
Babeş-Bolyai Tudományegyetem, Kolozsvár

Informatika záróvizsga
tankönyv

2018

Záróvizsga témák
Informatika szak

(a 2018. júliusi vizsgaidőszaktól érvényes)

1. rész: Algoritmusok és programozás (6 téma)

1. Keresés (szekvenciális és bináris), rendezés (buborékrendezés, gyorsrendezés
(quicksort), kiválasztásos rendezés). A visszalépéses keresés (backtracking).

2. OOP/objektumorientált programozás elemek a Python, C++, Java és C# progra-
mozási nyelvekben: osztályok és objektumok; egy osztály tagjai és hozzáférés-
módosítók; konstruktorok és destruktorok.

3. Osztályok közötti kapcsolatok: származtatott osztályok és öröklési viszony; me-
tódusok felülírása; polimorfizmus; dinamikus kötés; absztrakt osztályok és in-
terfészek.

4. Osztálydiagramok és objektumok közötti kapcsolatok az UML-ben. Csomagok,
osztályok és interfészek. Osztályok és interfészek közötti kapcsolatok. Objektu-
mok. Üzenetek.

5. Lista; asszociatív tömb (map); sajátos műveletek specifikációja (megvalósítás
nélkül).

6. Adatszerkezetek és adattípusok azonosítása egy adott feladat megoldása érde-
kében (az 5. pontban megadott témákra vonatkozóan). Meglévő könyvtárak
használata a fenti adatszerkezetek esetén (Python, Java, C++, C#).

2. rész: Adatbázisok (3 téma)

1. Relációs adatbázisok; egy reláció első három normálformája.

2. Adatbázisok lekérdezése a relációs algebra operátoraival.

3. Relációs adatbázisok lekérdezése SQL segítségével (Select).

3. rész: Operációs rendszerek (3 téma)

1. Unix fájlrendszerek szerkezete.

2. Unix folyamatok: létrehozás, fork, exec, exit, wait rendszerhívások; kommuni-
káció pipe és FIFO állományok segítségével.

3. Unix shell programozás és alapvető Unix parancsok: cat, cp, cut, echo, expr, file,
find, grep, less, ls, mkdir, mv, ps, pwd, read, rm, sort, test, wc, who.

Tartalomjegyzék

1. Algoritmusok és programozás (Ionescu Klára) . 5

1.1. Programozási tételek . 5

1.2. Lépések finomítása és optimalizálás . 21

1.3. Rendező algoritmusok . 26

1.4. Rekurzió . 29

1.5. A visszalépéses keresés módszere (backtracking) . 35

1.6. Az oszd meg és uralkodj módszer (divide et impera) 42

1.7. Mohó algoritmusok (greedy módszer) . 48

2. Objektumorientált programozás (Darvay Zsolt) . 55

2.1. Objektumorientált fogalmak .55

2.1. Az objektumorientált programozási módszer . 70

3. Adatbázisok (Varga Viorica, Molnár Andrea Éva) . 79

3.1. A relációs adatmodell . 79

3.2. Normalizálás . 80

3.3. Relációs algebra . 86

3.4. Az SQL lekérdezőnyelv . 93

4. Operációs rendszerek (Ruff Laura, Robu Judit) . 113

4.1. A Unix állományrendszer . 113

4.2. Unix folyamatok . 121

4.3. Shell programozás és alapvető Unix parancsok . 134

4.4. Javasolt feladatok . 149

4.5. Általános könyvészet . 150

Copyright c© 2018 A szerzők

Minden jog fenntartva! E tankönyvet, illetve annak részeit tilos reprodukálni, adat-
rögzítő rendszerben tárolni, bármilyen formában vagy eszközzel – elektronikus úton
vagy más módon – közölni a szerzők előzetes írásbeli engedélye nélkül.

A szerzők a lehető legnagyobb körültekintéssel jártak el e tankönyv szerkesztése-
kor. A szerzők nem vállalnak semmilyen garanciát e kiadvány tartalmával, teljessé-
gével kapcsolatban. A szerzők nem vonhatóak felelősségre bármilyen baleset, vagy
káresemény miatt, amely közvetlen vagy közvetett úton kapcsolatba hozható e tan-
könyvvel.

5

1. fejezet Algoritmusok és programozás

1.1. Programozási tételek

 A feladatok feladatosztályokba sorolhatók a jellegük szerint. E feladatosztályokhoz készí-

tünk a teljes feladatosztályt megoldó algoritmusosztályt, amelyeket programozási tételeknek

nevezünk. Bebizonyítható, hogy ezek a megoldások a szóban forgó feladatok garantáltan he-

lyes és optimális megoldásai.

 A programozási tételek a feladat bemenete és kimenete szerint négy csoportra oszthatók:

A. sorozathoz érték rendelése (1 sorozat – 1 érték)

B. sorozathoz sorozat rendelése (1 sorozat – 1 sorozat)

C. sorozatokhoz sorozat rendelése (több sorozat – 1 sorozat)

D. sorozathoz sorozatok rendelése (1 sorozat – több sorozat)

A. Sorozathoz érték rendelése

1.1.1. Sorozatszámítás

 Adott az N elemű X sorozat. A sorozathoz hozzá kell rendelnünk egyetlen S értéket. Ezt az

értéket egy, az egész sorozaton értelmezett f függvény (pl. elemek összege, szorzata stb.) adja.

Ezt a függvényt felbonthatjuk értékpárokon kiszámított függvények sorozatára, így a

megoldás az F0 semleges elemre, valamint egy kétoperandusú műveletre épül. Az S

kezdőértéke a semleges elem. A kétoperandusú műveletet végrehajtjuk minden Xi elemre és az S

értékre: S ← f(Xi, S).

Összeg és szorzat

 Egyetlen kimeneti adatot számítunk ki, adott számú bemeneti adat feldolgozásának

eredményeként, például a bemeneti adatok összegét, esetleg szorzatát kell kiszámítanunk.

Megoldás

 A feladat megoldása előtt szükséges tudni, hogy mely érték felel meg a bemeneti adatok

halmazára és az elvégzendő műveletre nézve a semleges elemnek. Feltételezzük, hogy a

bemeneti adatok egész számok, amelyeknek a számossága N
1
.

Algoritmus Összegszámítás(N, X, S): { Sajátos eset }

 { Bemeneti adatok: az N elemű X sorozat, kimeneti adat: S }

 S  0

 Minden i = 1, N végezd el: { minden adatot fel kell dolgoznunk }

 S  S + Xi

 vége(minden)

1 A következőkben az algoritmusok implementálása különböző típusú függvényekként szabadon választható. Ha

a függvény egyetlen értéket számít ki, akkor ezt nem kötelező kimeneti paraméterként implementálni, hanem

térítheti a függvény.

6 1. FEJEZET. ALGORITMUSOK ÉS PROGRAMOZÁS

Vége(algoritmus)

 Az előbbi algoritmus általánosítva:

Algoritmus Feldolgoz(N, X, S):

 { Bemeneti adatok: az N elemű X sorozat, kimeneti adat: S }

 S  F0 { kezdőérték: az elvégzendő műveletre nézve semleges elem }

 Minden i = 1, N végezd el: { minden adatot fel kell dolgoznunk }

 S  f(S, Xi) { f a művelet (funkció) }

 vége(minden)

Vége(algoritmus)

1.1.2. Döntés

 Adott az N elemű X sorozat és az elemein értelmezett T tulajdonság. Döntsük el, hogy léte-

zik-e a sorozatban legalább egy T tulajdonságú elem!

Elemzés

 A sorozat elemei tetszőlegesek, egyetlen jellemzőt kell feltételeznünk róluk: bármely elem-

ről el lehet dönteni, hogy rendelkezik-e az adott tulajdonsággal, vagy nem. A válasz egy

üzenet, amelyet az alprogram kimeneti paramétere (logikai változó) értéke alapján ír ki a hívó

programegység.

Algoritmus Döntés_1(N, X, talált):

 { Bemeneti adatok: az N elemű X sorozat. Ha az X sorozatban található }

 { legalább egy T tulajdonságú elem, talált értéke igaz, különben hamis }

 i  1 { kezdőérték az indexnek }

 talált  hamis { kezdőérték a kimeneti adatnak }

 Amíg nem talált és (i  N) végezd el:

 Ha nem T(Xi) akkor { amíg nem találunk egy Xi-t, amely rendelkezik }

 i  i + 1 { a T tulajdonsággal, haladunk előre }

 különben

 talált  igaz

 vége(ha)

 vége(amíg)

Vége(algoritmus)

 A fenti algoritmus megírható tömörebben is:

Algoritmus Döntés_2(N, X, talált):

 { Bemeneti adatok: az N elemű X sorozat. Ha az X sorozatban }

 { található legalább egy T tulajdonságú elem, talált értéke igaz, különben hamis }

 i  1

 Amíg (i  N) és nem T(Xi) végezd el: { amíg nem találunk egy Xi-t, amely }

 i  i + 1 { rendelkezik a T tulajdonsággal, haladunk előre }

 vége(amíg)

 talált  i  N { kiértékelődik a relációs kifejezés; az érték talált értéke lesz }

Vége(algoritmus)

1. FEJEZET. ALGORITMUSOK ÉS PROGRAMOZÁS 7

 Egy másik megközelítésben el kell döntenünk, hogy az adatok, teljességükben, rendelkez-

nek-e egy adott tulajdonsággal vagy sem. Más szóval: nem létezik egyetlen adat sem, amely

ne lenne T tulajdonságú. Ekkor a bemeneti adathalmaz minden elemét meg kell vizsgálnunk.

Mivel a döntés jelentése az összes adatra érvényes, a talált változót átkereszteljük mind-re.

Algoritmus Döntés_3(N, X, mind):

 { Bemeneti adatok: az N elemű X sorozat. Kimeneti adat: ha az X sorozatban }

 { minden elem T tulajdonságú, a mind értéke igaz, különben hamis }

 i  1

 Amíg (i  N) és T(Xi) végezd el: { a nem T(Xi) részkifejezés tagadása }

 i  i + 1

 vége(amíg)

 mind  i > N { az i  N részkifejezés tagadása }

Vége(algoritmus)

1.1.3. Kiválasztás

 Adott az N elemű X sorozat és az elemein értelmezett T tulajdonság. Adjuk meg a sorozat

egy T tulajdonságú elemének sorszámát! (Előfeltétel: garantáltan létezik ilyen elem.)

Algoritmus Kiválasztás(N, X, hely):

 { Bemeneti adatok: az N elemű X sorozat. }

 { Kimeneti adat: hely, a legkisebb indexű T tulajdonságú elem sorszáma }

 hely  1

 Amíg nem T(Xhely) végezd el: { nem szükséges a hely ≤ N feltétel, mivel a feladat }

 hely  hely + 1 { garantálja legalább egy T tulajdonságú elem létezését }

 vége(amíg)

Vége(algoritmus)

1.1.4. Szekvenciális (lineáris) keresés

 Adott az N elemű X sorozat és az elemein értelmezett T tulajdonság. Vizsgáljuk meg, hogy

létezik-e T tulajdonságú elem a sorozatban! Ha létezik, akkor adjuk meg az első ilyen elem

helyét!

Algoritmus Keres_1(N, X, hely):

 { Bemeneti adatok: az N elemű X sorozat. Kimeneti adat: hely, a legkisebb indexű T }

 { tulajdonságú elem indexe, illetve, sikertelen keresés esetén hely = 0 }

 hely  0

 i  1

 Amíg (hely = 0) és (i ≤ N) végezd el:

 Ha T(Xi) akkor

 hely  i

 különben

 i  i + 1

 vége(ha)

 vége(amíg)

Vége(algoritmus)

8 1. FEJEZET. ALGORITMUSOK ÉS PROGRAMOZÁS

 Az adott elem tulajdonságát az Amíg feltételében is ellenőrizhetjük. Más szóval: amíg az

aktuális elem tulajdonsága nem megfelelő, haladunk a sorozatban előre:

Algoritmus Keres_2(N, X, hely):

 { Bemeneti adatok: az N elemű X sorozat. Kimeneti adat: hely, a legkisebb indexű T }

 { tulajdonságú elem indexe, illetve, sikertelen keresés esetén hely = 0 }

 i  1

 Amíg (i ≤ N) és nem T(Xi) végezd el:

 i  i + 1

 vége(amíg)

 Ha i ≤ N akkor { ha kiléptünk az Amíg-ból, mielőtt i nagyobbá vált volna N-nél, }

 hely  i { ⇒ találtunk adott tulajdonságú elemet az i. pozición }

 különben

 hely  0 { különben nem találtunk }

 vége(ha)

Vége(algoritmus)

 Ha a feladat azt kéri, hogy keressünk meg minden olyan elemet, amely rendelkezik az

adott tulajdonsággal, be kell járnunk a teljes adathalmazt, és vagy kiírjuk azonnal a

pozíciókat, ahol megfelelő elemet találtunk, vagy megőrizzük ezeket egy másik sorozatban.

Ilyenkor Minden típusú struktúrát használunk.

1.1.5. Megszámlálás

 Adott, N elemű X sorozatban számoljuk meg a T tulajdonságú elemeket!

Elemzés

 Nem biztos, hogy létezik legalább egy T tulajdonságú elem, tehát az is lehetséges, hogy az

eredmény 0 lesz. Mivel minden elemet meg kell vizsgálnunk (bármely adat rendelkezhet a

kért tulajdonsággal), Minden típusú struktúrával dolgozunk. A darabszámot a db változóban

tároljuk.

Algoritmus Megszámlálás(N, X, db):

 { Bemeneti adatok: az N elemű X sorozat }

 { Kimeneti adat: db, a T tulajdonságú elemek darabszáma }

 db  0

 Minden i = 1, N végezd el:

 Ha T(Xi) akkor

 db  db + 1

 vége(ha)

 vége(minden)

Vége(algoritmus)

1.1.6. Maximumkiválasztás

 Adott az N elemű X sorozat. Határozzuk meg a sorozat legnagyobb (vagy legkisebb)

értékét!

Megoldás

1. FEJEZET. ALGORITMUSOK ÉS PROGRAMOZÁS 9

 A megoldásban minden adatot meg kell vizsgálnunk, ezért az algoritmus egy Minden

típusú struktúrával dolgozik. A max segédváltozó a sorozat első elemétől kap kezdőértéket.

Algoritmus Maximumkiválasztás(N, X, max):

 { Bemeneti adatok: az N elemű X sorozat. Kimeneti adat: max, a legnagyobb elem értéke }

 max  X1

 Minden i = 2, n végezd el:

 Ha max < Xi akkor

 max  Xi

 vége(ha)

 vége(minden)

Vége(algoritmus)

 A maximumot/minimumot tartalmazó segédváltozónak az adatok közül választunk kezdő-

értéket, mivel így nem áll fenn a veszély, hogy az algoritmus eredménye egy, az adataink

között nem létező érték legyen.

 Ha a maximum helyét kell megadnunk, az algoritmus a következő:

Algoritmus MaximumHelye(N, X, hely):

 { Bemeneti adatok: az N elemű X sorozat. Kimeneti adat: hely, a legnagyobb elem pozíciója }

 hely  1 { hely az első elem pozíciója }

 Minden i = 2, n végezd el:

 Ha Xhely < Xi akkor

 hely  i { a maximális elem első előfordulásának helye (pozíciója) }

 vége(ha)

 vége(minden)

Vége(algoritmus)

 Ha minden olyan indexet meg kell határoznunk, amely indexű elemek egyenlők a legna-

gyobb elemmel és nem lehetséges/nem előnyös az adott tömböt kétszer bejárni, mert a maxi-

mumhoz tartozó adatok egy másik (esetleg bonyolult) algoritmus végrehajtásának

eredményei, írhatunk algoritmust, amely csak egyszer járja be a sorozatot:

Algoritmus MindenMaximumHelye(N, X, db, indexek):

 { Bemeneti adatok: az N elemű X sorozat. Kimeneti adat: a db elemű indexek sorozat }

 max  X1

 db  1

 indexek1  1

 Minden i = 2, n végezd el:

 Ha max < Xi akkor

 max  Xi

 db  1

 indexekdb  i

 különben

 Ha max = Xi akkor

 db  db + 1

 indexekdb  i

 vége(ha)

 vége(ha)

10 1. FEJEZET. ALGORITMUSOK ÉS PROGRAMOZÁS

 vége(minden)

Vége(algoritmus)

B. Sorozathoz sorozat rendelése

1.1.7. Másolás

 Adott az N elemű X sorozat és az elemein értelmezett f függvény. A bemeneti sorozat

minden elemére végrehajtjuk a függvényt, az eredményét pedig a kimeneti sorozatba

másoljuk.

Algoritmus Másolás(N, X, Y):

 { Bemeneti adatok: az N elemű X sorozat. Kimeneti adat: az N elemű Y sorozat }

 Minden i = 1, N végezd el:

 Yi  f(Xi)

 vége(minden)

Vége(algoritmus)

1.1.8. Kiválogatás

 Adott az N elemű X sorozat és az elemein értelmezett T tulajdonság. Válogassuk ki az

összes T tulajdonságú elemet!

