
1

Computer Science Manual for Bachelor

Graduation Examination 2020

Mathematics - Computer Science Specialization

General topics:

Algorithms and Programming.

1. Search (sequential and binary), sort (selection sort, bubble sort, quicksort). The "divide and

conquer" method.

2. Algorithms and specifications. Writing an algorithm starting from a given specification.

Given an algorithm, determine the result of its execution.

3. OOP concepts in programming languages (Python, C++, Java, C#): Classes and objects,

Members of a class and access modifiers, Constructors and destructors.

4. Relationships between classes. Derived classes and inheritance. Method overriding.

Polymorphism. Dynamic binding. Abstract classes and interfaces.

5. Proposed problems

2

1. Searching and sorting

1.1. Searching

 The data are available in the internal memory, as a sequence of records. We will search a record

having a certain value for one of its fields, called search key. If the search is successful, we will have

the position of the record in the given sequence.

 We denote by k1, k2,, kn the record keys and by a the key value to be found. The problem is,

thus, to find the position p characterized by a = kp.

 It is a usual practice to store the keys in an increasing sequence. Consequently, in the

following we will assume that

 k1 < k2 < < kn .

 Sometimes, when the keys are already sorted, we may not only be interested to find the

record having the requested key, but, if such a record is not available, we may need to know the

insertion place of a new record with this key, such that the sort order is preserved.

 We thus have the following specification for the searching problem:

 Data a,n,(ki, i=1,n);

 Precondition: nN, n1 and k1 < k2 < < kn ;

 Results p;

 Postcondition: (p=1 and a  k1) or (p=n+1 and a > kn) or (1<pn) and (kp-1 < a  kp).

1.1.1. Sequential search

 The first method is sequential search, where the keys are successively examined. We

distinguish three cases: a≤k1, a>kn, and k1 < a ≤ kn, the last case leading to the actual search.

Subalgorithm SearchSeq(a, n, K, p) is: {nN, n1 and k1 < k2 < < kn}

 {Search p such that: (p=1 and a  k1) or}

 { (p=n+1 and a>kn) or (1<pn) and (kp-1 < a  kp).

 Let p := 0; {Case "not yet found"}

 If a k1 then p := 1 else

 If a > kn then p := n + 1 else

 For i := 2; n do

 If (p = 0) and (a ki) then p := i endif

 endfor

 endif

 endif

 end-SearchSeq

3

 We remark that this method leads to n-1 comparisons in the worst case, because the counter i

will take all the values from 2 to n. The n keys divide the real axis in n+1 intervals. The same

number of comparisons will be made in n-1 from the n+1 intervals where the searched key can be,

so the average complexity has the same order of magnitude at the worst-case complexity.

 There are many situations when this algorithm does useless computations. When the key has

already been identified, it is useless to continue the loop for the remaining values of i. In other

words, it is desirable to replace the for loop with a while loop. We get the second subalgorithm,

described as follows.

 Subalgorithm SearchSucc(a, n, K, p) is: {nN, n1 and k1 < k2 < < kn}

 {Search p such that: p=1 and a  k1) or }

 {(p=n+1 and a>kn) or (1<pn) and (kp-1 < a  kp).

 Let p:=1;

 If a>k1 then

 While pn and a>kp do p:=p+1 endwhile

 endif

 end-SearchSucc

 In the worst case this subalgorithm does the same number of operations as the subalgorithm

SearchSeq.On the average, the number of operations is reduced to half of the operations executed

by the subalgorithm SearchSeq, and, as such, the average running-time complexity order of

SearchSucc is the same as with the SearchSeq subalgorithm. We note that this type of searching can

also be applied in the case that the keys are not in an increasing sequence.

1.1.2. Binary search

 Another method, called binary search, more efficient than the previous two methods, uses

the “divide and conquer” technique with respect to working with the data. We start by considering

the relation of the search key to the key of the element in the middle of the collection. Based on this

check we will continue our search in one of the two halves of the collection. We can thus

successively halve the collection portion we use for our search. Since we modify the size of the

collection, we need to consider the ends of the current collection as parameters for the search.

 The binary search may effectively be realized with the function call SearchBin(a, n, K,

p). This function is described below.

4

 Subalgorithm SearchBin(a, n, K, p) is: {nN, n1 and k1 < k2 < < kn}

 {Search p such that: (p=1 and a  k1) or}

 {(p=n+1 and a>kn) or (1<pn) and (kp-1 < a  kp)}

 If a k1 then p := 1 else

 If a > kn then p := n+1 else

 P := BinarySearch(a, n, K, 1, n)

 endif

 endif

 end-SearchBin

Function BinarySearch(a, n, K, Left, Right) is:

 If Left Right - 1

 then BinarySearch:= Right

 else m := (Left+Right) Div 2;

 If a km

 then BinarySearch:= BinarySearch (a, n, K, Left, m)

 else BinarySearch:= BinarySearch (a, n, K, m, Right)

 endif

 endif

end-BinarySearch

 The variables Left and Right in the BinarySearch function described above represent the

ends of the search interval, and m represents the middle of the interval. Using this method, in a

collection with n elements, the search result may be provided after at most log2n comparisons. Thus,

the worst case time complexity is proportional to log2n. Without going into details, let us note that

the average running-time complexity is the same.

 We remark that the function BinarySearch is a recursive function. We can easily remove the

recursion, as shown in the following function:

Function BinarySearchN(a, n, K, Left, Right) is:

 While Right – Left > 1 do

 m := (Left+Right) Div 2;

 If a km then Right := m else Left := m endif

 endwhile

 BinarySearchN:= Right

end-BinarySearchN

5

1.2. Sorting

 Internal sorting is the operation to reorganize the elements in a collection already available in

the internal memory, in such a way that the record keys are sorted in increasing (or decreasing, if

necessary) order.

