MODEL

Admission Exam 2019 Written test of MATHEMATICS

PART A

IMPORTANT: Problems in Part A have one or more correct answers.

1. (6 points) Let $(a_n)_{n\geq 1}$ and $(b_n)_{n\geq 1}$ be the sequences defined by

$$a_n = \lim_{x \to 0} (1 - x \operatorname{arctg}(nx))^{\frac{1}{x^2}}$$
 and $b_n = a_1 + \dots + a_n$,

respectively. Then:

A $a_n = e^{-n}$ for every $n \ge 1$;

B the sequence $(b_n)_{n\geq 1}$ is monotone;

- C the sequence $(b_n)_{n\geq 1}$ is unbounded;
- $\boxed{\mathbf{D}} \lim_{n \to \infty} b_n \in (0, 1).$

2. (6 points) The value of the limit $\lim_{x\to 0} \frac{x - \sin x \cos x}{x^3}$ is

3. (6 points) Let $f: (0,\infty) \to \mathbb{R}$ be the function defined by $f(x) = \frac{\ln x}{x}$. Then:

 $\boxed{C}\frac{2}{3};$ $\boxed{D}-\frac{2}{3}.$

- A the graph of f has exactly two asymptotes;
- $|\mathbf{B}| f$ has exactly two local extrema;
- |C| the graph of f has a unique inflection point;
- $|\mathbf{D}| f$ is strictly increasing and concave on (0, e].

4. (6 points) The value of the integral $\int_0^{\pi/2} x \cos^2 x \, dx$ is

$$\boxed{A} \frac{\pi^2 - 4}{16}; \qquad \qquad \boxed{B} \frac{1}{16}; \qquad \qquad \boxed{C} \frac{\pi^2 + 4}{16}; \qquad \qquad \boxed{D} \frac{1}{4}.$$

5. (6 points) In the triangle ABC consider the vertices A(1,2), B(5,-1) and the center of gravity G(-1,-1). Then:

- A the distance from the point C to AB is $\frac{54}{5}$;
- B the point C belongs to the line d: x + 2y + 17 = 0;
- C the area of the triangle ABC is $\frac{29}{6}$;

|D|C(-9,-4).

6. (6 points) Let $\vec{u} = (3a+1)\vec{i} + (a+1)\vec{j}$ and $\vec{v} = (a-3)\vec{i} - a\vec{j}$, where $a \in \mathbb{R}$, and \vec{i} and \vec{j} are non-collinear vectors. The value of the parameter $a \in \mathbb{R}$ for which the vectors \vec{u} and \vec{v} are collinear is

 $\boxed{\mathbf{B}} -\frac{3}{4}; \qquad \qquad \boxed{\mathbf{C}} 1;$ \square it does not exist such an a. A |-2;7. (6 points) Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined by $f(x) = m^2 x^2 - 2(x+1)^2$, where $m \in \mathbb{R}$. The function f is injective if: C m = 1;D $m = \sqrt{2}.$ A $m = -\sqrt{2};$ |B| m = -1;8. (6 puncte) The number of real solutions of the equation $\log_2 |x| + \log_{|x|} 4 = 3$ is A 1; |B|2;|C|3;D 4. 9. (6 points) Let $p \in \mathbb{R}$ and the matrix $A = \begin{pmatrix} 1 & 1 & 1 \\ p & 1 & -1 \\ p^2 & 1 & 1 \end{pmatrix} \in M_2(\mathbb{R})$. Then: A rank(A) = 3 for every $p \in \mathbb{R}$; B rank(A) = 2 for every $p \in \mathbb{R}$; C there exists a unique number $p \in \mathbb{R}$ for which rank(A) = 2;

D there exist two distinct numbers $p \in \mathbb{R}$ for which rank(A) = 2.

10. (6 points) Let $A = \{a - ia \mid a \in \mathbb{R}\}$ and denote by "+" and "." the usual operations of addition and multiplication in \mathbb{C} . Then:

- A A is a subgroup of the group $(\mathbb{C}, +)$;
- B A is a subgroup of the group (\mathbb{C}^*, \cdot) ;
- $C \mid (A, +, \cdot)$ is a ring;
- D $(A, +, \cdot)$ is a field.

PART B

IMPORTANT: For problems in Part B complete solutions are required.

1. (10 points) Draw the graph of the function $f : \mathbb{R} \to \mathbb{R}$, defined by

$$f(x) = \begin{cases} x & \text{if } x \le 1\\ \frac{x^2}{x-1} & \text{if } x > 1. \end{cases}$$

- 2. (10 points) (a) Solve the equation $\cos 5x + \sin \frac{5x}{2} = 1$ on the set $[0, \pi]$.
- (b) Determine the cardinal of the set $A = \{ \sin \frac{2k\pi}{5} | k \in \mathbb{Z} \}.$
- 3. (10 points) Consider the linear system of equations with real coefficients:

$$\begin{cases} x+y-z=1\\ x+ay-z=1\\ x+y+az=a \end{cases}$$

Determine the values $a \in \mathbb{R}$ for which the system is compatible determinate, and in this case solve it.

NOTE: All subjects are compulsory. 10 points are given by default. The work time is 3 hours.