Elemzés

Az elvárások függvényében különböző megközelítések lesznek érvényesek:

a. kiválogatás kigyűjtéssel

b. kiválogatás kiírással

c. kiválogatás helyben (sorrendváltoztatással vagy megőrizve az eredeti sorrendet)

d. kiválogatás kihúzással (segédsorozattal vagy helyben)

a. Kiválogatás kigyűjtéssel

 A keresett elemeket (vagy sorszámaikat) kigyűjtjük egy sorozatba. A pozíciók sorozatának

(vagy a kigyűjtött elemek sorozatának) hossza legfeljebb az adott sorozatéval lesz

megegyező, mivel előfordulhat, hogy a bemeneti sorozat minden eleme adott tulajdonságú. A

sorozat számosságát a db változóban tartjuk nyilván.

Algoritmus Kiválogatás_a(N, X, db, pozíciók):

 { Bemeneti adatok: az N elemű X sorozat. Kimeneti adat: a db elemű pozíciók sorozat }

 db  0

 Minden i = 1, N végezd el:

 Ha T(Xi) akkor

 db  db + 1

 pozíciókdb  i { pozíciókdb-ben tároljuk az Xi helyét }

 vége(ha)

 vége(minden)

Vége(algoritmus)

b. Kiválogatás kiírással

1. FEJEZET. ALGORITMUSOK ÉS PROGRAMOZÁS 11

 Ha a feladat „megelégszik” a T tulajdonságú elemek kiírásával (nem kéri ezek darabszámát

is), az algoritmus a következő:

Algoritmus Kiválogatás_b(N, X):

 { Bemeneti adatok: az N elemű X sorozat }

 Minden i = 1, N végezd el:

 Ha T(Xi) akkor

 Ki: Xi

 vége(ha)

 vége(minden)

Vége(algoritmus)

c. Kiválogatás helyben

 Ha a sorozat feldolgozása közben a nem T tulajdonságú elemeket nem óhajtjuk megőrizni,

hanem ki szeretnénk zárni ezeket a sorozatból, akkor a feladat specifikációitól függően, a

következő lehetőségek közül fogunk választani:

c1. Ha a törlés után nem kötelező, hogy az elemek az eredeti sorrendjükben maradjanak,

akkor a törlendő elemre rámásoljuk a sorozat utolsó elemét és csökkentjük 1-gyel a sorozat

méretét:

Algoritmus Kiválogatás_c1(N, X):

{ Bemeneti adatok: az N elemű X sorozat. Kimeneti adat: a megváltozott elemszámú X sorozat }

 i  1

 Amíg i ≤ N végezd el: { nem alkalmazunk Minden-t, mivel változik az N!!! }

 Ha nem T(Xi) akkor { a T tulajdonságú elemeket tartjuk meg }

 Xi  XN { Xi-t felülírjuk XN-nel }

 N  N – 1 { változik a sorozat hossza }

 különben

 i  i + 1 { i csak a különben ágon nő }

 vége(ha)

 vége(amíg)

Vége(algoritmus)

c2. Ha az eredeti sorozatra nincs többé szükség, de szeretnénk megőrizni az elemek eredeti

sorrendjét, akkor a T tulajdonságú elemeket felsorakoztatjuk a sorozat elejétől kezdve. Így a

kiválogatott elemekkel felülírjuk az eredeti adatokat. Nem használunk egy újabb sorozatot,

hanem az adott sorozat számára lefoglalt tárrészt használva helyben végezzük a kiválogatást.

A db változó ebben az esetben a megváltoztatott sorozatnak a számosságát tartja nyilván:

Algoritmus Kiválogatás_c2(N, X, db):

 { Bemeneti adatok: az N elemű X sorozat. Kimeneti adat: a db elemű X sorozat }

 db  0

 Minden i = 1, N végezd el:

 Ha T(Xi) akkor

 db  db + 1

12 1. FEJEZET. ALGORITMUSOK ÉS PROGRAMOZÁS

 Xdb  Xi

 vége(ha)

 vége(minden)

Vége(algoritmus)

d1. Ha a törlés ideiglenes, akkor a kereséssel párhuzamosan egy logikai tömbben

nyilvántartjuk a „törölt” elemeket. A törölt tömb elemeinek kezdőértéke hamis lesz, majd a

törlendő elemeknek megfelelő sorszámú elemek értéke a törölt logikai tömbben igaz lesz:

Algoritmus Kiválogatás_d1(N, X, törölt):

 { Bemeneti adatok: az N elemű X sorozat. Kimeneti adat: az N elemű törölt sorozat }

 Minden i = 1, N végezd el:

 törölti  hamis

 vége(minden)

 Minden i = 1, N végezd el:

 Ha nem T(Xi) akkor { a T tulajdonságú elemeket tartjuk meg }

 törölti  igaz

 vége(ha)

 vége(minden)

Vége(algoritmus)

d2. Egy másik megoldás, amely nem hoz létre új helyen, új sorozatot, helyben végzi a kiválo-

gatást, anélkül, hogy elmozdítaná eredeti helyükről a T tulajdonságú elemeket, a nem T tulaj-

donságú elemek helyére pedig egy speciális értéket tesz:

Algoritmus Kiválogatás_d2(N, X, törölt):

 { Bemeneti adatok: az N elemű X sorozat. Kimeneti adat: az N elemű X sorozat }

 Minden i = 1, N végezd el:

 Ha nem T(Xi) akkor { a T tulajdonságú elemeket tartjuk meg }

 Xi  speciális érték

 vége(ha)

 vége(minden)

Vége(algoritmus)

C. Sorozatokhoz sorozat rendelése

1.1.9. Halmazok

 Mielőtt egy halmazokat tartalmazó sorozatra vonatkozó műveletet alkalmaznánk,

szükséges meggyőződnünk arról, hogy a sorozat valóban halmaz. Ez azt jelenti, hogy minden

érték csak egyszer fordul elő. Ha kiderül, hogy a sorozat nem halmaz, halmazzá kell

alakítanunk.

a. Halmaz-e?

 Döntsük el, hogy az adott N elemű X sorozat halmaz-e!

Elemzés

1. FEJEZET. ALGORITMUSOK ÉS PROGRAMOZÁS 13

 Egy halmaz vagy üres, vagy bizonyos számú elemet tartalmaz. Ha egy halmazt sorozattal

implementálunk, az elemei különbözők. A következő algoritmussal eldöntjük, hogy a sorozat

csak különböző elemeket tartalmaz-e?

Algoritmus Halmaz_e(N, X, ok):

 { Bemeneti adatok: az N elemű X sorozat. Kimeneti adat: az ok értéke igaz, }

 i  1 { ha a sorozat halmaz, különben hamis }

 ok  igaz

 Amíg ok és (i < N) végezd el:

 j  i + 1

 Amíg (j ≤ N) és (Xi ≠ Xj) végezd el:

 j  j + 1

 vége(amíg)

 ok  j > N { ha véget ért a sorozat, nincs két azonos elem }

 i  i + 1

 vége(amíg)

Vége(algoritmus)

b. Halmazzá alakítás

 Alakítsuk halmazzá az N elemű X sorozatot!

Elemzés

 Ha egy alkalmazásban ki kell zárnunk az adott sorozatból a másodszor (harmadszor stb.)

megjelenő értékeket, akkor az előbbi algoritmust módosítjuk: amikor egy bizonyos érték meg-

jelenik másodszor, felülírjuk az utolsóval.

Algoritmus HalmazzáAlakít(N, X):

 { Bemeneti adatok: az N elemű X sorozat. }

 {Kimeneti adatok: az új N elemű X sorozat (halmaz) }

 i  1

 Amíg i < N végezd el:

 j  i + 1

 Amíg (j ≤ N) és (Xi ≠ Xj) végezd el:

 j  j + 1

 vége(amíg)

 Ha j ≤ N akkor { találtunk egy Xj = Xi-t }

 Xj  XN { felülírjuk a sorozat N. elemével }

 N  N – 1 { rövidítjük a sorozatot }

 különben

 i  i + 1 { haladunk tovább }

 vége(ha)

 vége(amíg)

Vége(algoritmus)

1.1.10. Keresztmetszet

 Hozzuk létre a bemenetként kapott sorozatok keresztmetszetét!

14 1. FEJEZET. ALGORITMUSOK ÉS PROGRAMOZÁS

Elemzés

 Keresztmetszet alatt azt a sorozatot értjük, amely az adott sorozatok közös elemeit tartal-

mazza. Feltételezzük, hogy az adott sorozatok mind különböző elemeket tartalmaznak

(halmazok) és nem rendezettek.

 Az N elemű X és az M elemű Y sorozat keresztmetszetét a db elemű Z sorozatban hozzuk

létre, tehát Z olyan elemeket tartalmaz az X sorozatból, amelyek megtalálhatók az Y-ban is.

Algoritmus Keresztmetszet(N, X, M, Y, db, Z):

 { Bemeneti adatok: az N elemű X és az M elemű Y sorozat. }

 db  0 { Kimeneti adatok: a db elemű Z sorozat, X és Y keresztmetszete }

 Minden i = 1, N végezd el:

 j  1

 Amíg (j ≤ M) és (Xi ≠ Yj) végezd el:

 j  j + 1

 vége(amíg)

 Ha j ≤ M akkor

 db  db + 1

 Zdb  Xi

 vége(ha)

 vége(minden)

Vége(algoritmus)

1.1.11. Egyesítés (Unió)

 Hozzuk létre az N elemű X és az M elemű Y sorozatok (halmazok) egyesített halmazát!

Elemzés

 Az egyesítés algoritmusa hasonló a keresztmetszetéhez. Nem alkalmazhatunk

összefésülést, mivel a sorozatok nem rendezettek! A különbség abban áll, hogy olyan

elemeket helyezünk az eredménybe, amelyek legalább az egyik sorozatban megtalálhatók.

Előbb a Z sorozatba másoljuk az X sorozatot, majd kiválogatjuk Y-ból azokat az elemeket,

amelyeket nem találtunk meg X-ben.

Algoritmus Egyesítés(N, X, M, Y, db, Z):

 { Bemeneti adatok: az N elemű X és az M elemű Y sorozat. }

 { Kimeneti adatok: a db elemű Z sorozat (X és Y egyesítése) }

 Másolás(N, X, Z) { az X sorozat minden elemét átmásoljuk a Z sorozatba }

 db  N

 Minden j = 1, M végezd el:

 i  1

 Amíg (i ≤ N) és (Xi ≠ Yj) végezd el:

 i  i + 1

 vége(amíg)

 Ha i > N akkor

 db  db + 1

1. FEJEZET. ALGORITMUSOK ÉS PROGRAMOZÁS 15

 Zdb  Yj

 vége(ha)

 vége(minden)

Vége(algoritmus)

1.1.12. Összefésülés

 Adott két rendezett sorozatból állítsunk elő egy harmadikat, amely legyen szintén

rendezett!

Elemzés

 Az Egyesítés(N, X, M, Y, db, Z) és a Keresztmetszet(N, X, M, Y, db, Z) algoritmusok

négyzetes bonyolultságúak, mivel a halmazokat implementáló sorozatok nem rendezettek. Ez

a két művelet megvalósítható lineáris algoritmussal, ha a sorozatok rendezettek. Így az

eredményt is rendezett formában fogjuk generálni. Ezek a sorozatok nem mindig halmazok,

tehát néha előfordulhatnak azonos értékű elemek is.

 Elindulunk mindkét sorozatban és a soron következő két elem összehasonlítása révén el-

döntjük, melyiket tegyük a harmadikba. Addig végezzük ezeket a műveleteket, amíg valame-

lyik sorozatnak a végére nem érünk. A másik sorozatban megmaradt elemeket átmásoljuk az

eredménysorozatba. Mivel nem tudhatjuk előre melyik sorozat ért véget, vizsgáljuk mindkét

sorozatot.

Algoritmus Összefésülés_1(N, X, M, Y, db, Z):

 { Bemeneti adatok: az N elemű X és az M elemű Y sorozat. A sorozatok nem halmazok. }

 { Kimeneti adatok: a db elemű Z sorozat (X és Y elemeivel) }

 db  0

 i  1

 j  1

 Amíg (i ≤ N) és (j ≤ M) végezd el: { amíg sem X-nek, sem Y-nak nincs vége }

 db  db + 1

 Ha Xi < Yj akkor

 Zdb  Xi

 i  i + 1

 különben

 Zdb  Yj

 j  j + 1

 vége(ha)

 vége(amíg)

 Amíg i ≤ N végezd el: { ha maradt még elem X-ben }

 db  db + 1

 Zdb  Xi

 i  i + 1

 vége(amíg)

 Amíg j ≤ M végezd el: { ha maradt még elem Y-ban }

 db  db + 1

 Zdb  Yj

16 1. FEJEZET. ALGORITMUSOK ÉS PROGRAMOZÁS

 j  j + 1

 vége(amíg)

Vége(algoritmus)

 Most feltételezzük, hogy az egyes sorozatokban egy elem csak egyszer fordul elő és azt

szeretnénk, hogy az összefésült új sorozatban se legyenek „duplák”. Az előző algoritmust

csak annyiban módosítjuk, hogy vizsgáljuk az egyenlőséget is. Ha a két összehasonlított érték

egyenlő, mind a két sorozatban továbblépünk és az aktuális értéket csak egyszer írjuk be az

eredménysorozatba.

Algoritmus Összefésülés_2(N, X, M, Y, db, Z):

 { Bemeneti adatok: az N elemű X és az M elemű Y sorozat. A sorozatok halmazok

}

 { Kimeneti adatok: a db elemű Z sorozat (X és Y elemeivel) }

 db  0

 i  1

 j  1

 Amíg (i ≤ N) és (j ≤ M) végezd el:

 db  db + 1

 Ha Xi < Yj akkor

 Zdb  Xi

 i  i + 1

 különben

 Ha Xi = Yj akkor

 Zdb  Xi

 i  i + 1

 j  j + 1

 különben

 Zdb  Yj

 j  j + 1

 vége(ha)

 vége(ha)

 vége(amíg)

 Amíg i ≤ N végezd el: { ha maradt még elem X-ben }

 db  db + 1

 Zdb  Xi

 i  i + 1

 vége(amíg)

 Amíg j ≤ m végezd el: { ha maradt még elem Y-ban }

 db  db + 1

 Zdb  Yj

 j  j + 1

 vége(amíg)

Vége(algoritmus)

1. FEJEZET. ALGORITMUSOK ÉS PROGRAMOZÁS 17

 Szerencsés esetben XN = YM. Ekkor a két utolsó Amíg struktúra nem hajtódott volna végre

egyetlen egyszer sem. Kihasználva ezt az észrevételt, elhelyezünk mindkét sorozat végére egy

fiktív elemet (őrszem). Tehetjük az X sorozat végére az XN+1 = YM + 1 értéket és az Y sorozat

végére az YM+1 = XN + 1 értéket. Ha a két egyesítendő sorozat nem halmaz, az eredmény sem

lesz halmaz. Észrevesszük, hogy ebben az esetben az eredménysorozat hossza pontosan N +

M. Az algoritmus ismétlőstruktúrája Minden típusú lesz.

Algoritmus Összefésül_3(N, X, M, Y, db, Z):

 { Bemeneti adatok: az N elemű X és az M elemű Y sorozat. A sorozatok nem halmazok }

 { Kimeneti adatok: a db elemű Z sorozat (X és Y elemeivel) }

 i  1

 j  1

 XN+1  YM + 1

 YM+1  XN + 1

 Minden db = 1, N + M végezd el:

 Ha Xi < Yj akkor

 Zdb  Xi

 i  i + 1

 különben

 Zdb  Yj

 j  j + 1

 vége(ha)

 vége(minden)

Vége(algoritmus)

 Ha a bemeneti sorozatok halmazokat ábrázolnak és az eredménysorozatnak is halmaznak

kell lennie, az algoritmus a következőképpen alakul: a Minden struktúra helyett Amíg-ot

alkalmazunk, hiszen nem tudjuk hány eleme lesz az összefésült sorozatnak (az ismétlődő

értékek közül csak egy kerül be az új sorozatba). Ugyanakkor, az őrszemek révén az Amíg

struktúrát addig hajtjuk végre, amíg mindkét sorozat végére nem értünk.