 From an algorithms complexity point of view, our problem is reduced to keys sorting. So, the

specification of the internal sorting problem is the following:

 Data n,K; {K=(k1,k2,...,kn)}

 Precondition: kiR, i=1,n

 Results K';

Postcondition: K' is a permutation of K, having the elements sorted in increasing order,

that is k’1  k’2  ...  k’n.

1.2.1. Selection sort

 The first technique, called Selection Sort, works by determining the element having the

minimal (or maximal) key, and swapping it with the first element. Now, forget about the first

element and resume the procedure for the remaining elements, until all elements have been

considered.

Subalgorithm SelectionSort(n, K) is: {Do a permutation of}

 {the n components of K}

 {such that k1  k2   kn }

 For i := 1; n-1 do

 Let ind := i;

 For j := i + 1; n do

 If kj < kind then ind := j endif

 endfor

 If i < ind then t := ki; ki := kind; kind := t endif

 endfor

end-SelectionSort

 We remark that the total number of comparisons is

 (n - 1) + (n - 2) + ... + 2 + 1 = n(n - 1) / 2

independently of the input data. So, the average computational complexity, as well as the worstcase

computational complexity, is O(n2).

6

1.2.2. Bubble sort

 The BubbleSort method compares two consecutive elements, which, if not in the expected

relationship, will be swapped. The comparison process will end when all pairs of consecutive

elements are in the expected order relationship.

Subalgorithm BubbleSort(n, K) is:

 Repeat

 Let kod := 0; {Hypothesis "is sorted"}

 For i := 2; n do

 If ki-1 > ki then

 t := ki-1;

 ki-1 := ki;

 ki := t;

 kod := 1 {Not sorted yet!}

 endif

 endfor

 until kod = 0 endrepeat {Sorted}

end-BubbleSort

 This algorithm performs (n-1)+(n-2)+ ... +2+1 = n(n-1)/2 comparisons in the worst case, so

the time complexity is O(n2).

 An optimized variant of BubbleSort is:

Subalgorithm BubbleSort(n, K) is:

 Let s := 0

 Repeat

 Fie kod := 0; {Hypothesis "is sorted"}

 For i := 2; n-s do

 If ki-1 > ki then

 t := ki-1;

 ki-1 := ki;

 ki := t;

 kod := 1 {Not sorted yet!}

 endif

 endfor

 s := s + 1

 until kod = 0 endrepeat {Sorted}

sf-BubbleSort

7

1.2.3. Quicksort

 Another more efficient sorting method is described hereby. The method, called QuickSort, is

based on the “divide and conquer” technique. The subsequence to be sorted is given through two

input parameters, the inferior and superior limits of the substring elements indices. The procedure

call to sort the whole sequence is: QuickSort(n, K), where n is the number of records of the

given collection. So,

Subalgorithm QuickSort(n, K) is:

 Call QuickSortRec(n, K, 1, n)

sf-QuickSort

 The procedure QuickSortRec(n, K, Left, Right) will sort the subsequence kLeft, kLeft+1,

..., kRight. Before performing the actual sort, the subsequence will be rearranged in such a way

that the value of the element kLeft (called pivot) occupies its final position (when the sequence is

sorted). If i is this position, the subsequence will be rearranged such that the following condition is

fulfilled:

 kj  ki  kl , for Left  j < i < l Right (*)

 Once the partitioning is achieved, we will only need to sort the kLeft, kLeft+1, ... ,ki-1

using a recursive call to QuickSortRec(n, K, Left, i-1) and then the subsequence ki+1,

...,kRight using a recursive call to QuickSort(n, K, i+1, Right). Of course, we will need to

sort these subsequences (by the recursive call of the procedure) only if they have at least two

elements.

 The procedure QuickSortRec is described below.

Subalgorithm QuickSortRec (n, K, Left, Right) is:

 Let i := Left; j := Right; a := ki;

 Repeat

 While kj  a and (i < j) do j := j - 1 endwhile

 ki := kj;

 While ki  a and (i < j) do i := i + 1 endwhile

 kj := ki ;

 until i = j endrepeat

 Let ki := a;

 If Left < i-1 then Call QuickSortRec(n, K, Left, i - 1) endif

 If i+1 < Right then Call QuickSortRec(n, K, i + 1, Right) endif

end-QuickSortRec

 The time complexity of the described algorithm is Θ(n2) in the worst case, but the average

time complexity is Θ(nLog2n).

8

1.3. The "divide and conquer" method

 The programming strategy "divide and conquer" ("Divide et Impera") means:

 Dividing the data ("divide and conquer");

 Breaking the problem in subproblems ("top-down").

 The method can be applied to problems that can be divided into independent subproblems

similar to the initial problem, which are of lower size and can be solved easily.

Note that:

 The division is done until we get a problem that can be immediately solved.

 The technique can make use of a recursive implementation.

Formalization

Sublalgorithm AlgName(D) is:

 If dim(D)  a then

 @solve the problem

 else

 @ Divide D in d1, d2,..., dk

 Call AlgName (d1)

 Call AlgName (d2)

 .

 .

 Call AlgName (dk)

 @ build the final result using partial results of the above calls

 endif

end-AlgName

9

2. Algorithms and specifications

Algorithms and specifications. Writing an algorithm starting from a given specification. Given an

algorithm, determine the result of its execution.

Problem 1

 Write a function that satisfies the following specification:

 Data nr;

 Precondition: nr, nr≥1

 Results l1,l2,...,ln;

 Postcondtion: n*, njijillninrl
l

nr
jii

i









,1,,1 , n is maximum

Problem 2

 Write a function that satisfies the following specification:

 Data n,L=(l1,l2,...,ln);

 Precondition: liR, i=1,n

 Results R=(r1,r2,...,rn);

 Postcondtion: R is a permutation of L, r1  r2  ...  rn.

Problem 3

 Write an algorithm/program to solve the following problem: When Ana goes shopping, she

always prepares a shopping list: name, quantity, department (food, clothing, shoes, consumables),

estimated price. The requirement is to display Ana’s shopping list alphabetically ordered according

to the department, the list sorted based on quantity in decreasing order, and Ana’s list for a certain

department. It is also required to compute an estimated price of Ana’s expenses.