Answers and solutions

PART A

PART B

1. The graph of the restriction of f to $(-\infty, 1]$ is a closed semiline, situated on the first bisector.

In what follows we study the variation of the restriction of f to the interval $(1, \infty)$. $\underset{x \searrow 1}{\diamond \lim_{x \searrow 1} f(x) = +\infty} \quad \Rightarrow \quad \text{the line } x = 1 \text{ is a vertical asymptote for } G_f; \\ \diamond \lim_{x \to \infty} f(x) = +\infty \quad \Rightarrow \quad G_f \text{ does not have a horizontal asymptote to } +\infty;$

 $\lim_{\substack{x \to \infty \\ +\infty \text{ for } G_f;}} \frac{f(x)}{x} = 1 \text{ and } \lim_{x \to \infty} \left(f(x) - x \right) = 1 \quad \Rightarrow \quad \text{the line } y = x + 1 \text{ is a slant asymptote to } +\infty$

$$\diamond f'(x) = \frac{x(x-2)}{(x-1)^2}$$
 and $f''(x) = \frac{2}{(x-1)^3}$ for every $x \in (1,\infty)$.
The table with the variation of f is presented below

The table with the variation of f is presented below.

x	1			2			$+\infty$	
f'(x)		-	-	0	+	+	+	
f''(x)		+	+	+	+	+	+	
f(x)		\searrow	\searrow	4	\nearrow	\nearrow	\nearrow	

The graph of f is presented in Figure 1.

Figure 1: The graph of the function f.

2. (a) We have $\cos 5x + \sin \frac{5x}{2} = 1 \Leftrightarrow 1 - 2\sin^2 \frac{5x}{2} + \sin \frac{5x}{2} = 1 \Leftrightarrow \sin \frac{5x}{2} \left(-2\sin \frac{5x}{2} + 1\right) = 0$. Hence $\sin \frac{5x}{2} = 0$, that is,

$$x \in \left\{\frac{2k\pi}{5} \middle| k \in \mathbb{Z}\right\} \cap [0,\pi] = \left\{0, \frac{2\pi}{5}, \frac{4\pi}{5}\right\}$$

or $\sin\frac{5x}{2} = \frac{1}{2}$, that is, $\frac{5x}{2} \in \left\{\frac{\pi}{6} + 2k\pi | k \in \mathbb{Z}\right\} \bigcup \left\{\frac{5\pi}{6} + 2k\pi | k \in \mathbb{Z}\right\}$, and so

$$x \in \left(\left\{\frac{\pi}{15} + \frac{4k\pi}{5} \middle| k \in \mathbb{Z}\right\} \bigcup \left\{\frac{\pi}{3} + \frac{4k\pi}{5} \middle| k \in \mathbb{Z}\right\}\right) \cap [0,\pi] = \left\{\frac{\pi}{15}, \frac{13\pi}{15}, \frac{\pi}{3}\right\}.$$

Thus the solution of the problem is the set $\{0, \frac{\pi}{15}, \frac{\pi}{3}, \frac{2\pi}{5}, \frac{4\pi}{5}, \frac{13\pi}{15}\}$. (b) Every $k \in \mathbb{Z}$ may be written as 5l, 5l+1, 5l+2, 5l+3 or 5l+4, where $l \in \mathbb{Z}$. Thus

$$\left\{\frac{2k\pi}{5}\Big|k\in\mathbb{Z}\right\} = \left\{2\pi l, 2\pi l + \frac{2\pi}{5}, 2\pi l + \frac{4\pi}{5}, 2\pi l + \frac{6\pi}{5}, 2\pi l + \frac{8\pi}{5}\Big|l\in\mathbb{Z}\right\}.$$

We know that $2\pi l \ (l \in \mathbb{Z})$ is a period of the function $\sin : \mathbb{R} \to [-1, 1]$, hence

$$A = \left\{ \sin 0, \ \sin \frac{2\pi}{5}, \ \sin \frac{4\pi}{5}, \ \sin \frac{6\pi}{5}, \ \sin \frac{8\pi}{5} \right\}$$

We still need to check if there are equal elements in this set. In order to do that we bring them in the first quadrant and we obtain

$$A = \left\{ \sin 0, \sin \frac{2\pi}{5}, \sin \frac{4\pi}{5} = -\sin \frac{\pi}{5}, \sin \frac{6\pi}{5} = \sin \frac{\pi}{5}, \sin \frac{8\pi}{5} = -\sin \frac{2\pi}{5} \right\}.$$

Hence all elements are distinct, and so the cardinal of the set is 5.

3. The determinant of the system is $\Delta = \begin{vmatrix} 1 & 1 & -1 \\ 1 & a & -1 \\ 1 & 1 & a \end{vmatrix} = (a-1)(a+1).$ The system is compatible determinate $\Leftrightarrow \Delta \neq 0 \Leftrightarrow a \notin \{-1, 1\}$. In this case we have:

$$\Delta_1 = \begin{vmatrix} 1 & 1 & -1 \\ 1 & a & -1 \\ a & 1 & a \end{vmatrix} = 2a(a-1), \quad \Delta_2 = \begin{vmatrix} 1 & 1 & -1 \\ 1 & 1 & -1 \\ 1 & a & a \end{vmatrix} = 0, \quad \Delta_3 = \begin{vmatrix} 1 & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{vmatrix} = (a-1)^2.$$

We obtain the unique solution: $x = \frac{\Delta_1}{\Delta} = \frac{2a}{a+1}, \quad y = \frac{\Delta_2}{\Delta} = 0, \quad z = \frac{\Delta_3}{\Delta} = \frac{a-1}{a+1}.$