Algoritmus Összefésül_4(N, X, M, Y, db, Z):

 { Bemeneti adatok: az N elemű X és az M elemű Y sorozat. A sorozatok halmazok }

 { Kimeneti adatok: a db elemű Z sorozat (X és Y elemeivel) }

 db  0

 i  1

 j  1

 XN+1  YM + 1

 YM+1  XN + 1

 Amíg (i ≤ N) vagy (j ≤ M) végezd el:

 db  db + 1

 Ha Xi < Yj akkor

 Zdb  Xi

 i  i + 1

 különben

 Ha Xi = Yj akkor

 Zdb  Xi

18 1. FEJEZET. ALGORITMUSOK ÉS PROGRAMOZÁS

 i  i + 1

 j  j + 1

 különben

 Zdb  Yj

 j  j + 1

 vége(ha)

 vége(ha)

 vége(amíg)

Vége(algoritmus)

D. Sorozathoz sorozatok rendelése

1.1.13. Szétválogatás

 Válogassuk szét az adott N elemű X sorozat elemeit adott T tulajdonság alapján!

Elemzés

 A Kiválogatás(N, X) algoritmus egy sorozatot dolgoz fel, amelyből kiválogat bizonyos ele-

meket. Kérdés: mi történik azokkal az elemekkel, amelyeket nem válogattunk ki? Lesznek

feladatok, amelyek azt kérik, hogy két vagy több sorozatba válogassuk szét az adott sorozatot.

a. Szétválogatás két új sorozatba

 Az adott sorozatból létrehozunk két újat: a T tulajdonsággal rendelkező adatok sorozatát,

és a megmaradtak sorozatát. Mindkét új sorozatot az eredetivel azonos méretűnek deklaráljuk,

mivel nem tudhatjuk előre az új sorozatok valós méretét. (Előfordulhat, hogy valamennyi

elem átvándorol valamelyik sorozatba, és a másik üres marad.) A dby és dbz a szétválogatás

során létrehozott Y és Z sorozatba helyezett elemek számát jelöli.

Algoritmus Szétválogatás_1(N, X, dby, Y, dbz, Z):

 dby  0 { Bemeneti adatok: az N elemű X sorozat. }

 dbz  0 { Kimeneti adat: a dby elemű Y és a dbz elemű Z sorozat }

 Minden i = 1, N végezd el:

 Ha T(Xi) akkor

 dby  dby + 1 { az adott tulajdonságú elemek, az Y sorozatba kerülnek }

 Ydby  Xi

 különben

 dbz  dbz + 1 { azok, amelyek nem rendelkeznek az }

 Zdbz  Xi { adott tulajdonsággal, a Z sorozatba kerülnek }

 vége(ha)

 vége(minden)

Vége(algoritmus)

b. Szétválogatás egyetlen új sorozatba

 A feladat megoldható egyetlen új sorozattal. A kiválogatott elemeket az új sorozat első

részébe helyezzük (az elsőtől haladva a vége felé), a megmaradtakat az új sorozat végére (az

utolsótól haladva az első felé). Nem fogunk ütközni, mivel pontosan N elemet fogunk N

1. FEJEZET. ALGORITMUSOK ÉS PROGRAMOZÁS 19

helyre „átrendezni”. A megmaradt elemek az eredeti sorozatban elfoglalt relatív pozícióik

fordított sorrendjében kerülnek az új sorozatba.

Algoritmus Szétválogatás_2(N, dby, dbz, X, Y):

 dby  0{ Bemeneti adatok: az N elemű X sorozat. Kimeneti adat: az N elemű Y sorozat; }

 dbz  0 { az első dby elem T tulajdonságú, dbz elem pedig nem T tulajdonságú }

 Minden i = 1, N végezd el:

 Ha T(Xi) akkor { a T tulajdonságú elemek az Y sorozatba kerülnek }

 dby  dby + 1 { az első helytől kezdődően }

 Ydby  Xi

 különben

 dbz  dbz + 1 { a többi elem szintén Y-ba kerül, az utolsó helytől kezdődően }

 YN-dbz+1  Xi

 vége(ha)

 vége(minden)

Vége(algoritmus)

c) Szétválogatás helyben

 Ha a szétválogatás után nincs már szükségünk többé az eredeti sorozatra, a szétválogatás

elvégezhető helyben. A tömb első elemét kivesszük a helyéről és megőrizzük egy segédválto-

zóban. Az utolsó elemtől visszafelé megkeressük az első olyat, amely adott tulajdonságú, s ezt

előre hozzuk a kivett elem helyére. Ezután a hátul felszabadult helyre elölről keresünk egy

nem T tulajdonságú elemet, s ha találunk, azt hátratesszük. Mindezt addig végezzük, amíg a

tömbben két irányban haladva össze nem találkozunk.

Algoritmus Szétválogatás_3(N, X, db):

 { Bemeneti adatok: az N elemű X sorozat. Kimeneti adatok: az N elemű X sorozat; }

 { az első e elem T tulajdonságú, n – e elem pedig nem T tulajdonságú }

 e  1 { balról jobbra haladva az első T tulajdonságú elem indexe }

 u  N { jobbról balra haladva az első nem T tulajdonságú elem indexe }

 segéd  Xe

 Amíg e < u végezd el:

 Amíg (e < u) és nem T(Xu) végezd el:

 u  u – 1

 vége(amíg)

 Ha e < u akkor

 Xe  Xu

 e  e + 1

 Amíg (e < u) és T(Xe) végezd el:

 e  e + 1

 vége(amíg)

 Ha e < u akkor

 Xu  Xe

 u  u - 1

 vége(ha)

20 1. FEJEZET. ALGORITMUSOK ÉS PROGRAMOZÁS

 vége(ha)

 vége(amíg)

 Xe  segéd { visszahozzuk a segéd-be tett elemet }

 Ha T(Xe) akkor db  e

 különben db  e - 1

 vége(ha)

Vége(algoritmus)

Megjegyzés

 Ha egy sorozatot több részsorozatba szükséges szétválogatni több tulajdonság alapján, egy-

más után több szétválogatást fogunk végezni, mindig a kért tulajdonság alapján.

 Előbb szétválogatjuk az adott sorozatból az első tulajdonsággal rendelkezőket, majd a

félretett adatokból szétválogatjuk a második tulajdonsággal rendelkezőket és így tovább.

1.1.14. Programozási tételek összeépítése

 Az egészen egyszerű alapfeladatokat kivéve általában több programozási tételt kell

használnunk. Ilyenkor – ahelyett, hogy simán egymás után alkalmazzuk ezeket, lehetséges

egyszerűbb, rövidebb, hatékonyabb, gazdaságosabb algoritmust tervezni, ha összeépítjük

őket.

a. Másolással összeépítés

 A másolás bármelyik programozási tétellel egybeépíthető. Ilyenkor az Xi bemeneti adatra

való hivatkozást f(xi)-re cseréljük.

Példa:

 Adjuk meg egy számsorozat elemeinek négyzetgyökeiből álló sorozatot!

Megoldás: másolás + sorozatszámítás

b. Megszámlálással összeépítés

 A megszámlálást általában egy döntéssel, kiválasztással vagy kereséssel építhetjük össze.

Példa:

 Döntsük el, hogy található-e az N elemű X sorozatban legalább K darab T tulajdonságú

elem? Adjuk meg a sorozat K-dik T tulajdonságú elemét!

Megoldás: megszámlálás + döntés + kiválasztás

c. Maximumkiválasztással összeépítés

A maximumkiválasztást összeépíthetjük megszámlálással, kiválogatással.

Példa:

 Hány darab maximumértékű elem van az adott sorozatban? Generáljuk ezen elemek

indexeinek sorozatát!

Megoldás: Lásd a MindenMaximumHelye(N, X, db, indexek) algoritmust.

d. Kiválogatással összeépítés

 Olyan feladatoknál, amelyeknek esetében a feldolgozást csak az adott sorozat T

tulajdonságú elemeire kell elvégeznünk, alkalmazható a kiválogatással történő összeépítés.

1. FEJEZET. ALGORITMUSOK ÉS PROGRAMOZÁS 21

1.2. Lépések finomítása és optimalizálás

 Bonyolultabb feladatok esetében a megfelelő algoritmus leírása nem könnyű feladat. Ezért

célszerű először a megoldást körvonalazni, és csak azután részletezni. A feladat elemzése

során sor kerül a bemeneti és kimeneti adatok megállapítására, a megfelelő adatszerkezetek

kiválasztására és megtervezésére, a feladat követelményeinek szétválasztására. Következik a

megoldási módszer megállapítása, a megoldás lépéseinek leírása és a lépések finomítása,

vagyis az algoritmus részletes kidolgozása. Következik a helyesség bizonyítása és a

bonyolultság kiértékelése. A program megírását (kódolást) a tesztelés követi.

 A lépések finomítása az algoritmus kidolgozását jelenti, amely a kezdeti vázlattól a

végleges, precízen leírt algoritmusig vezet. Kiindulunk a feladat specifikációjából és fentről

lefele tartó tervezési módszert alkalmazva újabb meg újabb változatokat dolgozunk ki,

amelyek eleinte még tartalmaznak bizonyos, anyanyelven leírt magyarázó sorokat, amelyeket

csak később írunk át standard utasításokkal. Így, az algoritmusnak több egymás utáni

változata lesz, amelyek egyre bővülnek egyik változattól a másikig.

1.2.1. Megoldott feladatok

a. Eukleidész algoritmusa

 Határozzuk meg két adott természetes szám legnagyobb közös osztóját (lnko) és legkisebb

közös többszörösét (lkkt) Eukleidész algoritmusával.

Algoritmus Eukleidész_1(a, b, lnko, lkkt):

 @ kiszámítjuk a és b lnko-ját { Bemeneti adatok: a, b. Kimeneti adatok: lnko, lkkt }

 @ kiszámítjuk a és b lkkt-ét

Vége(algoritmus)

Lépések finomítása: Ki kell dolgoznunk a kiszámítások módját. Ha a két szám egyenlő,

akkor lnko az a szám lesz. Ha a kisebb, mint b, nincs szükség felcserélésre: az algoritmus

elvégzi ezt az első lépésében. Ezután kiszámítjuk r-ben a és b egészosztási maradékát. Ha a

maradék nem 0, a következő lépésben a-t felülírjuk b-vel, b-t r-rel, és újból kiszámítjuk a

maradékot. Addig dolgozunk, amíg a maradék 0-vá nem válik. Az utolsó osztó éppen az lnko

lesz. Az lkkt értékét megkapjuk, ha a és b szorzatát elosztjuk az lnko-val. Az eredeti két szám

értékét az algoritmus „tönkreteszi”, ezért szükséges ezeket elmenteni két segédváltozóba (x és

y).

Algoritmus Eukleidész_1(a, b, lnko, lkkt):

 { Bemeneti adatok: a, b. Kimeneti adatok: lnko, lkkt }

 x  a { szükségünk lesz a és b értékére az lkkt kiszámításakor }

 y  b

 r  a mod b { kiszámítjuk az első maradékot }

 Amíg r ≠ 0 végezd el: { amíg a maradék nem 0 }

 a  b { az osztandót felülírjuk az osztóval }

 b  r { az osztót felülírjuk a maradékkal }

 r  a mod b { kiszámítjuk az aktuális maradékot }
 vége(amíg)

 lnko  b { lnko egyenlő az utolsó osztó értékével }

 lkkt  x*y div lnko { felhasználjuk a és b másolatait }

22 1. FEJEZET. ALGORITMUSOK ÉS PROGRAMOZÁS

Vége(algoritmus)

 Az algoritmust megvalósíthatjuk ismételt kivonásokkal. Amíg a két szám különbözik egy-

mástól, a nagyobbikból kivonjuk a kisebbiket, és megőrizzük a különbséget. Az lnko az utolsó

különbség lesz. Az lkkt-t ugyanúgy számítjuk ki, mint az előző változatban.

Algoritmus Eukleidész_2(a, b, lnko, lkkt):

 x  a { Bemeneti adatok: a, b. Kimeneti adatok: lnko, lkkt }

 y  b

 Amíg a ≠ b végezd el:

 Ha a > b akkor

 a  a - b

 különben

 b  b - a

 vége(ha)

 vége(amíg)

 lnko  a

 lkkt  [x*y/lnko]

Vége(algoritmus)

b. Prímszámok

 Adva van egy nullától különböző természetes n szám. Döntsük el, hogy az adott szám

prímszám-e vagy sem!

Algoritmus Prím(n, válasz):

 { Bemeneti adat: n. Kimeneti adat: válasz }

 @ Megállapítjuk, hogy n prímszám-e

 Ha n prímszám akkor

 válasz  igaz

 különben

 válasz  hamis

 vége(ha)

Vége(algoritmus)

Lépések finomítása: Ki kell dolgoznunk azt a módot, ahogyan megállapíthatjuk, hogy a

szám prím-e. A megoldás első változatában a prímszám definíciójából indulunk ki: egy szám

akkor prím, ha pontosan két osztója van: 1 és maga a szám. Első ötletünk tehát az, hogy az

algoritmus számolja meg az adott n szám osztóit, elosztva ezt sorban minden számmal 1-től

n-ig. A döntésnek megfelelő üzenetet az osztók száma alapján írjuk ki.

Algoritmus Prím(n, válasz):

 osztók_száma  0 { Bemeneti adat: n. Kimeneti adat: válasz }

 Minden osztó = 1,n végezd el:

 Ha n mod osztó = 0 akkor

 osztók_száma  osztók_száma + 1

 vége(ha)

 vége(minden)

 válasz  osztók_száma = 2

1. FEJEZET. ALGORITMUSOK ÉS PROGRAMOZÁS 23

Vége(algoritmus)

1.2.2. Az algoritmus optimalizálása

 A lépésenkénti finomításnak elvben vége van, hiszen van egy helyesen működő algoritmu-

sunk. De, miután teszteljük és figyelmesen elemezzük, rájövünk, hogy az algoritmust lehetsé-

ges optimalizálni. Észrevesszük, hogy az osztások száma fölöslegesen nagy. Ezt a számot

lehet csökkenteni, mivel ha 2 és n/2 között nincs egyetlen osztó sem, akkor biztos, hogy nincs

n/2 és n között sem, tehát eldönthető, hogy a szám prím. Sőt elég a szám négyzetgyökéig

keresni a lehetséges osztót, hiszen ahogy az osztó értékei nőnek a négyzetgyökig, az [n/osztó]

hányados értékei csökkennek szintén a négyzetgyök értékéig. Ha egy, a négyzetgyöknél

nagyobb osztóval elosztjuk az adott számot, hányadosként egy kisebb osztót kapunk, amit

megtaláltunk volna előbb, ha létezett volna ilyen. Továbbá, a ciklus leállítható amint találtunk

egy osztót és a válasz hamissá vált. A Minden típusú ciklust Amíg vagy Ismételd típusú

ciklussal helyettesítjük. Mivel n nem változik a ciklus magjában, a négyzetgyök

kiszámíttatását csak egyszer végezzük el. Azt is tudjuk, hogy az egyetlen páros prímszám a 2.

Így elérhetjük, hogy a páros számok lekezelése után csak páratlan számokat vizsgáljunk, és

ezeket csak páratlan osztókkal próbáljuk meg elosztani. Ahhoz, hogy az algoritmusunk

tökéletesen működjön akkor is, ha n = 1, a következőképpen járunk el:

Algoritmus Prím(n, válasz):

 { Bemeneti adat: n. Kimeneti adat: válasz }

 Ha n = 1 akkor

 prím  hamis

 különben

 Ha n páros akkor

 prím  n = 2

 különben

 prím  igaz

 osztó  3

 négyzetgyök  [] { a négyzetgyök egész része }

 Amíg prím és (osztó ≤ négyzetgyök) végezd el:

 Ha n mod osztó = 0 akkor

 prím  hamis

 különben

 osztó  osztó + 2

 vége(ha)

 vége(amíg)

 vége(ha)

 vége(ha)

 válasz  prím

Vége(algoritmus)

 Ha ebben az algoritmusban felhasználjuk a matematikából ismert tulajdonságot, éspedig:

minden 5-nél nagyobb prímszám 6k ± 1 alakú, akkor a vizsgálandó számok száma tovább

csökkenthető. Mivel az előbbi állításból következik, hogy prímszámokat keresni csak 6

24 1. FEJEZET. ALGORITMUSOK ÉS PROGRAMOZÁS

többszöröseinél 1-gyel kisebb, illetve 1-gyel nagyobb számok között érdemes, a fenti

algoritmus a következőképpen változik:

Algoritmus Prím(határ):

 Ha n = 1 akkor

 prím  hamis

 különben

 Ha n páros akkor

 prím  n = 2

 különben

 Ha n ≤ 5 akkor { n = 3}

 prím  igaz

 különben

 Ha ((n - 1) mod 6 ≠ 0) és ((n + 1) mod 6 ≠ 0) akkor

 prím  hamis

 különben

 osztó  3

 ... { tovább ugyanaz, mint az előző algoritmusban }

 Továbbá, ismeretes, hogy a négyzetgyököt számoló függvény ismeretlen lépésszámban ha-

tározza meg az eredményt, amely valós szám. Ezt elkerülendő, lemondunk a négyzetgyök ki-

számításáról és az Amíg feltételét a következőképpen írjuk:

...

Amíg prím és (osztó * osztó  n) végezd el:

...

 Így, nem dolgozunk valós számokkal és nem számítjuk ki fölöslegesen a négyzetgyököt.