Problem 4

 Write an algorithm/program to solve the following problem: Write a program the reads alist

of integer numbers different than zero. Reading the list ends when the value zero is entered. The

program should remove from the list the sequences of strictly positive consecutive elements having

length greater than 3 (if they exist) and then print the obtained list.

10

Problem 5

 What is the effect of the following C++ program?

#include <iostream>

using namespace std;

bool Prime(int p){

 int d = 2;

 while ((d * d <= p) && (p % d > 0)){

 d++;

 }

 return d * d > p;

}

bool Dec(int n, int &p1, int &p2){

 p1 = 2;

 while ((p1 <= n / 2) && (!Prime(p1) || !Prime(n - p1))){

 p1++;

 }

 p2 = n - p1;

 return p1 <= n / 2;

}

int main(){

 int a;

 int b = 0;

 int c = 0;

 do{

 cout << "Give a: ";

 cin >> a;

 if (a > 0){

 if (Dec(a, b, c))

 cout << a << ", " << b << ", " << c << endl;

 else

 cout << "There is no dec.";

 }

 } while (a > 0);

 return 0;

}

Problem 6

 Consider the following C++ program and indicate:

a) what does the program do;

b) what does each subprogram do;

c) what results are printed for 12 1233 1132 2338 8533 10000 21500 0 ?

11

#include <iostream>

#include <fstream>

#include <set>

using namespace std;

void function1(int x[], int &n){

 ifstream fin("data.in");

 n = 0;

 int v = 0;

 do{

 fin >> v;

 if (v > 0){

 x[n++] = v;

 }

 } while (v > 0);

 fin.close();

}

void function2(int x[], int n){

 ofstream fout("data.out");

 for (int i = 0; i < n; i++){

 fout << x[i] << " ";

 }

 fout << endl;

 fout.close();

}

void function3(int a, std::set<int> &s){

 s.clear();

 do{

 s.insert(a % 10);

 a /= 10;

 } while (a > 0);

}

bool function4(int a, int b){

 std::set<int> Ma;

 std::set<int> Mb;

 function3(a, Ma);

 function3(b, Mb);

 return Ma == Mb;

}

void function5(int &p){

 int v = 0;

 do{

 v = v * 10 + p % 10;

 p /= 10;

 } while (p > 0);

 p = v;

}

12

void function6(int x[], int n){

 for (int i = 0; i < n - 1; i++){

 if (function4(x[i], x[i + 1]))

 function5(x[i]);

 }

}

int main(){

 int x[100];

 int n = 0;

 function1(x, n);

 function6(x, n);

 function2(x, n);

 return 0;

}

Answer c) 12 3321 1132 2338 8533 10000 21500

Problem 7

 Specify what is the following program doing, and then write the C++ program for the inverse

function.

#include <cctype>

#include <string>

#include <iostream>

using namespace std;

char UrmL(char l){

 switch (l){

 case 'Z':

 return 'A';

 case 'z':

 return 'a';

 default:

 return l + 1;

 }

}

char ModC(char c){

 if (std::isalpha(c))

 return UrmL(c);

 else

 return c;

}

std::string Modif(std::string s){

 for (int i = 0; i < s.length(); i++){

 s[i] = ModC(s[i]);

 }

 return s;

}

13

int main(){

 std::string s;

 do{

 cin >> s;

 cout << Modif(s) << endl;

 } while (s != "stop");

 return 0;

}

 Note. Assuming that this program creates a text encoding, write the program that generates

the decoding!

14

3. OOP concepts in programming languages

OOP concepts in programming languages (Python, C++, Java, C#): Classes and objects,

Members of a class and access modifiers, Constructors and destructors.

3.1. Data protection in modular programming

In procedural programming, developing programs means using functions and procedures for

writing these programs. In the C/C++ programming language instead of functions and procedures

we have functions that return a value and functions that do not return a value. But in case of large

applications it is desirable to have some kind of data protection. This means that only some

functions have access to problem data, specifically those functions referring to that data. In modular

programming, data protection may be achieved by using static memory allocation. If in a file a

datum outside any function is declared static then it can be used from where it was declared to the

end of the file, but not outside it.

Let us consider the following example dealing with integer vector processing. Write a module

for integer vector processing that contains functions corresponding to vector initialization,

disposing occupied memory, raising to the power two and printing vector elements. A possible

implementation of this module is presented in the file vector1.cpp:

#include <iostream>

using namespace std;

static int* e; // vector elements

static int d; // vector size

void init(int* e1, int d1){ // initialization
 d = d1;

 e = new int[d];

 for (int i = 0; i < d; i++)

 e[i] = e1[i];

}

void destroy(){ // disposing occupied memory

 delete[] e;

}

void squared(){ // raising to the power two
 for (int i = 0; i < d; i++)

 e[i] *= e[i];

}

void print(){ // printing
 for (int i = 0; i < d; i++)

 cout << e[i] << ' ';

15

 cout << endl;

}

The module is individually compiled and an object file is produced. A main program example

is presented in the file vector2.cpp:

#include "functions.h"

extern void init(int*, int); //extern may be omitted

extern void distroy();

extern void squared();

extern void print();

//extern int* e;

int main() {

 int x[5] = { 1, 2, 3, 4, 5 };

 init(x, 5);

 squared();

 print();

 destroy();

 int y[] = { 1, 2, 3, 4, 5, 6 };

 init(y, 6);

 //e[1]=10; error, data are protected

 squared();

 print();

 destroy();

 return 0;

}

Note that even though the main program uses two vectors, we cannot use them together, so

for example the module vector1.cpp cannot be extended to implement vector addition. In order to

overcome this drawback, abstract data types have been introduced.

3.2. Abstract data types

Abstract data types enable a tighter bound between the problem data and operations

(functions) referring to these data. An abstract data type declaration is similar to a structure

declaration, which apart of the data also declares or defines functions referring to these data.

