pe
pozit, iile 2k − 1, 2k, ∀k > 1

C. Elementele din vectorul A care apar pe
pozit, iile 2k, 2k + 1, ∀k > 1

D. Elementele din vectorul A care sunt frunze
ı̂n arborele binar de căutare construit

860. ✓ ?Care este numărul minim de ı̂nmult, iri necesare pentru a calcula valoarea expresiei
P (x) = a5 ∗ x5 + a4 ∗ x4 + a2 ∗ x+ a0 pentru un x dat, unde a0, a2, a4, a5 sunt numere
reale nenule?

A. 5 B. 4 C. 6 D. 3

861. ✓ ?Considerăm tabelul T unde fiecare celulă T [i][j] este definită prin:

T [i][j] =


i× j dacă i = j

T [i][j − 1]⊕ T [i− 1][j] dacă i+ j este par

0, dacă i < 1 sau j < 1

T [i− 1][j]× 2 altfel

unde ⊕ reprezintă XOR pe bit, i (410 ⊕ 310 = 1002 ⊕ 0112 = 1112 = 710). Init, ial,
T [1][1] = 1. Care este valoarea lui T [3][3] + T [2][3]?

472

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

A. 9 B. 13 C. 6 D. 18

862. ✓ ?Se dă un număr natural N (0 < N < 104) s, i algoritmul X(N).

Algorithm X(N)

t← 0
While N > 0 execute

d← N MOD 10
t← t+ Y(d)
N ← N DIV 10

EndWhile

Return t
EndAlgorithm

Algorithm Y(x)

c← 0
While x > 0 execute

c← c+ (x MOD 2)
x← x DIV 2

EndWhile

Return c
EndAlgorithm

Pentru N = 475, care este rezultatul final?

A. 6 B. 7 C. 5 D. 8

863. ✓ ?Se consideră algoritmul F(n), unde n este un număr natural nenul (0 < n < 104).

1: Algorithm F(n)

2: j ← n
3: While j > 1 execute

4: i← 1
5: While i ≤ n execute

6: i← 2 ∗ i
7: EndWhile

8: j ← j DIV 3
9: EndWhile

10: Return j
11: EndAlgorithm

Din care din următoarele clase de complexi-
tate face parte algoritmul descris?

A. O(log2(n))

B. O(log22(n))

C. O(log23(n))

D. O(log2(log3(n)))

864. ✓ ?Se dă algoritmul ceFace(n, d), unde (1 ≤ n, d < 103)).

Algorithm ceFace(n, d)

If n = 1 then

Return 1

EndIf

total← 0
For k ← d, n execute

If n MOD k = 0 then

total ← total +
ceFace(n DIV k, k)

EndIf

EndFor

Return total
EndAlgorithm

Ce se calculează ı̂n urma apelului
ceFace(n, 2), dacă n ≥ 2?

A. Numărul de descompuneri ale lui n ı̂n
produs de factori primi distinct, i

B. Numărul de partit, ii multiplicative or-
donate ale lui n cu factori ≥ d

C. Numărul de moduri de a scrie n ca
sumă de numere prime

D. Numărul de divizori proprii ai lui n

473

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

865. ✓ ?Care dintre următoarele expresii logice nu sunt echivalente cu (NOT (A OR B) OR

NOT(C AND NOT A))?

A. (NOT A AND (NOT B OR (A AND NOT C)))

B. ((NOT A AND NOT B) OR (NOT C OR A))

C. (NOT (A AND B) AND (A OR NOT C))

D. (NOT ((NOT A AND B) OR (C AND NOT A)))

866. ✓ ?În câte moduri se pot as,eza 3 perechi de prieteni ı̂n jurul unei mese circulare cu
exact 6 locuri, astfel ı̂ncât fiecare persoană să stea lângă prietenul său?

A. 2× 4! B. (3− 1)!× 23 C. (2!)3 D. 4× 2!

867. ✓ ?Se dă algoritmul Z(n), unde n este un număr natural nenul (1 ≤ n ≤ 103).

Algorithm Z(n)

a← 0
b← 0
While 2b ≤ n execute

b← b+ 1
EndWhile

r ← 0
While a ≤ b execute

c← (a+ b) DIV 2
If 2c ≤ n then

r ← c
a← c+ 1

Else

b← c− 1
EndIf

EndWhile

Return 2r

EndAlgorithm

Ce returnează algoritmul, dacă n = 25?

A. Cel mai mare putere a lui 2 ≤ n

B. 5

C. Numărul de bit, i de 1 din reprezentarea
binară a lui n

D. 16

868. ✓ ?Se dă un vector A = [a[1], a[2], . . . , a[n]] (−105 < a[1], a[2], . . . , a[n] < 105). Un
element a[i] este ”special” dacă a[i] este divizibil cu i + suma cifrelor lui a[i]. Fie
algoritmul F(A, n) unde n este un număr natural.

Algorithm F(A, n)

cnt← 0
For i← 1, n execute

s← 0
x← A[i]
While x > 0 execute

s← s+ (x MOD 10)
x← x DIV 10

EndWhile

If A[i] MOD (i+ s) = 0 then

cnt← cnt+ 1
EndIf

EndFor

Return cnt
EndAlgorithm

Ce returnează algoritmul ı̂n urma apelului
F([14, 22, 30, 41], 4)?

A. 1 B. 2 C. 3 D. 0

474

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

869. ✓ ?Se consideră N (0 < N < 100) puncte pe un cerc, pozit, ionate la unghiuri distincte.
Se dores,te acoperirea tuturor punctelor cu un număr minim de arce de cerc de lungime
fixă L (măsurată ı̂n grade).
Care strategie asigură acoperirea cu cele mai put, ine arce?

A. Se sortează punctele ı̂n ordine crescătoare. Se alege ı̂ntotdeauna arcul care ı̂ncepe
la primul punct neacoperit s, i acoperă maximum de puncte

B. Se desface cercul ı̂ntr-o linie, se alege ı̂ntotdeauna arcul care ı̂ncepe la primul
punct neacoperit s, i acoperă cât mai multe puncte posibile fără a depăs, i L apoi
se ajustează pentru suprapunerea la capete

C. Se rotes,te cercul astfel ı̂ncât primul arc să acopere punctul cu cea mai mare
densitate, apoi se repetă pentru punctele rămase

D. Se alege ı̂ntotdeauna arcul care acoperă punctul cel mai ı̂ndepărtat de orice alt
arc existent

870. ✓ ?Se consideră expresia (27 + 27 − 1) efectuată ı̂n binar pe 8 bit, i.
Care sunt valorile corecte ale rezultatului?

A. 255 B. −1 C. 127 D. 0

Andrei s, i Maria se joacă jocul ”Bolt,”, care se desfăs,oară astfel: cei doi ı̂ncep să enumere
cu voce tare, pe rând, numerele naturale ı̂ncepând cu 1, iar de fiecare dată când ajung
la un multiplu de 7 sau la un număr care cont, ine cifra 7, ı̂n loc să spună numărul, vor
spune ”Bolt, !”. Jocul ı̂ncepe astfel: Andrei spune: 1, Maria: 2, · · · , Maria: 6, Andrei
”Bolt, !” etc. Problemele 871. s, i 872. se referă la acest joc.

871. ✓ ?În locul cărui număr se va striga a 100-a oară cuvântul ”Bolt, !”?

A. 336 B. 343 C. 347 D. 350

872. ✓ ?Cei doi decid să oprească jocul atunci când ajung la numărul 1000. Precizat, i care
dintre cei doi a strigat de mai multe ori cuvântul ”Bolt, !” s, i de câte ori mai mult ı̂n
comparat, ie cu celălalt.

A. Andrei, 68 B. Maria, 64 C. Andrei, 64 D. Maria, 68

873. ✓ ?Se consideră algoritmul ceFace(a), unde a, b, r reprezintă matrice de dimensiune
2 ∗ 2. Toate valorile din a, b, r sunt cel mult 105, iar b s, i r au init, ial toate elementele
nule.

Algorithm ceFace(a, r)

b[1][1]← a[1][1] ∗ a[1][1] + a[1][2] ∗ a[2][1]
b[1][2]← a[1][1] ∗ a[1][2] + a[1][2] ∗ a[2][2]
b[2][1]← a[2][1] ∗ a[1][1] + a[2][2] ∗ a[2][1]
b[2][2]← a[2][1] ∗ a[1][2] + a[2][2] ∗ a[2][2]
r[1][1]← b[1][1]− (a[1][1] + a[2][2]) ∗ a[1][1] + (a[1][1] ∗ a[2][2]− a[1][2] ∗ a[2][1])
r[1][2]← b[1][2]− (a[1][1] + a[2][2]) ∗ a[1][2]
r[2][1]← b[2][1]− (a[1][1] + a[2][2]) ∗ a[2][1]
r[2][2]← b[2][2]− (a[1][1] + a[2][2]) ∗ a[2][2] + (a[1][1] ∗ a[2][2]− a[1][2] ∗ a[2][1])

475

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate privind matricea r, la finalul exe-
cutării algoritmului ceFace(a, r)?

A. Dacă a←
[
1 2
3 4

]
, atunci r =

[
1 0
0 1

]
B. Dacă a←

[
10 19
25 36

]
, atunci r =

[
0 0
0 0

]
C. Pentru orice valori ai,j ı̂n matricea a, r =

[
0 0
0 0

]
D. Dacă r =

[
0 0
0 0

]
, atunci cu sigurant, ă det(a) = 0

874. ✓ ?Se consideră următorul graf orientat cu 5 noduri.

1

2 3

4

5

Câte componente tare conexe are acest graf?

A. 2 B. 3 C. 1 D. 6

875. ✓ ?Se consideră algoritmul AlexB(k, s, x, p), unde k ≤ 10. Algoritmul afis(s,

x) afis,ează toate valorile s[x[i]], i = 1, n s, i caracterul newline. s este un s, ir de
caractere cu cel mult 10 caractere, unde n este lungimea sa (s[1], . . . , s[n]), iar x, P
sunt vectori de numere ı̂ntregi, cu cel mult 10 elemente. La apel init, ial vectorul P are
toate elementele nule.

Algorithm AlexB(k, s, x, P)

For i← 1, n execute

If NOT P [i] then

x[k]← i
P [i]← 1
If k < n then

AlexB(k+1, s, x, P)

Else

afis(s, x)

EndIf

P [i]← 0
EndIf

EndFor

EndAlgorithm

Algorithm f(s, x, P)

For i← 1, n− 1 execute

For j ← i+ 1, n execute

If s[j] < s[i] then

swap(s[j], s[i])
EndIf

EndFor

EndFor

AlexB(1, s, x, P)

EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate pentru apelul f(s, x, P)?

476

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

A. Pentru s = cal, pe ecran vor fi afis,ate 6 s, iruri de caractere distincte

B. Algoritmul afis,ează, pe câte o linie, toate caracterele din s, irul s, de 2 ori

C. Algoritmul afis,ează toate anagramele cuvântului s. Se numes,te anagramă a lui
s, un alt cuvânt ce cont, ine toate literele din s, eventual ı̂n altă ordine

D. La finalul execut, iei algoritmului, ı̂ntotdeauna vor fi afis,ate 2 ·n s, iruri de caractere
pe ecran

876. ✓ ?Se consideră algoritmul X(n), unde n este un număr natural (1 ≤ n ≤ 1018).

Algorithm X(n)

If n ≤ 2 then

Return 1
Else

M ←
(
1 1
1 0

)
Mputere ← p(M, n− 2)
Return Mputere[1][1] +Mputere[1][2]

EndIf

EndAlgorithm

Algorithm multiply(A, B)

a← A[1][1] ∗B[1][1] +A[1][2] ∗B[2][1]
b← A[1][1] ∗B[1][2] +A[1][2] ∗B[2][2]
c← A[2][1] ∗B[1][1] +A[2][2] ∗B[2][1]
d← A[2][1] ∗B[1][2] +A[2][2] ∗B[2][2]

Return

(
a b
c d

)
EndAlgorithm

Algorithm p(M, k)

If k = 0 then

Return

(
1 0
0 1

)
Else If k = 1 then

Return M
Else If k MOD 2 = 0 then

H ← p(M,k DIV 2)
Return multiply(H,H)

Else

H ← p(M, (k − 1) DIV 2)
Return

multiply(multiply(H,H),M)
EndIf

EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate:

A. Complexitatea timp a algoritmului este O(n)

B. Numărul de ı̂nmult, iri de matrice efectuate de algoritmul p(M, k) este O(log k)

C. Pentru n = 6, algoritmul calculează matricea

(
1 1
1 0

)4

D. Algoritmul calculează valoarea celui de al n-lea termen Fibbonaci pentru orice
n ≥ 1

877. ✓ ?Care este numărul minim de bit, i pentru a reprezenta numărul 9710 ı̂n baza 2?

A. 7 bit, i ı̂n reprezentarea fără semn

B. 16 bit, i ı̂n reprezentarea cu semn

C. 8 bit, i ı̂n reprezentarea cu semn

D. 6 bit, i ı̂n reprezentarea fără semn

878. ✓ ?Se consideră algoritmii ceFace1(v, n) s, i ceFace2(x), unde v este un vector cu n
elemente numere naturale (v[1], v[2], . . . , v[n]), iar x este un număr natural, cel mult
105.

477

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm ceFace1(v, n)

For i← 1, n execute

div[v[i]]← ceFace2(v[i])
EndFor

For i← 1, n− 1 execute

For j ← i+ 1, n execute

If div[v[i]] < div[v[j]] then

swap(v[i], v[j])
EndIf

If div[v[i]] = div[v[j]] then

If v[i] > v[j] then

swap(v[i], v[j])
EndIf

EndIf

EndFor

EndFor

EndAlgorithm

Algorithm ceFace2(x)

If x = 1 then

Return 1

EndIf

nrd← 2
For i← 2,

√
x− 1 execute

If x MOD i = 0 then

nrd← nrd+ 2
If i ∗ i = x then

nrd← nrd− 1
EndIf

EndIf

EndFor

Return nrd
EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Pentru v = [12, 20, 4, 100, 13], ı̂n urma apelului ceFace1(v, 5), v = [100, 12, 20, 4, 13]

B. Pentru v = [12, 20, 4, 100, 13], ı̂n urma apelului ceFace1(v, 5), v = [13, 4, 20, 12, 100]

C. Algoritmul ceFace2(x) returnează numărul de divizori proprii ai numărului x

D. Algoritmul ceFace1(v, n) ordonează descrescător vectorul v după numărul de
divizori al fiecărui element

879. ✓ ?Se consideră algoritmul ceFace(n), unde n este un număr natural de exact 4 ci-
fre. Algoritmii sortC(n) s, i sortD(n) sortează crescător, respectiv descrescător cifrele
numărului n. În cazul ı̂n care numărul n cont, ine cifra 0, aceasta este păstrată. De
exemplu, ı̂n urma apelului sortC(1012), se va returna 0112.

Algorithm ceFace(n)

s← 0
While s ≤ 7 execute

d← sortD(n)

a← sortC(n)

n← d− a
s← s+ 1

EndWhile

Return n
EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. În urma apelului ceFace(4215), se va
returna 6174

B. În urma apelului ceFace(5445), se va
returna 7164

C. Indiferent de valoarea lui n, la finalul
executării algoritmului, se va returna
aceeas, i valoare

D. La finalul executării algoritmului, se
va returna mereu aceeas, i valoare doar
dacă n este multiplu de 5 s, i de 3

880. ✓ ?Se consideră algoritmul F(n), unde n este un număr natural nenul, n ≥ 3.

478

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm F(n)

s← 0
For k ← 1, n execute

p← 1
For i← 1, k execute

p← p ∗ i
EndFor

s← s+ (k ∗ k) DIV p
EndFor

Return s
EndAlgorithm

Care este valoarea returnată de algoritm?

A. 4

B. 2 ∗ n

C. n+ 1

D. n+ 2

881. ✓ ?Se consideră algoritmul ceFace(n), unde n este un număr natural nenul (0 < n <
105).

Algorithm ceFace(n)

If n ≤ 2 then

Return 1
EndIf

c← c+ 1
If n MOD 2 = 0 then

Return ceFace(n DIV 2)
Else

Return ceFace(⌊
√
n⌋)

EndIf

EndAlgorithm

Care este complexitatea timp a al-
goritmului ceFace(n)?

A. O(n)

B. O(log n)

C. O(2
√
n)

D. O(2n)

479

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

Testul 10

882. ✓ ?Se consideră algoritmul ceFace(a, n), unde n este un număr natural (1 ≤ n ≤ 103)
s, i a este un vector cu n elemente numere ı̂ntregi (−105 ≤ a[1], a[2], . . . , a[n] ≤ 105).

Algorithm ceFace(a, n)

s← 1, d← 1, l← 1
For i← 2, n execute

If a[i] ≥ a[i− 1] then

l← l + 1
Else

l← 1
EndIf

If l > d− s+ 1 then

s← i− l + 1
d← i

EndIf

EndFor

Return (s, d)

EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate?

A. Algoritmul ceFace(a, n) returnează capetele [s, d] a celei mai lungi secvent,e
crescătoare din s, irul a. În cazul ı̂n care sunt mai multe, se returnează cea mai
din dreapta.

B. Algoritmul ceFace(a, n) returnează capetele [s, d] a celei mai lungi secvent,e
crescătoare din s, irul a. În cazul ı̂n care sunt mai multe, se returnează cea mai
din stânga.

C. Algoritmul ceFace(a, n) returnează capetele (s, d) a celei mai lungi secvent,e
crescătoare din s, irul a.

D. Algoritmul ceFace(a, n) returnează capetele [s, d] a celei mai lungi secvent,e
descrescătoare din s, irul a.

883. ✓ ?Care formulă calculează corect numărul de numere naturale din intervalul [1, N]
care NU sunt divizibile cu 3, 5 sau 7?

A. N −
⌊
N
3

⌋
−
⌊
N
5

⌋
−
⌊
N
7

⌋
B. N −

⌊
N
3

⌋
−
⌊
N
5

⌋
−
⌊
N
7

⌋
+
⌊
N
15

⌋
+
⌊
N
21

⌋
+

⌊
N
35

⌋
−

⌊
N
105

⌋
C. N −

(⌊
N
3

⌋
+
⌊
N
5

⌋
+
⌊
N
7

⌋)
+
(⌊

N
15

⌋
+
⌊
N
21

⌋
+
⌊
N
35

⌋)
D.

⌊
N
15

⌋
+
⌊
N
21

⌋
+
⌊
N
35

⌋
−
⌊

N
105

⌋
884. ✓ ?Se dă algoritmul F(A, p, k), unde A este un vector de numere naturale, p este

pozit, ia curentă a vectorului, iar k este dimensiunea curentă a submult, imii (A[1], A[2], . . . ,
A[len(A)], unde len(A) reprezintă lungimea vectorului A).

480

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm F(A, p, k)

If p > len(A) then

If k ≥ 1 then

Return 1
Else

Return 0
EndIf

EndIf

t← 0
If A[p] MOD (k + 1) = 0

then

t← t+F(A, p+1, k+1)
EndIf

t← t+ F(A, p+ 1, k)
Return t

EndAlgorithm

Ce nu calculează acest algoritm când este apelat cu
F(A, 1, 0)?

A. Numărul de submult, imi nevide cu toate ele-
mentele pare

B. Numărul de submult, imi nevide unde fiecare ele-
ment este divizibil cu pozit, ia sa ı̂n submult, ime

C. Numărul de submult, imi cu suma elementelor
egală cu dimensiunea lor

D. Numărul de partit, ii ale lui A ı̂n submult, imi de
dimensiune k

885. ✓ ?Se consideră un poligon cu n vârfuri, ale cărui coordonate sunt ret, inute ı̂ntr-un vec-
tor P = [P [1], P [2], . . . , P [n]], unde fiecare element P [i] este o pereche de coordonate
(x[i], y[i]). Se consideră algoritmul F(P, i, S), unde i este indicele curent al listei,
iar S este o variabilă care păstrează suma tuturor punctelor (P [1], P [2], . . . , P [len(P)],
unde len(P) reprezintǎ lungimea vectorului P). Operatorul ”/” reprezintă ı̂mpărt, irea
a două numere reale (de exemplu 3/2 = 1.5).

Algorithm F(P, i, S)

If i > len(P) then

Return |S|/2
Else

x[i], y[i]← P [i]
x[i+ 1], y[i+ 1]← P [(i MOD len(P)) + 1]
Return F(P, i+ 1, S + (x[i] ∗ y[i+ 1]− x[i+ 1] ∗ y[i]))

EndIf

EndAlgorithm

Ce se calculează ı̂n urma apelului F(P, 1, 0)?

A. Aria cu semn a poligonului definit de punctele P, ı̂n ordinea dată

B. Aria fără semn a poligonului determinat de punctele P

C. Suma

n∑
i=1

xiyi+1

D. Jumătate din valoarea absolută a sumei

n∑
i=1

(xiyi+1 − xi+1yi)

886. ✓ ?Fie N un număr natural. Care afirmat, ii sunt ı̂ntotdeauna adevărate?

A. Dacă N este palindrom ı̂n baza 4, atunci este palindrom s, i ı̂n baza 2

B. Numărul de cifre ı̂n baza 4 este cel mult
⌊
cifre b2

2

⌋
+1, unde cifre b2 este numărul

de cifre ı̂n baza 2

C. Dacă N este divizibil cu 5 ı̂n baza 10, ultima sa cifră ı̂n baza 4 este 1

481

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

D. Suma cifrelor ı̂n baza 4 este mai mare sau egală cu numărul de bit, i de 1 ı̂n
reprezentarea binară

887. ✓ ?Se dă algoritmul X(a, b, m), unde a, b, m sunt numere naturale nenule (0 <
a, b,m < 106).

Algorithm X(a, b, m)

If b = 0 then

Return 1
Else If b MOD 2 = 0 then

t← X(a, b DIV 2,m)
Return (t ∗ t) MOD m

Else

t← X(a, (b− 1)/2,m)
Return (a∗ t∗ t) MOD m

EndIf

EndAlgorithm

Care afirmat, ii sunt adevărate?

A. Complexitatea timp este de O(log b) operat, ii
aritmetice

B. Pentru a = 3, b = 5,m = 7, rezultatul este 5

C. Numărul de apeluri recursive este log2 b +
număr de bit, i de 1 ı̂n reprezentarea binară a lui b

D. Dacă m = 1, algoritmul returnează 0

888. ✓ ?Fie expresia

E(a, b) =

{
(a ∗ (b DIV 2) + (a MOD 3)) dacă (a MOD b ̸= 0 AND (a+ b) MOD 2 = 0)

(b ∗ (a DIV 4)− (b MOD 5)) altfel

Care dintre următoarele afirmat, ii sunt adevărate?

A. Pentru a = 7, b = 3, E(a, b) = 8

B. Expresia returneazǎ ı̂ntotdeauna un număr par când a+ b este impar

C. Dacă a = 10, b = 4, rezultatul este 10

D. E(a, b) este divizibil cu 3 atunci când a MOD 3 = 0

889. ✓ ?Se consideră algoritmul G(n, k), unde n, k sunt numere naturale (1 ≤ n, k ≤ 103).

Algorithm G(n, k)

If k = 1 then

If n ≥ 2 then

Return 1
Else

Return 0
EndIf

EndIf

s← 0
For i← 2, n execute

If G(i, 1) = 1
AND G(n− i, k − 1) ≥ 1 then

s← s+ 1
EndIf

EndFor

Return s
EndAlgorithm

Ce calculează acest algoritm?

A. Numărul de moduri de a scrie n ca
sumă de k numere prime

B. Numărul de moduri de a diviza n ı̂n k
numere naturale ≥ 2

C. Numărul de descompuneri ale lui n ı̂n
k termeni primi distinct, i

D. Numărul de moduri de a plasa k − 1
numere prime ı̂ntre 2 s, i n

890. ✓ ?Se dă algoritmul M(A, n), undeA este un vector de n numere ı̂ntregi (A[1], A[2], . . . , A[n]),
iar n este un număr natural nenul care reprezintă lungimea vectorului A (0 < n < 105).

482

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm M(A, n)

t← 0
For i← 1, n execute

x← A[i]
If t = 0 then

c← x
t← 1

Else

If x = c then

t← t+ 1
Else

t← t− 1
EndIf

EndIf

EndFor

For i← 1, n execute

If A[i] = c then

t← t+ 1
EndIf

EndFor

If t > (n DIV 2) then

Return c
Else

Return −1
EndIf

EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Returnează elementul majoritar
(apărut > [n/2] ori) dacă există

B. Funct, ionează corect numai dacă vec-
torul este sortat

C. Complexitatea timp a algoritmului
M(A, n) este O(n) s, i complexitatea
spat, iu este O(1)

D. Returnează ı̂ntotdeauna elementul cu
cea mai mare frecvent, ă

891. ✓ ?Se consideră suma returnată de algoritmul S(x), unde x este un număr natural
(0 < x < 105). ”/” reprezintă ı̂mpărt, irea reală (exemplu : 5/2 = 2.5). Care este
valoarea acestei sume?

Algorithm S(x)

r ← 0, p← 1
For i← 1, x execute

p← p ∗ (i+ 1)
r ← r + i/p

EndFor

Return r
EndAlgorithm

A. 1− 1

x!

B. 1− 1

(x+ 1)!

C.
1

x+ 1

D.
x

(x+ 1)!

892. ✓ ?Se dă algoritmul E(s, t), unde s s, i t sunt s, iruri de caractere majuscule, ambele
indexate de la pozit, ia 1. Considerăm algoritmul cod(c) care returnează codul caracte-
rului c ı̂n alfabet. (len(s) s, i len(t) reprezintă lungimile s, irurilor de caracter s, respectiv
t)

483

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

Algorithm E(s, t)

If len(s) ̸= len(t) then

Return False

EndIf

For i← 1, 26 execute

v[i]← 0
EndFor

For i← 1, len(s) execute

v[cod(s[i])]← v[cod(s[i])] + 1
v[cod(t[i])]← v[cod(t[i])]− 1

EndFor

For j ← 1, 26 execute

If v[j] ̸= 0 then

Return False

EndIf

EndFor

Return True

EndAlgorithm

Care dintre următoarele afirmat, ii sunt
adevărate?

A. Algoritmul E(s, t) verifică dacă s s, i
t sunt anagrame

B. Algoritmul E(s, t) verifică dacă s s, i
t au aceleas, i caractere, indiferent de
frecvent, ă

C. Algoritmul E(s, t) verifică dacă
toate caracterele din s există ı̂n t s, i
reciproc

D. Algoritmul E(s, t) verifică dacă
diferent,a frecvent,elor fiecărui caracter
este zero

893. ✓ ?Care din următorii algoritmi calculează corect F (n), definită prin relat, ia de recurent, ă
F (n) = 3 ∗F (n− 1)+ 2 ∗F (n− 3), cu condit, iile init, iale F (0) = 1, F (1) = 2, F (2) = 5,
cu complexitatea timp specificată? Se presupune că operat, iile aritmetice necesită O(1)
timp.

A. Complexitate O(n)

Algorithm F(n)

If n = 0 then

Return 1

Else If n = 1 then

Return 2

Else If n = 2 then

Return 5

Else

Return 3 ∗ F(n− 1)
+2 ∗ F(n− 3)

EndIf

EndAlgorithm

B. Complexitate O(n)

Algorithm F(n)

If n ≤ 3 then

v ← {1, 2, 5}
Return v[n]

EndIf

v← {1, 2, 5}
j← 1
For i← 1, n− 3 execute

x← 3 ∗ v[(j + 1) MOD 3 + 1]+
2 ∗ v[j MOD 3] + 1
v[j MOD 3 + 1]← x

j← j+ 1
EndFor

Return v[(j − 1) MOD 3 + 1]
EndAlgorithm

484

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

C. Complexitate O(log n)

Algorithm F(n)

If n ≤ 2 then

v ← {1, 2, 5}
Return v[n]

EndIf

a, b, c← 1, 2, 5
For i← 3, n execute

new← 3c+ 2a
a, b, c← b, c, new

EndFor

Return c
EndAlgorithm

D. Complexitate O(1)

Algorithm F(n)

b = −3, c = 0, d = −2
D =

q21
4
+

p31
27

p1 = c− b2

3

q1 = 2b3

27
− bc

3
+ d

u = 3

√
− q1

2
+
√
D

v = 3

√
− q1

2
−
√
D

r1 ← u+ v − b
3

Return ⌊rn1 ∗ 100⌋
EndAlgorithm

894. ✓ ?Se consideră următorul arbore binar de căutare construit prin inserarea succesivă a
elementelor ı̂ntr-un arbore (init, ial gol):

✓ ?

7

3

2 5

11

9 13

12

Care dintre următoarele secvent,e de inserare NU POT genera acest arbore?

A. 7, 3, 11, 2, 5, 9, 13, 12

B. 7, 11, 3, 12, 13, 5, 2, 9

C. 7, 3, 2, 5, 11, 9, 13, 12

D. 7, 11, 3, 9, 13, 12, 5, 2

895. ✓ ?Un tablou de 7 elemente ı̂ntregi este sortat folosind algoritmul de sortare crescătoare
prin insert, ie. După primele trei iterat, ii ale algoritmului, care dintre configurat, iile
următoare este posibilă?

A. [2, 3, 5, 7, 4, 6, 1]

B. [3, 6, 4, 8, 5, 1, 9]

C. [1, 4, 6, 8, 3, 5, 2]

D. [2, 5, 7, 8, 6, 3, 1]

896. ✓ ?Se consideră următorul algoritm de căutare binară ı̂ntr-un s, ir de cuvinte sortate
alfabetic, unde cuvant s, i ℓ sunt s, iruri de caractere. (len(dictionar) reprezintă lungimea
vectorului dictionar)

Algorithm cauta(cuvant, dictionar, ℓ)
stanga← 1

485

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

dreapta← len(dictionar)
While stanga ≤ dreapta execute

mijloc← stanga+ (dreapta− stanga) DIV 2
If dictionar[mijloc] = cuvant then

Return True

Else If dictionar[mijloc] < cuvant then

If dictionar[mijloc] = ℓ then

stanga← mijloc+ 1
Else

stanga← mijloc+ 2
EndIf

Else

dreapta← mijloc− 1
EndIf

EndWhile

Return False

EndAlgorithm

S, irul cont, ine cuvintele: ["castan", "fag", "larice", "plop", "salcie", "stejar",
"tei"]. Care dintre următoarele secvent,e de comparat, ii NU POT apărea ı̂n timpul
căutării cuvântului "tei", când ℓ =”stejar”?

A. "plop" → "stejar" → "tei"

B. "plop" → "salcie" → "stejar" → "tei"

C. "plop" → "tei"

D. "plop" → "salcie" → "tei"

897. ✓ ?Se consideră algoritmul calcul(a, n, val) care primes,te ca parametrii de intrare
s, irul a cu n elemente numere naturale nenule s, i o variabilă val, număr natural nenul
(1 ≤ n ≤ 105, 1 ≤ a[1], a[2], . . . , a[n] ≤ 106, 1 ≤ val ≤ 109).

Algorithm calcul(a, n, val)

sp← [0] ∗ (n+ 1)
For i← 1, n execute

sp[i]← sp[i− 1] + a[i]
EndFor

lmax← 0
For i← 1, n execute

st← 1; dr ← n; poz ← −1
While st ≤ dr execute

mij ← (st+ dr) DIV 2
If sp[mij]− sp[i− 1] ≤ val then

poz ← mij
st← mij + 1

Else

dr ← mij − 1
EndIf

EndWhile

If poz ̸= −1 AND poz − i+ 1 ≥ lmax then

lmax← poz − i+ 1
EndIf

EndFor

Return lmax

486

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

EndAlgorithm

Care dintre următoarele afirmat, ii sunt adevărate?

A. Algoritmul determină cea mai mare valoare din s, ir care este mai mică sau egală
cu val.

B. Algoritmul caută binar un element ı̂n s, irul sp, dar algoritmul nu va funct, iona
deoarece s, irul sp nu este ordonat.

C. Algoritmul determină lungimea celei mai lungi secvent,e de elemente cu suma mai
mică sau egală cu val.

D. Există posibilitatea de implementare a unui algoritm echivalent cu cel dat, dar
de complexitate mai bună.

898. ✓ ?Se consideră algoritmul: ceFace(arr, n, i) unde arr este un vector de n numere
ı̂ntregi, iar n, i sunt numere ı̂ntregi (0 < i, n < 10). Algoritmul print(arr, n) afis,ează
vectorul de numere arr (−103 < arr[1], arr[2], . . . , arr[n] < 103).

1: Algorithm ceFace(arr, n,

i)

2: If then

3: print(arr, n)

4: Return

5: EndIf

6: For j ← i, n execute

7: swap(arr[i], arr[j])

8: ceFace(arr, n, i +

1)

9:

10: EndFor

11: EndAlgorithm

Care dintre următoarele variante completează cele
două linii lipsă, astfel ı̂ncât algoritmul să genereze
toate permutările vectorului arr?

A. Linia 2: i = n

Linia 9: swap(arr[j], arr[i])

B. Alt răspuns

C. Linia 2: i > n

Linia 9: swap(arr[j], arr[i])

D. Linia 2: i = n

Linia 9: swap(arr[i], arr[j])

899. ✓ ?Prin experiment, se determină că sortarea prin select, ie efectuează 5000 de comparat, ii
pentru sortarea unui vector de dimensiune k. Dacă dimensiunea vectorului se dublează
la 2k, câte comparat, ii aproximativ se vor efectua?

A. 10000 B. 15000 C. 20000 D. 40000

900. ✓ ?Se consideră algoritmul check(n) care verifică dacă un număr ı̂ntreg n satisface:

Este par SAU divizibil cu 3, S, I nu este negativ

Algorithm check(n)

Return

EndAlgorithm

Care dintre următoarele expresii completează corect algoritmul?

A. (n MOD 2 = 0 OR n MOD 3 = 0) AND n >= 0

B. n >= 0 AND (n MOD 2 = 0 OR n MOD 3 = 0)

C. !(n < 0) AND (n MOD 2 = 0 OR n MOD 3 = 0)

D. n MOD 2 = 0 OR n MOD 3 = 0 AND n >= 0

487

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

901. ✓ ?Se consideră algoritmul ceFace(a, i, j, n) unde n, i, j sunt numere naturale
nenule (1 ≤ i, j ≤ n ≤ 103) s, i a este o matrice pătratică cu n linii s, i n coloane, cu
elemente numere naturale (0 ≤ a[1][1], a[1][2], . . . , a[n][n] ≤ 105).

Algorithm ceFace(a, i, j, n)

If i > 0 then

If j = 0 then

ceFace(a, i− 1, n, n)
If i > 1 then

Write newline
EndIf

Else

ceFace(a, i, j − 1, n)
Write a[i][j], ′ ′

EndIf

EndIf

EndAlgorithm

Precizat, i care dintre următoarele afirmat, ii sunt adevărate considerând apelul init, ial
ceFace(a, n, n, n):

A. Algoritmul afis,ează elementele matricei ı̂n ordine de la linia 1 la linia n, elementele
fiecărei linii fiind afis,ate de la coloana 1 la coloana n.

B. Algoritmul afis,ează elementele matricei ı̂n ordine de la linia 1 la linia n, elementele
fiecărei linii fiind afis,ate de la coloana n la coloana 1.

C. Algoritmul afis,ează elementele matricei ı̂n ordine de la linia n la linia 1, elementele
fiecărei linii fiind afis,ate de la coloana 1 la coloana n.

D. Algoritmul afis,ează elementele matricei ı̂n ordine de la linia n la linia 1, elementele
fiecărei linii fiind afis,ate de la coloana n la coloana 1.

902. ✓ ?Se consideră 9 bile identice, dintre care una are o greutate us,or diferită (mai grea
sau mai us,oară). Folosind o balant, ă cu brat,e egale, trebuie să identificat, i bila diferită
ı̂n cel mult 3 cântăriri. Fie următoarele strategii:

i. Prima cântărire constă ı̂n compararea a două grupuri de câte 3 bile. Dacă balant,a
este echilibrată, bila diferită se află ı̂n cele 3 bile rămase. În caz contrar, se
analizează direct, ia dezechilibrului.

ii. Prima cântărire compară două grupuri de câte 4 bile. Dacă balant,a este echili-
brată, bila diferită este cea rămasă. În caz contrar, se continuă cu cele 4 bile de
pe talerul mai greu.

iii. După o primă dezechilibrare, se mută 2 bile de pe talerul greu pe cel us,or s, i se
adaugă o bilă necântărită. Se analizează schimbarea direct, iei.

iv. Se utilizează o strategie de eliminare bazată pe paritatea numărului de bile
cântărite pe fiecare taler ı̂n fiecare etapă.

Care dintre următoarele afirmat, ii sunt adevărate?

A. Metoda i. permite identificarea bilei diferite indiferent dacă aceasta este mai grea
sau mai us,oară

B. Metoda ii. necesită exact 3 cântăriri pentru a determina bila diferită

488

Antrenament Universitatea Babes,-Bolyai Cluj-Napoca

C. Metoda iii. foloses,te principiul transpunerii bilelor ı̂ntre cântăriri pentru a deduce
natura diferent,ei

D. Metoda iv. garantează că numărul total de bile de pe fiecare taler este mereu par
ı̂n fiecare etapă

Alex s, i Diana joacă
”
S, arpele numeric”, un joc ı̂n care construiesc alternativ un s,arpe

din numere naturale. La fiecare tură, jucătorul trebuie să adauge un număr natural x
care să respecte următoarele reguli:

i. x trebuie să fie strict mai mare decât ultimul număr din s,arpe (coada s,arpelui);

ii. x+ (coada s,arpelui) trebuie să fie multiplu de 3.

Alex ı̂ncepe jocul cu numărul 1. Diana pune următorul număr, apoi Alex s, i tot as,a,
alternativ. După primele 8 mutări (4 ale lui Alex s, i 4 ale Dianei), s-a ajuns la un
anumit ultim număr din s,arpe. Problemele 903. s, i 904. se referă la acest joc.

903. ✓ ?Care este cel mai mic număr pe care Alex ı̂l poate pune ı̂n a 5-a lui mutare (mutarea
a 9-a din joc) dintre opt, iunile de mai jos, astfel ı̂ncât regula de mai sus (x + coada
multiplu de 3 s, i x mai mare decât coada) să fie respectată?

A. 15 B. 16 C. 17 D. 18

904. ✓ ?Jucătorii decid ca, ı̂ntr-o nouă partidă a jocului
”
S, arpele numeric”, regula să se

modifice astfel ı̂ncât, la fiecare tură, suma lui x cu numărul din coada s,arpelui (ultimul
număr pus) să fie multiplu de 4. Alex pornes,te jocul cu 1, iar apoi Diana s, i Alex vor
continua alternând mutările, fiecare fiind obligat să pună un număr strict mai mare
decât coada s,arpelui s, i care să ı̂ndeplinească noua condit, ie (suma multiplu de 4). Care
dintre următoarele afirmat, ii sunt adevărate?

A. Doar Alex poate câs,tiga

B. Diana va fi câs,tigătoare ı̂ntotdeauna

C. Jocul va continua la infinit, fără câs,tigător

D. Jocul se va bloca ı̂ntotdeauna după maximum 10 ture

905. ✓ ?Se consideră algoritmul afis,(x), unde x este un număr natural (1 ≤ x ≤ 104).

Algorithm afis,(x)

If x < 8000 then

Write x, " "

afis,(4 * x)

Write x, " "

EndIf

EndAlgorithm

Ce se afis,ează pentru apelul afis,(1000)?

A. 1000 4000 4000 4000 1000

B. 1000 4000 4000 1000

C. 1000 4000 8000 4000 1000

D. 1000 4000 8000

489

Partea

III

Răspunsuri s, i indicat,ii

14

Răspunsuri

1. B C

2. B

3. B D

4. A D

5. B D

6. D

7. D

8. A

9. A

10. C

11. C

12. B

13. A

14. B

15. A B C

16. B C

17. A B

18. A C

19. B D

20. A C

21. C

22. B

23. B

24. C

25. C

26. A

27. C

28. C

29. D

30. B

31. A

32. B

33. A

34. D

35. B

36. A

37. B

38. D

39. C

40. C

41. A

42. A

43. B

44. A

45. A

46. A D

47. A B D

48. B D

49. A

50. A B C

51. B C

52. A B

53. B C

54. A C

55. A C D

56. A C

57. B

58. A B

59. D

60. A B

61. A C

62. D

63. B D

64. C

65. A B

66. B C

67. B

68. A

69. B C D

70. B D

71. D

72. A B D

73. D

74. A D

75. A

76. B

77. B

78. A B D

79. C

80. A B D

81. A B D

82. B C

83. A

84. A D

85. A B D

86. A B D

87. A C

88. D

89. A B D

90. B

91. C

92. D

93. A D

94. D

95. C

96. C

97. A C

98. A C

99. B C D

100. A D

101. B C

102. B D

103. A D

104. A B

105. A D

106. A C

107. A B C

108. C

109. D

110. C

111. A C

112. A

113. A C

114. C

115. B C D

116. B C D

117. B C

118. C

119. A B

120. A C

Răspunsuri Universitatea Babes,-Bolyai Cluj-Napoca

121. B C D

122. A C

123. A B C

124. B C

125. A D

126. A D

127. D

128. D

129. C

130. A C D

131. A D

132. D

133. C

134. A

135. A B C

136. A B D

137. A B C

138. A B C

139. A C

140. B C D

141. B

142. A C

143. B C

144. A B D

145. B

146. A B C

147. A C D

148. A C D

149. A B C

150. A B

151. A B C

152. A C

153. B

154. C

155. B D

156. A C

157. B

158. A C

159. B

160. A

161. A B

162. C

163. A C D

164. A D

165. C

166. C

167. C

168. B C

169. B

170. A C

171. C

172. C D

173. A D

174. A B D

175. B

176. A C

177. B C D

178. A B C

179. A B D

180. A B C

181. A B

182. A B

183. C D

184. B

185. B

186. C

187. D

188. D

189. B C

190. A B

191. B C

192. B

193. A B D

194. A C D

195. B C D

196. A B

197. B C

198. B D

199. A C

200. B C

201. A D

202. A C D

203. A B D

204. A C

205. A B D

206. B

207. A

208. B C

209. D

210. C

211. A

212. A

213. B

214. C

215. A B

216. B D

217. B

218. D

219. A

220. A B

221. B

222. D

223. D

224. B C

225. B C

226. C D

227. A C

228. A

229. B C

230. A D

231. A B D

232. A B D

233. A C

234. A B

235. C

236. D

237. B

238. D

239. C

240. A D

241. B

242. C

243. B

244. A

245. B

246. A

247. B

248. C

249. A

250. D

251. C

252. B

492

Răspunsuri Universitatea Babes,-Bolyai Cluj-Napoca

253. C D

254. A D

255. B C

256. A B C

257. B C

258. D

259. C

260. D

261. B

262. B C D

263. B C D

264. A B D

265. A B D

266. A D

267. C

268. A

269. B

270. A C

271. A D

272. C D

273. B C D

274. B D

275. A B C

276. A C

277. A C

278. A

279. B D

280. C

281. A B C

282. D

283. A

284. C D

285. A

286. A C

287. C

288. A D

289. B C

290. A

291. A D

292. B

293. B

294. A C

295. D

296. B D

297. A C D

298. B

299. C D

300. B

301. D

302. A D

303. A B

304. B

305. C D

306. A D

307. A D

308. A B C

309. B C

310. B C

311. A C

312. C D

313. A B

314. C

315. C D

316. C

317. A D

318. A B

319. B C D

320. A C

321. A D

322. B D

323. A

324. C

325. B C

326. B

327. C D

328. B

329. A B

330. B C D

331. A

332. B D

333. B

334. A C D

335. D

336. A

337. B

338. A B

339. A D

340. B

341. A B C

342. A C D

343. B D

344. A D

345. B

346. B D

347. A D

348. C

349. A B D

350. A

351. A

352. A C

353. A B

354. A B D

355. D

356. B

357. C D

358. A D

359. A D

360. C

361. B D

362. A B

363. A D

364. B C D

365. A B D

366. B

367. A D

368. D

369. C

370. B C D

371. C

372. A

373. B

374. A B

375. B D

376. A

377. A D

378. A B

379. A B C

380. A B C

381. C

382. A C

383. B C D

384. B

493

Răspunsuri Universitatea Babes,-Bolyai Cluj-Napoca

385. A C D

386. C

387. B C

388. A

389. C D

390. A B

391. C

392. B

393. A C

394. B

395. A B D

396. B

397. C

398. A B C

399. A

400. A D

401. D

402. C

403. A B C

404. A B

405. A

406. B

407. A C

408. B C

409. A

410. A

411. B D

412. C D

413. C

414. A B

415. A B

416. A B

417. C

418. B

419. A D

420. C

421. D

422. D

423. A

424. A

425. B

426. A C

427. A C D

428. D

429. C

430. B D

431. B

432. A B D

433. B D

434. B C

435. D

436. C

437. B C

438. D

439. A C D

440. A D

441. A B C

442. A B

443. A B

444. B

445. A

446. B C

447. D

448. C D

449. A

450. B D

451. B

452. B C

453. B

454. C

455. D

456. C

457. B

458. A

459. D

460. B

461. B

462. C

463. B C D

464. C

465. A B C

466. B

467. A C D

468. A C D

469. A C

470. A B D

471. A

472. C D

473. C D

474. C

475. B

476. A

477. B D

478. B

479. D

480. A B C

481. B

482. D

483. C

484. A C

485. A

486. A B

487. A C D

488. A B

489. A

490. B D

491. B D

492. C

493. C D

494. A

495. B D

496. B C

497. C

498. B C

499. A D

500. A

501. B C

502. B C

503. A

504. A C

505. B

506. C

507. D

508. D

509. B C

510. A

511. B C

512. A B D

513. B C

514. C D

515. C

516. D

494

Răspunsuri Universitatea Babes,-Bolyai Cluj-Napoca

517. A B C D

518. B

519. B

520. C D

521. A C D

522. A B C D

523. A C

524. B D

525. C

526. B D

527. D

528. B D

529. A

530. B

531. D

532. B C

533. B C

534. B

535. D

536. A B D

537. B D

538. B D

539. C

540. A D

541. A

542. B D

543. A B

544. B C

545. A B

546. D

547. A D

548. A C

549. A C

550. A

551. A C

552. B C

553. D

554. A D

555. D

556. B

557. A B D

558. B D

559. A B

560. C

561. B C

562. C

563. A C

564. A

565. B C

566. B C D

567. A B

568. B C D

569. C

570. A C

571. B C

572. A D

573. A C

574. A B

575. C

576. B

577. A C

578. C

579. C

580. D

581. C

582. A

583. A

584. A D

585. A B C

586. A B C

587. C

588. A C

589. A

590. B

591. C D

592. B D

593. D

594. A B

595. A C

596. B D

597. A D

598. A C

599. A C

600. B C D

601. B D

602. A C

603. A D

604. B C

605. B D

606. C

607. A B D

608. A D

609. C

610. B

611. D

612. A B D

613. C

614. B

615. C

616. C

617. A C D

618. C

619. B

620. B D

621. B

622. C D

623. A C

624. B D

625. B

626. D

627. A C

628. A D

629. A

630. A

631. B

632. D

633. C

634. B C

635. A D

636. A B

637. B

638. A

639. C

640. B

641. C

642. D

643. B

644. A B C

645. D

646. B C D

647. D

648. B

495

Răspunsuri Universitatea Babes,-Bolyai Cluj-Napoca

649. D

650. A C

651. C

652. B

653. A

654. B

655. A C

656. B D

657. B

658. C

659. B D

660. A B D

661. A D

662. B D

663. B

664. C

665. B

666. A B

667. B

668. B

669. B D

670. A

671. A C

672. C D

673. A B C

674. C D

675. B

676. D

677. C D

678. A C D

679. B D

680. A C D

681. B

682. A B D

683. B

684. B C

685. A D

686. A B

687. A B C

688. A B

689. A D

690. A B D

691. A B D

692. B C

693. A B

694. B C D

695. D

696. A B D

697. A B

698. A B C

699. A

700. C

701. B, C

702. D

703. B C D

704. B C D

705. A

706. A C

707. C D

708. A

709. A C

710. A C D

711. A B C

712. A B D

713. D

714. D

715. A B C

716. A B C

717. A B C

718. B D

719. A C D

720. B D

721. A C D

722. A D

723. A

724. A B

725. B C D

726. B

727. A C

728. C

729. B

730. A B C

731. A

732. C

733. B D

734. B D

735. A C D

736. C

737. A B

738. A C D

739. A

740. B

741. A C D

742. A C

743. A D

744. C

745. C

746. C D

747. A B

748. B

749. A B C

750. A B C

751. A B C

752. B D

753. A C D

754. C D

755. A C D

756. A

757. D

758. A B D

759. C

760. B C

761. C D

762. B

763. A C

764. B C

765. A

766. A

767. A B

768. D

769. B D

770. A C

771. A C

772. A B

773. A C D

774. B D

775. A C

776. B C D

777. A C

778. C

779. A C

780. C

496

Răspunsuri Universitatea Babes,-Bolyai Cluj-Napoca

781. A

782. A

783. B C

784. C

785. A C

786. C

787. B D

788. B

789. A D

790. A C

791. D

792. B

793. A C

794. C

795. B C

796. D

797. C

798. B C D

799. B D

800. C

801. C

802. C

803. D

804. B C D

805. A C

806. A C D

807. A B

808. A D

809. A

810. A

811. A C

812. B

813. C

814. C

815. D

816. B D

817. B C

818. B C

819. A C

820. D

821. A

822. B C

823. B D

824. A C

825. A D

826. A C

827. C

828. B C

829. D

830. C

831. A B

832. B C

833. A

834. B C D

835. A C

836. B

837. A

838. B

839. A C

840. A

841. C

842. A B

843. A

844. D

845. A

846. C

847. D

848. A B C

849. B

850. C

851. D

852. C

853. A

854. B

855. A

856. B

857. B C D

858. A B

859. D

860. A

861. A

862. A

863. B C

864. B

865. A C D

866. B

867. A D

868. A

869. B

870. A B

871. A

872. A

873. B C

874. B

875. A C

876. B C D

877. A C

878. A D

879. A

880. A

881. B

882. B

883. B

884. A C D

885. B D

886. B D

887. A B D

888. A

889. B

890. A C

891. B

892. A D

893. B

894. B

895. A C D

896. B C D

897. C D

898. A C D

899. C

900. A B C

901. A

902. C

903. B

904. C

905. B

497

15

Rezolvări

1. Algoritmul pare să interschimbe elementele a s, i b, dar nu funct, ionează corect pe toate

cazurile, deoarece după prima operat, ie a va ret, ine doar partea ı̂ntreagă din a DIV b. A.

Fals, a = 18 s, i b = 20, a va deveni 0, b va deveni 0, iar apoi a se calculează ca 0 DIV 0,

unde va apărea o eroare. B. Adevărat, a = 28 s, i b = 10, a va deveni 2, b va deveni 20, iar

apoi a se calculează ca 20 DIV 2, s, i se va afis,a 10 20. C. Adevărat, a = 20 s, i b = 10, se

vor interschimba corect elementele, deoarece a este multiplu de b s, i se va afis,a 10 20. D.

Fals, a = 10 s, i b = 20, a va deveni 0, b va deveni 0, iar apoi a se calculează ca 0 DIV 0,

unde va apărea o eroare.

2. Analizăm fiecare algoritm: - swap1: Realizează gres, it interschimbarea valorilor, din

cauza liniei a ← b − a . - swap2: Realizează corect interschimbarea valorilor folosind

metoda prin ı̂nmult, iri. - swap3: Realizează gres, it interschimbarea valorilor, se poate

pierde restul, folosind DIV. - swap4: Realizează gres, it interschimbarea valorilor, din cauza

liniilor b← a− b, a← b+ a. Astfel, răspunsul corect este B.

3. Numărul total de valori dintr-un interval [a, b], atunci când pasul este k, se calculează

folosind formula b−a
k + 1. În algoritmul dat, dacă a > b, se face o interschimbare pe

bit, i folosind operatorul XOR, iar pasul nu este k, ci 2k, deoarece, ı̂n fiecare iterat, ie, a se

incrementează cu k, iar b se decrementează cu k. Prin urmare, numărul total de valori va

fi b−a
2k + 1.

La punctul B, se afis,ează 12 valori, aplicând formula. La punctul C, se afis,ează corect

valorile. La punctul D, ultima valoare care se afis,eaza este mai mare decât a+b
2 . As,adar,

afirmat, iile care nu sunt adevărate sunt B s, i D.

4. Pentru ca algoritmul Bad(a, b) să interschimbe corect valorile lui a s, i b, prin metoda

scăderilor, linia trebuie completată cu b← a+ b, care este varianta A. De asemenea, va-

rianta D, adusă la o formă simplificată, reprezintă acelas, i lucru. Astfel, răspunsul corect

este A, D.

5. Algoritmul container(n) returnează cel mai mare număr k astfel ı̂ncât 2k să fie mai

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

mic sau egal cu n. La punctul A, pentru n = 1024, algoritmul returnează 10, deoarece

1024 = 210. La punctul B, algoritmul returnează 8, deoarece cel mai mare număr putere

de 2 mai mic decât 336 este 256 = 28. La punctul C, algoritmul nu returnează o putere de

2, ci doar exponentul k. La punctul D, descrierea reflectă exact funct, ionarea algoritmului.

Astfel, variantele corecte sunt B s, i D.

6. Se determină numărul total de numere de 1, 2 sau 3 cifre care au suma cifrelor egală

cu 9.

7. Pentru ca un număr să fie divizibil atât cu 5 cât s, i cu 9, este necesar ca restul ı̂mpărt, irii

la 5 să fie 0 (n mod 5 = 0) s, i restul ı̂mpărt, irii la 9 să fie 0 (n mod 9 = 0). Nicio altă

expresie nu respectă simultan aceste condit, ii.

8. Pentru ca expresia să fie True, trebuie să fie ı̂ndeplinite simultan condit, iile y > 10

s, i y MOD 4 ̸= 0, ceea ce face varianta A corectă. Restul opt, iunilor nu respectă complet

cerint,ele problemei.

9. Pentru ca expresia să fie True, este necesar ca k să fie un număr par (k MOD 2 = 0) s, i

simultan mai mic decât 20 (k < 20). Celelalte opt, iuni nu respectă complet aceste condit, ii.

10. Pentru ca expresia să fie True, trebuie ca m să fie un număr negativ (m < 0) s, i divi-

zibil cu 8 (m MOD 8 = 0). Celelalte opt, iuni fie contrazic cerint,a, fie nu verifică simultan

ambele condit, ii.

11. Pentru 0+8
4−2+17 mod 3 = 8

2+2 = 4+2 = 6, unde am calculat mai ı̂ntâi 16 mod 4 = 0,

4 ∗ 2 = 8, 16÷ 4 = 4, iar apoi 17 mod 3 = 2.

12. Pentru (((21 mod 7)+3)∗((19÷3))−(7 mod 2) = (0+3)∗6−1 = 3∗6−1 = 18−1 = 17,

unde 21 mod 7 = 0 (rest 0), 19÷ 3 = 6 (cât 6) s, i 7 mod 2 = 1 (rest 1).

13. Analizăm expresia pas cu pas: (b∗c) = 5×8 = 40; (c MOD (b+2)) = 8 MOD 7 =

1; 40 DIV 1 = 40; Partea stângă: 10+40 = 50; ((c−1)∗(b+2)) = 7×7 = 49; Rezultatul

final: 50− 49 = 1, deci valoarea lui a va fi 1.

14. Analizăm expresia pas cu pas: (x MOD (y− 1)) = 8 MOD 14 = 8; (z ∗ (x+1)) =

5∗9 = 45; Suma din paranteză: (8+45) = 53; ((y−1) MOD (z−1)) = 14 MOD 4 = 2;

Împărţirea finală: 53 DIV 2 = 26.

15. A. Expresia are valoarea True. B. Expresia are valoarea False. C. Expresia are

499

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

valoarea True. Expresia are valoarea False.

16. A. Expresia are valoarea False. B. Expresia are valoarea True. C. Expresia are

valoarea True. Expresia are valoarea False.

17. A. Expresia are valoarea True. B. Expresia are valoarea True. C. Expresia are va-

loarea False. Expresia are valoarea False.

18. A. Expresia are valoarea True. B. Expresia are valoarea False. C. Expresia are

valoarea True. Expresia are valoarea False.

19. A. Expresia are valoarea False. B. Expresia are valoarea True. C. Expresia are

valoarea False. Expresia are valoarea True.

20. A. Expresia are valoarea False. B. Expresia are valoarea True. C. Expresia are

valoarea False. Expresia are valoarea True.

21. ((p + 1) MOD q) = 13 MOD 3 = 1; (r ∗ (p + 1)) = 4 ∗ 13 = 52; Prima parte:

1 + 52 = 53; (q MOD (r − 1)) = 3 MOD 2 = 1; A doua parte: 53 − 0 = 53;

((p+ 1) DIV (q + 2)) = 13 DIV 5 = 2; Rezultatul final: 53 + 2 = 55.

22. Analizăm expresia pas cu pas: ((a− 1) MOD b) = 8 MOD 2 = 0; (b ∗ (c+ 1)) =

2 ∗ 6 = 12; ((a− 1) DIV b) = 8 DIV 2 = 4; Rezultatul final: 0 + 12− 4 = 8.

23. (x MOD y) = 25 MOD 4 = 1; ((y + 1) ∗ z) = 5 ∗ 2 = 10; (x DIV (y + 1)) =

25 DIV 5 = 5; Rezultatul final: 1 + 10− 5 = 6.

24. Analizăm expresia pas cu pas: (a DIV b) = 30 DIV 6 = 5; Prima parte: 5−2 = 3;

((b − 1) MOD (c + 1)) = 5 MOD 3 = 2; (a MOD (b − 1)) = 30 MOD 5 = 0; Rezul-

tatul final: 3 + 2 + 0 = 5.

25. Analizăm expresia pas cu pas: ((m+1) MOD n) = 11 MOD 3 = 2; ((n−1)∗p) =

2 ∗ 3 = 6; ((m+ 1) DIV p) = 11 DIV 3 = 3; Rezultatul final: 2 + 6 − 3 = 5; Deci m va

avea valoarea 5.

26. (a MOD (b − 1)) = 14 MOD 6 = 2; ((a + 1) DIV (b − 1)) = 15 DIV 6 = 2;

2 + c = 2 + 2 = 4; (2 MOD (b− 1)) = 2 MOD 6 = 2; Rezultatul final: 2 + 4 ∗ 2 = 10.

27. (x∗ (y+1)) = 4∗3 = 12; ((y+1) DIV (z+1)) = 3 DIV 2 = 1; ((x+1) MOD y) =

5 MOD 2 = 1; Rezultatul final: 12− 1 + 1 = 12, deci x va avea valoarea 12.

28. (a DIV (b− 1)) = 6 DIV 2 = 3; (c MOD (a+1)) = 2 MOD 7 = 2; ((b− 1) ∗ 2) =

500

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

2 ∗ 2 = 4; (a MOD (c+ 1)) = 6 MOD 3 = 0; Rezultatul final: 3 + 4− 0 = 7.

29. ((u− 1) ∗ v) = 11 ∗ 4 = 44; ((u− 1) MOD w) = 11 MOD 3 = 2; (44 DIV 2) = 22;

((v − 1) MOD (w − 1)) = 3 MOD 2 = 1; Rezultatul final: 22 + 1 = 23.

30. (x MOD y) = 5 MOD 3 = 2; (z DIV (y+1)) = 10 DIV 4 = 2; ((z−1) MOD (x−

1)) = 9 MOD 4 = 1; Rezultatul final: 2 + 2− 1 = 3.

31. (x MOD (y − 1)) = 7 MOD 3 = 1; (z ∗ (x + 2)) = 2 ∗ 9 = 18; Prima parte:

1 + 18 = 19; ((x+ 2) DIV z) = 9 DIV 2 = 4; Rezultatul final: 19− 4 = 15.

32. (a DIV b) = 12 DIV 5 = 2; (2 > 3) este fals; ((b − 1) < c) = (4 < 3) este fals;

Prima parte: fals AND fals = fals; (a MOD (b − 1)) = 12 MOD 4 = 0; (0 = 2) este

fals; Rezultatul final: fals OR fals = fals.

33. signed char pe 8 bit, i reprezintă intervalul [−27, 27 − 1] = [−128, 127].

34. ((k + 2) MOD (k + 2)) = 5 MOD 5 = 0; ((k + 1) DIV 2) = 4 DIV 2 = 2; Rezul-

tatul final: 3 + 0 + 2 = 5.

35. unsigned long este reprezentat pe 32 bit, i fără semn, deci maximul e 232 − 1,

corespunzător variantei B.

36. (x > 5) s, i (x + y) < 20 sunt adevărate, deci vor returna True; (y MOD 2 = 1) ⇒

(5 MOD 2 = 1) va returna True, deci (True OR True) → True.

37. signed char poate stoca valori din intervalul [−128, 127] (fiind tip de dată cu

semn). Răspunsul este, as,adar, nu.

38. ((a+1) DIV b) = 9 DIV 3 = 3; (b MOD c) = 3 MOD 1 = 0; ((a+1) MOD b) =

9 MOD 3 = 0; Rezultatul final: 3− 0 + 0 = 3.

39. signed short acceptă valori din intervalul [-32768, 32767] (fiind reprezentare cu

semn), deci 200 este valid. Varianta C este cea corectă.

40. (m MOD (n+p)) = 15 MOD (4+2) = 15 MOD 6 = 3; (n DIV p) = 4 DIV 2 =

2; Rezultatul final: 3 + 2 = 5.

41. Pentru long long reprezentat pe minim 64 de bit, i s, i cu semn, intervalul va fi

[−263, 263 − 1]. Evident, ı̂n cazul unei reprezentări fără semn, limita inferioară ar fi fost

0.

42. (x MOD y) = (13 MOD 3) = 1; (z ∗ y) = (5 ∗ 3) = 15, (15 > 13), deci vom

501

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

avea True AND True = True; (x < (z + y)) => (13 < (5 + 3)) = (13 < 8) →

False; (True OR False)→ True.

43. (b DIV a) = 2 DIV 1 = 2; (2 > 0) este adevărat; ((c − 1) < (b + 1)) = (2 <

3) este adevărat; (a == 2) este fals; Rezultatul final: True OR (True AND False) =

True OR False = True.

44. (x+ y) = 16, 16 ≤ 15; (y− x) = 4, (4 ≥ 4), deci avem False AND True)→ False;

(x ∗ y) = 60, (60 MOD 2) = 0. În final, (False OR True)→ True.

45. Expresiile corecte sunt cele care verifică simultan ca x să fie multiplu de 5 s, i să

apart, ină intervalului (a, b]. Expresia A realizează această verificare utilizând negat, ia s, i

operatorii logici pentru a exclude valorile din afara intervalului.

46. Codul verifică dacă un s, ir este palindrom. Variantele B, C s, i D nu ı̂ndeplinesc

condit, iile.

47. Codul returnează lungimea maximă a unei subsecvent,e a s, irului cu suma egală cu 0.

48. Codul returnează numărul de subsecvent,e cu mai mult de 1 element, elementele ı̂n

ordine strict crescătoare a căror sumă este număr prim.

49. Codul compară două metode de rotire a unui vector la stânga cu k pozit, ii. Algoritmul

A foloses,te un vector temporar, iar B efectuează k rotat, ii succesive folosind funct, ia Helper.

Algoritmul A este mai eficient.

50. Codul calculează suma maximă a unei subsecvent,e consecutive din vector folosind

algoritmul lui Kadane.

51. Codul sortează vectorul folosind funct, ia A s, i afis,ează elementele care nu apar de un

număr de ori multiplu de k ı̂n vector.

52. Codul sortează vectorul folosind funct, ia A s, i afis,ează elementele care nu apar de un

număr de ori multiplu de k ı̂n vector.

53. Codul verifică dacă vectorul este de tip ”munte”, adică are o secvent, ă strict crescătoare

urmată de o secvent, ă strict descrescătoare.

54. Codul verifică dacă vectorul este de tip v̈alë, adică are o secvent, ă strict descrescătoare

urmată de o secvent, ă strict crescătoare.

55. Codul determină lungimea celui mai lung prefix comun al celor două s, iruri, comparând

502

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

caracterele succesive până când ı̂ntâlnes,te caractere diferite sau ajunge la sfârs, itul unuia

dintre s, iruri.