 Ha sok számról kell eldöntenünk, hogy prím-e, érdemes előbb létrehozni Eratosztenész

szita-módszerével prímszámok sorozatát (megfelelő darabszámmal) és az algoritmusban csak

ennek a sorozatnak elemeivel osztani.

Algoritmus Prímek(határ, prím):

 { határ-nál kisebb számokat vizsgálunk }

 { a generált prímszámokat a prím logikai tömb alapján lehet értékesíteni }

 Minden i=2,határ végezd el:

 prími  igaz { még nincs kihúzva egy szám sem }

 vége(minden)

 Minden i = 2, határ div 2 végezd el:

 Ha prími akkor { ha i még nincs kihúzva }

 k  2 * i { az első kihúzandó szám (i-nek többszöröse) }

 Amíg k ≤ határ végezd el:

 prímk  hamis { kihúzzuk a k számot }

 k  k + i { a következő kihúzandó többszöröse i-nek }

 vége(amíg)

 vége(ha)

 vége(minden)

Vége(algoritmus)

1. FEJEZET. ALGORITMUSOK ÉS PROGRAMOZÁS 25

1.2.3. A moduláris programozás alapszabályai

 Az eredeti feladatot részfeladatokra bontjuk. Minden rész számára megtervezzük a megol-

dást jelentő algoritmust. Ezek az algoritmusok legyenek minél függetlenebbek, de álljanak jól

definiált kapcsolatban egymással. A részfeladatok megoldásainak összessége tartalmazza a fe-

ladat megoldási algoritmusát.

Moduláris dekompozíció: A moduláris dekompozíció a feladat több, egyszerűbb

részfeladatra bontását jelenti, amely részfeladatok megoldása már egymástól függetlenül

elvégezhető. A módszert általában ismételten alkalmazzuk, azaz a részfeladatokat magukat is

felbontjuk. Ezzel lehetővé tesszük azt is, hogy a feladat megoldásán egyszerre több személy is

dolgozzon. A módszer egy fával ábrázolható, ahol a fa csomópontjai az egyes dekompozíciós

lépéseknek felelnek meg.

Moduláris kompozíció: Olyan szoftverelemek létrehozását támogatja, amelyek szabadon

kombinálhatók egymással. Algoritmusainkat a már meglévő egységekből építjük fel.

Modulok tulajdonságai

Moduláris érthetőség: A modulok önállóan is egy-egy értelmes egységet alkossanak,

megértésükhöz minél kevesebb „szomszédos” modulra legyen szükség.

Moduláris folytonosság: A specifikáció „kis” változtatása esetén a programban is csak „kis”

változtatásra legyen szükség.

Moduláris védelem: Célunk a program egészének védelme az abnormális helyzetek hatásaitól.

Egy hiba hatása egy – esetleg néhány – modulra korlátozódjon!

A modularitás alapelvei

 A modulokat nyelvi egységek támogassák: A modulok illeszkedjenek a használt

programozási nyelv szintaktikai egységeihez.

 Kevés kapcsolat legyen: Minden modul minél kevesebb másik modullal

kommunikáljon!

 Gyenge legyen a kapcsolat: A modulok olyan kevés információt cseréljenek, amennyi

csak lehetséges!

 Explicit interface használata: Ha két modul kommunikál egymással, akkor annak ki

kell derülnie legalább az egyikük szövegéből.

 Információ elrejtés: Egy modul minden információjának rejtettnek kell lennie, kivéve,

amit explicit módon nyilvánosnak deklaráltunk.

 Nyitott és zárt modulok: Egy modult zártnak nevezünk, ha más modulok számára egy

jól definiált felületen keresztül elérhető, a többi modul ezt változatlan formában

felhasználhatja. Egy modult nyitottnak nevezünk, ha még kiterjeszthető, ha az általa

nyújtott szolgáltatások bővíthetők vagy, ha hozzávehetünk további mezőket a benne

levő adatszerkezetekhez, s ennek megfelelően módosíthatjuk eddigi szolgáltatásait.

Az újrafelhasználhatóság igényei

26 1. FEJEZET. ALGORITMUSOK ÉS PROGRAMOZÁS

A típusok változatossága: A moduloknak többféle típusra is működniük kell, azaz a művelete-

ket több különböző típusra is definiálni kellene.

Egy típus, egy modul: Egy típus műveletei kerüljenek egy modulba.

1.3. Rendező algoritmusok

Összehasonlításon alapuló rendezések

 Legyen egy n elemű a sorozat. Növekvően rendezett sorozatnak nevezzük a bemeneti soro-

zat olyan permutációját, amelyben a1 ≤ a2 ≤ ... ≤ an.

1.3.1. Buborékrendezés (Bubble-sort)

 A rendezés során páronként összehasonlítjuk a számokat és, ha a sorrend nem megfelelő,

akkor az illető két elemet felcseréljük. Ha volt csere, a vizsgálatot újrakezdjük. Az algoritmus

akkor ér véget, amikor az elemek páronként a megfelelő sorrendben találhatók, vagyis a

sorozat rendezett. Mivel a sorozat első bejárása után legalább az utolsó elem a helyére kerül,

és a ciklusmag minden újabb végrehajtása után, jobbról balra haladva újabb elemek kerülnek

a megfelelő helyre, a ciklus lépésszáma csökkenthető. Az is előfordulhat, hogy a sorozat

végén levő elemek már a megfelelő sorrendben vannak, és így azokat már nem kell

rendeznünk. Tehát, elegendő a sorozatot csak az utolsó csere helyéig vizsgálni.

Algoritmus BuborékRendezés(n, a):

 k  n { Bemeneti adatok: n, a. Kimeneti adat: a rendezett a sorozat }

 Ismételd

 nn  k - 1

 rendben  igaz

 Minden i = 1, nn végezd el:

 Ha ai > ai + 1 akkor

 rendben  hamis

 ai ↔ ai + 1

 k  i { az utolsó csere helye }

 vége(ha)

 vége(minden)

 ameddig rendben

Vége(algoritmus)

1.3.2. Egyszerű felcseréléses rendezés

 Ez a rendezési módszer hasonlít a buborékrendezéshez, de kötelezően elvégez minden

páronkénti összehasonlítást (míg a buborékrendezés bonyolultsága a legjobb esetben Ω(n), ez

az algoritmus mindig O(n
2
) bonyolultságú). Ha egy elempár sorrendje nem megfelelő, felcseréli

őket.

Algoritmus FelcserélésesRendezés(n, a):

 { Bemeneti adatok: n, a; Kimeneti adat: a rendezett a sorozat }

 Minden i = 1, n - 1 végezd el:

 Minden j = i + 1, n végezd el:

1. FEJEZET. ALGORITMUSOK ÉS PROGRAMOZÁS 27

 Ha ai > aj akkor

 ai ↔ aj

 vége(ha)

 vége(minden)

 vége(minden)

Vége(algoritmus)

1.3.3. Minimum/maximum kiválasztásra épülő rendezés

 Növekvő sorrendbe rendezés esetén kiválaszthatjuk a sorozat legkisebb elemét. Ezt az első

helyre tesszük úgy, hogy felcseréljük az első helyen található elemmel. A következő lépésben

hasonlóan járunk el, de a minimumot a második helytől kezdődően keressük. A továbbiakban

ugyanezt tesszük, míg a sorozat végére nem érünk.

Algoritmus MinimumkiválasztásosRendezés(n, a):

 { Bemeneti adatok: n, a; Kimeneti adat: a rendezett a sorozat }

 Minden i = 1,n-1 végezd el:

 indMin  i

 Minden j = i+1, n végezd el:

 Ha aindMin > aj akkor

 indMin  j

 vége(ha)

 vége(minden)

 ai ↔ aindMin

 vége(minden)

Vége(algoritmus)

1.3.4. Beszúró rendezés

 A beszúró rendezés hatékony algoritmus kisszámú elem rendezésére. Úgy dolgozik, ahogy

bridzsezés közben a kezünkben levő lapokat rendezzük: üres bal kézzel kezdünk, a lapok

fejjel lefelé az asztalon vannak. Felveszünk egy lapot az asztalról, és elhelyezzük a bal

kezünkben a megfelelő helyre. Ahhoz, hogy megtaláljuk a megfelelő helyet, a felvett lapot

összehasonlítjuk a már kezünkben levő lapokkal, jobbról balra. A bemeneti elemek helyben

rendeződnek: a számokat az algoritmus az adott tömbön belül rakja a helyes sorrendbe,

belőlük bármikor legfeljebb csak állandónyi tárolódik a tömbön kívül. Amikor a rendezés

befejeződik, az eredeti tömb tartalmazza a rendezett elemeket.

Algoritmus BeszúróRendezés(n, a):

 { Bemeneti adatok: n, a. Kimeneti adat: a rendezett a sorozat }

 Minden j = 2, n végezd el:

 segéd  aj { beszúrjuk aj-t az a1, ..., aj–1 rendezett sorozatba }

 i  j - 1

 Amíg (i > 0) és (ai > segéd) végezd el:

 ai+1  ai

 i  i - 1

 vége(amíg)

 ai+1  segéd

28 1. FEJEZET. ALGORITMUSOK ÉS PROGRAMOZÁS

 vége(minden)

Vége(algoritmus)

Lineáris rendezések

 Az eddigiekben tárgyalt algoritmusok a legrosszabb esetben O(n
2
) időben rendeznek n ele-

met. Ezek az algoritmusok a rendezéshez csak a bemeneti tömb elemein történő összehasonlí-

tásokat használják, ezért ezeket az algoritmusokat összehasonlító rendezéseknek is nevezzük.

1.3.5. Leszámláló rendezés (ládarendezés, Binsort)

 A most következő rendező algoritmus lineáris idejű. Ez az algoritmus nem az

összehasonlítást használja a rendezéshez, hanem kihasználja a rendezendő sorozat bizonyos

tulajdonságait, éspedig azt, hogy az elemek sorszámozható típusúak, olyan értékekkel,

amelyek egy segédtömb indexei lehetnek.

 A segédtömb i-edik elemében azt tartjuk nyilván, hogy hány darab i-vel egyenlő elemet ta-

láltunk az eredeti tömbben. A lineáris feldolgozás után felülírjuk az eredeti tömb elemeit a se-

gédtömb elemeinek értékei alapján.

Algoritmus LádaRendezés(a, n):

 Minden i = 1, k végezd el: { Bemeneti adatok: n, a; Kimeneti adat: a }

 segédi  0

 vége(minden)

 Minden j = 1, n végezd el:

 segédaj  segédaj + 1

 vége(minden)

 q  0

 Minden i = 1, k végezd el: { a segéd tömbnek k eleme van }

 Minden j = 1, segédi végezd el:

 q  q + 1 { a segédi elemek összege n }

 aq  i { tehát a feldolgozások száma n }

 vége(minden)

 vége(minden)

Vége(algoritmus)

1.3.6. Számjegyes rendezés (radixsort)

 Ha egész számokat tároló sorozatot szeretnénk rendezni, elképzelhetjük a számokat

egymás alá írva és alkalmazhatjuk a fenti algoritmust rendre, minden számjegy-oszlopra. Ha a

legnagyobb szám számjegyeinek darabszáma d, a sorozatot d-szer vizsgáljuk. A számjegyes

rendezés először a legkevésbé fontos számjegy alapján rendez. A számokat az utolsó

számjegyük alapján rendezzük oly módon, hogy ha csak ezt a számjegyet tekintjük, növekvő

sorrendet lássunk. Ezután a számokat újra rendezzük a második legkevésbé értékes

1. FEJEZET. ALGORITMUSOK ÉS PROGRAMOZÁS 29

számjegyük alapján. Ezt mindaddig végezzük, ameddig a számokat mind a d számjegy szerint

nem rendeztük.

Algoritmus SzámjegyesRendezés(a, d):

 Minden i = 1, d végezd el:

 stabil leszámlálással rendezzük az a tömböt az i-edik számjegy szerint

 vége(minden)

Vége(algoritmus)

1.4. Rekurzió

1.4.1. Rekurzív alprogramok

 Bármely algoritmus megvalósítható iteratívan és/vagy rekurzívan. Mindkét technikának a

lényege: bizonyos utasítások ismételt végrehajtása. Az iteratív algoritmusokban az ismétlést

ciklusokkal valósítjuk meg. A rekurzív algoritmusokban az ismétlés azáltal valósul meg, hogy

az illető alprogram meghívja önmagát, amikor még aktív.

 A rekurzió egy különleges programozási stílus, inkább „technika” mint módszer. A

rekurzív programok tömören és világosan kódolják az algoritmusokat, bonyolultságuktól

függetlenül. A rekurzív programozás, mint fogalom, a matematikai értelmezéshez közelálló

módon került közhasználatba.

 Rekurzív algoritmust akkor érdemes tervezni, ha a feladat eredménye rekurzív szerkezetű,

ha a megoldás legjobb módszere a visszalépéses keresés (backtracking) vagy az oszd meg és

uralkodj módszer (divide et impera), illetve ha a feldolgozandó adatok rekurzívan definiáltak

(pl. bináris fák). Ugyanakkor előfordulhat, hogy túlságosan igénybe veszi a végrehajtási

vermet, és a futási ideje nagyobb, mint az iteratív változatnak

Példák

1. A matematikában, egy fogalmat rekurzív módon definiálunk, ha a definíción belül

felhasználjuk magát a definiálandó fogalmat. Például, a faktoriális rekurzív definícióját

egy adott n szám esetében, a matematikus így fejezi ki:








 *

N,)!1(

0,1
!

ha

ha

nnn

n
n

2. A bináris fa Knuth által megfogalmazott definíciója már szorosan kapcsolódik az

informatikához: Egy bináris fa vagy üres, vagy tartalmaz egy csomópontot, amelynek van

egy bal meg egy jobb utóda, amelyek szintén bináris fák.

 A programozásban a rekurzió alprogramok formájában jelenik meg, éspedig olyan függvé-

nyeket, illetve eljárásokat nevezünk rekurzívaknak, melyek meghívják önmagukat. Ha ez a

hívás az illető alprogram összetett utasításában szerepel, közvetlen (direkt) rekurzióról beszé-

lünk. Ha egy rekurzív alprogramot egy másik alprogram hív meg, amelyet ugyanakkor az

illető alprogram hív (közvetve, vagy közvetlenül) akkor közvetett (indirekt) rekurzióról

beszélünk. Közvetett rekurzió esetén is arról van szó, hogy egy alprogram meghívja önmagát,

hiszen a rekurzív hívás aközben történik, miközben a számítógép azt az összetett utasítást

hajtja végre, amely az illető alprogramot alkotja.

 Egy alprogram aktív a hívásától kezdődően, addig, amíg a végrehajtás visszatér a hívás he-

lyére. Egy alprogram aktív marad akkor is, ha végrehajtása során más alprogramokat hív meg.

30 1. FEJEZET. ALGORITMUSOK ÉS PROGRAMOZÁS

 Egy rekurzív alprogram végrehajtása azonos módon történik, mint bármely nem rekurzív

alprogramé. A rekurzív eljárások esetében is, hasonlóan a nem rekurzívakhoz, az aktiválás

feltételezi a veremhasználatot, ahol a paramétereket, a visszatérés helyének címét, valamint a

lokális változókat tárolja (minden aktuális aktiválás idejére) a programozási környezet.

 Mivel a verem mérete véges, bizonyos számú aktiválás után bekövetkezhet a túlcsordulás

és a program hibaüzenettel kilép. Mivel ezt a hibát feltétlenül el kell kerülnünk, a rekurzív al-

programot csak egy bizonyos feltétel teljesülésekor hívjuk meg újra. A legutolsó aktiválás

alkalmával a feltétel hamis, ennek következtében nem történik újrahívás, hanem a feltétel

másik ágának megfelelő utasítás (ennek hiányában, a feltétel utáni utasítás) kerül sorra. Új

aktiválás csak az újrahívási feltétel teljesülésekor történik. Az újrahívások száma

meghatározza a rekurzió mélységét, tehát, egy rekurzív megoldás csak akkor hatékony, ha ez

a mélység nem túl nagy.

 Ha az újrahívási feltétel egy adott pillanatban nem teljesül, az újraaktiválások sora leáll;

ennek következtében a feltétel tagadása a rekurzióból való kilépés feltétele. A feltételnek a re-

kurzív eljárás paramétereitől kell függnie és/vagy a helyi változóktól, a kilépést a paraméterek

és a lokális változók módosulása (egyik hívástól a másikig) biztosítja. Ha ezeket a feltételeket

nem tartjuk be, a program hibaüzenettel kilép. Egy újrahívás (közvetlen rekurzió esetén),

többször is előfordulhat egy rekurzív eljárásban; ebben az esetben, természetesen, különbözni

fognak a visszatérési címek.

 A rekurzió késlelteti az eljárás azon utasításainak végrehajtását, amelyek a rekurzív hívás

utáni részhez tartoznak. Minden eddigi állítás igaz a rekurzív függvények esetében is, csak a

hívás módja más. Egy rekurzív függvényt egy kifejezésből hívunk meg.