For example in the integer vector case we can declare the abstract data type:

struct vect {

 int* e;

 int d;

 void init(int* e1, int d1);

 void destroy() { delete[] e; }

 void squared();

 void print();

};

16

The functions declared or defined within the structure will be called methods and the data will

be called attributes. If a method is defined within the struct (like the destroy method from the above

example) then it is considered an inline method. If a method is defined outside the struct then the

function name will be replaced by the abstract data type name followed by the scope resolution

operator (::) and the method name. Thus the init, squared and print methods will be defined as

follows:

void vect::init(int *e1, int d1){
 d = d1;
 e = new int[d];
 for (int i = 0; i < d; i++)
 e[i] = e1[i];
}

void vect::squared(){
 for (int i = 0; i < d; i++)
 e[i] *= e[i];
}

void vect::print(){
 for (int i = 0; i < d; i++)
 cout << e[i] << ' ';
 cout << endl;
}

Even though by the above approach a tighter bound between problem data and functions

referring to these data has been accomplished, data are not protected, so they can be accessed by

any user defined function, not only by the methods. This drawback may be overcome by using

classes.

3.3. Class declaration

A class abstract data type is declared like a structure, but the keyword struct is replaced with

class. Like in the struct case, in order to refer to a class data type one uses the name following the

keyword class (the class name). Data protection is achieved with the access modifiers: private,

protected and public. The access modifier is followed by the character ':'. The private and protected

access modifiers represent protected data while the public access modifier represents unprotected

data. An access modifier is valid until the next access modifier occurs within a class, the default

access modifier being private. Note that struct also allow the use of access modifiers, but in this

case the default access modifier is public.

For example, the vector class may be declared as follows:

17

class vector {

 int* e; // vector elements

 int d; // vector size

public:

 vector(int* e1, int d1);

 ~vector() { delete [] e; }

 void squared();

 void print();

};

Note that the attributes e and d have been declared private (restricted access), while methods

have been declared public (unrestricted access). Of course that some attributes may be declared

public and some methods may be declared private if the problem specifics require so. In general,

private attributes can only be accessed by the methods from that class and by friend functions.

Another important remark regarding the above example is that attribute initialization and

occupied memory disposal is done via some special methods.

Data declared as some class data type are called the classes' objects or simply objects. They

are declared as follows:

 class_name list_of_objects;

For example, a vector object is declared as follows:

 vector v;

Object initialization is done with a special method called constructor. Objects are disposed by

an automatic call of another special method called destructor. In the above example,

 vector(int* e1, int d1);

is a constructor and

 ~vector() { delete [] e; }

is a destructor.

Abstract data types of type struct may also be seen as classes where all elements have

unrestricted access. The above constructor is declared inside the class, but it is not defined, while

the destructor is defined inside the class. So the destructor is an inline function. In order to define

methods outside a class, the scope resolution operator is used (like in the struct case).

3.3.1. Class members. The this pointer

In order to refer to class attributes or methods the dot (.) or arrow (→) operator is used (like

in the struct case). For example, if the following declarations are considered:

vector v;

vector* p;

18

then printing the vector v and the vector referred by the p pointer is done as follows:

v.print();

p->print();

However, inside methods, in order to refer to attributes or (other) methods only their name

needs to be used, the dot (.) or arrow (→) operators being optional. In fact, the compiler

automatically generates a special pointer, the this pointer, at each method call and it uses the

generated pointer to identify attributes and methods.

The this pointer will be declared automatically as a pointer to the current object. In the above

example, the this pointer is the address of the vector v and the address referred by the p pointer

respectively.

For example, if inside the print method an attribute d is used then it is interpreted as this->d.

The this pointer may also be used explicitly by the programmer, if the problem specifics

require so.

3.3.2. The constructor

Object initialization is done with a special method called constructor. The constructor name

has to be the same with the class name. A class may have multiple constructors. In this case, these

methods will have the same name and this is possible due to function overloading. Of course that

the number and/or formal parameter types have to be different otherwise the compiler cannot

choose the correct constructor.

Constructors do not return any value. In this situation the use of the keyword void is

forbidden.

In the following we show an example of a class having as attributes a person's last name and

first name and a method for returning the person's whole name.

File person.h:

class Person {

 char* lastname;

 char* firstname;

public:

 Person(); //default constructor

 Person(char* ln, char* fn); //constructor

 Person(const Person& p1); //copy constructor

 ~Person(); //destructor

 char* toString();

};

19

File person.cpp:

#include <iostream>

#include <cstring>

#include "person.h"

using namespace std;

Person::Person(){

 lastname = new char[1];

 *lastname = 0;

 firstname = new char[1];

 *firstname = 0;

 cout << "Calling default constructor." << endl;

}

Person::Person(char* ln, char* fn){

 lastname = new char[strlen(ln) + 1];

 strcpy_s(lastname, strlen(ln) + 1, ln);

 firstname = new char[strlen(fn) + 1];

 strcpy_s(firstname, strlen(fn) + 1, fn);

 cout << "Calling constructor (lastname, firstname).\n";

}

Person::Person(const Person& p1){

 lastname = new char[strlen(p1.lastname) + 1];

 strcpy_s(lastname, strlen(p1.lastname) + 1, p1.lastname);

 firstname = new char[strlen(p1.firstname) + 1];

 strcpy_s(firstname, strlen(p1.firstname) + 1, p1.firstname);

 cout << "Calling copy constructor." << endl;

}

Person::~Person(){

 delete[] lastname;

 delete[] firstname;

}

char* Person::toString(){

 int l = strlen(firstname) + 1 + strlen(lastname) + 1;

 char* s = new char[l];

 strcpy_s(s, l, firstname);

 strcat_s(s, l, "-");

 strcat_s(s, l, lastname);

 strcat_s(s, l, "\0");

 return s;

}

20

File personTest.cpp:

#include "person.h"