56. Codul determină lungimea celui mai lung prefix comun al celor două s, iruri, comparând

caracterele succesive până când ı̂ntâlnes,te caractere diferite sau ajunge la sfârs, itul unuia

dintre s, iruri.

57. Codul calculează produsul dintre produsul elementelor de pe diagonala principală s, i

pe cea secundară. Diagonala principală cont, ine elementele m[i][i], iar diagonala secun-

dară cont, ine elementele m[i][n− i+ 1].

58. Codul calculează diferent,a dintre suma elementelor de pe liniile pare s, i suma ele-

mentelor de pe liniile impare din matrice folosind un algoritm recursiv. Indexarea liniilor

ı̂ncepe de la 1, astfel ı̂ncât linia 1 este considerată impară, linia 2 este considerată pară

etc.

59. Codul calculează diferent,a dintre suma elementelor de pe liniile pare s, i suma ele-

mentelor de pe liniile impare din matrice folosind un algoritm recursiv. Indexarea liniilor

ı̂ncepe de la 1, astfel ı̂ncât linia 1 este considerată impară, linia 2 este considerată pară

etc.

60. Codul inversează ultimele două linii s, i ultimele două coloane dintr-o matrice de dimen-

siuni arbitrare. Algoritmul funct, ionează prin ı̂nlocuirea directă a elementelor, păstrând

matricea originală modificată.

61. Codul utilizează un vector de prefix sum pentru a calcula eficient suma elementelor

dintr-un interval [i, j] al unui s, ir de numere ı̂ntregi.

62. Algoritmul parcurge elementele de deasupra diagonalei principale s, i verifică dacă

fiecare element este egal cu elementul său simetric fat, ă de diagonală. Dacă se găses,te

cel put, in o pereche de elemente care nu respectă condit, ia m[i][j] = m[j][i], algoritmul

returnează False. În caz contrar, returnează True.

63. Algoritmul returnează numărul de perechi de 2 elemente consecutive de 1 din vectorul

arr. A. Fals, sunt 7 perechi de 2 elemente consecutive de 1, pe pozit, iile (2, 3), (8, 9), (9,

10), (10, 11), (11, 12), (16, 17), (19, 20). Pentru a afla numărul de s, iruri binare pentru

care se returnează 0, aplicăm următoarea metodă. Pentru n = 1, avem 2 posibilităt, i, 0

503

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

s, i 1. Pentru n = 2, avem 3 posibilităt, i, 00, 01, 10. Pentru n = 3, avem 5 posibilităt, i,

000, 001, 010, 100, 101. Pentru n = 4, avem 8 posibilităt, i, 0000, 0001, 0010, 0100, 0101,

1000, 1001, 1010. Pe caz general, notăm cu F (n) numărul de s, iruri binare pentru care se

returnează 0, astfel F (n) = F (n − 1) + F (n − 2), unde F (1) = 2, F (2) = 3. F (1) = 2,

F (2) = 3, F (3) = 5, F (4) = 8, F (5) = 13, F (6) = 21, F (7) = 34, F (8) = 55, F (9) = 89,

F (10) = 144, F (11) = 233. B. Adevărat, pentru n = 11, există 233 de s, iruri binare

distincte pentru care se returnează 0. C. Fals, pentru n = 6, există 21 de s, iruri binare

distincte pentru care se returnează 0. D. Adevarat, pentru n = 8, există 55 de s, iruri

binare distincte pentru care se returnează 0 s, i 28 − 55 = 256 − 55 = 201 s, iruri binare

pentru care se returnează o valoare diferită de 0.

64. Analizam expresia pas cu pas: v[2 ∗ v[2 ∗ v[3]− 1]+1]+ v[2 ∗ v[7− 5]− 1]+ v[3− v[2 ∗

v[2]−3]+6] = v[2∗v[2∗2−1]+1]+v[2∗v[2]−1]+v[3−v[2∗2−3]+6] = v[2∗v[3]+1]+v[2∗

2−1]+v[3−v[1]+6] = v[2∗2+1]+v[3]+v[3−5+6] = v[5]+v[3]+v[4] = 9+2+7 = 18

65. Algoritmul Algo construies,te o matrice auxiliară x, ı̂n care păstrează doar numerele

prime din matricea a, ı̂nlocuind restul elementelor cu 0, parcurge toate submatricele k×k

posibile din x pentru a calcula suma elementelor acestora s, i returnează suma maximă

dintre toate aceste submatrice.

66. Analizam expresia pas cu pas: v[2∗v[4] MOD 3]+v[v[7] DIV 2−1]∗v[3−v[2]+1] =

v[2∗6 MOD 3]+v[5 DIV 2−1]∗v[3−1+1] = v[0]+v[2−1]∗v[3] = 4+7∗9 = 67 A. Fals. B.

Adevărat. C.Adevărat, v[v[9]∗v[4] MOD v[5]]+v[v[8] DIV v[9]−v[2]]∗v[3−v[2]+v[2]] =

v[2∗6 MOD 3]+v[5 DIV 2−1]∗v[3−1+1] = v[0]+v[1]∗v[3] = 4+7∗9 = 67. D. Fals,

v[v[8] MOD v[5]∗3]∗v[3]−v[v[9]]−v[0]−v[v[2] DIV 3]∗v[4−v[6]] = v[5 MOD 3∗3]∗

9− v[2]−4− v[1 DIV 3]∗ v[4−3] = v[2∗3]∗9−1−4− v[0]∗ v[1] = 8∗9−1−4−4∗7 =

72− 1− 4− 28 = 72− 33 = 39

67. Transformăm numărul binar 1010101100 din baza 2 ı̂n baza 10, obt, inem 684(10), apoi

convertim 684(10) ı̂n baza 8, rezultând 1254(8).

68. Calculăm expresia 24 + 26 + 210 − 3 ı̂n baza 10, obt, inem 1101(10), apoi convertim

1101(10) ı̂n baza 2, rezultând 10001001101(2).

69. Se transformă termenii expresiei E ı̂n baza 10, se calculează rezultatul expresiei, apoi

504

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

se fac conversiile ı̂n bazele indicate ı̂n variantele de răspuns.

70. Algoritmul returnează elementul minim din s, irul arr.

71. Algoritmul ceFace1(x) calculează corect cifra de control a numărului x prin sumarea

repetată a cifrelor sale până se obt, ine o singură cifră. Algoritmul ceFace2(x) returnează

restul ı̂mpărt, irii lui x la 9, cu except, ia cazurilor ı̂n care x este multiplu de 9, când retur-

nează 0 ı̂n loc de 9. Prin urmare, algoritmii nu returnează ı̂ntotdeauna aceeas, i valoare,

iar singura variantă corectă este D.

72. La punctul A se face transformarea din baza 2 ı̂n baza 10, iar pentru punctele B, C,

D, se folosesc conversiile rapide pentru a verifica echivalent,ele dintre numere.

73. Algoritmul returnează True dacă numărul este prim sau 0, altfel False. A: Fals. 21

nu este prim. B: Fals. Returnează True pentru 0. C: Fals. Returnează True pentru 0.

D: Adevărat. Returnează True pentru {0, 2, 3, 5, 7}. Răspuns corect: D.

74. Algoritmul calculează numărul de cifre 0 din reprezentarea ı̂n baza 6 a numărului n.

75. Calculăm valorile ı̂n baza 10: x = 42910 = 429. y = 1AD16 = 1×162+10×16+13 =

256 + 160 + 13 = 429. z = 1101011002 = 1 × 28 + 1 × 27 + 0 × 26 + 1 × 25 + 0 × 24 +

1 × 23 + 1 × 22 + 0 × 21 + 0 × 20 = 256 + 128 + 0 + 32 + 0 + 8 + 4 + 0 + 0 = 428. Deci,

x = 429, y = 429, z = 428, de unde avem x = y ̸= z s, i afirmat, ia A este adevărată.

76. Se determină mai ı̂ntâi, prin parcurgerea din stânga spre dreapta, vectorul sp, unde

sp[i] reprezintă suma maximă a unui subşir nêıntrerupt din intervalul [0, i]. Apoi, printr-

o parcurgere inversă (de la dreapta la stânga), calculează un subşir cu sumă maximă ı̂n

partea dreaptă. În final, ı̂ncearcă să combine aceste rezultate pentru a obţine suma ma-

ximă a două subşiruri fără elemente comune. Deci, se identifică două secvent,e disjuncte

cu suma totală maximă, de unde rezultă că varianta B este corectă.

77. Algoritmul ceFace este un algoritm recursiv care returnează valoarea maximă ı̂ntre

pozit, ia i a apelului init, ial s, i pozit, ia n, efectuând comparările pe revenirea recursivităt, ii.

La punctul A, pentru 1 ≤ i ≤ 8, maximul este 12. La punctul B, apelul este acelas, i ca

la A, iar maximul este 12. La punctul C, pentru 2 ≤ i ≤ 5, elementul maxim este 3,

deoarece elementul 5 nu este luat ı̂n considerare, pornind de la pozit, ia 2. La punctul D,

afirmat, ia este falsă, deoarece algoritmul returnează maximul doar din secvent,a de la i

505

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

până la n, nu neapărat din ı̂ntregul vector.

78. Criteriul de divizibilitate cu 7: Dacă din numărul n fără ultima cifră se scade dublul

ultimei cifre, iar numărul rezultat este divizibil cu 7, atunci numărul init, ial n este divizibil

cu 7.Algoritmul calculează s, i returnează numărul de numere divizibile cu k din vectorul

v, doar dacă k = 7. În caz contrar, algoritmul returnează câte elemente din vectorul v

respectă proprietatea respectivă.

79. Algoritmul taste(arr, n) returnează suma numerelor neprime din vectorul arr.

80. Algoritmul afis,ează resturile succesive ale ı̂mpărt, irii lui n la 2 ı̂n ordinea lor, dar pen-

tru a obt, ine reprezentarea binară corectă, aceste resturi trebuie citite ı̂n ordine inversă.

Astfel, afirmat, iile A s, i B sunt corecte. D este corect deoarece complexitatea algoritmului

este O(log n).

81. Algoritmul returnează suma dintre cel mai mic element mai mare decât primul ele-

ment din vector s, i cel mai mare element mai mic decât primul element, dacă acestea

există; altfel, returnează primul element. La A, se returnează primul element. La B,

−1 + 32 = 31. La C, cu n = 4, rezultatul este 20 + 6 = 26. La D, 14 + 17 = 31.

Afirmat, iile A, B, D sunt corecte.

82. Algoritmul determină s, i afişează cel mai mic număr din intervalul [a, b] cu număr

maxim de divizori, numărul de divizori al acestuia s, i numărul de numere cu această pro-

prietate. A: Se afisează 200 12 1. B: Numarul maxim de divizori este 4 pentru numerele

{6, 8, 10}.

83. Pentru a verifica succesiv valorile 36, 45, s, i 64, vectorul trebuie să fie sortat ı̂n ordine

crescătoare (precondit, ie a căutării binare), iar valoarea căutată trebuie să se afle la pozit, ia

corectă pentru ca metoda căutării binare să urmeze acest traseu al comparat, iilor.

În căutarea binară aplicată vectorului [4, 7, 9, 15, 36, 40, 42, 45, 64, 67], valorile comparate

succesiv pentru găsirea lui 64 sunt 36 (la indicele 5), apoi 45 (indicele 8) s, i ı̂n final 64

(indicele 9).

84. Convertim ı̂n baza 10: AB16 ı̂n baza 10: A = 1010, B = 1110, deci AB16 = 10 ×

16 + 11 = 17110. 1203 ı̂n baza 10: 1203 = 1 × 32 + 2 × 31 + 0 × 30 = 9 + 6 + 0 = 1510.

1204 ı̂n baza 10: 1204 = 1 × 42 + 2 × 41 + 0 × 40 = 16 + 8 + 0 = 2410. Avem deci

506

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

E = 17110 + 1510 − 2410 = 171 + 15− 24 = 186− 24 = 16210. Cum 2428 ı̂n baza 10 este

2× 82 + 4× 8 + 2 = 2× 64 + 32 + 2 = 128 + 32 + 2 = 16210, deci variantele corecte sunt

A s, i D.

85. Algoritmul calculează suma tuturor valorilor de 1 din reprezentarea ı̂n baza 2. Pentru

n = 8 = 23:

Număr Reprezentare binară

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

Grupăm reprezentările după formatul: primul cu ultimul, al doilea cu penultimul, etc.

0 s, i 7 = 000, 111 ⇒ 3 bit, i de 1

1 s, i 6 = 001, 110 ⇒ 3 bit, i de 1

2 s, i 5 = 010, 101 ⇒ 3 bit, i de 1

3 s, i 4 = 011, 100 ⇒ 3 bit, i de 1

Observăm că se obt, in 4 grupe a câte 3 bit, i de 1, adică:

4 × 3 = 12 bit, i de 1pentru toate numerele naturale până la 7. Mai trebuie să adăugăm

numărul de bit, i din reprezentarea lui 8, adică:

8 = 1000(2) ⇒ 12+1 = 13 bit, i de 1 ⇒ pentru n = 8 ⇒ 13. Pe caz general,

trebuie să găsim cea mai apropiată putere de 2 de numărul nostru s, i să aplicăm regula.

Pentru n = 2k ⇒ n
2 × k + 1.

86. Algoritmul indigo(n) calculează s, i returnează numărul de factori primi distinct, i din

factorizarea numărului n.

87. Algoritmul returnează cifra cu cel mai mare rest la ı̂mpărt, irea la 4 din n. Dacă există

mai multe cifre cu acelas, i rest, este selectată cifra cea mai semnificativă. A: Corect, pentru

507

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

n = 12569, algoritmul returnează 2. B: Fals, pentru n = 783031, algoritmul returnează

7. C: Corect, pentru n = 2024 s, i n = 2025, algoritmul returnează 2. D: Fals, algoritmul

nu returnează prima cifră divizibilă cu 4.

88. Algoritmul returnează cifra maximă din numărul n care este divizibilă cu 3 s, i nu

este divizibilă cu 2. Dacă nu există o astfel de cifră, algoritmul returnează -1. Singura

afirmat, ie falsă este D, deoarece cifra 3 ı̂ndeplines,te condit, iile algoritmului.

89. Algoritmul switch(a, b) returnează CMMDC dintre a s, i b, iar case(a, b) returnează

CMMMC dintre a s, i b. Două numere prime ı̂ntre ele au CMMDC egal cu 1. Astfel,

variantele corecte sunt A, B, D.

90. Algoritmul returnează maximul din vectorul arr, ducându-l pe prima pozit, ie din

vector, efectuând o singură iterat, ie a algoritmului de sortare bubble sort.

91. Algoritmul calculează CMMDC al numerelor din secvent,a de la pozit, ia i până la n.

A: CMMDC(30, 60, 12, 48, 72) = 6. B: CMMDC(14, 42) = 14. C: CMMDC(20, 80, 50)

= 10. Complexitatea algoritmului este O(n · logm), unde n este numărul de elemente, iar

m este valoarea maximă din vector. Astfel, varianta corecta este C.

92. Algoritmul Algo(v, n) init, ializează un vector cu valori descrescătoare pornind de

la n până la 1, iar apoi calculează suma valorilor de pe pozit, iile impare ale vectorului,

afis, ând rezultatul.

93. Algoritmul ceFace(v, n, i, fl, sl) afis,ează perechea (a, b), unde a s, i b sunt cele mai mari

două elemente distincte din s, irul v, cu a > b, exceptând cazul ı̂n care s, irul cont, ine toate

elementele nule. Indexarea vectorului se face de la 0. Algoritmul ceFace(v, n) afis,ează

toate perechile de elemente cu proprietatea respectivă pentru toate subsecvent,ele de la i

până la n, unde i ∈ [0, n]. A. Adevărat: Apelul este cu i = 1. B. Fals: Se afis,ează s, i (3, 0)

la final. C. Fals: Dacă vectorul are toate elementele nule, algoritmul afis,ează (0, 0). D.

Adevărat: Se ia doar secvent,a {2, 1, 3, 1}, apelul este cu i = 3. Răspuns corect: A, D.

94. Algoritmul verifică dacă numărul n cont, ine doar cifrele 0 s, i 1 ı̂n reprezentarea sa

ı̂n baza 4. A. Corect. Algoritmul returnează True dacă n are doar cifrele 0 s, i 1 ı̂n baza

4. B. Corect. Un număr cu cifrele 0 s, i 1 ı̂n orice bază b poate fi scris ca sumă de puteri

distincte ale lui b. C. Corect. Pentru n = 806, 8064 = 302124, care nu cont, ine doar 0 s, i

508

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

1, deci algoritmul returnează False. D. Fals. Pentru n = 81, 8110 = 11014, care nu este

multiplu de 4, dar algoritmul returnează True. Astfel varianta falsă este D.

95. Algoritmul Algo(v) modifică elementele vectorului v iterând descendent de la 8 la 1.

Pentru fiecare element, dacă indexul este impar, valoarea este incrementată cu 1, iar dacă

este par, valoarea este redusă cu jumătatea indexului. Vectorul rezultat reflectă aceste

modificări.

96. Algoritmul Algo(v, n, e) caută elementul e ı̂n vectorul v s, i, dacă acesta există,

mută toate elementele de după e la ı̂nceputul vectorului, păstrând ordinea init, ială a

celorlalte elemente. Dacă elementul nu este găsit, algoritmul returnează False s, i nu

modifică vectorul.

Varianta C este corectă deoarece implementează corect mutarea elementelor, utilizând un

vector temporar pentru a salva elementele din partea finală a vectorului s, i le reintroduce

ı̂n pozit, iile corecte după ajustare.

În varianta A apare o eroare ı̂n gestionarea mutării elementelor, ceea ce poate duce la

suprascriere incorectă. Varianta B introduce o verificare redundantă s, i nu gestionează

corect repozit, ionarea elementelor. Varianta D utilizează un vector temporar, dar mută

gres, it elementele, ceea ce duce la un vector final incorect.

Astfel, varianta corectă este C, deoarece respectă specificat, iile problemei s, i mută elemen-

tele ı̂n mod corect.

97. Algoritmul algo(v, n, k) verifică dacă vectorul v poate fi ı̂mpărt, it ı̂n k subsecvent,e

de lungime egală, fiecare dintre acestea fiind strict crescătoare. Init, ial, algoritmul verifică

dacă n este divizibil cu k, deoarece doar ı̂n acest caz vectorul poate fi ı̂mpărt, it ı̂n k sect, iuni

de lungime egală. Dacă această condit, ie nu este ı̂ndeplinită, algoritmul returnează False.

Dacă n este divizibil cu k, algoritmul determină lungimea fiecărei subsecvent,e, notată cu

s, s, i parcurge fiecare dintre cele k subsecvent,e. În cadrul fiecărei subsecvent,e, compară

fiecare element cu următorul pentru a verifica dacă acestea sunt ordonate strict crescător.

Dacă există cel put, in o pereche de elemente care nu respectă această ordine, algoritmul

returnează False.

Astfel, algoritmul verifică dacă vectorul poate fi ı̂mpărt, it ı̂n k subsecvent,e egale ca lun-

509

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

gime, fiecare dintre acestea fiind strict crescătoare, ceea ce corespunde variantei de răspuns

A. Varianta B este incorectă deoarece enunt,ul sugerează doar o verificare a ordonării

crescătoare, fără a impune ca elementele să fie strict crescătoare.

As,adar, variantele corecte sunt A, C.

98. Algoritmul algo calculează un număr format printr-o secvent, ă de operat, ii asupra

cifrelor din n, t, inând cont de condit, ia specificată s, i decrementând k când condit, ia nu este

ı̂ndeplinită.

99. Algoritmul transform calculează un nou vector pe baza produselor elementelor

vecine, ı̂n funct, ie de valoarea pozitivă sau negativă a lui m.

100. Algoritmul f(v, n, t) determină tripletul de elemente din vectorul v a cărui

sumă este cea mai apropiată de valoarea t. Pentru a eficientiza căutarea, vectorul este

mai ı̂ntâi sortat folosind funct, ia g(v, n). Apoi, algoritmul parcurge vectorul s, i, pentru

fiecare element, foloses,te doi indici – unul la stânga s, i unul la dreapta – pentru a găsi

suma optimă prin ajustarea pozit, iilor acestora.

Dacă suma curentă este mai apropiată de t decât cea salvată anterior, tripletul este

actualizat. Dacă suma este prea mică, indicele stâng este crescut, iar dacă este prea

mare, indicele drept este redus. Dacă suma exactă este găsită, algoritmul returnează

imediat tripletul.

Varianta A este corectă deoarece algoritmul caută suma cea mai apropiată de t. Varianta

D este corectă, deoarece pentru apelul f([-1, 7, 1, 5, -8], 5, 6), vectorul sortat

devine [−8,−1, 1, 5, 7], iar tripletul optim este [−1, 1, 5].

Astfel, răspunsurile corecte sunt A s, i D.

101. Algoritmul one(nr) returnează numărul de divizori ai lui nr, iar two(v, n) calcu-

lează numărul de perechi de elemente din v care ı̂ndeplinesc una din următoarele două

condit, ii: ambele elemente au număr par de divizori sau unul are număr par de divizori

s, i celălalt are număr impar de divizori. Se returnează p - cnt - 1. A. Adevărat. 2027

este prim, deci are 2 divizori. B. Fals. Se returnează 9 perechi care ı̂ndeplinesc una din

cele 2 condit, ii. C. Fals. D. Adevărat. Un număr care are număr impar de divizori este

pătrat perfect.

510

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

102. Algoritmul returnează 1 dacă s, i numai dacă toate cifrele lui n din reprezentarea ı̂n

baza b sunt impare. A. Fals, 42 = 222(4). B. Adevărat, 502 = 1315(7).

103. A. Adevărat. B. Fals, instruct, iunea ”k ← k∗b” trebuie executată după instruct, iunea

”rez ← rez + (nr mod 10) ∗ k”. C. Fals, apelul recursiv trebuie ı̂nmult, it cu b nu para-

metrul b din apel. D. Adevărat.

104. Algoritmul calculează diferent,a dintre divizorii pari s, i cei impari ai lui n. A.

Adevărat pentru n = 12. B. Adevărat, acesta este scopul algoritmului. C. Fals, pen-

tru n = 2 returnează 0. D. Fals, 72 are 3 divizori impari s, i 9 divizori pari.

105. Algoritmul verifică dacă vectorul x este periodic cu perioada p s, i dacă lungimea n

este un multiplu al perioadei p. În acest caz, opt, iunile A s, i D sunt corecte.

106. Algoritmul numără aparit, iile cifrei d s, i verifică dacă aceasta apare de mai multe ori

decât jumătate din numărul total de cifre ale lui n.

107. Algoritmul convertes,te numărul n ı̂n baza b, parcurge fiecare cifră, s, i verifică dacă

aceasta este divizibilă cu b−1. Incrementarea variabilei count numără câte astfel de cifre

există.

108. Algoritmul parcurge perechile de elemente adiacente din vector, calculează diferent,a

dintre cifrele lor, s, i ajustează valoarea elementelor conform regulilor date. La final, adună

toate elementele rămase s, i actualizează ultima pozit, ie din vector cu restul ı̂mpărt, irii su-

mei totale la 10.

109. Algoritmul calculează suma cifrelor pare ale numărului n. Dacă numărul nu cont, ine

cifre pare, algoritmul returnează -1. Pentru algo(6356), suma cifrelor pare (6 s, i 6) este

12, deci rezultatul final este 12.

110. Algoritmul combină cifrele numerelor a s, i b pe baza regulilor specificate, adunând

sau scăzând valorile ı̂n funct, ie de paritatea sumei cifrelor, cu ajustări suplimentare. Va-

loarea returnată pentru apelul algo(387, 2349) este 97.

111. Algoritmul f(v, n) determină suma maximă a unui subset de elemente din vectorul

v astfel ı̂ncât niciun element consecutiv să nu fie inclus ı̂n subset. Variantele A, C sunt

corecte, deoarece acestea respectă condit, iile date.

112. Algoritmul ceFace verifică dacă toate elementele vectorului sunt pare.

511

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

113. Algoritmul modifică vectorul arr pe baza formulei date s, i returnează valoarea de

pe pozit, ia y.

114. Algoritmul calculează suma divizorilor numărului n folosind factorizarea. Comple-

xitatea de timp a algoritmului este O(
√
n), datorită faptului că mergem cu k de la 2 la

√
n cu pasul 1.

115. Algoritmul calculează suma divizorilor numărului n folosind factorizarea. A. Ade-

varat, suma divizorilor lui 12 este 1 + 2 + 3 + 4 + 6 + 12 = 28. B. Fals, pentru apelul

ceFace

116. Algoritmul verifică folosind căutarea binară dacă numărul n este cub perfect. A.

Fals, n = 8, 23 = 8, se returnează True. B. Adevărat, n = 5832, 183 = 5832, se returnează

True. C. Adevărat, ı̂n intervalul (1, 30] cuburile perfecte sunt 8 s, i 27. În interval sunt 29

de valori, deci se returnează Fals pentru 29 − 2 = 27 valori. D. Adevărat, ı̂n intervalul

[9, 513) cuburile perfecte sunt: 27, 64, 125, 216, 343, 512. Sunt exact 6 valori ı̂n interval

pentru care se returnează True.

117. Funct, ia rearanjează cifrele numărului n astfel: cifrele impare apar ı̂n ordine directă,

iar cifrele pare ı̂n ordine inversă, păstrându-s, i pozit, iile relative.

118. Algoritm calculează cel mai mic multiplu comun (CMMMC) al celor două numere

naturale x s, i y, fără a utiliza formule matematice directe sau diviziuni.

119. Algoritmul ceFace construies,te numere formate din cifrele lui n repetate s, i verifică

dacă sunt palindromuri. Dacă da, acestea sunt adăugate la suma numerelor speciale s, i

produsul cifrelor speciale este actualizat. Rezultatul este restul ı̂mpărt, irii sumei la pro-

dusul cifrelor speciale.

120. Algoritmul ceFace(n, p) calculează numărul total de factori de p din factorizarea

lui n!.

121. Funct, ia Cifra(n) verifică dacă toate cifrele lui n sunt distincte s, i dacă suma

divizorilor săi este egală cu n. Dacă suma divizorilor diferă de n, funct, ia reduce suma la

o singură cifră s, i returnează această valoare.

122. Funct, ia Algo(n) construies,te o permutare a numerelor 0, 1, ..., n− 1 pe baza unei

reguli definite prin operat, ii binare. Funct, ia ceFace (n) verifică fiecare element al per-

512

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

mutării s, i numără câte elemente respectă condit, ia (p[i] AND i) = i.

123. Algoritmul verifică dacă n este pătrat perfect folosind metoda diferent,elor conse-

cutive. Un număr n este pătrat perfect dacă diferent,a dintre orice două pătrate perfecte

consecutive este constantă s, i egală cu 2d + 1, unde d reprezintă numărul pătrat. De

exemplu: 1 = 1, 4 = 1 + 3, 9 = 1 + 3 + 5, 16 = 1 + 3 + 5 + 7, 25 = 1 + 3 + 5 + 7 + 9, etc.

A. Adevărat. B. Adevărat. C. Adevărat, cel mai mic număr pătrat perfect din intervalul

[71, 734] este 92, iar cel mai mare este 272, deci există 27 − 9 + 1 = 19 valori pentru

care se returnează True. D. Fals, ı̂n mult, imea {73, 9, 442, 841, 576, 962}, numerele pătrate

perfecte sunt 9 = 32, 841 = 292, 576 = 242, deci se returnează True pentru 3 valori s, i

False pentru 3 valori.

124. Algoritmul calculează numărul de secvent,e distincte de lungime k dintr-un număr

n. El parcurge fiecare secvent, ă de lungime k, verifică dacă toate cifrele sunt unice, s, i le

numără dacă ı̂ndeplinesc această condit, ie.

125. Algoritmul returnează numărul de operat, ii posibile pe care le poate efectua asupra

lui n prin utilizarea operat, iilor pe bit, i (AND s, i SHL), t, inând cont de constrângerile im-

puse de mască s, i de pozit, ionarea bit, ilor. Pentru n = 12, algoritmul identifică 9 astfel de

operat, ii valide. Varianta A este corectă, deoarece descrie corect obiectivul algoritmului,

iar varianta C este corectă, deoarece rezultatul calculat pentru n = 12 este 9.

126. Algoritmul determină CMMMC al numerelor a s, i b. A: Corect, CMMMC(24, 36)

= 72. B: Fals, pentru a = 52 s, i b = 14, rezultatul este 364. C: Fals, algoritmul retur-

nează CMMMC, nu CMMDC. D: Corect, modificarea ar face ca algoritmul să calculeze

CMMDC deoarece CMMDC · CMMMC = a · b.

127. Bucla interioară rulează de O(log3 n) ori, determinată de numărul de puteri ale lui

3 mai mici decât n. Bucla exterioară rulează de aproximativ 2n
3 ori, adică O(n), datorită

constantelor care nu se iau ı̂n calcul. Complexitatea totală este O(n · log3 n).

128. Algoritmul sortează tabloul v s, i apoi, pentru fiecare pereche (i, j), caută binar un k

care satisface condit, ia v[i] + v[j] > v[k], deci tripletele i, j, k reprezintă indicii lungimilor

de laturi care pot forma triunghiuri. Algoritmul are complexitatea O(n2 log n), deci sin-

gura variantă corectă este D.

513

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

129. T (n) =
∑n

k=0 3
k ⇒ T (n) = 3n+1−1

3−1 = 3n+1−1
2 ⇒ T (n) = O(3n)

130. T (n) = 2·T (n−1)+2⇒ T (n−1) = 2·T (n−2)+2⇒ T (n) = 2·(2·T (n−2)+2)+2⇒

T (n) = 4·T (n−2)+4+2⇒ T (n) = 4·T (n−2)+6 Continuând ı̂n acest mod, observăm că:

T (n) = 2k ·T (n−k)+2·(2k−1−1). Când (k = n−1) : T (n) = 2n−1 ·T (1)+2·(2n−2−1)⇒

T (n) = 2 · (2n−1 − 1)⇒ T (n) = 2n − 2⇒ T (n) = O(2n)

131. Dacă n = 1, algoritmul returnează 1. Altfel, calculează m ca fiind n ı̂mpărt, it

la 2 s, i verifică paritatea lui i. Dacă n = 1, T (1) = O(1). Dacă n ̸= 1, algoritmul

face un apel recursiv cu n ı̂njumătăt, it s, i efectuează o operat, ie de adunare sau scădere:

T (n) = T
(
n
2

)
+ O(1). Această relat, ie de recurent, ă poate fi rezolvată folosind metoda

substitut, iei: T (n) = T
(
n
2

)
+O(1), T

(
n
2

)
= T

(
n
4

)
+O(1), T (n) = T

(
n
4

)
+O(1) +O(1),

T (n) = T
(
n
8

)
+ O(1) + O(1) + O(1). Continuând ı̂n acest mod, observăm că T (n) =

T
(

n
2k

)
+ k · O(1). Când n

2k
= 1, k = log2 n: T (n) = T (1) + log2 n · O(1), T (n) =

O(1) + O(log n), T (n) = O(log n). Prin urmare, complexitatea de timp a algoritmului

este T (n) = O(log n).

132. Complexitatea de timp a algoritmului este O(log n), datorită instruct, iunii ”ind ←

indDIV5” care este pusă ı̂n while-ul interior.

133. Algoritmul CountSort este cel mai eficient ı̂n acest caz, deoarece valorile posibile

sunt doar cifre, iar algoritmul funct, ionează ı̂n timp liniar O(n).

134. Deoarece s, irul a este sortat, putem construi un tablou de sume part, iale ı̂n O(n)

(această complexitate este omisă, deoarece se execută o singură dată, inaintea procesării

celor T interogări). Apoi, pentru fiecare interogare T , folosind căutarea binară (comple-

xitate O(log n)), putem găsi cel mai mare index i pentru care suma primelor i elemente

nu depăs,es,te q.

135. Funct, ia parcurge vectorul arr ı̂ntr-un singur ciclu s, i compară fiecare element cu

y. Astfel, complexitatea este O(n), iar funct, ia returnează numărul elementelor mai mari

decât y. Dacă toate elementele sunt mai mici decât y+ 1, rezultatul este 0. Optimizarea

la O(log n) nu este posibilă deoarece fiecare element trebuie evaluat.

136. Algoritmul rotes,te vectorul v la dreapta cu k%n pozit, ii, are complexitate O(n),

foloses,te un vector auxiliar pentru a stoca rotat, ia temporară s, i modifică direct vectorul

514

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

original v.

137. Algoritmul implementează o singură iterat, ie din bubble sort, parcurgând vectorul

de la stânga la dreapta s, i efectuând interschimbări ı̂ntre elementele adiacente dacă nu sunt

ı̂n ordine crescătoare. Complexitatea este O(n), iar numărul returnat reprezintă câte in-

terschimbări au fost efectuate. Totus, i, nu garantează sortarea completă a vectorului după

o singură iterat, ie.

138. Algoritmul implementează metoda Kadane pentru găsirea sumei maxime a unei

subsecvent,e continue dintr-un vector. Are complexitate O(n), deoarece vectorul este par-

curs o singură dată. Dacă toate elementele sunt negative, funct, ia va returna cel mai mare

element din vector. Algoritmul nu modifică vectorul original.

139. Algoritmul determină numărul total de divizori ai unui număr n, iterând până la

radicalul său, ceea ce asigură o complexitate O(
√
n). Pentru n = 1, există un singur

divizor, iar pentru un număr prim, există exact doi divizori: 1 s, i numărul ı̂nsus, i.

140. Algoritmul este derivat din calcularea factorialului, ı̂nsă condit, ia i % k == 0 im-

pune constrângerea de a ı̂nmult, i doar multiplii lui k din intervalul [1, n]. Dacă linia if(i

% k == 0) ar lipsi, funct, ia ar calcula factorialul lui n. De asemenea, rezultatul este divi-

zibil cu k dacă s, i numai dacă n ≥ k.

141. Algoritmul verifică dacă un număr este prim, parcurgând divizorii posibili până la

n / 2, ceea ce ı̂l face să aibă complexitate O(n). O implementare mai eficientă ar folosi

un algoritm cu complexitate O(
√
n), iterând până la rădăcina pătrată a numărului.

142. Algoritmul foloses,te tehnica sumelor part, iale: mai ı̂ntâi transformă vectorul astfel

ı̂ncât fiecare element v[i] să devină suma primelor i elemente din vectorul original, apoi

calculează suma elementelor dintre indicii [k+ 1, n] prin diferent,a v[n]− v[k]. Rezultatul

poate fi negativ dacă vectorul cont, ine numere negative. Complexitatea algoritmului este

O(n). Afirmat, ia D este falsă deoarece chiar s, i pentru un vector sortat crescător cu ele-

mente pozitive, suma v[n]− v[k] ar putea fi zero dacă toate elementele de la pozit, ia k+1

la n sunt zero.

143. Algoritmul calculează valoarea lui n!, stocând cifrele acestui număr ı̂n tabloul a.

Fiind vorba de un număr foarte mare (1000! având 2568 cifre), operat, iile sunt realizate

515

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

pe tabloul a, la fiecare pas t, inându-se cont de variabila cr, variabilă de carry.

144. Algoritmul identifică vârfurile din vector, adică punctele unde o secvent, ă crescătoare

este urmată de una descrescătoare. Complexitatea este O(n), deoarece parcurge vectorul

o singură dată. Pentru un vector constant, algoritmul nu găses,te vârfuri s, i returnează 0.

Pentru un vector strict crescător, rezultatul este 1.

145. Algoritmul determină tot, i divizorii lui n s, i calculează suma cifrelor acestora. Pentru

n = 1, singurul divizor este 1, deci suma returnată este 1. Complexitatea nu este opti-

mizată pentru că parcurge toate numerele de la 1 la n, făcând o buclă de log(i) pentru

fiecare i divizor al lui n.

146. Algoritmul determină lungimea celei mai lungi secvent,e de elemente consecutive din

vector care formează o progresie aritmetică, având complexitate O(n). Pentru un vec-

tor constant(valori), lungimea progresiei este egală cu dimensiunea vectorului. Pentru un

vector cu elemente distincte, nu este garantat să returneze 2, deoarece pot exista progresii

mai lungi.

147. Algoritmul parcurge toate perechile posibile de elemente pentru a găsi distant,a

maximă ı̂ntre două elemente egale, având o complexitate de O(n2). Pentru un vector

cu elemente distincte, nu există elemente egale, deci rezultatul este 0. Pentru un vector

constant(valori), rezultatul este n− 1, deoarece toate elementele sunt egale.

148. Algoritmul foloses,te tehnica ferestrei glisante pentru a calcula eficient suma ma-

ximă a k elemente consecutive. Complexitatea algoritmului este O(n), iar pentru k = 1

returnează maximul din vector, iar pentru k = n returnează suma tuturor elementelor.

149. Algoritmul extrage cifrele pare dintr-un număr s, i le recompune ı̂n ordinea init, ială

folosind două inversări succesive. Pentru un număr care cont, ine doar cifre impare, rezul-

tatul este 0. Complexitatea este O(log n), deoarece numărul de operat, ii este proport, ional

cu numărul de cifre din n.

150. Algoritmul parcurge vectorul o singură dată, având complexitate O(n), s, i determină

lungimea celei mai lungi secvent,e de numere pozitive consecutive. Dacă vectorul cont, ine

doar elemente negative, funct, ia returnează 0. Pentru un vector cu toate elementele pozi-

tive, funct, ia returnează n, nu n/2.

516

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

151. Algoritmul afis,ează ”săriturile” lui n, adunănd valoarea lui d, daca suma lor este

deasupra varfului p, sau scăzând valoarea lui d ı̂n caz contrar.

152. Algoritmul parcurge recursiv vectorul de bit, i b, iar când se ı̂ntâlnes,te un 1, se fac

două apeluri recursive modificând ℓ prin ℓ + 3 s, i ℓ · 2, combinând rezultatele cu c(x, y)

(care dă produsul dacă x este impar s, i suma dacă este par).

Vectorii [0, 0, 1, 1] s, i [1, 1, 0, 0] produc 76 deoarece ı̂n primul caz se construies,te arborele

doar pentru ultimele două pozit, ii iar ı̂n al doilea caz pentru primele două pozit, ii, dar

ambele cazuri duc la aceeas, i valoare finală prin diferite căi de combinare a operat, iilor de

adunare s, i ı̂nmult, ire.

153. Algoritmul g(x) afis,ează suma cifrelor lui x, urmată recursiv de aceleas, i operat, ii

pentru x DIV 2, intercalate cu valoarea x + 3.

154. Algoritmul procesează un s, ir prin ı̂mpărt, irea sa recursivă ı̂n două jumătăt, i, ve-

rificând dacă mijlocul curent este o vocală; dacă da, concatenează rezultatele obt, inute

din procesarea recursivă a jumătăt, ilor cu un separator ”*”. Varianta corectă pentru a

procesa partea dreaptă este comp(s, a + m, l - m), deoarece partea dreaptă ı̂ncepe de

la indicele a+m s, i are lungimea l −m.

155. Algoritmul algo(v, n) determină suma maximă posibilă a unei subsecvent,e de

elemente neadiacente dintr-un vector, utilizând funct, ia auxiliară g(a, b) pentru a obt, ine

maximul dintre două valori.

156. Funct, ia f calculează suma maximă a unui traseu de la stânga-sus la dreapta-jos,

alegând ı̂ntre deplasările spre dreapta s, i ı̂n jos.

157. Algoritmul este recursiv s, i determină secvent,a de caractere cbazată pe condit, iile

date.

158. Algoritmul calculează pentru fiecare apel valoarea corespunzătoare pe baza condit, iilor

impuse.

159. Algoritmul f calculează rezultatul pe baza ı̂mpărt, irii intervalului ı̂n două subinter-

vale s, i combină rezultatele folosind operat, ii condit, ionate de paritatea lungimii intervalului.

160. Algoritmul generează o matrice ı̂n care fiecare element este calculat ı̂n funct, ie de

pozit, ia anterioară sau de elementul ultim din rândul anterior.

517

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

161. Algoritmul f calculează diferent,a dintre suma elementelor de pe pozit, iile pare s, i

suma elementelor de pe pozit, iile impare din vectorul v.

162. Algoritmul algo parcurge fiecare cifră a numărului s, i adaugă la rezultat doar cifrele

impare, ignorând pe cele pare, ceea ce face varianta C corectă. Valoarea lui n de la Vari-

anta A nu respectă condit, iile din cerint, ă.

163. Observăm că la fiecare apel se afis,ează 3 valori s, i se fac 2 autoapeluri, iar când n de-

vine 0 algoritmul se opres,te. De aici putem deduce că oricare ar fi valoarea lui n, numărul

de valori afis,ate va fi un multiplu de 3. Pentru a afla numărul de valori afis,ate nu ne

interesează care sunt valorile doar numărul lor. D. Adevărat, ceFace(2) = 1 ceFace(1)

3 ceFace(1) 2 = 1 0 ceFace(0) 2 ceFace(0) 1 3 0 ceFace(0) 2 ceFace(0) 1 2 = 1 0 2

1 3 0 2 1 2.

ceFace(1) = 3 valori

ceFace(2) = 9 valori

ceFace(3) = 3 valori ceFace(1) ceFace(2) = 3 + 3 + 9 = 15 valori

ceFace(4) = 3 valori ceFace(2) ceFace(3) = 3 + 9 + 15 = 27 valori

ceFace(5) = 3 valori ceFace(2) ceFace(4) = 3 + 9 + 27 = 39 valori

ceFace(6) = 3 valori ceFace(3) ceFace(5) = 3 + 15 + 39 = 57 valori

Deducem că pentru ceFace(6) se vor afis,a 57 de valori s, i pentru ceFace(5) se vor afis,a

39 de valori.

164. Algoritmul ı̂ncepe prin a afis,a ultima cifră, ultima cifră ı̂mpărt, ită la 3, s, i tot as,a pana

când ajunge la 1. După aceea algoritmul generează o secvent, ă de tipul [6661332444222666333],

atât pentru 3003, cât s, i pentru 9009, respectiv [3344888296148444667], pentru 6006. Ul-

tima cifră nu afectează ultimul număr afis,at, ci doar primele numere.

165. Opt, iunea C este corectă deoarece pentru x = 23015 avem 23015 mod 5 = 0, deci

g(23015) = 2 · g(230) s, i, ı̂ntrucât g(230) = 2 · g(2) = 4, rezultă g(23015) = 2 · 4 = 8. Algo-

ritmul procesează recursiv numărul x: dacă x = 0 returnează 1, dacă x < 10 returnează

x, iar pentru x ≥ 10 verifică dacă x este divizibil cu 5 pentru a decide ı̂ntre a returna

2 · g(x DIV 100) sau g(x DIV 100) + g(x MOD 10).

166. Algoritmul f parcurge recursiv valorile i s, i j, s, i scrie caracterele A, B, sau C ı̂n

518

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

funct, ie de condit, iile impuse asupra lui n, i s, i j.

167. Algoritmul f calculează valorile bazate pe relat, ii recursive, alternând ı̂ntre adunare

s, i ı̂nmult, ire ı̂n funct, ie de paritatea lui n.

168. Algoritmul Y(a, b) returnează ab, ı̂n complexitate liniară, deoarece nu se salvează

apelul Y(a, b DIV 2) ı̂ntr-o variabilă s, i se apelează de 2 ori. Algoritmul X(n, i, j)

returnează un număr construit fără nicio logică. A. Fals, pentru X(369, 3, 5), p = 100

s, i se returnează 369+9 ·100+3 ·100+5 = 369+900+300+5 = 1574. B. Adevărat, pentru

X(369, 2, 3), p = 10 s, i returnează 369 + 9 · 10+ 36 · 10+ 3 = 369+ 90+ 360+ 3 = 822.

C. Adevărat, 63 = 216. D. Fals, returnează ab, dar complexitatea este liniară.

169. Algoritmul calculează un rezultat bazat pe operat, ii recursive, alternând ı̂ntre adu-

nare, scădere, ı̂nmult, ire s, i resturi, ı̂n funct, ie de anumite condit, ii. Pentru apelul f([2, 8,

7, 9, 2, 8], 6), valoarea finală returnată este −44.

170. Algoritmul returnează numărul de moduri distincte de a ajunge de la scorul 0-0 la

scorul a− b ı̂ntr-un meci de fotbal.

meci(3, 2)

meci(2, 2)

meci(1, 2)

meci(0, 2)

1

meci(1, 1)

meci(0, 1)

1

meci(1, 0)

1

meci(2, 1)

meci(3, 1)

meci(2, 1) meci(3, 0)

1

Din acest arbore pe revenire, ı̂nsumăm rezultatele obt, inute, iar ı̂n momentul ı̂n care vedem

că un apel se repetă de mai multe ori ı̂l calculăm o singură dată s, i ne folosim pe reve-

nire de rezultatul obt, inut pentru acelas, i apel identic. Astfel obt, inem că meci(1, 1) = 2,

meci(1, 2) = 3, meci(2, 1) = 3, meci(2, 2) = 6, meci(3, 0) = 1, meci(3, 1) = 4, meci(3, 2) =

10. Aplicăm aceeas, i metodă s, i pentru meci(5, 5) s, i vom obt, ine 252. Complexitatea algo-

519

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

ritmului este O(2a+b).

171. Pentru n = 7 se afiseaza: 25140201172414020116130300512030041402011.

Pentru n = 6 se afiseaza: 2414020116130300512030041402011.

Pentru n = 5 se afiseaza: 130300512030041402011.

172. Algoritmul sun(i) are o complexitate timp T (i) = O(log i), datorită faptului că

valoarea lui i este ı̂mpărt, ită la 2 la fiecare apel recursiv.Algoritmul moon(n) are o com-

plexitate de timp T (n) = O(log n · log n), datorită faptului că bucla while se execută de

O(log n) ori, iar ı̂n fiecare iterat, ie se apelează funct, ia sun(j), care are o complexitate

de O(log j). Deoarece j cres,te exponent, ial, complexitatea totală a algoritmului moon(n)

este O(log n · log n).

173. A. Adevărat, sun(40) returnează valoarea 5. B. Fals, moon(128) returnează va-

loarea 21. C. Fals, sun(7) returnează valoarea 2 s, i moon(7) returnează valoarea 3. D.

Adevărat, moon(2048) returnează valoarea 55.

174. Algoritmul implementează o metodă recursivă pentru a calcula al n-lea termen din

s, irul lui Fibonacci, având complexitate exponent, ială O(2n). Rezultatul pentru n = 5 este

8. Totus, i, algoritmul poate fi optimizat utilizând programare dinamică pentru a reduce

complexitatea la O(n).

175. Algoritmul are complexitatea: T (n) = O(4log2(n)) = O(22 log2(n)) = O(2(log2(n))
2

) =

O(n2).

176. Algoritmul S parcurge recursiv cifrele lui n s, i aplică reguli diferite ı̂n funct, ie de

restul ı̂mpărt, irii fiecărei cifre la 3: adaugă pătratul cifrei dacă este divizibilă cu 3, scade

cifra dacă restul este 1, s, i adaugă dublul cifrei dacă restul este 2.

177. Algoritmul ceFace(n, b) rearanjează cifrele lui n ı̂n baza b astfel ı̂ncât cifrele im-

pare apar ı̂n fat, ă, iar cifrele pare apar la final, păstrând pozit, ia relativă.

178. Algoritmul Exp calculează cel mai mare divizor comun (CMMDC) al numerelor a

s, i b folosind metoda binară, cunoscută s, i sub numele de Algoritmul lui Exp. Această me-

todă oferă o alternativă eficientă la algoritmul clasic al lui Euclid, eliminând necesitatea

operat, iilor de ı̂mpărt, ire s, i utilizând doar operat, ii mai rapide precum scăderea, ı̂mpărt, irea

la 2 s, i ı̂nmult, irea.

520

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

Dacă unul dintre numere este zero, algoritmul returnează celălalt număr, deoarece orice

număr nenul are drept divizor comun cu zero propria sa valoare. Dacă ambele numere

sunt pare, se aplică regula conform căreia CMMDC-ul acestora este de două ori CMMDC-

ul valorilor lor ı̂njumătăt, ite. Dacă doar unul dintre numere este par, se elimină factorul

de două al acestuia prin ı̂mpărt, irea la 2, fără a modifica celălalt număr. În cazul ı̂n care

ambele numere sunt impare, se efectuează o scădere s, i o diviziune la 2 pentru a aduce

problema la un caz mai simplu.

Pentru exemplul Exp(48, 36), se aplică regulile algoritmului pas cu pas. Deoarece am-

bele numere sunt pare, se ı̂mparte fiecare la 2 s, i se multiplică rezultatul final cu 2. Prin

aplicări succesive ale regulilor, algoritmul ajunge la 12, care este CMMDC-ul lui 48 s, i

36. Algoritmul este echivalent cu cel al lui Euclid, garantând acelas, i rezultat pentru orice

pereche de numere. În schimb, pentru apelul Exp(28, 7), aplicând metoda, rezultatul

corect nu este 4, ci 7, ceea ce face afirmat, ia D incorectă.

179. Algoritmul numără recursiv elementele pare din vector, având complexitate O(n)

de timp, ı̂nsa O(2 ∗ n) este echivalent ı̂n notat, ia Big-O. Pentru un vector vid returnează

0, iar algoritmul poate fi rescris iterativ, păstrând aceeas, i complexitate O(n).

180. Algoritmul calculează suma maximă pe un drum de la (0, 0) la (n − 1, n − 1), ex-

plorând toate căile posibile s, i având o complexitate exponent, ială O(2n). Este posibilă

optimizarea sa folosind programare dinamică pentru a evita recalculările. Permite doar

deplasări ı̂n jos s, i la dreapta, conform constrângerilor algoritmului.

181. Algoritmul calculează numărul de factori primi ai unui număr n folosind o abordare

recursivă eficientă. Complexitatea este O(
√
n), deoarece divizorii sunt testat, i doar până

la rădăcina pătrată a lui n. Pentru numere prime, algoritmul returnează 1.

182. Algoritmul implementează o metodă recursivă de căutare binară, având complexi-

tate O(log n). Funct, ionează corect pe vectori sortat, i crescător (elementele se pot repeta).

Returnează o valoare booleană care indică dacă elementul x există ı̂n vector, nu retur-

nează pozit, ia acestuia.

183. Algoritmul calculează minimul dintre trei numere. Funct, ia combine(x,y) calculează

minimul dintre două numere folosind formula (a + b − |a − b|)/2. Pentru valorile date

521

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

(8, 5, 6), combine(8,5) returnează 5, iar apoi combine(5,6) returnează tot 5. Astfel,

orice configurat, ie de parametrii (a,b,c); (b,a,c), etc. va returna acelas, i rezultat, ast-

fel răspunsul C este fals. Dacă |a| = |b|, atunci b ar putea fi mai mic decât a, (ex:

a = 5, b = −5, c = 10) astfel răspunsul D este fals s, i el.

184. Algoritmul afis,ează valoarea ultimelor două cifre ale numărului n (n MOD 100),

apelează recursiv funct, ia pentru partea ı̂ntreagă a ı̂mpărt, irii lui n la 10 (n DIV 10), iar

apoi afis,ează din nou ultimele două cifre ale fiecărui număr obt, inut.

185. Algoritmul afis,ează ı̂n ordine descrescătoare valorile calculate ca n − 2 până la 2,

printr-o parcurgere recursivă, s, i apoi, ı̂n ordine crescătoare, valorile calculate ca n + 2

corespunzătoare fiecărei etape a recursiei.

186. Algoritmul spirala combină prima s, i ultima cifră ale unui număr ı̂n funct, ie de

direct, ia specificată de parametrul sens s, i aplică recursiv aceeas, i operat, ie pe restul cifre-

lor.

187. Algoritmul este o funct, ie recursivă care afis,ează pentru fiecare apel valoarea dublu-

lui parametrului de intrare urmat de un simbol ”!”, apoi apelează recursiv funct, ia pentru

fiecare număr de la 1 la n− 1, adăugând simbolul ”*” după fiecare apel. Structura rezul-

tată reflectă procesul de recursivitate s, i ordinea apelurilor.

188. Algoritmul count este utilizat pentru a determina câte combinări de monede dintr-

un set dat pot forma suma dorită. Metoda folosită este recursivă, având două posibilităt, i

pentru fiecare monedă: fie este utilizată ı̂n formarea sumei, fie nu este utilizată.

Varianta D este cea corectă deoarece respectă structura clasică a problemei de numărare a

combinărilor de monede. Dacă suma devine 0, ı̂nseamnă că am găsit o combinare validă

s, i returnăm 1. Dacă numărul de monede disponibile devine 0 sau suma devine negativă,

returnăm 0, deoarece nu se mai poate forma suma dorită. Algoritmul explorează două

opt, iuni: folosirea monedei curente ı̂n sumă (scăzând valoarea acesteia din s) s, i neutilizarea

acesteia (trecând la următoarea monedă). Aceste două posibilităt, i sunt combinate pentru

a obt, ine numărul total de combinări posibile.

189. Algoritmul g(v, n, t) verifică dacă există o submult, ime a vectorului v care să aibă

suma exact egală cu t. Acesta foloses,te recursivitatea pentru a explora toate combinările

522

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

posibile ale elementelor vectorului, având două opt, iuni pentru fiecare element: fie este

inclus ı̂n submult, imea curentă, fie este exclus.

Dacă suma dorită t devine 0, atunci s-a găsit un subset valid s, i funct, ia returnează True.

Dacă dimensiunea vectorului devine 0 ı̂nainte ca suma să fie atinsă, ı̂nseamnă că nu mai

există elemente disponibile pentru a construi suma, deci funct, ia returnează False. În

fiecare pas, algoritmul ı̂ncearcă să includă ultimul element al vectorului s, i să verifice dacă

se poate forma suma scăzând această valoare din t. În paralel, se verifică s, i cazul ı̂n care

elementul este exclus, ment, inând suma dorită neschimbată.

Varianta de răspuns B este corectă deoarece descrie exact funct, ionalitatea algoritmului,

confirmând că acesta determină existent,a unui subset care atinge suma t. Varianta C

este de asemenea corectă, deoarece apelul g([3, 34, 4, 12, 5, 2], 6, 9) returnează

True, existând o combinare validă de elemente care formează suma 9.

190. Algoritmul neon(x, k) afişează primele k elemente ale vectorului x cu spaţiu ı̂ntre

ele şi un NewLine. Algoritmul xenon(x, n, p), dacă x[0] = 0 şi p = 1 la apelul iniţial,

atunci va afişa toate soluţiile submulţimilor cu elemente de la 1 până la n. Iniţializarea

lui i cu i← x[p− 1] + 1 asigură că ordinea elementelor ı̂n soluţie să fie crescătoare. Se va

afişa soluţia la fiecare atribuire a lui i ı̂n vectorul x pe poziţia p astfel se vor afişa soluţii

de lungime 1, 2, ..., n. A. Adevărat, dacă x[0] este iniţializat cu valoarea 2 ı̂nseamnă

că posibilităţile de alegere a elementelor sunt de la 3 la n, astfel vor fi 2(n−2) − 1 soluţii

afişate. B. Adevărat, pentru n = 5, primele 12 soluţii vor fi: 1, 1 2, 1 2 3, 1 2 3 4, 1 2 3 4

5, 1 2 3 5, 1 2 4, 1 2 4 5, 1 2 5, 1 3, 1 3 4, 1 3 4 5. C. Fals, pentru n = 4, primele 6 soluţii

vor fi: 1, 1 2, 1 2 3, 1 2 3 4, 1 2 4, 1 3. D. Fals, pentru n = 3, algoritmul xenon(x, 3,

1) se va autoapela de 6 ori, nu se ia ı̂n considerare apelul iniţial.

191. Algoritmul generează toate permutările cu condit, ia ca niciun element din solut, ie să

nu fie egal cu pozit, ia pe care se află. Pentru apelul ceFace(arr, 1, 4), solut, iile afis,ate

sunt:

1. 2 1 4 3∗,

2. 2 3 4 1∗,

3. 2 4 1 3∗,

4. 3 1 4 2∗,

5. 3 4 1 2∗,

6. 3 4 2 1∗,

523

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

7. 4 1 2 3∗,

8. 4 3 1 2∗,

9. 4 3 2 1∗,

Pentru apelul ceFace(arr, 1, 5), primele zece linii afis,ate sunt:

1. 2 1 4 5 3∗,

2. 2 1 5 3 4∗,

3. 2 3 1 5 4∗,

4. 2 3 4 5 1∗,

5. 2 3 5 1 4∗,

6. 2 4 1 5 3∗,

7. 2 4 5 1 3∗,

8. 2 4 5 3 1∗,

9. 2 5 1 3 4∗,

10. 2 5 4 1 3 ∗ .

192. Algoritmul explorează toate submult, imile posibile utilizând backtracking, veri-

ficând suma elementelor s, i generând submult, imile care respectă condit, iile impuse. A

8-a submult, ime generată este {4, 17}.

193. Algoritmul four(c, l, n), la apelul four(0, 0, n) generează s, i afis,ează toate

numerele de n cifre care sunt formate doar din cifre prime. A. Adevărat, există 4 cifre

prime, 2, 3, 5, 7, iar lungimea numărului format este n, deci se vor afis,a 4n valori. B.

Adevărat, cifrele 2, 3, 5, 7 se regăsesc ı̂n mult, imea {2, 3, 5, 7, 9}, nu trebuie să se folo-

sească s, i 9 ca afirmat, ia să fie adevărată. C. Fals, nu afis,ează numere prime, ci numere

formate din cifre prime. D. Adevărat, algoritmul afis,ează numere de n cifre, iar cifrele

prime au exact 2 divizori (1 s, i cifra ı̂nsăs, i).

194. Algoritmul f(e) determină numărul de 1 din reprezentarea binară a unui număr s, i

returnează adevărat dacă acest număr este impar. Algoritmul g(arr, a, b) returnează

true dacă toate numerele din vectorul arr au număr impar de bit, i 1 ı̂n reprezentarea lor

ı̂n baza 2, false altfel.

195. Algoritmul verifică dacă toate elementele din intervalul indicilor [ts, td] au număr

par de cifre, folosind Divide et Impera. A: Adevarat, toate elementele au 2 cifre. B: Fals,

Toate elementele au 3 cifre, 3 e impar. C: Fals, Se parcurge doar secvent,a de la pozit, ia

2 până la pozit, ia 6, doar elemente cu 2 s, i 4 cifre, returnează True. D: Fals, verifică dacă

au număr de cifre par, nu dacă sunt pare.

196. Algoritmul star(m, n) returnează cmmdc dintre m s, i n. Algoritmul sky(x, y,

524

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

arr) foloses,te Divide et Impera pentru a calcula cmmdc dintre elementele din inter-

valul indicilor [x, y] din vectorul arr. A: Adevărat. B: Adevărat, se ia doar secvent,a

[10, 20, 30, 40]. C: Fals, complexitatea este O(n · log(n)). D: Fals, algoritmul returnează

cmmdc dintre m s, i n, chiar dacă m s, i n sunt prime.

197. Algoritmul returnează suma elementelor din vectorul arr, folosind Divide Et Im-

pera. A. Fals, suma este 15. B. Adevărat. C. Adevărat. D. Fals, complexitatea de timp

este O(n).

198. Algoritmul returnează suma elementelor de pe coloana a doua din matrice, folosind

Divide Et Impera. A. Fals, 23 + 17 + 8 = 48. B. Adevărat, 22 + 9 = 31. C. Fals,

13 + 4 + 6 = 23. D. Adevărat, 18 + 5 + 3 + 1 + 4 = 31.

199. Algoritmul returnează True dacă există ı̂n secvent,a determinată de indicii a s, i b un

număr care cont, ine un număr par de cifre (sau 0), iar False ı̂n caz contrar.

200. Algoritmul foloses,te tehnica Divide Et Impera s, i verifică dacă toate elementele din

secvent,a determinată de indicii [il, rl] au suma cifrelor cu proprietatea X impară. Pro-

prietatea X: Pentru un număr x se verifică la fiecare pas dacă numărul este divizibil cu

3, dacă da, ultima cifră se adaugă la o sumă, apoi se renunt, ă la ultima cifră s, i tot as,a.

Atent, ie, nu se verifică ca cifra să fie divizibilă cu 3 ci tot numărul la momentul respectiv.

201. Algoritmul ı̂mparte matricea ı̂n 4 submatrice pentru a găsi maximul folosind Divide

et Impera. Complexitatea este O(nm), ı̂nsă, din cauza apelurilor recursive, algoritmul

este mai ı̂ncet decât unul iterativ făcând parte din aceeas, i clasă de complexitate.

202. Algoritmul utilizează Divide et Impera pentru a număra perechile de elemente cu

sumă dată k, funct, ionând corect doar pe vectori sortat, i crescător. Complexitatea este

mai mare decât O(n) din cauza recursivităt, ii.

203. Algoritmul implementează o metodă eficientă pentru determinarea minimului s, i

maximului dintr-un vector folosind Divide et Impera. Optimizarea constă ı̂n reducerea

numărului de comparat, ii, având complexitate O(n). Dacă toate elementele vectorului

sunt egale, algoritmul returnează aceeas, i valoare pentru minim s, i maxim.

204. Algoritmul implementează o metodă de tip Divide et Impera pentru a găsi maximul

dintr-un vector. Complexitatea este O(n), deoarece fiecare element este evaluat o singură

525

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

dată. Spat, iul utilizat pe stivă este O(log n) datorită adâncimii maxime a apelurilor re-

cursive. Pentru un vector cu un singur element, funct, ia returnează acel element.

205. Variantele A s, iB nu t, in cont de cazul ı̂n care nu sunt suficiente elemente negative,

deci sunt false.

Varianta D nu respectă condit, ia ca cele k elemente să fie aflate pe pozit, ii distincte din

s, irul dat, deci este falsă.

206. Singura variantă corectă este B . Pentru simplicitate, putem folosi exemplul a =

[9, 3, 30, 90].

Varianta A va compara mereu numere de aceeas, i dimensiune, dar nu va produce ı̂ntotdeauna

solut, ia optimă deoarece nu t, ine cont s, i de valorile (cifrele) alăturate. Pentru exemplul

dat, va returna [9, 90, 30, 3].

Varianta B concatenează numerele s, i va produce mereu versiunea optimă. Pentru exem-

plul dat, va returna [9, 90, 3, 30].

Varianta C sortează s, irul descrescător. Pentru exemplul dat, va returna [90, 30, 9, 3].

Varianta D sortează doar după ultima cifră. Pentru exemplul dat, va returna [9, 3, 30, 90].

207. Fiecare bet, is,or trebuie adus la aceeas, i lungime cu lungimea minimă a unui bet, is,or

până la el. Dacă cumva bet, is,orul curent are lungimea mai mare decât minimul, atunci

vom adăuga la total diferent,a dintre lungimea acestuia, s, i minim. Altfel, actualizăm va-

loarea minimului. Răspunsul final va fi reprezentat de sumă. Varianta corectă este A.

208. Costul minim pentru matricea dată este 31, atins prin parcurgerea celulelor astfel:

S → 7 → 3 → 2 → 4 → 2 → 3 → 5 → 1 → 4 → F . Acest drum este atins prin

alegerea direct, iei cu suma minimă pană la destinat, ie (des, i nu asigura o solut, ie optimă

global, deoarece ar ignora unele drumuri care init, ial par mai costisitoare).

209. Sortând prezentările după ora de sfârs, it s, i aplicând algoritmul greedy, se selectează

intervalele (1, 4), (5, 7) s, i (8, 11), deci se pot organiza maxim 3 prezentări fără supra-

puneri. Deoarece sunt 10 prezentări ı̂n total, numărul minim de prezentări care trebuie

reprogramate este 10− 3 = 7.

210. O permutare de lungime i are cel mult i·(i−1)
2 inversiuni, caz ı̂n care toate numerele

526

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

sunt ı̂n ordine descrescătoare.

Dacă K este de forma M ·(M−1)
2 , permutarea minimă lexicografic cu K inversiuni va fi:

1, 2, 3, . . . , N −M,N,N − 1, N − 2, . . . , N −M + 1

Cele K inversiuni apar ı̂n ultimele M elemente. Dacă ı̂n această permutare mutăm un

element N − x imediat ı̂naintea lui N , numărul de inversiuni scade cu x. Astfel, dacă

K > M ·(M−1)
2 , construim permutarea:

1, 2, 3, . . . , N −M − 1, N,N − 1, N − 2, . . . , N −M

(care are (M+1)·M
2 inversiuni) s, i mutăm elementul N −

(
(M+1)·M

2 −K
)
imediat ı̂naintea

lui N , astfel reducând numărul de inversiuni la K. Este evident că permutarea astfel

construită este minimă lexicografic. Algoritmul descris are complexitate O(N).