1.4.2. Megoldott feladatok

1. Egy szó betűinek megfordítása

 Olvassunk be egymás után több betűt a szóközkarakter megjelenéséig, majd írjuk ki ezeket

a betűket fordított sorrendben. Ne használjunk tömböt!

Megoldás

 A feladat követelményének megfelelően betűk szintjén fogunk dolgozni. A megfordított

kiírás azt jelenti, hogy miután beolvastunk egy betűt, nem írjuk ki, csak miután beolvastuk a

többi betűt. A fennmaradt rész esetében ugyanígy járunk el; a módszer addig folytatódik,

amíg eljutunk az utolsó betűhöz, amikor nincs mit megfordítani.

Algoritmus Fordít: { nincs paraméter, mivel az alprogramban olvasunk be és írunk ki }

 Be: betű

 Ha nem szóköz akkor

 Fordít { meghívja önmagát, hogy megfordíthassa a fennmaradt részt }

 különben

 Ki: 'Fordított szó: ' { ez az utasítás egyszer hajtódik végre }

 vége(ha)

 Ki: betű

Vége(algoritmus)

1. FEJEZET. ALGORITMUSOK ÉS PROGRAMOZÁS 31

 A rekurzió meghatározza az eljárás záró részének az aktiválások fordított sorrendjében

való végrehajtását (a fenti példában: Ki: betű), így természetes módja a feladat

megoldásának.

2. Szavak sorrendjének megfordítása

 Olvassunk be n szót, majd írjuk ki ezeket (tömbhasználat nélkül) a beolvasás fordított sor-

rendjében!

Algoritmus SzavakatFordít_1(n):

 Be: szó { az első hívás aktuális paramétere n = szavak száma }

 Ha n > 1 akkor

 SzavakatFordít_1(n-1)

 különben

 Ki: 'Fordított sorrendben: '

 vége(ha)

 Ki: szó

Vége(algoritmus)

 Az eredeti feladat n szó megfordítását valósítja meg, a részfeladatok pedig egyre kevesebb

szó megfordítását végzik. Ha fordítva indulunk, vagyis „megfordítjuk” egy szónak a

sorrendjét, majd a többiét, akkor az algoritmus a következő:

Algoritmus SzavakatFordít_2(i):

 Be: szó { most az első hívás aktuális paramétere 1 }

 Ha i < n akkor

 SzavakatFordít_2(i+1)

 különben

 Ki: 'Fordított sorrendben: '

 vége(ha)

 Ki: szó

Vége(algoritmus)

3. Faktoriális

 Számítsuk ki az adott n szám faktoriálisát!

Megoldás

 Felhasználjuk a faktoriális matematikai definícióját, amit a Fakt(n) alprogramban

implementálunk. Az első hívás Fakt(n)-nel történik.

Algoritmus Fakt(n): { Bemeneti adat: n }

 Ha n = 0 akkor

 térítsd 1

 különben

 térítsd n * Fakt(n - 1)

 vége(ha)

Vége(algoritmus)

32 1. FEJEZET. ALGORITMUSOK ÉS PROGRAMOZÁS

 A faktoriális tulajdonképpeni kiszámolása akkor történik, amikor kilépünk egy-egy hívás-

ból. Mivel minden egyes alkalommal más-más n paraméterre van szükség, fontos, hogy ezt

értékként adjuk át, így kifejezéseket is írhatunk az aktuális paraméter helyére. Megjegyzendő,

hogy a faktoriálist nem előnyös rekurzívan számolni, mivel sokkal időigényesebb, mint az

iteratív megoldás, hiszen a Fakt(n) függvény (n+1)-szer fog aktiválódni.

4. Legnagyobb közös osztó

 Számítsuk ki két természetes szám (n, m ∈ N*) legnagyobb közös osztóját rekurzívan.

Megoldás

 Ha figyelmesen elemezzük Eukleidész algoritmusát, észrevesszük, hogy a legnagyobb

közös osztó (Lnko(m, n)) egyenlő n-nel (ha n osztója m-nek) különben egyenlő Lnko(n, m

mod n)-nel. Tehát fel lehet írni a következő rekurzív definíciót:










0,),(

0,
),(

ha

ha

nmnmnLnko

nmn
nmLnko

modmod

mod

Algoritmus Lnko(m, n): { Bemeneti adatok:m, n }

 mar ← m mod n

 Ha mar = 0 akkor

 térítsd n

 különben

 térítsd Lnko(n, mar)

 vége(ha)

Vége(algoritmus)

 Az első hívás történhet például egy kiíró utasításból: Ki: Lnko(m, n).

5. Descartes-szorzat

 Egy rajzon n virágot szeretnénk kiszínezni. A festékeket az 1, 2, ..., m számokkal kódoljuk.

Bármely virág, bármilyen színű lehet, de szeretnénk tudni, hány féle módon lehetne ezeket

különböző módon kiszínezni. Tulajdonképpen az M
n
 Descartes-szorzatot kell generálnunk:

Algoritmus DescartesSzorzat(i): { Bemeneti adat: i, az első híváskor = 1 }

 Minden j = 1, m végezd el:

 xi ← j

 Ha i < n akkor

 DescartesSzorzat(i+1)

 különben

 Kiír

 vége(ha)

 vége(minden)

Vége(algoritmus)

6. k elemű részhalmazok

1. FEJEZET. ALGORITMUSOK ÉS PROGRAMOZÁS 33

 Adott két egész szám: n és k (1 ≤ k ≤ n). Generáljuk rekurzívan az {1, 2, ..., n} halmaz

minden k elemet tartalmazó részhalmazát!

Megoldás

 Az {1, 2, ..., n} halmaz k elemet tartalmazó részhalmaza egy k elemű tömb segítségével kó-

dolható: x1, x2, ..., xk. A részhalmaz elemei különbözők és nem számít a sorrendjük. Ezért, a

részhalmazok generálása során vigyázunk, hogy az x sorozatba ne generáljuk kétszer vagy

többször ugyanazt a részhalmazt (esetleg, más sorrendű elemekkel), ugyanakkor ne veszítsünk

el egyet sem. Ha az x sorozatba az elemeket szigorúan növekvő sorrendben tesszük (x1 < x2 < ...

< xk), egy részhalmazt csak egyszer állíthatunk elő. Mivel minden xi szigorúan nagyobb, mint xi-

1, az értékei xi–1 + 1-től kezdődően n – (k – i)-ig nőnek.

Algoritmus Részhalmazok(i): { k és x globális változó, xi = 0, i = 0, 1, … }

 Minden j = xi-1 + 1, n – k + i végezd el:

 xi  j

 Ha i < k akkor

 Részhalmazok(i+1)

 különben

 Kiír

 vége(ha)

 vége(minden)

Vége(algoritmus)

 A részhalmazokat generáló algoritmust az i paraméter 1 értékére hívjuk meg.

7. Fibonacci-sorozat

 Generáljuk a Fibonacci-sorozat első n elemét!
















3,)2()1(

2

1

1

,0

)(

ha
ha

ha

nnFibnFib

n

n

nFib

Megoldás

 Az n-edik elem kiszámításához szükségünk van az előtte található két elemre. De ezeket

szintén az előttük levő elemekből számítjuk ki.

Algoritmus Fibo(n):

 Ha n = 1 akkor

 térítsd 0

 különben

 Ha n = 2 akkor

 térítsd 1

 különben

 térítsd Fibo(n-2) + Fibo(n-1)

 vége(ha)

 vége(ha)

Vége(algoritmus)

 A fenti algoritmus nagyon sokszor hívja meg önmagát ugyanarra az értékre, mivel minden

új elem kiszámításakor el kell jutnia a sorozat első eleméhez, amitől kezdődően újra, meg újra

34 1. FEJEZET. ALGORITMUSOK ÉS PROGRAMOZÁS

generálja ugyanazokat az elemeket. A hívások számát csökkenthetjük, ha a kiszámolt

értékeket megőrizzük egy sorozatban. Legyen ez a sorozat f, amelyet globális változóként

kezelünk.

Algoritmus Fib(n):

 Ha n > 2 akkor

 Fib(n-1)

 fn ← fn-1 + fn-2

 különben

 f1 ← 0

 Ha n = 2 akkor f2 ← 1 vége(ha)

 vége(ha)

Vége(algoritmus)

8. Az {1, 2, ..., n} halmaz minden részhalmaza

 Generáljuk az {1, 2, ..., n} halmaz minden részhalmazát!

Elemzés

 A halmazokat az x1 < x2 < ... < xi sorozattal ábrázoljuk, ahol i = 1, 2, ..., n. Az alábbi

algoritmust i = 1-re hívjuk meg. Az x sorozat 0 indexű elemét 0 kezdőértékkel látjuk el.

Szükségünk lesz az x0 elemre is, mivel az algoritmusban a sorozat minden xi elemét, tehát x1-

et is az előző elemből számítjuk ki. A j változóban generáljuk azokat az értékeket, amelyeket

rendre felvesz az x sorozat aktuális eleme. Ezek a j értékek 1-gyel nagyobbak, mint a

részhalmazba utoljára betett elem értéke és legtöbb n-nel egyenlők. Így a részhalmazokat

lexikográfikus sorrendben generáljuk. Figyelemre méltó, hogy minden új elem generálása egy

új részhalmazhoz vezet.

Algoritmus MindenRészhalmaz(i)

 Minden j = xi-1 + 1, n végezd el:

 xi  j

 Kiír(i)

 MindenRészhalmaz(i+1)

 vége(minden)

Vége(algoritmus)

 A kilépési feltétel lehetne xi = n, de erre nincs szükség, mivel a Minden struktúra végső

értéke leállítja a végrehajtást: ha xi = n, a ciklusváltozó kezdőértéke xi + 1 = n + 1, tehát

nagyobb, mint n (végső érték), így a Minden ciklusmagja nem hajtódik végre és a program

kilép az aktuális hívásból. Az algoritmust MindenRészhalmaz(1) alakban hívjuk meg.

9. Partíciók

 Generáljuk az n ∈ N* szám partícióit!

Megoldás

 Partíció alatt azt a felbontást értjük, amelynek során az n ∈ N* számot pozitív számok

összegeként írjuk fel: n = p1 + p2 + ... + pk, ahol pi ∈ N*, i = 1, 2, ..., k, k = 1, ..., n. Két

partíciót kétféleképpen tekinthetünk különbözőnek: ha vagy az előforduló értékek vagy az

előfordulásuk sorrendje különbözik vagy, ha csak az előforduló értékek különböznek.

1. FEJEZET. ALGORITMUSOK ÉS PROGRAMOZÁS 35

 A generálás során, rendre kiválasztunk egy lehetséges értéket a partíció első p1 eleme szá-

mára és generáljuk a fennmaradt n – p1 szám partícióit. Ez a különbség az n új értéke lesz,

amellyel ugyanúgy járunk el. Egy partíciót legeneráltunk, és kiírhatjuk, ha n aktuális értéke 0.

 Az alábbi algoritmust a Partíció(1, n) utasítással hívjuk meg először.

Algoritmus Partíció(i, n):

 Minden j = 1, n végezd el:

 pi  j

 Ha j < n akkor

 Partíció(i+1, n-j)

 különben

 Kiír(i)

 vége(ha)

 vége(minden)

Vége(algoritmus)

1.5. A visszalépéses keresés módszere (backtracking)

 Az algoritmusok behatóbb tanulmányozása meggyőzött bennünket, hogy tervezésükkor

meg kell vizsgálnunk a végrehajtásukhoz szükséges időt. Ha ez az idő elfogadhatatlanul nagy,

más megoldásokat kell keresnünk. Egy algoritmus „elfogadható”, ha végrehajtási ideje

polinomiális, vagyis n
k
-nal arányos (adott k-ra és n bemeneti adatra). Ha egy feladat minden

lehetséges megoldást kér, és csak exponenciális algoritmussal tudjuk megoldani, a

backtracking (visszalépéses keresés) módszert alkalmazzuk, amely exponenciális ugyan, de

megpróbálja csökkenteni a generálandó próbálkozások számát.

1.5.1. A visszalépéses keresés általános bemutatása

 A visszalépéses keresés azon feladatok megoldásakor alkalmazható, amelyeknek eredmé-

nyét az M1 × M2 × ... × Mn Descartes-szorzatnak azon elemei alkotják, amelyek eleget tesznek

bizonyos belső feltételeknek. Az M1 × M2 × ... × Mn Descartes-szorzat a megoldások tere (az

eredmény egy x sorozat, amelynek xi eleme az Mi halmazból való).

 A visszalépéses keresés nem generálja a Descartes-szorzat minden x = (x1, x2, ..., xn)  M1

× M2 × ... × Mn elemét, hanem csak azokat, amelyeknek esetében remélhető, hogy

megfelelnek a belső feltételeknek. Így, megpróbálja csökkenteni a próbálkozásokat.

 Az algoritmusban az x tömb elemei egymás után, egyenként kapnak értékeket: xi számára

csak akkor „javasolunk értéket”, ha x1, x2, ..., xi–1 már kaptak végleges értéket az aktuálisan

generált eredményben. Az xi-re vonatkozó javaslatot akkor fogadjuk el, amikor x1, x2, ..., xi–1

értékei az xi értékével együtt megvalósítják a belső feltételeket. Ha az i-edik lépésben a belső

feltételek nem teljesülnek, xi számára új értéket választunk az Mi halmazból. Ha az Mi halmaz

minden elemét kipróbáltuk, visszalépünk az i–1-edik elemhez, amely számára új értéket

„javasolunk” az Mi–1 halmazból. Ha az i-edik lépésben a belső feltételek teljesülnek, az

algoritmus folytatódik. Ha szükséges folytatni, mivel a számukat ismerjük és még nem

generáltuk mindegyiket, vagy valamilyen másképp kifejezett tulajdonság alapján eldöntöttük,

hogy még nem jutottunk eredményhez, a folytatási feltételek alapján folytatjuk az algoritmust.

36 1. FEJEZET. ALGORITMUSOK ÉS PROGRAMOZÁS

 Azokat a lehetséges eredményeket, amelyek a megoldások teréből vették értékeiket úgy,

hogy teljesítik a belső feltételeket, és amelyeknek esetében a folytatási feltételek nem kérnek

további elemeket, végeredményeknek nevezzük.

 A belső feltételek és a folytatási feltételek között szoros kapcsolat áll fenn. Ezek kifejezés-

módjának szerencsés megválasztása többnyire a számítások csökkentéséhez vezethet. A belső

feltételeket egy külön algoritmusban vizsgáljuk: Megfelel(i), ahol i az aktuálisan generált

elem indexe. Ez az alprogram igaz értéket térít vissza, ha az xi elem az eddig generált x1, x2,

..., xi–1 elemekkel együtt megfelel a belső feltételeknek, és hamis értéket ellenkező esetben.

Algoritmus Megfelel(i): { a függvény Megfelel értékét téríti }

 Megfelel  igaz

 Ha a belső feltételek x1, x2, ..., xi esetében nem teljesülnek akkor

 Megfelel  hamis

 vége(ha)

Vége(algoritmus)

 A feladat által kért eredményt a következő algoritmussal generáljuk:

Algoritmus RekurzívBacktracking(i):

 Minden mj ∈ Mi értékre végezd el:

 xi  mj

 Ha Megfelel(i) akkor { megvalósulnak a belső feltételek x1, x2, ..., xi esetében }

 Ha i < n akkor

 RekurzívBacktracking(i+1)

 különben

 Ki: x1, x2, ..., xn

 vége(ha)

 vége(ha)

 vége(minden)

Vége(algoritmus)

 Az algoritmust az i = 1 értékre hívjuk meg először.

 A módszer eredményessége nagymértékben függ a folytatási feltételek szerencsés

kiválasztásától. Minél hamarabb állítjuk le egy eredmény generálását, annál kisebb a rekurzió

mélysége, de a feltételek nem lehetnek túl bonyolultak, mivel ezeket minden aktiválódásnál

végrehajtja az algoritmus.

 A módszer azoknak a feladatoknak a megoldásakor alkalmazható, amelyekben a

követelményeknek megfelelően minden eredményt meg kell állapítanunk. Ha az M1 × ... × Mn

Descartes-szorzat számossága nem túl nagy, valamint a feltételek biztosítanak egy nem túl

mély rekurziót, eredményesen alkalmazható.

 Összefoglalva, a következő lépéseket kell elvégeznünk:

1. az eredmény kódolása – meg kell állapítanunk az xi elemek jelentését az illető feladat

esetében, valamint meg kell határoznunk az Mi, i = 1, 2, ..., n halmazokat.

2. a belső, majd a folytatási feltételek megállapítása.

3. a RekurzívBacktracking(i) vagy iteratív változatának átírása.