#include <iostream>

using namespace std;

int main() {

 Person A; //calling default constructor

 char* s = A.toString();

 cout << s << endl;

 delete[] s;

 Person B("Stroustrup", "Bjarne");

 s = B.toString();

 cout << s << endl;

 delete[] s;

 Person* C = new Person("Kernighan", "Brian");

 s = C->toString();

 cout << s << endl;

 delete[] s;

 delete C;

 Person D(B); //equivalent to Person D = B;

 //calling copy constructor

 s = D.toString();

 cout << s << endl;

 delete[] s;

 return 0;

}

We may notice the presence of two special types of constructors: the default constructor and

the copy constructor. If a class has a constructor without any parameters then this is called default

constructor. The copy constructor is used for object initialization given an object of the same type

(in the above example a person having the same last and first name). The copy constructor is

declared as follows:

class_name(const class_name& object);

The const keyword expresses the fact that the copy constructor's argument is not changed. A

class may contain attributes of other class type. Declaring the class as:

class class_name {

 class_name_1 ob_1;

 class_name_2 ob_2;

 ...

 class_name_n ob_n;

 ...

};

the header of the constructor for class class_name will have the following form:

class_name(argument_list):

ob_1(l_arg_1), ob_2(l_arg_2), ..., ob_n(l_arg_n)

21

where argument_list and l_arg_i respectively represent the list of formal parameters from the

class_name's constructor and object ob_i respectively.

From the list ob_1(l_arg_1), ob_2(l_arg_2), ..., ob_n(l_arg_n) one my choose not to include

the objects that do not have user defined constructors, or objects that are initialized by the default

constructor, or by a constructor having only implicit parameters.

 If a class contains attributes of another class type then first these attributes' constructors are

called followed by the statements from this classes' constructor.

File pair.cpp:

#include <iostream>
#include "person.h"

using namespace std;

class Pair {

 Person husband;

 Person wife;

public:

 Pair(){ //default constructor definition

 //call to the default constructors

 } //for objects husband and wife

 Pair(Person& ahusband, Person& awife);

 Pair(char* lname_husband, char* fname_husband,

 char* lname_wife, char* fname_wife) :

 husband(lname_husband, fname_husband),

 wife(lname_wife, fname_wife) {

 }

 char* toString();

};

inline Pair::Pair(Person& ahusband, Person& awife) :

husband(ahusband), wife(awife){

}

char* Pair::toString(){

 char* s_husband = husband.toString();

 char* s_wife = wife.toString();

 int l = 9 + strlen(s_husband) + 2 + 6 + strlen(s_wife) + 1;

 char* s = new char[l];

strcpy_s(s, l, "Husband: ");

 strcat_s(s, l, s_husband);

strcat_s(s, l, "; Wife: ");

 strcat_s(s, l, s_ wife);

strcat_s(s, l, "\0");

return s;

}

22

int main() {

 Person A("Smith", "John");

 Person B("Smith", "Emma");

 Pair AB(A, B);

 char* s = AB.toString();

 cout << s << endl;

 delete[] s;

 Pair CD("C", "C", "D", "D");

 s = CD.toString();

 cout << s << endl;

 delete[] s;

 Pair EF;

 s = EF.toString();

 cout << s << endl;

 delete[] s;

 return 0;

}

Note that in the second constructor, the formal parameters husband and wife have been

declared as references to type person. If they had been declared as formal parameters of type

person, then in the following situation:

 Pair AB(A, B);

the copy constructor would have been called four times. In situations like this, temporary objects

are first created using the copy constructor (two calls in this case), and then the constructors of the

attributes having a class type are executed (other two calls).

3.3.3. The destructor

The destructor is the method called in case of object disposal. Global object destructor is

called automatically at the end of the main function as part of the exit function. So using the exit

function in a destructor is not recommended as it leads to an infinite loop. Local objects destructor

is executed automatically when the block in which these objects were defined is finished. In case of

dynamically allocated objects, the destructor is usually called indirectly via the delete operator

(provided that the object has been previously created using the new operator). There is also an

explicit way of calling the destructor and in this case the destructor name needs to be preceded by

the class name and the scope resolution operator.

The destructor name starts with the ~ character followed by the class name. Like in the

constructor case, the destructor does not return any value and using the void keyword is forbidden.

The destructor call in various situations is shown in the following example:

23

File destructExample.cpp:

Person persGlobal("Toma", "Maria");

#include <iostream>

#include "person.h"

using namespace std;

void funct(){

 cout << "Function call " << endl;

 Person persLocal("Pop", "Ana");

}

int main() {

 Person* persDynamic = new Person("Moldovan", "Ioana");

 funct();

 cout << "Continue the main program" << endl;

 delete persDynamic;

 return 0;

}

24

4. Relationships between classes

4.1. Theoretical basis

The use of abstract data types creates an ensamble for managing data and operations on this

data. By means of the abstract type class, data protection is also achieved, so usually the protected

elements can only be accessed by the methods of the given class. This property of objects is called

encapsulation.

In everyday life we do not see separate objects only, but also different relationships among

these objects, and among the classes these objects belong to. In this way a class hierarchy is

formed. The result is a second property of objects: inheritance. This means that all attributes and

methods of the base class are inherited by the derived class, but new members (both attributes and

methods) can be added to it. If a derived class has more than one base class, we talk about multiple

inheritance.

Another important property of objects belonging to the derived class is that methods can be

overridden. This means that an operation related to objects belonging to the hierarchy has a single

signature, but the methods that describe this operation can be different. So, the name and the list of

formal parameters of the method is the same in both the base and the derived class, but the

implementation of the method can be different. Thus, in the derived class methods can be specific

to that class, although the operation is identified through the same name. This property is called

polymorphism.