211. Se sortează obiectele descrescător după profit – raportul dintre valoare s, i greutate.

Alegem ı̂n ordine obiectele cu profitul cel mai mare. Când obiectul curent nu mai ı̂ncape

ı̂n rucsac, vom lua doar o parte din acesta. Pentru acest set de date, vom selecta obiectele

2 s, i 4, iar din obiectul 1 vom lua jumătate, având astfel ı̂n total câs,tigul maxim 220.

212. La fiecare pas, se vor selecta cele mai mici 2 lungimi existente, se va face suma lor,

suma se adaugă la total, iar după este adăugată din nou ı̂n s, ir. Procedeul se repetă de 6

ori. În total obt, inem 173.

213. Afirmat, ia C este cheia rezolvării acestei grile. Fiecare ı̂ns, iruire reprezintă de fapt o

permutare a primelor n numere naturale, care poate să fie reprezentată sub forma unui

graf. Observăm că, dacă construim graful, putem obt, ine componente conexe, ce cont, in

cicluri. Pentru permutările ı̂n care p[i] = i (denumit ca punct fix al unei permutări), vom

avea o componentă conexă cu un singur nod, care nu va trebui mutat niciodată, as,adar

formula n + c nu este validă. Aceasta ar fi adevărată dacă c ar reprezenta numărul de

componente conexe cu mai mult de 1 element. Deoarece fiecare configurat, ie poate fi

transformată ı̂ntr-un graf, opt, iunea A nu este corectă. Mutare unui palton deja aflat pe

pozit, ia corectă poate fi anulată prin aplicarea mutării anterioare ı̂n mod opus (exemplu

527

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

(1, 5), (5, 1)), deci Victor tot va putea obt, ine configurat, ia finală corectă, dar nu ı̂ntr-un

număr minim de pas, i. Simulând mutările de la B, obt, inem configurat, ia finală corectă.

214. Pentru fiecare dreptunghi selectat, deoarece avem acelas, i număr de pătrăt,ele albe

s, i pătrăt,ele negre, vom avea un număr par de pătrăt,ele. Pentru a avea un număr par,

vom avea o latură a acestui dreptunghi de două pătrăt,ele. Ca să maximizăm numărul de

dreptunghiuri, vom avea suma laturilor a două dreptunghiuri aflate pe acelas, i rând egală

cu n, adică vom avea dreptunghiuri de dimensiune 1× 2, (n− 1)× 2, 2× 2, (n− 2)× 2,

3 × 2, (n − 3) × 2, etc. Pe un singur rând vom avea un singur dreptungi de dimensiune

n× 2, deci numărul maxim de dreptunghiuri este n− 1.

215. Afirmat, ia A este falsă deoarece sortarea doar după deadline nu ia ı̂n considerare

timpul de procesare s, i profitul, deci nu garantează solut, ia optimă. B este falsă; prin

calcularea corectă, profitul maxim pentru setul dat este 21, nu 19. C este adevărată;

aceasta descrie solut, ia optimă. D este adevărată; cu deadline-uri egale, sortarea după

raportul profit/timp maximizează profitul total posibil.

216. - Varianta B nu ia ı̂n considerare corect intersect, iile intermediare s, i poate sări peste

intersect, ii valide. - Varianta D este gres, ită deoarece sortarea după punctul de sfârs, it des-

crescător s, i intersect, ionarea de la capete spre interior nu garantează găsirea intersect, iei

maxime ı̂ntre toate intervalele.

217. Numărul de permutări ı̂n care exact două persoane nu sunt pe locul lor este echiva-

lent cu alegerea a două pozit, ii pe care să le schimbăm s, i restul elementelor să fie fixate.

Numărul de moduri ı̂n care putem alege două persoane care să ı̂s, i schimbe locurile este

egal cu: C2
m = m(m−1)

2 .

218. Sortarea influent,ează complexitatea algoritmului, deci varianta C este falsă. Algo-

ritmul nu returnează permutări, ci va returna un număr la final, as,adar varianta A este

falsă. Legat de opt, iunea B, pentru n = 4, a = [1, 2, 3, 4], avem 2 permutări care respectă

condit, ia impusă ı̂n enunt, , ı̂nsă algoritmul va returna 4, deci rămâne doar D ca variantă

corectă.

219. Solut, iile de numărare a voturilor sunt: AABAABAB, AABAABBA, AABABAAB,

AABABABA, AABABBAA, AABBAABA, AABBABAA, ABAABAAB, ABAABABA,

528

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

ABAABBAA, ABABAABA, ABABABAA −→ 12 secvent,e valide.

220. Pentru n = 2, există o singură secvent, ă validă “UD”, pentru n = 4 există două

secvent,e valide “UUDD”, “UDUD”, pentru n = 6 sunt 5 secvent,e valide “UDUDUD”,

“UDUUDD”, “UUDDUD”, “UUDUDD”, “UUUDDD”, iar pt n = 8 exista 14 secvent,e

valide. Des, i nu este necesar pentru rezolvarea acestui exercit, iu, ı̂n specialitate, numărul

total de secvent,e valide de acest tip este dat de către numerele lui Catalan, ce repre-

zintă un s, ir de numere determinat de formula Cn = 1
n+1

(
2n
n

)
, unde Cn reprezintă al

n-lea număr Catalan, iar cu
(
2n
n

)
se notează numărul de combinări de 2n luate câte

n. Totodată, fiecare termen al s, irului poate să fie determinat s, i de relat, ia de recurent, ă

C0 = 1, C1 = 1, Cn =
∑n−1

i=0 Ci · Cn−1−i, n ≥ 2.

221. Algoritmul utilizează formula combinatorică recursivă pentru a calcula numărul de

submult, imi de dimensiune k : C(n, k) = C(n − 1, k − 1) + C(n − 1, k). Cazurile de bază

sunt atunci când k = 0 sau k = n, rezultând câte o singură submult, ime.

222. Algoritmul afis,ează toate permutările mult, imii {1, 2, . . . n}, ı̂n ordine invers lexico-

grafică, deoarece parcurgerea ı̂n funct, ia back se realizează ı̂ncepând de la n, nu de la 1.

Complexitatea este, de asemenea, O(n! ·n) - n! pentru numărul de permutări s, i n pentru

verificarea realizată de subalgoritmul ok. Deci, varianta corectă este D.

223. Formula de calcul este formula permutărilor fără puncte fixe: D(n) = n!
∑n

k=0
(−1)k

k! .

224. Algoritmul old(a, b) calculează s, i returnează aranjamente de a luate câte b.A.

Gres, it, formula de recurent, ă utilizată este pentru combinări. B. Corect. C. Corect. D.

B. Gres, it.

225. Algoritmul old(a, b) calculează s, i returnează aranjamente de a luate câte b. A.

Adevărat, se calculează aranjamentele de a luate câte b. B. Fals, se returnează 3024. C.

Fals, complexitatea de timp este O(b). D. Adevărat.

226. Algoritmul generează toate combinările de k elemente din arr, verificând pentru fie-

care dacă produsul lor este un pătrat perfect utilizând funct, ia G. Combinările sunt afis,ate

doar dacă această condit, ie este ı̂ndeplinită.

227. Algoritmul generează toate permutările vectorului arr s, i validează fiecare permu-

tare, verificând dacă diferent,a absolută dintre primul s, i ultimul element este un număr

529

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

prim folosind funct, ia g.

228. Se dă factor comun la fiecare pas: a0 + x(a1 + x(a2 + · · ·+ x(a2024))). Astfel, sunt

necesare 2024 adunări s, i 2024 ı̂nmult, iri, adică 4048 operat, ii ı̂n total.

229. Algoritmul Algo(n, k, idx, s, part) generează toate partit, iile numărului n ı̂n k

numere naturale, fiecare mai mic decât n, printr-o abordare recursivă. Condit, iile impuse

ı̂n bucla for asigură că suma elementelor din partit, ie este exact n, iar verificarea k > n

elimină posibilitatea generării solut, iilor invalide.

230. Algoritmul generează toate permutările posibile ale vectorului arr, verificând pen-

tru fiecare dacă suma pozit, iilor pare depăs,es,te suma pozit, iilor impare. Doar permutările

care respectă această condit, ie sunt afis,ate. Variantele A s, i D sunt corecte.

231. Algoritmul generează secvent,e strict crescătoare cu proprietatea că numerele conse-

cutive sunt prime ı̂ntre ele. Pentru secvent,a (1,2,5), avem gcd(1,2)=1 s, i gcd(2,5)=1, deci

este o solut, ie validă. Complexitatea include factorul log n de la calculul GCD-ului.

232. Algoritmul f(n, k) returnează numărul combinărilor de n luate câte k. Ck
n =

n!
k!·(n−k)! = n·(n−1)·...·(n−k+1)

k! . A. Adevărat, formula clasică iterativă. B. Adevărat,

recurent,a triunghiului lui Pascal. C. Fals, trebuie ca ı̂mpărt, irea (DIV) să fie făcută după

ı̂nmult, ire, dacă nu se va pierde restul ı̂mpărt, irii. D. Adevărat, formula clasică iterativă.

233. Algoritmul f(n, k) calculează combinări de n luate câte k, Ck
n = n!

k!(n−k)! . A. Fals,

C7
13 = 1716, nu 1715. B. Adevărat, Ck

n = Cn−k
n , conform formulei. C. Fals, algoritmul

calculează combinări, nu aranjamente. D. Adevărat. Răspunsurile false sunt A s, i C.

234. Algoritmul trebuie să calculeze toate permutările fără puncte fixe. A. Corect, for-

mula pentru deranjamente este: D(n) = n!
∑n

k=0
(−1)k

k! . B. Corect, recurent,a pentru

deranjamente este: D(n) = (n− 1) * (D(n− 1) +D(n− 2)). C. Gres, it, nu funct, ionează

pentru n impar, semnul este gres, it. D. Gres, it, suma trebuie să ı̂nceapă de la k = 0, nu

de la 1, pentru a calcula corect deranjamentele.

235. Fie o mulţime M cu n elemente şi un element fix x ∈ M . Fiecare submulţime

a lui M fie conţine x, fie nu, iar submulţimile care conţin x corespund exact tuturor

submulţimilor lui M \ {x}, care sunt ı̂n număr de 2n−1. Singura variantă corectă este C.

236. Fixând cele k elemente ale mulţimii T , acestea trebuie să fie prezente ı̂n toate

530

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

submulţimile considerate. Rămân astfel n − k elemente din S \ T , fiecare dintre acestea

putând fi inclus sau nu ı̂ntr-o submulţime. Prin urmare, numărul total de submulţimi

care conţin toate elementele lui T este 2n−k. Singura variantă corectă este D.

237. Mulţimile Ak şi Bk sunt complementare şi există Ck
n perechi de astfel de mulţimi

(Ak, Bk). Se deduce faptul că, pentru un element x ∈ M , numărul de submulţimi Ak ı̂n

care nu se află acesta este Ck
n−1. Aşadar, x apare in Ck

n−1 ı̂n submulţimi de tipul Bk.

În concluzie, suma tuturor elementelor din toate submulţimile Bk este Ck
n−1 ·

∑
x∈M x.

Singura variantă corectă este B.

238. Traversarea ı̂n inordine parcurge mai ı̂ntâi subarborele stâng, apoi nodul curent, s, i

la final subarborele drept. Astfel, ordinea corectă este: A, E, B, F, X, T, H, K, M, R.

239. Un arbore binar plin cu ı̂nălt, imea h cont, ine 2h+1 − 1 noduri.

240. Procesul de inserare a nodurilor ı̂ntr-un arbore binar de căutare trebuie să respecte

următoarele proprietăt, i fundamentale: toate nodurile din subarborele stâng trebuie să

aibă valori mai mici decât decât cea a rădăcinii, iar toate nodurile din subarborele drept

trebuie să aibă valori mai mari decât cea a rădăcinii. În timpul inserării, valoare elemen-

tului, care se dores,te a fi adăugat, este comparată cu valoarea nodului curent din arbore

pentru a verifica respectarea condit, iilor. Dacă elementul este mai mic decât nodul curent,

procesul de inserare continuă ı̂n subarborele stâng, iar dacă este mai mare, procesul se

continuă ı̂n subarborele drept.

241. Traversarea ı̂n preordine parcurge arborele vizitând mai ı̂ntâi rădăcina, apoi subar-

borele stâng, s, i ı̂n final subarborele drept. Ordinea corectă este: 6, 7, 9, 10, 12, 5, 3, 8, 4.

242. Traversarea ı̂n postordine parcurge mai ı̂ntâi subarborele stâng, apoi subarborele

drept s, i la final rădăcina. Ordinea corectă este: B, C, A, F, Y, T, G, R, Z, X.

243. Traversarea inordine a unui arbore binar de căutare vizitează nodurile astfel ı̂ncât

valorile sunt parcurse ı̂n ordinea crescătoare, deoarece pentru orice nod, toate valorile din

subarborele stâng sunt mai mici, iar cele din subarborele drept sunt mai mari.

244. Un arbore binar complet cu n noduri are ı̂nălt, imea h dată de formula h = ⌊log2(n)⌋.

Pentru n = 31, ı̂nălt, imea este ⌊log2(31)⌋ = 4.

245. Succesorul ı̂n inordine al unui nod dintr-un arbore binar de căutare este cel mai mic

531

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

nod din subarborele drept al acestuia. Pentru nodul 20, subarborele drept este format

doar din nodul 25. Astfel, succesorul ı̂n inordine este 25.

246. Structura arborelui se determină din traversările preordine s, i inordine: - Preordine

indică ordinea nodurilor vizitate, pornind de la rădăcină. - Inordine defines,te ordinea

nodurilor din subarborele stâng, rădăcină, apoi subarborele drept.

247. Numărul maxim de noduri ı̂ntr-un arbore binar complet de ı̂nălt, ime h este dat

de formula 2h+1 − 1. Aplicând formula pentru h = 4 observam ca numărul maxim de

noduri este 31 , iar pentru h = 5 observam ca numărul maxim de noduri este 63 . Deci,

ı̂nălt, imea arborelui trebuie sa fie minim 5. Pentru ca numărul de niveluri este h + 1 ,

avem răspunsul: numărul minim de niveluri este 6.

248. Structura arborelui reflectă ordinea operat, iilor. Rădăcina arborelui este operatorul

+, care combină rezultatele celor două subarbori principali. Subarborele stâng reprezintă

produsul (a + b + c) ∗ (d ∗ e), iar subarborele drept este operandul f . Expresia finală

corespunzătoare arborelui este (a+ b+ c) ∗ (d ∗ e) + f .

249. Pentru a evalua expresia, nodurile trebuie procesate ı̂n ordinea dată de traversarea

ı̂n postordine. Parcurgând arborele: 1. Procesăm subarborele stâng (a∗b), rezultând a b ∗.

2. Procesăm subarborele drept: - Subarborele stâng al acestuia reprezintă ((c + d) ∗ e),

rezultând c d + e ∗. - Subarborele drept reprezintă (f ∗ g), rezultând f g ∗. - Aplicăm

operatorul ∗ pe aceste două componente, rezultând c d + e ∗ f g ∗ ∗. 3. Combinat, ia

finală este obt, inută aplicând +: a b ∗ c d + e ∗ f g ∗ ∗+.

250. Algoritmul calculează ı̂nălt, imea unui arbore binar ı̂n mod recursiv. Pentru fiecare

nod, determină ı̂nălt, imea subarborelui stâng s, i a celui drept, selectează valoarea maximă

dintre ele s, i adaugă 1 pentru a include nivelul curent. În cazul dat, ı̂nălţimea este 4, deci

singura variantă corectă este D.

251. Algoritmul dat calculează numărul de descendenţi stângi ai unui arbore, prin explo-

rarea ı̂n ı̂ntregime a acestuia, ı̂n mod recursiv. Pentru fiecare descendent stâng pe care

ı̂l ı̂ntâlneşte, incrementează contorul. În cazul dat, numărul de descendenţi stângi este 7

(nodurile b, d, h, l, f, j, n).

252. Algoritmul dat calculează numărul de noduri ai arborelui dat, care au un singur

532

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

descendent. Acesta verifică recursiv fiecare nod s, i, dacă acesta are exact un fiu (stâng

sau drept, dar nu ambii), incrementează contorul. În cazul dat, numărul de noduri cu un

singur descendent este 4 (nodurile c, h, i, j), deci singura variantă corectă este B.

253. Algoritmul dat verifică dacă arborele dat este arbore binar de căutare. Prin

apelul algoritm(node.left, inf, node.value), este impusă condiţia ca descendentul stâng,

ı̂mpreună cu toţi descendenţii lui (dacă aceştia există) să fie mai mici sau egali cu nodul

curent şi mai mari sau egali cu cel mai apropiat ascendent al nodului curent, care conţine

nodul curent sau ascendenţi ai acestuia ı̂n subarborele drept, ı̂n cazul ı̂n care ascendentul

are cel puţin un descendent drept. Prin apelul algoritm(node.right, node.value,

sup), este impusă condiţia ca descendentul drept, ı̂mpreună cu toţi descendenţii lui (dacă

aceştia există) să fie mai mari sau egali cu nodul curent şi mai mici sau egali cu cel

mai apropiat ascendent al nodului curent, care conţine nodul curent sau ascendenţi ai

acestuia ı̂n subarborele stâng, ı̂n cazul ı̂n care ascendentul are cel puţin un descendent

stâng. Varianta A este incorectă, deoarece algoritmul verifică relaţia dintre valorile asoci-

ate nodurile, ı̂n timp ce un arbore binar este complet daca toate nivelurile sunt ocupate ı̂n

ı̂ntregime, cu excepţia ultimului, condiţie independentă de valorile nodurilor. Varianta B

este incorectă, deoarece condiţia impusă descendenţilor stângi este incorectă. Variantele

C şi D sunt corecte.

254. Numărul ciclurilor hamiltoniene distincte ı̂ntr-un graf complet cu n noduri este: (n−1)!
2 .

255. Algoritmul prezentat este Algoritmul lui Kosaraju, folosit pentru determinarea

componentelor tare conexe dintr-un graf orientat. Astfel, conform algoritmului, metoda

d1 realizează o parcurgere ı̂n adâncime asupra grafului init, ial, iar d2 tot o parcurgere ı̂n

adâncime, ı̂nsă asupra grafului transpus. Deci, variantele corecte de răspuns sunt B s, i C

256. A: Corect. Parcurgerea ı̂n preordine vizitează nodul curent, subarborele stâng s, i

apoi subarborele drept. B: Corect. Parcurgerea ı̂n inordine vizitează subarborele stâng,

nodul curent s, i apoi subarborele drept. C: Corect. Parcurgerea ı̂n postordine vizitează

subarborele stâng, subarborele drept s, i apoi nodul curent. D: Fals. Arborele este complet

ultimul nivel k, contine eventual mai putin de 2k noduri.

533

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

257. Dacă arborele are 1023 de noduri, ı̂nseamnă că are 10 nivele, numerotate de la 0

la 9 (210 − 1 = 1023), deci afirmat, ia A este falsă s, i B adevărată (pe ultimul nivel vor fi

(29 noduri). Cum pe ultimul nivel se află nodurile numerotate de la 512 la 1023, 1000

este pe acest nivel s, i este s, i fiu stâng al unui alt nod, deoarece este număr par. Verificând

strămos, ii lui 768, obt, inem 768 → 384 → 192 → 96 → 48 → 24 → 12 → 6 → 3 → 1, deci

D este, de asemenea, falsă.

258. Algoritmul Transform(node, k, s, c) parcurge arborele binar ı̂n postordine, cal-

culând suma s, i numărul de noduri din subarborii stâng s, i drept, iar pentru fiecare nod

verifică dacă suma acestor valori este divizibilă cu k, ajustând valoarea nodului ı̂n funct, ie

de această condit, ie.

259. Algoritmul parcurge recursiv arborele binar de căutare s, i verifică pentru fiecare nod

dacă diferent,a dintre valorile maxime s, i minime din subarborii stâng s, i drept este egală cu

valoarea nodului curent s, i returnează numărul de noduri care ı̂ndeplinesc aceste condit, ii.

260. Nu există nicio componentă tare conexă cu 2 noduri ı̂n acest caz, deoarece nu există

drum ı̂ntre 2 noduri distincte.

261. Algoritmul parcurge arborele binar ı̂n postordine pentru a calcula adâncimile subar-

borilor stâng s, i drept ale fiecărui nod, verificând dacă acestea sunt egale. Dacă adâncimile

sunt egale s, i rezultatul adâncimii plus unu este o putere a lui doi, valoarea nodului este

dublată. Arborele rezultat trebuie mai apoi traversat ı̂n preordine pentru a afla răspunsul

corect.

262. Algoritmul traversează arborele binar ı̂n postordine, calculând pentru fiecare nod

suma s, i numărul de noduri din subarborii săi. Dacă suma descendent, ilor este un număr

prim, valoarea nodului devine produsul numerelor de noduri din subarbori. Altfel, devine

suma acestora. După execut, ie, rădăcina arborelui are valoarea 14, iar toate nodurile in-

terne au fost actualizate condit, iilor algoritmului.

263. Algoritmul parcurge arborele binar ı̂n postordine, determinând valorile returnate de

subarborii stâng s, i drept pentru fiecare nod intern. Dacă produsul acestor valori % k este

egal cu valoarea nodului curent % k, nodul ı̂s, i modifică valoarea la suma acestor valori,

iar contorul total este incrementat. Astfel, algoritmul determină câte noduri interne ı̂s, i

534

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

schimbă valoarea conform condit, iei impuse.

264. Algoritmul Mister parcurge arborele binar ı̂n postordine s, i calculează suma valorilor

nodurilor s, i numărul de noduri din arbore. Pentru fiecare nod intern, dacă suma valorilor

din subarbori este divizibilă cu p, valoarea nodului devine produsul numărului de noduri

din subarbori. Dacă valoarea nodului este divizibilă cu p, valoarea acestuia devine suma

numărului de noduri din subarbori. Rezultatele finale sunt acumulate ı̂n variabilele sum

s, i cnt.

265. Algoritmul Algo parcurge recursiv arborele binar s, i decide valoarea fiecărui nod

intern pe baza valorilor returnate de subarborii săi. Dacă diferent,a dintre valorile su-

barborilor este mai mică sau egală cu dist, nodul preia valoarea copilului cu adâncimea

maximă. Dacă diferent,a este mai mare, nodul preia valoarea minimă dintre cele două. În

urma execut, iei algoritmului pentru dist = 5, valoarea nodului rădăcină devine 6, iar un

nod care ı̂s, i modifică valoarea o preia ı̂ntotdeauna din valorile returnate de subarbori.

266. Arborele este reprezentat printr-un vector de tat, i t, unde fiecare pozit, ie indică

părintele nodului corespunzător. Nodul cu valoarea 0 ı̂n acest vector este rădăcina arbo-

relui. Analizând vectorul de tat, i t = (2, 3, 0, 1, 3, 1, 10, 5, 6, 5), observăm că

nodul 3 este rădăcina, deoarece este singurul care are valoarea 0.

Pentru afirmat, ia A, un nod frunză este un nod care nu are descendent, i. Analizând

structura arborelui, nodurile 4, 7, 8 s, i 9 nu apar ca părint, i pentru alte noduri, ceea ce

ı̂nseamnă că sunt frunze. Astfel, afirmat, ia A este adevărată.

Afirmat, ia B este falsă deoarece rădăcina arborelui este nodul 3, nu nodul 2.

Afirmat, ia C este falsă, deoarece nodul 10 are un descendent, s, i anume nodul 7, conform

vectorului de tat, i.

Pentru afirmat, ia D, nodurile sunt frat, i dacă au acelas, i părinte. Observăm că nodurile 8

s, i 10 au ca părinte nodul 5, ceea ce ı̂nseamnă că sunt frat, i. Prin urmare, afirmat, ia D

este adevărată.

Astfel, variantele corecte de răspuns sunt A D.

267. Traversarea arborelui ı̂n inordine presupune parcurgerea subarborelui stâng, apoi

procesarea rădăcinii, iar apoi parcurgerea subarborelui drept.

535

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

268. Traversarea arborelui ı̂n postordine presupune parcurgerea subarborelui stâng, apoi

a subarborelui drept, iar ı̂n final procesarea rădăcinii.

269. Traversarea arborelui ı̂n preordine presupune procesarea rădăcinii, apoi parcurgerea

subarborelui stâng, iar apoi a subarborelui drept.

270. Variantele A s, i C implementează corect algoritmul de căutare a subs, irului, verificând

secvent, ial toate pozit, iile posibile de start (de la 1 la n−m+1) s, i comparând toate cele m

caractere consecutive din a cu b. În A, bucla interioară se opres,te la prima nepotrivire, iar

ı̂n C se foloses,te o variabilă pentru a marca nepotrivirile, dar ambele returnează pozit, ia

corectă sau -1. Varianta B este incorectă deoarece, dacă n = m, returnează 1 fără a verifica

dacă s, irurile sunt identice; altfel, verifică doar primul s, i ultimul caracter al subsecvent,ei,

ignorând caracterele intermediare, ceea ce poate duce la rezultate false pozitive. Varianta

D este incorectă deoarece bucla exterioară rulează doar până la i ≤ n−m, omitând pozit, ia

i = n−m+ 1, care este validă.

271. Varianta A este adevărată, deoarece fiecare apel recursiv ı̂njumătăt,es,te valoarea lui

n. Varianta D este adevărată, deoarece S(2) = 3, S(13) = 23, S(7) = 11, S(8) = 15 s, i

3 + 23 = 26 = 11 + 15.

272. Variantele C s, i D implementează corect algoritmul lui Euclid iterativ, returnând

c.m.m.d.c-ul: ı̂n C, algoritmul rulează până când b = 0 s, i returnează a (ultimul rest

nenul); ı̂n D, bucla continuă cât timp restul > 0 s, i returnează b (divizorul care produce

rest este 0). Varianta A este incorectă deoarece, dacă b = 0, returnează 0 ı̂n loc de a;

de asemenea, pentru a = b, apelează gcd(a, 0) s, i returnează 0 ı̂n loc de a. Varianta B

este incorectă deoarece, dacă b = 0, returnează 0 ı̂n loc de a, iar recursia ajunge mereu

la cazul de bază cu rezultat 0 ı̂n loc de c.m.m.d.c.

273. Algoritmul efectuează k rotat, ii la stânga asupra vectorului x (fiecare rotat, ie mută

primul element la sfârs, it), echivalent cu o rotat, ie efectivă de k mod n ori, deoarece după

n rotat, ii vectorul revine la forma init, ială. Valoarea returnată este elementul init, ial de pe

pozit, ia (k mod n)+1. A. Fals: Pentru k = 3, 3 mod 10 = 3, returnează elementul init, ial

de pe pozit, ia 4 (adică 4), nu 6. B. Adevărat: 117 mod 10 = 7, returnează elementul

init, ial de pe pozit, ia 8 (adică 8). C. Adevărat: 117 mod 5 = 2, returnează elementul

536

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

init, ial de pe pozit, ia 3 (adică 5). D. Adevărat: 3 mod 5 = 3, 318 mod 5 = 3, deci

ambele returnează acelas, i element init, ial de pe pozit, ia 4 (adică 4).

274. Algoritmul returnează True dacă pentru toate cifrele distincte din n, paritatea

cifrei coincide cu paritatea numărului de aparit, ii (cifrele pare apar de un număr par de

ori, cele impare de un număr impar de ori). A. Fals, deoarece returnează True doar

dacă condit, ia de paritate este ı̂ndeplinită pentru toate cifrele distincte, nu dacă numărul

de cifre pare distincte egalează numărul de cifre impare distincte (ex.: pentru n = 1,

o singură cifră impară, returnează True, dar 0 ̸= 1). B. Adevărat, pentru n = 12235

cifrele sunt 1(1), 2(2), 3(1), 5(1): toate au parităt, i potrivite (impar-impar, par-par). C.

Fals, deoarece dacă n are doar cifre impare, dar una apare de un număr par de ori (ex.:

n = 11, 1 apare de 2 ori: impar-par ̸=), returnează False. D. Adevărat, pentru n = 10k

cu k par: cifre 1(1 dată, impar-impar) s, i 0(k date, par-par), deci parităt, i potrivite.

275. Algoritmul calculează cifra de control a lui n prin sumarea repetată a câtului s, i

restului la ı̂mpărt, irea la 10, care păstrează congruent,a modulo 9. A. Adevărat: rezultatul

este mereu ı̂n 1, 2, . . . , 9. B. Adevărat: nu returnează niciodată 0, deoarece n ≥ 1 s, i

multipli de 9 dau 9. C. Adevărat: există 3 valori v = 1, 3, 9 pentru care, dacă numar(n) =

v, atunci v divide n oricând.

Pentru v = 1: trivial, orice n este divizibil cu 1. Pentru v = 3: control(n) = 3 =⇒ n ≡

3 ≡ 0 (mod 3). Pentru v = 9: control(n) = 9 =⇒ n ≡ 0 (mod 9).

Pentru alte v (ex. v = 2), există n cu dr(n) = 2 dar n nedivizibil cu 2 (ex. n = 11). D.

Fals: returnează cifra de control a lui n, nu suma cifrelor (ex. pentru n = 99, suma= 18,

dar returnează 9).

276. Variantele A s, i C sunt adevărate, deoarece numărul b = 11010112 = 10710. A. Pen-

tru reprezentarea ı̂n baza 4, se grupează de la dreapta la stânga cifrele binare: 11, 10, 10, 1,

după care le convertim ı̂n baza 4 3, 2, 2, 1. Numărul se cites,te de la dreapta la stânga. B.

Reprezentarea ı̂n baza 8 se face similar, grupându-se câte 3 cifre de la dreapta la stânga.

Astfel, reprezentarea este 1538, care nu este palindrom (153 ̸= 351). C. Este impar, de-

oarece se termină cu 1 ı̂n binar. D. Nu este divizibil cu 3, deoarece 1 + 0 + 7 = 8 ̸≡ 0

(mod 3).

537

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

277. Variantele A s, i C sunt adevărate. Algoritmul execută bucla while o singură iteratie

datorită variabilei g init, ializată cu False, care devine True la sfârs, it. În această buclă, se

numără k = numărul de elemente d[i] (5, 7, 11) pentru care a sau b este divizibil cu d[i].

Variabila c devine numărul format din k cifre de 1 (ex. 111 pentru k = 3), iar p = 1+ k.

Valoarea returnată este c× 100+ p. A. Dacă a× b nu se divide cu niciunul, k = 0, c = 0,

p = 1, c ∗ 100 = 0, p = 1 adevărat. B. Ultima valoare a lui c este 0, nu 10, fals. C. Dacă

a× b se divide cu toate, k = 3, c = 111, p = 4, returnează 11104 D. Pentru a = 112233,

b = 331122, doar 11 divide (ambele), deci k = 1, c = 1, p = 2, returnând 102, nu 1003,

fals.

278. Algoritmul efectuează o singură trecere prin vector, similar unei iterat, ii din sortarea

prin bule (bubble sort), ı̂n care se compară s, i se interschimbă elementele adiacente dacă

sunt ı̂n ordine descrescătoare (x[i + 1] < x[i]). Aceasta mută cel mai mare element la

sfârs, itul vectorului (pozit, ia n), deoarece el va fi interschimbat succesiv spre dreapta. A.

Adevărat: cel mai mare element ajunge pe pozit, ia n. B. Fals: cel mai mic element nu

ajunge neapărat pe pozit, ia 1 (ex.: pentru x = [4, 3, 2, 1], după execut, ie devine [3, 2, 1, 4],

minimul 1 este pe pozit, ia 3). C. Fals: vectorul nu este sortat crescător (̂ın exemplul de

mai sus, nu este sortat). D. Fals: vectorul nu este sortat descrescător (̂ın exemplul de mai

sus, nu este sortat).

279. Algoritmul calculează suma peste cifrele lui n, de la dreapta la stânga: +1 dacă

cifra este pară, −1 dacă este impară (echivalent cu numărul de cifre pare minus numărul

de cifre impare). A. Fals: pentru 543 (cifre 5 impar −1, 4 par +1, 3 impar −1), suma =

−1 ̸= 2. B. Adevărat: pentru 18 (1 impar −1, 8 par +1), suma = 0. C. Fals: pentru

41173 (4 par +1, 1 impar −1, 1 impar −1, 7 impar −1, 3 impar −1), suma = −3 ̸= 3. D.

Adevărat: numerele din [111, 999] au 3 cifre (număr impar de cifre), iar suma este impară

(suma unui număr impar de termeni ±1, fiecare impar, este impară), deci niciodată 0.

280. Algoritmul numără ı̂n c elementele pare (ultima cifră pară: 0,2,4,6,8), iar ı̂n d ele-

mentele impare (ultima cifră impară: 1,3,5,7,9) a căror ultimă cifră este multiplu de 3

(3 sau 9). Returnează True dacă c = d. A. Fals, deoarece d numără doar unele numere

impare (cele cu ultima cifră 3 sau 9), nu toate. B. Fals, deoarece multipli de 6 sunt pare

538

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

s, i divizibili cu 3 (suma cifrelor mod 3 = 0), dar d numără impare specifice, nu multipli

de 6. C. Adevărat, deoarece c = nr. pare, d = nr. impare cu ultima cifră multiplu de 3 (3

sau 9). D. Fals, deoarece multipli de 3 pot fi pari sau impari, dar d numără doar impare

cu ultima cifră 3 sau 9 (nu tot, i multiplii de 3).

281. Algoritmul efectuează c treceri ale sortării bubble sort, care sortează crescător vecto-

rul x, plasând cele mai mari c elemente ı̂n ultimele c pozit, ii, sortate crescător. Returnează

x[n − c + 1], care este cel mai mic dintre cei mai mari c element, i, adică al c-lea cel mai

mare element (sau al (n− c+1)-lea cel mai mic ı̂n vectorul sortat). A. Adevărat: pentru

x = [5, 4, 30, 5, 1], după 3 treceri, ultimele 3 pozit, ii: 5, 5, 30 (sortate), deci x[3] = 5. B.

Adevărat: pentru x = [100, 99, . . . , 1], după 50 treceri, ultimele 50 pozit, ii: 51, 52, . . . , 100

(sortate), deci x[51] = 51. C. Adevărat: pentru c = n, vectorul este sortat complet

crescător, deci x[1] este minimul. D. Fals: pentru c = 1, returnează x[n], care după o

trecere este maximul.

282. Algoritmul determină maximul dintre x[1] s, i suma maximă a oricăror trei elemente

distincte din vector. A. Fals, deoarece dacă toate elementele sunt negative, dar x[1] este

mult mai negativ decât altele, suma a trei elemente mai put, in negative poate fi mai mare

decât x[1] (ex.: x = [−100,−1,−1,−1], suma −1− 1− 1 = −3 > −100, deci returnează

−3 ̸= x[1]). B. Fals, deoarece dacă toate sunt pozitive s, i ≤ x[1], suma a trei elemente

este mai mare decât x[1], deci returnează suma maximă > x[1], nu x[1]. C. Fals, deoa-

rece returnează maximul dintre x[1] s, i suma maximă a oricărui triplet, nu neapărat suma

x[1] + x[2] + x[3] (pot exista tripleturi cu sumă mai mare). D. Adevărat, deoarece dacă

produsul tuturor elementelor este impar, toate x[i] sunt impare; orice sumă de trei impare

este impară, iar x[1] este impar, deci valoarea returnată este impară.

283. Pentru ca nodul 3 să aibă gradul 1, el trebuie conectat la exact unul din cele 4

noduri (1, 2, 4 sau 5), deci 4 alegeri. Celelalte muchii posibile sunt cele dintre cele 4 no-

duri, adică C2
4 = 6 muchii, fiecare putând exista sau nu, deci 26 = 64 posibilităt, i. Total:

4× 64 = 256 grafuri distincte.

284. Algoritmul modifică o submatrice din A dacă acestea se ı̂ncadrează ı̂n matrice s, i

numără de câte ori pentru i = 2, 3 ambele modificări reus,esc. Pentru i = 2: c = 1modifică

539

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

o submatrice de 2 × 2 ı̂ncepând de la (1, 2), ı̂nmult, ind 4, apoi o submatrice de 3 × 3 la

(2, 1), ı̂nmult, ind cu ×2. c = 1 deoarece ambele operat, ii au fost ı̂ncadrate ı̂n matrice.

Pentru i = 3: modifică o submatrice 2 × 2 la (2, 3) cu ×4, dar submatricea de 3 × 3 la

(3, 2) depăs,es,te (r = 5 > 4), deci nu incrementează c. Returnează c = 1 (C adevărat).

Suma diagonalei modificate: A[1][1] = 4, A[2][2] = 5×4×2 = 40, A[3][3] = 2×2×4 = 16,

A[4][4] = 7, total 67 (D adevărat).

285. Algoritmul implementează programarea dinamică pentru calcularea lungimii ce-

lui mai lung subs, ir comun (LCS) dintre vectorii x s, i y. Valoarea returnată este lungi-

mea LCS. A. Adevărat: LCS([3,2,3], [2,3,3]) = 2 (ex.: subs, irul 2,3). (Se poate verifica

s, i prin simularea algoritmului). B. Fals: Lungimea nu este o condit, ie necesară. Ex.:

x = [1, 2, 3], y = [4, 5] ⇒ rezultatul este 0, des, i lungimile diferă. C. Fals: pentru y per-

mutare inversă a lui x (ex.: x = [1,2,3], y = [3,2,1]), LCS = 1 ¡ n = 3. D. Fals: LCS ≤

min(n,m) ¡ n + m pentru n, m ≥ 1.

286. Algoritmul returnează lungimea minimă a unui subs, ir cu suma strict mai mare decât

p (sau n + 1 dacă nu există). Pentru A: p = 11, suma t, intă S > 11, subs, iruri minime

de lungime 3: [1,5,6]=12, [5,6,2]=13, [6,2,5]=13. Pentru B: p = 10, S > 10, există de

lungime 2: [5,6]=11. Pentru C: p = 15, S > 15, minim de 3: [7,8,1]=16. Pentru D:

p = 16, S > 16, minim de 4: [7,8,1,2]=18.

287. Varianta B cont, ine OR ı̂n loc de AND, deci va număra incorect elementele. Vari-

anta A nu ia ı̂n considerare matricele cu n par, adăugând 1 la fiecare numitor. Varianta D

ia ı̂n considerare aceste matrice, adăugând 1 ⇐⇒ n mod 2 ̸= 0, dar condit, ia i ̸= n−j−1

este gres, ită pentru diagonala secundară.

288. Afirmatiile A s, i D sunt adevărate. Algoritmul rearanjează elementele vectorului

prin plasarea succesivă a maximului curent alternativ la ı̂nceputul sau sfârs, itul ferestrei

rămase, rezultând ı̂ntotdeauna aceeas, i configurat, ie finală pentru acelas, i set de elemente.

Deoarece permutările au aceleas, i elemente, rezultatul este acelas, i (A adevărat). Pentru B,

ı̂n simulare, linia (*) se execută de 7 ori, nu 9 (fals). Pentru C, pentru un vector crescător

se execută de 7 ori, pentru unul descrescător de 8 ori (fals). Pentru D, există exact o

permutare (configurat, ia finală) ı̂n care nu se efectuează nicio interschimbare, deoarece

540

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

maximul este deja la pozit, ia t, intă ı̂n fiecare pas (adevărat).

289. Varianta A este falsă deoarece implementarea recursivă nu gestionează corect

overflow-ul zilelor peste 7, ducând la rezultate diferite pentru cazuri precum rezultat(1, 9):

recursiv returnează 1, dar originalul returnează 2. Varianta B este adevărată: ı̂ncepând

de joi (4), după 24 de zile calendaristice se ajunge la duminică (7), care, fiind weekend,

rezultatul se eliberează luni (1). Varianta C este adevărată: algoritmul rezultat2 calcu-

lează eficient ziua folosind operat, ii modulo, returnând acelas, i rezultat ca originalul, dar

cu complexitate O(1) fat, ă de O(zile) a originalului. Varianta D este falsă: complexitatea

originalului este O(zile), nu O(1), deoarece bucla rulează de zile-1 ori.

290. Instruct, iunea corectă este Return S4 - S2 - S3 + S1, deoarece suma regiunii

(x1, y1) la (x2, y2) se obt, ine din prefixul până la (x2, y2) minus prefixul de sus (x1−1, y2)

minus prefixul din stânga (x2, y1−1) plus prefixul colt,ului (x1−1, y1−1), evitând dubla

scădere. Varianta B adună totul (eroare), C s, i D au semne gres, ite, ducând la rezultate

incorecte.

291. Afirmatiile A s, i D sunt adevărate. Algoritmul calculează CMMMC-ul tuturor ele-

mentelor din vector, returnând valoarea finală x[n]. Pentru A, simularea pas cu pas dă

240 (elementele modificate fiind [12, 48, 48, 240, 240]. Pentru B, numărul total de apeluri

este 14 pentru s, irul crescător s, i 63 pentru cel descrescător, deci fals. Pentru C, returnează

CMMMC, nu CMMDC. Pentru D, numărul maxim de apeluri (153) se obt, ine când 17

este la ı̂nceputul vectorului, propagând apeluri costisitoare g(17,1) de 9 ori, fiecare cu 17

apeluri recursive.

292. În exemplul dat, pentru 3 goluri s, i scor final 2-1 ı̂n favoarea lui A (2 goluri A, 1

gol B), există
(
3
1

)
= 3 succesiuni posibile, corespunzând pozit, iilor ı̂n care B ı̂nscrie singu-

rul său gol. Pentru o partidă cu 4 goluri, fără a specifica scorul final (spre deosebire de

exemplu), se consideră toate posibilele atribuiri ale fiecărui gol echipei A sau B, rezultând

24 = 16 succesiuni distincte, fiecare determinând o solut, ie unică a scorului de la 0-0.

293. Varianta B calculează corect suma valorilor S[i], numărând pentru fiecare i ≥ 2 câte

j ≤ i au v[j] < v[i] (deoarece S[1] = 0 ı̂ntotdeauna). Celelalte variante sunt incorecte: A

include s, i egalităt, ile, ducând la rezultate gres, ite când există duplicate; C numără inver-

541

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

siuni viitoare, nu anterioare; D amestecă tipuri s, i calculează diferent,e ı̂n loc de numărări.

294. Algoritmul de la varianta A primes,te la fiecare pas valoarea maximă actuală ı̂n

variabila b. Dacă elementul curent x[i] este mai mare decât b, acesta devine noul maxim.

Algoritmul se termină când a verificat toate elementele (i > n) s, i returnează valoarea

finală a lui b.

Algoritmul de la varianta B nu caută maximul, ci verifică dacă vectorul este ordonat

strict crescător. În loc să returneze un număr din vector, acesta returnează o valoare

logică (True sau False). Dacă găses,te un element care nu este mai mic decât următorul,

se opres,te imediat.

Varianta C este corectă, algoritmul pornes,te cu primul element drept maxim (b ← x[1])

s, i parcurge vectorul cu o buclă While. La fiecare pas, compară b cu următorul element:

dacă găses,te unul mai mare, actualizează valoarea lui b. La final, returnează cel mai mare

număr găsit. Varianta D caută de fapt minimul, nu maximul. Singura diferent, ă fat, ă de

varianta C este semnul de comparat, ie: aici se verifică dacă b > x[i+1]. Astfel, b va ret, ine

mereu cea mai mică valoare ı̂ntâlnită pe parcursul parcurgerii vectorului.

295. Algoritmul f1(a, b) calculează cel mai mare divizor comun a celor două numere.

Astfel, algoritmul f2(a, b) returnează True dacă a s, i b sunt prime ı̂ntre ele (sau relativ

prime).

296.

297. Algoritmul f(x, y) returnează produsul x ∗ y. Astfel, variantele A, C, D sunt cele

echivalente. Variantele C este metoda clasică recursivă de a calcula acest produs, iar

varianta D este cea iterativă. Varianta A va dubla rezultatul dacă x este par, folosind

formula recurentă x ∗ y = 2 ∗ ((x DIV 2) ∗ y). În caz contrar, se adună un singur y,

ajungându-se astfel la acelas, i rezultat.

298. Algoritmul este o variantă a metodei BubbleSort, dar care face doar 10 iterat, ii.

Metoda BubbleSort ne asigură că dupa n iterat, ii ultimele n + 1 elemente sunt ordonate

crescător, unde ultimele n elemente au cele mai mari n valori din vector. După prima

iterat, ie, elementul maxim al vectorului ajunge pe ultima pozit, ie. Astfel, doar varianta B

este corectă.

542

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

299. Varianta A este incorectă pentru că nu ia ı̂n considerare elementul de pe prima

pozit, ie, returnează valoarea 1 ı̂nloc de x[1].

Varianta B este incorectă ı̂n cazul ı̂n care vectorul are mai mult de un element, pentru că

va returna cel mai mare divizor comun doar dintre ultimele două elemente ale vectorului.

Varianta C parcurge vectorul ı̂ntr-un mod simetric, din ambele capete, dar acoperă fiecare

element al vectorului s, i ı̂l include ı̂n calcularea celui mai mare divizor comun.

Varianta D este o variantă recursivă, care parcurge toate elementele vectorului, de la

prima pozit, ie la ultima, s, i include fiecare valoare din vector ı̂n calcularea CMMMDC-ului.

300. Numărul de pas, i pe care ı̂i execută algoritmul se exprimă astfel :
∑n

i=1

∑n
j=i

∑n
k=j 1 =∑n

i=1

∑n
j=i(n − j + 1) =

∑n
i=1

(n−i+2)(n−i+1)
2 , care după dezvoltare va cont, ine un poli-

nom de forma n3+3n2+2n
6 , termenul dominant fiind n3. Constantele se ignoră, este luat

ı̂n considerare doar termenul dominant ı̂n calcularea complexităt, ii, astfel varianta corectă

este B.

301. Algoritmul ceFace(n) calculează numărul de zerouri de la finalul lui n!. Algoritmul

ret, ine ı̂n c1 numărul de aparit, ii ale factorului prim 2 ı̂n descompunerea tuturor numerelor

de la 1 la n, iar c2 ale lui 5. Deoarece un zero la finalul unui număr este format dintr-o

pereche de factori (2 ∗ 5), numărul de zerouri este indicat de factorul care apare de cele

mai put, ine ori (care este ı̂ntotdeauna 5 ı̂n cazul lui n!).

302. Varianta A este metoda clasică iterativă de a căuta valoarea maximă ı̂ntr-un vector

de numere. Algoritmul parcurge pozit, iile pare s, i verifică dacă elementul de pe pozit, ia

curentă este mai mare decât maximul anterior, dacă da, variabilei maxV al i se atribuie

valoarea elementului. Varianta D este similară, este o metodă recursivă care se autoape-

lează până când pozit, iile nu depăs,esc lungimea vectorului. Când i > n, variabilamaxRest

va primi valoarea minimă posibilă, anume −100, iar apoi se va ı̂ntoarce ı̂napoi ı̂n vector,

comparând maxRest cu elementul de pe pozit, ia curentă.

Variantele B s, i C returnează maximul de pe pozit, iile impare ale vectorului.

303. Dacă Maria merge la plimbare, ı̂nseamnă că s, i Ana merge. Dacă Ana merge la

plimbare, ı̂nseamnă că este soare. Fiind soare, ı̂nseamnă că Tudor merge la plimbare.

Concluzia de la varianta A este corectă.

543

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

Ana merge la plimbare doar dacă e soare. Nefiind soare afară, Ana nu merge. Varianta

B e corectă.

Maria merge la plimbare doar dacă merge s, i Ana, iar Ana merge la plimbare doar dacă e

soare. Dar, nu este obligatoriu ca Ana să meargă la plimbare tot timpul când este soare.

Putem afirma cu certitudine că dacă Ana merge la plimbare, afară este soare (sau că dacă

afară nu este soare, Ana nu merge la plimbare). Este incert dacă Ana merge la plimbare

dacă afară este soare, deci varianta C este incorectă.

Dacă e soare, Tudor merge la plimbare, dar el poate merge s, i dacă nu e soare, nu este

impus niciunde contrariul (nu este formulat ca la celelalte cu ”Doar dacă”).

304. Varianta B este corectă, x = 10000110111(2) = 20 + 21 + 22 + 24 + 25 + 210 =

55 + 1024 = 1079, iar y = 11011(4) = 40 + 41 + 43 + 44 = 1+ 4 + 64 + 256 = 325 , atunci

x+ y = 1079 + 325 = 1404.

305. Algoritmul ceFace(n, a) returnează cea mai mare valoare ,formată din prima cifră

urmată de zerouri ı̂n locul celorlalte cifre, dintre toate elementele vectorului. Pentru ape-

lul de la varianta A se returnează 20000, nu 2000. Varianta B este incorectă, dacă avem

vectorul a = [200, 30], algoritmul returnează 200, care se află ı̂n vector. Varianta D este

corectă, instruct, iunea de pe linia 10 se execută doar dacă se găses,te o valoare ori cu prima

cifră mai mare, ori cu număr mai mare de cifre decât maximul curent.

306. Varianta A este corectă, este o componetă conexă mare formată din toate nodurile,

cu except, ia a 4 noduri izolate, anume 11, 13, 17, 19 care nu au multiplii ı̂n mult, ime. Deci,

sunt 5 componente conexe.

Varianta B este incorectă, nodul 2 are gradul 9, cel mai mare, ı̂n timp ce nodurile 12, 18, 20

au gradul 4.

Varianta C este incorectă, contra-exemplu este: nodul 8 s, i nodul 12, 8¡12, dar gradul

nodului 8 este 3, ı̂n timp ce gradul nodului 12 este 4.

Varianta D este corectă, singurul nod cu gradul 1 este nodul 7.

307. Algoritmul ceva(n, v) calculează produsul elementelor din vector cu valori dis-

tincte.

Varianta A este corectă. Numerele ı̂ntregi ale vectorului sunt cuprinse ı̂ntre −10 s, i 10, deci

544

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

avem 21 de posibilităt, i de a alege valoarea unui element, dintre care 10 numere impare s, i

11 numere pare. Liniile 4− 9 calculează ı̂n s numărul de valori distincte din vector. Dacă

valoarea lui s este mai mare decât 10, atunci ı̂nseamnă ca avem mai mult de 10 numere

distincte ı̂n vector, dar există doar 10 posibilităt, i de a alege un număr impar, deci clar

unul dintre elementele vectorului are o valoarea pară. Un produs este par dacă măcar

unul dintre termeni este par.

Varianta B este falsă, dacă printre valorile distincte se află 0, atunci produsul va fi 0, deci

nu negativ.

Varianta C este falsă, dacă rezultatul afis,at pe Linia 10 este 21, ı̂nseamnă că vectorul

cont, ine toate numerele ı̂ntregi de la −10 la 10, deci rezultatul e 0, nu (10!)2.

Varianta D este corectă, dacă eliminăm ±10,±5, 0 rămânem cu 21−5 = 16 posibile valori.

Cazurile ı̂n care rezultatul nu se termină cu cifra 0 sunt cele ı̂n care nu există 10, perechi

de forma (±2k,±5) sau 0.

308. Algoritmul f(x) este implementarea recursivă a numerelor Fibonacci. Numărul

de apeluri A(n) pentru acest algoritm se determină folosind formula recurentă: A(n) =

A(n− 1) +A(n− 2) + 1.

309. Algoritmul ceva(A, n, r, c, nr, x) ı̂nmult,es,te sub-matricea de dimensiune x∗x,

ı̂ncepând de la linia r s, i coloana c, cu valoarea nr. Astfel, variantele B s, i C sunt corecte.

310. Varianta A este incorectă pentru că returnează doar rezultatul comparat, iei ultimu-

lui element cu numărul e. Va returna True doar dacă x[n] = e.

Varianta B este corectă, spre deosebire de varianta A, ciclul repetitiv se opres,te odată ce

variabila g are valoarea True sau dacă am ajuns la finalul vectorului.

Varianta C este corectă, n = −c dacă s, i numai dacă nu există niciun element ı̂n vector

cu valoarea e. Astfel, dacă s-a intrat măcar o dată pe ramura x[i] = e, atunci n ̸= −c.

Varianta D este gres, ită, sunt considerate corecte s, i valorile nule, nu doar elementele din

vector cu valoarea e.

311. Succesiunea de apeluri este: Ack(1,4) - Ack(1,3) - Ack(1,2) - Ack(1,1) - Ack(1,0)

- Ack(0,1) - Ack(0,2) - Ack(0,3) - Ack(0,4) - Ack(0,5). Astfel putem afirma că ı̂n

urma apelului Ack(1,4) se vor efectua 9 apeluri.

545

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

312. Algoritmul dat funct, ionează după următorul rat, ionament: variabila i va ret, ine

pozit, ia de mijloc a s, irului de caractere, iar variabila j = n DIV (n DIV 2) = 2. Dacă

lungimea s, irului de caractere, n, este pară atunci s, irul s va fi cont, ine doar primele i− 1

caractere ı̂ncepând cu pozit, ia i, iar la final caracterul de pe pozit, ia 2. Dacă n este impar,

s, irul de caractere va cont, ine primele i − 2 caractere ı̂ncepând cu pozit, ia i, iar la final

caracterul de pe prima pozit, ie. Astfel, pentru n par se va returna un s, ir de lungime i, iar

pentru n impar unul de lungime i− 1.

Varianta A nu este corectă, există m ̸= n astfel ı̂ncât s, irurile rezultate să aibă aceeas, i

dimensiune (exemplu: m = 4, n = 7).

Varianta B este falsă, sunt 243 de valori posibile pentru că dacă s, irul rezultat este de di-

mensiune 2 s, irul init, ial fie are dimensiunea 4, fie 7 folosindu-ne de rat, ionamentul precizat

anterior. Pentru n = 4, s[2] ar trebui să fie simultan a s, i c, imposibil. Pentru n = 7,

s[3] = a s, i s[1] = c, restul de 5 pozit, ii putând lua oricare dintre cele 3 caractere posibile,

deci 35 = 243 posibilităt, i.

Varianta D este corectă, folosind acelas, i rat, ionament avem două posibilităt, i: fie n = 6,

fie n = 9 pentru ca s, irul rezultatul să aibă dimensiunea 3. Pentru n = 6, s[3] = 1, s[4] =

0, s[2] = 1, restul de elemente de pe 3 pozit, ii putând lua ori 1, ori 0, deci 23 = 8 posi-

bilităt, i. Pentru n = 9, s[4] = 1, s[5] = 0, s[1] = 1, celelalte elemente de pe restul de 6

pozit, ii putând lua fie valoarea 1, fie valoarea 0, deci 26 = 64 posibilităt, i. În total, avem

64 + 8 = 72 posibilităt, i.

313. Pentru a calcula suprafat,a totală has,urată de cele două dreptunghiuri A s, i B, fără să

dublăm zona lor comună, trebuie să calculăm individual ariile celor două dreptunghiuri s, i

să determinăm dacă s, i cât se suprapun (aria intersect, iei lor): Pe orizontală, suprapunerea

pe Ox (xSup) este dată de max(0, min(ax2, bx2) - max(ax1, bx1)), asigurându-ne că

nu obt, inem valori negative când nu există intersect, ie. Pe verticală, suprapunerea pe Oy

(ySup) este max(0, min(ay2, by2) - max(ay1, by1)). Aria de suprapunere (aSup)

este xSup * ySup. Aria totală este suma ariilor minus aria de suprapunere: a1 + a2 -

aSup. Varianta A urmează exact acest algoritm. Varianta B introduce explicit cazul de

non-suprapunere, dar restul algoritmului e corect s, i identic. Ambele gestionează complet

546

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

s, i corect toate cazurile posibile – atât dreptunghiuri disjuncte, cât s, i suprapuse part, ial

sau total. Variantele C s, i D nu tratează corect toate cazurile (C adună aria celor două

fără ajustare corectă a suprapunerii, iar D foloses,te o formulă gres, ită pentru aria de su-

prapunere). Prin urmare, răspunsul corect este AB.

314. Algoritmul este o implementare de backtracking pentru a găsi toate submult, imile

vectorului A care au o sumă dată m. Vectorul B funct, ionează ca un vector caracteris-

tic: dacă B[i] = 0, atunci elementul A[i] nu este inclus ı̂n sumă, altfel este. La fiecare

pozit, ie k se ı̂ncearcă mai ı̂ntâi neincluderea elementului (B[k] = 0) s, i apoi includerea lui

(B[k] = 1). După primele autoapeluri, când k = n + 1, vectorul B = [0, 0, 0, 0, 0, 0, 0, 0].

Elementul de pe ultima pozit, ie va fi setat cu 1 s, i inclus ı̂n sumă. Dar 7 este mai mic

decât 12, astfel algoritmul se ı̂ntoarce pe pozit, ia anterioară s, i ı̂l include pe 15. Încearcă

15 = 12 s, i 15 + 7 = 12, fals. Astfel, urmând acelas, i rat, ionament, prima solut, ie afis,ată

este 12, corespunde vectorului B = [0, 0, 0, 0, 0, 1, 0, 0], unde doar A[6] = 12 este selectat.

La fiecare pozit, ie curentă, algoritmul pornes,te ı̂nspre dreapta până la finalul vectorului,

ı̂ncercând fiecare posibilitate de a scrie suma dată m.

315. Algoritmul ı̂mparte numărul dat ı̂n două, n1 va ret, ine o parte din primele cifre ale

numărului ı̂n ordinea dată, iar n2 va ret, ine restul cifrelor, ultimele ı̂n ordine inversă.

Varianta A este falsă, după executarea buclei repetitive while, n1 = 1 s, i n2 = 12, deci

n1 = n2 DIV 10 care returnează True, nu False.

Variabta B este falsă, după executarea buclei while n1 = 2 s, i n2 = 28, ceea ce nu duce la

executarea liniei respective.

Varianta C este corectă, numerele sunt : 101, 202, 303, 404. Avem nevoie de acel 0 ı̂n

mijloc care nu contribuie la calcularea lui n2.

Varianta D este corectă, apelul este de fapt oareCe(0) care va returna True.

316. Algoritmul dat este o implementare recursivă a problemei rucsacului, Pentru fiecare

element al vectorului a, algoritmul decide dacă să ı̂l includă sau nu. Dacă ı̂l include,

adaugă la sumă elementul corespunzător din vectorul b, scade din c elementul din a s, i

merge mai departe. La final, se returnează valoarea maximă găsită. La fiecare pas, veri-

fică dacă nu am rămas fără elemente din vector (n = 0) sau dacă nu am epuizat pragul

547

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

dat (c = 0), iar mai apoi verifică dacă elementul din vectorul a nu trece peste pragul c.

317. Pe linia (1) este nevoie de o instruct, iune care dublează variabila multiplu, indicând

de câte ori se cuprinde valoarea curentă a lui y ı̂n x. Instruct, iunea x← x− temp ret, ine

ı̂n x restul rămas, care va fi procesat la următoarea iterat, ie a ciclului. Apoi, pe linia (2)

trebuie să se adune ı̂n variabila cat acel multiplu, astfel la finalul buclei while, variabila

cat va ret, ine câtul ı̂mpărt, irii lui x la y. Pe linia (3), ı̂n funct, ie de semnele numerlor x s, i

y date, ı̂nmult, im câtul cu variabila negativ. Aceste instruct, iuni corespund variantelor A

s, i D (operat, ia x << 1 este echivalentă cu x ∗ 2).

318. Variabila b se init, ializează cu True s, i devine False doar dacă există un element ı̂n s, ir

mai mare decât următorul element din s, ir, adică ı̂n momentul ı̂n care valorile s, irului nu

mai sunt ı̂n ordine strict crescătoare. Algoritmul returnează True pentru orice s, ir strict

crescător.

319. Algoritmul nu parcurge pur s, i simplu vectorul de la stânga la dreapta, ci selectează

elemente fie din partea stângă, fie din partea dreaptă, ı̂n funct, ie de comparat, ia dintre

ele, fiind afis,ată valoarea mai mică. Afirmat, ia A este gres, ită deoarece, ı̂ntr-un s, ir sortat

crescător, de la prima comparat, ie se va afis,a primul element din s, ir, cel mai mic, astfel

valorile se vor afis,a ı̂n ordine crescătoare. Pentru un vector sortat descrescător, la prima

comparat, ie, se afis,ează valoarea minimă, iar procesul va continua, alegând ı̂ntotdeauna

cel mai mic dintre a[i] s, i a[j], iar ultimul element rămas va fi maximul. De asemenea,

dacă elementul maxim se află pe prima pozit, ie, ı̂n urma comparat, iilor, va fi afis,at mereu

elementul din capătul drept al s, irului, rezultând afis,area valorilor ı̂n ordine inversă.

320. Scriem numerele ı̂n baza 10: X = 6543(8) = 3427(10), Y = CEF(16) = 3311(10) −→

X ≥ Y,X > Y .

321. Algoritmul nu va executa niciodată instruct, iunile de pe ramura z MOD 2 = 0 pen-

tru că nu x s, i y nu ajung la aceeas, i paritate, pentru orice n din intervalul precizat, deci

algoritmul va returna mereu aceeas, i valoare. Dacă am schimba instruct, iunea de pe linia

10 cu x← x−1, s, i cea de pe linia 11 cu y ← y+1 algoritmul returnează aceeas, i valoare ca

ı̂n varianta originală pentru orice număr natural 1 ≤ n ≤ 15, afirmat, ie adevărată datorită

faptului că valorile nu pot ajunge la aceeas, i paritate, singura condit, ie care ar schimba

548

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

rezultatul.

322. Algoritmul verifică dacă numărul valorilor cu ultima cifră pară din s, ir este egal cu

numărul valorilor cu ultima cifră impară din s, ir.

323. Algoritmul returnează lungimea celei mai lungi subsecvent,e formate din numere

consecutive crescătoare din vectorul v. Variabila a are valoarea lungimii maxime, fiind

actualizată dacă este găsită o lungime mai mare decât maximul curent, iar variabila b

reprezintă lungimea secvent,ei curente parcurse ce respectă proprietatea, valoarea lui b

crescând cu o unitate ı̂n momentul ı̂n care elementul curent respectă proprietatea, sau

fiind actaulizată cu valoarea 1, marcând ı̂nceputul unei noi subsecvent,e.

324. Traversarea ı̂n postordine a unui arbore binar este o metodă de parcurgere a nodu-

rilor sale ı̂n care fiecare nod este procesat după ce au fost procesate toate nodurile din

subarborele său stâng s, i toate nodurile din subarborele său drept, varianta corectă fiind

varianta C.

325. Algoritmul afis,ează un s, ir de m - 1 valori, variabila j ∈ [2,m]. Des, i există s, i o struc-

tură repetitivă bazată pe valoarea variabilei i, algoritmul nu mai afis,ează nimic după cele

m - 1 valori deoarece condit, ia j ≤ m nu va mai fi ı̂ndeplinită. De asemenea, dacă m

este par, se afis,ează un s, ir de valori ı̂n care valoarea 0 alternează cu valori care reprezintă

pătrate perfecte pare, iar prima s, i ultima valoare sunt 0, idee ce reiese din x[i][j]← k ∗ k,

pentru k par.

326. Algoritmul ı̂ncearcă să implementeze operat, ia de comparare element cu element

de la sfârs, it (os) ı̂ntre doi vectori de bit, i, returnând 1 când elementele sunt egale s, i 0

când sunt diferite, păstrând elementele nepereche de la ı̂nceputul vectorului mai lung, dar

implementarea actuală compară elementele de la ı̂nceput ı̂n loc de sfârs, it.

327. Valoarea variabilei ok reprezintă ı̂ndeplinirea sau nu a cerint,ei, devenind False dacă

proprietatea de prefix nu este respectată, as,a că, varianta D este corectă. De asemenea,

dacă se parcurge tot s, irul x fără a se schimba starea lui ok, variabila i va ajunge la va-

loarea m+1, ceea ce ı̂nseamnă că este ı̂ndeplinită proprietatea de prefix, varianta C fiind

corectă.

328. Varianta A este gres, ită deoarece se foloses,te n, numărul de coloane, ı̂n loc de m care

549

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

reprezintă numărul liniilor. Varianta B respectă distinct, ia dintre linii s, i coloane s, i calcu-

lează corect suma cerută. Varianta C adună numerele de pe linia k, ı̂n loc de coloana k, s, i

se produce din nou eroarea ı̂n folosirea gres, ită a variabilei m. Varianta D reinit, ializează

s, i modifică k, ducând la erori.