1.5.2. Megoldott feladatok

1. FEJEZET. ALGORITMUSOK ÉS PROGRAMOZÁS 37

1. Nyolc királynő a sakktáblán

 Írjuk ki az összes lehetséges módját annak, ahogyan 8 királynő elhelyezhető egy

sakktáblán, úgy, hogy ne támadják egymást. Két királynő támadja egymást, ha ugyanazon a

soron, oszlopon, illetve átlón helyezkedik el.

Megoldás

 Minden királynőt egymás után elhelyezünk a neki megfelelő sorba az első oszloppal

kezdődően, amíg meg nem találjuk azt az oszlopot, amelyben nem támad más, eddig feltett

királynőt. Ha egy királynőt nem lehet elhelyezni, visszatérünk az előzőhöz és számára tovább

keresünk megfelelő, nagyobb sorszámú oszlopot.

 Az eredményt egy egydimenziós tömbbel (Ki, i = 1, 2, ..., 8) kódoljuk. A tömb Ki

elemeinek értéke az oszlop sorszáma, ahova az i-edik királynőt tettük (az i-edik sorban). A

sakktáblának 8 oszlopa van, tehát Ki  {1, 2, …, 8}, i = 1, …, 8. Az eddigiekből következik,

hogy egy eredmény az {1, 2, …, 8}
8
 Descartes-szorzat eleme. Tehát, ha meg akarjuk oldani a

feladatot, tulajdonképpen az {1, 2, …, 8}
8
 Descartes-szorzat egy részhalmazát kell

meghatároznunk, azzal a feltétellel, hogy a 8 királynő, amelyek a K1, K2, ..., K8 oszlopokban

találhatók, ne támadja egymást. A kódolás sajátos módja biztosítja, hogy soronkénti támadási

lehetőség nincs, hiszen minden királynő új sorba kerül. De például, ha az első két királynő

egymást támadja, nem generálunk fölöslegesen 8
6
 = 262144 elemet a {1, 2, ..., 8}

8
 Descartes-

szorzatból.

 A második észrevétel a feladat rekurzív megfogalmazását teszi lehetővé: elhelyezzük az

első királynőt, rendre az első sor első, második, ..., 8-dik oszlopába, majd megoldjuk a

feladatot a fennmaradt 7 királynő esetében, de úgy, hogy mindig ellenőrizzük, hogy egy új

királynő ne támadjon egyet sem a már elhelyezettek közül.

 Általánosan megfogalmazva: az i-edik királynő esetében meg kell határoznunk minden

helyet, ahova ezt el lehet helyezni az i-edik sorban úgy, hogy ne támadjon egyet sem azok

közül, amelyek az első, második, ..., i–1-edik sorban már el vannak helyezve. Tehát

elhelyezzük az i-edik királynőt, majd megoldjuk ugyanezt a feladatot az i+1-edik királynő

esetében.

 Ha minden királynőt elhelyeztük, van egy eredmény, amit ki kell írnunk. Az elhelyezést a

Királynő(i) rekurzív alprogram végzi el, a támadási lehetőséget a NemTámad(i) logikai függ-

vény ellenőrzi.

 Ahhoz, hogy két királynő ne támadja egymást, a következő relációknak kell teljesülniük:

Ki ≠ Kj, i – j ≠ | Ki – Kj |, j = 1, 2, ..., i – 1.

Algoritmus NemTámad(i):

 Jó  igaz { Jó = lokális változó, K globális }

 j  1

 Amíg (j ≤ i-1) és Jó végezd el:

 Ha (Ki = Kj) vagy (i-j = |Ki - Kj | akkor

 Jó  hamis { az i. és j. királynők támadják egymást }

 különben

 j  j + 1

 vége(ha)

38 1. FEJEZET. ALGORITMUSOK ÉS PROGRAMOZÁS

 vége(amíg)

 térítsd Jó

Vége(algoritmus)

Algoritmus Királynő(i):

 Minden j = 1, 8 végezd el:

 Ki  j { az i-edik királynőt a j-edik oszlopba tesszük }

 Ha NemTámad(i) akkor { az i-edik királynő nem támadja egyiket sem }

 Ha i < 8 akkor

 Királynő(i+1)

 különben

 Kiír

 vége(ha)

 vége(ha)

 vége(minden)

Vége(algoritmus)

 Az első hívás alakja: Királynő(1).

2. Variációk

 Az óvónéni a karácsonyi ünnepélyre készül. A díszterem színpadán n széket lehet egy

sorban elhelyezni, de a csoportban m óvódás van (n < m). Írjuk ki minden lehetséges módját

annak, ahogy az óvódások leülhetnek az n székre.

Megoldás

 Eltérünk az előbbi mintától, hiszen fölösleges „javasolni”, hogy üljön le egy már leültetett

gyermek.

Az eredmény kódolása: Az xi az i-edik székre ülő gyerek nevének az indexe. Tehát xi {1, 2,

..., m}, ahol m a gyermekek száma, (i = 1, 2, ..., n).

Belső feltételek: xi ≠ xj, i ≠ j, i, j = 1, 2, ..., n. A belső feltételek azt fejezik ki, hogy az i. székre

csak olyan gyerek ülhet le, aki pillanatnyilag még áll. Az ellenőrzés egyszerűbb lesz, fölhasz-

nálunk egy mégÁll logikai tömböt, ahol mégÁllj igaz, ha a j-edik gyerek még nem ült le, és

hamis ellenkező esetben. Az xi ≠ xj, j = 1, 2, ..., i – 1 feltételek a következőképpen alakulnak

át: mégÁllxi
 = igaz.

Folytatási feltétel: i < n (még van szabad szék)

 A mégÁll tömb elemeinek kezdőértéke igaz, mivel még senki nem ült le, majd az ültetési

folyamat során a megfelelő elemek hamis értéket kapnak. Valahányszor egy ültetési rend

megváltozik, a j-edik gyermek feláll az i-edik székről és oda más gyermek ülhet majd le.

Ugyanakkor, a j-edik gyermek egy másik ültetési rendben újból leülhet. A j-edik gyermek

felállítása maga után vonja a megfelelő mégÁllj visszaállítását igaz-ra. Ez a megoldás

hatékonyabb, mint az, amelyet a mintaalgoritmus alapján készíthetnénk, mivel kevesebb

összehasonlítást végez.

Algoritmus Variáció(i):

 Minden j = 1, m végezd el:

 Ha mégÁllj akkor { a j-edik gyermek még áll }

 xi  j

1. FEJEZET. ALGORITMUSOK ÉS PROGRAMOZÁS 39

 mégÁllj  hamis { a j-edik gyermeket leültettük az i-edik székre }

 Ha i < n akkor

 Variáció(i+1)

 különben

 Kiír

 vége(ha)

 mégÁllj  igaz { a j-edik gyermeket felállítjuk, hogy később ülhessen más székre }

 vége(ha)

 vége(minden)

Vége(algoritmus)

 Az első hívás alakja: Variáció(1).

3. Zárójelek

 Generáljunk és írjunk ki minden helyesen nyitó és csukó n zárójelet tartalmazó karakter-

láncot! Példa: ha n = 4, a helyes karakterláncok:

(())

()()

Megoldás

Az eredmény kódolása: Ha n páros szám, az eredmények az M
n
 halmaz elemei, ahol M =

{'(', ')'} és xi  M, i = 1, ..., n. Ha n páratlan, akkor nincs megoldás.

Belső feltételek: Adott pillanatban ne létezzen több csukó zárójel, mint nyitó, és nyitó nem

lehet több mint n/2. Mivel a megoldások tere kételemű halmaz, és a két elem esetében a belső

feltétel különbözik, lemondunk a Minden struktúráról és két Ha utasítással ellenőrizzük

ezeket.

 Jelöljük ny-nyel és cs-vel a nyitó, illetve a csukó zárójelek számát. A folytatási feltételek

különböznek az xi elemek értékének függvényében:

12

)''ha

(''ha
2 -n,i=

 xny,z

 x,
n

ny

i

i 












Folytatási feltételek: Mivel bármely eredményben x1 = '(' és xn = ')', a hívó programegységben

elvégezzük az inicializálásokat: x1 ← '(' és xn ← ')'. Tehát, az algoritmus a második helytől

kezdődően az (n – 1)-dik helyig tesz zárójeleket. Amikor az n-edik karakter következne, le-

állunk. Az első hívás alakja: Zárójel(2, 1, 0).

Algoritmus Zárójel(i, ny, cs):

 Ha i = n akkor { kilépési feltétel }

 Ki: x { x egy karakterlánc }

 különben

 Ha ny < n div 2 akkor

 xi  '('

 Zárójel(i+1, ny+1, cs)

 vége(ha)

 Ha cs < ny akkor

 xi  ')'

40 1. FEJEZET. ALGORITMUSOK ÉS PROGRAMOZÁS

 Zárójel(i+1, ny, cs+1)

 vége(ha)

 vége(ha)

Vége(algoritmus)

4. Labirintus

 Egy labirintust egy n soros és m oszlopos L kétdimenziós tömbben tárolunk, amelyben a

folyosónak megfelelő elemek értéke 1; ezek az értékek egymás után következnek a labirintust

ábrázoló tömbben, egy bizonyos sorban, vagy oszlopban. Egy személyt leengednek ejtőernyő-

vel a labirintusba az (i, j) helyre. Írjunk ki minden olyan utat, amely kivezet a labirintusból!

Egy út nem érintheti kétszer ugyanazt a helyet. A labirintusból a tömb szélén léphetünk ki.

Elemzés

Az eredmény kódolása: A feladat minden kivezető utat kér. Legyen egy ilyen út hossza k. Az

utat az x1, x2, ..., xk és y1, y2, ..., yk sorozatokkal kódolunk, amelyek azokat a sorokat és osz-

lopokat tartalmazzák, amelyeknek érintésével kifele haladunk a labirintusból. xi  {1, 2, ...,

n}, yi  {1, 2, ..., m}, i = 1, 2, ..., k.

Belső feltételek: Az útvonalra a következő belső feltételek érvényesek:

a) Folyosón kell haladnia: Lxi, yi = 1, i = 1, 2, ..., k.

b) Nem léphet kétszer ugyanarra a helyre: (xi, yi) ≠ (xj, yj), i, j = 1, 2, ..., k, i ≠ j.

c) Biztosítania kell a labirintusból való kijutást: xk  {1, n} vagy yk  {1, m}

Folytatási feltételek: Tartalmazzák az a) és b) ellenőrzését minden lépésnél. A b) feltétel az

i-edik lépésben: (xi, yi) ≠ (xj, yj), j = 1,..., i – 1.

Az eredményt az eredmij (i = 1, 2, ..., n, j = 1, 2, ..., m) tömb segítségével tároljuk, amelyben






helyre),(azlépnilehetnem,0

helyre),(azlépnilehetléptünk,helyre)(azamellyellépésszám,aaz

ha

ha

ji

jiji,

ij
eredmény

 Egy bizonyos helyről négy irányba léphetünk. Az alábbi kód tartalmaz egy

figyelemreméltó egyszerűsítést, ami a folytatási feltételeket illeti. Nem szükséges

ellenőriznünk azt, hogy kiléptünk-e a labirintusból, mivel a hívás előtt (a labirintus beolvasása

után) az L tömböt körülvettük egy 0-ból álló kerettel. Így az algoritmus gyorsabbá válik. Az

algoritmust a kiindulási hely koordinátáira (i, j) és 1 lépésszámra hívjuk meg.

Algoritmus Út(i, j, lépés):

 Ha (Lij = 1) és (eredmij = 0) akkor

 { próbálunk az (i, j) helyre lépni; ha (i, j) folyosó és még nem jártunk itt }

 eredmij  lépés { az (i, j) helyre lépünk }

 Ha (i ∈ {1, n}) vagy (j ∈ {1, m}) akkor

 Kiír { kijárathoz értünk, kiírjuk az eredménytömböt }

 vége(ha)

 Út(i-1, j, lépés+1) { próbálunk más utat is: felfele lépünk }

 Út(i, j+1, lépés+1) { jobbra lépünk }

 Út(i+1, j, lépés+1) { lefele lépünk }

 Út(i, j-1, lépés+1) { balra lépünk }

 eredmij  0 { töröljük az utolsó lépést, hogy egy új útvonalon léphessünk újra ide }

 vége(ha)

1. FEJEZET. ALGORITMUSOK ÉS PROGRAMOZÁS 41

Vége(algoritmus)

Második megoldás

Algoritmus Út(i, j, lépés):

 Minden irány = 1, 4 végezd el: { kiválasztunk egy irányt }

 úji  i + xirány { (úji, újj) az új koordináták }

 újj  j + yirány

 Ha (úji ∈ {1, 2, ..., n}) és (újj ∈ {1, 2, ..., m}) akkor

 Ha (Lúji,újj = 1) és (eredmúji,újj = 0) akkor

 eredmúji,újj  lépés { az (úji, újj) helyre lépünk }

 Ha (úji ∈ {1, n}) vagy (újj ∈ {1, m}) akkor

 Kiír { kiléptünk a labirintus szélén }

 vége(ha)

 Út(úji, újj, lépés+1)

 eredmúji,újj  0 { lemondunk az utolsó lépésről }

 vége(ha)

 vége(ha)

 vége(minden)

Vége(algoritmus)

 Az Út(i, j, lépés) alprogramban a lépés pillanatban megpróbálunk az (i, j) helyről az (úji,

újj) helyre lépni. Ezeket két konstans tömb (x, y) segítségével állapítjuk meg úgy, hogy ezek a

négy szomszédos hely koordinátáit adják meg: x = (–1, 0, 1, 0), y = (0, 1, 0, –1).

 Azt várnánk, hogy az algoritmus a Ha utasítás különben ágán hívja meg önmagát. Ha így

járnánk el, elvesztenénk azokat az eredményeket, amelyeknek esetében a labirintus szélén to-

vább lehet menni, és a kilépés egy másik pontban is lehetséges.

 Ebben a második megoldásban nem vettük körül a labirintust az első algoritmusban

említett kerettel. Ennek következtében szükséges volt ellenőrizni, hogy az új hely, ahova lépni

akarunk a labirintuson belül van-e.

 Ezt az algoritmust az Út(i, j, 2) alakban hívjuk meg, de a hívás előtt eredmij ← 1, ahol (i, j)

a kiindulási hely.

 Általánosítva az előbbi feladatban használt rekurzív algoritmust, amely a visszalépéses

keresés módosított változata, észrevesszük, hogy mivel az előrehaladás egy kétdimenziós

tömbben történik, az alprogram két paramétere (i, j) annak a helynek a koordinátái, ahova

utoljára léptünk.

42 1. FEJEZET. ALGORITMUSOK ÉS PROGRAMOZÁS

1.6. Az oszd meg és uralkodj módszer (divide et impera)

 Az oszd meg és uralkodj módszer (divide et impera) alkalmazása akkor ajánlott, amikor a

feladatot fel lehet bontani egymástól független részfeladatokra, amelyeket az eredeti

feladathoz hasonlóan oldunk meg, de kisebb méretű adathalmaz esetében.

 Az eredeti feladatot felbontjuk egymástól független részfeladatokra, amelyek az eredetihez

hasonlóak, de kisebb adathalmazra definiáltak. A részfeladatokkal hasonlóan járunk el és a

felbontást akkor állítjuk le, amikor a feladat megoldása a lehető legjobban leegyszerűsödött.

A maximálisan leegyszerűsített feladatot megoldjuk, majd a részfeladatok eredményeiből

fokozatosan felépítjük a következő méretű feladat eredményeit, ezek összerakása által. Az

utolsó összerakás az eredeti feladat végeredményét adja meg.

 Mivel a részfeladatok csak méreteikben különböznek az eredeti feladattól, a divide et

impera módszert a legkézenfekvőbben rekurzívan írjuk le. A felbontás megtörténik a

rekurzióba való belépéskor, a részeredmények összerakása pedig a kilépéskor.

1.6.1. Az oszd meg és uralkodj módszer általános bemutatása

 A DivImp(bal, jobb, eredm) algoritmus az a1, a2, ..., an sorozatot dolgozza fel, tehát

DivImp(1, n, eredm) alakban hívjuk meg először. Formális paraméterei a bal és a jobb (az

aktuális részsorozat bal és jobb indexe), valamint eredm, amelyben a végeredményt

továbbítjuk.

Algoritmus DivImp(bal, jobb, eredm):

 Ha jobb - bal < ε akkor { ha a feladat maximálisan leegyszerűsödött }

 Megold(bal, jobb, eredm) { kiszámítjuk az egyszerű feladat eredm eredményét }

 különben

 Feloszt(bal, jobb, közép){ kiszámítjuk a közép indexet, ahol felosztjuk a sorozatot }

 DivImp(bal, közép, eredm1) { megoldjuk a feladatot a bal részsorozat esetében }

 DivImp(közép+1, jobb, eredm2){ megoldjuk a feladatot a jobb részsorozat esetében }

 Összerak(eredm1, eredm2, eredm) { összerakjuk a részeredményeket }

 vége(ha)

Vége(algoritmus)

 Az oszd meg és uralkodj stratégiát – természetesen – lehet iteratívan is implementálni. Az

iteratív algoritmusok mindig gyorsabbak lesznek. A rekurzív változat előnye viszont az átlát-

hatóságában és az egyszerűségében rejlik.