4.2. Declaration of derived classes

A derived class is declared in the following way:

class name_of_derived_class : list_of_base_classes {

 //new attributes and methods

};

where list_of_base_classes is of the form: elem_1, elem_2, ..., elem_n and elem_i

for each 1 ≤ i ≤ n can be:

public base_class_i

or

protected base_class_i

or

private base_class_i

25

 The public, protected and private keywords are called inheritance access modifiers in this

situation too. They can be missing, and in this case the default modifier is private. Access to

elements from the derived class is presented in Table 1.

Access to elements from the

base class
Inheritance access modifier

Access to elements from the

derived class

public public public

protected public protected

private public inaccesible

public protected protected

protected protected protected

private protected inaccesible

public private private

protected private private

private private inaccesible

Table 1: Access to elements from the derived class

We can observe that private members of the base class are inaccesible in the derived class.

Protected and public members become protected and private, respectively, if the inheritance access

modifier is protected and private, respectively, and remain unchanged if the inheritance access

modifier is public. This is why, generally, attributes and methods are declared protected and the

inheritance access modifier is public. Thus, they can be accessed, but are protected in the derived

class too.

4.3. Virtual functions

Polymorphism leads naturally to the problem of determining the method that will be called

for a given object. Let us consider the following example. We declare a base class, called base, and

a class derived from this class, called derived. The base class has two methods: method_1 and

method_2. Method method_2 calls method method_1. In the derived class, method_1 is overridden,

but method_2 is not. In the main program, an object of the derived class is declared and method_2,

inherited from the base class, is called. In the C++ language, this example is written in the

following way:

26

File virtual1.cpp:

#include <iostream>

using namespace std;

class base {

public:

 void method_1();

 void method_2();

};

class derived : public base {

public:

 void method_1();

};

void base:: method_1() {

 cout << "Call to method method_1" << " of base class" << endl;

}

void base:: method_2() {

 cout << "Call to method method_2" << " of base class " << endl;

 method_1();

}

void derived:: method_1() {

 cout << " Call to method method_1" << " of derived class" << endl;

}

int main() {

 derived D;

 D.method_2();

 return 0;

}

 Executing the code, we will have the following result:

Call to method method_2 of base class

Call to method method_1 of base class

But this is not the desired result, because in the main function method method_2, inherited

from the base class, was called, but method method_1 called by method_2 was determined at

compile-time. Consequently, although method_1 was overridden in the derived class, the method

from the base class was called, not the overridden one.

 This shortcoming can be overcome by introducing the notion of virtual methods. If a method

is virtual, then for every call of it, the implementation corresponding to the class hierarchy will not

be determined at compile-time, but at execution, depending on the type of the object on which the

27

call was made. This property is called dynamic binding, and if a method is determined at compile-

time, we talk about static binding.

We have seen that if the virtual1.cpp program is executed, methods method_1 and

method_2 from the base class are called. But method_1 being overridden in the derived class, we

wanted the overridden method to be called instead of the one from the base class.

This can be realised by declaring method_1 as a virtual method. Thus, for each call of

method_1, the implementation of the method that will be called is determined at execution time and

not at compile-time. So, the method method_1 is determined through dynamic binding.

In the C++ language a method is declared virtual in the following way: in the declaration of

the class, the header of the method will start with the keyword virtual.

If a method is declared virtual in the base class, then the methods overriding it will be

considered virtual in all derived classes of the hierarchy.

For the above example the declaration of the base class is modified in the following way:

class base {

public:

 virtual void method_1();

 void method_2();

};

 The result of the execution becomes:

Call to method method_2 of base class

Call to method method_1 of derived class

So, method_1 from the derived class is called indeed.

Further, we will present another example where the neccessity of introducing virtual methods

appears. Let us define the class fraction referring to rational numbers, having as attributes the

numerator and the denominator of the fraction. The class has to have a constructor, the default

value for the numerator being 0 and for the denominator being 1, and two methods: product, for

computing the product of two fractions and multiply, for multiplying the current object with a

fraction given as parameter. Also, the fraction class has to have a method for displaying a rational

number. Using class fraction as base class, we will define the derived class fraction_write, in which

the product method will be overridden, so that besides executing the multiplication, the operation is

displayed on stdout. The multiply method will not be overridden, but the performed operation has to

be displayed on the standard output in this case too.

28

File fvirt1.cpp:

#include <iostream>

#include <string>

using namespace std;

class fraction {

protected:

 int numerator;

 int denominator;

public:

 fraction(int numerator1 = 0, int denominator1 = 1);

 fraction product(fraction& r); //computes the product of two fractions, but

//does not simplify

 fraction& multiply(fraction& r);

 std::string toString();

};

fraction::fraction(int numerator1, int denominator1) {

 numerator = numerator1;

 denominator = denominator1;

}

fraction fraction::produs(fraction& r) {

 return fraction(numerator * r.numerator, denominator * r.denominator);

}

fraction& fraction::multiply(fraction& q) {

 *this = this->product(q);

 return *this;

}

std::string fraction::toString() {

 char* s = new char[5 + 3 + 5 + 1];

 if (denominator){

 std::string s1 = std::to_string(numerator);

 std::string s2 = std::to_string(denominator);

 std::string s = s1 + " / " + s2;

 return s;

 }

 else

 return "Incorrect fraction";

}

class fraction_write : public fraction{

public:

 fraction_write(int numerator1 = 0, int denominator1 = 1);

 fraction product(fraction & r);

};

inline fraction_write::fraction_write(int numerator1, int denominator1) : fraction

(numerator1, denominator1) {

}

29

fraction fraction_write::product(fraction& q) {

 fraction r = fraction(*this).product(q);

 cout << "(" << this->toString() << ") * (" << q.toString() << ") = " << r.toString()

<< endl;

 return r;

}

int main() {

 fraction p(3, 4), q(5, 2), r;

 r = p.multiply(q);

 cout << p.toString() << endl;

 cout << r.toString() << endl;

 fraction_write p1(3, 4), q1(5, 2);

 fraction r1, r2;

 r1 = p1.product(q1);

 r2 = p1.multiply(q1);

 cout << p1.toString() << endl;

 cout << r1.toString() << endl;

 cout << r2.toString() << endl;

 return 0;

}

 Executing the code we will get:

15 / 8

15 / 8

(3 / 4) * (5 / 2) = 15 / 8

15 / 8

15 / 8

15 / 8

We can observe that the result is not the desired one, since the multiplication operation was

displayed only once, namely for the expression r1 = p1.product(q1). In the case of the

expression r2 = p1.multiply(q1) the multiplication was not displayed. This is caused by the fact

that the multiply method was not overriden in the derived class, so the method inherited from class

fraction was called. Inside the multiply method, the method product is called, but since this method

was determined at compile-time, the one referring to class fraction was called and not the one from

the derived class fraction_write. So, the operation was displayed only once.