329. Deoarece F(n) necesită apeluri recursive s, i reduce progresiv dimensiunea lui n,

nu poate avea complexitate constantă, varianta D fiind falsă. Algoritmul reduce dimen-

siunea problemei la fiecare apel recursiv. Algoritmul este definit prin relat, ia: F (n) =

1 + F
(⌊

n√
n

⌋)
cu cazul de bază: F (1) = 1. Observăm că noua valoare a lui n este:

n′ =
⌊

n√
n

⌋
= ⌊
√
n⌋ Astfel, fiecare apel reduce n aproximativ la rădăcina pătrată a lui

n.Fie T (n) numărul de apeluri recursive.

Putem scrie procesul de reducere astfel: n→
√
n→

√√
n→

√√√
n→ · · · → 1 Pentru

a afla cât, i pas, i sunt necesari, notăm: nk+1 =
√
nk unde n0 = n, iar procesul continuă

până când nk = 1.

Rezolvând ecuat, ia: log nk = 1
2 log nk−1 S, i iterând de mai multe ori, ajungem la: k ≈

log log n. F(200)=F(250)=4.

330. Algoritmul verifică proprietatea de ”vale” a unui s, ir de elemente, adică există un

indice p ∈ [2, n−1], astfel ı̂ncât x[i] < x[i−1], i ∈ [2, p] s, i x[j] < x[j+1], i ∈ [p+1, n−1],

cu n ≥ 3, variantele B s, i C fiind corecte. Dacă vectorul x este ordonat descrescător s, i

are cel put, in 3 elemente, algoritmul returnează False deoarece algoritmul select(n, x)

returnează n. Dacă vectorul x este ordonat strict crescător s, i are cel put, in 3 elemente,

algoritmul returnează True deoarece algoritmul select(n, x) returnează 0 s, i verificările

următoare din algoritmul check(n, x) sunt ignorate.

331. Algoritmul determină cele mai mari două valori din s, irul x folosind recursivitatea.

Varianta A este corectă.

332. Algoritmul returnează False pentru un vector cu număr par de elemente. Se par-

curge vectorul de la ı̂nceput s, i se numără elementele mai mici decât e. Când ı̂ntâlnim

primul element mai mare sau egal cu e, numărătoarea se opres,te. Se verifică dacă numărul

de elemente mai mici decât e este exact egal cu numărul de elemente rămase după pozit, ia

lui e (inclusiv el). Aceasta ı̂nseamnă că pentru ca algoritmul să returneze True, s, irul tre-

550

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

buie să ı̂ndeplonească următoarele proprietăt, i: vectorul trebuie să aibă un număr impar

de elemente, elementul e trebuie să fie situat ı̂n mijlocul vectorului (la pozit, ia
n
2 + 1),

toate elementele din stânga lui e trebuie să fie mai mici, toate elementele din dreapta lui

e trebuie să fie mai mari.

333. Varianta A este gres, ită deoarece afis,ează ı̂n ordine inversă cifrele dorite. Varianta B

este corectă, afis, ând restul doar la ı̂ntoarcerea din recursie. Varianta C afis,ează cifrele ı̂n

ordine inversă, iar varianta D nu afis,ează cifrele individual, ci ı̂ncearcă să reconstruiască

numărul ı̂n baza 10.

334. Algoritmul procesează recursiv două numere până când devin egale, modificându-le

ı̂n funct, ie de relat, ia dintre ele (divizibilitate s, i paritatea câtului), s, i afis,ează caractere

speciale (* sau #) la ies, irea din recursivitate, plus cuvântul start: când numerele devin

egale.

335. Algoritmul foloses,te doi indici, left s, i right pentru a găsi două elemente din s, ir cu

suma egală cu t. Pe baza actualizării celor doi indici s, i a comparat, iilor, s, irul trebuie să

fie ordonat crescător pentru a respecta cerint,a. De asemenea, trebuie să existe ı̂n s, ir s, i

cele două valori cu suma t.

336. Variabila nr reprezintă numărul de factori primi (nu s, i distinct, i) comuni ai nume-

relor x s, i y. Pentru afis,area valorilor 1 7 11, numerele din pereche trebuie să aibă un

singur factor comun, iar, după ı̂mpărt, irea cu acel factor, x devine 7, iar y devine 11. Va-

rianta A este corectă cu factorii comuni următori: (14, 22) = 2, (21, 33) = 3, (35, 55) = 5,

(49, 77) = 7. Varianta B este gres, ită deoarece (7, 11) nu au factori comuni, variabila nr

rămâne la valoarea 0. Varianta C este gres, ită din acelas, i motiv, (1, 7) nu au factori primi

comuni. Varianta D este gres, ită deoarece, după ı̂mpărt, ire, toate numerele din perechi

ajung la valoarea 1.

337. Algoritmul găses,te cel mai mic număr natural care nu apare ı̂n vector folosind o me-

todă de marcare ı̂n care valorile existente sunt identificate prin adăugarea lui n la pozit, iile

corespunzătoare din vector, iar apoi se returnează primul index unde nu s-a făcut această

marcare.

338. Algoritmul verifică dacă un s, ir poate fi ı̂mpărt, it ı̂n două submult, imi cu sume egale,

551

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

dacă suma tuturor elementelor este număr par. S, irul [11, 5, 6, 22, 0, 7, 6, 13] cu suma 70,

poate fi ı̂mpărt, it ı̂n [22, 13, 0] s, i [11, 5, 6, 7, 6], deci returnează True. Varianta B este

corectă deoarece se returnează False, suma elementelor fiind impară. Varianta C este

gres, ită deoarece algoritmul auxiliar(arr, n, sum) are condit, ii de oprire sum = 0,

n = 1 AND sum ̸= 0, ce opresc recursia. Varianta D este gres, ită deoarece suma trebuie

să fie egală, nu media.

339. Algoritmul returnează cel mai mare divizor comun al s, irului. Varianta A este co-

rectă. Suma elementelor ı̂nainte de transformarea valorilor ı̂n cel mai mare divizor comun

nu este mereu strict mai mare deoarece, ı̂n cazul unui s, ir cu valori egale, sumele vor fi

egale, deci varianta B este gres, ită. Varianta C este gres, ită deoarece nu sunt modificate

corespunzător toate valorile. De exemplu, pentru s, irul [30, 12, 18], ı̂n varianta modificată

valoarea primului element nu va fi schimbată niciodată, deci vectorii nu vor avea acelas, i

cont, inut. Varianta D este corectă deoarece, pentru orice s, ir cu valori egale, complexitatea

algoritmului g(a, b) este O(1), iar cea a algoritmului f(n, x) este de O(n).

340. Varianta B este cea corectă deoarece nu putem adăuga ı̂n s, ir mai multe paranteze

deschise decât n
2 , iar nicio paranteză ı̂nchisă nu poate fi adăugată ı̂naintea unei paran-

teze deschise corespunzătoare, condit, ia inc < desc asigurând faptul că toate parantezele

ı̂nchise au pereche ı̂nainte de adăugare.

341. Varianta A foloses,te un vector auxiliar pentru a verifica pozit, iile curente s, i face

modificările pe s, irul init, ial până când nu mai sunt mutări de făcut, abordare corectă de-

oarece evită, prin verificarea valorilor din aux schimbarea gres, ită a pozit, iilor. Varianta

B efectuează modificările direct pe s, irul init, ial, dar ı̂naintează cu doi pas, i dacă a făcut

o schimbare pentru a nu modifica invers o pereche nou formată, varianta fiind corectă.

Varianta C foloses,te două variabile pentru a contoriza cât, i copii trebuie să se ı̂ntoarcă

pe baza ı̂ntâlnirilor dintre grupurile de ’d’ s, i ’s’, fără a modifica efectiv s, irul, varianta

fiind corectă. Varianta D este gres, ită deoarece actualizează incorect variabilele dr s, i st,

decrementându-le.

342. Algoritmul ceFace implementează o variantă de sortare prin select, ie, care parcurge

vectorul de la stânga la dreapta s, i selectează cel mai mic element dintre cele rămase,

552

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

plasându-l pe pozit, ia corectă. Dacă n = m, atunci ı̂ntreaga secvent, ă va fi sortată

crescător. Dacă n < m, doar primele n elemente vor fi ı̂n ordine corectă, iar restul

pot rămâne nesortate.

343. Algoritmul h parcurge vectorul de la final spre ı̂nceput s, i modifică elementele sale ı̂n

funct, ie de relat, ia dintre valorile adiacente. În fiecare pas, comparat, iile determină suma

sau diferent,a valorilor pentru a obt, ine un nou vector redus. Returnarea valorii 1 se poate

ı̂ntâmpla doar pentru anumite configurat, ii init, iale ale vectorului.

344. Expresia logică dată este evaluată folosind operatori de prioritate precum OR s, i NOT.

Evaluând pentru valorile x = 10 s, i y = 41, expresia devine adevărată deoarece subex-

presia (x MOD 3 = 0) este falsă, dar partea dreaptă a expresiei poate deveni adevărată

datorită operatorilor de comparare s, i negare.

345. Algoritmul prim verifică primalitatea unui număr natural folosind o abordare op-

timizată prin eliminarea multiplilor de 2 s, i testarea divizibilităt, ii doar pentru numerele

impare până la rădăcina numărului. Acesta funct, ionează corect s, i eficient pentru numere

impare mai mari de 2, ı̂nsă returnează fals pentru numere pare mai mari de 2.

346. Algoritmul f verifică dacă un vector este strict descrescător, comparând succesiv

fiecare element cu următorul. Dacă toate elementele respectă această condit, ie, returnează

adevărat. În caz contrar, returnează fals, detectând prima ı̂ncălcare a ordinii.

347. Se efectuează conversii din bazele 16, 3 s, i 4 ı̂n baza 10, iar apoi se efectuează operat, ii

aritmetice asupra valorilor convertite. Este esent, ial să se interpreteze corect fiecare bază

pentru a obt, ine rezultatul corect.

348. Algoritmul recursiv f foloses,te o abordare unica, reducând valoarea parametrului

până când se ajunge la o condit, ie de oprire. Prin repetarea apelurilor recurente s, i ajus-

tarea valorilor, se determină punctul ı̂n care rezultatul devine negativ.

349. Algoritmul compute determină numărul de bit, i de 1 din reprezentarea binară a

unui număr, ceea ce corespunde numărului de bit, i activat, i (Hamming weight). Parcurge

fiecare bit folosind operat, ii de diviziune s, i modulo pentru a verifica paritatea.

350. Algoritmul f execută un ciclu controlat de condit, ii logice s, i modifică valorile vari-

abilelor pe parcurs. În cazul apelului specificat, variabilele sunt alterate succesiv, deter-

553

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

minând afis,area unor valori fixe sau intrarea ı̂n buclă infinită.

351. Parcurgerea ı̂n preordine a unui arbore binar implică vizitarea rădăcinii ı̂naintea

subarborilor stâng s, i drept. Această strategie de explorare produce un s, ir de noduri ı̂n

ordinea ı̂ntâlnirii lor.

352. Algoritmul mark utilizează o abordare de propagare a valorilor prin verificări de

adiacent, ă ı̂ntr-un graf reprezentat prin vectori. Valorile sunt modificate ı̂n funct, ie de

anumite condit, ii de conectivitate date de funct, ia auxiliară tuple.

353. Algoritmul matrice umple o matrice n×n cu valori care alternează semnul la fiecare

pozit, ie. Produsul sau suma elementelor din anumite linii s, i coloane sunt influent,ate de

acest model de alternare a semnelor.

354. Algoritmul modifica rearanjează vectorul astfel ı̂ncât toate elementele mai mici sau

egale decât ultimul element să fie plasate ı̂naintea acestuia, similar unui pas de partitio-

nare din algoritmul quicksort.

355. Algoritmul parcurge vectorul s, i calculează suma elementelor care sunt multipli de

3, stocând numărul acestora pentru a efectua o ı̂mpărt, ire la final. Returnează o valoare

bazată pe numărul multiplilor de 3 detectat, i.

356. Algoritmul de generare a submult, imilor utilizează recursivitatea pentru a explora

toate combinat, iile posibile ale elementelor setului dat, afis, ând fiecare subset pe măsură

ce este generat.

357. Algoritmul aplică o sumă cumulativă asupra elementelor vectorului s, i returnează

valoarea de la pozit, ia specificată după efectuarea tuturor adunărilor succesive.

358. Algoritmul determină ultimele două cifre ale unui număr s, i verifică divizibilitatea

acestora pentru a decide validitatea condit, iei impuse.

359. Algoritmul recursiv determină numărul de moduri ı̂n care un număr poate fi repre-

zentat ca sumă de numere consecutive, utilizând apeluri succesive pentru a explora toate

posibilităt, ile.

360. Algoritmul analizează cifrele vectorului de intrare s, i construies,te cel mai mare număr

posibil din cifrele care nu apar ı̂n vector, sortându-le descrescător.

361. Algoritmul numără insulele de 1 ı̂ntr-o matrice prin parcurgerea recursivă a elemen-

554

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

telor vecine pe orizontală s, i verticală pentru a marca regiunile conectate.

362. Algoritmul verifică dacă un s, ir de caractere poate fi obt, inut prin rotirea unui alt

s, ir, folosind concatenarea s, i compararea secvent,elor rezultate.

363. Algoritmul analizează subsecvent,e de lungime 3 ı̂n vector s, i identifică pozit, iile ı̂n

care există mai mult de un număr palindrom, determinând secvent,a cu cea mai mare

frecvent, ă.

364. Algoritmul schimbă valorile ı̂n doi vectori conform unor reguli specifice de in-

terschimbare, rezultând modificări bazate pe pozit, ii s, i relat, iile dintre ele.

365. Algoritmul utilizează recursivitate pentru a determina dacă există o submult, ime

a vectorului care are suma egală cu o valoare specificată, explorând toate combinat, iile

posibile.

366. Algoritmul va calcula oglinditul lui b, ı̂n variabila c. Pentru apelul ceFace(a, a),

va calcula oglinditul lui a. În caz ca numerele nu sunt egale, acesta se auto-apelează,

decrementând valoarea init, ială, până când se ı̂ntâlnes,te o valoare pentru care oglinditul

său este egal cu numărul init, ial (palindrom).

367. Algoritmul va afis,a o valoare pentru fiecare pereche n ∗m. În cazul ı̂n care k este

par, valoarea afis,ată va fi 0 (valoarea init, ială), altfel se va afis,a k2. Astfel, s, irul afis,at va

alterna ı̂ntre valori de 0 s, i (2k + 1)2,∀k ∈ N : [0, 1, 0, 9, . . .].

368. Algoritmul calculează numărul de cifre pentru fiecare număr al s, irului.

369. Condit, ia ((d DIV a[i])∗a[i] = d) AND ((d DIV v)∗v = d) poate fi tradusă ca s, i

”cel mai mic număr (mai mare sau egal decât 3) care e divizibil cu [i] s, i v concomitent”.

Astfel, algoritmul găses,te, pe rând v = 15, pentru a[1], v = 60, pentru a[2].

370. Algoritmul compară numărul de cifre pentru perechile de numere egal depărtate

de mijlocul s, irului (nr. cifre din primul număr - nr. cifre din ultimul număr s,amd.)

Observăm ca vectorii de la B s, i D ı̂ndeplinesc această condit, ie, iar dacă elementele

vectorului au acelas, i număr de cifre (C), condit, ia este ı̂ndeplinită de asemenea.

371. Algoritmul se auto-apelează până la cazul de bază, adăugând cifra curentă la rezul-

tat, doar dacă aceasta este pară.

372. Urmărind algoritmul, f(10) va afis,a f(5) 5 f(2). Unde f(5) afis,ează f(2)2f(1),

555

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

iar f(2) afis,ează f(1)1. Înlocuind fiecare apel cu rezultatul returnat, obt, inem 0120501,

pentru f(10).

373. Algoritmul parcurge matricea M sub forma unei spirale. Fiecare for din interiorul

while-ului parcurge elementele pe cele patru direct, ii (dreapta, jos, stânga, sus), ı̂n această

ordine. Astfel, se va afis,a 123456789.

374. Algoritmul verifică dacă un număr ’a’ poate fi redus la 1 prin ı̂mpărt, iri repetate cu

’b’. Este similar cu verificarea dacă un număr poate fi exprimat ca o putere a lui b, dar

ı̂n sens invers - se ı̂mparte ı̂n jos ı̂n loc să se ı̂nmult,ească ı̂n sus.

375. Algoritmul este format din două părt, i: decide(n) mai ı̂ntâi inversează un număr

(ex. 123 devine 321) s, i verifică dacă acest număr inversat este divizibil cu 3, returnând

1 dacă este divizibil s, i -1 dacă nu este, ı̂n timp ce compute(m) foloses,te această funct, ie

pentru a procesa fiecare număr de la 0 până la m− 1, adunând tot, i aces,ti 1 s, i -1 pentru

a produce o sumă finală. Doar 99 s, i 101 obt, in valoarea finală -33.

376. Algoritmul convertes,te s, i afis,ează recursiv reprezentarea numărului n ı̂n baza x,

ı̂ncepând cu cea mai semnificativă cifră.

377. Algoritmul parcurge recursiv cifrele numărului s, i returnează cea mai mare cifră pară

găsită, sau -1 dacă nu există nicio cifră pară.

378. Algoritmul verifică dacă elementele vectorului sunt ı̂n ordine strict crescătoare, par-

curgând perechile consecutive de elemente s, i returnând True doar dacă fiecare element

este mai mic decât următorul.

379. Expresia evaluează două condit, ii: fie ı̂mpărt, irea la 6 a produsului numerelor plus 3

dă 10, fie produsul este divizibil cu 6 s, i suma lor este divizibilă cu 4. Folosind perechile

(2,57) s, i (4,30), unde primele numere sunt puteri ale lui 2 iar al doilea sunt multipli de

3, găsim că expresia poate fi adevărată pentru perechi diferite, prima satisfăcând prima

condit, ie iar a doua satisfăcând a doua condit, ie. Cu perechea (4,6) demonstrăm că expre-

sia poate fi s, i falsă, deci afirmat, iile A, B s, i C sunt adevărate, iar D este falsă.

380. Algoritmul verifică dacă un s, ir poate fi obt, inut ca o subsecvent, ă a altui s, ir, s, i acest

lucru este implementat corect ı̂n trei moduri diferite: varianta A face verificarea recursiv

pornind de la sfârs, it s, i când găses,te caractere identice le elimină din ambele s, iruri altfel

556

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

doar elimină din s, irul sursă, varianta B parcurge iterativ de la stânga s, i avansează ı̂n

primul s, ir doar când găses,te potriviri iar ı̂n al doilea mereu, iar varianta C face acelas, i

lucru dar pornind de la dreapta la stânga s, i decrementând indecs, ii, toate trei ment, inând

astfel ordinea relativă a caracterelor.

381. Varianta C este corectă deoarece atunci când găses,te elementul căutat, foloses,te un

al doilea while pentru a muta fiecare element din fat, ă cu o pozit, ie la dreapta (x[index2] =

x[index2 − 1]), creând astfel spat, iu la ı̂nceputul vectorului pentru elementul găsit, s, i

păstrând ordinea celorlalte elemente, totul ı̂n complexitate O(n) pentru că deplasarea se

face o singură dată.

382. Algoritmul calculează suma dintre pătratul fiecărui număr de la 1 la x, plus produ-

sul dintre x s, i pătratul lui y, plus z, folosind recursivitate pentru a acumula aceste valori

prin adăugarea la fiecare pas a expresiei x2 + y2 + z.

Expresiile A s, i C sunt corecte deoarece algoritmul produce acelas, i rezultat ı̂n două moduri

diferite de interpretare a recursivităt, ii: ı̂n varianta A, când apelăm expresie(x,y,z),

acumulăm x2 + y2 + z la fiecare pas până ajungem la x = 0, ceea ce dă suma pătratelor

până la x plus suma de xy repetată de y ori plus z, iar ı̂n varianta C obt, inem acelas, i

rezultat pentru că y2 adăugat de x ori este echivalent cu xy2, deci ambele formule sunt

reprezentări matematice diferite ale aceluias, i calcul recursiv.

383. Algoritmul foloses,te căutarea binară pentru a găsi pozit, ia primului 1 ı̂ntr-un vector

sortat de 0 s, i 1, iar apoi returnează numărul total de elemente de 1 din vector (care, dato-

rită sortării, sunt toate consecutive la final), făcând acest lucru prin ı̂mpărt, irea recursivă

a intervalului ı̂n două jumătăt, i s, i sumând rezultatele part, iale.

384. Pentru a găsi un s, ir minim care cont, ine toate secvent,ele binare posibile de lungime

4, trebuie să: numărăm câte secvent,e diferite avem (24 = 16 secvent,e, de exemplu 0000,

0001, 0010, ..., 1111), apoi construim un s, ir ı̂n care fiecare grup de 4 cifre consecutive să

fie una din aceste secvent,e diferite, iar pentru a putea citi ultima secvent, ă completă avem

nevoie de 19 cifre deoarece dacă am avea 18, ultimele 4 cifre ar forma doar o secvent, ă,

dar ne-ar lipsi altele.

385. Algoritmul afis,ează caractere ’c’ ı̂n funct, ie de raportul dintre x s, i y, folosind re-

557

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

cursivitate cu trei cazuri diferite: când x se divide cu y cres,te x s, i scade y, când câtul

ı̂mpărt, irii lui x la y este impar scade x s, i cres,te y afis, ând un ’c’, iar când câtul este par

scade ambele numere s, i afis,ează ’cc’, terminându-se când x devine mai mic sau egal cu y

s, i afis,ează caracterul q.

386. Algoritmul calculează h-index-ul unui vector prin parcurgerea acestuia s, i ment, inerea

primelor h elemente sortate descrescător, verificând la fiecare pas dacă există cel put, in h

elemente mai mari sau egale cu h.

387. Algoritmul generează toate combinat, iile de p numere din primele n numere naturale,

unde fiecare număr este mai mare decât toate numerele precedente din combinat, ie.

388. Algoritmul generează recursiv toate secvent,ele posibile de numere -1 s, i 1 care au

lungimea 2p, având p numere de -1 s, i p numere de 1, prin adăugarea alternativă a nume-

relor -1 (când s < p) s, i 1 (când s > d), până când ambii contori s s, i d ajung la p.

389. Algoritmul găses,te suma maximă a unei subsecvent,e continue din vector folosind

o abordare divide-et-impera, unde pentru fiecare pozit, ie de mijloc calculează trei po-

sibilităt, i: suma maximă din stânga, suma maximă din dreapta, s, i suma maximă care

traversează pozit, ia de mijloc.

390. Algoritmul numără de câte ori se poate ı̂mpărt, i numărul la 10 până ajunge la 0,

adăugând +1 de fiecare dată când numărul este divizibil cu 3.

391. Algoritmul calculează oglinditul numărului a, ı̂n variabila p, pe care o compară cu

b. Astfel, dacă a este oglinditul lui b se returnează True.

392. Urmărind instruct, iunile din interiorul for-ului, observăm ca primul număr adăugat

la suma este frac12 · 3. Cum i merge până la n, valoarea finală adaugată la suma este

n
(n+1)(n+2) .

393. Algoritmul verifică dacă vectorul dat are un aspect de ”vale”, adică numerele scad

până la un anumit punct, iar apoi cresc. Doar vectorii de la A s, i C respectă această

condit, ie.

394. Algoritmul implementează metoda lui Euclid prin ı̂mpărt, iri succesive, ı̂ntre două

numere (ab) s, i (cd) pentru a găsi CMMDC-ul lor.

395. Algoritmul interclasează elementele din vectorii a s, i b (iar dacă un vector devine

558

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

consumat, restul de elemente din celălalt s, ir nu vor fi adăugate la s, irul final). De aceea

valoarea returnată de nc = na+ nb, dacă s, i numai dacă s, irurile au lungime egală.

396. Algoritmul calculează suma primelor a[i] elemente, din s, irul b. În cazul nostru, a[i]

va lua valorile: 1, pentru care s = 2, s, i 4, pentru care s = 2 + 4 + 6 + 8 = 20, deci suma

finală este 22.

397. Algoritmul implementează căutarea binară pentru a verifica dacă numărul n este

pătrat perfect, căutând un număr ı̂ntre p1 s, i p2 al cărui pătrat este egal cu n.

398. Algoritmul verifică dacă un număr este pătrat perfect folosind proprietatea ma-

tematică conform căreia suma primelor n numere impare este ı̂ntotdeauna egală cu n2,

deoarece adună numere impare consecutive ı̂ncepând cu 1 (1, 3, 5, 7, ...) până când suma fie

devine egală cu numărul dat (caz ı̂n care numărul este un pătrat perfect), fie ı̂l depăs,es,te

(caz ı̂n care nu este pătrat perfect).

399. Algoritmul găses,te cel mai mic număr palindrom care este mai mare sau egal cu

numărul dat a, prin verificarea succesivă a numerelor ı̂ncepând cu a până găses,te primul

palindrom.

400. Algoritmul verifică dacă primul element este par s, i apoi dacă restul elementelor al-

ternează ı̂ntre impar s, i par ı̂n această ordine, returnând True doar dacă această alternant, ă

este respectată.

401. Algoritmul implementează metoda Kadane pentru a găsi suma maximă a unei

subsecvent,e continue din vector, resetând suma curentă la zero când aceasta devine ne-

gativă s, i păstrând suma maximă găsită până ı̂n acel moment.

402. Doar algoritmul C transformă pozit, ia unui element din matricea originală ı̂n pozit, ia

sa corespunzătoare din matricea redimensionată, prin convertirea indicilor (i,j) ı̂ntr-un

index liniar după scăderea lui 1 din indici, apoi ı̂mpărt, ind acest index la numărul de

coloane al matricei noi pentru a obt, ine linia s, i folosind restul ı̂mpărt, irii pentru coloană,

adăugând 1 la final pentru a reveni la numerotarea de la 1.

403. Algoritmul completează elementele matricei aflate pe pozit, ii cu indici impari s, i a

căror sumă este mai mică decât n cu numerele din s, irul lui Fibonacci, parcurgând matri-

cea pe coloane.

559

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

404. Algoritmii implementează căutarea unui element ı̂ntr-un vector sortat, unde varian-

tele A s, i B folosesc căutare binară (complexitate logaritmică) ı̂n mod recursiv s, i iterativ,

ı̂n timp ce variantele C s, i D folosesc căutare liniară.

405. Algoritmul compară valoarea absolută a diferent,ei dintre n s, i m cu diferent,a directă

dintre n s, i m, s, i ı̂n funct, ie de această comparat, ie calculează fie restul ı̂mpărt, irii lui n la

m, fie restul ı̂mpărt, irii lui (m + 2) la n. Algoritmul returnează 0 doar pentru m = 1 s, i

m = n deoarece doar ı̂n aceste cazuri diferent,a dintre abs(m − n) s, i (n −m) este 0, iar

operat, ia (nMODm) are ı̂ntotdeauna rezultatul 0, indiferent de valoarea lui n.

406. După ce epuizează toate combinat, iile cu 4 la sute s, i 4,3,8 la zeci (cu cifre impare

3,5,7 la unităt, i), algoritmul ajunge la numărul 453 deoarece 5 este următoarea cifră dis-

ponibilă pentru pozit, ia zecilor conform s, irului dat [4,3,8,5,7,6].

407. Algoritmul numără recursiv câte numere din vector au exact k divizori proprii (ex-

cluzând 1 s, i numărul ı̂nsus, i).

408. Algoritmul verifică dacă un număr poate fi reprezentat ı̂n baza 3 folosind doar cifrele

0 s, i 1 (condit, ia n MOD 3 ≥ 1, ceea ce este echivalent cu verificarea dacă numărul poate

fi scris ca sumă de puteri distincte ale lui 3.

409. A este corect deoarece transformă corect numerele din sala I ı̂n coordonate pentru

sala II prin: ajustarea numerelor impare (adăugând 1) ı̂nainte de calcule pentru a păstra

consecvent,a, calcularea corectă a rândului folosind ı̂mpărt, irea la 2K, s, i determinarea

precisă a pozit, iei ı̂n rând prin raportare la ı̂nceputul rândului curent.

B este gres, it deoarece nu ajustează numerele impare ı̂nainte de calcule (nu adaugă 1),

ceea ce duce la calcularea incorectă a pozit, iei ı̂n rând pentru locurile din partea dreaptă.

C este gres, it deoarece des, i ajustează numerele impare, nu verifică cazul special când

numărul locului este multiplu de 2K, ducând la calcularea incorectă a rândului ı̂n aceste

situat, ii.

D este gres, it deoarece adaugă 1 ı̂n plus la calculul pozit, iei ı̂n rând (”+1” ı̂n ultima linie),

ceea ce face ca toate locurile să fie deplasate cu o pozit, ie fat, ă de culoar, rezultând ı̂n

coordonate invalide.

410. Varianta A este corectă deoarece implementează corect backtracking-ul prin decre-

560

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

mentarea lui k când se ajunge la finalul unei ı̂ncercări (k > 1) s, i setează final pe True

doar când k ajunge la 1, permit, ând astfel generarea completă s, i unică a tuturor per-

mutărilor posibile prin revenirea sistematică la pozit, iile anterioare pentru a ı̂ncerca toate

combinat, iile posibile; celelalte variante es,uează: B verifică k > 0 ı̂n loc de k > 1 ceea ce

ar opri algoritmul prea devreme, C setează final = True imediat s, i ar genera doar prima

permutare, iar D setează final = True simultan cu decrementarea lui k, ı̂mpiedicând ge-

nerarea tuturor permutărilor

411. Algoritmul problema cont, ine trei for-uri imbricate, fiecare de la 0 la n, de unde

rezultă ca vom avea (n+ 1)3 pas, i. Însă, rezultatul cres,te doar dacă p este par (jumătate

din cazuri), deci rezultatul final va fi (n+ 1)2 × ⌈n+ 1

2
⌉, unde ⌈n+ 1

2
⌉ reprezintă partea

ı̂ntreagă superioara (adică numărul de numere pare). Algoritmul calcul calculează suma

pentru fiecare astfel de cifră din intervalul [a, b]. Calculul final este

b∑
k=a

(k+1)2×⌈k + 1

2
⌉.

Observat, ie, pentru ⌈
n

2
⌉ = n

2
⇒ n2⌈n

2
⌉ = n3

2
, când n este par, s, i ⌈

n

2
⌉ = n+ 1

2
⇒ n2⌈n

2
⌉ =

n3 + n2

2
.

Astfel, suma finală poate fi scrisă ca S =
1

2

[N∑
n=M

n3 +

N∑
n=M,n impar

n2
]
, unde M = a+ 1,

N = b+ 1.

412. Algoritmul implementĕază un automat finit cu două stări (1 şi 2) care verifică dacă o

secvenţă de tranziţii este validă conform tabelului t(stare curentă, input, stare următoare)

– unde din starea 1 putem rămâne ı̂n 1 cu input 0, merge ı̂n 2 cu input 1, iar din starea

2 putem doar rămâne ı̂n 2 cu input 1 – astfel că [0, 0, 1, 1] cu f = 2 şi [0, 0, 0, 0] cu f = 1

sunt singurele cazuri valide deoarece ı̂n primul caz ajungem corect ı̂n starea finală 2 prin

tranziţii 1→1→1→2→2, iar ı̂n al doilea caz rămânem constant ı̂n starea 1 care este şi

starea finală dorită.

413. Algoritmul foloses,te un sistem de tip stivă prin vectorul b, unde putem doar adăuga

elementele din a ı̂n ordinea lor init, ială (0,1,2,3...) s, i le putem afis,a doar ı̂n ordine inversă

fat, ă de cum au fost adăugate, făcând imposibilă secvent,a ’2 4 6 5 3 7 0 1 9 8’ deoarece

pentru a afis,a 6 ı̂naintea lui 5 s, i 3, ar trebui să avem 6 deasupra acestora ı̂n stivă, dar

cifrele pot fi adăugate doar ı̂n ordinea lor init, ială.

561

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

414. Algoritmul decide(n, x) verifică dacă vectorul x este strict crescător. Init, ial,

variabilei b ı̂i este atribuită valoarea True, iar vectorul este parcurs element cu element.

Dacă la un moment dat un element x[i] este mai mare sau egal cu x[i+1], atunci b devine

False s, i algoritmul se opres,te, returnând această valoare.

Dacă toate elementele sunt ı̂n ordine strict crescătoare, algoritmul parcurge ı̂ntregul vec-

tor s, i returnează True. Astfel, afirmat, iileA s, i B sunt corecte, deoarece un vector de forma

1, 2, 3, . . . , 10 este strict crescător, iar orice vector strict crescător va face ca algoritmul să

returneze ı̂ntotdeauna valoarea True.

415. Un număr este palindrom dacă citit de la stânga la dreapta are aceeas, i valoare

ca atunci când este citit de la dreapta la stânga. Algoritmii care verifică această propri-

etate trebuie să compare elementele corespunzătoare din s, irul a, de la ı̂nceput s, i sfârs, it,

avansând spre centru.

Algoritmul palindrom1 compară succesiv prima s, i ultima cifră, apoi avansează spre

interior, verificând egalitatea până când toate perechile sunt validate sau se găses,te o

diferent, ă. Dacă toate verificările sunt valide, atunci acesta returnează True, confirmând

astfel că funct, ia este corectă.

Algoritmul palindrom2 utilizează o abordare recursivă. Compară prima s, i ultima cifră s, i,

dacă sunt egale, elimină aceste două cifre prin translatare s, i apelează funct, ia pe sect, iunea

rămasă. Când ajunge la un s, ir de lungime 0 sau 1, returnează True, ceea ce confirmă că

funct, ionează corect.

Algoritmul palindrom3 este incorect, deoarece compară sumele cifrelor din prima s, i a

doua jumătate, ceea ce nu este suficient pentru a verifica dacă numărul este palindrom.

De exemplu, pentru numărul 12321, sumele pot fi egale fără ca pozit, iile cifrelor să fie

corecte.

Algoritmul palindrom4 introduce o condit, ie suplimentară nejustificată, verificând doar

pozit, iile pare din s, ir, ceea ce poate duce la rezultate eronate ı̂n multe cazuri.

416. Algoritmul F(n) parcurge recursiv cifrele numărului n de la stânga la dreapta s, i

returnează ultima cifră care respectă o anumită condit, ie legată de resturile ı̂mpărt, irii la

5.

562

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

Dacă n are o singură cifră, algoritmul returnează acea cifră. În caz contrar, separă ultima

cifră u s, i apelează recursiv funct, ia pentru restul numărului p. După revenirea din apelurile

recursive, algoritmul compară u MOD 5 cu p MOD 5. Dacă restul lui u la ı̂mpărt, irea

la 5 este mai mic sau egal decât cel al lui p, returnează u, altfel returnează p.

Pentru n = 812376, cifrele sunt analizate ı̂n ordine: 8, 1, 2, 3, 7, 6. Comparând resturile

ı̂mpărt, irii la 5, algoritmul ajunge la cifra 6, ceea ce confirmă afirmat, ia A.

Pentru n = 8237631, analiza cifrelor duce la rezultatul final 1, confirmând afirmat, ia B.

417. Algoritmul f(n) determină cifra cu cel mai mare număr de aparit, ii ı̂n numărul

n. Pentru fiecare cifră c de la 0 la 9, algoritmul parcurge numărul n s, i numără de câte

ori apare această cifră. Dacă o anumită cifră apare mai frecvent decât cele anterioare,

aceasta este salvată ı̂n variabila z, iar frecvent,a acesteia este memorată ı̂n variabila v.

Afirmat, ia C este corectă, deoarece algoritmul returnează una dintre cifrele cu cel mai

mare număr de aparit, ii ı̂n n.

Afirmat, ia A este falsă, deoarece algoritmul nu returnează numărul total de cifre ale lui

n, ci doar cea mai frecventă cifră.

Afirmat, ia B este falsă, deoarece algoritmul nu returnează numărul de aparit, ii al celei mai

frecvente cifre, ci cifra ı̂nsăs, i.

Afirmat, ia D este falsă, deoarece algoritmul nu returnează numărul cifrelor care au cea

mai mare frecvent, ă.

Prin urmare, singurul răspuns corect este C.

418. Reprezentarea binară a unui număr se poate obt, ine prin utilizarea ı̂mpărt, irilor

succesive la 2 s, i memorarea resturilor ı̂n ordine inversă. Algoritmul corect trebuie să

apeleze recursiv funct, ia utilizând partea ı̂ntreagă rezultată ı̂n urma ı̂mpărt, irii x DIV 2 s, i

apoi să afis,eze restul x MOD 2. Aceasta asigură că bitul cel mai semnificativ este afis,at

primul.

Varianta B este corectă, deoarece verifică dacă x ̸= 0 s, i apelează recursiv funct, ia pentru

x DIV 2, iar apoi afis,ează restul, obt, inând astfel reprezentarea binară corectă.

Varianta A este incorectă deoarece condit, ia x = 0 nu permite apelul recursiv corect.

Varianta C utilizează DIV ı̂n loc de MOD pentru reprezentarea restului, ceea ce duce

563

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

la afis,area incorectă a bitului.

Varianta D nu modifică valoarea x la apelul recursiv, având ca rezultat apeluri recursive

infinite.

419. Afirmat, ia A este corectă, deoarece algoritmul din varianta A are ca s, i condit, ie

x = 0, ceea ce ı̂nseamnă că funct, ia nu se va apela recursiv pentru valori valide ale variabliei

x, iar astfel nu se va afis,a nimic.

Afirmat, ia B este falsă, deoarece algoritmul din varianta B se va apela recursiv pentru

orice valoare validă a lui x, ı̂mpărt, indu-l succesiv la 2 s, i afis, ând corect resturile.

Afirmat, ia C este falsă, deoarece schimbarea condit, iei de la x = 0 la x ̸= 0 ı̂n varianta C nu

ar modifica cu nimic corectitudinea algoritmului, ı̂ntrucât algoritmul utilizează DIV ı̂n

loc de MOD pentru calculul restului, ceea ce generează o reprezentare binară incorectă.

Afirmat, ia D este corectă, deoarece dacă ı̂n varianta D se ı̂nlocuies,te apelul imp(x) cu

imp(x DIV 2), atunci algoritmul va funct, iona corect, aplicând ı̂mpărt, irea succesivă la 2

s, i afis, ând bitii ı̂n ordinea corectă.

Prin urmare, afirmat, iile corecte sunt A s, i D.

420. Expresia NOT ((a > 0) AND (b > 0)) este adevărată atunci când cel put, in

unul dintre numerele a sau b nu este strict pozitiv. Aceasta ı̂nseamnă că expresia este

echivalentă cu cazul ı̂n care cel put, in unul dintre a sau b nu ı̂ndeplines,te condit, ia > 0,

adică a ≤ 0 sau b ≤ 0.

Varianta C este corectă, deoarece afirmă că cel put, in unul dintre a sau b nu este strict

pozitiv, iar acest lucru determina echivalent,a celor două expresii. Varianta A este inco-

rectă deoarece NOT (a < 0) este echivalent cu a ≥ 0, iar expresia rezultată verifică dacă

ambele numere sunt pozitive, lucru care nu este echivalent cu expresia init, ială. Varianta

B este incorectă deoarece verifică dacă ambele numere sunt negative sau zero, ceea ce nu

respectă condit, ia expresiei init, iale. Varianta D este incorectă deoarece schimbă structura

logică s, i nu reprezintă echivalentul expresiei init, iale.

As,adar, varianta corectă de răspuns este varianta C.

421. Algoritmul s(n) calculează o sumă de termeni fract, ionari ı̂n care fiecare termen

este de forma 1
k! , unde k! reprezintă factorialul lui k. Factorialul este calculat iterativ

564

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

prin acumulare valorilor ı̂n variabila p, iar suma este actualizată la fiecare pas.

Baza de numerotare a buclei ı̂ncepe de la k = 0 s, i merge până la k = n − 1, ceea ce

ı̂nseamnă că suma finală este:
∑n−1

k=0
1
k!

Varianta C este corectă, deoarece formula sumei reflectă ceea ce calculează algoritmul.

Varianta A este incorectă, deoarece suma calculată de algoritm nu include termenul 1
n! .

Varianta B este incorectă, deoarece algoritmul nu calculează suma inverselor numerelor

naturale, ci ale factorialelor acestora. Varianta D este incorectă, deoarece suma ı̂ncepe

de la k = 0 s, i nu de la k = 1.

În concluzie, răspunsul corect este varianta C.

422. Algoritmul ceFace(n) calculează o sumă de resturi succesive ale ı̂mpărt, irii

numărului n la puteri crescătoare ale lui 10. Init, ial, variabilei p ı̂i este atribuită va-

loarea 10 s, i aceasta se măres,te exponent, ial cât timp rămâne mai mică decât n. La fiecare

iterat, ie, algoritmul determină restul ı̂mpărt, irii lui n la p s, i adaugă această valoare la m.

Singura variantă corectă este varianta D, deoarece pentru n = 340, algoritmul returnează

valoarea 40.

423. Algoritmul f(v, n) determină numărul divizorilor primi distinct, i ai tuturor nu-

merelor din vectorul v.

În prima parte al acestuia, algoritmul parcurge fiecare element v[i] al vectorului s, i deter-

mină tot, i divizorii săi primi, ı̂nmult, indu-i ı̂ntr-o variabilă x. As,adar, x cont, ine produsul

tuturor divizorilor primi ai elementelor din v.

În a doua parte, algoritmul numără divizorii primi distinct, i ai lui x, ceea ce echiva-

lează cu numărarea divizorilor primi unici ai tuturor numerelor din v. Aceasta confirmă

că afirmat, ia A este corectă. Varianta B este incorectă, deoarece algoritmul returnează

numărul divizorilor primi distinct, i s, i nu produsul lor. Varianta C este incorectă, deoarece

algoritmul nu verifică dacă numerele din vector sunt prime. Varianta D este incorectă,

deoarece algoritmul nu numără tot, i divizorii fiecărui număr, ci doar divizorii primi unici.

As,adar, singura variantă corectă de răspuns este varianta A.

424. Algoritmul f(n) construies,te cel mai mare număr care poate fi obt, inut folosind

cifrele lui n, ordonându-le descrescător.

565

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

Prima parte a algoritmului extrage cifrele lui n s, i le salvează ı̂ntr-un vector v. A doua

parte parcurge vectorul s, i selectează iterativ cea mai mare cifră rămasă s, i construies,te un

nou număr x prin concatenarea acestora ı̂n ordine descrescătoare.

Varianta A este corectă, deoarece algoritmul sortează cifrele lui n ı̂n ordine descrescătoare

s, i le combină ı̂ntr-un nou număr s, i astfel rezultă cel mai mare număr posibil format din

cifrele lui n.

425. Algoritmul f(n) parcurge cifrele numărului n s, i ı̂nlocuies,te fiecare cifră care este

divizibilă cu 3 cu 9 − c, construind astfel un nou număr. Acest proces este realizat

prin utilizarea unei variabile z, care init, ial este 0, s, i a unei variabile p, folosită pentru

pozit, ionarea corectă a cifrelor ı̂n noul număr.

Pentru n = 103456, descompunem cifrele s, i verificăm divizibilitatea cu 3:

• 1 → nu este divizibil cu 3 s, i nu se modifică

• 0 → este divizibil cu 3 s, i este ı̂nlocuit cu 9− 0 = 9

• 3 → este divizibil cu 3 s, i ı̂nlocuit cu 9− 3 = 6

• 4 → nu este divizibil cu 3 s, i nu se modifică

• 5 → nu este divizibil cu 3 s, i nu se modifică

• 6 → este divizibil cu 3 s, i este ı̂nlocuit cu 9− 6 = 3

Construind numărul doar cu cifrele ı̂nlocuite, obt, inem 963, ceea ce corespunde variantei

de răspuns B.

426. Algoritmul f(n) determină cifrele lui n care sunt divizibile cu 3 s, i le ı̂nlocuies,te

cu 9− c, apoi construies,te un nou număr din aceste valori. Pentru a verifica care dintre

variante returnează exact valoarea 3, este necesar să analizăm cifrele fiecărui număr s, i să

vedem dacă ı̂nlocuirea lor generează rezultatul corect.

În varianta A, numerele sunt 61, 65 s, i 67. Dintre cifrele numerelor, doar cifra 6 este

divizibilă cu 3 s, i se transformă ı̂n 9 − 6 = 3, iar celelalte cifre nu contribuie la rezultat.

Astfel, pentru toate numerele din această variantă, algoritmul returnează 3.

566

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

În varianta B, numerele sunt 62, 66 s, i 68. Pentru numărul 66, ambele cifre sunt divizibile

cu 3, ceea ce duce la două transformări s, i generează două cifre de 3.

În varianta C, numerele sunt 16, 56 s, i 76. Cifra 6 este divizibilă cu 3 s, i devine 3, iar

celelalte cifre nu contribuie la rezultat. Astfel, algoritmul returnează 3 pentru toate

numerele din acest s, ir

În varianta D, numerele sunt 26, 66 s, i 86. Similar variantei B, numărul 66 cont, ine două

cifre divizibile cu 3, ceea ce duce la două transformări s, i generează două cifre de 3.

As,adar, răspunsurile corecte sunt variantele A s, i C.

427. Algoritmul ceFace(a, b) identifică tot, i divizorii pari ai numărului a s, i verifică

care dintre aces,tia sunt s, i divizori ai numărului b. Dacă un astfel de divizor comun este

găsit, acesta este afis,at.

Pentru a = 600, trebuie mai ı̂ntâi să determinăm tot, i divizorii săi pari. Numărul 600 are

următorii divizori pari: 2, 4, 6, 10, 12, 20, 30, 40, 50, 60, 100, 150, 200, 300, 600. Algoritmul

ı̂i afis,ează doar dacă sunt s, i divizori ai lui b. Pentru a se afis,a exact patru numere, trebuie

să identificăm acele valori ale lui b care au exact patru divizori comuni cu a.

Pentru b = 20, divizorii comuni sunt 2, 4, 10, 20, ceea ce ı̂nseamnă că vor fi afis,ate patru

numere. Pentru b = 50, divizorii comuni sunt 2, 10, 50, ceea ce ı̂nseamnă că vor fi afis,ate

doar trei numere, astfel această variantă este incorectă. Pentru b = 12, divizorii comuni

sunt 2, 4, 6, 12, ceea ce ı̂nseamnă că vor fi afis,ate patru numere. Pentru b = 90, divizorii

comuni sunt 2, 6, 10, 30, ceea ce ı̂nseamnă că vor fi afis,ate patru numere.

As,adar, răspunsurile corecte sunt variantele A, C s, i D.

428. Algoritmul ceFace(a, b) parcurge numerele pare de la 2 până la a, verificând

care dintre acestea sunt divizori ai lui a. Pentru fiecare astfel de divizor, verifică dacă este

s, i divizor al lui b s, i, ı̂n caz afirmativ, ı̂l afis,ează. Acest proces garantează că sunt afis,at, i

doar divizorii comuni ai numerelor a s, i b care sunt pari.

Afirmat, ia D este corectă, deoarece algoritmul selectează s, i afis,ează doar divizorii pari

comuni ai numerelor a s, i b.

429. Pentru a determina numărul generat imediat ı̂nainte s, i cel generat imediat după

această secvent, ă, trebuie să analizăm permutările ı̂n ordine lexicografică.

567

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

Numărul generat imediat ı̂nainte de 34256 este ultima permutare lexicografic mai mică,

ceea ce ı̂nseamnă că trebuie să găsim cea mai mare permutare posibilă care precedă

această secvent, ă. Aceasta este 32654.

Numărul generat imediat după 34562 este prima permutare lexicografic mai mare, ceea

ce ı̂nseamnă că trebuie să găsim cea mai mică permutare posibilă care urmează acestei

secvent,e. Aceasta este 34625.

Prin urmare, răspunsul corect este varianta C.

430. În s, irul observat se poate determina un model după care apar numerele s, i numărul

lor de aparit, ii. Astfel, numărul 1 apare de două ori, numărul 2 apare de patru ori, numărul

3 apare de s,ase ori, numărul 4 apare de opt ori s, i as,a mai departe. Pentru a determina

pozit, iile ı̂n care apare doar valoarea 11, trebuie să identificăm unde ı̂ncepe s, i unde se

termină secvent,a de 11 aparit, ii consecutive.

Analizând fiecare variantă, subsecvent,ele x[113], . . . , x[120] s, i x[123], . . . , x[132] sunt com-

plet cuprinse ı̂n domeniul de aparit, ie al valorii 11, ceea ce le face corecte.

Prin urmare, răspunsul corect este varianta B D.

431. Pentru a determina câte dintre primele 100 de elemente ale s, irului x sunt nu-

mere prime, trebuie mai ı̂ntâi să identificăm structura s, irului s, i să număram câte dintre

elementele sale sunt numere prime.

S, irul x este definit astfel ı̂ncât fiecare număr k apare de 2k ori. Distribut, ia valorilor ı̂n

primele 100 de pozit, ii este:

• 1 apare de 2 ori (pozit, iile 1–2)

• 2 apare de 4 ori (pozit, iile 3–6)

• 3 apare de 6 ori (pozit, iile 7–12)

• 4 apare de 8 ori (pozit, iile 13–20)

• 5 apare de 10 ori (pozit, iile 21–30)

• 6 apare de 12 ori (pozit, iile 31–42)

• 7 apare de 14 ori (pozit, iile 43–56)

568

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

• 8 apare de 16 ori (pozit, iile 57–72)

• 9 apare de 18 ori (pozit, iile 73–90)

• 10 apare de 20 ori (pozit, iile 91–110, dar luăm doar până la 100).

Acum trebuie verificat câte dintre aceste valori sunt numere prime: 2, 3, 5, s, i 7. Numărăm

câte dintre primele 100 de elemente sunt formate din aceste valori:

• 2 → 4 aparit, ii

• 3 → 6 aparit, ii

• 5 → 10 aparit, ii

• 7 → 14 aparit, ii

Totalul numerelor prime este 4 + 6 + 10 + 14 = 34.

Prin urmare, răspunsul corect este varianta B.

432. Algoritmii one s, i two determină pozit, ia p unde ar trebui inserată valoarea a ı̂n

vectorul V , dar folosesc abordări diferite. one parcurge V s, i se opres,te la primul element

care nu respectă a > V [p], ı̂n timp ce two parcurge tot vectorul s, i numără câte elemente

sunt mai mici decât a.

Pentru ca cei doi algoritmi să returneze aceeas, i valoare, V trebuie să fie fie constant, fie

sortat crescător. Dacă toate elementele sunt egale (A), ambele funct, ii returnează aceeas, i

pozit, ie. Dacă elementele sunt distincte s, i sortate crescător (B) sau dacă sunt sortate

crescător dar nu neapărat distincte (D), ordinea de parcurgere nu afectează rezultatul.

Prin urmare, răspunsurile corecte de răspuns sunt variantele A, B s, i D.

433. Algoritmul suma(n) este recursiv s, i adună la rezultatul apelului anterior valoarea

n DIV (n+1)+ (n+1) DIV n. Această expresie returnează 1 pentru orice n > 0, ceea

ce ı̂nseamnă că funct, ia returnează n+ 1, confirmând că varianta A este adevărată.

Apelul suma(1) returnează 2, deoarece contribut, ia sa este 1 DIV 2+2 DIV 1 = 0+2 =

2, ceea ce face ca varianta C să fie adevărată.

Varianta B este falsă, deoarece algoritmul nu calculează suma divizorilor proprii ai lui

n, ci doar efectuează un calcul bazat pe ı̂mpărt, iri succesive. De asemenea, varianta D

569

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

este falsă, deoarece algoritmul nu calculează dublul părt, ii ı̂ntregi a mediei aritmetice a

primelor n numere naturale.

Prin urmare, răspunsurile corecte sunt variantele B s, i D.

434. Algoritmul ceFace(a, b) reprezintă o implementare recursivă a algoritmului lui

Euclid pentru determinarea celui mai mare divizor comun (cmmdc) a două numere.

Se repetă operat, ia a MOD b sau b MOD a până când unul dintre numere devine 0,

moment ı̂n care se returnează celălalt număr.

Varianta A este incorectă, deoarece algoritmul nu returnează suma numerelor a s, i b, ci

cmmdc. Varianta B este corectă, deoarece dacă unul dintre parametri este 0, algoritmul

returnează celălalt număr, ceea ce este ı̂n conformitate cu definit, ia cmmdc. Varianta

C este corectă, deoarece algoritmul aplică exact pas, ii metodei lui Euclid pentru a găsi

cmmdc. Varianta D este incorectă, deoarece algoritmul nu calculează puterea unui

număr.

As,adar, răspunsurile corecte sunt variantele B s, i C.

435. Algoritmul afis,are(n) generează perechi de numere (i, j − i) sau (j − i, i) pe

baza unei condit, ii legate de diferent,a j − i s, i de n DIV 2. Pentru fiecare pereche (i, j),

dacă diferent,a j − i este mai mică decât n DIV 2, se afis,ează perechea (i, j − i). În caz

contrar, dacă diferent,a nu este n DIV 2, se afis,ează perechea (j − i, i).

Numărul total de perechi generate s, i afis,ate ı̂n acest caz este 17. Calculul exact al pere-

chilor poate fi verificat prin numărarea efectivă a cazurilor valide.

As,adar, răspunsul corect este varianta D.

436. Algoritmul utilizează două bucle imbricate pentru a determina de câte ori se

afis,ează s, irul de caractere UBB. Variabila n este definită ca n = 3k, unde k este un număr

natural.

Buclele funct, ionează ı̂n următorul mod: variabila j ı̂ncepe de la n s, i este ı̂mpărt, ită la 3 la

fiecare iterat, ie a primei bucle while, rulând astfel de k ori, iar ı̂n fiecare iterat, ie a primei

bucle, a doua buclă while rulează pornind de la i = 1 s, i cres,te i prin ı̂nmult, ire cu 3, până

când i > n. Aceasta rulează exact k + 1 ori pentru fiecare valoare a j.

Astfel, numărul total de afis, ări ale s, irului UBB este k × (k + 1).

570

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

Varianta corectă de răspuns este varianta C.

437. Secvent,ele S1 s, i S2 sunt două bucle imbricate care afis,ează caractere ı̂n funct, ie de

valorile lui a s, i b. În ambele cazuri, bucla exterioară controlează câte linii se vor scrie, iar

bucla interioară controlează câte caractere ’*’ se vor afis,a pe fiecare linie.

Complexitatea timp pentru ambele secvent,e este aceeas, i, deoarece fiecare cont, ine două

bucle imbricate. Astfel, varianta B este corectă.

În S1, variabila i rulează de la 1 la b− 1, iar j rulează de la 1 la a− 1, ceea ce ı̂nseamnă

că numărul total de caractere afis,ate este (a− 1)× (b− 1), confirmând că varianta C este

corectă.

438. Algoritmul ceFace(nr) analizează fiecare grup de trei cifre consecutive din numărul

nr s, i verifică dacă acestea formează un număr prim folosind funct, ia testProprietateNr.

Dacă acest număr este prim, suma cifrelor grupului respectiv este adăugată la rezultatul

final.

Pentru a obt, ine rezultatul corect, prima oară se identifică grupurile de trei cifre consecu-

tive. Mai apoi se verifică dacă acestea sunt numere prime s, i ı̂n cazul ı̂n care un număr este

prim, atunci suma cifrelor acestuia este adăugată la rezultatul final. La final se obt, ine

suma rezultată. Prin urmare, răspunsul corect este varianta D.

439. Fiecare algoritm ı̂ncearcă să determine rădăcina pătrată a numărului n, rotunjită

ı̂n jos la cel mai apropiat ı̂ntreg.

Algoritmul radical A foloses,te o metodă bazată pe suma numerelor impare succesive,

ceea ce corespunde proprietăt, ii matematice conform căreia suma primelor k numere im-

pare este egală cu k2. Acesta este un mod corect de a calcula rădăcina pătrată, deci

varianta A este corectă.

Algoritmul radical B utilizează o metodă de căutare binară pentru a găsi rădăcina

pătrată, dar are o eroare ı̂n ajustarea finală a valorii returnate. Deoarece poate returna

o valoare gres, ită ı̂n anumite cazuri, varianta B este incorectă.

Algoritmul radical C aplică metoda lui Newton pentru determinarea rădăcinii pătrate,

folosind recursivitatea s, i o aproximat, ie succesivă a rezultatului. Această metodă este

corectă, iar partea ı̂ntreagă a rezultatului este determinată corect, astfel ı̂ncât varianta C

571

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

este corectă.

Algoritmul radical D utilizează o secvent, ă de cres,teri succesive pentru a găsi pătratul

perfect corespunzător unui număr, ceea ce duce la o determinare corectă a rădăcinii

pătrate. Astfel, varianta D este corectă.

Prin urmare, răspunsurile corecte sunt variantele A, C s, i D.

440. Problema cere să identificăm expresiile care sunt True dacă s, i numai dacă x este

un număr par s, i nu apart, ine intervalului deschis (10, 20).

VariantaA foloses,teNOT pentru a exclude intervalul (10, 20), iar condit, iaNOT (x MOD

2 = 1) asigură că x este par. Astfel, această expresie este corectă.

Varianta B poate părea corectă la prima vedere, dar expresia (x < 10) OR (x > 20) nu

exclude numerele impare. De exemplu, x = 7 ar satisface condit, ia, dar nu este număr

par, deci această variantă este incorectă.

Varianta C este gres, ită deoarece condit, ia (x > 10) AND (x < 20) asigură că x este ı̂n

interiorul intervalului, ceea ce contrazice cerint,a problemei.

Varianta D foloses,te o expresie echivalentă pentru a verifica dacă x este par. Se exclud

numerele impare prin verificarea modulo 4 (x MOD 4 = 1 sau x MOD 4 = 3), iar

condit, ia NOT (x > 10 AND x < 20) elimină numerele din interval. Aceasta este o

variantă corectă.

As,adar, variantele corecte de răspuns sunt variantele A s, i D.

441. Algoritmul rearanjare(a, n) trebuie să rearanjeze elementele unui s, ir strict

crescător astfel ı̂ncât să maximizeze numărul de vârfuri locale. Un vârf local este un

element mai mare decât vecinii săi direct, i.

Varianta A distribuie elementele din partea finală a s, irului pe pozit, iile pare s, i continuă

cu elementele rămase pe pozit, iile impare. Această solut, ie este corectă.

Varianta B plasează elementele din finalul s, irului pe pozit, iile pare s, i imediat după fiecare

pozit, ie pară plasează următorul element din s, ir. Această strategie asigură un număr

maxim de vârfuri locale. Dacă n este impar, ultimul element este plasat corespunzător.

Astfel, varianta este corectă.

Varianta C este similară cu varianta A, dar plasează elementele pentru pozit, iile pare ı̂n

572

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

ordine descrescătoare s, i pentru pozit, iile impare ı̂n ordine crescătoare. Aceasta asigură

alternant,a necesară pentru vârfuri locale, fiind o solut, ie corectă.

Varianta D utilizează distribuie elementele ı̂n grupe de câte trei, ceea ce nu garantează

ı̂ntotdeauna un număr maxim de vârfuri locale, făcând-o incorectă.

În concluzie, răspunsurile corecte sunt variantele A, B s, i C.

442. Algoritmul f(n, p1, p2) calculează suma câturilor succesive obt, inute prin

ı̂mpărt, irea lui n la puterile succesive ale lui p1, fiecare ı̂nmult, ită cu p2.

Varianta A este corectă. Dacă n = p1 = p2, atunci la prima iterat, ie c devine n DIV n =

1, iar ı̂n iterat, ia următoare p1 devine mai mare decât n, ceea ce ı̂ncheie bucla, rezultatul

final fiind 1.

Varianta B este corectă. Dacă p1 = 5 s, i p2 = 5, algoritmul calculează suma câturilor

succesive obt, inute prin ı̂mpărt, irea lui n la 5, 52, 53, etc. Aceasta reprezintă metoda de a

calcula numărul de zerouri terminale din n!, deoarece un zero terminal ı̂n factorial provine

din factori de 10, adică factori de 2 s, i 5, iar numărul de factori de 5 determină numărul

respectiv de zerouri.

Varianta C este gres, ită. Chiar dacă p1 = p2, algoritmul nu returnează ⌊logp1 n⌋, ci suma

câturilor succesive, care poate fi mai mare.

As,adar, singurele variante de răspuns corecte sunt variantele A s, i B.

443. Un număr natural n este sumativ dacă n2 se poate scrie ca sumă a n numere

naturale nenule consecutive. Aceasta echivalează cu faptul că n trebuie să fie impar,

deoarece suma a n termeni consecutivi este ı̂ntotdeauna divizibilă cu n dacă s, i numai

dacă n este impar.

Varianta A este corectă. Algoritmul parcurge intervalul [a, b] s, i verifică pentru fiecare i

dacă este impar. Numărul total de astfel de valori este incrementat s, i returnat corect.

VariantaB este corectă. Aceasta calculează direct numărul de numere impare din interval,

folosind formule aritmetice pentru a determina câte astfel de valori există

Varianta C este incorectă. Algoritmul ı̂ncearcă să verifice dacă n2 poate fi scris ca sumă

de n termeni consecutivi, dar condit, ia folosită ı̂n verificare este eronată, ceea ce ı̂l face

incorect.

573

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

Varianta D este incorectă. Des, i ı̂ncearcă să determine dacă n2 este suma a n termeni

consecutivi, bucla internă parcurge un interval gres, it, ceea ce face ca algoritmul să nu

funct, ioneze corect.

444. Algoritmul ceFace(a, b) compară cifrele numerelor a s, i b de la dreapta la stânga.

Atâta timp cât ultimele cifre sunt egale, acestea sunt eliminate prin ı̂mpărt, irea ı̂ntreagă la

10. Dacă ambele numere ajung la 0 simultan, ı̂nseamnă că sunt identice s, i se returnează

True. În caz contrar, se returnează False. Prin urmare, algoritmul verifică egalitatea

completă a numerelor, ceea ce corespunde variantei corecte B.

445. Algoritmul f(a, n) construies,te un vector b, unde fiecare element b[i] reprezintă

suma primelor i elemente din vectorul a. Init, ial, b[1] este egal cu a[1], iar apoi fiecare

element b[i] se obt, ine adăugând a[i] la suma anterioară. La final, se returnează b[n], care

cont, ine suma tuturor elementelor din a. Acest lucru corespunde variantei corecte A.

446. Algoritmul trebuie să determine numărul factorilor primi distinct, i ai unui număr

n. Un factor prim distinct este un număr prim care divide n cel put, in o dată.

Algoritmul nrFactoriPrimi B verifică recursiv divizibilitatea lui n cu fiecare divizor prim

d, eliminând complet multiplii acestuia din n s, i incrementând numărul de factori primi

distinct, i. Se avansează printre divizori, crescând cu 1 după 2, apoi cu 2.

Algoritmul nrFactoriPrimi C parcurge tot, i divizorii d de la 2 la n, verificând dacă d

divide n. Dacă da, cres,te numărul de factori primi distinct, i s, i elimină tot, i multiplii

acestuia.

447. Algoritmul ceFace(n, m) inversează cifrele numărului n printr-un proces recursiv.

La fiecare apel, ultima cifră a lui n (obt, inută cu MOD 10) este adăugată la sfârs, itul lui

m, iar n este redus prin ı̂mpărt, irea ı̂ntreagă la 10 (DIV 10). Acest proces continuă până

când n devine 0, moment ı̂n care se returnează m, care cont, ine numărul n oglindit. Prin

urmare, rezultatul apelului ceFace(n, 0) este numărul n inversat, ceea ce corespunde

variantei corecte D.

448. Algoritmul f(x, n) parcurge s, irul x s, i compară fiecare element cu următorul. Dacă

două elemente consecutive sunt egale, algoritmul returnează False. În caz contrar, dacă

toate elementele consecutive sunt distincte, returnează True. Astfel, algoritmul verifică

574

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

egalitatea elementelor consecutive.

Prin urmare, afirmat, ia C este corectă, deoarece algoritmul returnează False doar când

două elemente consecutive sunt egale. De asemenea, afirmat, ia D este corectă, deoarece

dacă primele două elemente sunt egale, condit, ia este ı̂ndeplinită s, i algoritmul returnează

False.

449. Algoritmul f(x, n) calculează x la puterea n folosind algoritmul de exponent, iere

rapidă prin ridicare la pătrat. Dacă n este 0, returnează 1, conform definit, iei exponent, ierii.

În caz contrar, ı̂mparte n la 2 s, i calculează recursiv x la puterea m. Dacă n este par,

rezultatul este p la pătrat, iar dacă este impar, se ı̂nmult,es,te suplimentar cu x. Aceasta

confirmă că algoritmul returnează x la puterea n, ceea ce corespunde variantei corecte A.

