MODEL

		Competition 2019 MATHEMATICS	
	PAI	RT A	
IMPORTANT: Prob	lems in Part A have	one or more correct answ	wers.
1. (6 points) Let a	$z_1, z_2 \in \mathbb{C}$ be numbers s	uch that $z_1^2 + z_2^2 = 0$ and $ z_1 $	$= z_2 = 1$. Then:
A such numbers de	o not exist;		
$oxed{B}$ there exist z_1, z_2	$g \in \mathbb{C} \setminus \mathbb{R}$ satisfying the	given conditions;	
$\boxed{\mathbf{C}}$ there exist z_1, z_2	$g \in \mathbb{R}$ satisfying the give	en conditions;	
$\boxed{\mathbf{D}} z_1 + z_2 = \sqrt{2}.$			
2. (6 points) A so.	lution of the inequation	$A_{x+2}^3 + C_{x+3}^2 > 5(x+2)$ is	
$\boxed{\mathbf{A}} \ x = 0;$	$\boxed{\mathrm{B}} \ x = 1;$	$\boxed{\mathbf{C}} \ x = 2;$	$\boxed{\mathrm{D}} \ x = 3.$
3. (6 points) Co $g = X - 1 \in \mathbb{R}[X]$. The	nsider the polynomials remainder of the divisi	$f = 1 + X + 3X^2 + 5X^3$ fon of f by g is	$+\cdots+2019X^{1010},$
A 1020100;	$ \boxed{\text{B}} 2020; $	C 1020101;	D 2039191.
4. (6 points) The number of group isomorphisms from the group $(\mathbb{Z}_3,+)$ to itself is			
$\boxed{\mathbf{A}}$ 1;	$\boxed{\mathrm{B}}$ 2;	$\boxed{ ext{C}}$ 3;	D 9.
5. (6 points) The	function $f: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \setminus \{$	$\{0\} \to \mathbb{R}$, defined by $f(x) = \frac{1}{\sin x}$	$\frac{1}{\ln x} - \frac{1}{x}$
A does not have a	limit at 0, because the	one-sided limits at 0 are diffe	erent;
B is continuous at	0;		
C has limit at 0 eq	ual to 0;		
D has finite limit a	nt 0.		
6. (6 points) Let <i>a</i>	$a = \int_0^{\frac{\pi}{2}} \frac{\sin 2x}{1 + \sin^2 x} \mathrm{d}x.$ Then	1:	
$\boxed{\mathbf{A}} \ a = 1;$	$\boxed{\mathbf{B}} \ a \in (0,1);$	$\boxed{\mathbf{C}} \ a = \frac{1}{2};$	$\boxed{\mathrm{D}} \ a = \ln 2.$
7. (6 points) Let a Then:	$b \in \mathbb{R}$ with $a \neq 0$, and	$f \colon \mathbb{R} \to \mathbb{R}$ the function defined	d by $f(x) = a+bx $.
$\overline{\mathbf{A}}$ the function f is	s not differentiable at 0:	:	

 $oxed{A}$ the function f is not differentiable at 0; $oxed{B}$ the function f is differentiable at $0 \Leftrightarrow a > 0$;

 $\boxed{\mathbf{C}}$ the function f is differentiable at 0 and $f'(0) \in \{-b, b\}$;

 $\boxed{\mathrm{D}}$ if a > 0, then the function f is differentiable at 0 and f'(0) = b.

8. (6 points) Let $f: D \to \mathbb{R}$ be the function defined by $f(x) = x + \sqrt{x^2 + 2x}$, where D is the maximal domain of f. The function f

- $\boxed{\mathbf{A}}$ has a slant asymptote at $+\infty$;
- B does not have vertical asymptotes;
- $\boxed{\mathbf{C}}$ has a horizontal asymptote at $-\infty$;
- $\boxed{\mathbf{D}}$ has the line x = 0 as a vertical asymptote.

9. (6 points) Consider the points A(0,-1) and B(-2,1). The equation of a line d located at a distance of $5\sqrt{2}$ units from the mediator of the segment [AB], is

A
$$d: y = x - 9$$
; B $d: y = x + 1 + 5\sqrt{2}$; C $d: y = x + 1 - 5\sqrt{2}$; D $d: y = x + 11$.

10. (6 points) Consider the parallelogram ABCD and the points $M \in AB$ and $N \in AC$ such that $\overrightarrow{AM} = \frac{1}{x}\overrightarrow{AB}$ and $\overrightarrow{AN} = \frac{1}{y}\overrightarrow{AC}$, where $x, y \in \mathbb{R}^*$. The points D, N, M are collinear if there is the following relationship between the numbers x and y:

[A]
$$x = 1 - y;$$
 [B] $x = y - 1;$ [C] $x = y - \frac{2}{3};$ [D] $x = 2y.$

PART B

IMPORTANT: For problems in Part B complete solutions are required.

1. (10 points) Let
$$\varepsilon \in \mathbb{C} \setminus \mathbb{R}$$
 be such that $\varepsilon^3 = 1$ and $A = \begin{pmatrix} 1 & 0 \\ \varepsilon & \varepsilon^2 \end{pmatrix} \in M_2(\mathbb{C})$.