1.6.2. Megoldott feladatok

1. Szorzat

 Számítsuk ki n valós szám szorzatát oszd meg és uralkodj módszerrel! Egy adott

pillanatban csak egy szorzást végezzünk!

Megoldás

1. FEJEZET. ALGORITMUSOK ÉS PROGRAMOZÁS 43

 Mivel egy adott pillanatban, egy adott művelettel, csak két szám szorzatát tudjuk

kiszámítani, a szorzatot részszorzatokra bontjuk: a szorzótényezőket két csoportra osztjuk,

kiszámítjuk egy-egy csoport szorzatát, majd a két csoport kiszámított szorzatát

összeszorozzuk. Ezt a felbontást addig lehet újra, meg újra elvégezni, amíg egy csoport

legtöbb két szorzótényezőből nem áll.

 A Szorzat(x1, ..., xn) részfeladat általános alakja: Szorzat(xbal, ..., xjobb). Minden részfeladat

más-más szorzatot számol ki, tehát a feladatok függetlenek egymástól.

Algoritmus Szorzat(bal ,jobb):

 Ha jobb = bal akkor { Bemeneti adatok: bal, jobb. A függvény a szorzatot téríti }

 térítsd xbal { a részsorozat egy elemből áll }

 különben

 Ha jobb - bal = 1 akkor

 térítsd xbal * xjobb { a részsorozat két elemű }

 különben { felbontjuk a Szorzat(bal, ..., jobb) feladatot }

 közepe ← (bal+jobb) div 2

 p1 ← Szorzat(bal, közepe)

 p2 ← Szorzat(közepe+1, jobb)

 térítsd p1 * p2 { összerakjuk a részeredményeket }

 vége(ha)

 vége(ha)

Vége(algoritmus)

2. Bináris keresés

 Adott egy n egész számból álló, növekvően rendezett sorozat. Állapítsuk meg egy adott

szám helyét a sorozatban! Ha az illető szám nem található meg a sorozatban, a sorszámnak

megfelelő paraméter értéke legyen 0.

Megoldás

 Mivel egy bizonyos elemet keresünk, amelynek a helye ismeretlen, az x1 < x2 < ... < xn

sorozat közepén fogjuk először keresni. A következő esetek fordulhatnak elő:

1. keresett = xközép ⇒ keresett a sorban a közép helyen található;

2. keresett < xközép ⇒ mivel a sorozat rendezett, a keresett számot a sorozat első (x1, ..., xközép–1)

felében keressük tovább;

3. keresett > xközép ⇒ a keresett számot a sorozat második (xközép+1, ..., xn) felében keressük

tovább.

 Következésképpen, ahelyett, hogy a keresett elem megkeresése két részfeladatra bomlana,

átalakul egyetlen feladattá: keressük az elemet vagy az xbal, ..., xközép–1 sorozatban, vagy az

xközép+1, ..., xjobb sorozatban. Itt nincs szükség a divide et impera harmadik lépésére (a részered-

mények összerakására).

Algoritmus BinKeres(x, bal, jobb, keresett, közép):

 { Bemeneti adatok: x, bal, jobb, keresett. Kimeneti adat: közép }

 Ha bal > jobb akkor

 közép  0 { keresett nincs a sorozatban }

 különben

 közép  (bal+jobb) div 2

44 1. FEJEZET. ALGORITMUSOK ÉS PROGRAMOZÁS

 Ha keresett < xközép akkor

 BinKeres(x, bal, közép-1, keresett, közép)

 különben

 Ha keresett > xközép akkor

 BinKeres(x, közép+1, jobb, keresett, közép)

 vége(ha) { ha keresett = xközép megvan a pozíció }

 vége(ha)

 vége(ha)

Vége(algoritmus)

 E feladat esetében is létezik egy iteratív megoldás, amely a végrehajtás idejét tekintve haté-

konyabb:

Algoritmus BinKeresIteratív(n, x, keresett, közép):

 bal  1

 jobb  n

 megvan  hamis

 Amíg nem megvan és (bal ≤ jobb) végezd el:

 közép  (bal+jobb) div 2

 Ha xközép = keresett akkor

 megvan  igaz { közép tartalmazza a keresett helyét }

 különben

 Ha xközép > keresett akkor

 jobb  közép - 1

 különben

 bal  közép + 1

 vége(ha)

 vége(ha)

 vége(amíg)

 Ha nem megvan akkor

 közép  0 { ha közép értéke 0 ⇒ keresett nem található }

 vége(ha)

Vége(algoritmus)

3. Összefésülésen alapuló rendezés (MergeSort)

 Rendezzünk növekvő sorrendbe egy egész számokból álló sorozatot összefésüléssel!

Megoldás

 Ha két rendezett sorozatból úgy állítunk elő egy harmadikat, hogy ez utóbbi úgyszintén

rendezett, összefésülésről beszélünk. De itt nem két rendezett sorozatból kell egy harmadik,

ugyancsak rendezettet előállítanunk, hanem egyetlen sorozatot kell rendeznünk. Az adott

sorozatot két részre osztjuk, abból a célból, hogy rendezhessük. De ezeket újból felosztjuk,

amíg a kapott tömb, amelyet rendeznünk kell, csak egy elemből áll. Az egyelemű tömbök,

természetesen rendezettek és megkezdődhet a tulajdonképpeni összefésülés.

Algoritmus Összefésül(bal, közép, jobb):

 Minden i = bal, közép végezd el:

1. FEJEZET. ALGORITMUSOK ÉS PROGRAMOZÁS 45

 ai  xi

 vége(minden)

 Minden i = közép+1, jobb végezd el:

 bi  xi

 vége(minden)

 aközép+1  végtelen

 bjobb+1  végtelen { strázsák }

 i  bal

 j  közép + 1

 Minden k = bal, jobb végezd el:

 Ha ai < bj akkor

 xk  ai

 i  i + 1

 különben

 xk  bj

 j  j + 1

 vége(ha)

 vége(minden)

Vége(algoritmus)

Algoritmus Rendez(bal, jobb):

 Ha bal < jobb akkor

 közép ← (bal+jobb) div 2

 Rendez(bal, közép)

 Rendez(közép+1, jobb)

 Összefésül(bal, közép, jobb)

 vége(ha)

Vége(algoritmus)

 Az Összefésül(bal, közép, jobb) algoritmus eredménye az xbal, …, xjobb rendezett sorozat,

amelybe tulajdonképpen ugyanazon sorozat két részsorozatát, az xbal, …, xközép és az xközép+1,

…, xjobb részsorozatokat fésültük össze. Ezzel magyarázható annak a szükségessége, hogy az

összefésülendő sorozatokat átmásoltuk az a illetve a b sorozatba. A hívó programegységben a

Rendez(1, n) algoritmust hívjuk.

4. Gyorsrendezés (QuickSort)

 Fölhasználva a quiksort algoritmust, rendezzünk növekvő sorrendbe n egész számot!

Megoldás

 A gyorsrendezés az oszd meg és uralkodj módszeren alapszik, mivel az eredeti sorozatot

úgy rendezi, hogy két rendezendő részsorozatra bontja. A részsorozatok rendezése egymástól

függetlenül történik. A részeredmények összerakása hiányzik (hasonlóan a bináris

kereséshez). Amikor az x1, …, xn sorozatot készülünk rendezni, előbb előkészítünk két

részsorozatot (x1, …, xm–1 és xm+1, …, xn) úgy, hogy az x1, …, xm–1 részsorozat elemei kisebbek

legyenek, mint az xm+1, …, xn részsorozat elemei. Közöttük található az xm, amely nagyobb,

mint az x1, …, xm–1 részsorozat bármely eleme, és kisebb, mint az xm+1, …, xn részsorozat

összes eleme.

46 1. FEJEZET. ALGORITMUSOK ÉS PROGRAMOZÁS

 Azt az elemet, amely meghatározza a helyet, ahol az adott tömb két részre oszlik,

strázsának (őrszem) nevezzük. Ennek a helynek a meghatározása kulcskérdés az algoritmus

végrehajtása során. A strázsa m helyét úgy határozzuk meg, hogy az x1, …, xm tömbben

legyenek azok az elemek, amelyek kisebbek, mint a strázsa és az xm+1, …, xn tömbben azok,

amelyek nagyobbak annál.

 Gyakran választjuk strázsának az x1-et. Elindulunk a tömb két szélső elemétől és

felcseréljük egymás közt azokat az elemeket, amelyek nagyobbak, mint a strázsa (és a tömb

első részében találhatók) azokkal, amelyek kisebbek, mint a strázsa (és a tömb második

részében találhatók). Ahol ez a bejárás véget ér, ott fogjuk két részre osztani a tömböt. Egy

ilyen feldolgozás során egy elem a végleges helyére kerül.

 A részsorozatok rendezése érdekében ezeket hasonló módon bontjuk fel. A felbontás addig

folytatódik, amíg a rendezendő részsorozat hossza 1 lesz.

Algoritmus QuickSort(bal, jobb):

 Ha bal < jobb akkor { meghatározzuk azt az m helyet, ahol a sorozatot }

 { két részre bontjuk, miközben az xm elem a végleges helyére kerül }

 m  Strázsa_helye(bal, jobb)

 QuickSort(bal, m) { hasonlóan járunk el az (xbal, ..., xm) részsorozattal }

 QuickSort(m+1, jobb) { valamint az (xm+1, ..., xjobb) részsorozattal }

 vége(ha)

Vége(algoritmus)

 Látható, hogy a rekurzív hívásoknak megfelelően, az algoritmus meghívja önmagát egy bal

meg egy jobb részsorozat rendezése érdekében. Dacára annak, hogy az algoritmus nem tartal-

maz összehasonlításokat és felcseréléseket, a sorozat aközben rendeződik, miközben keressük

a strázsa m helyét:

Algoritmus StrázsaHelye(bal, jobb):

 strázsa  xbal { Bemeneti adatok: bal, jobb. Kimeneti adat: a strázsa helye }

 i  bal-1

 j  jobb+1 { megkeressük azt a j indexet, amelyre bal ≤ j < jobb }

 Ismételd

 Ismételd { megkeressük azt a j indexet (jobbról balra), amelyre xj > strázsa }

 j  j - 1

 ameddig xj ≤ strázsa

 Ismételd { megkeressük azt az i indexet (balról jobbra), amelyre xi < strázsa }

 i  i + 1

 ameddig xi ≥ strázsa

 Ha i < j akkor

 xi ↔ xj { felcseréljük ezt a két nem megfelelő tulajdonságú elemet }

 vége(ha)

 ameddig i ≥ j { addig folytatjuk a keresést és felcserélést, amíg i kisebb, mint j }

 térítsd j { megtaláltuk az új strázsa helyét }

Vége(algoritmus)

Megjegyzés

 Ez az algoritmus főleg akkor gyors, ha a sorozat nem rendezett, egyébként előfordulhat,

hogy az algoritmus négyzetes bonyolultságúvá válik. Ha fennáll ez a veszély, tanácsos a ren-

1. FEJEZET. ALGORITMUSOK ÉS PROGRAMOZÁS 47

dezés előtt véletlenszerűen átrendezi a bemeneti sorozatot, ezzel biztosítva a különböző

permutációk azonos valószínűségét. Ez a módosítás nem javít a legrosszabb futási időn, de

biztosítja, hogy a futási idő független lesz a bemeneti elemek sorrendjétől.

5. Hanoi tornyok

 Adva van három rúd A, B, C. Az elsőre fel van fűzve n darab, különböző átmérőjű korong

úgy, hogy a korongok az átmérőjük csökkenő sorrendjében helyezkednek el egymás fölött. A

másik két rúd üres. Írjuk ki minden lehetséges módját annak, ahogyan a korongokat átköltöz-

tethetjük az A rúdról a B-re, ugyanolyan sorrendben, ahogyan az A-n helyezkedtek el.

Közben fel lehet használni, ideiglenesen a C rudat. Egy mozgatás csak egy korongot érinthet,

és csak kisebb átmérőjű korongot helyezhetünk egy nagyobb átmérőjű korong fölé.

Megoldás

 A módszer újból a divide et impera. Az n korong átköltöztetése az A rúdról a B-re

felbontható három, ehhez hasonló feladatra:

1)

2)

3)

A C B

n-1
korong

n-1
korong

A C B

A C B

A C B

n-1
korong

 A három részfeladat méretét a költöztetendő korongok száma határozza meg: n – 1, 1 és

n – 1. A részfeladatok függetlenek, mivel az eredeti rudak konfigurációi, valamint az

időközben váltakozva ideiglenesnek használt rudaké különbözők. A feladat felbontása

ugyanígy folytatódik, míg olyan részfeladathoz nem érünk, amelynek mérete 1. Ennek

megoldása egyetlen korong költöztetését jelenti.

 A részeredmények összerakása ebben az esetben is hiányzik.

Algoritmus Hanoi(n, A, B, C):

 Ha n = 1 akkor

 Költöztess egy korongot A-ról B-re

 különben

 Hanoi(n-1, A, C, B)

 Hanoi(1, A, B, C)

 Hanoi(n-1, C, B, A)

 vége(ha)

48 1. FEJEZET. ALGORITMUSOK ÉS PROGRAMOZÁS

Vége(algoritmus)

 Az algoritmust a Hanoi(n, A, B, C) utasítással hívjuk, ahol az aktuális paraméterek értékei

'A', 'B', 'C'. A Költöztess egy korongot A-ról B-re lehet pl. egy kiírás: Ki: A, '-', B.

1.7. Mohó algoritmusok (greedy módszer)

 A greedy módszert (mohó algoritmusokat) optimum-számításokra használjuk. E feladatok

eredményei részhalmazai vagy elemei annak a Descartes-szorzatnak, amelyre a célfüggvény

eléri minimumát vagy maximumát.

 A mohó algoritmus mindig egyetlen eredményt határoz meg. Ezt az eredményt

fokozatosan építjük fel: a feladatokban általában adott egy L halmaz, amelynek meg kell

határoznunk egy M részhalmazát, amely megfelel bizonyos követelményeknek (T

tulajdonságnak), és amely általában a végeredmény. Az M halmaz eredetileg az üres halmaz.

Ehhez, egymás után hozzáadunk L-beli elemeket, amelyeket annak alapján választunk ki,

hogy lokális optimumot biztosítanak. Ezek az elemek azok, amelyek a legtöbbet ígérők az

aktuális lépésben, és amelyek megfelelnek a feladatnak az adott pillanatban.

 Ez az algoritmus a stratégia mohó jellegének következtében kapta a greedy (mohó) elneve-

zést. Mivel a stratégia egy helyi optimum kiválasztására épül, nem biztosítja a megoldás glo-

bális optimalitását, tehát nem mindig határozza meg a legjobb megoldást. Nem lehetünk

biztosak a megoldásban, de ha sikerül bebizonyítani, hogy az adott feladat esetében a mohó

algoritmus optimumot határoz meg, akkor biztonságosan alkalmazható. Ugyanakkor, a

módszert olyankor is alkalmazhatjuk, amikor a feladat pontos megoldását csak exponenciális

algoritmussal tudjuk megadni, de ilyenkor számításba vesszük, hogy az eredmény közelítő

érték. Ilyenkor heurisztikus mohó algoritmusról beszélünk.

 Legyen az L halmaz, amelyet az {a1, a2, ..., an} sorozat tartalmaz, és T egy tulajdonság,

amelyet az L részhalmazaira definiáltunk: T: T(L) → {0, 1}, ahol T(∅) = 1 (igaz, vagyis

teljesül T). Ha T(X) = 1, akkor ⇒ T(Y) = 1, bármely Y ⊂ X részhalmaz esetében. Egy S ⊂ L

részhalmazt eredménynek nevezünk, ha T(S) = 1. Minden lehetséges eredményből azt

szeretnénk kiválasztani, amely optimalizálja a T: T(L) → R adott függvényt. A mohó

algoritmus nem generál minden lehetséges részhalmazt (ami exponenciális végrehajtási

időhöz vezetne), hanem megpróbál közvetlenül az optimális megoldás felé haladni.

 A módszer egyszerű, a programok gyorsak, még nagyméretű adathalmazok esetében is. Az

egyszerűség abban áll, hogy minden pillanatban, csak az adott kontextusnak megfelelő részfe-

ladatot tekintjük. A módszer különbözik a backtracking (visszalépéses keresés) módszertől

mivel, ha egy elemről kiderül, hogy hiába volt sokat ígérő, akkor nem kerül be a megoldásba

és soha nem térünk vissza ehhez az elemhez. Fordítva, ha egy elem bekerült egy adott

pillanatban egy megoldásba, nem fogjuk kivenni onnan.