450. Algoritmul f(x, n) foloses,te algoritmul de exponent, iere rapidă, care reduce

exponent, ii prin ı̂mpărt, ire la 2 la fiecare apel recursiv. Astfel, numărul total de apeluri

recursive este proport, ional cu numărul de ı̂mpărt, iri succesive la 2, ceea ce ı̂nseamnă că

complexitatea sa este O(log n).

Parametrul x este utilizat doar ı̂n ı̂nmult, irile finale s, i nu afectează numărul de apeluri

recursive, deci complexitatea nu depinde de x. Prin urmare, afirmat, iile corecte sunt B,

deoarece timpul de execut, ie nu este influent,at de x, s, i D, deoarece complexitatea este

logaritmică ı̂n raport cu n.

451. Algoritmul afis,are(n) utilizează recursivitatea pentru a afis,a numere ı̂ntr-un anu-

mit format. Dacă n este cel mult 4000, acesta este afis,at, apoi funct, ia se apelează recursiv

cu 2 * n, iar după revenirea din apel se afis,ează din nou n. La apelul afis,are(1000), se

afis,ează mai ı̂ntâi 1000, apoi se apelează recursiv pentru 2000, care afis,ează 2000 s, i ape-

lează recursiv pentru 4000. Deoarece 4000 este ı̂n limita permisă, acesta se afis,ează, iar

execut, ia revine la apelurile anterioare, afis, ând din nou valorile ı̂n ordinea inversă. Astfel,

ies, irea rezultată este 1000 2000 4000 4000 2000 1000, ceea ce corespunde variantei corecte

B.

452. Căutarea binară funct, ionează prin selectarea repetată a elementului din mijlocul

unui vector sortat s, i compararea acestuia cu valoarea căutată. Dacă valoarea elementului

căutat este mai mică, căutarea continuă ı̂n jumătatea stângă, iar dacă aceasta este mai

575

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

mare, continuă ı̂n jumătatea dreaptă. Pentru ca valoarea 36 să fie comparată succesiv

cu 12, 24 s, i 36, vectorul trebuie să fie astfel structurat ı̂ncât aces,ti trei pas, i să apară

ı̂n procesul de ı̂mpărt, ire al vectorului. În cazul vectorilor B s, i C, select, iile din mijlocul

vectorului urmează această secvent, ă, ceea ce confirmă că răspunsul corect este B s, i C.

453. Operat, ia MOD returnează restul ı̂mpărt, irii ı̂ntregi a lui x la y. Formula echiva-

lentă care exprimă această operat, ie este x − (y ∗ (x DIV y)), deoarece DIV calculează

câtul ı̂mpărt, irii, iar ı̂nmult, irea acestuia cu y oferă cel mai mare multiplu al lui y care

nu depăs,es,te x. Scăzând acest multiplu din x, obt, inem restul ı̂mpărt, irii, care este exact

valoarea returnată de MOD. Astfel, expresia echivalentă cu x MOD y corespunde vari-

antei de răspuns B.

454. Un număr este divizibil simultan cu 2 s, i 3 dacă s, i numai dacă este par s, i restul

ı̂mpărt, irii sale la 3 este 0. Condit, ia ca un număr să fie par este ca n MOD 2 să fie diferit

de 1 sau să fie egal cu 0, adică restul ı̂mpărt, irii la 2 să nu fie 1. De asemenea, pentru a

fi divizibil cu 3, restul ı̂mpărt, irii sale la 3 trebuie să fie egal cu 0. Expresia care verifică

aceste două condit, ii este (n MOD 2 ̸= 1) AND (n MOD 3 = 0), ceea ce corespunde

variantei de răspuns C.

455. Un număr este divizibil simultan cu 2 s, i cu 3 dacă s, i numai dacă restul ı̂mpărt, irii

sale la 2 este 0 s, i restul ı̂mpărt, irii sale la 3 este tot 0. Expresia care verifică aceste două

condit, ii trebuie să returneze True doar atunci când ambele resturi sunt 0.

În expresia (n MOD 2) + (n MOD 3) = 0, suma resturilor este egală cu 0 doar dacă

fiecare termen este 0, ceea ce ı̂nseamnă că n este divizibil atât cu 2, cât s, i cu 3. Prin

urmare, varianta corectă este D.

456. Algoritmul f(n) calculează un produs de termeni fract, ionari, unde fiecare termen

are ı̂n numitor suma primelor i numere naturale. Variabila s acumulează suma numerelor

de la 1 la i, iar la fiecare iterat, ie a buclei p este ı̂nmult, it cu 1/s.

Astfel, expresia evaluată de algoritm este 1/1∗1/(1+2)∗1/(1+2+3)∗...∗1/(1+2+3+...+n),

ceea ce corespunde variantei de răspuns C.

457. Algoritmul prelucrare(s1, lung1, s2, lung2) compară frecvent,ele caractere-

lor din cele două s, iruri de caractere s1 s, i s2. Se init, ializează un vector x de frecvent, ă

576

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

pentru caracterele ASCII din intervalul [1, 125] cu valori nule. Apoi, fiecare caracter

din s1 incrementează corespunzător vectorul de frecvent, ă, iar fiecare caracter din s2 ı̂l

decrementează. La final, se verifică dacă toate valorile din vectorul x sunt zero. Dacă da,

atunci ı̂nseamnă că cele două s, iruri cont, in aceleas, i caractere cu aceleas, i frecvent,e, indife-

rent de ordinea lor, s, i algoritmul returnează True. În caz contrar, returnează False.

458. Transformarea unui număr din baza 2 ı̂n baza 10 se realizează prin interpretarea

sa ca o sumă de puteri ale lui 2. Fiecare cifră binară contribuie la valoarea finală prin

ı̂nmult, irea cu 2p, unde p este pozit, ia cifrei, aceasta fiind numărată de la dreapta la stânga

s, i ı̂ncepând de la 0. Astfel, un număr binar de forma bkbk−1...b1b0 se convertes,te folosind

formula:

bk · 2k + bk−1 · 2k−1 + ...+ b1 · 21 + b0 · 20

Aplicând această metodă, se obt, ine echivalentul ı̂n baza 10 al numărului 10010110011112.

459. Algoritmul trebuie să determine prima aparit, ie a valorii x ı̂n vectorul a s, i să afis,eze

indicele corespunzător sau -1 dacă x nu se găses,te ı̂n vector. Se parcurge vectorul de la

primul la ultimul element, oprindu-se la prima aparit, ie a lui x. Dacă această valoare este

găsită, se afis,ează pozit, ia curentă, iar dacă nu, se afis,ează -1. Varianta corectă este D,

deoarece utilizează condit, ia a[i] ̸= x ı̂n buclă pentru a căuta prima aparit, ie a lui x, iar la

final verifică dacă s-a depăs, it limita vectorului pentru a decide afis,area lui -1.

460. Algoritmul f(x) numără cifrele lui x care sunt divizibile cu 3. Funct, ia se apelează

recursiv, eliminând ultima cifră a lui x la fiecare pas prin ı̂mpărt, irea ı̂ntreagă la 10. Dacă

ultima cifră a lui x este divizibilă cu 3, valoarea returnată se incrementează cu 1, altfel

rămâne neschimbată. Procesul continuă până când x devine 0, moment ı̂n care funct, ia

returnează 0.

461. Algoritmul f(n, i, j) utilizează recursivitatea s, i condit, ii bazate pe divizibilitate

s, i ı̂mpărt, irea ı̂ntreagă pentru a determina ce caractere sunt afis,ate. Dacă i > j, se afis,ează

caracterul ’*’, iar execut, ia se opres,te. În caz contrar, dacă n este divizibil cu i, funct, ia se

apelează recursiv cu i decrementat. Dacă ı̂mpărt, irea ı̂ntreagă n DIV i este diferită de j,

funct, ia se apelează recursiv modificând i s, i j, iar după revenirea din apel se afis,ează ’0’.

În cazul ı̂n care ı̂mpărt, irea ı̂ntreagă este egală cu j, funct, ia se apelează cu un pas mai

577

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

mare s, i după revenire se afis,ează ’#’.

Pentru apelul f(15, 3, 10), execut, ia duce la afis,area secvent,ei ’*0#000’, ceea ce cores-

punde variantei corecte B.

462. Algoritmul ceFace(n, x) inversează ordinea elementelor din vectorul x. Parcurge

prima jumătate a vectorului s, i interschimbă fiecare element cu elementul corespunzător

din partea opusă, utilizând o variabilă auxiliară c pentru stocarea temporară a valorii.

463. Algoritmul what(n) verifică dacă toate cifrele numărului n sunt fie 3, fie 7. Acesta

analizează cifra unităt, ilor utilizând n MOD 10. Dacă cifra este 3 sau 7, elimină ultima

cifră s, i se apelează recursiv pentru restul numărului. Dacă găses,te orice altă cifră, re-

turnează False. Dacă toate cifrele sunt 3 sau 7, ı̂n final se ajunge la n = 0, caz ı̂n care

returnează True.

Această logică confirmă că algoritmul returnează False dacă s, i numai dacă n cont, ine cel

put, in o cifră diferită de 3 s, i 7, ceea ce validează afirmat, ia C. De asemenea, orice cifră pară

nu poate fi 3 sau 7, astfel ı̂ncât prezent,a unei cifre pare duce automat la False, validând

afirmat, ia B. În plus, algoritmul returnează True doar dacă n nu cont, ine cifrele 0, 1, 2, 4,

5, 6, 8, 9, ceea ce confirmă s, i afirmat, ia D.

464. Algoritmul calcul(x, n) determină numărul aranjamentelor de n elemente luate

câte x. Prima buclă calculează factorialul lui (n− x), iar a doua buclă completează pro-

dusul cu factorii de la (n−x+1) până la n. Prin urmare, algoritmul returnează numărul

aranjamentelor de n elemente luate câte x, ceea ce confirmă varianta corectă C.

465. Problema determină numărul de găini s, i iepuri din fermă pe baza a două con-

strângeri: suma totală a capetelor trebuie să fie n, iar suma totală a picioarelor trebuie

să fie m. Fie i numărul găinilor s, i j numărul iepurilor, atunci următoarele două relat, ii

trebuie să fie ı̂ndeplinite:i+ j = n s, i 2i+ 4j = m.

Astfel pentru ca un algoritm să determine corect solut, ia trebuie să parcurgă valori posi-

bile pentru i s, i j astfel ı̂ncât să respecte ambele ecuat, ii s, i afis,ează toate solut, iile valide.

Varianta A determină j din ecuat, ia j = n − i s, i verifică condit, ia picioarelor. Varianta

B explorează toate combinat, iile posibile de i s, i j, iar varianta C optimizează căutarea

limitând j la intervalul [0, n− i], ceea ce face ca acestea să fie variantele corecte. Varianta

578

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

D este incorectă deoarece bucla pentru j se opres,te la i, ceea ce duce la excluderea unor

solut, ii valide.

466. Restul ı̂mpărt, irii produsului n = a · b · c la d poate fi calculat folosind proprietăt, ile

operat, iei MOD. O proprietate importantă este că restul unui produs MOD d poate fi

determinat din resturile fiecărui factor:

(a · b · c) MOD d = ((a MOD d) · (b MOD d) · (c MOD d)) MOD d

Varianta B respectă proprietatea prezentată, ı̂n timp ce celelalte variante nu iau ı̂n con-

siderare efectul propagării resturilor sau folosesc ı̂mpărt, irea ı̂ntreagă (DIV), care nu

păstrează informat, iile necesare despre resturi. Prin urmare, varianta corectă de răspuns

este B.

467. Algoritmul det(a, n, m) verifică dacă există o pereche de elemente ı̂n s, irul a a

căror sumă este egală cu m. Init, ial, acesta sortează s, irul a ı̂n ordine crescătoare utilizând

algoritmul de sortare prin select, ie (Bubble Sort), ceea ce este implementat ı̂n liniile

2-10.

După sortare, se folosesc doi indici: unul la ı̂nceputul s, irului s, i unul la sfârs, it. Se verifică

suma valorilor acestor doi indici. Dacă suma este mai mică decât m, indicele inferior este

incrementat. În cazul ı̂n care suma este mai mare, indicele superior este decrementat.

Dacă se găses,te o pereche care satisface condit, ia, algoritmul returnează True, altfel con-

tinuă căutarea. Dacă n este 0, adică s, irul este vid, nu poate exista nicio pereche care să

satisfacă condit, ia, iar algoritmul returnează False.

Prin urmare, răspunsurile corecte sunt A, deoarece algoritmul verifică existent,a unei

perechi cu suma m, C, deoarece returnează False pentru n = 0, s, i D, deoarece prima

parte a algoritmului sortează s, irul ı̂n ordine crescătoare.

468. Algoritmul magic(n, a) verifică dacă există două elemente consecutive egale

ı̂n vectorul a. Dacă n este mai mic decât 2, acesta returnează False, deoarece ı̂n acest

caz nu pot exista elemente duplicate. În caz contrar, parcurge vectorul de la al doilea

element până la ultimul s, i compară fiecare element cu cel anterior. Dacă găses,te o astfel

de pereche, returnează True. Dacă acesta parcurge tot vectorul fără să găsească elemente

579

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

consecutive egale, returnează False. Prin urmare, afirmat, iile corecte sunt A, C s, i D.

469. Algoritmul f(n, a, b, c) utilizează recursivitatea pentru a calcula o valoare

bazată pe două apeluri recursive s, i o incrementare cu 1 la fiecare nivel. Când n = 0,

returnează 1. În caz contrar, efectuează două apeluri către f(n − 1, . . .), iar rezultatul

final este suma celor două apeluri recursive plus 1.

Această structură recursivă duce la o cres,tere exponent, ială a valorii returnate. Se poate

demonstra prin induct, ie că funct, ia returnează 2n+1 − 1, ceea ce corespunde variantei A.

Alternativ, această sumă poate fi rescrisă ca 20+21+ ...+2n, ceea ce corespunde variantei

C.

Prin urmare, răspunsurile corecte sunt A s, i C.

470. Algoritmul g(n) verifică dacă un număr este prim prin ı̂ncercarea tuturor divizorilor

de la 2 până la
√
n. Dacă găses,te un divizor, returnează False, altfel returnează True.

Aceasta confirmă că afirmat, ia A este corectă.

Algoritmul f(n, p) determină numărul de moduri ı̂n care n poate fi scris ca o sumă de

numere prime distincte, luate ı̂n ordine strict crescătoare. Acesta parcurge toate valorile

posibile pentru p, iar dacă p este prim, ı̂l scade din n s, i apelează recursiv funct, ia pentru

restul sumei, asigurând că fiecare termen este ales ı̂n ordine crescătoare. Astfel, algoritmul

returnează numărul de descompuneri ale lui n ı̂n sume de numere prime distincte, ceea

ce face ca afirmat, ia B să fie corectă.

Deoarece funct, ia f(n, p) impune p ≥ 2 s, i ı̂ncepe căutarea de la 2, rezultatul apelului

f(n, 2) este acelas, i ca s, i ı̂n cazul f(n, 1), deoarece 1 nu este un număr prim s, i nu

influent,ează solut, iile. Prin urmare, afirmat, ia D este corectă.

471. Algoritmul AlexB(value, n, k, p) generează s, i afis,ează toate permutările po-

sibile ale numerelor de la 1 la n. Fiecare pozit, ie din s, ir este completată recursiv cu o

valoare incrementată a lui p, iar la fiecare pas se caută prima pozit, ie liberă (value[i] = 0)

pentru a continua generarea permutării. Când p = n, se afis,ează permutarea generată.

După ce o permutare este afis,ată, algoritmul revine la pasul anterior s, i ı̂ncearcă alte va-

riante, resetând pozit, iile deja completate. Aceasta corespunde unui algoritm de generare

recursivă a permutărilor.

580

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

Pentru n = 5, s, irul de permutări este generat ı̂n ordine lexicografică. Pe a zecea linie de

afis,are, permutarea este 1 5 2 3 4, ceea ce corespunde variantei corecte A.

472. Algoritmul f(n) determină numărul de bit, i de 1 din reprezentarea binară a lui n.

Acest lucru se realizează prin utilizarea repetată a operat, iei n = n&(n− 1), care elimină

ultimul bit 1 din n la fiecare iterat, ie. Numărul total de astfel de operat, ii până când n

devine 0 este exact numărul de bit, i de 1 din reprezentarea binară a lui n.

Afirmat, ia C este corectă, deoarece numărul returnat de algoritm este exact numărul de

numere pare mai mici strict decât n ı̂n reprezentarea binară. Similar, afirmat, ia D este

corectă, deoarece numărul returnat de algoritm corespunde numărului de numere impare

mai mici decât n ı̂n reprezentarea binară.

473. Algoritmul calcul(v, n) determină cea mai lungă secvent, ă de elemente egale din

a doua jumătate a s, irului v. Se init, ializează indici i s, i j pentru a parcurge elementele

din a doua jumătate a s, irului s, i se compară elementele consecutive. Dacă două elemente

consecutive sunt egale, atunci secvent,a curentă este extinsă. La fiecare nouă secvent, ă

găsită, se actualizează pozit, iile s, i lungimea celei mai lungi secvent,e identificate.

Pentru cazul ı̂n care n = 2 s, i elementele sunt consecutive, algoritmul returnează ı̂ntotdeauna

1, 2, confirmând afirmat, ia C. De asemenea, unul dintre numerele returnate reprezintă lun-

gimea celei mai lungi secvent,e de valori egale din a doua jumătate a s, irului, ceea ce face

ca afirmat, ia D să fie corectă.

474. Variabila nr calculează numărul de divizori ai numărului n s, i se verifică dacă

numărul are doi divizori, adică dacă este prim, sau nu. Subalgoritimul returnează adevărat

dacă numărul n este prim.

475. Pentru ca numărul memorat ı̂n t să NU apart, ină intervalului (x, y), acesta trebuie

să respecte condit, ia (t ≤ x) SAU (t ≥ y).

476. Al doilea algoritm trebuie să reprezinte varianta recursivă a primului algoritm, as,a

că, returnând (n MOD 2) ∗ (n MOD 10)+ fr(n DIV 10), apelul fr(n DIV 10)

merge ı̂n recursie, ı̂ndepărtând ultima cifră a numărului n procesat.

477. Se observă că numărul stelut,elor poate fi descompus ı̂n următorul mod: pentru

i = 1 −→ ∗, i = 2 −→ (1 + 2)∗, i = 3 −→ (2 + 3) ∗ ... de unde rezultă că numărul stelut,elor

581

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

este egal cu 2 · Sn−1 + n, unde Sn−1 este suma numerelor de la 1 la n− 1. Simplificând,

ajungem la n2. 32 = 9, 342 = 1156, 172 = 289.

478. Variabila a păstrează suma elementelor pare, iar variabila b numărul lor, returnându-

se media aritmetică a numerelor pare prin a/b.

479. Se poate observa din instruct, iunile algoritmului că variabila ok ı̂s, i schimbă valoarea

ı̂n momentul ı̂n care se găses,te o cifră pară ı̂n component,a elementului curent procesat,

astfel elementul nu mai este adăugat la suma curentă, de unde rezultă că algoritmul re-

turnează suma elementelor din vectorul v care au ı̂n component,a lor doar cifre impare.

480. Algoritmul variantei de răspuns D este vizibil gres, it, returnându-se pentru o valoare

pozitivă a lui n, opusul său, un număr negativ, ceea ce este incorect. Pentru varianta

A, expresia logică n < 0 are valoarea 1 dacă n este negativ s, i 0 dacă n este pozitiv sau

zero; când n < 0 este adevărat (adică 1), expresia devine 1 ∗ −2 + 1 = −1, astfel ı̂ncât

rezultatul este n∗ (−1), ceea ce face ca n să devină pozitiv; când n < 0 este fals (adică 0),

expresia devine −2∗0+1 = 1, deci rezultatul rămâne n, algoritmul returnând ı̂ntotdeauna

valoare absolută a lui n. Variantele B s, i C sunt echivalente. Dacă n este negativ, este

returnată valoarea n∗ (−1), ceea ce ı̂l transformă ı̂n pozitiv. Dacă n este pozitiv sau zero,

se returnează direct n. Această abordare este o implementare clasică a funct, iei de modul

s, i este corectă pentru toate cazurile.

481. Expresia este evaluată prin rezultatul a trei expresii independente legate prin S, I

, de unde rezultă faptul că este suficient ca o singură expresie din cele trei să fie falsă

pentru a evalua ı̂ntreaga expresie la fals . (y MOD 2 = 0) este falsă, 17 fiind un număr

impar, as,a că rezultatul este fals .

482. Algoritmul ceFace(n, i) calculează suma tuturor divizorilor numărului n, atât

proprii, cât s, i improprii. Apelul recursiv parcurge descrescător valorile de la n la 1,

adăugând la rezultat valorile pentru care n este divizibil cu i. Când i = 1, algoritmul

returnează valoarea 1, astfel incluzând tot, i divizorii lui n. Prin urmare, afirmat, ia corectă

este D, deoarece algoritmul returnează suma tuturor divizorilor numărului n, inclusiv pe

el ı̂nsus, i.

483. Algoritmul magic(s, n) parcurge jumătate din s, ir s, i compară fiecare caracter de la

582

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

ı̂nceput cu caracterul corespunzător de la sfârs, it. Dacă toate perechile sunt egale, variabila

f rămâne 1, ceea ce indică faptul că s, irul este un palindrom. În caz contrar, dacă există

cel put, in o nepotrivire, f devine 0 s, i algoritmul returnează această valoare, indicând că

s, irul nu este un palindrom. Astfel, afirmat, ia corectă este C, deoarece algoritmul verifică

dacă s, irul s este un palindrom.

484. Varianta A verifică dacă valoarea absolută a lui x este impară s, i că x este negativ.

Aceasta este condit, ia exactă căutată, deci varianta este corectă. Varianta B verifică dacă

x NU este simultan par s, i pozitiv. Aceasta include s, i numere pare negative, deci nu este

o condit, ie suficientă pentru numere impare negative s, i este incorectă. Varianta C neagă

faptul că x este par sau pozitiv. Dacă x este impar s, i negativ, expresia devine adevărată,

deci varianta este corectă. Varianta D include s, i numere impare pozitive, deoarece verifică

doar dacă x este impar sau negativ, nu neapărat ambele condit, ii simultan. Aceasta este

incorectă.

485. Algoritmul calculează s, i returnează suma cifrelor impare ale numărului n.

486. Pentru a verifica dacă s, irul de caractere cont, ine numai cifre este necesară verificarea

fiecărui caracter. Dacă numărul de caractere cifră este egal cu lungimea s, irului, ı̂nseamnă

că fiecare caracter este o cifră, variantele de răspuns A s, i B fiind corecte.

487. Căutarea secvent, ială parcurge elementele vectorului unul câte unul până găses,te

elementul căutat sau ajunge la sfârs, itul vectorului. În cel mai rău caz, verifică toate

cele n elemente, ceea ce duce la o complexitate de timp de O(n). Sortarea prin insert, ie

are complexitatea de O(n2) ı̂n cazul general, deoarece fiecare element trebuie comparat s, i

plasat ı̂n pozit, ia corectă ı̂n secvent,a ordonată. În cel mai bun caz (când vectorul este deja

sortat), complexitatea este O(n), dar ı̂n cazul general nu poate fi garantată o complexitate

liniară. Varianta C presupune parcurgerea ı̂ntregului vector s, i actualizarea valorii ma-

xime găsite, având o complexitate de O(n). Suma elementelor de pe diagonala principală

presupune accesarea exact a n elemente (cele de forma m[i][i]). Deoarece se efectuează

doar n operat, ii, complexitatea este O(n).

488. Corpul buclei While se va executa cel mult o dată pentru apelurile ı̂n care b este

multiplu de a sau ı̂n care m necesita o singură cres,tere pentru a ajunge la o valoare ce

583

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

divide b.

489. Algoritmul f(a, b) realizează adunarea celor două numere a s, i b cifră cu cifră,

asemenea metodei utilizate ı̂n aritmetica manuală, incluzând s, i transportul dintre pozit, ii.

490. Algoritmul afisare(M, n) afis,ează toate submult, imile mult, imii date M . Pentru

aceasta, utilizează o tehnică bazată pe reprezentarea ı̂n sistem binar a numerelor de la 0

la 2n− 1. Fiecare bit din reprezentarea binară a unui număr indică prezent,a sau absent,a

unui element ı̂n submult, imea curentă. De asemenea, afis,area submult, imilor este echiva-

lentă cu afis,area tuturor combinărilor elementelor mult, imii M luate câte i, i = 0, 1, ..., n.

491. Analiza cazului a = b s, i a < c: cazul de bază: Dacă a SAU b SAU b) ajunge la

1, rezultatul devine 1. Recursivitate pentru a = b:

Când a = b, apelul recursiv devine c∗s(a−1, b−1, c−1). Aceasta corespunde unei forme

de calcul al produsului descrescător de la c până la (c − a + 1), adică: c ∗ (c − 1) ∗ (c −

2). . . (c−a+1). Aceasta este formula pentru c!
(c−a+1)! . Aceasta corespunde numărului de

aranjamente ale unui set de c elemente luate câte a− 1.

492. Algoritmul h(A, n) este un subalgoritm recursiv care parcurge s, irul de la dreapta

la stânga s, i efectuează un calcul bazat pe paritatea fiecărui element. Dacă elementul

A[n] este impar, este scăzut din sumă, iar dacă este par, este adunat la suma curentă.

Subalgoritmul returnează diferent,a dintre suma elementelor impare s, i suma elementelor

pare din s, irul.

493. Pe prima pagină sunt copiate r1 ∗ c = 24 ı̂nregistrări s, i rămân 5883− 24 = 5859. Pe

restul paginilor sunt copiate r∗c = 92 de ı̂nregistrări pe pagină, de unde rezultă 5859
92 = 63

de pagini complete. Mai rămân 63 de ı̂nregistrări de copiat pe ultima pagină s, i trebuie

distribuite ı̂n cele două coloane. Le putem distribui astfel: 32 de ı̂nregistrări ı̂n prima

coloană s, i 31 de ı̂nregistrări ı̂n cea de a doua coloană, ultima ı̂nregistrare găsindu-se pe

rândul 31, sau 31 de ı̂nregistrări ı̂n prima coloană s, i 32 de ı̂nregistrări ı̂n cea de a doua

coloană, ultima ı̂nregistrare găsindu-se pe rândul 32.

494. Algoritmul prelucreaza analizează cifrele numerelor a s, i b ı̂n reprezentarea lor ı̂n

baza c. Se verifică dacă ultima cifră a ambelor numere este egală cu d, caz ı̂n care se face

apel recursiv fără a modifica parametrul e. Dacă doar una dintre cifre este egală cu d,

584

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

parametrul e este incrementat sau decrementat corespunzător. Apelul init, ial se face cu

prelucreaza(a, b, c, d, 0), ceea ce ı̂nseamnă că la fiecare pas valoarea lui e măsoară

diferent,a dintre numărul aparit, iilor cifrei d ı̂n cele două numere. La final, dacă e rămâne

0, ı̂nseamnă că cifra d apare de un număr egal de ori ı̂n reprezentările numerelor a s, i b,

iar subalgoritmul returnează 1. În caz contrar, returnează 0, varianta corectă fiind A.

495. Funct, ia val(p, s, i, n, x) prelucrează coeficient, ii polinomului ı̂n mod recursiv

folosind următoarea abordare: Dacă s + i > n, se returnează coeficientul curent p[s].

Altfel, algoritmul trebuie să combine termenii recursiv, astfel ı̂ncât să ı̂mpartă polinomul

ı̂n două părt, i echilibrate. Varianta A este incorectă deoarece cres,terea dublă a indicelui i

ı̂mpreună cu x ∗ x determină o suprapunere incorectă a termenilor. Varianta B descom-

pune recursiv polinomul ı̂n două părt, i: una care tratează termenii la puterile inferioare,

alta care se ocupă de termenii superiori, asigură cres,terea corespunzătoare a puterii lui

x prin x ∗ x, reduce dimensiunea prin n− i care asigură un calcul eficient, varianta fiind

corectă. Varianta C este incorectă deoarece ordinea apelurilor nu respectă logica evaluării

polinomului. Varianta D este corectă deoarece calculează coeficientul curent p[s], apelul

recursiv avansează ı̂n s, irul de coeficient, i cu s + i, multiplică rezultatul următor cu x,

ment, inând progresia corectă a termenilor.

496. Varianta A nu funct, ionează corect din cauza condit, iei structurii repetitive d ←

3, [
√
a] − 1, 2. Ca aceasta să funct, ioneze, variabila d ar trebui să ajungă până la valoa-

rea [
√
a] inclusiv (algoritmul nu funct, ionează pentru pătrate perfecte impare precum 9).

Varianta B s, i varianta C sunt corecte, ambele aflând ı̂n mod corect dacă numărul are

divizori proprii. Varianta D este incorectă deoarece, ı̂n cazul unui număr prim, algoritmul

nu va returna fals deoarece variabila d va opri execut, ia structurii repetitive ı̂n momentul

ı̂n care devine 1 s, i imparte exact valoarea a, dar ı̂n cerint, ă este specificat faptul că d

trebuie să fie strict mai mare decât 1.

497. A Fals A · An−1
A−1 =

∑n
i=1 A

i, deci funct, ia calculează corect din punct de vedere

matematic suma cerută. Însă spat, iul de reprezentare pe 32 de bit, i nu va permite calculul

corect al sumei pentru orice n din intervalul specificat.

B Fals Spat, iul de reprezentare nu permite calculul puterilor pentru orice valori ale lui n.

585

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

C Adevărat La fiecare 2 apeluri recursive consecutive ale funct, iei E1, cel put, in unul dintre

apeluri va ı̂njumătăt, i pe n. Deci complexitatea algoritmului este mărginită de 2 log2(n)

s, i apart, ine lui O(log(n)). La fiecare apel, funct, ia E1 returnează valori mod 2022, deci

spat, iul de reprezentare nu este depăs, it. Din punct de vedere al corectitudinii matematice,

algoritmul descompune suma astfel:

n∑
i=1

Ai = (Ak + 1)(

k∑
i=1

Ai), dacă n = 2k

n∑
i=1

Ai = (An) +

n−1∑
i=1

Ai, dacă n = 2k + 1

Cum funct, ia mod este distributivă la adunare s, i ı̂nmult, ire, putem să o aplicăm pe fiecare

termen al descompunerii.

D Fals Similar cu varianta A, matematic este corect, ı̂nsă spat, iul de reprezentare nu per-

mite calculul puterilor pentru orice valori ale lui n.

498. Aceasta problemă este una clasică. Procesul de colorare urmează un model de

aritmetică modulară: pornim de la 1 s, i adăugăm k la fiecare pas, utilizând operat, ia mo-

dulo 1000, astfel ı̂ncât: urmatorulnr. = (nr.curent + k) MOD 1000. Dacă 1000 s, i k

sunt prime ı̂ntre ele, toate numerele vor fi colorate, colorându-se un ciclu complet de

1000 de numere. Altfel, procesul va parcurge un subciclu mai mic, determinat de cel mai

mare divizor comun gcd(k, 1000), găsindu-se un număr deja colorat ı̂n 1000
gcd(k,1000) de pas, i.

1000
gcd(15,1000) = 1000

5 = 200 ̸= 300. 1000
gcd(45,1000) = 1000

5 = 200. 1000
gcd(25,1000) = 1000

25 = 40.

1000
gcd(30,1000) =

1000
10 = 100 ̸= 150.

499. Algoritmul construies,te un număr prin extragerea ı̂n ordine inversă a cifrelor din

numărul n care sunt urmate de o cifră impară până când numărul n ajunge la 0 sau până

când sunt ı̂ntâlnite k cifre pare de la dreapta la stânga.

500. Algoritmul caută recursiv cel mai mare produs ı̂ntre un număr format din ultima

cifră a primului parametru concatenată cu cifrele celui de-al doilea parametru s, i acelas, i

calcul după eliminarea ultimei cifre din primul parametru.

501. Algoritmul verifică dacă un s, ir a are aspect de munte, adică ∃k, (1 < k < n),

astfel ı̂ncât a[1] < a[2] < ... < a[k] > a[k + 1] > ... > a[n]. Dacă s, irul este crescător, nu

586

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

ı̂ndeplines,te proprietatea.

502. Structura repetitivă externă se execută de log2(n) ori, iar cea internă de log4(n
4) ori.

Complexitatea algoritmului poate fi scrisă ca O(log2 n ∗ log4 n4) = O(log4 n ∗ 4 ∗ log4 n) =

O(log24 n) = O(2 ∗ log22 n) = O(log22 n), pentru că, ı̂n calculul complexităt, ilor, constantele

pot fi ignorate.

503. Algoritmul găses,te cel mai lung sufix palindromic prin construirea a două valori,

hf s, i hb. Variabila hf se construies,te ı̂n mod asemănător procesului de construire a

unui număr adăugând valori de la dreapta spre stânga, iar hb se construies,te asemănător

adăugând valori de la stânga spre dreapta. În loc de ı̂nmult, irea valoarea 10, aceasta se face

cu 2021 s, i puteri ale acestei valori, dar acest detaliu nu schimbă rezultatul. În momentul

ı̂n care se găsesc valorile hf s, i hb egale, se actualizează lungimea maximă, varianta A fiind

corectă. Varianta B este gres, ită deoarece se foloses,te valoarea 3 ı̂n construirea valorilor,

ceea ce ar putea cauza erori, iar ı̂n varianta C variabilele sunt actualizate eronat.

504. Algoritmul calculează 1! − 2! + 3! − 4! + · · · + (−1)n+1 · n!, se observă clar din

instruct, iunea P = (−1) · P · i, că P -ul reprezintă i!, dar cu semnul din fat, ă alternant.

Se observă că semnul din fat, ă alternant este (−1)n+1, deoarece 2! vine cu ’-’, ı̂nseamnă

că toate factorialele numerelor pare vin scăzute, ı̂nseamnă că pentru n par, −1 trebuie

ridicat la o putere impară, care este n + 1, deci se va calcula suma tuturor factorialelor

de la 1 la n, cu semnul alternant, adică: 1!− 2! + 3!− 4! + · · ·+ (−1)n+1 · n!

505. Determinăm numărul de pagini complet scrise dinainte. Prima pagină cont, ine

doar 24 de ı̂nregistrări, rămân 3221 de ı̂nregistrări. Fiecare pagină va stoca câte 92 de

ı̂nregistrări, vom mai umple ı̂ncă 3221÷92 = 35 pagini, iar numărul de ı̂nregistrări rămase

pentru ultima pagină va fi egal cu 3221 MOD 92 = 1. Deci avem 36 de pagini completate

complet, noi suntem pe a 37-a pagină, iar pe această pagină ı̂nregistrarea cu număr de

ordine 3245 va fi prima. Deci, ı̂n concluzie, ı̂nregistrarea noastră este pe Pagina 37,

Rândul 1, Coloana 1.

506. Algoritmul ceFace(m) returnează ı̂ntotdeauna cifra de control a numărului m. Cifra

de control a unui număr se calculează adunând cifrele sale, apoi repetând procesul cu ci-

frele sumei obt, inute, până când rezultatul este o singură cifră, care devine cifra de control.

587

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

Algoritmul calculează cifra de control folosind o proprietate matematică. Toate numerele

divizibile cu 9, mai put, in 0, au cifra de control 9, altfel cifra de control este egală cu restul

ı̂mpărt, irii numărului la 9. Exemplu: 123456789 → 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 =

45→ 4 + 5 = 9

507. Se observă că se foloses,te metoda Backtracking pentru a genera numerele cu n

cifre. Dacă numerele vor fi ı̂n ordine crescătoare, următorul număr valid va fi 2020.

508. Algoritmul returnează numărul de cifre de 0 din numărul m.

509. Algoritmul returnează 0 dacă s, irul nu cont, ine niciun element, returnează −1 dacă

variabila p este o pozit, ie invalidă ı̂n s, irul a s, i returnează a[p] dacă p este o pozit, ie validă

ı̂n s, irul a.

510. Pentru exemplul x = [′a′,′ b′,′ c′,′ ∗′], ı̂n i ar trebui să fie valoarea 4 la final. A.

Corect, i va avea valoarea 4. B. Gres, it, i va avea valoarea 0. C. Gres, it, i va avea valoarea

5. D. Gres, it, i va avea valoarea 3.

511. Bucla exterioară se execută de log3(n) ori, iar bucla interioară se execută de log2(n)

ori, deci complexitatea algoritmului este O(log3(n) · log2(n)). Se aplică formula schimbării

de bază a logaritmului: loga b = logc b
logc a , unde c este baza la care se schimbă logaritmul.

O(log3(n) · log2(n)) = O
(

log2 n
log2 3 · log2(n)

)
= O

(
(log2 n)

2
)
, log2 3 nu se mai ia ı̂n conside-

rare, fiind constant. O(log3(n) · log2(n)) = O
(

log3 n·log3 n
log3 2

)
= O

(
(log3 n)

2
)
, log3 2 nu se

mai ia ı̂n considerare, fiind constant.

512. Algoritmul calculează câte numere sunt divizibile cu 2 s, i nu sunt divizibile cu 3 ı̂n

intervalul [n,m].Cea mai rapidă modalitate de rezolvare este să aflăm numărul de multipli

de 2 din intervalul [n,m] din care să scădem numărul de multipli de 6 din intervalul [n,m].

cate(4, 21) → M2 −M6 = 6, M2 = [4, 21] ⇔ [2, 10] ⇒ 9, M6 = [4, 21] ⇔ [1, 3] ⇒ 3;

cate(7, 120) → M2 −M6 = 38, M2 = [4, 60] ⇒ 57, M6 = [2, 20] ⇒ 19; cate(1, 215) →

M2−M6 = 72, M2 = [1, 107] = 107, M6 = [1, 35] = 35

513. Algoritmul verifică dacă n cont, ine doar cifre de 0 s, i 1 ı̂n reprezentarea sa ı̂n baza

3. Dacă un număr este reprezentat ı̂n baza b doar cu cifre de 0 s, i 1, atunci acesta poate

fi scris ca sumă de puteri distincte ale lui b. Vezi Transformarea din baza b ı̂n baza 10.

514. Se va trata fiecare variantă ı̂n parte: A. Gres, it, dacă ultima cifră a lui nr nu este 0,

588

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

ar trebui să se scadă 1, nu să se ı̂mpartă la 10. B. Gres, it, k nu scade nicăieri. C. Corect.

D. Corect, verifică pentru exemplul din cerint, ă.

515. Algoritmul returnează elementul maxim din s, irul [100, x[2], x[3], . . . , x[n]]

516. Algoritmul calculează s, i returnează diferent,a dintre suma elementelor pare de pe

pozit, ii pare s, i suma celorlalte elemente din s, ir.

517. Algoritmul afis,ează ı̂n ordine crescătoare pozit, ia + 1 a cifrelor de 1 din scrierea ı̂n

baza 2 a numărului n. Numerotarea pozit, iilor ı̂ncepe de la 0 de la dreapta la stânga. A.

Corect, 31 = 111112 ⇒ 1 2 3 4 5. B. Corect, 14 = 11102 ⇒ 2 3 4. C. Corect, orice număr

impar are cel mai din dreapta bit cu valoarea 1. D. Corect, orice număr de formă 2k este

reprezentat ı̂n baza 2: 1000 . . . 0, unde 1 este pe pozit, ia k.

518. Algoritm care presupune metoda Greedy. Problema identică cu problema specta-

colelor, dar sub alte cuvinte. Trebuie neapărat ca intervalele să se sorteze după capătul

drept, astfel ı̂ncât să se poată alege intervalele care se termină cel mai devreme. Se alege

primul interval care se termină cel mai devreme, apoi se alege următorul interval care

ı̂ncepe după capătul drept al intervalului ales anterior. Se repetă procedeul până când nu

mai sunt intervale disponibile.

519. Algoritmul afis,ează pe ecran numerele din intervalul [a, b] care au numărul maxim

de divizori.

520. Expresia trebuie să fie a DIV b, dacă a MOD b = 0, altfel a DIV b+1. Se presupune

că a este de forma b ·k+ r, unde r este restul ı̂mpărt, irii lui a la b s, i r ∈ {0, 1, 2, . . . , b−1}.

(b · k + r) ÷ b = k, dacă r = 0, altfel (b · k + r) DIV b = k + 1. Astfel, clar varianta

corectă este C. a+b−1
b = a+b−1

b + b
b −

b
b = a+2b−1

b − 1. Astfel, varianta D este corectă, de

asemenea.

521. Algoritmul foloses,te Căutarea Binara s, i caută pozit, ia primei valori dintr-un vector

ordonat care este mai mare sau egală cu a.

522. Algoritmul returnează Aranjamente de n luate câte x, Ax
n = n!

(n−x)! . După primul

For, b va fi egal cu (n− x)! s, i după al doilea For, a va fi egal cu n!. Se va returna a DIV

b, adică Ax
n = n!

(n−x)! . Se vor efectua exact n operat, ii de ı̂nmult, ire, des, i ı̂n n! sunt n − 1

ı̂nmult, iri, primul For ı̂nmult,es,te la primul pas 1 cu 1, astfel se va efectua o ı̂nmult, ire ı̂n

589

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

plus. Mult, imea de la varianta C reprezintă solut, iile aranjamentelor, adică toate aranja-

mentele de lungime x, cu termeni distinct, i, dintr-o mult, ime de n elemente, nu neapărat

crescători.

523. Algoritmul va afis,a pe ecran n valori, reprezentând alipirea s, irurilor 1 2 3 . . . k 1 2 3

. . . k 1 2 3 . . ., ultimul s, ir terminându-se ı̂n momentul ı̂n care s-au afis,at n valori. La

punctul C, valoarea va fi calculată prin 5 × 36 + 2, adică 36 de s, iruri de 5 valori, după

care mai pune 1 s, i 2, astfel se vor afis,a 37 valori de 2.

524. A. Fals, algoritmul intră ı̂n buclă infinită, contraexemplu: a = 12, b = 18, c = 42.

B. Adevărat, se calculează C.M.M.D.C folosind algoritmul lui Euclid prin scăderi, pentru

a s, i b, iar rezultatul cu c. C. Fals, dacă a, b s, i c sunt egale la apelul init, ial, atunci se

returnează x, iar x nu va fi init, ializat. D. Adevărat, se calculează C.M.M.D.C folosind

algoritmul lui Euclid prin ı̂mpărt, iri, pentru a s, i b, iar rezultatul cu c.

525. Dacă n este par, atunci algoritmul calculează s, i returnează suma numerelor impare

mai mici decât n, altfel calculează s, i returnează suma numerelor pare mai mici decât n.

526. Se va crea un tabel care va cont, ine pentru fiecare d posibil, cifrele adăugate ı̂n b s, i

ı̂n c.

d b c

0 0 0

1 0 1

2 1 1

3 1 2

4 1 3

5 2 3

6 3 3

7 1 6

8 1 7

9 1 8

590

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

Se parcurg ambele numere ı̂n paralel, luând

perechea formată din ultima cifră din b s, i

ultima cifră din c s, i verificăm dacă apare ı̂n

tabel. Dacă o pereche nu apare, ı̂nseamnă

că perechea respectivă de numere nu poate

fi afis,ată niciodată. A. Fals, toate perechile

apar. B. Adevărat, perechea 0, 8 nu apare.

C. Fals, toate perechile apar. D. Adevărat,

perechea 4, 5 nu apare.

527. Algoritmul f(n, c) returnează frecvent,a cifrei c ı̂n numărul n. Algoritmul g(n, c)

returnează numărul de cifre distincte din intervalul [1, c] care apar ı̂n numărul n.

528. Cel mai scurt cod posibil este: 1, 2, 5, 6, 9, 4, 4, 3, 0, 7, 2, 1. A. Fals, Este posibil

să nu se fi generat pozit, ia lui 8. B. Adevărat. C. Fals, Se poate forma doar cu 2 valori de

2. D. Adevărat. Suma cifrelor este 44.

529. Algoritmul calculează s, i returnează xn, folosind exponentierea rapidă.

530. Algoritmul f calculează suma maximă a elementelor aflate pe pozit, ii ne-consecutive

din s, irul a, exceptând suma de la ultimul element. Se vor calcula toate sumele de elemente

ne-consecutive s, i pe revenire se va alege suma maximă. Pentru s, irul dat suma maximă

este: 10 + 4 + 12 + 11 = 37.

531. A. Pentru n = 176, algoritmul ar trebui să returneze adevărat, deoarece 7 = 1 + 6,

dar returnează fals din cauza că după ce se verifică cifra 7, se va verifica cifra 1 s, i variabila

r va lua valoarea fals. Deci r poate lua adevărat, iar apoi se poate face ı̂napoi fals. B.

Pentru n = 77, algoritmul ar trebui să returneze adevărat, deoarece 7 = 7, dar returnează

fals. C. Pentru n = 77, algoritmul ar trebui să returneze adevărat, deoarece 7 = 7, dar

returnează fals. D. Corect, nici o afirmat, ie nu este adevărată.

532. Algoritmul returnează s, irul obt, inut din eliminarea tuturor duplicatelor unor ele-

mente din s, irul x, iar ı̂n locul primei aparit, ii a elementului e ı̂n s, irul x se va insera s, irul y

ı̂n urma eliminării tuturor duplicatelor din acesta, iar ı̂n s, irul a, restul aparit, iilor ale lui

e vor fi s,terse.

533. Algoritmul calculează recursiv inversul combinărilor de b luate câte a (1/Ca
b) când

a+c = b deoarece ı̂n acest caz, recursivitatea va genera exact factorii necesari din formula

a!(b− a!)

b!
prin ı̂mpărt, iri succesive la b până când a = b, moment ı̂n care va ı̂nmult, i cu c

591

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

s, i va reduce toate numerele, iar când c este diferent,a b−a (cazul C), algoritmul va genera

aceeas, i formulă printr-o succesiune similară de operat, ii recursive.

534. Algoritmul calcul(n, c1, c2) transformă numărul natural n prin ı̂nlocuirea fiecărei

aparit, ii a cifrei c1 cu cifra c2, restul cifrelor nefiind modificate. Astfel, pentru n = 1999,

c1 = 1 s, i c2 = 0 se va ı̂nlocui cifra 1 cu 0 obt, inând numărul 999.

535. Algoritmul dat este o implementare iterativă a exponent, ierii rapide, rezultatul re-

turnat de algoritm fiind mn.

Varianta B este falsă, un contra-exemplu poate fi considerat: m = 4, n = 2 s, i m1 =

2, n1 = 4, ambele perechi de date de intrare returnând valoarea 16.

Varianta C este falsă, linia 6 se execută de exact 2 ori pentru numerele care au ı̂n repre-

zentarea lor binară exact 2 bit, i de 1, deci s, i pentru n = 3 spre exemplu.

536. Algoritmul returnează v =
∑n

i=1 a[i] ∗ bn−i, anume valoarea decimală a numărului

format din valorile vectorului a ı̂n baza b. Varianta A este corectă folosind formula găsită,

1 ∗ 25 + 1 ∗ 23 + 1 ∗ 21 + 1 ∗ 20 = 43. Prin acelas, i rat, ionament, varianta B este corectă.

Varianta C este incorectă, nu se verifică pentru toate datele de intrare.

537. Varianta A nu este corectă pentru că include s, i valorile 8 s, i −8.

Varianta C nu este corectă: prima dată se evaluează expresia din a doua paranteză, anume

n > −8 OR n < −4, apoi prioritate va avea operatorul AND. Există date de intrare care

respectă restrict, iile din cerint, ă care sunt evaluate ca fiind false. Spre exemplu, pentru

n = −5 expresia devine −5 < −8 OR ((−5 > −8) OR (−5 < −4)) AND (−5 > 8) =

F OR T AND F = F , unde F = False, T = True.

538. Algoritmul este o implementare iterativă a căutării binare. Astfel, dacă elemen-

tul de pe pozit, ia mij este mai mare decât valoarea variabilei y, căutăm un alt candidat

ı̂n partea stângă a vectorului, unde s,tim că există valori mai mici (vectorul fiind sortat

crescător). Altfel, dacă y > x[mij] căutarea continuă ı̂n partea dreaptă a vectorului, unde

avem valori mai mari. Ciclul repetitiv se opres,te ı̂n momentul ı̂n care st = dr, anume

când am găsit elementul care are cele mai mari s,anse de a respecta restrict, ia din cerint, ă.

Variantele B s, i C sunt corecte, echivalente având ı̂n vedere faptul că st = dr după execut, ia

buclei while.

592

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

539. Algoritmul returnează suma elementelor de pe pozit, iile impare s, i a vecinilor din

dreapta lor. Pentur n impar, rezultatul reprezintă suma tuturor elementelor din vector.

Pentru n par, suma rezultată nu va include ultimele două valori din vector. Astfel, doar

varianta C este corectă.

540. Algoritmul verifică dacă suma elementelor din vectorul dat este un multiplu de 3p.

Varianta A este corectă.

Varianta B nu este corectă, algoritmul va returna True dacă suma elementelor din vector

este multiplu de 3p, deci nu neapărat putere a lui 3.

Varianta C nu este corectă, algoritmul nu returnează False dacă suma elementelor nu

este un număr divizibil cu 3, ci dacă nu este divizibil cu 3p.

541. Pentru a maximiza numărul de muchii dintr-un graf neorientat cu n noduri s, i p

componente conexe procedăm astfel: pentru p − 1 componenta conexe considerăm un

singur nod, iar restul nodurilor vor face parte din componenta conexă rămasă. Astfel

vom avea o componentă cu n− (p− 1) = n− p+ 1 noduri. Această componentă va avea

un număr maxim de muchii dacă este un graf complet, deci (n−p+1)∗(n−p)
2 muchii. Deci,

varianta A este cea corectă.

542. Variantele B s, i D sunt corecte, variantele clasice ale algoritmului de determinare

a inversului unui număr ı̂n manieră recursivă, respectiv iterativă. Varianta A nu este

corectă, reface numărul original, nu ı̂l inversează. Varianta C calculează suma cifrelor

numărului n ı̂nmult, ită cu 10.

543. Expresia calculată de algoritm este x1∗(y2−y3)−x2∗(y1−y3)+x3∗(y1−y2), formulă

pentru dezvoltarea determinantului care calculează aria unui triunghi format de punctele

(x1, y1), (x2, y2), (x3, y3). Algoritmul verifică dacă această arie este nenulă, anume dacă

punctele date nu sunt coliniare.

544. Algoritmul va returna valoarea 0 dacă fiecare produs este 0. Produsul va fi 0 dacă

cel put, in unul dintre factori este 0, anume dacă elementul de pe pozit, ia n este par sau

dacă elementul de pe pozit, ia n are ultima cifră 0 sau dacă pozit, ia elementului este un

număr par. Astfel, doar variantele B s, i C sunt corecte.

545. Algoritmul returnează valoarea expresiei
∏n

f=1
f∗(f+1)

2 . Varianta A este corectă,

593

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

se poate calcula. Varianta B este corectă, pentru n ≥ 1 rezultatul returnul este e ≥ 1,

iar pentru n = 0 rezultatul va fi 1. Varianta C este incorectă, pentru f = 10 suma va fi

s = 55 = 5 ∗ 11, iar acel 5 va putea fi ı̂nmult, it cu un 2, obt, inând astfel ı̂ncă un 0 la final.

Varianta D este incorectă, pentru n = 10 rândul 6 se execută de 1+2+ · · ·+10 = 55 ori.

546. Algoritmul aux(n) returnează True dacă numărul natural n este număr Fibonacci.

Algoritmul ceva(n) verifică dacă numărul n se poate obt, ine prin concatenare de numere

Fibonacci, funct, ionând pe următorul rat, ionament: nr1 va ret, ine ultimele p cifre, iar nr2

restul. Dacă nr1 este Fibonacci continuă analiza pe nr2, repetând procesul. Astfel, va-

riantele A, B s, i C sunt incorecte, iar varianta D este corectă, numărul 1234589 fiind o

concatenare de numere Fibonacci (1, 2, 34, 5, 89).

547. Algoritmul verifică dacă numărul dat este un număr de tip ”Vale”, anume dacă

numărul este de la ultima cifră ı̂nspre stânga strict descrescător, iar de la un punct pană

la prima cifră strict crescător (având un aspect de V). Astfel, varianta A este corectă.

Varianta B este incorectă pentru că după punctul de minim din număr nu se respectă

condit, ia de strict crescător, 8 < 9. Varianta C este incorectă, pot exista două numere

egale, dar nu ı̂n aceeas, i port, iune a numărului. Putem avea aceeas, i cifră o dată ı̂n partea

strict crescătoare, o dată ı̂n partea strict descrescătoare. Varianta D este corectă, oglin-

dind numărul se va păstra monotonia cifrelor din cele doua port, iuni (dacă inversăm un

număr cu aspect de V, se va păstra).

548. Cei 3 algoritmi returnează fiecare cifra care are cea mai mare frecvent, ă dintr-un

număr. Diferent,a dintre aces,ti algoritmi este maniera ı̂n care tratează cazul ı̂n care există

mai multe cifre cu aceeas, i frecvent, ă maximă. Algoritmul cifreA(n) returnează prima

cifră din numărul natural n, ı̂ncepând cu ultima, care are frecvent,a maximă. Algoritmul

cifreB(n) returnează prima cifră de la 0 la 9 care are frecvent,a maximă, iar cifreC(n)

returnează prima cifră de la 9 la 0 care are frecvent,a maximă. Astfel, varianta A este

corectă, avem cazul ı̂n care există o singură cifră cu frecvent, ă maximă, deci cei 3 algoritmi

returnează aceeas, i valoare. Varianta B este incorectă, toate cifrele au aceeas, i frecvent, ă,

6 = 1 = 6 nu va fi evaluat ca fiind True. Varianta C este corectă, spre exemplu pentru

n = 12395. Varianta D este incorectă, ciclul For se execută de exact 10 ori, iar ciclul

594

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

While se execută de numărul de cifre al lui n ori, iar dacă n are cel put, in 10 cifre, con-

cluzia nu este corectă.

549. Algoritmul returnează suma maximă a unei subsecvent,e a vectorului, dar fără a in-

clude ultimul element. Vectorul y este un vectorul de sume part, iale ale valorilor vectorului

x. Astfel, pe pozit, ia n + 1 vectorul y va ret, ine suma tuturor elementelor din x. Astfel,

cele două cicluri repetitive oprindu-se la pozit, ia n (se foloses,te maxim y[n]), elementul

x[n] nu va fi folosit. Varianta A este corectă. Varianta B este incorectă, rezultatul este

15. Varianta C este corectă, returnează suma 1 + 2 + · · · + 99 = 4950. Varianta D este

incorectă, dacă elementul maxim este pe ultima pozit, ie nu va fi luat ı̂n considerare.

550. Algoritmul returnează cele mai mari 3 numere din vector, ı̂n ordine descrescătoare.

Astfel, varianta A este corectă. Varianta B este incorectă, fără instruct, iunile Else cele 3

variabile , M1,M2,M3, vor avea aceeas, i valoare, deci evident rezultat diferit de cel init, ial.

Varianta C este incorectă, algoritmul nu va returna de fiecare dată acelas, i rezultatul ca ı̂n

varianta init, ială (spre exemplu pentru x = [10, 30, 20]). Varianta D este incorectă, dacă

primele 3 elemente sunt maximele vectorului, dar nu apar ı̂ntr-o ordine descrescătoare,

atunci rezultatul va fi diferit.

551. Algoritmul dat aplică o rotat, ie cu 90◦ la dreapta asupra matricei date. Partea 1 a

algoritmului efectuează transpunerea matricei. Partea 2 a algoritmului oglindes,te fiecare

linie a matricei, anume interschimbă elementele de pe aceeas, i linie care se află la distant,e

egale de centrul liniei. Variantele A s, i C sunt corecte. Varianta D este incorectă, ı̂n cazul

acela am avea o rotat, ie de 90◦ la stânga.

552. Algoritmul dat calculează expresia
∑n

i=1(−1)i−1 ∗ 2 ∗ i2. Varianta A este incorectă,

pentru n = 0 par, rezultatul este 0. Varianta D este incorectă, există două numere pentru

care linia 7 se execută de 7 ori, anume 13, 14.

553. Algoritmul dat sortează crescător elementele vectorului prin metoda Counting Sort.

Vectorul y va ret, ine frecvent,ele fiecărei distant,e dintre elementele vectorului s, i elemen-

tul minim al acestuia. Astfel, după crearea vectorului de frecvent,e, parcurgem toate

distant,ele posibile dintre minim s, i elementele vectorului x pentru a le rearanja. Dacă o

frecvent, ă există, atunci acea valoare este rescrisă ı̂n vectorul original de câte ori indică

595

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

frecvent,a sa. Varianta A nu este corectă, distant,a dintre oricare două numere este un

număr pozitiv. Varianta B nu este corectă, dacă elementul minim apare de mai multe

ori ı̂n vectorul init, ial, acesta va apărea o singură dată (pe prima pozit, ie) ı̂n vectorul mo-

dificat. Varianta C este incorectă. Varianta D este corectă, sortarea unui vector este o

permutare.

554. Algoritmul dat verifică dacă vectorul x poate fi partit, ionat ı̂n două subs, iruri care au

suma s, i produsul elementelor egale ı̂ntre ele. La fiecare pas, algoritmul fie adună ı̂n a s, i

ı̂nmult,es,te ı̂n c elementul x[n], fie ı̂n b, respectiv d. După ce ı̂ntregul vector a fost parcurs,

verifică dacă a == b s, i dacă c == d, anume dacă suma s, i produsul celor două subs, iruri

sunt egale. Varianta A este corectă pentru că toate elementele vectorului x din cerint, ă se

repetă de 2 ori fiecare, deci există două subs, iruri (identice) care respectă condit, ia.

555. Algoritmul returnează dimensiunea celui mai lung subs, ir al vectorului x care are

elementele ı̂n ordine ı̂n ordine strict crescătoare s, i pe pozit, ii care nu sunt consecutive.

Algoritmul nu va include ı̂n analiză elementul de pe ultima pozit, ie, oprindu-se pentru

i = n. Astfel, varianta A este falsă, returnează n − 1 pentru că ultimul element nu este

luat ı̂n considerare. Varianta B este falsă, complexitate ı̂n cel mai defavorabil caz este

O(2n).

556. Algoritmul generează numere ”speciale” prin multiplicarea numerelor deja adăugate

cu 2, 3 sau 5 s, i alege mereu cel mai mic rezultat dintre cele trei opt, iuni posibile. Totus, i,

unele valori pot apărea de mai multe ori (de exemplu, 6 poate fi obt, inut ca 2×3 sau 3×2),

deci trebuie să inserăm doar valori noi, distincte, ı̂n vectorul rezultat. Varianta B cont, ine

verificarea necesară: ı̂nainte de a insera o valoare nouă (elem), se verifică dacă aceasta

este diferită de ultima valoare introdusă (v[nr]). Dacă elem este strict mai mare, atunci ı̂l

adăugăm pe pozit, ia următoare; altfel, ı̂l ignorăm. Astfel, ne asigurăm că secvent,a retur-

nată cont, ine doar numere distincte, ordonate crescător, iar algoritmul va returna corect

al n-lea număr special.

557. Varianta A: Ciclul repetitiv For parcurge fiecare pozit, ie din reprezentarea binară a

numărului n. Instruct, iunea n & (1 << i) izolează bit-ul de pe pozit, ia i, mai exact tot, i

bit, ii vor lua valoarea 0, cu except, ia bit-ului de pe pozit, ia i care ı̂s, i păstrează valoarea.

596

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

Mai apoi, rezultatul acestei instruct, iuni va fi deplasat la dreapta, adică se va obt, ine doar

valoarea bit-ului de pe pozit, ia i. Acest algoritm respectă cerint,a, varianta A este corectă.

Varianta B: Instruct, iunea n & 1 = 1 verifică dacă pe ultima pozit, ie a reprezentării bit-ul

are valoarea 1, dacă da, contorul pentru valorile de 1 este incrementat. Instruct, iunea

n = n >> 1 este echivalentă cu ı̂mpărt, irea la 2, eliminând ultimul bit din reprezentare.

Varianta B este corectă.

Varianta C: Condit, ia de oprire este gres, ită, pentru k = 0 se va returna ı̂ntotdeauna o

valoare mai mare sau egală cu 32.

Varianta D: Algoritmul acesta este o variantă recursivă a celui de la varianta A, deci este

corect.

558. Algoritmul verifică dacă vectorul de numere pare citit de la stânga la dreapta este

identic cu cel citit de la dreapta la stânga cu câteva condit, ii care influent,ează modul

ı̂n care se deplasează indexii, iar acest lucru este adevărat doar ı̂n anumite condit, ii de

simetrie.

559. Algoritmul implementează metoda lui Euclid pentru calculul celui mai mare divi-

zor comun (CMMD). Dacă a = b, atunci valoarea returnată este direct a. Dacă a = 0,

algoritmul se apelează o singură dată s, i returnează b.

560. Se numără vârfurile care nu au ies, iri (grad extern nul). Se observă că doar un nod

nu are muchii care ies din el, ceea ce duce la răspunsul corect.

561. Se evaluează expresia logică ı̂n funct, ie de valorile date pentru x = 12 s, i y = 23.

Expresia init, ială se reduce la evaluarea condit, iilor conform priorităt, ii operatorilor logici.

562. Algoritmul determină cifra cu cea mai mare frecvent, ă dintr-un număr dat. Parcurge

fiecare cifră s, i calculează frecvent,a acesteia, returnând una dintre cifrele cu frecvent,a ma-

ximă.

563. Algoritmul returnează numărul total de divizori ai lui n, luând ı̂n considerare doar

divizorii pozitivi s, i folosind optimizarea pentru divizorii până la
√
n. Dacă n < 0, se

consideră valoarea absolută.

564. Algoritmul numără elementele pare dintr-un interval. Rezultatul returnat va fi 0

doar ı̂n cazul ı̂n care toate elementele din interval sunt impare.

597

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

565. Algoritmul afis,ează pătratele numerelor naturale, utilizând proprietatea sumelor

succesive de numere impare.

566. Se verifică dacă cifrele unui număr apar s, i ı̂n celălalt număr ı̂n aceeas, i frecvent, ă.

Algoritmul utilizează o metodă de verificare pentru fiecare cifră.

567. Se verifică dacă cifrele numărului sunt ı̂n ordine strict descrescătoare. Se compară

succesiv cifrele de la dreapta la stânga s, i dacă toate ı̂ndeplinesc condit, ia, se returnează

True.

568. Algoritmul calculează media aritmetică a numerelor pare, ı̂mpărt, ind suma numere-

lor pare la numărul elementelor impare.

569. Căutarea se face eficient folosind o combinat, ie de căutare binară pentru fiecare linie

a matricei.

570. Algoritmul corect realizează rotat, ia matricei cu 90 de grade ı̂n sens trigonometric,

păstrând pozit, iile corecte.

571. Algoritmul efectuează o rearanjare similară unui pas de partit, ionare din QuickSort.

Elementele mai mici decât pivotul sunt mutate ı̂n stânga.

572. Se determină cel mai mare divizor comun al elementelor vectorului printr-o abordare

similară metodei lui Euclid, prin interschimbarea elementelor.

573. Algoritmul convertes,te numărul ı̂n reprezentarea sa ı̂n baza 3, returnând un s, ir de

caractere corespunzător.

574. Algoritmul determină dacă un element apare de mai multe ori ı̂n vector, comparând

fiecare element cu valoarea dominantă găsită.

575. Numără perechile de elemente consecutive diferite printre numerele citite, incre-

mentând contorul de fiecare dată când două elemente consecutive diferă.

576. Algoritmul determină numărul de operat, ii necesare pentru a reduce valoarea lui a

la 1, folosind ı̂nmult, iri succesive cu 3.

577. Algoritmul determină triplete de numere a căror sumă este egală cu un al treilea

număr din vector.

578. Algoritmul utilizează metoda recursivă pentru a verifica toate combinat, iile posibile

de subseturi care dau suma necesară.

598

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

579. Algoritmul implementează o căutare binară modificată pentru a găsi pozit, ia unui

element ı̂ntr-un vector part, ial ordonat.

580. Calculul combinatoric corect pentru determinarea numerelor strict mai mari for-

mate din cifrele lui n.

581. Transformarea numerotării scaunelor din sala I ı̂n sala II respectă regulile specifi-

cate ı̂n enunt, s, i returnează pozit, ia corectă a scaunului. Cel mai simplu mod de a rezolva

aceasta problema este sa desenat, i modelul sălilor asa cum este descris ı̂n enunt, s, i sa va

stabilit, i o formula ı̂nainte de a va uita la răspunsuri.

