15. Suma soluţiilor ecuatiei $6^{x+1}-4^{x}=3^{2 x}$ este

A -1 ;

Raspuns : B
D 2 .
ec. exponentiali $\quad 6=2 \cdot 3 \quad 4=2 \cdot 2 \quad \times \quad 6 \cdot 2^{x} \cdot 3^{x}-2^{x} \cdot 2^{x}=3^{x} \cdot 3^{x} \quad\left(:\left(3^{x} \cdot 3^{x}\right)\right.$

$$
\begin{aligned}
& 4^{x}=\left(2^{2}\right)^{x}=2^{2 x}=2^{x+x}=2^{x} \cdot 2^{x} \\
& 3^{2 x}=3^{x} \cdot 3^{x} \\
& 6^{x+1}=6 \cdot 6^{x}=6 \cdot(2 \cdot 3)^{x}=6 \cdot 2^{x} \cdot 3^{x}
\end{aligned}
$$

$6 \cdot\left(\frac{2}{3}\right)^{x}-\left(\frac{2}{3}\right)^{2 x}=1 \quad$ (ideea unei eleve)

Notion $t=\left(\frac{2}{3}\right)^{x}$. Arem $t^{2}=\left(\frac{2}{3}\right)^{2 x}$.

$$
t=\left(\frac{2}{3}\right)^{x} \Leftrightarrow t>0 \therefore x=\log _{\frac{2}{3}} t
$$

ec. $\Leftrightarrow 6 t-t^{2}=1 \Leftrightarrow t^{2}-6 t+1=0 \Leftrightarrow t=t_{1}>0$ son $t=t_{2}>0$ (*)
(x) $\begin{aligned} & \text { reoolvoin ec } t^{2}-6 t+1=0 \\ & t\end{aligned} \quad \Delta=6^{2}-4 \cdot 1=36-4=32>0 \Rightarrow \quad \exists t_{1}, t_{2} \in R, t_{1} \neq t_{2}$ $t_{1}+t_{2}=6 \quad t_{1} t_{2}=1 \quad \Rightarrow \quad t_{n}>0 \quad$ i $t_{2}>0$
Fie $x_{1}=\log _{\frac{2}{3}} t_{1} \quad i_{i} x_{2}=\log _{\frac{2}{3}} t_{2}$. A rem caं mult sol. ec. date este $\left\{x_{1}, x_{2}\right\}$. $x_{1}+x_{2}=\log _{\frac{2}{3}} t_{1}+\log _{\frac{2}{3}} t_{2}=\log _{\frac{2}{3}} t_{1} t_{2}=\log _{\frac{2}{3}} 1=0$.
25. Considerăm în \mathbb{R} ecuaţia

$$
\left[\frac{x+2}{3}\right]=\frac{x+1}{4}
$$

Raspum: (D
unde $[a]$ reprezintă partea întreagă a numărului real a. Dacă notăm cu S mulţimea soluţiilor acestei ecuaţii, care dintre următoarele afirmaţii sunt adevărate?

A $S=[-9,3]$;
B $S=\{-9,-5,-1,3\}$;
C $S=[-5,3]$;
D $S=\{-5,-1,3\}$.
$\forall a \in \mathbb{R} \quad[a] \in \mathbb{Z}$,

$[a] \leqslant a<[a]+1$.
Ne propeunom sia aflourn multione S.
Wototie: $n=\left[\frac{x+2}{3}\right] \Leftrightarrow n \in \mathbb{Z}$ s $n \leqslant \frac{x+2}{3}<n+1$.
nevenim lesec. $n=\frac{x+1}{4} \quad \Leftrightarrow \quad x=4 m-1$.
(2)

(1) $i(2) \Leftrightarrow n \leqslant \frac{4 m-1+2}{3}<n+1 \Leftrightarrow n+\frac{n+1}{3}<n+1 \Leftrightarrow 1-m$ (a) $\Leftrightarrow \quad-1 \leq n<2 \Leftrightarrow n=-1 \Leftrightarrow \operatorname{san} n=0 \quad \operatorname{sen} n=1$. $m \in \mathbb{Z}$.

$$
n=-1 \Rightarrow x=-5 ; n=0 \Rightarrow x=-1 ; n=1 \Rightarrow x=3
$$

Cu ajutorul uncic eleve, ani syuns la wam. obserratic.
raulf, sol. este $S=\{-5,-1,3\}$. Ols. Mic conditii de exoumen, cand optimizarea timpulie ate importontà, aceartí problemi se prate rextove fori a determino S. Din (2) deducem ei $S \subset \mathbb{Z}$. Prin wrmare, A i: C sent räspunsuri increcte. Jrebive sia alegem intre B i: D. Prin rerificare deducem ci - -9 \& Deci B este incorect. flim ci exiots un räpuins arrect (regula celor care à propus subiectul). Brin womare, D este singurvel corect. 20. Considerăm funcţia $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x-[x]-\frac{1}{2}$, unde $[x]$ reprezintă partea întreagă a numărului real x. Stabiliţi valoarea de adevăr a următoarelor afirmaţii. Rospuns:
A Graficul funcţiei f intersectează axa $O y$ în cel puţin 2 puncte.
B Graficul funcţiei f nu intersectează axa $O x$.
C Graficul funcţiei f intersectează axa $O x$ într-o infinitate de puncte.
D Graficul funcţiei f nu intersectează axa $O y$.
Nolam G_{f} graficul functie $f . \quad G_{f}=\{(x, f(x)): x \in \mathbb{R}\} \subset \mathbb{R}^{2}$.