- (a) Show that $\varepsilon^2 + \varepsilon + 1 = 0$.
- (b) Show that the set $G = \{A, A^2, I_2\}$ is a group with respect to matrix multiplication.
- (c) Compute $S = I_2 + A + A^2 + \cdots + A^n$ for every $n \in \mathbb{N}^*$.
- **2.** (10 points) Prove that for every $x \in \mathbb{R}$ the inequality $xe^{-x^2} \leq \frac{1}{\sqrt{2e}}$ holds.
- **3.** (10 points) Let $a \in (0, \frac{\pi}{4})$ be such that $\sin a + \cos a = \frac{\sqrt{7}}{2}$. Compute tg $\frac{a}{2}$.

NOTE: All subjects are compulsory. 10 points are given by default. The work time is 3.5 hours.

Answers and solutions

PART A

PART B

1. (a) The condition $\varepsilon^3 = 1$ implies $0 = \varepsilon^3 - 1 = (\varepsilon - 1)(\varepsilon^2 + \varepsilon + 1)$. Using the fact that $\varepsilon \notin \mathbb{R}$, we obtain the required equality.

(b) Given $\varepsilon^3 = 1$ and $\varepsilon^2 + \varepsilon + 1 = 0$, we can easily compute

$$A^2 = \begin{pmatrix} 1 & 0 \\ \varepsilon + 1 & \varepsilon \end{pmatrix}$$
 and $A^3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$,

hence $A^{-1} = A^2$ and (G, \cdot) is a group.

(c) If
$$n = 3k$$
, then $S = k(A^2 + A + I_2) + I_2 = \begin{pmatrix} 3k + 1 & 0 \\ k + 2k\varepsilon & 1 \end{pmatrix}$.
If $n = 3k + 1$, then $S = k(A^2 + A + I_2) + A + I_2 = \begin{pmatrix} 3k + 2 & 0 \\ k + (2k + 1)\varepsilon & \varepsilon^2 + 1 \end{pmatrix}$.
If $n = 3k + 2$, then $S = (k + 1)(A^2 + A + I_2) = \begin{pmatrix} 3k + 3 & 0 \\ k + 1 + (2k + 2)\varepsilon & 0 \end{pmatrix}$.

2. Let $f: \mathbb{R} \to \mathbb{R}$ be the function defined by $f(x) = xe^{-x^2}$. We have $f'(x) = (1 - 2x^2)e^{-x^2}$, for every $x \in \mathbb{R}$. It follows that the equation f'(x) = 0 has the solutions $-\frac{\sqrt{2}}{2}$ and $\frac{\sqrt{2}}{2}$, while

$$f'(x) > 0 \Leftrightarrow x \in \left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$$
 and

$$f'(x) < 0 \Leftrightarrow x \in \left(-\infty, -\frac{\sqrt{2}}{2}\right) \cup \left(\frac{\sqrt{2}}{2}, \infty\right).$$

Hence the function f is strictly decreasing on the interval $\left(-\infty, -\frac{\sqrt{2}}{2}\right]$, strictly increasing on the interval $\left[-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right]$ and strictly decreasing on the interval $\left[\frac{\sqrt{2}}{2}, \infty\right)$. As

$$\lim_{x \to -\infty} f(x) = \lim_{x \to \infty} f(x) = 0,$$

we finally deduce that the point $\frac{\sqrt{2}}{2}$ is a global maximum point of the function f. Therefore $f(x) \leq f\left(\frac{\sqrt{2}}{2}\right) = \frac{1}{\sqrt{2e}}$, for every $x \in \mathbb{R}$.

3. Using the formulas

$$\sin a = \frac{2 \operatorname{tg} \frac{a}{2}}{1 + \operatorname{tg}^2 \frac{a}{2}}, \quad \cos a = \frac{1 - \operatorname{tg}^2 \frac{a}{2}}{1 + \operatorname{tg}^2 \frac{a}{2}},$$

and the notation $x = tg\frac{a}{2}$ respectively, we obtain the equation

$$-(2+\sqrt{7})x^2 + 4x + 2 - \sqrt{7} = 0,$$

whence
$$x_1 = \frac{3}{2+\sqrt{7}} = -2 + \sqrt{7}$$
 and $x_2 = \frac{1}{2+\sqrt{7}} = \frac{-2+\sqrt{7}}{3}$.

Since $\frac{a}{2} \in (0, \frac{\pi}{8})$ and the function tg is increasing, the obtained solutions must be less than $\lg \frac{\pi}{8}$. For instance, this value can be computed by using the formula $\lg a = \frac{2\lg \frac{a}{2}}{1-\lg^2 \frac{a}{2}}$. Thus $1 = \lg \frac{\pi}{4} = \frac{2\lg \frac{\pi}{8}}{1-\lg^2 \frac{\pi}{8}}$. Using the fact that $\lg \frac{\pi}{8} > 0$, we obtain $\lg \frac{\pi}{8} = \sqrt{2} - 1$. After verification we can observe that $x_1 > \sqrt{2} - 1$ and $x_2 < \sqrt{2} - 1$, hence the only solution is $\lg \frac{a}{2} = x_2 = \frac{-2+\sqrt{7}}{3}$.