582. Algoritmul calculează cel mai mare divizor comun al numerelor naturale a s, i b folo-

sind scăderi repetate ı̂n loc de ı̂mpărt, iri (metoda prin scăderi repetate a lui Euclid pentru

CMMDC). Cum 2000 s, i 21 sunt prime ı̂ntre ele, rezultatul este 1.

583. Algoritmul implementează sortarea prin select, ie, căutând la fiecare pas cel mai

mic element din partea neordonată a vectorului s, i plasându-l ı̂n pozit, ia corectă ı̂n partea

ordonată. O proprietate a acestei metode de sortare este că după fiecare pas din bucla

exterioară, primele i elemente sunt mai mici decât oricare alte elemente din restul vecto-

rului.

584. Algoritmul returnează n, dacă n este impar, sau 2 ∗ n− 1, dacă acesta este par.

585. Algoritmul returnează 1 dacă, după ce transformă numărul valoarea sa absolută s, i

aplică repetat operat, ia de scădere a dublului ultimei cifre din restul numărului, ajunge la

0 sau 7.

586. Algoritmul afis,ează recursiv ultima cifră pentru numerele pare după ce elimină

ultimele două cifre, iar pentru numerele impare continuă procesul după eliminarea unei

singure cifre, până când ajunge la un număr mai mic sau egal cu 9.

587. Algoritmul afis,ează recursiv numărul curent, apoi ı̂nmult,es,te cu 3 s, i afis,ează din nou

numărul init, ial la ı̂ntoarcerea din recursivitate, oprind procesul când valoarea depăs,es,te

9000. Rezultatul, la mod general, pentru un a dat este: a, 3 ∗ a, 9 ∗ a, 27 ∗ a . . . 27 ∗ a, 9 ∗

a, 3 ∗ a, a.

588. Algoritmul verifică dacă un vector ı̂n care fiecare element ı̂ncepând cu al treilea este

suma celor două elemente precedente.

599

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

589. In baza 2, numărul 210 − 25 − 1 se obt, ine prin calcularea expresiei 1111111111

(210− 1)− 100000(25) = 1111011111.

590. Algoritmul two(n, m) afis,ează numerele prime din intervalul [n,m] deoarece funct, ia

one(a,b) calculează suma divizorilor lui a s, i b, iar un număr este prim dacă s, i numai

dacă suma divizorilor săi este egală cu numărul plus 1 (care apare de două ori ı̂n sumă

când a = b).

591. Algoritmul verifică dacă un vector este palindrom, comparând elementele din capete

spre centru până când indicii se intersectează sau găses,te o pereche de elemente diferite.

592. Algoritmul calculează recursiv ab, ı̂nmult, ind numărul a cu rezultatul apelului re-

cursiv care scade exponent, ial b până ajunge la cazul de bază când b = 0, care returnează

1.

593. Algoritmul descompune recursiv numărul a ı̂n factori primi, căutând cel mai mic

număr prim b care ı̂l divide, ı̂mpărt, ind apoi a la b s, i continuând procesul până când ajunge

la un număr prim sau la un număr mai mic decât b.

594. Algoritmul construies,te un număr nou păstrând doar cifrele pare ale numărului

init, ial, procesate de la dreapta la stânga, cu except, ia cazului când ultima cifră rămasă

este impară, caz ı̂n care se returnează numărul construit până ı̂n acel moment.

595. Algoritmul caută recursiv ultima cifră impara a numărului dat, returnând -1 dacă

nu există o asemenea cifră sau dacă n este 0.

596. Algoritmul construies,te un nou număr comparând cifrele de la dreapta la stânga ale

celor două numere: pune cifra comună când cifrele sunt egale, sau jumătatea diferent,ei

dintre ele când sunt diferite, multiplicând fiecare rezultat cu puterea corespunzătoare a

lui 10.

597. Algoritmul ceva verifică dacă două numere au acelas, i număr de cifre, iar algoritmul

altceva adaugă cifre de 1 la sfârs, itul lui m până când acesta ajunge să aibă acelas, i număr

de cifre cu n.

598. Algoritmul ı̂mparte recursiv intervalul [s, d] ı̂n două jumătăt, i s, i verifică pentru fi-

ecare număr din vector aflat pe o pozit, ie din interval dacă cifrele sale, parcurse de la

dreapta la stânga, formează o progresie aritmetică cu rat, ia 2, returnând suma numerelor

600

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

de pozit, ii care satisfac această condit, ie.

599. Algoritmul implementează o variantă modificată a căutării binare care poate intra

ı̂n ciclu infinit când elementul căutat x nu există ı̂n vector s, i toate elementele din vector

sunt egale, sau când x este un număr impar ı̂ntr-un vector care cont, ine doar numere pare.

600. Algoritmul construies,te recursiv un nou număr păstrând doar cifrele pare din

numărul init, ial ı̂n aceeas, i ordine ı̂n care apar, iar dacă numărul are o singură cifră, retur-

nează acea cifră dacă e pară sau 0 dacă e impară.

601. A1(k) generează secvent,a:

Grupa 1: 1

Grupa 2: 1, 2

Grupa 3: 1, 2, 3

Grupa 4: 1, 2, 3, 4

Grupa 5: 1, 2, 3, 4, 5

Care concatenată devine: 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, ...

A2(k) generează secvent,a:

Grupa 1: 1

Grupa 2: 2, 1

Grupa 3: 3, 2, 1

Grupa 4: 4, 3, 2, 1

Grupa 5: 5, 4, 3, 2, 1

Care concatenată devine: 1, 2, 1, 3, 2, 1, 4, 3, 2, 1, 5, 4, 3, 2, 1, ...

Pentru a găsi grupul care cont, ine pozit, ia k, rezolvăm ecuat, ia n2−n−2k < 0 care vine din

observat, ia că după n grupe avem n(n+1)
2 elemente totale, obt, inând formula n = −1+

√
1+8k

2 .

După aflarea grupului, calculăm pozit, ia exactă ı̂n acel grup folosind p− (k− p(p−1)
2 − 1).

602. Algoritmul implementează problema sumei maxime a unei subsecvent,e continue

(algoritmul lui Kadane), ment, inând suma curentă ı̂n value2 s, i suma maximă găsită ı̂n

value1, resetând suma curentă la 0 când aceasta devine negativă.

601

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

603. Algoritmul caută binar prima pozit, ie din vector pentru care sir[poz] ̸= poz.

604. Algoritmul foloses,te paritatea lui k pentru a alterna ı̂ntre cele două s, iruri de ca-

ractere, iar pentru a asigura alternarea corectă, la fiecare pas trebuie să modificăm k cu

o valoare impară pentru a-i schimba paritatea s, i a fort,a intrarea pe cealaltă ramură a

instruct, iunii If la următorul apel recursiv.

605. Se consideră numerele:

S(0) = 0, S(1) = x[1], S(2) = x[1] + x[2], . . . , S(n) = x[1] + x[2] + · · ·+ x[n].

Observăm că avem (n + 1) sume, iar resturile lor la ı̂mpărt, irea la n pot lua cel mult n

valori (0, 1, 2, . . . , n− 1).

A: Dacă n = 2 s, i vectorul x = [1, 2]. Atunci: - S(1) = 1 ≡ 1 (mod 2), - S(2) = 1 + 2 =

3 ≡ 1 (mod 2).

Niciun S(k) cu 1 ≤ k ≤ 2 nu este 0 modulo 2, deci afirmat, ia A e falsă ı̂n acest caz.

B: Prin principiul pus,culit,ei (pigeonhole principle), două dintre aceste sume, S(i) s, i S(j)

cu 0 ≤ i < j ≤ n, au acelas, i rest modulo n, adică: S(j) − S(i) ≡ 0 (mod n). Dar

S(j)− S(i) = x[i+ 1] + x[i+ 2] + · · ·+ x[j]. Astfel, afirmat, ia B este adevărată.

D: Dacă notăm k = j − i, rezultă că suma elementelor din pozit, iile i + 1 până la j

formează exact o subsecvent, ă de k elemente (consecutive) s, i, după argumentul pentru B,

suma aceasta este divizibilă cu n. Deci D este adevărată.

606. Algoritmul magic(x) implementează o căutare binară pentru a verifica dacă

numărul x este un pătrat perfect. Se init, ializează două variabile, st s, i dr, care definesc

intervalul de căutare ı̂ntre 1 s, i x. La fiecare iterat, ie a buclei, se calculează mijlocul

intervalului (mj) s, i se verifică dacă pătratul acestuia este egal cu x. Dacă da, se returnează

True, indicând că x este un pătrat perfect. Dacă pătratul lui mj este mai mic decât x,

se restrânge intervalul la partea superioară, iar dacă este mai mare, la partea inferioară.

Dacă bucla se termină fără a găsi un pătrat perfect, se returnează False.

Afirmat, ia A este falsă, deoarece pentru valori mai mici decât 10, algoritmul returnează

True pentru 1, 4 s, i 9, care sunt pătrate perfecte.

Afirmat, ia B este falsă, deoarece algoritmul nu descompune numărul x ı̂n factori primi, ci

602

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

doar verifică dacă este pătrat perfect.

Afirmat, ia C este adevărată, deoarece algoritmul returnează True dacă x este un pătrat

perfect.

Afirmat, ia D este falsă, deoarece algoritmul returnează True pentru pătratele perfecte

valide

As,adar, răspunsul corect este C.

607. Algoritmul calculeaza(a, b) calculează o valoare bazată pe multiplicări succesive

ale lui a, păstrând doar ultima cifră la fiecare pas. Variabila x este init, ializată cu 1 s, i

apoi, ı̂ntr-o buclă care rulează de b ori, este actualizată ca produsul dintre ultima cifră a

lui x s, i a. La final, algoritmul returnează valoarea lui x.

Afirmat, iaA este adevărată. Dacă a = 107 s, i b = 101, atunci fiecare multiplicare păstrează

doar ultima cifră a produsului, ceea ce face ca rezultatul final să fie 107.

Afirmat, ia B este adevărată. Dacă a = 1001 s, i b = 101, algoritmul păstrează doar ultima

cifră, iar pentru orice putere a lui 1001, rezultatul rămâne 1001.

Afirmat, ia C este falsă. Des, i pentru anumite valori ale lui a rezultatul poate fi a, acest

lucru nu este general valabil pentru toate valorile ı̂ntre 1 s, i 10000.

Afirmat, ia D este adevărată. Deoarece 1001 are ultima cifră 1, multiplicările succesive vor

duce ı̂ntotdeauna la păstrarea lui 1001, indiferent de valoarea lui b.

Astfel, răspunsul corect este A, B, D.

608. Algoritmul afis(n) utilizează recursivitatea pentru a afişa valorile lui n s, i ale

sub̂ımpărt, irilor sale prin diviziunea ı̂ntreagă cu 2. Init, ial, se afis,ează valoarea lui n, apoi

algoritmul este apelat recursiv pentru n DIV 2, iar după revenirea din recursivitate,

valoarea n este afis,ată din nou.

Această metodă produce un s, ir de numere ı̂n care primul număr este n, apoi urmează

secvent,a obt, inută prin ı̂mpărt, iri succesive la 2, până la 0. După ce se ajunge la 0, valorile

sunt afis,ate din nou, dar ı̂n ordinea inversă a apelurilor recursive.

Afirmat, ia A este adevărată. Datorită modului ı̂n care funct, ionează recursivitatea, primul

element afis,at este s, i ultimul, al doilea este s, i penultimul, s, i as,a mai departe, cu except, ia

elementului din mijloc, care apare o singură dată.

603

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

Afirmat, ia B este falsă. Algoritmul nu afis,ează doar numere pare, ci s, i numere impare ı̂n

funct, ie de valoarea init, ială a lui n.

Afirmat, ia C este falsă. Numerele nu sunt afis,ate mai ı̂ntâi ı̂n ordine crescătoare s, i apoi

ı̂n ordine descrescătoare.

Afirmat, ia D este adevărată. Secvent,a rezultată este ı̂n ordine descrescătoare ı̂n prima

parte s, i apoi ı̂n ordine crescătoare după revenirea din recursivitate.

Astfel, variantele corecte de răspuns sunt A s, i D.

609. Algoritmul cauta(n, b) determină s, i returnează numărul de cifre 0 din reprezen-

tarea numărului n ı̂n baza b.

Pentru a face acest lucru, algoritmul init, ializează o variabilă v cu 0, care va conta câte

cifre 0 există. Dacă n = 0, atunci algoritmul returnează direct 1, deoarece 0 are o singură

cifră ı̂n orice bază.

Dacă n ̸= 0, se copiază valoarea lui n ı̂n m s, i se iterează prin reprezentarea sa ı̂n baza b.

În fiecare iterat, ie, se verifică dacă ultima cifră obt, inută prin m MOD b este 0. Dacă da,

se incrementează v. Apoi, m este ı̂mpărt, it la b, continuând procesul până când m devine

0.

Afirmat, ia A este falsă. Algoritmul nu returnează numărul de cifre al lui n ı̂n baza b, ci

doar numără câte dintre aceste cifre sunt egale cu 0.

Afirmat, ia B este falsă. Algoritmul nu verifică dacă n este o putere a lui b.

Afirmat, ia C este adevărată. Algoritmul returnează numărul de cifre 0 din reprezentarea

numărului n ı̂n baza b.

Afirmat, ia D este falsă. Algoritmul nu verifică dacă n se termină cu cifra b, ci numără

doar aparit, iile cifrei 0 ı̂n reprezentarea sa.

As,adar, varianta corectă de răspuns este varianta C.

610. Algoritmul abc(a, n, p) verifică dacă parametrul p se află ı̂ntr-un interval valid

s, i returnează o valoare corespunzătoare ı̂n funct, ie de această verificare.

Dacă n < 1, algoritmul returnează −1. Dacă p se află ı̂n intervalul valid [1, n], returnează

elementul de pe pozit, ia p din s, irul a. În caz contrar, returnează 0.

Afirmat, ia B este singura adevărată, deoarece dacă p este strict mai mare decât 0 s, i mai

604

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

mic sau egal cu n, atunci algoritmul returnează a[p], adică elementul de pe pozit, ia p.

611. Algoritmul generează numere cu n cifre utilizând doar cifrele 0, 6 s, i 7, ı̂n ordine

crescătoare. Pentru a determina numărul care urmează după 6767, observăm ordinea

generării numerelor.

Lista numerelor generate pentru n = 4 ı̂ncepe astfel:

6000, 6006, 6007, 6060, 6066, 6067, 6070, 6076, 6077, 6600, 6606, . . . 6767, 6770, 6776, 6777, . . .

După numărul 6767, următorul număr generat conform regulii este 6770. Deoarece această

valoare nu se regăses,te printre variantele de răspuns oferite, răspunsul corect este D.

612. Algoritmul aplică ı̂n mod repetat o operat, ie de decrementare definită astfel: dacă

ultima cifră a numărului nr nu este 0, se scade 1 din nr; altfel, numărul este ı̂mpărt, it la

10 s, i se păstrează doar partea ı̂ntreagă.

Varianta A este o implementare recursivă corectă. Se verifică dacă k = 0, caz ı̂n care se

returnează direct nr. Altfel, se aplică regula decrementării s, i se apelează recursiv funct, ia.

Aceasta ment, ine ordinea corectă a operat, iilor s, i oferă rezultatul corect.

Varianta B implementează acelas, i proces folosind o structură repetitivă while, iterând

de k ori s, i aplicând decrementarea conform regulilor enunt,ate. Aceasta este o variantă

iterativă echivalentă cu A, fiind astfel corectă.

Varianta C cont, ine o eroare de logică, deoarece schimbă ordinea operat, iilor: dacă ultima

cifră este mai mare ca 0, ı̂n loc să scadă 1, face o ı̂mpărt, ire la 10, ceea ce duce la rezultate

incorecte ı̂n anumite cazuri. Aceasta nu este o solut, ie corectă.

Varianta D oferă o solut, ie recursivă optimizată, reducând numărul de apeluri recursive

prin verificarea directă a ultimei cifre s, i aplicând eliminarea grupată a zerourilor. Deoa-

rece această implementare respectă regulile problemei s, i este mai eficientă decât varianta

simplă recursivă, este de asemenea corectă.

As,adar, algoritmii corect, i care rezolvă problema sunt A, B s, i D.

613. Algoritmul fn(v, n) parcurge vectorul v s, i verifică fiecare element pentru a

determina dacă toate cifrele sale sunt pare.

Pentru fiecare număr v[i], se init, ializează variabila ok cu valoarea True, iar numărul este

605

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

verificat cifră cu cifră prin ı̂mpărt, iri succesive la 10. Dacă o cifră impară este găsită,

ok devine False, iar numărul nu este considerat valid. În final, se contorizează toate

numerele care cont, in doar cifre pare.

Varianta A este incorectă deoarece algoritmul nu verifică paritatea ı̂ntregului număr, ci a

fiecărei cifre ı̂n parte.

Varianta B este incorectă deoarece puterile lui 2 nu sunt identificate corect prin verificarea

cifrelor pare; de exemplu, 8 este o putere a lui 2 dar cont, ine doar o cifră.

Varianta C este corectă, deoarece algoritmul identifică s, i numără elementele din vector

care sunt formate doar din cifre pare.

Varianta D este incorectă, deoarece algoritmul verifică doar existent,a unei cifre impare,

dar nu confirmă că toate cifrele sunt impare.

As,adar, varianta corectă de răspuns este varianta C.

614. Algoritmul magic(s, n) verifică dacă s, irul s este un palindrom, adică dacă se

cites,te la fel de la dreapta la stânga s, i de la stânga la dreapta.

Algoritmul compară fiecare caracter s[i] cu caracterul simetric său fat, ă de mijlocul s, irului,

s[n - i + 1]. Dacă cel put, in o pereche de caractere nu coincide, algoritmul returnează 0.

Dacă toate caracterele sunt egale cu omologii lor din partea opusă, algoritmul returnează

1.

Varianta A este incorectă, deoarece algoritmul nu verifică paritatea numărului de caractere,

ci doar dacă s, irul este un palindrom.

Varianta B este corectă, deoarece algoritmul compară simetric caracterele s, i returnează 1

doar dacă s, irul este un palindrom.

Varianta C este incorectă, deoarece expresia n - i + 1 nu poate deveni negativă. Valoarea

minimă a lui i este 1, iar ı̂n acest caz, expresia devine n - 1 + 1 = n, care este ı̂ntotdeauna

validă.

Varianta D este incorectă, deoarece algoritmul nu verifică dacă s, irul cont, ine doar caractere

alfanumerice.

As,adar, varianta corectă este B.

615. Algoritmul cites,te un număr natural a s, i parcurge două bucle imbricate pentru a

606

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

genera perechi de valori (i, j) conform unor condit, ii specifice.

Prima buclă for iterează variabila i de la 1 la a - 1, iar cea de-a doua buclă for parcurge

variabila j de la i + 2 până la a. Pentru fiecare pereche (i, j), algoritmul verifică dacă

suma i + j este mai mare decât a - 1. Dacă această condit, ie este ı̂ndeplinită, se afis,ează

tripletul format din a, i s, i j, iar pe fiecare linie a ies, irii se va afis,a un astfel de triplet.

Pentru a = 9, numărul total de solut, ii afis,ate este 19, ceea ce corespunde variantei C.

616. Algoritmul ceFace(n) calculează suma cifrelor pare ale numărului n.

Se init, ializează variabila s cu valoarea 0. Apoi, ı̂ntr-o buclă while, algoritmul extrage

ultima cifră a lui n folosind operat, ia MOD 10 s, i verifică dacă este pară. Dacă da, o

adaugă la sumă. După fiecare iterat, ie, elimină ultima cifră din n printr-o ı̂mpărt, ire la 10.

Pentru apelul ceFace(9876), cifrele pare sunt 8, 6 s, i suma acestora este 8+6 = 14. Prin

urmare, algoritmul returnează valoarea C.

617. Algoritmul generare(n) calculează numărul de transformări succesive aplicate

asupra lui n până când se ajunge la o valoare deja generată anterior.

Se foloses,te un vector used pentru a marca valorile ı̂ntâlnite s, i se init, ializează numărătorul

nr cu 0. Algoritmul transformă n iterativ prin ı̂nlocuirea lui cu suma cuburilor cifrelor

sale, până când se ajunge la o valoare deja vizitată.

Astfel, variantele corecte de răspuns sunt A, C s, i D.

618. Algoritmul f(a, b) are o problemă de recursivitate infinită, deoarece nu există o

condit, ie de oprire corect definită. Se observă că atunci când a este diferit de 0, apelul

recursiv este făcut fie cu a ı̂mpărt, it la 2 s, i b ı̂nmult, it cu 2, fie cu a ı̂nmult, it cu 2 s, i b

ı̂mpărt, it la 2. Prima variantă reduce treptat valoarea lui a s, i cres,te valoarea lui b, iar a

doua variantă cres,te a s, i reduce b.

Analizând apelul f(20, 10), se observă că ı̂n prima ramură a condit, iei, a se reduce la

jumătate, iar b se dublează succesiv: f(10, 20), f(5, 40), f(2, 80), f(1, 160), f(0,

320). Astfel, prima dată când a devine 0, valoarea lui b este 320.

Prin urmare, răspunsul corect este C.

619. Pentru ca numărul n să ı̂ndeplinească condit, iile din enunt, , acesta trebuie să fie

divizibil cu 3 s, i să aibă ultima cifră 4 sau 6. Analizând fiecare variantă:

607

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

Varianta A este incorectă deoarece expresia (n MOD 10 = 4) AND (n MOD 10 = 6)

este mereu falsă, ı̂ntrucât un număr nu poate avea simultan ultima cifră 4 s, i 6.

Varianta B este corectă deoarece (n MOD 6 = 0) asigură divizibilitatea cu 3 s, i 2, iar

((n MOD 10 = 4) OR (n MOD 10 = 6)) garantează că ultima cifră este 4 sau 6.

Varianta C este incorectă deoarece (n MOD 9 = 0) asigură doar că suma cifrelor lui n

este divizibilă cu 9, nu că n este divizibil cu 3. Astfel, condit, ia nu este suficientă pentru

a garanta corectitudinea expresiei.

Varianta D este incorectă deoarece verifică dacă n este divizibil cu 3 s, i dacă ultima cifră

este determinată printr-o combinat, ie de modulo 2 s, i 5, ceea ce nu garantează că ultima

cifră este exact 4 sau 6.

Prin urmare, răspunsul corect este B.

620. Pentru ca expresia logică (X OR Z) AND (X OR Y) să fie evaluată ca True,

trebuie ca ambele paranteze (X OR Z) s, i (X OR Y) să fie evaluate ca True.

În varianta A, X s, i Y sunt False, iar Z este True. Evaluând expresia, (X OR Z) devine

True deoarece Z este True, dar (X OR Y) devine False deoarece atât X, cât s, i Y sunt

False. Astfel, expresia finală este False, deci această variantă nu este corectă.

În varianta B, X este True, iar Y s, i Z sunt False. Evaluând expresia, (X OR Z) devine

True deoarece X este True, iar (X OR Y) devine, de asemenea, True din acelas, i motiv.

Astfel, expresia finală este True, ceea ce face această variantă corectă.

În varianta C, X s, i Z sunt False, iar Y este True. Evaluând expresia, (X OR Z) devine

False deoarece ambele sunt False, iar (X OR Y) devine True deoarece Y este True.

Deoarece una dintre paranteze este False, expresia finală este False, deci această variantă

nu este corectă.

În varianta D, toate valorile X, Y s, i Z sunt True. Evaluând expresia, atât (X OR Z),

cât s, i (X OR Y) devin True, ceea ce face expresia finală True. Astfel, această variantă

este corectă.

Prin urmare, variantele corecte de răspuns sunt B s, i D.

621. Pentru a determina câte s, iruri respectă condit, iile problemei, analizăm mai ı̂ntâi

totalul de s, iruri ordonate strict crescător s, i apoi verificăm câte dintre acestea au un număr

608

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

impar de consoane.

Pentru l = 1, s, irurile valide sunt formate dintr-o singură literă. Există 5 litere ı̂n total

(a, b, c, d, e), dintre care 3 sunt consoane (b, c, d). Astfel, avem 3 s, iruri valide de lungime

1.

Pentru l = 2, trebuie să alegem două litere distincte din cele 5, ı̂n ordine strict crescătoare.

Numărul total de astfel de combinat, ii este
(
5
2

)
= 10. Pentru ca un s, ir de lungime 2 să

aibă un număr impar de consoane, trebuie să cont, ină exact una dintre cele 3 consoane

disponibile. Alegând una dintre cele 3 consoane s, i o vocală, obt, inem 3 × 2 = 6 s, iruri

valide.

Pentru l = 3, trebuie să alegem trei litere distincte din cele 5, ı̂n ordine strict crescătoare.

Numărul total de astfel de combinat, ii este
(
5
3

)
= 10. Pentru ca un s, ir de lungime 3 să

aibă un număr impar de consoane, trebuie să cont, ină exact o consoană sau toate cele trei

consoane. Există
(
3
1

)
×

(
2
2

)
= 3 × 1 = 3 s, iruri care cont, in exact o consoană s, i 1 s, ir care

cont, ine toate consoanele. În total, avem 4 astfel de s, iruri.

Adunând cazurile pentru fiecare lungime obt, inem: 3+6+4 = 13. Astfel, varianta corectă

de răspuns este B.

622. Pentru a determina numărul de asteriscuri s, i puncte necesare pentru construirea

pătratului cu diagonale, analizăm modelul general.

Un pătrat de latură n cont, ine ı̂n total n × n caractere. Toate caracterele de pe margine

s, i pe diagonale sunt asteriscuri, iar restul sunt puncte.

Liniile de margine, adică prima s, i ultima linie, cont, in fiecare n asteriscuri. Liniile in-

termediare cont, in două asteriscuri pe margine s, i două asteriscuri pe fiecare diagonală.

Deoarece cele două diagonale se intersectează ı̂n mijloc atunci când n este impar, trebuie

să avem grijă să nu dublăm numărarea acelui punct.

Pentru n = 7, avem 7× 7 = 49 caractere ı̂n total. Numărul de asteriscuri de pe margine

este 7+7+5+5 = 24 (margini orizontale s, i verticale). Cele două diagonale au ı̂mpreună

7 + 7− 1 = 13 asteriscuri , deoarece eliminăm punctul comun. Astfel, avem 24 + 9 = 33

asteriscuri s, i 49− 33 = 16 puncte. Aceasta confirmă că varianta C este corectă.

Pentru n = 18, numărul total de caractere este 18×18 = 324. Marginea cont, ine 18+18+

609

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

16+16 = 68 asteriscuri, iar diagonalele contribuie cu 18+18−1 = 35 asteriscuri. Totalul

de asteriscuri este 100, iar punctele rămase sunt 324 − 100 = 224. Aceasta confirmă că

varianta D este corectă.

Astfel, răspunsul final este reprezentat de variantele de răspuns C s, i D.

623. Algoritmul ceFace(T, n, e) verifică dacă valoarea e se află ı̂n s, irul T s, i returnează

pozit, ia acesteia sau 0 dacă nu este găsită.

Dacă e este un număr par, algoritmul utilizează căutarea binară. Se init, ializează două

variabile, a s, i b, care definesc limitele intervalului de căutare. Algoritmul compară e cu

elementul din mijlocul intervalului s, i ı̂ngustează căutarea la jumătatea corespunzătoare

până când fie găses,te valoarea căutată, fie determină că aceasta nu există ı̂n s, ir. În cazul

ı̂n care e nu se află ı̂n s, ir, algoritmul returnează 0.

Dacă e este un număr impar, algoritmul utilizează căutarea secvent, ială. Începe de la

prima pozit, ie a s, irului s, i verifică fiecare element până când găses,te e sau ajunge la finalul

s, irului. Dacă valoarea este găsită, returnează pozit, ia acesteia, altfel returnează 0.

Afirmat, ia conform căreia algoritmul returnează 0 dacă e nu se află ı̂n s, irul T este

adevărată. De asemenea, dacă e este impar s, i se află ı̂n s, ir, algoritmul utilizează căutarea

secvent, ială pentru a determina pozit, ia sa, ceea ce confirmă a doua afirmat, ie corectă. Pe

de altă parte, dacă e este impar, algoritmul nu foloses,te căutarea binară, iar dacă este

par, există posibilitatea să nu fie găsit, ceea ce face ca celelalte afirmat, ii să fie false.

Astfel, variantele corecte de răspuns sunt A s, i C.

624. Algoritmul calcul(x, n) calculează o valoare bazată pe două etape de adunare.

Prima buclă for acumulează o sumă init, ială ı̂n variabila b, adăugând toate valorile de la

1 până la n− x. A doua buclă for continuă adunarea ı̂n variabila a, adăugând valorile de

la n− x+ 1 până la n. La final, algoritmul returnează diferent,a dintre cele două sume.

Dacă n = 5 s, i x = 2, valorile adunate ı̂n prima buclă sunt 1 + 2 + 3, iar ı̂n a doua

buclă se adaugă 4 + 5. Diferent,a dintre suma finală s, i suma init, ială este 5, ceea ce

confirmă varianta B. Deoarece algoritmul efectuează doar operat, ii de adunare pe valori

strict pozitive, rezultatul său va fi ı̂ntotdeauna un număr strict mai mare decât 0, ceea ce

confirmă varianta D.

610

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

As,adar, variantele corecte de răspuns sunt B s, i D.

625. Algoritmul s(a, b, c) este o funct, ie recursivă care efectuează operat, ii de ı̂nmult, ire

pe parametrii de intrare ı̂n funct, ie de relat, iile dintre aces,tia. Dacă oricare dintre valori este

1, algoritmul returnează 1. În caz contrar, aplică recursiv ı̂nmult, iri succesive modificând

valorile lui a, b s, i c până când una dintre acestea devine 1.

Pentru cazul ı̂n care a = b s, i a < c, execut, ia algoritmului urmează ramura care apelează

s(a - 1, b - 1, c - 1), ceea ce duce la o ı̂nmult, ire succesivă a valorilor lui c până la

c − a + 1. Aceasta corespunde expresiei c!/(c − a + 1)!, ceea ce confirmă varianta B ca

fiind corectă.

Astfel, varianta corectă de răspuns este B.

626. Pentru cazul ı̂n care a = 3, b = 4 s, i c = 7, algoritmul s(a, b, c) urmează

diferite ramuri ı̂n funct, ie de relat, iile dintre parametrii de intrare. Deoarece a < b, se exe-

cută apelul recursiv s(3, 3, 7). Acum, cum a = b, se va executa ramura care returnează

c×s(2, 2, 6). Continuând acest proces, se ajunge la 7×6×4, ceea ce oferă rezultatul final

168. Astfel, varianta D este corectă.

627. Algoritmul numere(a, b, c, d, e) compară frecvent,a aparit, iei cifrei d ı̂n repre-

zentările ı̂n baza c ale numerelor a s, i b. Pentru fiecare cifră extrasă din a care este egală

cu d, variabila e este incrementată, iar pentru fiecare cifră extrasă din b care este egală cu

d, variabila e este decremenată. La final, dacă e este 0, ı̂nseamnă că a s, i b cont, in cifra d

de acelas, i număr de ori, iar algoritmul returnează True, ı̂n caz contrar returnează False.

De asemenea, algoritmul parcurge cifrele lui a s, i b ı̂n mod sincron, astfel ı̂ncât schimbare

lui a cu b ı̂n apel nu modifică rezultatul returnat.

As,adar, variantele corecte de răspuns sunt A s, i C.

628. S, irul s este generat conform unei reguli de concatenare, ı̂n care fiecare termen este

format prin alăturarea cifrelor ultimilor doi termeni ai s, irului. Primii doi termeni sunt x

s, i x+1, iar tot, i ceilalt, i sunt construit, i iterativ pe baza celor anteriori.

Numărul de cifre din fiecare termen cres,te exponent, ial, iar pentru a determina termenul

precedent unui termen cu k1 cifre, trebuie să parcurgem secvent, ial termenii s, irului s, i să

verificăm numărul lor de cifre. În fiecare caz, identificăm primul termen care are cel put, in

611

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

k cifre, determinăm termenul precedent s, i verificăm numărul său de cifre.

Aplicând această metodă, se obt, in următoarele rezultate corecte: pentru x = 15 s, i k = 8,

numărul cifrelor termenului căutat este 6; pentru x = 5 s, i k = 12, numărul cifrelor

termenului căutat este 8.

Astfel, variantele corecte de răspuns sunt A s, i C.

629. Algoritmul fibonacci(n) este o implementare recursivă a secvent,ei Fibonacci,

unde pentru fiecare apel cu n > 1, funct, ia se autoapelează de două ori: o dată cu n − 1

s, i o dată cu n− 2.

Mesajul ”Aici” este afis,at doar atunci când n ≤ 1, ceea ce corespunde cazurilor de bază ale

recursiei. Fiecare astfel de apel corespunde unei frunze din arborele recursiv de apeluri,

iar numărul total de frunze ı̂ntr-un astfel de arbore pentru fibonacci(n) este exact

fibonacci(n).

Astfel, numărul total de afis, ări ale mesajului ”Aici” este exact egal cu valoarea lui

fibonacci(n), ceea ce face ca afirmat, ia A să fie corectă.

630. Pentru a calcula eficient valoarea expresiei E(x) = a0+a1∗x+a2∗x2+a3∗x3+a4∗x4,

trebuie să determinăm numărul minim de operat, ii de ı̂nmult, ire necesare.

O abordare directă presupune calculul separat al fiecărei puteri a lui x, ceea ce ar duce

la patru ı̂nmult, iri pentru x2, x3, x4. Ulterior, fiecare termen ai ∗ xi ar necesita ı̂ncă patru

ı̂nmult, iri, rezultând un total de s,apte ı̂nmult, iri. Această abordare nu este optimă.

O metodă mai eficientă este aplicarea Schemei lui Horner, care permite factorizarea ex-

presiei astfel:

E(x) = a0 + x(a1 + x(a2 + x(a3 + xa4)))

Prin această metodă, se efectuează doar patru ı̂nmult, iri: fiecare factor x este multiplicat

succesiv ı̂n expresie. Aceasta este solut, ia optimă, ceea ce face ca răspunsul corect să fie

A.

631. Algoritmul f(x, n) calculează valoarea lui xn utilizând metoda exponent, ierii

rapide, reducând exponent,a la jumătate la fiecare pas. În loc să efectueze n ı̂nmult, iri,

algoritmul recurge la apeluri recursive care reduc n prin ı̂mpărt, irea la 2, ceea ce duce la

un număr de aproximativ log2 n apeluri recursive.

612

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

În fiecare apel, dacă n este par, algoritmul returnează pătratul valorii obt, inute pentru

exponentul redus, iar dacă n este impar, acesta ı̂nmult,es,te rezultatul part, ial cu x. Acest

comportament este corect pentru orice valoare naturală a lui n, indiferent dacă este par

sau nu.

Prin urmare, algoritmul returnează xn ı̂n general, fără a fi necesar ca n să fie o putere a lui

2 sau să fie par. Deoarece timpul de execut, ie este de ordin O(log2 n) datorită ı̂mpărt, irii

repetate a exponentului, răspunsul corect este varianta B.

632. În noua variantă a algoritmului, linia 10 a fost modificată astfel ı̂ncât, ı̂n loc

de return x * p * p, acum returnează return x * f(x, n - 1). Această modificare

elimină avantajul exponent, ierii rapide, transformând algoritmul ı̂ntr-o implementare re-

cursivă directă a exponent, ierii.

În această nouă variantă, algoritmul reduce exponentul cu 1 la fiecare apel recursiv, ceea

ce ı̂nseamnă că efectuează aproximativ n apeluri recursive, ı̂n loc de log2 n. Totus, i, de-

oarece fiecare apel efectuează exact o ı̂nmult, ire cu x, rezultatul final rămâne corect s, i

algoritmul continuă să returneze xn. Astfel, varianta corectă este D.

633. Algoritmul f(arr, i, n, p) determină suma maximă a unui subset de elemente

din s, irul arr, respectând condit, ia ca două elemente consecutive din subset să nu fie adia-

cente ı̂n s, irul original.

Funct, ia recursivă explorează două opt, iuni pentru fiecare element arr[i] : fie ı̂l exclude s, i

apelează recursiv pentru elementul următor (n1), fie ı̂l include, dar doar dacă nu este ime-

diat după ultimul element selectat (n2). Rezultatul final este determinat prin compararea

celor două variante s, i alegerea maximului folosind funct, ia auxiliară f2(a, b).

Pentru s, irul (10, 1, 5, 4, 7, 12, 1, 12, 6) s, i apelul f(arr, 1, 9, -10), algoritmul calculează

suma maximă de elemente neadiacente. În acest caz, suma maximă este 39, astfel ı̂ncât

răspunsul corect este C.

634. Algoritmul f(n) cont, ine două bucle imbricate care influent,ează complexitatea sa

temporală. Prima buclă exterioară are variabila j init, ializată la n s, i se execută până când

j devine 1, fiind ı̂mpărt, ită la 2 ı̂n fiecare iterat, ie. Aceasta determină un număr de iterat, ii

proport, ional cu log2 n.

613

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

Cea de-a doua buclă, interioară, are variabila i init, ializată la 1 s, i se execută până la n4,

dublându-se de fiecare dată. Numărul total de iterat, ii este proport, ional cu log4(n
4), ceea

ce duce la un număr de pas, i egal cu O(log24 n).

Astfel, complexitatea timp a algoritmului se ı̂ncadrează ı̂n clasele O(log22 n) s, i O(log24 n),

ceea ce face ca răspunsul corect să fie B s, i C.

635. Algoritmul f(n) determină un model de afis,are bazat pe două bucle imbricate.

Bucla exterioară reduce valoarea j prin ı̂mpărt, irea la 2 ı̂n fiecare iterat, ie, ceea ce determină

un număr de pas, i proport, ional cu log2 n.

În fiecare iterat, ie a buclei exterioare, bucla interioară afis,ează un număr de stelut,e, acesta

fiind determinat de cres,terea exponent, ială a variabilei i, de la 1 până la n4, ı̂n pas, i

multiplicat, i cu 4. Numărul total de stelut,e afis,ate depinde de numărul de iterat, ii ale

acestei bucle.

În plus, dacă valoarea j DIV 2 > 1, algoritmul afis,ează un spat, iu ı̂ntre grupurile de

stelut,e. Acest lucru influent,ează modul ı̂n care sunt separate grupurile de caractere

afis,ate.

Pentru n = 10, se confirmă că sunt afis,ate grupuri de câte 7 stelut,e, separate prin câte

un spat, iu, ceea ce face afirmat, ia A corectă. În cazul n = 100, algoritmul ajunge să afis,eze

84 de stelut,e s, i 5 caractere spat, iu, ceea ce confirmă s, i afirmat, ia D.

636. Expresia va avea valoare ADEVĂRAT dacă s, i numai dacă a < 5 s, i a > 2, deci

a ∈ {3, 4}.

637. Algoritmul returnează numărul total de factori de 3 din toate elementele vectorului

v.

638. In expresia dată se adună parităt, ile a două numere consecutive. Întotdeauna unul

este par s, i unul impar. Întotdeauna expresia va avea valoarea 1.

639. Algoritmul realizează sortarea crescătoare a elementelor vectorului x, folosind me-

toda Bubble Sort. Variabila p este init, ializată cu 1 s, i este incrementată cu 1 de n − 1

ori, astfel ı̂ncât p va avea valoarea n. La final, n va lua valoarea lui p, deci nu va fi

decrementat.

640. Algoritmul returnează suma numerelor impare din vectorul a.

614

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

641. Algoritmul returnează numărul de numere impare din vectorul v.

642. Algoritmul returnează adevărat dacă s, i numai dacă numărul x este pătrat perfect,

fals altfel. Se caută binar rădăcina pătrată a lui x ı̂n intervalul [1, x].

643. Algoritmul calculează ı̂n b oglinditul lui a. Se verifică dacă a este palindrom; dacă

da, se returnează adevărat, altfel fals.

644. A. Adevărat, pentru a = 2021, valoarea lui x va fi ı̂ntotdeauna 2021, oricare ar fi

b, deoarece x va fi ı̂ntotdeauna 1 × 2021. B. Adevărat. C. Adevărat, se observă că x-ul

se va repeta din 4 ı̂n 4, pentru b de forma 4k + 1 se returnează 7777, pentru b de forma

4k + 2 se returnează 7× 7777, pentru b de forma 4k + 3 se returnează 9× 7777, pentru b

de forma 4k se returnează 3 × 7777. b = 2021 este de forma 4k + 1, astfel se returnează

7777. D. Fals, valoarea returnată este influent,ată de variabila a, nu de b.

645. Numărul de elemente de pe cele două diagonale ale unei matrice pătratice este

2× n− 1, dacă n este impar s, i 2× n dacă n este par.

646. A. Fals, NU (((1 > 0) S, I (0 < 1)) SAU (1 > 1)) ⇒ NU ((ADEVĂRAT S, I

ADEVĂRAT) SAU FALS) ⇒ NU (ADEVĂRAT SAU FALS) ⇒ NU (ADEVĂRAT)

⇒ FALS. B. Adevărat, ((0 > 0) S, I (0 < 1)) SAU ((1 > 0) S, I (1 < 2)) ⇒ (FALS

S, I ADEVĂRAT) SAU (ADEVĂRAT S, I ADEVĂRAT) ⇒ FALS SAU ADEVĂRAT ⇒

ADEVĂRAT. C. Adevărat, (NU (1 > 0)) SAU (NU (0 > 0))⇒ (NU ADEVĂRAT) SAU

(NU FALS) ⇒ FALS SAU ADEVĂRAT ⇒ ADEVĂRAT. D. Adevărat, (1 > 0) SAU ((0

> 0) S, I (0 < 0)) SAU (1 < 1) ⇒ ADEVĂRAT SAU (FALS S, I FALS) SAU FALS ⇒

ADEVĂRAT SAU FALS SAU FALS ⇒ ADEVĂRAT.

647. Algoritmii de la A, B, C calculează acelas, i lucru, suma elementelor de pe diagonala

principală a matricei e. Rezultatul de la D este diferit, niciodată i nu va fi egal cu j,

deoarece j pleacă de la i+ 1 ı̂ntotdeauna.

648. Algoritmul returnează cel mai mic divizor al lui b care este mai mare sau egal cu a.

649. afis(4) = 4 afis(3) 4, afis(3) = 3 afis(2) 3, afis(2) = 2 afis(1) 2, afis(1) =

1 afis(0) 1, ⇒ afis(0) = 0, afis(1) = 1 0 1, afis(2) = 2 1 0 1 2, afis(3) = 3 2 1 0 1 2 3,

afis(4) = 4 3 2 1 0 1 2 3 4

650. Se realizează conversia numărului din baza 10 ı̂n baza x sau se realizează conversia

615

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

numărului din baza x ı̂n baza 10. Aplicăm metoda de a transforma numărul din baza 10

ı̂n baza x. A. Adevarat, 67(10) = 232(5), 232 ≤ 232. B. Fals, Nu există 323(3), 3 nu poate

apărea ı̂n baza 3. C. Adevarat, 67(10) = 1003(4), 232 ≤ 1003. D. Fals, 67(10) = 151(6),

232 > 151.

651. A. Fals, algoritmul intră ı̂n buclă infinită ı̂n momentul ı̂n care s, irul a are cel put, in

2 elemente de 0 la apelul init, ial. B. Algoritmul numără câte elemente de 0 sunt ı̂n s, irul

a, iar apoi suprascrie ultimele k elemente din s, ir cu 0, unde k reprezintă numărul de

elemente de 0. Se pierd ultimele elemente. C. Adevărat. D. Fals, algoritmul nu t, ine cont

de ordinea relativă a elementelor s, irului a din apelul init, ial.

652. Se aplică formula de la Suma Gauss, n·(n+1)
2 . Numerele de la 1 la 20 apar pe primele

20·21
2 = 210 pozit, ii. Prima pozit, ie pe care apare valoarea 21 este 211, iar 21 apare de 21

ori, deci ultima pozit, ie va fi 231. Pozit, iile din intervalul [211, 231].

653. f(3, 2) ⇒ ”FMI” f(−1, 1) ⇒ ”FMI” ”FMI” f(0, 0) ⇒ ”FMI” ”FMI” ”FMI” 1, se

scrie de 3 ori textul ”FMI” s, i se returnează 1.

f(2, 3) ⇒ ”FMI” f(−1, 1) ⇒ ”FMI” ”FMI” f(0, 0) ⇒ ”FMI” ”FMI” ”FMI” 1, se scrie

de 3 ori textul ”FMI” s, i se returnează 1.

f(f(3, 2), f(2, 3))⇒ f(1, 1)⇒ ”FMI” f(0, 0)⇒ ”FMI” ”FMI” 1, se scrie de 2 ori textul

”FMI” s, i se returnează 1.

Pentru secvent,a de cod f(f(3, 2), f(2, 3)) se va scrie 8 ori textul ”FMI”.

654. Apelul ceFace(n, 2) returnează suma divizorilor proprii ai lui n, din cauza faptului

că i se apelează cu valoarea 2. 1 s, i n nu se iau ı̂n calcul.

655. Dacă e este par, atunci algoritmul verifică dacă e apare ı̂n s, irul T folosind căutare

binară, altfel verifică dacă e apare ı̂n s, irul T folosind căutare secvent, ială.

656. Numărul de asteriscuri este 3 × (n − 1), iar numărul total de caractere este

n2 + n×(n−1)
2 . Numărul de puncte = Numărul total de caractere - Numărul de aste-

riscuri, adică n2 + n×(n−1)
2 − 3 × (n − 1). A. Fals, pentru n = 2 avem 3 asteriscuri s, i

2 puncte. B. Adevarat, pentru n = 7 avem 18 asteriscuri s, i 52 de puncte. C. Fals. D.

Adevarat, pentru n = 15 avem 42 asteriscuri s, i 288 de puncte.

657. A. Fals, pentru n par, stânga nu va ajunge egală cu dreapta, astfel se poate intra ı̂n

616

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

bucla infinită. B. Adevarat. C. Fals, se returnează fals când prim ̸= ultim s, i când găsim

două caractere diferite, nu trebuie să se returneze fals. D. Fals, se returnează adevărat

când prim ̸= ultim s, i nu ajunge doar ca două caractere să fie diferite, ci trebuie ca toate.

658. A. Fals, contraexemplu: n = 4 s, i a = [1, 1, 1, 2, 2, 2, 2, 1] va rezulta [1, 1, 1, 2, 1, 2, 2, 2].

B. Fals, ultima linie din interschimbare este incorectă, nu se interschimbă corect elemen-

tele. C. Adevarat. D. Fals, având ”Dacă” nu va fi niciodată adevărat, nu se poate ca a[j]

să fie s, i par s, i impar ı̂n acelas, i timp.

659. Vom lua exemplul n = 10 s, i k = 3, iar indicii generat, i trebuie să fie 1, 4, 7. A.

Pentru j = 1 se generează 2, pentru j = 2 se generează 5 s, i pentru j = 3 se generează

8. B. Pentru j = 1 se generează 1, pentru j = 2 se generează 4 s, i pentru j = 3 se

generează 7. C. Pentru j = 1 se generează 0, pentru j = 2 se generează 3 s, i pentru j = 3

se generează 6. D. Pentru j = 1 se generează 1, pentru j = 2 se generează 4 s, i pentru

j = 3 se generează 7. De asemenea, formulele de la variantele B s, i D sunt echivalente:(
(j−1)·n

k

)
+ 1 =

(
(j−1)·n

k

)
+ k

k = (j−1)·n+k
k .

660. Varianta C. se elimină, deoarece reprezentarea binară a lui 3 este 11, iar suma

cifrelor binare este 2, nedivizibil cu 3. Demonstrăm că afirmat, iile A, B, D sunt adevărate

prin următoarea afirmat, ie mai generală: ”Fie N un număr natural a cărui reprezentare

ı̂n baza B este bnbn−1 . . . b0. Numărul N este divizibil cu B + 1 dacă s, i numai dacă

expresia E = b0 − b1 + b2 − b3 + · · · + (−1)n · bn este divizibilă cu B + 1.” Pentru a

demonstra teorema de mai sus, vom demonstra mai ı̂ntâi următoarea lemmă: ”Fie P

un număr natural. Atunci P 2k este de forma X · (P + 1) + 1, iar P 2k+1 este de forma

Y · (P + 1) − 1.” Demonstrat, ia lemei se face prin induct, ie. Mai ı̂ntâi să observăm că

P 0 = 1 = 0 · (P + 1) + 1, iar P 1 = P = 1 · (P + 1) − 1. Dacă P 2k = X · (P + 1) + 1,

atunci P 2k+1 = P · P 2k = P · (X · (P + 1) + 1) = P ·X · (P + 1) + P = Y · (P + 1)− 1.

Similar, dacă P 2k+1 = Y · (P +1)− 1, atunci P 2k+2 = P ·P 2k+1 = P · (Y · (P +1)− 1) =

P · Y · (P + 1) − P = X · (P + 1) + 1. Demonstrat, ia teoremei: Dacă bnbn−1 . . . b0 este

reprezentarea ı̂n baza B a lui N, atunci N = b0 + b1 ·B+ b2 ·B2 + · · ·+ bn ·Bn. Deoarece

puterile lui B sunt de forma precizată ı̂n lemmă, obt, inem: N = b0 · ((B+1) · f0+1)+ b1 ·

((B+1) ·f1−1)+b2 ·((B+1) ·f2+1)+b3 ·((B+1) ·f3−1)+ · · ·+bn ·((B+1) ·fn+(−1)n).

617

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

As,adar, N = (B + 1) · b0 · f0 + b0 + (B + 1) · b1 · f1 − b1 + (B + 1) · b2 · f2 + b2 + (B +

1) · b3 · f3 − b3 + · · · + (B + 1) · bn · fn + (−1)n · bn. Putem rescrie această expresie ca:

N = (B+1)·(b0 ·f0+b1 ·f1+b2 ·f2+· · ·+bn ·fn)+b0−b1+b2−b3+· · ·+(−1)n ·bn. Deoarece

(B+1) ·M este divizibil cu B+1, deducem că N este divizibil cu B+1 dacă s, i numai dacă

b0− b1+ b2− b3+ · · ·+(−1)n · bn este divizibil cu B+1. Mai sus este un caz particular al

teoremei, ı̂n care B = 2. Expresia E poate fi scrisă s, i E = (b0 + b2 + . . .)− (b1 + b3 + . . .)

- diferent,a dintre suma cifrelor de rang par s, i suma cifrelor de rang impar. Dacă B = 10,

proprietatea de mai sus este ”Criteriul de divizibilitate cu 11”.

661. Pentru n = 12133121, prefixul este 12 s, i are lungimea 2. La A. se returnează 2, la

B. se returnează 1, la C. se returnează 3, la D. se returnează 2.

Pentru n = 34534536, prefixul este 3453 s, i are lungimea 4. La A. se returnează 4, la B.

se returnează 1, la C. se returnează 5, la D. se returnează 4.

Pentru n = 1223, un astfel de prefix nu există (considerăm că are lungime 0).

La A. se returnează 0, la B. se returnează 1, la C. se returnează 0, la D. se returnează 0.

662. Pentru a calcula X(i), se vor vizita celulele din celula i, apoi celulele care apar

ı̂n cele noi vizitate s, i tot as,a până când ajungem la celule doar cu constante. La final,

numărăm câte celule distincte am vizitat.

Pentru a calcula Y (i), se vor vizita celulele unde apare celula i, apoi celulele unde apar

cele noi vizitate s, i tot as,a, până când nici o celulă nouă nu mai apare. La final, numărăm

câte celule distincte am vizitat, adăugând s, i celula init, ială i, iar din numărul total de

celule scădem cele calculate.

Exemple:

X(A2)→ B1, B2, B3, D3, D2 ⇒ X(A2) = 5

Y (A2)→ A2, A4, D1 ⇒ Y (A2) = 16− 3 = 13

X(C4)→ A3, B1, D3, B3, D2 ⇒ X(C4) = 5

Y (B2)→ B2, A2, A4, D1 ⇒ Y (B2) = 16− 4 = 12

663. Algoritmul functie(a, b) trebuie să returneze CMMDC(a, b). A. Fals, retur-

nează 1 ı̂ntotdeauna. B. Adevărat, Algoritmul lui Euclid prin ı̂mpărt, iri funct, ionează s, i

dacă a = 0 (a poate fi 0, ı̂n cerint, ă nu se pune restrict, ie pentru nr). C. Fals, Algoritmul

618

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

lui Euclid prin scăderi nu funct, ionează dacă a = 0, va fi ciclu infinit. D. Fals, dacă a = 0,

nu funct, ionează.

664. Fie nrt(n) numărul de afis, ări ale mesajului ”Aici” pentru apelul fibonacci(n).

n 1 2 3 4 5 6 7 8 9 10 ...

fibonacci(n) 1 2 3 5 8 13 21 34 55 89 ...

nrt(n) 0 1 2 4 7 12 20 33 54 88 ...

Din acest tabel rezultă că: nrt(n) = nrt(n − 1) + nrt(n − 2) + 1, pentru n ≥ 2.De

asemenea, avem: nrt(n) = fibonacci(n)− 1.

665. Se dă factor comun la fiecare pas s, i obt, inem E(x) = a0 + x · (a1 + x · (a2 + x · (a3 +

x · x · a5))). Numărul minim de ı̂nmult, iri necesare este 5.

666. Algoritmul foloses,te un indice i pentru a parcurge vectorul, resetându-l la zero când

ajunge la final, s, i interschimbă elementele adiacente folosind operat, ia XOR când acestea

sunt ı̂n ordine descrescătoare, resetând contorul len la dimensiunea vectorului la fiecare

interschimbare, până când nu mai sunt necesare interschimbări.

667. ABCD(16) = A ·163+B ·162+C ·161+D ·160 = 10 ·4096+11 ·256+12 ·16+13 =

43981; 132(8) = 1 · 82 + 3 · 81 + 2 · 80 = 64 + 24 + 2 = 90; 24(6) = 2 · 61 + 4 · 60 = 12 + 4 =

16;A28B(14) = A · 143+2 · 142+8 · 141+B · 140 = 10 · 2744+2 · 196+8 · 14+11 = 27955.

Deci, E = 43981 + 90 + 16 + 27955 = 72042.

668. Traversarea ı̂n preordine parcurge rădăcina, apoi subarborele stâng, iar apoi subar-

borele drept. În acest arbore, ordinea este: 1, 2, 4, 6, 7, 5, 3, 8, 9, 10. Deci, răspunsul

corect este B.

669. Algoritmul calculează suma maximă a tuturor elementelor dintr-un pătrat de di-

mensiune k × k. Prima parte construies,te sume part, iale pe matrice unde fiecare element

a[i][j] cont, ine suma tuturor elementelor din dreptunghiul (1, 1) până la (i, j). A doua parte

foloses,te această matrice pentru a găsi suma maximă dintr-un pătrat k× k s, i numărul de

astfel de pătrate, folosind formula sum = a[i][j] + a[i− k][j − k]− a[i][j − k]− a[i− k][j]

care calculează suma elementelor din pătratul k× k care are colt,ul dreapta-jos la pozit, ia

(i, j).

619

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

670. Algoritmul implementează o căutare binară ı̂ntr-un vector sortat pentru a găsi

pozit, ia maximă până la care suma a două laturi date poate forma un triunghi valid (prin

verificarea inegalităt, ii triunghiului a[i]+a[j] > a[k]), permit, ând astfel determinarea tutu-

ror combinat, iilor posibile de laturi pentru triunghiuri valide. Afirmat, ia C ar fi adevărată

dacă ar fi fost formulată ca ”nu există niciun triunghi valid care să includă laturi aflate

după pozit, ia j”, dar ı̂n forma actuală este falsă deoarece pot exista triunghiuri valide

folosind chiar laturile selectate. Pentru afirmat, ia D, se returnează valoarea 5, nu 4.

671. Algoritmul calculează numărul de cifre de 0 care apar la finalul lui n!. Cum un

produs de 2 s, i 5 formează un zero, algoritmul numără câte perechi de 2 s, i 5 există ı̂n

descompunerea ı̂n factori primi a lui n!.

672. Algoritmul generează toate numerele de 3 cifre, care au cifra sutelor pară, iar cifrele

sale sunt in ordine crescătoare (de la cifra sutelor, la cea a zecilor s, i cea a unităt, ilor).

Această constrângere impune faptul că primul număr generat va fi 234, iar ultimul număr

generat va fi 689. Primele numere afis,ate sunt 234, 235, 236, 237, 238, 239, 245, 246, 247,

s,amd.

673. Ambii algoritmi simulează exponent, ierea rapidă, deci rezultatul va fi, ı̂n ambele

cazuri, ab. Structura repetitivă din algoritmul ceFace2(a, b) nu se va executa de b ori,

deoarece iteratorul său i ı̂s, i dublează valoarea la fiecare pas, deci strctura se va executa

de logb ori.

674. Pentru variantele C s, i D expresia logică devine True deoarece ı̂n ambele cazuri,

des, i prima parte a expresiei este False (din cauza XOR ı̂ntre valori identice pentru A s, i

B), a doua parte devine True (prin XOR ı̂ntre False obt, inut din NOT (True AND True)

s, i True obt, inut din (C OR D)), iar ı̂n final OR dintre False s, i True dă True.

675. Algoritmul prezentat este specific Ciurului lui Eratosthene, care marchează cu 1

multiplii termenului curent i ı̂n s, irul v. Afirmat, ia A este falsă deoarece v[1] = 1, iar 1 nu

este număr compus. Complexitatea totală a algoritmului este O(log(logn)).

676. Strategia D este corectă deoarece sortează artis,tii ı̂n ordine crescătoare a raportu-

lui di DIV fi, ceea ce minimizează suma ponderată a timpilor de as,teptare.

677. Algoritmul calculează recursiv cea mai mică cifră pară a numărului x s, i o returnează,

620

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

iar ı̂n cazul numerelor care nu cont, in cifre pare, algoritmul returnează −1. Deoarece ı̂n

baza 10, un număr x are θ(log10 x) cifre, complexitatea algoritmului este O(log x).

678. Funct, ia X calculează, de fapt, indicatorul lui Euler. Pentru n = 12 este 4, de-

oarece numerele relativ prime cu 12 sunt 1, 5, 7, 11. Pentru n = 5, care este prim,

X(5) = 4, nu 5. Dacă p este prim, X(p) = p − 1 deoarece toate numerele mai mici

decât p sunt relativ prime cu p. Proprietatea D este adevărată deoarece indicatorul lui

Euler respectă principiul fundamental că pentru gcd(a, b) = 1, dacă numărăm elemen-

tele din mult, imea {n : gcd(n, ab) = 1}, aceasta este echivalentă cu produsul cardinalelor

mult, imilor {n : gcd(n, a) = 1} s, i {n : gcd(n, b) = 1}. Formal, dacă n este prim cu a s, i b,

atunci n este prim s, i cu ab, păstrând astfel proprietatea multiplicativăX(ab) = X(a)X(b).

679. Algoritmul simulează o sortare prin numărare a elementelor din v. f este un vector

de frecvent, ă, iar elementele sunt plasate ı̂n final la pozit, ia corespunzătoare ı̂n varianta

sortată a s, irului, care se va ret, ine ı̂n s, irul o. Varianta C nu este corectă deoarece asupra

vectorului f efectuăm sumarea part, ială. Algoritmul mai este cunoscut drept ”Counting

Sort” s, i va avea complexitatea timp O(n) ı̂n toate cele 3 cazuri.

680. Folosind o linie imaginară pentru prima literă inserată in l, putem delimita vectorul

m ı̂n două părt, i: cel rezultat din operat, ia Duplică (cel din stanga liniei) s, i cel rezultat

din operat, ia Mută (cel din dreapta liniei):

(Duplică) (Mută)

Astfel, ı̂ncă din procesarea primelor elemente, observăm că elementele din partea dreapta

sunt ı̂n ordine strict crescătoare, s, i mai exact, apar ı̂n aceeas, i configurat, ie ca ı̂n s, irul

l. Elementele din partea stânga vor fi mereu descrescătoare, indiferent de câte ori a

fost folosită operat, ia Duplică. S, irul final va avea un aspect de ”vale”. De aceea, doar

răspunsul B este fals. (Figura de mai jos reprezintă răspunsul A).

621

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

D C B A A A B C D E

(Duplică) (Mută)

681. Algoritmul explorează recursiv mis,cările posibile (dreapta sau jos) din matrice

pentru a găsi un traseu valid. Algoritmul generează s, i afis,ează toate secvent,ele de mis,cări

care duc de la (1, 1) la (n,m).

682. Algoritmul A implementează ”Stooge Sort”, un algoritm care sortează un s, ir astfel:

verifică dacă valoarea de la ı̂nceputul s, irului este mai mare decât cea de la finalul s, irului,

apoi, dacă sunt mai mult de 3 elemente ı̂n listă sortează, pe rând, prima 2/3 parte din

s, ir, apoi ultima 2/3 parte din s, ir, iar apoi prima 2/3 parte din nou. Rezultatul este

[123, 456, 763, 998]

Algoritmul B sortează s, irul init, ial crescător, după cifra zecilor. Configurat, ia dată va

rezulta astfel ı̂ntr-un s, ir sortat crescător. Rezultatul este [123, 456, 763, 998]

Algoritmul C ı̂ncearcă să sorteze s, irul, atât după cifra zecilor, cât s, i după rezultatul

operat, iei modulo 7. (998 mod 7 = 4, 998 ÷ 100 = 9, 763 mod 7 = 0, 763/10 = 6, etc.).

Rezultatul este [763, 123, 456, 998], deci este singurul răspuns diferit.

Algoritmul D implementează un algoritm de sortare care combină select, ia directă cu

insert, ia, funct, ionând ı̂n două faze: mai ı̂ntâi ı̂mparte s, irul ı̂n două subsecvent,e (una

ordonată s, i alta neordonată) folosind select, ia directă pentru a găsi elementul minim s, i a-l

plasa la ı̂nceput, iar apoi foloses,te insert, ia pentru a muta eficient elementele rămase la

pozit, iile lor corecte ı̂n secvent,a ordonată, rezultând astfel un s, ir complet sortat.

683. Condit, ia de la linia 5 face ca pentru orice a ̸= b, algoritmul să returneze valoarea 0,

lucru care implică doar varianta B ca fiind corectă.

684. Avem 2 cazuri pentru calculul complexităt, ii:

T (n) =


1 n ≤ 1

2 + 2T (n/2) n > 1

622

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

Calculăm complexitatea apelului recursiv: T (n) = 2(1+T (n/2)) = 2(1+2(1+T (n/4))) =

· · · = 2(1+2(1+ . . . 2(1+T (X)))),unde X ≤ 1. La fiecare apel recursiv, valoarea lui n se

ı̂njumătăt,es,te. La fiecare execut, ie, numărul de apeluri se dublează. Deci complexitatea

algoritmului va fi: T (n) = 2log2(n) = n ∈ Θ(n).

685. Pentru n pătrat impar s, i m = 1, funct, ia returnează 1 doar dacă k ≤
√
n (varianta

A), deoarece se scade k2 din n, lăsând 0. Varianta D este corectă: apelul cu k = 1 s, i

m = 1 verifică dacă n este pătrat impar (căutând k =
√
n). Varianta B e falsă (n = 25,

k = 3 continuă până la k = 5).

686. A este adevărată: dacă n = 2m, A poate elimina dintr-o mutare exact 2m pietrele

rămase. B este adevărată: pozit, iile pierzătoare sunt exact pozit, iile multiplu de 3, iar

acest lucru se poate demonstra prin Induct, ie Matematică. C este falsă: de exemplu,

n = 11 = 4 · 2 + 3 nu e pierzător; A ia 2 s, i lasă 9 (multiplu de 3), deci are strategie de

câs,tig. D este falsă, un contraexemplu fiind n = 7.

687. Algoritmul simulează o căutare binară pe s, irul s s, i ret, ine cel mai mare element mai

mic sau egal cu a. Condit, ia de la linia 6 trebuie să aloce corect indicele mijlocului dintre

capătul stâng (x) s, i capătul drept (y). Varianta A este, evident, corectă, iar variantele B

s, i C sunt, de asemenea, corecte, deoarece calculează mijlocul s, irului evitând scenariul de

overflow.

688. Algoritmul implementează recurent,a f(n) = f(n−1)+f(n−2) cu condit, iile init, iale

f(0) = 1, f(1) = 2. Aceasta numără atât s, irurile binare de lungime n fără
”
11”, cât s, i pe

cele fără
”
00” (variantele A s, i B). C este falsă deoarece F0 = 0 ̸= 1, iar D nu are legătură

cu recurent,a.