$$
G_{f} \cap O y=\{(0, f(0))\} \quad G_{f} \cap O x=\{(x, 0): \quad f(x)=0\}
$$

A estefals pt $G_{f} \cap O_{y}$ intr-un singur punct.
wr. de puncte in core Gf int. Ox este egal ces m. sol. ec. $f(x)=0$.

$$
\begin{aligned}
& x-[x]-\frac{1}{2}=0 \quad \Leftrightarrow \quad[x]=x-\frac{1}{2} \quad \text { Not } \quad n=[x] \quad \Leftrightarrow n \in \mathbb{Z} \text { i } n \leqslant x<n+1 \\
& \operatorname{ecc} \Leftrightarrow n=x-\frac{1}{2} \Leftrightarrow x=n+\frac{1}{2}
\end{aligned}
$$

neverim $n \leq n+\frac{1}{2}<n+1 \Leftrightarrow 0 \leq \frac{1}{2}<1$ arelerarati $\forall n \in \mathbb{Z}$

$$
S=\left\{n+\frac{1}{2}: \quad n \in \mathbb{Z}\right\}
$$

8. Considerăm în \mathbb{R} ecuaţia

$$
\sqrt{x+3-4 \sqrt{x-1}}+\sqrt{x+8-6 \sqrt{x-1}}=1
$$

Rooppens
(D) $S=\{4,11\}$.

We propunem si aflam S.

$$
\text { Conditï de existenta, }\left\{\begin{array}{l}
x-1 \geqslant 0 \Leftrightarrow x \geqslant 1 \Leftrightarrow x \in[1, \infty) \\
x+3-4 \sqrt{x-1} \geqslant 0 \\
x+8-6 \sqrt{x-1} \geqslant 0
\end{array}\right.
$$

$$
\Leftrightarrow \quad D=[1,+\infty)
$$

Nolatie : $t=\sqrt{x-1} \Leftrightarrow t \geqslant 0$ si $x=t^{2}+1$.

$$
x+3-4 \sqrt{x-1}=t^{2}+1+3-4 t=t^{2}-4 t+4=(t-2)^{2} \geqslant 0 \quad \forall t
$$

Notate: : $t=V x-1 \Leftrightarrow t \geqslant 0$ si $x=t^{2}+1$.

$$
\begin{aligned}
& x+3-4 \sqrt{x-1}=t^{2}+1+3-4 t=t^{2}-4 t+4=(t-2)^{2} \geqslant 0 \forall t \\
& x+8-6 \sqrt{x-1}=t^{2}+1+8-6 t=t^{2}-6 t+9=(t-3)^{2} \geqslant 0 \forall t \\
& e c \Leftrightarrow \sqrt{(t-2)^{2}}+\sqrt{(t-3)^{2}}=1 \Leftrightarrow|t-2|+|t-3|=1 \quad \frac{D}{2}
\end{aligned}
$$

Con 1. $t \in[1,2) \Rightarrow t-2<0 ; t-3<0$
ec $\Leftrightarrow-(t-2)-(t-3)=1 \Leftrightarrow-2 t+5=1 \Leftrightarrow-2 t=-4 \Leftrightarrow t=2 \notin[1,2)$.
N'u am obd. Sol. in $[1,2)$.
Cor2. $t \in[2,3] \Rightarrow t-2>0$ ir $t-3<0$
ec $\Leftrightarrow t-2-(t-3)=1 \Leftrightarrow 1=1$ adevarat $\forall t$
Mult sol. in acest cat este $[2,3]$.
Cat 3. $t \in(3, \infty) \Rightarrow t-2>0 \div t-3>0$
ec $\Leftrightarrow t-2+t-3=1 \Leftrightarrow 2 t-5=1 \Leftrightarrow 2 t=6 \Leftrightarrow t=3 \notin(3,+\infty)$
Nu aren wol. in aced cout.
In conclusie, mult maloritor livi t eate $[2,3]$.
Not $\Leftrightarrow t \geqslant 0 \quad$ i $\quad x=t^{2}+1$
Obs. Ci orice m. shi $[2,3]$ eote $\geqslant 0$. Ols. co function $f:[2,3] \rightarrow \mathbb{R}, f(t)=t^{2}+1$
 este continua : strict crescantoare.
Sime uernare, imaginea ei ente intecralue $[f(2), f(3)]=$ $[5,10]$. Dee: $S=[5,10]$.