The solution is, like for the previous example, to declare a virtual method, namely to declare

method product virtual. So, the declaration of the base class is modified in the following way:

class fraction {

protected:

 int numerator;

 int denominator;

public:

 fraction(int numerator1 = 0, int denominator1 = 1);

30

 virtual fraction product(fraction& r); //computes the product of two fractions, but

//does not simplify

 fraction& multiply(fraction& r);

 std::string toString();

};

After making these modifications, the result of the execution will be:

15 / 8

15 / 8

(3 / 4) * (5 / 2) = 15 / 8

(3 / 4) * (5 / 2) = 15 / 8

15 / 8

15 / 8

15 / 8

It can be observed that the operation was displayed twice, once for each expression. Virtual

methods, just like other methods, do not neccessarily have to be overridden in the derived classes.

If they are not overridden, the method from a superior level is inherited.

The corresponding implementation of virtual methods is determined based on some

automatically built and managed tables. Objects of classes with virtual methods contain a pointer to

this table. Because of this, managing virtual methods requires more memory and a longer execution

time.

4.4. Abstract classes

In case of a complicated class hierarchy, the base class can have some properties which we

know exist, but we can only define them for the derived classes. For example, let us consider the

class hierarchy from Figure 1.

Figure 1. Class hierarchy of animals

We notice that we can determine some properties that refer to the derived classes, for

example: average weight, lifespan and speed. These properties will be described using different

31

methods. Theoretically, average weight, lifespan and speed exist for the animal class too, but they

are too complicated to determine, and are not important for us in such a general context. Still, for a

uniform treatment, it would be good, if these three methods were declared in the base class and

defined in the derived classes. For this purpose the notion of a pure virtual method is introduced.

A pure virtual method is a method which is declared in a given class, but is not defined in it.

It has to be defined in a derived class. A pure virtual method is declared in the following way: the

regular header of the method is preceeded by the virtual keyword, and the header ends with = 0. As

its name and declaration show, a pure virtual method is a virtual method, so the selection of the

implementation of the method from the class hierarchy will be done during the execution of the

program.

Classes that contain at least one pure virtual method are called abstract classes.

Since abstract classes contain methods that are not defined, it is not possible to create objects

that belong to an abstract class. If a pure virtual method was not defined in the derived class, than

the derived class will also be abstract and it is impossible to define objects belonging to it.

Let us consider the above example and write a program that determines whether a dove, a

bear or a horse is fat or skinny, fast or slow and old or young, respectively. The result will be

displayed by a method of the animal class, which is not overridden in the derived classes.

 File abstract1.cpp:

#include <iostream>

#include <string>

using namespace std;

class animal {

protected:

 double weight; // kg

 double age; // years

 double speed; // km / h

public:

 animal(double g, double v1, double v2);

 virtual double average_weight() = 0;

 virtual double average_lifespan() = 0;

 virtual double average_speed() = 0;

 int fat() {

 return weight > average_weight();

 }

 int fast() {

 return speed > average_speed();

 }

 int young() {

 return 2 * age < average_lifespan();

 }

 std::string toString();

32

};

animal::animal(double g, double v1, double v2){

 weight = g;

 age = v1;

 speed = v2;

}

std::string animal::toString(){

 return fat() ? "fat, " : "skinny, ";

 return young() ? "young, " : "old, ";

 return fast() ? "fast" : "slow";

}

class dove : public animal {

public:

 dove(double g, double v1, double v2) : animal(g, v1, v2) {}

 double average_weight() { return 0.5; }

 double average_lifespan() { return 6; }

 double average_speed() { return 90; }

};

class bear : public animal {

public:

 bear(double g, double v1, double v2) : animal(g, v1, v2) {}

 double average_weight () { return 450; }

 double average_lifespan () { return 43; }

 double average_speed () { return 40; }

};

class horse : public animal {

public:

 horse(double g, double v1, double v2) : animal(g, v1, v2) {}

 double average_weight () { return 1000; }

 double average_lifespan () { return 36; }

 double average_speed () { return 60; }

};

int main() {

 dove d(0.6, 1, 80);

 bear b(500, 40, 46);

 horse h(900, 8, 70);

 cout << d.toString() << endl;

 cout << b.toString() << endl;

 cout << h.toString() << endl;

 return 0;

}

33

We notice that, although the animal class is abstract, it is useful to introduce it, since there are

many methods that can be defined in the base class and inherited without modifications in the three

derived classes.

4.5. Interfaces

The C++ language has no notion of interface, which exist in Java or C# languages. But any

abstract class that contains only pure virtual methods can be considered an interface. Obviously, in

this case no attributes will be declared inside the class. The animal abstract class contains both

attributes and nonvirtual methods, so it cannot be considered an interface.

Further, we will introduce an abstract class, Vehicle, which contains only pure virtual

methods, and two classes derived from it.