689. Avem muchii ı̂ntre oricare 2 noduri cu identificatori pari. N fiind par, avem
n

2

noduri pare, deci un număr total de
1

2

(n
2
· (n

2
− 1)

)
muchii. Acelas, i număr de noduri

impare, deci acelas, i număr de muchii ı̂ntre toate nodurile impare. Până acum, avem ı̂n

total
n

2
·
(n
2
− 1

)
muchii. Mai există muchiile ı̂ntre noduri de forma (2k, 2k + 1), deci

vom avea muchiile: (2, 3), (4, 5), . . . , (n− 2, n− 1). Aici sunt doar
n

2
− 1 muchii. În total,

ı̂n graful nostru avem deci
n2

4
− 1 muchii. Răspunsurile A s, i D sunt echivalente.

690. Algoritmul realizează primele n iterat, ii din metoda de sortare Bubble Sort crescător.

623

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

Dacă n = m, vectorul va fi complet sortat crescător. Dacă n < m, doar ultimele n + 1

elemente vor fi sortate crescător, iar restul vectorului poate rămâne nesortat. În prima

iterat, ie, cel mai mare element ajunge pe ultima pozit, ie. În a doua iterat, ie, al doilea cel

mai mare element ajunge pe penultima pozit, ie. După n iterat, ii, ultimele n+ 1 elemente

vor fi ı̂n ordine crescătoare, dar primele elemente pot rămâne nesortate.

691. Algoritmul calculează suma tuturor numerelor din intervalul [x, y], dacă x ≤ y, sau

din intervalul [y, x], dacă y < x, care sunt divizibile cu 3 s, i nu sunt divizibile cu 2.

692. E = 268 + 76 + 118 − 5 ∗ 30 = 268 + 76 + 118 − 150 = 312, 312(10) = 624(7),

312(10) = 138(16)

693. Algoritmul call(arr, n) returnează True atunci când vectorul arr ı̂ncepe cu o va-

loare mai mică decât următoarea valoare s, i, ulterior, apelând algoritmul f, acesta găses,te

un vârf ı̂n secvent, ă, unde elementul curent este mai mare decât vecinii săi. C. Fals, dacă

vectorul este strict crescător cu n < 3 algoritmul va returna False. Altfel, dacă n ≥ 3

algoritmul ar returna True, pentru că ar ajunge la condit, ia i = n. Astfel, fără a preciza

restrict, ii asupra lui n varianta nu e corectă. D. Fals, nu e neapărat să se respecte acel

model ı̂n totalitate, trebuie să existe doar un singur element mai mare decât ambii vecini

ai săi.

694. Algoritmul verifică dacă media aritmetică a cifrelor lui n este mai mare sau egală

decât prima cifră a lui n. A. Fals, trebuie să fie ”mai mare sau egală”. B. Adevărat. C.

Adevărat. D. Adevărat.

695. Algoritmul calculează s, i returnează cel mai mare divizor comun al numerelor a s, i

b, folosind Algoritmul lui Euclid. Dacă a s, i b sunt prime ı̂ntre ele, atunci cel mai mare

divizor comun este 1.

696. Parcurgerile sunt: Postordine(Stânga, Dreapta, Rădăcina): 4 7 9 8 5 2 6 3 1, Preor-

dine(Rădăcina, Stânga, Dreapta): 1 2 4 5 7 8 9 3 6, Inordine(Stânga, Rădăcina, Dreapta):

4 2 7 5 8 9 1 3 6. Arborele binar nu este strict, deoarece nodurile 3 s, i 8 au un singur fiu.

697. Algoritmul ceFace(n, p) returnează un număr format din cifrele lui n, astfel ı̂ncât

după fiecare cifră pară se inserează jumătate din aceasta, iar cifrele impare se păstrează la

fel. De exemplu, dacă n = 12345, algoritmul va returna 1213425, deoarece pentru fiecare

624

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

cifră pară, se adaugă jumătatea acesteia, iar cifrele impare sunt păstrate neschimbate.

698. A. Fals, deoarece pentru x = False, y = False, z = False se vor afis,a True True.

B. Fals, există doar 2 perechi de valori (False, True, False) s, i (False, True, True) pentru

care algoritmul va afis,a True. C. Fals, algoritmul poate să nu afis,eze niciun rezultat, ı̂n

funct, ie de condit, iile init, iale. D. Adevărat, pentru apelurile sim(False, True, False) s, i

sim(False, True, True) algoritmul va afis,a aceeas, i valoare.

699. Parcurge simultan cele două s, iruri s, i compară elementele: dacă un element din a

este mai mic decât cel curent din b, trece la următorul element din a; dacă sunt egale,

trece la următorul element din b; altfel, elementul din b nu există ı̂n a, as,a că ı̂l adaugă

ı̂n c. La final, c cont, ine toate elementele din b care nu apar ı̂n a.

700. Algoritmul pg verifică dacă un s, ir arr de lungime n formează o progresie aritmetică.

Dacă n are mai put, in de 3 elemente, returnează True, deoarece oricare două numere for-

mează o progresie aritmetică. Apoi, calculează diferent,a comună d dintre primele două

elemente s, i parcurge restul s, irului, verificând dacă fiecare diferent, ă succesivă este egală

cu d. Dacă găses,te o abatere, returnează False; altfel, returnează True, confirmând că

s, irul este o progresie aritmetică. A. Fals, s, irul arr formează o progresie geometrică, nu

aritmetică. B. Fals, a[2]− a[1] = 19, iar a[8]− a[7] = 18. C. Adevărat. D. Fals.

701. Algoritmul calculează numărul de pătrate perfecte de numere prime mai mici decât

n, folosindu-se de un algoritm ı̂n stilul Ciurului lui Eratostene. La fiecare pas, ı̂n cazul

ı̂n care găses,te un număr prim, tot, i multiplii, ı̂ncepând de la pătratul numărului, vor fi

marcat, i ca fiind numere compuse (nu e nevoie să ı̂nceapă marcarea de la un număr mai

mic, deoarece tot, i multiplii mai mic decât pătratul perfect vor fi deja marcat, i ca nefiind

numere prime.

702. Primele 20 de cifre afis,ate sunt: 05105620573051056805, iar cifrele de pe pozit, iile

16-20 sunt 56805.

703. Algoritmul actualizează elementul de la pozit, ia idx + 1 din vector cu suma elemen-

tului curent arr[idx], elementului următor arr[idx + 1] s, i elementului următor următor

arr[idx + 2] ı̂mpărt, it (DIV) la 3. Algoritmul continuă recursiv până când idx = n − 1,

când returnează valoarea elementului de la pozit, ia k din vector.

625

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

704. A. Algoritmul divisors1 nu tratează cazul ı̂n care n este un pătrat perfect, astfel

că rezultatul nu va fi corect pentru aceste cazuri. B. Algoritmul divisors2 foloses,te

descompunerea ı̂n factori primi s, i calculează corect numărul de divizori. C. Algoritmul

divisors3 foloses,te o abordare recursivă pentru a număra divizorii s, i tratează corect s, i

cazul ı̂n care n este pătrat perfect. D. Algoritmul divisors4 foloses,te o abordare similară

cu divisors2 s, i calculează corect numărul de divizori folosind descompunerea ı̂n factori

primi. Algoritmul ia ı̂n considerare s, i cazul ı̂n care n rămâne mai mare de 1 la sfârs, it s, i

este corect ı̂n aceste condit, ii.

705. Algoritmul construies,te matricea A, astfel ı̂ncât fiecare element este calculat după

formula A[i][j] = k(j−1) ·Ci−1
j−1, unde Cb

a = a!
b!(a−b)! reprezintă combinări de a luate câte b.

Algoritmul returnează elementul A[n−3][n−2], care este 36 ·C5
6 = 36 ·6 = 729 ·6 = 4374.

706. Algoritmul caută secvent,a de lungime maximă cu termeni din vector care sunt mul-

tipli de k, apoi numără câte secvent,e de lungime maximă sunt ı̂n vector, dar nu ia ı̂n

calcul ultima secvent, ă, dacă vectorul se termină cu o secvent, ă cu proprietatea respectivă.

707. Algoritmul calculează s, i returnează ab. Complexitatea timp a algoritmului este:

T (b) = O(1), dacă b = 0, T (b) = T (b/2)+O(1), dacă b este par, T (b) = 2 ·T (b/2)+O(1),

dacă b este impar. Se va lua complexitatea ı̂n cel mai rău caz, adică atunci când b este

impar la fiecare apel, astfel ı̂ncât T (b) = 2 ·T (b/2)+O(1) = 2 ·(2 ·T (b/4)+O(1))+O(1) =

O(2log2 b) = O(b). A. Fals, 214 = 16384, dar algoritmul se autoapelează de 15 ori, nu de

14. B. Fals, complexitatea algoritmului este O(b). C. Adevărat. D. Adevărat, prin simu-

lare.

708. Algoritmul numără câte numere din intervalul de indici [a, b] din vectorul arr au

toate cifrele diferite de c s, i verifică ca numărul să fie diferit de pozit, ia pe care se află ı̂n

vector. Algoritmul foloses,te tehnica divide et impera.

709. Algoritmul presupune căutarea celui mai mare element din vector, care este mai

mic sau egal cu val, folosind căutarea binară. A. Adevărat. B. Fals. C. Adevărat. D.

Fals.

710. Algoritmul algo(q, w, arr, z), pentru apelul cu w = 1, va afişa toate combinările

de q luate câte z cu elemente de la 1 până la n. For-ul ”For i← arr[w− 1] + 1, q− z+w

626

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

execute” asigură posibilităţile de unde vor putea lua valori elementele din soluţie. ”arr[w-

1]+1” reprezintă limita inferioară şi asigură că elementele să fie ı̂n ordine crescătoare, iar

”q-z+w” reprezintă limita superioară, reprezentând diferenţa dintre valoarea maximă şi

numărul de poziţii care trebuie completate de la poziţia curentă w, până la final. A. Fals,

C3
8 = 56, se vor afişa 56 de caractere de spaţiu. B. Adevărat, numărul soluţiilor pentru

C2
4 sunt 6, iar soluţiile sunt 12, 13, 14, 23, 24, 34. C. Fals, afişează toate combinările

nu aranjamentele. D. Este adevărat doar dacă k = n − k, altfel, des, i vom obt, ine acelas, i

număr de solut, ii (datorită proprietăt, ii matematice Ck
n = Cn−k

n), solut, iile vor fi diferite.

711. A. Adevărat. B. Adevărat, algoritmul de descompunere ı̂n factori primi a unui

număr poate avea complexitate O(n) sau O(
√
n). C. Adevărat, metoda numărării presu-

pune numărarea frecvent,ei fiecărui element din vector, apoi plasarea fiecărui element ı̂n

pozit, ia corectă ı̂n funct, ie de frecvent,a sa. D. Fals, căutarea binară poate fi implementată

doar ı̂n complexitate O(log n).

712. Algoritmul calculează numărul total de moduri ı̂n care ı̂l putem scrie pe k ca sumă

de elemente ı̂nmult, ite cu 2 sau cu 3, ı̂n funct, ie de paritatea lor, din vector, astfel ı̂ncât ele-

mentele să fie situate la cel put, in două pozit, ii distant, ă unul de celălalt. De exemplu, dacă

includem elementul de pe pozit, ia 2, putem adăuga elemente ı̂ncepând cu pozit, ia 5 pentru

suma respectivă. Vom rescrie vectorul cu toate elementele pare ı̂nmult, ite cu 2 s, i toate ele-

mentele impare ı̂nmult, ite cu 3: [8, 15, 11, 3, 3, 7, 6, 10, 12] ⇒ [16, 45, 33, 9, 9, 21, 12, 20, 24].

A. Pentru k = 45, se găsesc următoarele modalităt, i: 45, 24 + 21, 12 + 33, 16 + 9 + 20,

16+9+20, adică se va returna 5. B. Pentru k = 33, se găsesc următoarele modalităt, i: 33,

24+9, 24+9, adică se va returna 3. D. Pentru k = 29, se găsesc următoarele modalităt, i:

20 + 9, 20 + 9, adică se va returna 2.

713. Algoritmul calculează suma tuturor valorilor de 1 din reprezentarea ı̂n baza 2.

627

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

Pentru n = 8 = 23:

Număr Reprezentare binară

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

Grupăm reprezentările după formatul: primul cu ultimul, al doilea cu penultimul, etc.

0 s, i 7 = 000, 111 ⇒ 3 bit, i de 1

1 s, i 6 = 001, 110 ⇒ 3 bit, i de 1

2 s, i 5 = 010, 101 ⇒ 3 bit, i de 1

3 s, i 4 = 011, 100 ⇒ 3 bit, i de 1

Observăm că se obt, in 4 grupe a câte 3 bit, i de 1, adică:

4 × 3 = 12 bit, i de 1pentru toate numerele naturale până la 7. Mai trebuie să adăugăm

numărul de bit, i din reprezentarea lui 8, adică:

8 = 1000(2) ⇒ 12+1 = 13 bit, i de 1 ⇒ pentru n = 8 ⇒ 13. Pe caz general,

trebuie să găsim cea mai apropiată putere de 2 de numărul nostru s, i să aplicăm regula.

Pentru n = 2k ⇒ n
2 × k+1. Pentru n = 2046, cea mai apropiată putere de 2 este 2048 =

211 ⇒ 1024× 11 + 1 = 11265. Atent, ie, aceasta este suma pentru toate numerele de la 1

până la 2048. Trebuie să scădem numărul de bit, i 1 din reprezentările 2047 s, i 2048, adică:

2048 = 100000000000(2) s, i 2047 = 11111111111(2) ⇒ 11265− 1− 11 = 11253.

714. Algoritmul calculează diferent,a ı̂n valoarea absolută dintre suma elementelor fiecărei

linii s, i suma elementelor acelei linii ı̂n ordine inversă(adică ı̂n orice caz valoarea obt, inuta

va fi 0). Complexitatea este determinată de cele două bucle imbricate, ceea ce duce la o

complexitate de O(n2).

715. Pentru a calcula Ck
n, varianta A implementează recurent,a obis,nuită Ck

n = Ck
n−1 +

628

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

Ck−1
n−1. Varianta C se foloses,te de faptul că se poate utiliza simetria astfel ı̂ncât Ck

n−1 =

Cn−1−k
n−1 , ceea ce este corect. Varianta B calculează Cn−k

n ceea ce este echivalent cu Ck
n.

Varianta D va intra ı̂ntr-o recurent, ă infinită.

716. Algoritmul utilizează tehnica ferestrei glisante (sliding window) pentru a determina

suma maximă a unei subsecvent,e de lungime fixă k din vectorul v. Varianta A ignoră

cazul ı̂n care suma maximă este un număr negativ, lucru care ar duce la un rezultat ero-

nat. Varianta B schimbă lungimea secvent,elor, iar Varianta C calculează suma ı̂ntregului

vector. Astfel, toate cele 3 variante duc la un rezultat diferit de cel init, ial.

717. Algoritmul implementat calculează coeficientul binomial folosind relat, ia combinato-

rială C(n, k) = n!
k!(n−k)! . Algoritmul ajustează k la 100− 97 = 3 deoarece 97 > 50. Bucla

rulează 3 iterat, ii, fiecare implicând o singură ı̂nmult, ire.

718. Algoritmul implementează o variantă de căutare binară pentru a găsi prima aparit, ie

a valorii t. Dacă valoarea este găsită, se continuă căutarea ı̂n jumătatea stângă pentru a

verifica dacă există o aparit, ie anterioară. Algoritmul reduce ı̂n mod exponent, ial, având

complexitatea O(log n).

Pentru afirmat, iile A s, i C nu există probleme: formula de calcul a lui m este validă

s, i preferabilă pentru evitarea overflow-ului, algoritmul nu intră ı̂n buclă infinită pentru

n = 231− 1 deoarece formula previne overflow-ul. Afirmat, ia B este falsă deoarece algorit-

mul nu returnează −1 când găses,te valoarea t, ci returnează pozit, ia corectă prin variabila

r care primes,te valoarea lui m când v[m] = t, iar afirmat, ia D este falsă deoarece a ı̂ncepe

de la 1 s, i cres,te iar b ı̂ncepe de la n s, i scade, nu există posibilitatea accesării elementelor

ı̂n afara vectorului.

719. Algoritmul analizează fiecare element al vectorului s, i calculează valoarea minimă

pentru toate subsecventele ı̂ncepând de la pozit, ia curentă. Complexitatea algoritmului

este O(n2), deoarece pentru fiecare element se parcurg toate elementele ulterioare. Al-

goritmul poate fi optimizat utilizând o parcurgere inversă s, i păstrând minimul curent,

reducând astfel timpul de execut, ie la O(n).

720. Algoritmul ceFace() parcurge ı̂ntregul vector de numere pentru a determina prima

s, i ultima aparit, ie a elementului x, având complexitatea O(n). Pentru vectorii de numere

629

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

[1, 2, 42, 42, 1, 42, 2] s, i [7, 1, 7, 7, 7, 2, 7 se returnează 4, respectiv 7.

721. Algoritmul X() transformă vectorul de numere astfel ı̂ncât fiecare element devine

produsul tuturor elementelor precedente, inclusiv el ı̂nsus, i. Algoritmul are complexitate

O(n), deoarece parcurge vectorul de numere o singură dată, efectuând multiplicări suc-

cesive. De exemplu pentru vectorul [2, 3, 4, 5], va rezulta [2, 6, 24, 120].

722. Algoritmul F(v, n) parcurge vectorul s, i ı̂nlocuies,te , când găses,te un nou element

minim, elementul de pe pozit, ia i− 1 cu minimul precedent. Astfel, Varianta A este falsă

pentru că nu este garantat ca fiecare element să fie ı̂nlocuit, doar ı̂n momentul ı̂n care

găses,te un nou minim. Varianta D este falsă pentru că ultimul element va fi ı̂ntotdeauna

ı̂nlocuit cu minimul precedent.

723. Algoritmul numără pentru fiecare element din vectorul v câte numere mai mici decât

el există ı̂n vector. Pentru v = [4, 1, 5, 2, 3, 7, 6], se obt, ine rezultatul r = [3,

0, 4, 1, 2, 6, 5], deoarece 4 are trei numere mai mici (1, 2, 3), 1 are zero numere

mai mici, 5 are patru numere mai mici (4, 1, 2, 3), 2 are un număr mai mic (1), 3 are

două numere mai mici (1, 2), 7 are s,ase numere mai mici (toate ı̂n afară de el), iar 6 are

cinci numere mai mici (4, 1, 5, 2, 3). Dintre variantele date, doar A este corectă: v[j] <

v[i] cu incrementare c ← c + 1.

724. Algoritmul ceFace() calculează lungimea celui mai lung subs, ir comun (LCS) pentru

doi vectori. Complexitatea timp este O(n·m) s, i foloses,te o matrice pentru a stoca solut, iile

subproblemelor. De exemplu, pentru "abcde" s, i "ace", lungimea LCS este 3. Numărul

de inserări necesare pentru a transforma s ı̂n t este m−LCS, unde m este lungimea lui t.

Deoarece algoritmul calculează lungimea LCS, această valoare poate fi derivată folosind

rezultatul.

725. Algoritmul parcurge vectorul sortat s, i returnează cea mai mare pozit, ie pentru care

v[m] ≤ target. Dacă target nu se află ı̂n vector, returnează −1. Complexitatea sa este

O(log n). Afirmat, ia C este falsă, pentru că target este un număr natural.

726. În cazul cel mai defavorabil, fiecare element din Q poate fi mutat ı̂n S s, i ı̂napoi,

generând un număr de operat, ii proport, ional cu pătratul numărului de elemente. Astfel,

se execută de 256 ori.

630

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

727. Algoritmul ceFace(v, n) construies,te vectorul de sume part, iale, unde fiecare ele-

ment reprezintă suma elementelor de la ı̂nceput până la pozit, ia curentă. Complexitatea

este O(n), deoarece fiecare element este prelucrat o singură dată. După construirea

vectorului, suma unui interval [l, r] poate fi calculată ı̂n timp constant folosind formula

p[r] − p[l − 1]. Algoritmul calculează suma totală a vectorului, s, i nu returnează toate

prefixele.

728. Dacă nava depăs,es,te destinat, ia pe oricare dintre axe, nu mai poate ajunge la punc-

tul dorit, ceea ce justifică condit, ia sx > dxOR sy > dy. Pentru a verifica dacă există

un drum valid, trebuie să apelăm recursiv algoritmul pentru ambele direct, ii posibile, uti-

lizând operatorul OR, deoarece este suficient ca una dintre căi să ducă la destinat, ie.

729. Pentru apelul F(35), algoritmul F(x) apelează G(33). Acesta, fiind mai mare ca

10, apelează F(16), iar procesul continuă recursiv până la baza de recursie. Evaluând pas

cu pas apelurile, se obt, ine rezultatul final 42.

730. Algoritmul f() foloses,te tehnica Divide et Impera pentru a determina valoarea ma-

ximă din vector, ı̂mpărt, indu-l ı̂n două jumătăt, i s, i comparând maximele subintervalelor.

Algoritmul nu necesită ca vectorul să fie sortat init, ial, iar recursivitatea continuă până la

cele mai mici subintervale.

731. Algoritmul f() parcurge recursiv vectorul v s, i ı̂nlocuies,te fiecare valoare de pe

pozit, iile ı̂n cazul lui F(1) impare. Afis, ând când se coboară ı̂n recursivitate doar numerele

impare, iar la urcarea din recursivitate toate pozit, iile peste care a trecut. Afirmat, ia B

este falsă deoarece vectorul v = [0, 2, 0, 4, 0, 6, 0, 8, 9, 10].

732. Algoritmul Maxim(v,n) parcurge vectorul dat ı̂n funct, ie de valorile elementelor, iar

noi trebuie să stabilim condit, ia de oprire, care după o parcurgere simplă, putem observa

că este j ̸= i. Algoritmul EstePrim(x) este dat doar pentru a ı̂ngreuna parcurgerea, dacă

citim atent cerint, ă nu se face referint, ă la faptul că valoarea ar trebui să fie prima.

733. La fiecare pas, dacă găses,te un divizor d, adaugă la sumă numărul d s, i se scade

perechea sa n/d, evitând parcurgerea ı̂ntregului interval de la 1 la n. Dacă d × d = n,

divizorul este adăugat o singură dată s, i nu se mai scade. Complexitatea algoritmului este

O(
√
n).

631

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

• Dacă n este prim, atunci singurii divizori sunt 1 s, i n. Pentru d = 1, algoritmul

adaugă 1 s, i scade n, rezultând 1− n (care este negativ pentru n ≥ 3).

• Dacă n este compus, pentru fiecare d <
√
n avem contribut, ii de forma d − n

d cu

d < n
d (adică termen negativ), iar pentru d =

√
n (cazul de pătrat perfect) se adaugă

doar
√
n. Suma totală rămâne negativă sau cel mult zero.

734. Funct, ia functieRecursiva() realizează două apeluri recursive la fiecare nivel, ceea

ce determină o cres,tere exponent, ială a numărului de apeluri. Algoritmul poate fi optimi-

zat prin memorarea rezultatelor intermediare (cu ajutorul memoizării). Complexitatea

este O(2n).

735. Algoritmul verifică toate perechile posibile de elemente din vector s, i aplică expresia

logică conform principiului absorbt, iei pentru operatorii AND s, i OR. Complexitatea algorit-

mului este O(n2) datorită celor două bucle imbricate care parcurg fiecare pereche posibilă.

Numărul de comparat, ii care s-ar număra dacă algoritmul ar suferi schimbările de la vari-

anta D este numărul de comparat, ii pentru sortarea prin select, ie.

736. Prima buclă: pentru fiecare i de la 1 la n, bucla interioară parcurge variabila j de

la i+1 la m. Numărul de iterat, ii pentru un anumit i este: m− i (deoarece j variază de la

i+ 1 la m). Deci, numărul total de iterat, ii este:
∑n

i=1(m− i) = n ·m− n(n+1)
2 . Această

sumă este dominantă s, i, ı̂n notat, ia Big-O, se poate scrie O(n · m) (deoarece termenul

n(n+1)
2 este de ordin inferior atunci când m este semnificativ mai mare decât n; iar chiar

s, i dacă m este put, in mai mare decât n, forma expresiei ca funct, ie de ambele variabile este

O(n ·m)). A doua buclă: Parcurge i de la n la m, adică efectuează m−n+1 iterat, ii, deci

contribuie cu O(m − n). În total, complexitatea este: O(n ·m) + O(m − n). Observăm

că O(n ·m) este termenul dominant, deci complexitatea totală se poate scrie compact ca:

O(n ·m).

737. Rezultatul final nu depinde de ordinea ı̂n care se aleg perechile deoarece operat, ia

(x + y) mod 10 conservă suma numerelor modulo 10, iar pentru n = 93 suma 1 + 2 +

· · ·+ 93 = 4371 are ultima cifră 1, deci rezultatul final este 1.

738. Algoritmul descris generează o matrice pătratică de dimensiune n cu elementele

632

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

dispuse ı̂n formă spiralată. Valorile sunt atribuite ı̂ncepând din colt,ul din stânga sus s, i

continuând spre dreapta, iar apoi către jos, completând fiecare rând ı̂n mod similar. Prin

urmare, trebuie să urmăres,ti ierarhia valorilor s, i să t, ii cont de indicii liniilor s, i coloanelor

pentru a obt, ine rezultatul corect.

739. Pentru a calcula valoarea expresiei E, trebuie convertit fiecare termen ı̂n baza 10

s, i efectuate operat, iile indicate mai jos. Numărul AB(16) ı̂n baza 10 se determină astfel:

AB(16) = A ∗ 161 +B ∗ 160 = 10 ∗ 16 + 11 ∗ 1 = 160 + 11 = 171. Numărul 120(3) ı̂n baza

10 este: 120(3) = 1 ∗ 32 +2 ∗ 31 +0 ∗ 30 = 1 ∗ 9+2 ∗ 3+0 = 9+6 = 15. Numărul 120(4) ı̂n

baza 10 este: 120(4) = 1 ∗ 42 + 2 ∗ 41 + 0 ∗ 40 = 1 ∗ 16 + 2 ∗ 4 + 0 = 16+ 8 = 24. Numărul

44(5) ı̂n baza 10 este: 44(5) = 4 ∗ 51 + 4 ∗ 50 = 4 ∗ 5 + 4 ∗ 1 = 20 + 4 = 24. As,adar,

E = 171 + 15− 24 + 2 ∗ 24 = 210(10) = 322(8).

740. Algoritmul sortare(v, n) sortează elementele vectorului ı̂n funct, ie de ultima lor

cifră. Parcurge toate perechile de elemente s, i compară ultimele cifre ale acestora. Dacă

ultima cifră a unui element este mai mare decât ultima cifră a altuia, cele două valori

sunt interschimbate. Dacă ultimele cifre sunt egale, algoritmul compară valorile complete

s, i le ordonează crescător. Complexitatea finală a algoritmului este O(n2), ceea ce face

varianta D incorectă.

741. Algoritmul Process identifică cea mai lungă secvent, ă de elemente consecutive din

vector care respectă condit, ia ca diferent,a dintre sumele cifrelor a două elemente conse-

cutive să fie cel mult 2. Se ment, ine suma curentă a secvent,ei s, i se compară cu cea mai

lungă secvent, ă găsită anterior. Dacă există mai multe secvent,e cu lungime maximă, se

ret, ine suma cea mai mare dintre ele.

742. Algoritmul ceFace(v, st, dr, x) ı̂mparte recursiv vectorul v ı̂n două segmente s, i

reorganizează elementele ı̂n funct, ie de suma sau produsul elementelor, ı̂n funct, ie de pa-

rametrul x. Dacă x este 1, rezultatul final este suma valorilor calculate pentru cele două

segmente, iar dacă x este 0, se utilizează produsul elementelor nenule pentru decizie.

743. Algoritmul Build(n, k, ant) determină numărul total de subsecvent,e de lungime

k din cifrele numărului n, respectând condit, ia ca diferent,a dintre orice două cifre consecu-

tive din subsecvent, ă să fie impară. Solut, ia corectă este determinată printr-o combinat, ie

633

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

de explorare recursivă a cifrelor s, i verificare a validităt, ii condit, iei impuse. Pentru varianta

de răspuns A subsecvent,ele găsite sunt: 345, 145, 125, 234, 123, ceea ce o face o variantă

corectă de răspuns.

Pentru varianta de răspuns C subsecvent,ele găsite sunt: 38, 58, 38, 43, 63, 54, 34, 56, 36,

ceea ce o face, de asemenea o variantă corectă.

Pentru varianta de răspuns D subsecvent,ele găsite sunt: 56, 76, 96, 54, 74, 94. Aceasta

este, de asemenea o variantă corectă.

744. Funct, ia calculează sumele part, iale ale elementelor din a ı̂n vectorul b, iar apoi

parcurge b de la indicele k la n pentru a determina subsecvent,a de lungime k cu suma

maximă. Prin b[i]− b[i− k] se obt, ine suma subsecvent,ei a[i− k+1], a[i− k+2], . . . , a[i].

Dacă această sumă este mai mare decât c (suma maximă curentă), se actualizează indicii

st s, i dr. La final se afis,ează subsecvent,a de lungime k cu suma maximă, deci afirmat, ia C

este corectă.

745. Complexitatea acestui algoritm poate fi calculată destul de simplu cu o desfacere a

structurii repetitive cu i pe cazuri: Cazul 1: i = 1: se efectuează n pas, i. Cazul 2: i = 2:

se efectuează n/2 pas, i. Cazul 3: i = 3: se efectuează n/3 pas, i ... Cazul n: i = n: se

efectuează n/n pas, i. În total vom avea: n+n/2+n/3+ ...+n/n pas, i. Această sumă este

o serie Harmonică s, i tinde la ln(n) + γ, unde γ este constantă s, i este aproximativ egală

cu 0.5772, deci o putem neglija. Astfel complexitatea exactă finală va fi O(n∗ ln(n)), deci

răspunsul corect este C.

746. Algoritmul Prime(n) determină factorii primi ai numărului n s, i construies,te un

număr rezultat pe baza unei reguli specifice. Se ı̂ncepe cu d = 2, iar pentru fiecare factor

prim d al lui n, se contorizează de câte ori acesta apare ı̂n descompunere. Dacă un factor

prim apare de mai multe ori, se adaugă la rezultat doar valoarea factorului prim. Dacă

apare o singură dată, atunci se adaugă pătratul acestuia. Pe măsură ce noi factori primi

sunt identificat, i, pozit, ia acestora ı̂n numărul rezultat este ajustată prin ı̂nmult, irea cu

10 a variabilei putere, astfel ı̂ncât fiecare factor nou să fie adăugat pe o pozit, ie mai

semnificativă.

Pentru varianta de răspuns C, algoritmul confirmă că pentru fiecare factor prim p care

634

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

apare de k ori ı̂n descompunerea lui n, dacă k > 1, atunci p este adăugat ca atare ı̂n

numărul rezultat. Dacă k = 1, atunci se adaugă p2. Astfel, afirmat, ia C este corectă.

Pentru varianta de răspuns D, se analizează cazul ı̂n care n este un număr prim. Deoarece

un număr prim nu are alt, i factori primi ı̂n afară de el ı̂nsus, i s, i este divizibil doar de 1

s, i de el ı̂nsus, i, contorul său de aparit, ii ı̂n descompunere va fi exact 1. Conform regulii

algoritmului, dacă un factor prim apare o singură dată, atunci se adaugă p2 la rezultat.

Astfel, pentru orice număr prim p, algoritmul returnează p2, ceea ce face ca afirmat, ia D

să fie corectă.

Pe baza acestor observat, ii, afirmat, iile corecte sunt C s, i D.

747. Algoritmul Base(n) parcurge, pentru fiecare bază de la 2 la 9, reprezentarea

numărului n ı̂n baza respectivă, calculând suma cifrelor s, i numărând câte dintre acestea

sunt cifre pare nenule. Dacă suma obt, inută este divizibilă cu baza curentă, se procedează

astfel: ı̂n cazul ı̂n care există cel put, in o cifră pară nenulă, se adaugă la rezultatul final

valoarea formată din baza curentă urmată de numărul de cifre pare (prin ı̂nmult, irea bazei

cu 10 s, i apoi adunarea numărului de cifre pare), iar ı̂n caz contrar, se adaugă suma cifrelor.

Pentru exemplul ı̂n care n = 15, se analizează reprezentările lui 15 ı̂n diferitele baze.

În anumite baze condit, ia de divizibilitate a sumei cifrelor cu baza este ı̂ndeplinită, iar

contribut, ia calculată conform mecanismului descris conduce, ı̂n urma adunării tuturor

contribut, iilor, la valoarea finală 43. As,adar, variantele corecte de răspuns sunt A s, i B.

748. Numărul de moduri ı̂n care cel mult două cărt, i sunt plasate gres, it pe raft se de-

termină astfel: Dacă nicio carte nu este plasată gres, it, există exact o singură posibilitate

(toate cărt, ile sunt la locul lor). Dacă exact o carte este plasată gres, it, acest lucru nu este

posibil, deoarece orice mutare afectează cel put, in o altă carte. Dacă exact două cărt, i ı̂s, i

schimbă locurile, putem alege orice două cărt, i dintre cele m s, i le putem inversa. Numărul

de astfel de perechi este C2
m = m(m−1)

2 . Prin urmare, numărul total de aranjamente

posibile ı̂n care cel mult două cărt, i sunt pe pozit, ii gres, ite este C2
m + 1 = m(m−1)

2 + 1.

749. Algoritmul Search(v, n) parcurge fiecare element al vectorului v s, i calculează

suma cifrelor acestuia folosind funct, ia auxiliară Algo(x). Apoi verifică dacă există un

element ulterior ı̂n vector egal cu produsul dintre elementul curent s, i suma cifrelor sale,

635

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

utilizând căutarea binară. Algoritmul returnează numărul total de astfel de perechi găsite.

Dacă se analizează varianta de răspuns B, se observă că algoritmul parcurge vectorul [2,

4, 8, 16, 32, 64] s, i, pentru fiecare element, calculează suma cifrelor folosind funct, ia au-

xiliară. De exemplu, pentru elementul 2 suma este 2, iar produsul 2*2 este 4, care se

găses,te ulterior ı̂n vector. Similar, pentru elementul 4 suma este 4, iar produsul 4*4 este

16, iar pentru elementul 8 suma este 8, iar produsul 8*8 este 64. Aceste trei situat, ii de-

termină incrementarea contorului, rezultând o valoare finală de 3, ceea ce demonstrează

că varianta B este corectă.

750. Algoritmul ceFace(A, n) determină suma elementelor care au valoarea maximă

atât pe linia cât s, i pe coloana lor. Pentru fiecare rând, se identifică valoarea maximă s, i

pozit, ia sa, apoi se verifică dacă aceasta este strict mai mare decât toate celelalte elemente

din coloana respectivă folosind funct, ia Check. Dacă condit, ia este ı̂ndeplinită, valoarea

este adăugată la sumă.

751. Algoritmul Cool(v, n) parcurge vectorul v s, i verifică fiecare pereche de elemente

consecutive. O pereche este considerată validă dacă primul element este mai mic decât al

doilea s, i dacă suma cifrelor celor două elemente este aceeas, i. Funct, ia auxiliară Algo(x)

determină suma cifrelor unui număr prin extragerea fiecărei cifre s, i adunarea acestora.

Pentru fiecare pereche (v[i], v[i + 1]), se calculează suma cifrelor fiecărui element s, i se

compară. Dacă sunt egale s, i v[i] < v[i + 1], contorul r este incrementat. La final, se

returnează numărul total de astfel de perechi.

Pentru apelul Cool([12, 21, 13, 31, 15], 5), rezultatul este 2, deoarece perechile

valide sunt (12,21) s, i (13,31). Dacă vectorul este sortat crescător s, i toate elementele au

aceeas, i sumă a cifrelor, toate perechile consecutive sunt valide, iar rezultatul va fi n− 1.

De asemenea, pentru apelul Cool([21, 30, 15, 24, 42, 51], 6), rezultatul obt, inut

este 4, confirmând validitatea răspunsului.

Astfel, afirmat, iile corecte sunt A, B s, i C.

752. Metoda d(i, a, v, n, c) este o parcurgere ı̂n adâncime ı̂n cadrul căreia, ı̂n s, irul

de noduri ”vizitate” (aici, v) ı̂n loc să marcăm doar vizitarea nodului, marcăm cu valoa-

rea actuală a unui contor, iar astfel, v[i] va reprezenta numărul de ordine al componentei

636

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

conexe din care i face parte.

753. Vom trata cele două s, irurui ca fiind mult, imi, s, i vom reconstrui s, irurile, pentru a

obt, ine valoarea cea mai mare a lui d. Pentru fiecare pozit, ie, vom extrage din fiecare

mult, ime cel mai mare element, cât s, i cel mai mic. Vom compara cel mai mare element

din A cu cel mai mare element din B. În cazul ı̂n care elementul din A este mai mare

decât elementul din B, atunci vom as,eza pe pozit, ia curentă cel mai mare element din

fiecare mult, ime. Altfel, dacă cel mai mic element din A este mai mare decât cel mai

mare element din B, atunci vom as,eza pe pozit, ia curentă cel mai mic element din fiecare

mult, ime. Altfel, vom as,eza ı̂n primul s, ir cel mai mic element din A, iar ı̂n a doua cel mai

mare element din B. Primele două as,ezări vor rezulta ı̂n cres,terea lui d, iar ultima va

rezulta ı̂n scăderea acestuia.

754. Codul verifică dacă un s, ir este palindrom după inversarea elementelor din a doua

jumătate a s, irului. Variantele A s, i B nu ı̂ndeplinesc condit, iile.

755. Algoritmul parcurge numerele de la 1 la n, numărând pentru fiecare număr cât, i

divizori are s, i verificând dacă depăs,esc pragul dat.

756. Algoritmul parcurge numerele de la 1 la n, calculând suma divizorilor fiecărui număr

s, i verificând dacă această sumă este divizibilă cu p. Funct, ia Find calculează suma tuturor

divizorilor unui număr, inclusiv 1 s, i numărul ı̂nsus, i.

757. Algoritmul X(v, n, k) determină numărul de subsecvent,e ale vectorului care

exclud primul element din v s, i a căror sumă este exact k. Funct, ia Build construies,te

un vector de sume part, iale care permite calculul rapid al sumei oricărei subsecvent,e, dar

care nu include v[1]. Algoritmul parcurge toate perechile de indexi (i, j) s, i verifică dacă

diferent,a dintre două sume part, iale este egală cu k. Această abordare are o complexi-

tate de timp de O(n2), deoarece utilizează două bucle imbricate pentru a examina toate

subsecvent,ele posibile.

758. Algoritmul ceFace(v, n, idx, sumc, k, c) explorează toate subseturile posibile

ale vectorului v pentru a determina câte dintre acestea au suma elementelor egală cu k.

Apelul init, ial al funct, iei Start(v, n, k) init, ializează numărul de solut, ii c cu 0 s, i pornes,te

procesul de căutare recursivă. Algoritmul verifică fiecare subset posibil, incluzând sau ex-

637

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

cluzând fiecare element din vector, ceea ce duce la o complexitate exponent, ială de O(2n).

Această complexitate rezultă din faptul că fiecare element poate fi fie inclus, fie exclus,

generând astfel toate subseturile posibile. Funct, ia este corectă indiferent de semnul ele-

mentelor din vector, deci afirmat, ia conform căreia funct, ionează corect doar pentru numere

pozitive este falsă.

759. Algoritmul Find utilizează backtracking pentru a genera toate subseturile unui

vector v s, i verifică dacă suma acestora se ı̂ncadrează ı̂n limita maximă m. Algoritmul ex-

plorează fiecare element din vector, având posibilitatea fie să ı̂l includă ı̂n subsetul curent,

fie să ı̂l excludă. Aceasta permite generarea tuturor combinat, iilor posibile.

Varianta corectă a algoritmului este algoritmul C, deoarece acesta verifică ı̂n mod corect

dacă adăugarea unui element la suma curentă depăs,es,te limita m ı̂nainte de a efectua

apelul recursiv. Mai mult, algoritmul C parcurge toate subseturile posibile s, i le afis,ează

corect, respectând constrângerea impusă de m.

Algoritmul A nu funct, ionează corect deoarece permite apeluri recursive chiar s, i atunci

când suma curentă depăs,es,te m s, i indexarea ı̂ncepe de la 0, ceea ce poate duce la rezultate

incorecte. Algoritmul B nu generează toate subseturile posibile, deoarece exclude din

start anumite combinat, ii. Algoritmul D introduce o afis,are redundantă după apelurile

recursive, ceea ce rezultă ı̂n dublarea seturilor s, i poate duce la rezultate incorecte sau

afis, ări multiple.

Prin urmare, algoritmul care identifică corect s, i eficient toate subseturile valide este C.

760. Algoritmul explorează matricea mat folosind o căutarea recursivă pentru a găsi

comoara, reprezentată de valoarea 2. Se deplasează ı̂n cele patru direct, ii posibile (sus,

jos, stânga, dreapta), evitând obstacolele (valoarea 1) s, i celulele deja vizitate, marcate

ı̂n matricea v. Dacă se ajunge la pozit, ia comorii, valoarea d (care reprezintă distant,a

parcursă) este comparată cu m s, i, dacă este mai mică, m este actualizat.

761. Algoritmul ceFace(n, x, len, last) generează recursiv toate secvent,ele de lun-

gime n formate din divizorii lui x, respectând condit, ia ca produsul oricăror două ele-

mente consecutive să fie mai mic decât x. În apelul ceFace(5, 10, 0, 1) se construiesc

secvent,e din divizorii lui 10, iar restrict, ia last ∗ d < x este verificată pentru a asigura

638

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

validitatea fiecărei tranzit, ii ı̂ntre elemente. Pe măsură ce se explorează toate combinat, iile

posibile ı̂n ordinea recursivităt, ii, cea de-a opta secvent, ă generată este 1 1 2 1 2. Această

secvent, ă ı̂ndeplines,te exact condit, ia impusă de algoritm, confirmând astfel corectitudinea

afirmat, iei din varianta C.

762. ((x+1) MOD (y−1)) = 15 MOD 4 = 3; Prima parte: 3+2 = 5; ((x+1) DIV (z+

1)) = 15 DIV 3 = 5; Rezultatul primei părt, i: 5 DIV 5 = 1; ((y − 1) MOD z) =

4 MOD 2 = 0; Rezultatul final: 1 + 0 = 1.

763. Arborele dat are următoarea reprezentare:

5

3

11

9

4

12 6

1

2 7

8 10

Lanţul dintre nodurile 6 şi 9 este 6 → 4 → 3 → 11 → 9, care nu conţine rădăcina, deci

varianta A este corectă. Nodurile 2 şi 10 se află ı̂n subarborele drept al rădăcinii, deci

varianta B este incorectă. Nodurile 9, 12, 6, 2, 8 şi 10 reprezintă frunzele arborelui, iar

suma lor este 47, deci varianta C este corectă. Lungimea lanţului dintre nodurile 6 şi 10

este 6, deci varianta D este incorectă.

764. Varianta C este corectă: (1 S, I 1) SAU NU (1 SAU 1) → 1 SAU 0 → 1; Vari-

anta B este corectă:(1 S, I 1) SAU NU (0 SAU 0)→ 1 SAU 1→ 1.

765. Algoritmul construies,te un s, ir de sume part, iale s, i ı̂l foloses,te pentru a calcula eficient

suma numerelor cu indicii ı̂n intervalul [i, j]

766. Algoritmul verifică dacă există un drum de la colt,ul stânga sus la colt,ul dreapta jos

folosind Metoda Backtracking (generează toate drumurile posibile).

767. Pentru a verifica dacă ı̂ntreaga matrice cont, ine doar numere pare, trebuie să veri-

ficăm fiecare element s, i să ne asigurăm că toate sunt pare. Suma valorilor returnate de g

trebuie să fie egală cu numărul total de elemente n× n.

639

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

768. Folosind ,,Ciurul lui Eratostene”, algoritmul marchează cu 0 numerele prime, iar cu

1 numerele compuse. La ı̂nceput, toate valorile din p sunt 0. Sunt parcurse toate nume-

rele de la 2 până la radicalul lui n, iar pentru cele cu valoarea asociată lor din vectorul

p egală cu 0 (acestea vor fi numerele prime), sunt marcaţi multiplii lor cu valoarea 1,

semnificând faptul că aceştia sunt compuşi, deoarece sunt divizibili cu p. Varianta A nu

este corectă pentru că p[1] = 1, iar 1 nu este număr compus. Varianta B este incorectă, 2

este un număr prim, deci valoarea asociată ı̂n vectorul p va fi 0. Aşadar, varianta C este

incorectă. 10 este un număr compus, deci valoarea asociată ı̂n vectorul p va fi 1. Aşadar,

varianta D este corectă.

769. Pentru fiecare apel recursiv, sunt făcute alte 3 apeluri, ceea ce face ca numărul

de paşi să crească exponenţial. Pentru fiecare nou apel, valoarea lui n este ı̂mpărţită

la m, ceea ce face ca valoarea lui n să descrească logaritmic. Ca urmare, complexita-

tea algoritmului dat este O(3logmn) = O(nlogm3). Calculul poate fi efectuat, de ase-

menea, folosind Teorema Master. Complexitatea algoritmului dat poate fi scrisă astfel:

T (n,m) = 3T (n
m ,m). Sunt identificate constantele: a = 3, b = m, k = 0 şi p = 0. Dato-

rită faptului că a > bk, deoarece 3 > 1, T (n,m) = Θ(nlogb a) = Θ(nlogm 3). În concluzie,

variantele B şi D sunt corecte, iar variantele A şi C sunt incorecte.

770. Diferent,a dintre cei doi algoritmi constă ı̂n faptul că, ı̂n implementarea algoritmului

A(a, n), compararea se face folosind operatorul ≥. Algoritmul A(a, n) este un algoritm

de Bubble Sort, iar B(a, n) Selection Sort. Varianta A este corectă, ambele ar sorta

strict crescător. Varianta C este corectă pentru că, chiar dacă A(a, n) sortează crescător

s, i B(a, n) strict crescător, efectul este acelas, i, vectorul va avea aceeas, i configurat, ie.

771. Algoritmul generează permutările şirului numerelor de la 1 la n {1, 2, ..., n}, pentru

care valoarea elementului este diferită de poziţia pe care se află aceasta. Aşadar, varianta

C este corectă, ı̂n timp ce varianta D este greşită. Acest fapt presupune, spre exemplu, că

valoarea 1 nu se va afla niciodată pe prima poziţie a unei permutări (numerotarea indicilor

vectorilor ı̂ncepe de la 1). Această condiţie este impusă prin i ̸= k, iar metoda folosită

este backtracking, bazată pe un vector a, care memorează valorile unei permutări şi un

vector de frecvenţă f , care asigură ca fiecare valoare să se regăsească exact o dată ı̂ntr-o

640

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

soluţie. Pentru n = 3, soluţiile vor fi {2, 3, 1} şi {3, 1, 2}, deci varianta A este corectă.

Varianta B este incorectă, 24 este numărul de permutări a unei mulţimi cu 4 elemente,

fără vreo condiţie suplimentară.

772. Algoritmul simulează metoda de sortare ”Bubble Sort” s, i efectuează interschimbări

doar atunci când un element este mai mare decât elementul său următor. În cazul unui s, ir

deja sortat sau cu toate elementele egale, nu sunt necesare interschimbări. În cazul unui

s, ir sortat descrescător, algoritmul efectuează numărul maxim de interschimbări, adică

n(n−1)
2 .

773. Algoritmul de sortare prin select, ie parcurge ı̂ntotdeauna ı̂ntregul s, ir pentru a găsi

elementul minim, efectuând O(n2) comparat, ii indiferent de ordinea init, ială a elementelor.

Complexitatea ı̂n cel mai bun s, i cel mai rău caz rămâne O(n2), iar numărul de comparat, ii

este constant pentru orice intrare.

774. La fiecare pas, algoritmul va separa elementele aflate pe pozit, iile pare de cele care

se află pe pozit, ii impare, după care, recursiv se va autoapela câte o dată pentru fiecare

s, ir ı̂n parte. După executare, ı̂n vectorul init, ial se vor reas,eza elementele din cei 2 vectori

mai mici. Observăm că la fiecare pas, ı̂n primul vector se vor afla elemente ce au ultimul

bit 0, iar ı̂n al doilea cele care au ultimul bit 1. Notăm cu ogl oglinditul unui număr

i. Pozit, ia finală este determinată de către oglinditul ı̂n baza a pozit, iei init, iale. În cazul

ı̂n care numărul are mai put, in de k bit, i, se vor adăuga bit, i de 0 la ı̂nceputul acestuia,

pentru a ajunge la k bit, i. Exemplu: n = 16, i = 3 => i = 0011, ogl = 1100 => ogl = 12,

elementul aflat init, ial la pozit, ia 3 va ajunge la pozit, ia 11. Pentru a determina numărul

de pozit, ii care vor avea la final acelas, i element, trebuie să determinăm numărul de pozit, ii

care au aceeas, i valoare atât pentru număr, cât s, i pentru oglindit ı̂n baza 2, care este egal

cu 2(k+1)/2

775. Complexitatea unui apel este O(n), iar, algoritmul bazându-se pe divide et impera,

va avea log apeluri, ajungând la complexitatea O(nlogn), sau O(nk), k = log n

776. Algoritmul calculează suma divizorilor unui număr.

777. Algoritmul calculează suma cifrelor unui număr, până la o cifră, cunoscută ı̂n spe-

cialitate ca s, i cifra de contor, s, i este egală cu n%9, dacă n%9 este diferit de 0, sau 9 dacă

641

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

n este multiplu de 9.

778. Traversarea arborelui ı̂n inordine presupune parcurgerea subarborelui stâng, apoi

procesarea rădăcinii, iar apoi parcurgerea subarborelui drept.

779. Dacă numărul de linii s, i coloane este impar, ultima celulă vizitată va fi situată pe

linia s, i coloana mediană. Dacă numărul de linii s, i coloane este par, ultima celulă vizitată

va fi situată pe linia mediană s, i coloana mediană - 1.

780. Analizăm traseul lui Algernon. Init, ial, el se va vizita 50 de celule, schimbând

după direct, ia. Apoi, vizitează 49 de celule, schimbă direct, ia, vizitează din nou 49 de

celule, s, i schimbă direct, ia. Continuând simularea, observăm că Algernon va vizita acelas, i

număr de celule pentru perechi de laturi ale labirintului (pentru laturile de jos s, i din

dreapta, va vizita un număr impar de celule, iar pentru laturile de sus s, i din stânga,

va vizita un număr par de celule). As,adar, numărul total de celule vizitate de Alger-

non va fi 50 + 2 ∗ (49 + 48 + · · · + 1) = 2500. Pentru a determina care este pozit, ia

celulei noastre, vom căuta ultima pereche de laturi pe care Algernon a vizitat-o, după

care vom continua cu parcurgerea celulelor de pe laturile rămase. Vom avea ecuat, ia:

50 + 2 ∗ (49 + 48 + · · ·+ x) ≤ 1710. Rezolvând ecuat, ia, obt, inem x = 29, vizitând ı̂n total

astfel 1688 de celule. Pentru că 29 este impar, Algernon a vizitat ultima dată o pereche

de forma (stânga, jos). Când a vizitat prima dată perechea (stânga, jos), a vizitat 49 de

celule pe fiecare latură, ajungând la final la celula (50, 1). La următoarea vizită pentru

această pereche, va vizita 47 de celule, ajungând la celula (49, 2). La următoarea vizită,

va ajunge la celula (48, 3), s, i tot as,a. Pentru x = 29, va ajunge la celula (40, 11). Lui

Algernon i-au rămas de vizitat 22 de celule, care le va vizita pe laturile de sus, ajungând

la linia 40− 22 = 18, deci la celula (18, 11) la final.

781. i va fi init, ializat cu prima putere a lui 2 mai mare decât n, calculată ı̂n complexitate

O(log n). În interiorul buclei, i va fi ı̂mpărt, it la 2 de fiecare dată, indiferent de condit, ie,

deci numărul de iterat, ii va fi log n. În total, complexitatea algoritmului va fi O(log n).

782. Funct, ia find caută binar pozit, ia pe care elementul x ar trebui să fie ı̂n s, irul a.

Orice număr natural se poate scrie ca s, i o sumă de puteri ale lui doi. Pentru orice număr

natural k, 2k ≥ (21+22+ · · ·+2(k−1)). As,adar, pornind de la cea mai mică putere a lui

642

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

2 mai mare sau egală cu n, se va ı̂mpărt, i această putere la 2 de fiecare dată, până când se

va ajunge la 1. În cazul ı̂n care adăugarea acelei valori la posibilul rezultat nu depăs,es,te

x, se va adăuga acea valoare la pozit, ia rezultatului. În caz contrar, se va continua cu

următoarea valoare. Astfel, pentru n = 13254, x = 8342, se va ajunge la pozit, ia 8192,

8192 + 1024, 8192 + 1024 + 128, 8192 + 1024 + 128 + 8, 8192 + 1024 + 128 + 8 + 2,

deci de 5 ori. În specialitate, această tehnică se numes,te căutare binară pe bit, i, numărul

de modificări ale răspunsului corespunde numărului de bit, i de 1 din reprezentarea binară

a lui poz (8342 = 10000010010110).

783. Algoritmul generează valorile din şirul lui Fibonacci, ı̂nsă duplică valoarea F (n),

pentru F (n + 1), unde n MOD 3 = 0, deci varianta A este incorectă. Considerând 3

numere naturale consecutive n− 1, n− 2 şi n− 3, exact unul dintre acestea va fi divizibil

cu 3, aşa că apelul nu va avea loc pentru aceea valoare. Împreună cu faptul că n des-

creşte linear, complexitatea ca timp de execuţie va fi O(2n), aşadar varianta B este corectă.

F (5) = F (4)+F (2) = F (2)+F (1)+F (2) = 1+1+1 = 3. Aşadar, varianta C este corectă.

F (7) = F (5)+F (4) = F (4)+F (2)+F (2)+F (1) = F (2)+F (1)+F (2)+F (2)+F (1) =

1 + 1 + 1 + 1 + 1 = 5. Aşadar, varianta D este incorectă.

784. Pentru valorile n pare , prima dată va fi făcut apelul funţiei alt pentru n DIV

10, iar după finalizarea execuţiei acestuia, va fi afişată ultima cifră a lui n, incrementată.

Pentru cele impare, afişarea va fi făcută ı̂naintea apelului. Aşadar, algoritmul afişează

mai ı̂ntâi valorile 4, 2 şi 0 pentru cifrele 5, 3 şi 1, iar apoi, 3, 5 şi 7 pentru cifrele 2, 4 şi 6.

785. Inmulţirea matricelor este asociativă, iar ca urmare, ı̂nmulţirile necesare pentru

calcularea produsului pot fi făcute ı̂n orice ordine. Fiecare parantetizare (fără modifi-

carea ordinii matricelor) a expresiei produsului determină o ordine diferită de efectuare

a ı̂nmulţirilor, fiecare necesitând un număr diferit de produse scalare ı̂ntre valorile ma-

tricelor. Pentru 2 matrice Mp1,q1, Np2,q2, cu q1 = p2, produsul dintre acestea va nece-

sita p1 · q1 · q2 produse scalare. Pentru n = 3 şi matricele M1,2,M2,3 şi M3,2, expresia

(M1,2×M2,3)×M3,2 necesită 12 ı̂nmulţiri scalare, ı̂n timp ce expresia M1,2×(M2,3×M3,2)

necesită 16 ı̂nmulţiri scalare. Aşadar, varianta B este incorectă. Pentru n = 4, expresia

M6,5 × (M5,4 × (M4,3 ×M3,2)) va conduce la numărul minim de produse scalare, 124.

643

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

Aşadar, varianta A este corectă. Numărul de moduri de a parantetiza expresia produsu-

lui a n+ 1 matrice este dat de al n-lea număr Catalan, Cn = 1
n+1C

n
2n.

786. (x MOD y) = 15 MOD 6 = 3; Prima sumă: 3+3 = 6; ((x−2)+y) = 13+6 = 19;

Prima parte: 6 DIV 19 = 0; ((z + 1) MOD (y + 2)) = 4 MOD 8 = 4; Rezultatul final:

0 + 4 = 4.

787. Arborele dat are următoarea reprezentare:

7

2

11 1

5

3

6

9

10 8

12

4

Nodurile 11, 5, 10, 12 şi 4 reprezintă frunzele acestuia. Aşadar, arborele are 5 frunze şi 7

noduri interioare, iar varianta A este incorectă. Nodurile 9 şi 4 sunt descendenţii direcţii

ai nodului 6, deci acestea sunt fraţi, iar varianta B este corectă. Lanţul dintre nodurile

11 şi 10 este 11→ 2→ 7→ 3→ 6→ 9→ 10, care trece prin rădăcină, care este marcată

cu 7, deci varianta C este incorectă. Lungimea lanţului dintre nodurile 5 şi 9 este 6, deci

varianta D este corectă.

788. Algoritmul creează un vector de sume prefixate pentru elementele pare s, i ı̂l foloses,te

pentru a calcula suma rapidă a elementelor pare dintr-un interval.

789. Varianta A este corectă, deoarece ambele condit, ii trebuie să fie adevărate pentru ca

x să fie ı̂n interval. Varianta D este echivalentă cu varianta A, deci este corectă. Varianta

B este echivalentă cu faptul că x nu apart, ine intervalului [a, b]. Varianta C nu impune

condit, iile suficiente.

790. Algoritmul realizează transpunerea unei matrice pătratice prin interschimbarea ele-

644

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

mentelor de deasupra s, i sub diagonala principală, ment, inând elementele de pe diagonală

neschimbate.

791. Algoritmul ı̂nmult,es,te două matrice pătratice de dimensiune n×n folosind formula

clasică de ı̂nmult, ire a matricelor.

792. Traversarea arborelui ı̂n preordine presupune procesarea rădăcinii, apoi parcurgerea

subarborelui stâng, iar apoi a subarborelui drept.

793. Algoritmul verifică la fiecare pas dacă s-au realizat permutări. Dacă nu s-au rea-

lizat, ı̂nseamnă că s, irul este deja sortat s, i se poate opri execut, ia, reducând numărul de

pas, i ai algoritmului. Pentru un s, ir deja sortat, se efectuează doar n − 1 comparat, ii, as,a

că, varianta B este falsă. Totus, i, pentru cazul ı̂n care elementele s, irului sunt ordonate

strict descrescător, complexitatea rămâne O(n2), la fel ca ı̂n varianta clasică a algoritmu-

lui BubbleSort.

794. Algoritmul generează combinări de n luate câte k, pentru care elementele sunt

ı̂n ordine crescătoare, iar diferenţa dintre 2 elemente alăturate este mai mare sau egală

cu 2, folosind metoda backtracking. Variabila start indică valoare minimă pe care o va

lua următorul element din combinare, position indică poziţia din combinare pe care va

fi plasată valoarea curentă, k reprezintă numărul de valori dintr-o combinare validă, n

este numărul total de elemente, iar a memorează pe rând soluţiile algoritmului. Vari-

antele A şi D sunt incorecte, deoarece prin creşterea valorii start cu 2 faţă de valoarea

curentă, elementele consecutive ale unei combinări vor avea diferenţa mai mare sau egală

cu 2. Varianta B este incorectă, deoarece elementele combinărilor vor avea valori strict

crescătoare. Varianta C este, aşadar, corectă.

795. Pentru s, irul a = [1, 0, 1, 1, 1] (varianta B), algoritmul de sortare va efectua exact o

interschimbare ı̂ntre primul element s, i al doilea, rezultând ordinea corectă: [0, 1, 1, 1, 1].

Astfel, interschimbarea se efectuează o singură dată. Pentru s, irul a = [1, 2, 3, 4, 5, 6] (va-

rianta C), algoritmul de sortare nu va efectua nicio interschimbare deoarece s, irul este

deja ordonat crescător. În schimb, pentru s, irurile a = [1, 0, 5, 7, 2, 3, 8] (varianta A) s, i

a = [1, 0, 1, 0, 1, 0, 1] (varianta D), algoritmul va efectua mai multe interschimbări pentru

a obt, ine o ordonare corectă.

645

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

796. Algoritmul CeFace funct, ionează ı̂n trei etape: identifică s, i mută toate numerele

prime la ı̂nceputul s, irului; sortează numerele prime ı̂n ordine crescătoare folosind Bubble

Sort; sortează numerele neprime ı̂n ordine descrescătoare folosind Insertion Sort.

797. Pentru fiecare apel recursiv al algoritmului, sunt făcute alte m apeluri recursive,

pentru valori n ≥ 1, ceea ce face ca numărul de paşi să crească exponenţial. Pentru

fiecare nou apel, valoarea lui n este ı̂mpărţită la 2, ceea ce face ca valoarea lui n să

descrească logaritmic. Ca urmare, complexitatea algoritmului dat este O(mlogn). Cal-

culul poate fi efectuat, de asemenea, folosind Teorema Master. Complexitatea de timp

a algoritmului poate fi descrisă astfel: T (n,m) = mT
(
n
2 ,m

)
. Sunt identificate constan-

tele: a = m, b = 2, k = 0 şi p = 0. Datorită faptului că a > bk, deoarece m > 1,

T (n,m) = Θ(nlogb a) = Θ(nlog2 m) = Θ(mlog2 n). În concluzie, varianta C este corectă,

iar variantele A, B, D sunt incorecte.

798. Algoritmul calculează suma divizorilor primi ai unui număr.

799. Algoritmul parcurge numerele de la 2 la n şi marchează ı̂n vectorul p numerele prime

cu valoarea acestora, iar pentru multiplii lor, care nu au fost procesaţi până ı̂n acel mo-

ment, setează valoarea corespunzătoare din p cu valoarea numărului prim găsit anterior.

Aşadar, varianta A este incorectă, iar varianta B este corectă. Cel mai mic factor prim

al lui 10 este 2, deci varianta C este incorectă, iar cel mai mic factor prim al lui 5 este 5,

deci varianta D este corectă.

800. Vom face câteva observat, ii cheie: O format, ie cu k rânduri cont, ine 2k − 1 buline,

iar adăugare unui nou rând la o format, ie deja existentă va folosi mai multe buline decât

crearea unei noi format, ii identice cu cea deja existentă. As,adar, scopul nostru este să

formăm piramide cu cât mai multe rânduri. Determinăm câte buline avem la dispozit, ie.

Cât timp mai avem buline, căutăm cel mai apropiat număr 2k − 1 s, i formăm o format, ie

cu k rânduri, după care scădem numărul de buline folosite. În total, avem 182 de buline.

Vom avea: 1 format, ie cu 7 rânduri (127 de buline), o format, ie cu 5 rânduri (31 de buline),

o format, ie cu 4 rânduri (15 buline), o format, ie cu 3 rânduri (7 buline) s, i două format, ii

cu 2 rânduri (2 buline). În total, avem 6 format, ii.

801. Algoritmul calculează combinările de n luate câte k. Numărul de apeluri se poate

646

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

determina prin construirea unei funct, ii similare, care ı̂nsă, pe lângă suma celor două ape-

luri recursive, mai adaugă un 1 la fiecare apel, pentru a număra s, i apelul curent. As,adar,

rezultatul final va fi 2 ∗ (C7
10 − 1).

802. Indiferent de ordinea ı̂n care se fac mis,cările, drumul va avea a mis,cări de tipul

(x, y)→ (x+ 1, y) s, i b mis,cări de tipul (x, y)→ (x, y + 1). Să notăm cu 0 fiecare mis,care

de tipul (x, y)→ (x+ 1, y) s, i cu 1 fiecare mis,care de tipul (x, y)→ (x, y + 1). Drumul va

fi reprezentat de un s, ir de lungime a + b format din a 0-uri s, i b 1-uri, deci vom avea de

as,ezat a 0-uri ı̂ntr-un s, ir de lungime a+ b. Cu alte cuvinte, trebuie să selectăm a numere

din a+ b posibile, deci numărul de drumuri distincte este
(
a+b
a

)
.

803. Fk+2 − Fk+1 = Fk =⇒
n∑

k=1

(Fk+2 − Fk+1) =

n∑
k=1

Fk =⇒ (F3 − F2) + (F4 − F3) +

...+ (Fn+2 − Fn+1) =

n∑
k=1

Fk =⇒ Fn+2 − F2 =

n∑
k=1

Fk =⇒ Fn+2 − 1 =

n∑
k=1

Fk. Aşadar,

singura variantă corectă este D.