File vehicle.cpp:

#include <iostream>

using namespace std;

class Vehicle {

public:

 virtual void Start() = 0;

 virtual void Stop() = 0;

 virtual void Go(int km) = 0;

 virtual void Stand(int min) = 0;

};

class Bicycle : public Vehicle {

public:

 void Start();

 void Stop();

 void Go(int km);

 void Stand(int min);

};

void Bicycle::Start() {

 cout << "The bicycle starts." << endl;

}

void Bicycle::Stop() {

 cout << "The bicycle stops." << endl;

}

void Bicycle::Go(int km) {

 cout << "The bicycle goes " << km << " kilometres." << endl;

}

void Bicycle::Stand(int min) {

 cout << "The bicycle stands " << min << " minutes." << endl;

}

34

class Car : public Vehicle{

public:

 void Start();

 void Stop();

 void Go(int km);

 void Stand(int min);

};

void Car::Start() {

 cout << "The car starts." << endl;

}

void Car::Stop() {

 cout << "The car stops." << endl;

}

void Car::Go(int km) {

 cout << "The car goes " << km << " kilometres." << endl;

}

void Car::Stand(int min) {

 cout << "The car stands " << min << " minutes." << endl;

}

void Route(Vehicle *v) {

 v->Start();

 v->Go(3);

 v->Stand(2);

 v->Go(2);

 v->Stop();

}

int main() {

 Vehicle *b = new Bicycle;

 Route(b);

 Vehicle *c = new Car;

 Route(c);

 delete c;

 delete b;

}

In the main function two dynamic objects of type Bicycle and Car, respectively, are declared,

and in this way, calling the Route function we will get different results, although this function has

as formal parameter only a pointer to the abstract class Vehicle.

35

5. Proposed problems

1. Write a program in one of the programming languages Python, C++, Java, C# that:

a. Defines a class Student with:

 an attribute name of type string;

 an attribute grades containing a list of grades (integer numbers),

constructurs, access methods and a methods that computes the average grade of the

student.

b. Defines a function that gets an object of type Student and returns True if all the grades

of the student are greater than 4.

c. Write the specifications for the methods defined in class Student and also for the

function defined at b.

2. Write a program in one of the programming languages Python, C++, Java, C# that:

a. Defines a class Student with:

 an attribute name of type string;

 an attribute grades containing a list of grades (integer numbers),

constructurs, access methods and a methods that computes the average grade of the

student.

b. Defines a subprogram that gets an object of type Student and prints the name of the

students and the grades of the student in descending order.

c. Write the specifications for the methods defined in class Student and also for the

function defined at b.

3. Write a program in one of the programming languages Python, C++, Java, C# that:

a. Defines a class Point2D with the following protected attributes:

 name of type char;

 coordX of type real number;

 coordY of type real number,

and the following public methods:

 constructor with parameters to initialize all attributes;

 method toString that returns the following string representation: name(coordX,

coordY), for example A(2, 3);

36

 method with no arguments distanceToOrigin that computes and returns the

Euclidian distance from the current point to the origin (0, 0) of a 2D coordinate

system.

b. Defines a class SetOfPoints with the following private attributes:

 noPoints of type integer;

 points of type array (list) with elements of type Point2D,

and the following public methods:

 constructor with no parameters;

 getter methods to access both attributes,

 method add(p) to add a point p to the array points,

 method filterPoints(limit) where limit is a real number that keeps in the list of points

only those that have distance to origin greater than limit,

 method sortPoints that sorts points alphabetically based on name.

c. Defines a function display(setpoints), where setpoints is of type SetOfPoints, that prints

on the screen the points from setpoints.

d. Defines a function processing1() that:

 creates an object of type SetOfPoints, containing the following points: C(1,2),

A(2,3), B(1,2), A(2,4), D(2,5),

 sorts these points alphabetically (using method sortPoints), and

 prints the sorted set of points (using function display).

e. Defines a class Point3D derived from class Point2D with one private attribute:

 coordZ of type real number,

and the following public methods:

 constructor with parameters to initialize all attributes;

 method toString tht returns the following string representation: name(coordX,

coordY, coordZ), for example B(5,2,4);

 method with no arguments distanceToOrigin that computes and returns the

Euclidian distance from the current point to the origin (0, 0, 0) of a 3D coordinate

system.

Point2D
name : Char
coordX : Double
coordY : Double

Point3D
- coordZ : Double

37

f. Defines a function processing2(val) that:

 creates an object of type SetOfPoints, containing the following points: A(1,2),

B(1,2,3), C(1,2), D(3,4,5);

 determines and prints on the screen the points from the set having a distance to

origin greater than val.

g. Defines the main function of the program and:

 call the function processing1();

 call the function processing2(10).

38

General bibliography

1. Alexandrescu, Programarea modernă in C++. Programare generică si modele de

proiectare aplicate, Editura Teora, 2002.

2. Angster Erzsébet: Objektumorientált tervezés és programozás Java, 4KÖR Bt, 2003.

3. Bjarne Stroustrup: A C++ programozási nyelv, Kiskapu kiadó, Budapest, 2001.

4. Bjarne Stroustrup: The C++ Programming Language Special Edition, AT&T, 2000.

5. Boian F.M. Frentiu M., Lazăr I. Tambulea L. Informatica de bază. Presa Universitară

Clujeana, Cluj, 2005

6. Bradley L. Jones: C# mesteri szinten 21 nap alatt, Kiskapu kiadó, Budapest, 2004.

7. Bradley L. Jones: SAMS Teach Yourself the C# Language in 21 Days, Pearson

Education,2004.

8. Cormen, T., Leiserson, C., Rivest, R., Introducere în algoritmi, Editura Computer Libris

Agora, Cluj, 2000

9. Eckel B., Thinking in C++, vol I-II, http://www.mindview.net

10. Ellis M.A., Stroustrup B., The annotated C++ Reference Manual, Addison-Wesley, 1995

11. Frentiu M., Lazăr I. Bazele programării. Partea I-a: Proiectarea algoritmilor

12. Herbert Schildt: Java. The Complete Reference, Eighth Edition, McGraw-Hill, 2011.

13. Robert Sedgewick: Algorithms, Addison-Wesley, 1984

14. Simon Károly, Kenyerünk Java. A Java programozás alapjai, Presa Universitară

Clujeană, 2010.

http://www.mindview.net/