804. Algoritmul se numeşte ”Indicatorul lui Euler” şi calculează numărul de valori mai

mici sau egale cu n, care sunt prime cu n, folosind formula T (n) = n ·
∏
p|n

(
1− 1

p

)
.

Aşadar, varianta A este incorectă, dar variantele B şi C sunt corecte. Pentru n prim,

acesta este prim cu toate numerele mai mici decât acesta, deci T (n) = n−1. În concluzie,

varianta D este corectă.

805. Numerele naturale mai mici sau egale cu 10, care sunt prime cu 10 sunt 1, 3, 7, 9,

cele mai mici sau egale cu 7, prime cu 7 sunt 1, 2, 3, 4, 5, 6, iar numărul mai mic sau egal

cu 1, prim cu 1 este 1. Similar, T (25) = 20. Aşadar, varianta A este corectă, varianta B

este incorectă, varianta C este corectă, iar varianta D este incorectă.

806. Să ne imaginăm o matrice pătratică de dimensiune n×n. Fie D(n) valoarea pe care

cnt o ia pentru un anumit n dat. Observăm că, la fiecare pas, matricea noastră se ı̂mparte

ı̂n 4 submatrice. Condit, ia init, ială impune ca matricea pe care lucrăm să fie pătratică,

pentru a exista modificări asupra contorului. Dacă matricea noastră are dimensiune im-

pară, atunci două matrice nu vor respecta condit, ia init, ială (exemplu: pentru o matrice

de dimensiune 5× 5, obt, inem matricele de dimensiune 3× 3, 2× 3, 3× 2 s, i 2× 2) As,adar,

647

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

avem relat, ia de recurent, ă:

D(n) =


1, dacă n = 1,

4 ∗D(n2) + 1, dacă n este par

D(n2) +D(n2 + 1) + 1, dacă n este impar

807. Recursiv, algoritmul calculează suma elementelor dintr-un s, ir. Complexitatea aces-

tuia este O(n), deoarece fiecare element din s, ir va fi accesat o singură dată, când va ajunge

la el ı̂n apelul recursiv.

808. Momentul la care toate becurile luminează deodată trebuie să fie un multiplu

comun al tuturor elementelor din s. Dintre variante, 2520 s, i 5040 verifică această propri-

etate.

809. Problema se schimbă fat, ă de cea anterioară prin faptul că becurile luminează pen-

tru o perioadă mai ı̂ndelungată. Primul bec va lumina, pe rând, ı̂ntre secundele cuprinse

ı̂n intervalul [7, 9], după aceea ı̂ntre secundele [16, 18], după aceea ı̂ntre secundele [25, 27],

s, i tot as,a. Generalizând, un bec i va lumina ı̂ntre secundele [s[i]∗k−2, s[i]∗k]. Momentul

ı̂n care luminează toate becurile deodată trebuie să apart, ină unui interval comun tuturor

becurilor. Dintre variante, 3959 verifică această proprietate.

810. (12 DIV (5− 1)) · (4 + ((12 + 1) MOD (5− 1)))− ((4 + 1) MOD (5− 1)) = 14

811. Algoritmul Trick1 foloses,te sume prefixate pentru a eficientiza interogările după un

pas init, ial de preprocesare, făcându-l mai eficient decât Trick2 pentru un număr mare

de interogări. Ambii algoritmi returnează pentru o interogare, numărul de aparit, ii al

elementului x ı̂n intervalul [i, j] din vectorul v, unde i, j sunt pozit, ii ı̂n vector.

812. Algoritmul oglindes,te matricea fat, ă de axa verticală prin interschimbarea coloane-

lor.

813. Algoritmul recursiv trebuie să parcurgă matricea pe linii s, i coloane s, i să calcu-

leze suma ultimelor cifre ale tuturor elementelor, trecând la următoarea coloană sau la

următoarea linie dacă s-a ajuns la sfârs, itul unei coloane.

814. Evaluăm expresia pas cu pas: Prima parte: a > b −→ 3 > 5 este fals, deci evaluăm

648

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

ramura (c < d?d− c : a+ b). c < d −→ 2 < 8 adevărat, rezultatul este 8− 2 = 6. A doua

parte: d < a −→ 8 < 3 este fals, evaluăm (c > a?c : a+ d). c > a −→ 2 > 3 fals, rezultatul

este a+ d = 3 + 8 = 11.Rezultatul expresiei: 6 + 11 = 17.

815. Traversarea arborelui ı̂n postordine presupune parcurgerea subarborelui stâng, apoi

a subarborelui drept, iar ı̂n final procesarea rădăcinii.

816. Algoritmul calculează numărul de divizori ai numerelor mai mici sau egale decât n.

Numerele de la 1 la n sunt parcurse pe rând, iar pentru fiecare multiplu al fiecăruia, mai

mic sau egal decât n, valoarea corespunzătoare acestuia din vectorul d este crescută cu 1,

fapt care reprezintă găsirea unui nou divizor. Aşadar, varianta A este incorectă, deoarece

omite divizorii improprii ai numerelor, ı̂nsă variantă B este corectă. 10 are 4 divizori (1,

2, 5, 10), deci afirmaţia C este incorectă, iar 24 are 8 divizori (1, 2, 3, 4, 6, 8, 12, 24),

deci afirmaţia D este corectă.

817. Ca rezultat al faptului că pentru fiecare apel recursiv, sunt apelate alte m ape-

luri recursive, numărul de paşi al algoritmului creşte exponenţial odată cu creşterea

lui n. Valoarea lui n este ı̂mpărţită ı̂n mod repetat la m, iar ca rezultat, m des-

creşte logaritmic. În concluzie, complexitatea va fi O(mlogmn) = O(n). Calculul poate

fi efectuat, de asemenea, folosind Teorema Master. Complexitatea de timp a algorit-

mului poate fi descrisă astfel: T (n,m) = mT
(
n
m ,m

)
. Sunt identificate constantele:

a = m, b = m, k = 0 şi p = 0. Datorită faptului că a > bk, deoarece m > 1,

T (n,m) = Θ(nlogb a) = Θ(nlogm m) = Θ(mlogm n) = Θ(n). În concluzie, variantele B

şi C sunt corecte, iar variantele A şi D sunt incorecte.

818. Algoritmul generează permutările şirului format din numere naturale de la 1 la n, ı̂n

care paritatea unei valori este diferită de ceea a poziţiei pe care se află, folosind metoda

backtracking. k reprezintă poziţia curentă dintr-o permutare, n este numărul total de

elemente ale unei permutări, a este vectorul care reţine pe rând fiecare soluţie a algorit-

mului, iar f este un vector de frecvenţă, care asigură că fiecare element apare exact o dată

ı̂ntr-o soluţie. Aşadar, varianta C este corectă. Pentru n impar, numărul poziţiilor pare

este mai mare decât numărul valorilor pare, ı̂n timp ce numărul valorilor impare este mai

mare decât numărul poziţiilor impare. Aşadar, nu există soluţii ı̂n acest caz, iar varianta

649

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

B este corectă şi varianta D este incorectă. Pentru n par, este nevoie ca prima valoare să

fie una pară, deci varianta A este incorectă.

819. Arborele dat are următoarea reprezentare:

6

4

1

2 3

5

8

7 9

10

11

Nodurile 2, 3, 5, 7 şi 11 reprezintă frunzele acestuia, deci varianta C este corectă. Nodul 6

este marcat cu valoarea 0 ı̂n vectorul de taţi, deci acesta este rădăcina, iar varianta A este

corectă. Numărul de noduri interioare este 6, deci varianta B este incorectă. Înălţimea

arborelui este 4, deci varianta D este incorectă.

820. Până la adresa 1, acesta a consumat 10000000(2) = 128(10) unităt, i, iar ı̂napoi

1(2) = 1(10), adică un total de 129(10) de unităt, i pentru prima livrare. Până la adresa 2,

acesta a consumat 11100000(2) = 224(10) unităt, i, iar ı̂napoi 111(2) = 7(10), adică un total

de 231(10) de unităt, i. Până la adresa 3, acesta a consumat 11111100(2) = 252(10) unităt, i,

iar ı̂napoi 111111(2) = 63(10), adică un total de 315(10) de unităt, i. Până la adresa 4, el a

parcurs 8 laturi, a luat o pauză s, i a mai parcurs ı̂ncă 7 laturi pentru a ajunge la adresă,

adică a consumat 255+128+127 = 510, s, i decide să se ı̂ntoarcă la depozit pe drumul cel

mai scurt, ı̂n sens invers acelor de ceasornic, s, i să mai parcurgă 3 laturi, 111(2) = 7(10).

În total, acesta a consumat 1192 de unităt, i de energie.

821. Algoritmul calculează combinările de n luate câte k, folosindu-se de triunghiul lui

Pascal.

822. Structura repetitivă externă se execută de log7(n) ori, iar cea internă de log3(n
3) ori.

Complexitatea algoritmului poate fi scrisă ca O(log7 n ∗ log3 n3) = O(log3 n ∗ 3 ∗ log3 n) =

650

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

O(log23 n) = O(log23 n
2) = O(log27 n), pentru că, ı̂n calculul complexităt, ilor, constantele

pot fi ignorate.

823. Algoritmul construies,te un număr din cifrele lui n după următoarea regulă: anali-

zează fiecare cifră a numărului n s, i verifică dacă este un număr prim. Dacă este prim,

adaugă la numărul final ultimele două cifre precedente cifrei analizate. Dacă nu, decre-

mentează valoarea k.

824. Definit, ia subalgoritmului M(n) este, de fapt: M(n) =


91, n ≤ 101

n− 10, n > 101

Aşadar, varianta A este corectă, iar varianta B este incorectă. M(523) = 513, deoarece

523 > 101, deci varianta C este corectă. M(102) = 92, deoarece 102 > 101, deci varianta

D este incorectă.

825. Algoritmul dat va returna următoarele valori pentru n ∈ {0, 1, 2, 3, 4} :

F (0) = 1,

F (1) = F (F (0)− 1) · 1 = F (0) · 1 = 1,

F (2) = F (F (1)− 1) · 2 = F (0) · 2 = 2,

F (3) = F (F (2)− 1) · 3 = F (1) · 3 = 3,

F (4) = F (F (3)− 1) · 4 = F (2) · 4 = 8.

Ca urmare, varianta A este corectă, iar varianta C este incorectă. F (5) = F (F (4)−1)·5 =

F (7) ·5 = F (F (6)−1) ·7 ·5 = F (F (F (5)−1) ·6−1) ·35. Calculul recursiv este infinit, iar

calcularea oricărui număr n, n ≥ 5 este imposibilă. Varianta B este incorectă, iar varianta

D este corectă.

826. P reprezintă o permutare a numerelor de la 1 la 10. Algoritmul Transform trans-

formă permutarea P ı̂ntr-o altă permutare Q astfel ı̂ncât Q[i] = P [Q[i]] pentru orice

i. La fiecare construct, ie a lui Q, observăm că se creează o legătură ı̂ntre indexul i s, i

valoarea lui P [i]. De asemenea, observăm că, pentru anumite pozit, ii, elementele vor

ajunge ı̂n s, irul Q ı̂n exact aceeas, i ordine ı̂n care se aflau ı̂n P . Ele vor forma cicluri:

7 → 8 → 1 → 7, 4 → 5 → 10 → 9 → 2 → 4, 6 → 3 → 6. Pentru a determina care va fi

valoarea lui cnt, va trebui să calculăm cel mai mic multiplu comun al lungimilor ciclurilor.

651

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

Pentru celelalte subpuncte, vom calcula pentru fiecare valoare a lui cnt restul ı̂mpărt, irii

lui cnt la lungimea ciclului, s, i determinăm astfel ordinea elementelor ı̂n s, irul Q. Chiar

dacă pentru o posibilă valoarea a lui cnt = 31 permutarea obt, inută ar fi aceeas, i cu cea

pentru cnt = 1, algoritmul se va opri când va găsi o valoare a lui cnt pentru care toate

elementele sunt pe pozit, ia lor init, ială, adică 30.

827. Problema se ı̂nvârte ı̂n jurul divizibilităt, ii lui n s, im la d. Dacă n s, im sunt divizibile

la d, atunci numărul de plăci necesare este [nd] · [
m
d]. Dacă n s, i m nu sunt divizibile la d,

atunci numărul de plăci necesare cres,te cu 1 pentru fiecare latură. Însă, această cres,tere

este condit, ionată de divizibilitate lui n s, i m la d, deci varianta D nu este ı̂ntotdeauna

corectă. Varianta C este corectă, deoarece se ocupă de toate cazurile posibile.

828. Culoarea ultimei bile este mereu dată de numărul iniţial de bile albe. În situaţia

ı̂n care cele 2 bile extrase sunt de aceeaşi culoare, se introduce o bilă neagră, deci pari-

tatea numărului celor albe este aceeaşi. În situaţia ı̂n care bilele extrase sunt de culori

diferite, se introduce o bilă albă, ceea ce face ca numărul celor albe să aibă aceeaşi pa-

ritate ca ı̂nainte de extragere. În concluzie, ultima bilă va fi albă, dacă numărul iniţial

de bile albe era impar (paritatea numărului de bile albe este păstrată), respectiv neagră,

ı̂n caz contrar. Variantele A şi D sunt incorecte. Varianta C este corectă, deoarece este

ı̂n concordanţă cu raţionamentul de mai sus, iar varianta B este corectă, deoarece aplică

acelaşi raţionament pentru un număr impar de bile albe.

829. Vom analiza scrierea ı̂n baza 2 a fiecărui număr posibil. Pentru fiecare bit ı̂n parte,

putem avea fie valoarea 0, fie valoarea 1. Dacă pe pozit, ia i avea valoarea 1, atunci al

i-lea participant va scrie numărul respectiv pe bilet,el. Ce se ı̂ntâmplă ı̂n cazul ı̂n care n

este o putere a lui 2? În acest caz, niciun participant nu va avea numărul n pe biletul

lui. Dacă n este câs,tigător, atunci, cum nimeni nu va avea numărul n pe bilet, echipa va

s,tii automat că numărul câs,tigător este n. As,adar, numărul minim de participant, i va fi

log 2x, unde x este cel mai mic număr mai mare sau egal decât n care este putere a lui 2.

Din formulele noastre, cea corespunzătoare acestui răspuns este D.

830. Fiind 120 de stânci, Broski va avea de sărit 121 de unităt, i. Cât timp nu depăs,es,te

celălalt mal, Broski va sări dublul ultimei sărituri, iar doar când nu va mai putea sări

652

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

dublul distant,ei, va sări o unitate. Deci, săriturile lui Broski vor fi: 1 + 2 + 4 + 8 + 16

+ 32 + 1 + 2 + 4 + 8 + 16 + 1 + 2 + 4 + 8 + 1 + 2 + 4 + 1 + 2 + 1 + 1 = 121, adică

22 de sărituri. Fiecare secvent, ă de sărituri duble va aduce ı̂n total o deplasare de forma

2k − 1 unităt, i, unde k este numărul de sărituri din secvent, ă. Rescris, 121 = 63 + 31 +

15 + 7 + 3 + 1 + 1.

831. Recursiv, algoritmul determină valoarea maximă din s, ir. Complexitatea acestuia

este O(n), deoarece fiecare element din s, ir va fi accesat o singură dată, când va ajunge la

el ı̂n apelul recursiv.

832. Căutăm cel mai mic multiplu comun al numerelor din vectorul z. Tot, i multiplii

acestui număr reprezintă o solut, ie validă.

833. Singurele numere care au doar 3 divizori sunt pătratele perfecte ale unor numere

prime. Dintre variantele expuse, 25 este pătrat perfect al unui număr prim, 144 nu este

pătrat perfect al unui număr prim, iar, des, i este pătratul lui 13, 169 este mai mare decât

153.

834. Algoritmul simulează o exponent, iere rapidă s, i calculează mereu xn, sub formă de

apeluri recursive. Complexitatea timp a algoritmului va fi O(log2 n) datorită apelurilor

recursive.

835. Algoritmul descris construies,te triunghiul lui Pascal, unde fiecare element este cal-

culat ca suma celor două elemente din rândul anterior. Des, i ı̂ncepe indexarea de la 1,

fiecare element corespunde unei combinări, cu ajustarea indicilor: elementul de pe rândul

I s, i coloana J este echivalent cu combinările de I − 1 luate câte J − 1. Rezultatul final

se obt, ine prin apelarea algoritmului cu parametrii A s, i B, care returnează valoarea com-

binării corespunzătoare. Astfel, corelarea dintre valorile generate s, i formula combinărilor

permite identificarea corectă a răspunsurilor, A s, i C fiind opt, iunile corecte.

836. Algoritmul descris se concentrează pe extragerea cifrelor unui număr natural s, i

reorganizarea lor astfel ı̂ncât să obt, ină o sortare descrescătoare. Se utilizează o metodă

bazată pe puteri de 10 pentru a izola cifrele s, i pentru a determina cifra minimă, care va fi

plasată ulterior ı̂n locul fostelor cifre. Procesul se repetă, aplicând aceeas, i logică pentru

fiecare pozit, ie a cifrelor, ceea ce duce la sortarea numărului ı̂n ordine descrescătoare, fără

653

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

a utiliza structuri de date adit, ionale pentru stocarea cifrelor.

837. Un arbore binar complet cu n noduri are ı̂nălt, imea ⌊log2 n⌋. Pentru n = 100,

⌊log2 100⌋ = 6. Prin urmare, ı̂nălt, imea arborelui binar complet cu 100 de noduri este 6.

838. Succesorul ı̂n inordine al unui nod dintr-un arbore binar de căutare este fie cel mai

stâng nod din subarborele drept, dacă acesta există sau, altfel, primul strămos, la care

nodul se află ı̂n subarborele stâng. În cazul de fat, ă, nodul 28 nu are subarbore drept,

ı̂nsă este copilul stâng al nodului 40, deci succesorul său ı̂n inordine este nodul părinte,

adică 40.

839. Subalgoritmul calculează numărul de puncte (i, j) unde cel put, in una dintre coor-

donate este ±N , formând un ”pătrat”. Fiecare latură a pătratului are 2N + 1 puncte,

dar colt,urile sunt numărate o singură dată. Total: 4× (2N + 1)− 4 = 8N .

840. Calculăm: - A: 1410 = 11102 ⇒ 3 bit, i setat, i.

- B: 2810 = 111002 ⇒ 2 zerouri finale.

- A⊕B = 3⊕ 2 = 1 (deoarece 112 ⊕ 102 = 012).

- 1 mod 5 = 1.

841. Algoritmul calculează sumele part, iale ale cifrelor extrase de la dreapta la stânga,

formează un nou număr prin concatenarea acestor sume s, i returnează suma cifrelor no-

ului număr. Exemplu: Pentru N = 1234, sumele part, iale sunt (de la dreapta la stânga)

4, 7, 9, 10, iar numărul format este 47910. Suma cifrelor sale este 4 + 7 + 9 + 1 + 0 = 21.

842. Complexitatea este determinată de recurent,a T (n) = 2T (n/2)+O(n log n). Pentru

o recurent, ă T (n) = aT (n/b) + f(n), a ≥ 1, b > 1, dacă f(n) = Θ(nlogb a logk n), atunci

T (n) = Θ(nlogb a logk+1 n). (teorema master).

Aplicând teorema master: a = 2, b = 2, f(n) = Θ(n log n).

Deoarece f(n) = Θ(nlogb a logk n) cu k = 1, avem T (n) = Θ(n logk+1 n) = Θ(n(log n)2).

Variantele A s, i B sunt corecte deoarece log(n + 1) = Θ(log n), deci n log(n + 1) log n =

Θ(n(log n)2).

843. Subalgoritmul aplică o căutare binară pe matricea tratată ca un vector 1D sortat.

Proprietăt, ile matricei asigură că toate elementele sunt sortate global.

844. BD16 = B×161+D×160 = 11×16+13 = 176+13 = 189; 2156 = 2×62+1×61+

654

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

5× 60 = 2× 36 + 1× 6 + 5 = 72 + 6 + 5 = 83; 45 = 4, 213 = 2× 31 + 1× 30 = 6 + 1 = 7.

845. Convertind fiecare caracter obt, inem C = 10011102 = 7810 O = 11111102 = 12610 N

= 11101102 = 11810 U = 01111102 = 6210 R = 11101112 = 11910 S = 11011002 = 10910.

846. Algoritmul calculează numărul de moduri de a scrie k ca sumă de termeni din

mult, imea {1, 2, . . . , n}, permise să se repete. Recurent,a ceFace(n, k) = ceFace(n− 1, k)+

ceFace(n, k − n) corespunde cu excluderea sau includerea termenului n. Varianta A nu

restrict, ionează termenii la ≤ n, B necesită termeni distinct, i, iar D introduce condit, ii

inegale (xi ≤ i). Pentru n = 3, k = 4, rezultatul este 4 (1+1+1+1, 1+1+2, 1+3, 2+2).

847. Vectorul trebuie să fie structurat ca un arbore binar de căutare (BST) ı̂n reprezentare

pre-ordine. Căutarea lui 42 ı̂ncepe cu rădăcina 11, apoi merge la dreapta (53), apoi la

stânga (48). Opt, iunea D corespunde unui BST cu 11 ca rădăcină, 53 ca fiu drept, s, i 48

ca fiu stâng al lui 53.

848. Subalgoritmul implementează recurent,a numerelor Catalan Q(n) =
∑n

k=1 Q(k −

1)Q(n− k). Acestea numără:

- Arbori binari de căutare cu n noduri,

- Numărul de modalităt, i de a paranteza n+ 1 factori,

- Numărul de posibilităt, i de a desena n coarde care nu se intersectează, pe un cerc care

are 2 ∗ n puncte.

Varianta D este incorectă (nu t, ine de numerele Catalan). Toate celelalte trei sunt definit, ii

echivalente ale numerelor Catalan.

849. Într-un vector binar, subs, irul strict crescător maxim apare când există cel put, in

un 0 urmat de un 1 (e.g., [0, 1]), având lungimea 2. Dacă toate elementele sunt identice

(doar 0 sau doar 1), lungimea maximă este 1. Variantele C s, i D sunt gres, ite deoarece

numărul de 0-uri sau 1-uri nu garantează o secvent, ă crescătoare.

850. Algoritmul parcurge matricea standard, linie cu linie (de sus ı̂n jos), s, i ı̂n cadrul

fiecărei linii, coloană cu coloană (de la stânga la dreapta), datorită structurii buclelor

(For i... For j...). Condit, ia If selectează elementele din două regiuni specifice:

1. j < c s, i i + j < n + 1: Elementele aflate strict ı̂n stânga coloanei centrale s, i strict

deasupra diagonalei secundare. 2. j > c s, i i + j > n + 1: Elementele aflate strict ı̂n

655

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

dreapta coloanei centrale s, i strict sub diagonala secundară. Pentru n = 5 (unde c = 3 s, i

n+ 1 = 6), algoritmul va afis,a elementele ı̂n ordinea ı̂ntâlnirii lor ı̂n parcurgerea liniară:

• Linia 1: A[1][1], A[1][2] (zona 1)

• Linia 2: A[2][1], A[2][2] (zona 1), apoi A[2][5] (zona 2)

• Linia 3: A[3][1], A[3][2] (zona 1), apoi A[3][4], A[3][5] (zona 2)

• Linia 4: A[4][1] (zona 1), apoi A[4][4], A[4][5] (zona 2)

• Linia 5: A[5][4], A[5][5] (zona 2)

Aceasta corespunde descrierii din varianta C: elementele din zonele geometrice specificate,

parcurse pe linii.

851. Algoritmul simulează o sortare, cunoscută s, i drept ”Miracle Sort”, care intră ı̂n

ciclu infinit pentru un vector sortat s, i afis,ează ”Ok” pentru un vector nesortat. Singura

afirmat, ie adevărată este D.

852. f(a, b) =


1 dacă b = 0

0 dacă b > a

f(a− 1, b) + b× f(a− 1, b− 1) altfel

unde f(a,b) reprezintă aranjamente de a luate câte b.

853. Expresia se rescrie E(x) = a0 + x(a1 + x(a2 + x(a3 + x(a4 + x · a5)))), deci sunt

necesare 5 ı̂nmult, iri pentru a evalua expresia.

854. Pentru n = 0, algoritmul returnează 1, adică x0. Algoritmul ı̂mparte n prin 3

şi apelează recursiv g(x, ⌊n/3⌋), deci numărul de apeluri va fi proporţional cu log3(n).

Rezultatul final se compune ı̂n funcţie de n mod 3:


p3, dacă n mod 3 = 0,

x · p3, dacă n mod 3 = 1,

x · x · p3, dacă n mod 3 = 2.

Având p = x⌊n/3⌋, deducem că algoritmul calculează exact xn (pentru toate valorile lui

n) cu aproximativ log3(n) apeluri.

656

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

855. În acest caz, atunci când n mod 3 = 2, valoarea returnată de algoritm nu mai este

x ·x · p3 = xn, ci x+x · p3, care (pentru x > 1, n > 2) este ı̂n general diferită s, i, de obicei,

mai mică decât xn. Această modificare nu afectează ı̂nsă structura recursivă (̂ımpărt, irea

la 3 rămâne), deci numărul de apeluri rămâne aproximativ log3(n), nu devine n2.

856. Solut, iile generate sunt: 1116, 1112, 1114, 1166, 1162, 1164, 1126, 1122, cea de-a 8-a

fiind 1122.

857. Subalgoritmul calculează numărul de moduri de a exprima n ca sumă de numere

Fibonacci distincte s, i neconsecutive. ϕ = 1+
√
5

2 este sect, iunea de aur (golden ratio). Iar

logϕ(
√
5n) calculează de câte numere Fibonacci averm nevoie pentru un anume n. Spre

exemplu, pentru n = 10, logϕ(
√
5n) ≃ 4. k adaugă 2 la acest număr, pentru a ne asigura că

avem destule numere pentru sumă. Recurent,a F (n, k) = F (n−Fib(k), k−2)+F (n, k−1)

corespunde includerii/excluderii termenului Fib(k), evitând termenii consecutivi (k − 2).

Pentru n = 7, solut, iile sunt 2 + 5 s, i 1 + 2 + 5, deci rezultatul este 2.

858. Observăm că o regulă simplă care verifică ipoteza este suma pozit, iilor literelor

ı̂n alfabet (unde A=1, B=2, . . . , Z=26). Pentru variantele date: CASE: C(3)+A(1)+

S(19) + E(5) = 28, SECA: S(19) + E(5) + C(3) + A(1) = 28, CASA: C(3) + A(1) +

S(19) +A(1) = 24, CEAI: C(3) + E(5) +A(1) + I(9) = 18.

859. Algoritmul construies,te un arbore binar de căutare (BST) din s, irul A. Primul

element este rădăcina, elementele ≥ rădăcină formează subarborele stâng, iar cele >

formează subarborele drept. Pentru A = [5, 3, 1, 4, 8, 7, 9], structura BST este:

Rădăcină 5 (stânga: [3,1,4], dreapta: [8,7,9]).

Frunzele sunt nodurile 1, 4, 7, 9 → 4 frunze.

860. Dând factor comun succesiv pe x s, i x3 obt, inem P (x) = x·
(
x3 · (a5 · x+ a4) + a2

)
+a0

Total: 5 ı̂nmult, iri. (două pentru x3, iar restul pentru fiecare semn de ı̂nmult, ire din

expresia dată)

861. S, tim că T[1][1] = 1 Pentru Rândul 1: T[1][1] = 1 (dat) T[1][2] = 0 (deoarece

1+2=3 este impar s, i nu este i=j) T[1][3] = 0 (deoarece 1+3=4 este par, XOR al valorilor

precedente) Pentru Rândul 2: T[2][1] = 2 (T[1][1] * 2 deoarece 2+1=3 este impar) T[2][2]

= 4 (deoarece i=j=2, deci 2×2=4) T[2][3] = 0 (deoarece 2+3=5 este impar, T[1][3] * 2 =

657

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

0) Pentru Rândul 3: T[2][1] = 2 (T[2][1] * 2 deoarece 3+1=4 este par) T[3][2] = 8 (T[2][2]

* 2 deoarece 3+2=5 este impar) T[3][3] = 9 (deoarece i=j=3, deci 3×3=9) Prin urmare,

T[3][3] + T[2][3] = 9 + 0 = 9

Răspunsul este 9.

862. Fiecare cifră a lui N = 475 este convertită ı̂n binar: - 4→ 100 (1 bit de 1) - 7→ 111

(3 bit, i de 1) - 5 → 101 (2 bit, i de 1) După care se adună numărul de bit, i de 1 la o sumă

finală: 1 + 3 + 2 = 6.

863. Complexitate timp: 3 log2(n) · log3(n) + 4 log3(n) + 1 Termenul dominant al

algoritmului care descrie complexitatea este log2(n) · log3(n). Vom folosi proprietatea

de schimbare a bazei a funct, iei logaritm: loga(X) = loga b · logb(X) Astfel, obt, inem:

log2(n) · log3(n) = log2(3) · log
2
3(n) ∈ O(log23(n)) Similar: log2(n) · log3(n) = log3(2) ·

log22(n) ∈ O(log22(n))

Pentru n > 3 are loc: log2(n)·log3(n) > log2(n), deci T (n) /∈ O(log2(n)) Folosind inegali-

tatea loga(n) < n avem: log2(log3(n)) < log3(n) < log2(n) · log3(n),∀n > 2, deci T (n) /∈

O(log2(log3(n)))

864. Algoritmul calculează numărul de partit, ii multiplicative ordonate ale lui n cu factori

≥ d. Pentru d = 2, acesta numără toate descompunerile ordonate ale lui n ı̂n produse de

numere ≥ 2, unde fiecare factor ulterior este ≥ precedentul. Exemplu pentru n = 8: 8,

2× 4, 2× 2× 2 → 3 moduri.

865. Expresia dată este: NOT(A OR B) OR NOT(C AND NOT A)

Simplificăm folosind legile lui De Morgan: (NOT A AND NOT B) OR (NOT C OR A)

866. Considerând fiecare pereche ca o singură entitate, avem 3 entităt, i care pot fi aranjate

ı̂n cerc ı̂n (3 − 1)! = 2! moduri. Fiecare pereche poate fi as,ezată ı̂n 2 moduri (prieten 1:

stânga sau dreapta). Total: 2!× 23 = 2× 8 = 16.

867. Algoritmul efectuează o căutare binară pentru a găsi cea mai mare putere a lui 2

(2k) care este ≤ n. Pentru n = 25, cea mai mare astfel de putere este 16 (24).

868.

• 14÷ (1 + 1 + 4) = 14÷ 6 = 2 rest 2 → nu este divizibil.

• 22÷ (2 + 2 + 2) = 22÷ 6 = 3 rest 4 → nu este divizibil.

658

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

• 30÷ (3 + 3 + 0) = 30÷ 6 = 5 rest 0 → este divizibil.

• 41÷ (4 + 4 + 1) = 41÷ 9 = 4 rest 5 → nu este divizibil.

869. Strategia corectă (B): Cercul este ”tăiat” ı̂ntr-o linie prin punctul cu cea mai mare

distant, ă ı̂ntre două puncte consecutive. Se plasează arce de la stânga la dreapta, apoi

se verifică suprapunerea la capete datorită circularităt, ii. Varianta A es,uează din cauza

circularităt, ii (arcul final poate să nu se conecteze cu primul). Pentru N = 8 puncte echi-

distante s, i L = 180◦, solut, ia optimă este 2 arce, obt, inută prin strategia B.

870. Calculăm 27 = 128 (binar: 10000000). Adunăm 128 + 128 = 256, care ı̂n 8 bit, i

devine 00000000. Scădem 1: 00000000 - 1 = 11111111 (complementul lui 2 pentru -1).

- Fără sem: 11111111 = 255.

- Cu semn: 11111111 = −1.

871. Pe intervalul [0, 100) sunt 14 multipli de 7, 19 numere care cont, in cifra 7 s, i 3 numere

care cont, in atât cifra 7, dar sunt s, i divizibile cu 7, deci pe intervalul [0, 100), se strigă

”Bolt, !” de exact 30 de ori. Analizând la fel intervalele [100, 200) s, i [200, 300), obt, inem că

al 100-lea element pentru care se strigă ”Bolt, !” este 336.

872. Notăm cu M mult, imea multiplilor de 7 mai mici decât 1000, cu D mult, imea

cifrelor care cont, in cifra 7 până la 1000. Din cele 1000 de numere naturale, avem

|M | = 142, |D| = 271 s, i |M ∩ D| = 39, unde |M | reprezintă cardinalul mult, imii M .

Deci, |S| = |M ∪D| = 142 + 271 − 39 = 374. Observăm că Andrei rostes,te numerele de

pe pozit, iile impare (1, 3, 5, . . .), iar Maria pe cele de pe pozit, iile pare (2, 4, 6, . . .), iar

un
”
Bolt, !” apare exact la numerele n ∈ S. Avem 221 de numere impare ı̂n S s, i 153 pare,

lucru care rezultă din forma generală a multiplilor, respectiv a numerelor care cont, in cifra

7. As,adar, Andrei a spus
”
Bolt, !” de 221 ori, iar Maria de 153 ori, deci Andrei are cu

221− 153 = 68 mai multe strigări.

873. Algoritmul implementează Teorema Cayley - Hamilton pe matrici de dimensiuni

2× 2: A2−Tr(A) ·A+detA · I2 = O2, deci la finalul execut, iei algoritmului, indiferent de

valorile din a, ı̂n r toate elementele vor fi nule (se poate verifica s, i luând a←

a11 a12

a21 a22


659

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

s, i simulând algoritmul pas cu pas).

874. Componentele tare conexe sunt {1, 2, 3}, {4} s, i {5}, deci varianta corectă este B.

875. AlexB(k) permută caracterele cuvântului s, astfel că, atunci când o permutare

ajunge la dimensiunea n, este afis,ată. Având ı̂n vedere definit, ia anagramelor, varianta

corectă de răspuns este C.

876. Algoritmul utilizează exponent, ierea rapidă pentru a calcula puterea matricei, având

complexitate O(log n). Varianta A este incorectă deoarece complexitatea este logaritmică,

nu liniară. Varianta B este corectă deoarece fiecare apel recursiv ı̂mparte exponentul la

2, rezultând O(log k) ı̂nmult, iri. Varianta C este corectă: pentru n = 6, exponentul este

6−2 = 4. Varianta D este corectă: algoritmul tratând cazurile de bază n = 1 s, i n = 2 prin

returnarea valorii 1, iar pentru n ≥ 3 calculul matriceal este corect conform proprietăt, ilor

s, irului lui Fibonacci.

877. 9710 = 11000012, deci sunt necesari 7 bit, i pentru reprezentarea fără semn. Dacă

reprezentarea se face cu semn, mai avem nevoie de un bit rezervat semnului, deci minimul

va fi 8 bit, i.

878. ceFace1(v, n) ordonează descrescător s, irul v după numărul de divizori al fiecărui

element, iar ceFace2(x) returnează numărul total de divizori ai numărului x.

879. Proprietatea implementată de algoritm se referă la ”Numărul magic” al lui Von Ne-

umann. Practic, repetând acest procedeu de scădere a formei cu cifrele sortate crescător

din cea cu cifrele sortate descrescător, indiferent de n care nu are toate cifrele identice,

după cel mult 7 pas, i, vom ajunge la numărul 6174, care rămâne constant. Varianta C nu

e corectă, pentru un n cu toate cifrele identice va returna 0.

880. Algoritmul F(n), acesta returnează valoarea 4 deoarece calculează suma părt, ilor

ı̂ntregi ale raportului k2

k! , unde pentru k = 1 rezultatul este 1, pentru k = 2 este 2, pentru

k = 3 este 1, iar pentru orice k ≥ 4 rezultatul este 0, deci suma 1 + 2 + 1 + 0 . . . rămâne

constantă indiferent de cât de mare este n.

881. Când n este par, se efectuează aproximativ log n apeluri recursive, iar când n este

impar, aproximativ log(log n) apeluri, deci complexitatea totală va fi O(log n).

882. Algoritmul ceFace(a, n) implementează un algoritm clasic de secvent,e care deter-

660

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

mină capetele celei mai lungi secvent,e crescătoare din s, irul a. În cazul ı̂n care sunt mai

multe se returnează cea mai din stânga (adică prima) deoarece lungimea se actualizează

doar dacă lungimea noii secvent,e este mai mare strict decât cea veche.

883. Folosim principiul includerii s, i excluderii:

1. Scădem numerele divizibile cu 3, 5 sau 7:
⌊
N
3

⌋
+

⌊
N
5

⌋
+

⌊
N
7

⌋
.

2. Adunăm intersect, iile pe perechi (divizibile cu 15, 21, 35):
⌊
N
15

⌋
+

⌊
N
21

⌋
+
⌊
N
35

⌋
.

3. Scădem intersect, ia tuturor trei (divizibile cu 105):
⌊

N
105

⌋
.

Formula corectă este N − (A+B + C) + (AB +AC +BC)−ABC.

884. Algoritmul calculează numărul de submult, imi nevide ale lui A ı̂n care fiecare

element este divizibil cu pozit, ia sa ı̂n submult, ime. - Condit, ia A[p] MOD (k + 1) = 0

verifică dacă elementul curent poate fi al (k + 1)-lea element al submult, imii (divizibil cu

k + 1).

885. Algoritmul calculează aria unui poligon cu coordonatele xi, yi: Ti =
1

2
·

∣∣∣∣∣∣∣∣∣∣
0 0 1

xi yi 1

xi+1 yi+1 1

∣∣∣∣∣∣∣∣∣∣
=

1

2
· (xi · yi+1− xi+1 · yi). Formula finală devine A =

n∑
i=1

Ti =
1

2
·

n∑
i=1

(xi · yi+1− xi+1 · yi).

886. Varianta B: Fiecare cifră ı̂n baza 4 corespunde la 2 bit, i. Pentru k bit, i ı̂n baza

2, numărul de cifre ı̂n baza 4 este ⌈k/2⌉, care este ≤ ⌊k/2⌋+ 1. Exemplu: 710 = 1112 (3

bit, i) → 134 (2 cifre; ⌊3/2⌋+ 1 = 2).

Varianta D: Valoarea unei cifre ı̂n baza 4 este mai mare sau egală cu numărul cores-

punzător de bit, i de 1 din baza 2 (0 -¿ 0 bit, i, 1 -¿ 1 bit, 2 -¿ 1 bit, 3 -¿ 2 bit, i), deci suma

cifrelor va fi mai mare sau egală cu numărul de bit, i ı̂n baza 2. Varianta A este falsă:

1010 = 224 (palindrom) dar 10102 nu este palindrom.

Varianta C este falsă: 1510 = 334 (ultima cifră 3).

887. Varianta A: Algoritmul foloses,te exponent, ierea rapidă, reducând b la jumătate

la fiecare pas ⇒ O(log b). Varianta B: 35 mod 7 = 243 mod 7 = 5. Varianta C este

falsă, pentru b = 3 = 1112 avem 2 apeluri recursive, nu 3. Varianta D este corectă.

m = 1 implică x mod 1 = 0,∀x ∈ Z.

888. Varianta A: Corect. Calcul: 7 MOD 3 = 1 ̸= 0, 7 + 3 = 10, 10 MOD 2 = 0.

661

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

Aplică prima ramură: 7∗(3 DIV 2)+(7 MOD 3) = 7∗1+1 = 8. Varianta B: Dacă a+b

este impar, a doua ramură poate returna impar (ex: a = 10, b = 3: 3∗2−3 MOD 5 = 3).

Varianta C: Pentru a = 10, b = 4: 10 MOD 4 = 2 ̸= 0, 10 + 4 = 14, 14 MOD 2 = 0.

Prima ramură: 10 ∗ (4 DIV 2) + (10 MOD 3) = 10 ∗ 2 + 1 = 21. Varianta D:

a MOD 3 = 0 nu implică divizibilitatea cu 3 (ex: a = 3, b = 2: prima ramură 3∗1+0 = 3,

care e divizibil, dar a = 6, b = 5: 6 ∗ 2 + 0 = 12, divizibil cu 3; dar nu este ”ori de câte

ori”).

889. Algoritmul calculează numărul de modalităt, i de a partit, iona n ı̂n k numere natu-

rale, fiecare fiind cel put, in 2. Pentru (k = 1), funct, ia returnează 1 dacă n ≥ 2, indicând

o partit, ie validă cu un singur termen.. Pentru (k > 1), funct, ia iterează peste posibilele

divizări i (̂ıncepând de la 2). Pentru fiecare i, verifică:

• Partea Stângă (i− 1): Trebuie să fie validă pentru k = 1, adică i− 1 ≥ 2.

• Partea Dreaptă (n− i): Trebuie să fie partit, ionată ı̂n k − 1 termeni, fiecare ≥ 2.

890. Algoritmul identifică elementul majoritar, parcurgând s, irul o singura dată (O(n)

timp), fără a folosi structuri de date auxiliare (O(1) spat, iu).

891. Suma este, de fapt, S(x) =
∑x

k=1
k

(k+1)! , care poate fi simplificată observând că

fiecare termen se scrie ca: k
(k+1)! =

1
k! −

1
(k+1)! . Suma devine:

(
1
1! −

1
2!

)
+
(
1
2! −

1
3!

)
+ · · ·+(

1
n! −

1
(n+1)!

)
. Tot, i termenii intermediari se reduc, rămânând 1− 1

(n+1)!

892. Algoritmul compară frecvent,ele caracterelor (diferent,ele individuale ale frecvent,elor

sunt zero pentru fiecare caracter), verificând anagramele.

893. Varianta A calculează corect rezultatul, dar fiecare apel va calcula atât F(n-1),

cât s, i F(n-3), deci complexitatea nu este O(n). Varianta B foloses,te un vector circular,

actualizând valorile pentru fiecare număr procesat, având complexitatea O(n). Varianta

C calculează corect rezultatul, dar complexitate finală este O(n). Varianta D ı̂ncearcă sa

aproximeze rezultatul prin calcularea unei rădăcini de ordinul 3 a ecuat, iei x3−3x2−2 = 0.

Rezultatul final ar trebui sa ia ı̂n calcul fiecare rădăcină, până la n, nu doar prima.

894. In secvent,a B, când inserăm 12 ı̂naintea lui 13, 12 ar deveni fiul drept al lui 11

(deoarece 12 > 11). Apoi, când ı̂ncercăm să inserăm 13, acesta ar trebui să devină fiul

662

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

drept al lui 12, dar ı̂n arborele t, intă, 13 este părintele lui 12, nu invers.

895. Varianta B este imposibilă: primele patru elemente (3, 6, 4, 8) nu sunt sortate

crescător. Algoritmul de sortare prin insert, ie garantează că după fiecare iterat, ie i, primele

i+1 elemente sunt sortate. Opt, iunile A, C s, i D au primele patru elemente sortate corect.

896. Varianta A este singura posibilă deoarece algoritmul compară mai ı̂ntâi cu "plop"

s, i sare cu +2 la "stejar", apoi datorită cazului special pentru "stejar" sare doar cu

+1 ajungând la "tei", ı̂n timp ce celelalte secvent,e sunt imposibile ı̂ntrucât saltul de +2

după "plop" nu permite accesarea cuvântului "salcie".

897. Algoritmul propus calculează secvent,a sumei part, iale pentru un vector de numere

naturale s, i utilizează o căutare binară pentru a găsi cea mai lungă subsecvent, ă care

are o sumă mai mică sau egală cu o valoare dată, val. Acesta verifică, pentru fiecare

element din secvent, ă, cât de departe poate extinde intervalul astfel ı̂ncât suma să rămână

ı̂n limitele impuse. Astfel, se realizează o comparare ı̂ntre suma secvent,elor s, i valoarea

dată, actualizând constant lungimea maximă a secvent,ei valide găsite. Algoritmul poate

fi ı̂mbunătăt, it prin utilizarea tehnicii de două indicii, care oferă o complexitate mai bună.

898. Linia 1 necesită condit, ia de terminare i == n (când am completat toate pozit, iile).

Linia 2 trebuie să anuleze swap-ul init, ial⇒ swap(arr[i], arr[j]) este varianta corectă

(echivalentă cu swap(arr[j], arr[i])). Dacă pe Linia 1 am folosi condit, ia i > n,

algoritmul ar fi echivalent. Ar mai intra o dată ı̂n ciclul repetitiv, interschimbând v[n] cu

v[n], un rezultatul echivalent.

899. Sortarea prin select, ie are complexitate O(n2). Numărul de comparat, ii este
n(n−1)

2 ≈
n2

2 . Pentru k: k2

2 = 5000⇒ k2 = 10000. Pentru 2k: (2k)2

2 = 4k2

2 = 2k2 = 20000. Varianta

C reflectă corect cres,terea pătratică. Varianta D este incorectă deoarece ignoră ı̂mpărt, irea

cu 2 din formulă.

900. Doar D este incorectă (prioritate operator: AND > OR, deci evaluează ca n MOD

2 == 0 OR (n MOD 3 == 0 AND n >= 0)).

901. Algoritmul afis,ează toate elementele unei matrici cu n linii s, i n coloane. Des, i

algoritmul pornes,te de la pozit, ia (n, n) recursiv, acesta face apelurile ı̂n adâncime ı̂naintea

afis, ării, deci modifica ordinea ı̂n care sunt afis,ate elementele. Acest lucru face ca ordinea

663

Rezolvări Universitatea Babes,-Bolyai Cluj-Napoca

afis, ării elementelor să fie cea firească, primul element afis,at fiind (1, 1), următorul (1, 2)...

până la ultimul situat la pozit, ia (n, n). Răspuns corect: A.

902. (A) Nu permite identificarea bilei diferite independent de natura dezechilibrului.

Strategia cu 3 grupe de 3 bile necesită urmărirea direct, iei dezechilibrului. Falsă.

(B) Compararea 4 vs 4 este deficientă: ı̂n caz de dezechilibru, cele 4 bile suspecte nu pot

fi identificate ı̂n 3 cântăriri. Falsă.

(C) Transpunerea bilelor ı̂ntre talere s, i analiza modificărilor de direct, ie permite deducerea

naturii diferent,ei. Adevărată.

(D) Strategiile de paritate nu necesită obligatoriu număr par de bile (e.g., 3 vs 3 este

valid). Falsă.

903. Considerăm că la fiecare mutare jucătorul alege cel mai mic număr valid posibil.

Secvent,a primelor 8 mutări poate fi: 1(Alex), 2(Diana), 4(Alex), 5(Diana), 7(Alex), 8(Diana)

, 10(Alex), 11(Diana). Coada s,arpelui este astfel 11. Pentru a 5-a mutare a lui Alex, el

trebuie să aleagă x > 11 astfel ı̂ncât 11 + x să fie multiplu de 3. Dintre variantele de

răspuns, doar 16 este corectă, deoarece 11 + 16 = 27 MOD 3 = 0.

904. La ı̂nceput, Alex pune 1. Diana trebuie să aleagă un număr n > 1 astfel ı̂ncât

n + 1 să fie multiplu de 4. Astfel, n poate fi 3, 7, 11, 15, . . . (numere de forma 4k − 1).

Presupunem, spre exemplu, că Diana pune 3. Atunci Alex va alege un număr m > 3 cu

m+ 3 multiplu de 4, adică m = 5, 9, 13, 17, . . . (forma 4k − 3). Repetând rat, ionamentul,

observăm că, pentru orice număr x deja pus, există ı̂ntotdeauna un y mai mare decât x

de forma 4k− x, suficient de mare ı̂ncât y+ x să fie multiplu de 4 s, i y > x. Astfel, există

un s, ir nelimitat de mutări valide, iar jocul nu se blochează niciodată.

905. Se realizează un singur apel recursiv: afis,(1000) → 1000 → afis,(4000) →

4000 → afis,(16000). La ı̂ntoarcerea pe stivă, se va mai afis,a o dată 4000, respectiv

1000, de unde B este varianta corectă.

664

16

Propunători

1. Mihai Gheorghes,
2. Mihai Gheorghes,
3. Mihai Gheorghes,
4. Mihai Gheorghes,
5. Mihai Gheorghes,
6. Mihai Gheorghes,
7. Luca Tudor

8. Luca Tudor

9. Luca Tudor

10. Luca Tudor

11. Rares, Cotoi

12. Rares, Cotoi

13. Rares, Cotoi

14. Rares, Cotoi

15. Mihai Gheorghes,
16. Mihai Gheorghes,
17. Mihai Gheorghes,
18. Mihai Gheorghes,
19. Mihai Gheorghes,
20. Mihai Gheorghes,
21. Rares, Cotoi

22. Rares, Cotoi

23. Rares, Cotoi

24. Rares, Cotoi

25. Rares, Cotoi

26. Rares, Cotoi

27. Rares, Cotoi

28. Rares, Cotoi

29. Rares, Cotoi

30. Rares, Cotoi

31. Rares, Cotoi

32. Rares, Cotoi

33. Rares, Cotoi

34. Rares, Cotoi

35. Rares, Cotoi

36. Rares, Cotoi

37. Rares, Cotoi

38. Rares, Cotoi

39. Rares, Cotoi

40. Rares, Cotoi

41. Rares, Cotoi

42. Rares, Cotoi

43. Rares, Cotoi

44. Rares, Cotoi

45. Daniel Pop

46. Mara Ielciu

47. Mara Ielciu

48. Mara Ielciu

49. Mara Ielciu

50. Mara Ielciu

51. Mara Ielciu

52. Mara Ielciu

53. Mara Ielciu

54. Mara Ielciu

55. Mara Ielciu

56. Mara Ielciu

57. Mara Ielciu

58. Mara Ielciu

59. Mara Ielciu

60. Mara Ielciu

61. Mara Ielciu

62. Mara Ielciu

63. Mihai Gheorghes,
64. Mihai Gheorghes,
65. Luca Tudor

66. Mihai Gheorghes,
67. Mihai Gheorghes,
68. Mihai Gheorghes,
69. Mihai Gheorghes,
70. Mihai Gheorghes,
71. Rares, Cotoi

72. Mihai Gheorghes,
73. Mihai Gheorghes,
74. Mihai Gheorghes,
75. Rares, Cotoi

76. Rares, Cotoi

77. Mihai Gheorghes,
78. Mihai Gheorghes,
79. Mihai Gheorghes,
80. Mihai Gheorghes,
81. Mihai Gheorghes,
82. Mihai Gheorghes,
83. Luca Tudor

84. Rares, Cotoi

85. Mihai Gheorghes,
86. Mihai Gheorghes,
87. Mihai Gheorghes,
88. Mihai Gheorghes,
89. Mihai Gheorghes,
90. Mihai Gheorghes,
91. Mihai Gheorghes,
92. Daniel Pop

93. Mihai Gheorghes,
94. Mihai Gheorghes,
95. Daniel Pop

96. Luca Tudor

97. Luca Tudor

98. Luca Tudor

99. Luca Tudor

100. Luca Tudor

101. Mihai Gheorghes,
102. Mihai Gheorghes,
103. Mihai Gheorghes,
104. Mihai Gheorghes,
105. Luca Tudor

106. Luca Tudor

107. Luca Tudor

108. Luca Tudor

109. Luca Tudor

110. Luca Tudor

111. Luca Tudor

112. Mihai Gheorghes,
113. Mihai Gheorghes,
114. Mihai Gheorghes,
115. Mihai Gheorghes,
116. Mihai Gheorghes,
117. Luca Tudor

118. Daniel Pop

119. Luca Tudor

120. Mihai Gheorghes,
121. Luca Tudor

122. Luca Tudor

123. Mihai Gheorghes,
124. Luca Tudor

125. Luca Tudor

126. Mihai Gheorghes,
127. Mihai Gheorghes,
128. Rares, Cotoi

129. Mihai Gheorghes,
130. Mihai Gheorghes,
131. Mihai Gheorghes,
132. Mihai Gheorghes,
133. Mihai Gheorghes,
134. Rares, Cotoi

135. Paul Dobrescu

136. Paul Dobrescu

137. Paul Dobrescu

138. Paul Dobrescu

139. Paul Dobrescu

140. Paul Dobrescu

141. Paul Dobrescu

142. Paul Dobrescu

143. Rares, Cotoi

144. Paul Dobrescu

145. Paul Dobrescu

146. Paul Dobrescu

147. Paul Dobrescu

148. Paul Dobrescu

149. Paul Dobrescu

150. Paul Dobrescu

151. Cristian Cret,u

152. Cristian Cret,u

153. Luca Tudor

154. Cristian Cret,u

155. Luca Tudor

156. Luca Tudor

157. Luca Tudor

158. Luca Tudor

159. Luca Tudor

160. Luca Tudor

161. Luca Tudor

162. Luca Tudor

163. Mihai Gheorghes,
164. Cristian Cret,u

165. Cristian Cret,u

166. Luca Tudor

167. Luca Tudor

168. Mihai Gheorghes,
170. Mihai Gheorghes,
171. Mihai Gheorghes,
172. Mihai Gheorghes,
173. Mihai Gheorghes,
174. Paul Dobrescu

175. Mihai Gheorghes,
176. Luca Tudor

177. Luca Tudor

178. Luca Tudor

179. Paul Dobrescu

180. Paul Dobrescu

181. Paul Dobrescu

182. Paul Dobrescu

183. Cristian Cret,u

184. Daniel Pop

185. Daniel Pop

Propunători Universitatea Babes,-Bolyai Cluj-Napoca

186. Luca Tudor

187. Daniel Pop

188. Luca Tudor

189. Luca Tudor

190. Mihai Gheorghes,
191. Mihai Gheorghes,
192. Luca Tudor

193. Mihai Gheorghes,
194. Mihai Gheorghes,
195. Mihai Gheorghes,
196. Mihai Gheorghes,
197. Mihai Gheorghes,
198. Mihai Gheorghes,
199. Mihai Gheorghes,
200. Mihai Gheorghes,
201. Paul Dobrescu

202. Paul Dobrescu

203. Paul Dobrescu

204. Paul Dobrescu

205. Cristian Cret,u

206. Cristian Cret,u

207. Mircea Măierean

208. Cristian Cret,u

209. Cristian Cret,u

210. Mircea Măierean

211. Mircea Măierean

212. Mircea Măierean

213. Mircea Măierean

214. Mircea Măierean

215. Cristian Cret,u

216. Cristian Cret,u

217. Mara Ielciu

218. Mara Ielciu

219. Mara Ielciu

220. Mara Ielciu

221. Mara Ielciu

222. Rares, Cotoi

223. Mihai Gheorghes,
224. Mihai Gheorghes,
225. Mihai Gheorghes,
226. Luca Tudor

227. Luca Tudor

228. Mihai Gheorghes,
229. Luca Tudor

230. Luca Tudor

231. Luca Tudor

232. Mihai Gheorghes,
233. Mihai Gheorghes,
234. Mihai Gheorghes,
235. Luca Cret,u

236. Luca Cret,u

237. Luca Cret,u

238. Luca Tudor

239. Luca Tudor

240. Luca Tudor

241. Luca Tudor

242. Luca Tudor

243. Luca Tudor

244. Luca Tudor

245. Luca Tudor

246. Luca Tudor

247. Luca Tudor

248. Luca Tudor

249. Luca Tudor

250. Luca Cret,u

251. Luca Cret,u

252. Luca Cret,u

253. Luca Cret,u

254. Mihai Gheorghes,
256. Mihai Gheorghes,
257. Rares, Cotoi

258. Luca Tudor

259. Luca Tudor

260. Rares, Cotoi

261. Luca Tudor

262. Luca Tudor

263. Luca Tudor

264. Luca Tudor

265. Luca Tudor

266. Daniel Pop

267. Luca Cret,u

268. Luca Cret,u

269. Luca Cret,u

270-593. Comisie

666. Cristian Cret,u

667. Rares, Cotoi

668. Rares, Cotoi

669. Cristian Cret,u

670. Cristian Cret,u

671. Cristian Cret,u

672. Cristian Cret,u

673. Rares, Cotoi

674. Cristian Cret,u

675. Rares, Cotoi

676. Cristian Cret,u

677. Rares, Cotoi

678. Cristian Cret,u

679. Rares, Cotoi

680. Cristian Cret,u

681. Mara Ielciu

682. Cristian Cret,u

683. Cristian Cret,u

684. Horea Mures,an

685. Cristian Cret,u

686. Cristian Cret,u

687. Rares, Cotoi

688. Cristian Cret,u

689. Paul Somes,an

690. Mihai Gheorghes,
691. Mihai Gheorghes,
692. Mihai Gheorghes,
693. Mihai Gheorghes,
694. Mihai Gheorghes,
695. Mihai Gheorghes,
696. Mihai Gheorghes,
697. Mihai Gheorghes,
698. Mihai Gheorghes,
699. Mihai Gheorghes,
700. Mihai Gheorghes,
701. Mihai Gheorghes,
702. Mihai Gheorghes,
703. Mihai Gheorghes,
705. Mihai Gheorghes,
706. Mihai Gheorghes,
707. Mihai Gheorghes,
708. Mihai Gheorghes,
709. Mihai Gheorghes,
710. Mihai Gheorghes,
711. Mihai Gheorghes,
712. Mihai Gheorghes,
713. Mihai Gheorghes,
714. Paul Dobrescu

715. Cristian Cret,u

716. Paul Dobrescu

717. Paul Dobrescu

718. Paul Dobrescu

719. Paul Dobrescu

720. Paul Dobrescu

721. Paul Dobrescu

722. Paul Dobrescu

723. Paul Dobrescu

724. Paul Dobrescu

725. Paul Dobrescu

726. Paul Dobrescu

727. Paul Dobrescu

728. Paul Dobrescu

729. Paul Dobrescu

730. Paul Dobrescu

731. Paul Dobrescu

732. Paul Dobrescu

733. Paul Dobrescu

734. Paul Dobrescu

735. Paul Dobrescu

736. Paul Dobrescu

737. Paul Dobrescu

738. Paul Somes,an

739. Luca Tudor

740. Luca Tudor

741. Luca Tudor

742. Luca Tudor

743. Luca Tudor

744. Rares, Cotoi

745. Paul Somes,an

746. Luca Tudor

747. Luca Tudor

748. Mara Ielciu

749. Luca Tudor

750. Luca Tudor

751. Luca Tudor

752. Rares, Cotoi

753. Mircea Măierean

754. Mara Ielciu

755. Luca Tudor

756. Luca Tudor

757. Luca Tudor

758. Luca Tudor

759. Luca Tudor

760. Luca Tudor

761. Luca Tudor

762. Mara Ielciu

763. Luca Cret,u

764. Mara Ielciu

765. Mara Ielciu

766. Mara Ielciu

767. Mara Ielciu

768. Luca Cret,u

769. Luca Cret,u

770. Mara Ielciu

771. Luca Cret,u

772. Mara Ielciu

773. Mara Ielciu

774. Mircea Măierean

775. Mircea Măierean

776. Mircea Măierean

777. Mircea Măierean

778. Luca Cret,u

779. Mircea Măierean

780. Mircea Măierean

781. Mircea Măierean

782. Mircea Măierean

783. Luca Cret,u

784. Luca Cret,u

785. Luca Cret,u

786. Mara Ielciu

787. Luca Cret,u

788. Mara Ielciu

789. Mara Ielciu

790. Mara Ielciu

791. Mara Ielciu

792. Luca Cret,u

793. Mara Ielciu

794. Luca Cret,u

795. Mara Ielciu

796. Mara Ielciu

797. Luca Cret,u

798. Mircea Măierean

666

Propunători Universitatea Babes,-Bolyai Cluj-Napoca

799. Luca Cret,u

800. Mircea Măierean

801. Mircea Măierean

802. Mircea Măierean

803. Luca Cret,u

804. Luca Cret,u

805. Luca Cret,u

806. Mircea Măierean

807. Mircea Măierean

808. Mircea Măierean

809. Mircea Măierean

810. Mara Ielciu

811. Mara Ielciu

812. Mara Ielciu

813. Mara Ielciu

814. Mara Ielciu

815. Luca Cret,u

816. Luca Cret,u

817. Luca Cret,u

818. Luca Cret,u

819. Luca Cret,u

820. Mara Ielciu

821. Mircea Măierean

822. Mara Ielciu

823. Mara Ielciu

824. Luca Cret,u

825. Luca Cret,u

826. Mircea Măierean

827. Mircea Măierean

828. Luca Cret,u

829. Mircea Măierean

830. Mircea Măierean

831. Mircea Măierean

832. Mircea Măierean

833. Mircea Măierean

834. Rares, Cotoi

835. Paul Somes,an

836. Paul Somes,an

837. Rares, Cotoi

838. Rares, Cotoi

839. Cristian Cret,u

840. Cristian Cret,u

841. Cristian Cret,u

842. Cristian Cret,u

843. Cristian Cret,u

844. Rares, Cotoi

845. Cristian Cret,u

846. Cristian Cret,u

847. Cristian Cret,u

848. Cristian Cret,u

849. Cristian Cret,u

850. Cristian Cret,u

851. Rares, Cotoi

852. Cătălin Danis,

853. Rares, Cotoi

854. Rares, Cotoi

856. Rares, Cotoi

857. Cristian Cret,u

858. Rares, Cotoi

859. Cristian Cret,u

860. Cristian Cret,u

861. Cristian Cret,u

862. Cristian Cret,u

863. Horea Mures,an

864. Cristian Cret,u

865. Cristian Cret,u

866. Cristian Cret,u

867. Cristian Cret,u

868. Cristian Cret,u

869. Cristian Cret,u

870. Cristian Cret,u

871. Rares, Cotoi

872. Rares, Cotoi

873. Rares, Cotoi

874. Rares, Cotoi

875. Rares, Cotoi

876. Cristian Cret,u

877. Rares, Cotoi

878. Rares, Cotoi

879. Rares, Cotoi

880. Rares, Cotoi

881. Rares, Cotoi

882. Paul Somes,an

883. Cristian Cret,u

884. Cristian Cret,u

885. Cristian Cret,u

886. Cristian Cret,u

887. Cristian Cret,u

888. Cristian Cret,u

889. Cristian Cret,u

890. Cristian Cret,u

891. Cristian Cret,u

892. Cristian Cret,u

893. Cristian Cret,u

894. Cristian Cret,u

895. Cristian Cret,u

896. Cristian Cret,u

897. Paul Somes,an

898. Cristian Cret,u

899. Cristian Cret,u

900. Cristian Cret,u

901. Paul Somes,an

902. Cristian Cret,u

903. Rares, Cotoi

904. Rares, Cotoi

905. Rares, Cotoi

667

17

Erată

Fat, ă de prima edit,ie (tipărită s,i online), această versiune cont,ine corecturi considerabile, la următoarele

capitole:

• Algoritmi elementari;

• Recursivitate;

• Backtracking;

• Subprograme;

• Teste de antrenament: Întreaga sect,iune a suferit modificări considerabile (toate cele 10 teste),

atât la enunt,urile problemelor, cât s,i la rezolvări s,i răspunsuri.

Bibliografie

[1] Arhiva Educat,ională, Infoarena, url: https : / / www . infoarena . ro / arhiva -

educationala.

[2] Thomas H. Cormen et al., Introduction to Algorithms, 2009, url: https://mitpress.

mit.edu/books/introduction-algorithms.

[3] M. Frenţiu, H.F. Pop s, i G. Şerban, Programming Fundamentals, Cluj-Napoca: Presa

Universitară Clujeană, 2006.

[4] Informatică, clasa a IX-a, Pbinfo, url: https://www.pbinfo.ro.

[5] Informatică, clasa a X-a, Pbinfo, url: https://www.pbinfo.ro.

[6] Informatică, clasa a XI-a, Pbinfo, url: https://www.pbinfo.ro.

[7] Manuale de informatică aprobate de Ministerul Educaţiei şi Cercetării.

[8] D. Rancea, Limbajul Pascal, Algoritmi fundamentali, Ed. Computer Libris Agora,

1999.

https://www.infoarena.ro/arhiva-educationala
https://www.infoarena.ro/arhiva-educationala
https://mitpress.mit.edu/books/introduction-algorithms
https://mitpress.mit.edu/books/introduction-algorithms
https://www.pbinfo.ro
https://www.pbinfo.ro
https://www.pbinfo.ro

	I Teorie și probleme
	Algoritmi
	Tipuri de date. Operatori.
	Tipuri structurate de date
	Algoritmi elementari
	Complexitatea algoritmilor
	Subprograme
	Recursivitate
	Metodele Backtracking, Divide et Impera și Greedy
	Combinatorică
	Grafuri

	II Teste
	Admitere 2021 - 2025
	Concurs 2021 - 2025
	Antrenament

	III Răspunsuri și indicații
	Răspunsuri
	Rezolvări
	Propunători
	Erată