1.7.1. A mohó algoritmus általános bemutatása

 A módszer általános alakjának két változata ismeretes. A feladat megoldását az M halmaz

tartalmazza, a megoldásokat az L – lehetséges megoldások halmazából – válogatjuk:

Algoritmus Greedy_1(L, M):

 M  ∅

1. FEJEZET. ALGORITMUSOK ÉS PROGRAMOZÁS 49

 Amíg M nem megoldás és L ≠ ∅ végezd el:

 Választ(L, x) { kiválasztjuk a legtöbbet ígérő elemet L-ből }

 L  L\{x} { töröljük a legtöbbet ígérő elemet L-ből }

 Ha T(M ∪ {x}) = 1 akkor { ha lehetséges x-et betenni a megoldásba }

 M  M ∪ {x} { ezt hozzáadjuk M-hez }

 vége(ha)

 vége(amíg)

Vége(algoritmus)

Megjegyzések

1. Ha a kiválasztott elemet töröljük L-ből, akkor biztosítottuk az algoritmus számára, hogy L

minden elemét csak egyszer dolgozzuk fel (töröljük, függetlenül attól, hogy betesszük az

eredménybe vagy sem).

2. Mivel a bemeneti adatoktól függően nem mindig találunk eredményt, a hívó

programegységben meg kell vizsgálnunk, hogy az M halmaz valóban eredmény-e: az ilyen

típusú feladatok megoldása során gyakran bizonyul előnyösnek, ha a tulajdonképpeni

feldolgozás előtt előbb rendezzük a feldolgozandó adatokat (az L halmazt).

 A rendezett sorozat elemeit ({a1, a2, ..., an}) egymás után vizsgáljuk és a követelményektől

függően betesszük az eredménybe vagy sem (nincs szükség ezek törlésére L-ből, mivel egy

megvizsgált elemhez nem térhetünk vissza, hiszen a rendezett sorozat elemeit rendre

dolgozzuk fel). Az algoritmus ebben a változatban a következő:

Algoritmus Greedy_2(n, a, M):

 Feldolgoz(n, a) { ez a feldolgozás gyakran rendezés }

 M  ∅

 i  1

 Amíg M nem megoldás és (i ≤ n) végezd el:

 Ha T(M ∪ {ai}) = 1 akkor { ha lehetséges }

 M  M ∪ {ai} { ai-t hozzáadjuk M-hez }

 vége(ha)

 i  i + 1

 vége(amíg)

Vége(algoritmus)

 A fenti algoritmusok lineárisak (eltekintve a Választ(L, x) és a Feldolgoz(n, a)

algoritmusok bonyolultságától). A tulajdonképpeni nehézséget a Választ(L, x), valamint a

Feldolgoz(n, a) jelenti, mivel ezekbe „rejtjük” el a célfüggvényt.

1.7.2. Megoldott feladatok

1. Összeg

 Adott egy n elemű, valós számokból álló sorozat. Határozzuk meg az adott sorozat azon

részsorozatát, amelynek összege a lehető legnagyobb.

Megoldás

 Alkalmazzuk a Greedy_1(L, n) algoritmust, ahol a Választ(L, x) alprogramnak megfelelően

az adott sorozatból kiválasztjuk a szigorúan pozitív elemeket. Ezúttal könnyű belátni, hogy az

algoritmus garantáltan maximális összegű részsorozatot határoz meg, hiszen, ha az összeghez

50 1. FEJEZET. ALGORITMUSOK ÉS PROGRAMOZÁS

hozzáadnánk egy negatív értéket, akkor az kisebbé válna. Ha egy 0 értékű elemet adunk az

összeghez, az nem változik. Ebből az észrevételből következik, hogy, ha a sorozat tartalmaz 0

értékeket is, akkor több megoldás is létezik.

Algoritmus Összeg(n, a, k, pozitívak):

 k  0 { Bemeneti adatok: n, a. Kimeneti adatok: k, pozitívak }

 Minden i = 1, n végezd el:

 Ha ai > 0 akkor

 k  k + 1

 pozitívakk  ai

 vége(ha)

 vége(minden)

Vége(algoritmus)

2. Az átlagos várakozási idő minimalizálása

 Egy ügyvédi irodába egyszerre érkezik n személy, akiknek az intéznivalóit az ügyvéd

ismeri, és így azt is tudja, hogy egy-egy személlyel hány percet fog eltölteni. Állapítsuk meg

azt a sorrendet, amelyben fogadnia kellene a személyeket ahhoz, hogy az átlagos várakozási

idő minimális legyen.

Megoldás

 Az átlagos várakozási idő az n személy várakozási idejének számtani középarányosa, tehát

az átlagos várakozási idő csökkentése a várakozási idők összegének csökkentését jelenti. A

minimális várakozási időösszeget a személyekkel való tárgyalási idők növekvő sorrendben

való rendezése eredményezi. Dacára annak, hogy ez természetesnek tűnik, be kell

bizonyítanunk, hogy a mohó algoritmus jó megoldási módszer.

 A mohó algoritmus alkalmazása optimális eredményt biztosít. Ahhoz, hogy minimalizáljuk

az átlagos várakozási időt, minimalizálnunk kell a várakozási idők összegét. Egy személy

addig várakozik, amíg az összes előtte fogadott személlyel tárgyal az ügyvéd. Ha csak két

személy érkezett volna az irodába, akkor az lenne előnyösebb (az átlagos várakozási idő

szempontjából), ha előbb a kevesebb időt igénylő személlyel tárgyalna az ügyvéd. Az

eredmény tehát a személyek sorszámainak egy olyan permutációja, amelynek megfelelően az

ügyvéd minden lépésben a legkevesebb időt igénylő személyt fogadja: M = (k1, k2, ..., kn) ∈ {(x1,

x2, ..., xn) | xi ∈ {1, 2, ..., n}, xi ≠ xj ∀ i, j = 1, 2, ..., n, i ≠ j}.

 Az L eredetileg az {1, 2, ..., n} halmaz. A legtöbbet ígérő x elem az L-ből annak a

személynek a sorszáma, akinek a fogadási ideje minimális azok között, akik még az L-hez

tartoznak. Ezt hozzáadjuk az M-hez és kizárjuk az L-ből. Ebben a megközelítésben az x

kizárását az L-ből úgy valósítjuk meg, hogy 0 értéket másolunk rá. Minden lépésnél csak 0-tól

különböző értéket választunk az L-ből.

 Ettől eltérően, a következő algoritmus előbb inicializálja az M halmazt az 1, 2, ..., n sorszá-

mokkal, és növekvő sorrendbe rendezi az idők t1, t2, ..., tn sorozatát, megfelelően módosítva az

M halmaz elemeit. A rendezés után: M = k1, k2, ..., kn és t1 ≤ t2 ≤ ... ≤ tn. A kiírást az M

halmazban található indexpermutáció alapján végezzük.

Algoritmus Sorrend(n, t, M, átlag):

 { Bemeneti adatok: n, t, M. Kimeneti adatok: átlag, M }

1. FEJEZET. ALGORITMUSOK ÉS PROGRAMOZÁS 51

 Minden i = 1, n végezd el:

 Mi  i

 vége(minden)

 növekvőSorrendbeRendezés(n, M, t)

 { növekvően rendezzük a t sorozatot és módosítjuk az M-et is }

 minVárakozásiIdő  0

 várakozásiIdő  0

 Minden i = 1, n-1 végezd el:

 várakozásiIdő  várakozásiIdő + ti { a t sorozat már növekvően rendezett }

 minVárakozásiIdő  minVárakozásiIdő + várakozásiIdő

 vége(minden)

 átlag  minVárakozásiIdő / n

Vége(algoritmus)

3. Buszmegállók

 Egy közszállítási vállalat olyan gyorsjáratot szeretne indítani, amely csak a város főutcáján

közlekedne, és a már létező n megálló közül használna néhányat. Ezeket a megállókat úgy

kell kiválasztanunk, hogy két megálló között a távolság legkevesebb x méter legyen

(gyorsjáratról van szó), és a megállók száma legyen a lehető legnagyobb (minél több utas

használhassa). Adott a főutcán már meglevő egymás után található megállók közti távolságok

sorozata.

Megoldás

 Az L halmazt a létező megállók sorszámai alkotják: L = {1, 2, …, n}. Ismerjük az n

megálló közötti n – 1 távolságot: a1, a2, …, an–1.

 Meg kell határoznunk azt a maximális elemszámú M ⊆ L részhalmazt (M = {i1, i2, …, ik}),

amelyben a sorszámok növekvő sorrendben követik egymást (a főutcán található megállóknak

egymás utáni sorszámaik vannak), és amelynek megfelelően bármely két kiválasztott megálló

között a távolság legkevesebb x méter (aj+1 – aj ≥ x, j = 1, 2, …, k – 1).

Algoritmus Megállók(n, a, M):

 i  1 { Bemeneti adatok: n, a. Kimeneti adat: M }

 M1  1

 távAzUtolsótól  0 { az eredménybe betett utolsó megállótól mért távolság }

 Minden j = 2, n végezd el:

 Ha aj-1 + távAzUtolsótól ≥ x akkor

 i  i + 1

 Mi  j

 távAzUtolsótól  0

 különben

 távAzUtolsótól  távAzUtolsótól + aj-1

 vége(ha)

 vége(minden)

Vége(algoritmus)

52 1. FEJEZET. ALGORITMUSOK ÉS PROGRAMOZÁS

 Látható, hogy az első megállót betettük a megoldásba, majd megkerestük azt a megállót,

amelyik megfelelő távol található az elsőtől. Ha találtunk ilyent, betettük a megoldásba. Ezt

addig folytattuk, amíg bejártuk az összes, már létező megállót.

4. Autó bérbeadása

 Egy szállítási vállalat autókat kölcsönöz. Egy bizonyos jármű iránt igen nagy az

érdeklődés, ezért az igényeket egy évre előre jegyzik. Az igényt két számmal jelöljük,

amelyek az év azon napjainak sorszámait jelölik, amellyel kezdődően, illetve végződően

igénylik az illető autót. Állapítsuk meg a bérbeadást úgy, hogy a lehető legtöbb személyt

szolgáljuk ki. Adott a személyek száma n, (n ≤ 100) és az igényelt intervallumok (ai, bi, i = 1,

2, ..., n, ai < bi ≤ 365). Határozzuk meg a maximálisan kiszolgálható személyek számát és a

bérbeadási időintervallumokat.

Megoldás

 A következő algoritmusban L = {2, 3, ..., n}. M kezdőértéke {1} (az első igény – a

minimális b1 – mindig része lesz a megoldásnak, amelyet a greedy stratégia biztosít). Az L

halmazt az algoritmus Minden típusú struktúrával számítja ki, amelyben sorra veszi a bi

szerint rendezett igényléseket.

Algoritmus AutóKölcsönzés(n, a, b, max, M):

 növekvőSorrendbeRendezés(n, a, b)

 M1  1 { Bemeneti adatok: n, a, b. Kimeneti adat: max, M }

 max  1

 Minden i = 2, n végezd el:

 j  Mmax

 Ha ai > bj akkor

 max  max + 1

 Mmax  i

 vége(ha)

 vége(minden)

Vége(algoritmus)

5. Hátizsák

 Egy tolvaj betört egy hentesüzletbe, ahol n áru közül válogat. Minden árunak ismeri a

súlyát és az értékét. Mivel a hátizsákjába legtöbb S súly fér, szeretne úgy válogatni, hogy a

nyeresége maximális legyen. Ha egy áru nem fér be egészében a hátizsákba, a tolvaj levághat

belőle egy akkora darabot, amekkora befér a hátizsákba, de ebben az esetben az áru értéke a

súlyával arányosan csökken.

Megoldás

 A feladat a szakirodalomban „töredékes hátizsák” vagy „folytonos hátizsák” elnevezés

alatt ismeretes.

1. FEJEZET. ALGORITMUSOK ÉS PROGRAMOZÁS 53

 Észrevehető, hogy mivel meg volt engedve, hogy levághatunk az árukból, a hátizsák

teljesen megtölthető, és ha minden lépésben azt az árut választjuk, amelynek az érték/súly

aránya maximális, akkor a hátizsákba csomagolt árumennyiség összértéke is maximális lesz.

 Bevezetjük a következő jelöléseket: Az eredmény az x = (x1, …, xn) sorozat lesz, ahol xi ∈

[0, 1], i = 1, 2, ..., n azt fejezi ki, hogy az i-edik árunak mekkora darabját csomagoljuk be.

Ezen kívül: súly1 ⋅ x1 + súly2 ⋅ x2 + ... + súlyn ⋅ xn ≤ S. Az optimális eredmény az, amely

maximalizálja az f(x) = érték1 ⋅ x1 + érték2 ⋅ x2 + ... + értékn ⋅ xn függvényt.

Abban a sajátos esetben, amikor minden árut be lehet csomagolni a hátizsákba, x = (1, 1, ...,

1). Ezért a továbbiakban feltételezzük, hogy súly1 + ... + súlyn > S.

 A greedy stratégiának megfelelően, az árukat az erték/súly arány szerint csökkenő

sorrendbe rendezzük. Az árukat ebben a sorrendben csomagoljuk a hátizsákba, amíg az meg

nem telik. Ha egy áru nem fér a hátizsákba, levágunk belőle egy akkora darabot, amely befér.

Algoritmus Hátizsák(n, S, súly, érték, sorszám, x):

 csökkenőSorrendbeRendezés(n, súly, érték, sorszám)

 Hely  S { Hely a hátizsákban még szabad helyet jelöli }

 i  1

 Amíg (i ≤ n) és (Hely > 0) végezd el:

 Ha súlyi ≤ Hely akkor

 xi  1

 Hely  Hely - súlyi

 különben

 xi  Hely / súlyi

 Hely  0

 Minden j = i+1, n végezd el:

 xj  0

 vége(minden)

 vége(ha)

 i ← i + 1

 vége(amíg)

Vége(algoritmus)

 Az algoritmus végrehajtásának eredménye az x sorozat: x = (1, ..., 1, xj, 0, ..., 0) ahol xj ∈ [0, 1).

Ennek alapján kiírhatjuk a becsomagolt áruk eredeti sorszámait és a hátizsák tartalmának ér-

tékét.

 De most is, mint minden mohó algoritmus esetében, be kell bizonyítanunk, hogy az algorit-

mus optimális eredményt határoz meg.

54

2. fejezet

Objektumorientált
programozás

2.1. Objektumorientált fogalmak

2.1.1. Adatvédelem moduláris programozással

Az eljárásközpontú programozás keretében a kódot igyekszünk eljárásokra és függ-
vényekre bontani. A C és a C++ programozási nyelvekben az eljárásokat és függvé-
nyeket egyetlen névvel jellemezzük. Mindkét esetben függvényekről beszélünk, de
megkülönböztetünk olyan függvényeket, amelyek visszatérítenek egy értéket és olya-
nokat, amelyek nem. Az eljárásoknak azok a függvények felelnek meg, amelyek nem
térítenek vissza semmit. Ebben az esetben a void kulcsszóval jelezzük a visszaadandó
érték típusának a hiányát.

A nagyobb alkalmazások írásakor felmerül annak a szükségessége, hogy az álta-
lunk használt adatok védelmét megvalósítsuk. Ez azt jelentené, hogy csak a függvé-
nyeknek egy részével lehessen hozzáférni az adatokhoz. Azért van erre szükség, mert
ez által jelentősen csökken a hibalehetőségek száma. Az adatok és a rájuk vonatkozó
függvények egyetlen egységet fognak képezni. Így az adatok módosítása csak ezekkel
a függvényekkel lesz megvalósítható, másokkal nem.

Az adatok védelmére már a C programozási nyelv is lehetőséget teremtett a modu-
láris programozás által. Ha egy állomány globális hatókörében, tehát a függvényeken,
osztályokon és névtereken kívül, egy statikus változót vezetünk be, akkor ezt a változót
a deklaráció helyétől az illető állomány (modul) végéig bármely függvényben használ-
hatjuk. Ezzel ellentétben viszont más állományban még akkor sem tudunk hivatkozni
az illető változóra, ha abban egy extern típusú deklarációt helyezünk el.

A továbbiakban egy olyan példát ismertetünk, amely az adatok védelmét a modu-
láris programozás segítségével teszi lehetővé. Egy egész elemekből álló vektorokra
vonatkozó modult hozunk létre. A vektor elemeit egy int típusra hivatkozó mutató se-
gítségével tároljuk. Meg kell adnunk a vektor méretét is, tehát az elemek számát. Ezt a
két adatot a függvényeken kívül deklarált statikus változókkal vezetjük be. Az adatok

55

56 2. FEJEZET. OBJEKTUMORIENTÁLT PROGRAMOZÁS

feldolgozását a következő négy függvénnyel végezzük: epit, felszabadit, negyzetre és
kiir. Az első függvény egy egész elemekből álló tömb és egy egész szám (a méret)
segítségével létrehozza a vektort. Ha a vektorra már nincs szükség, a második függ-
vénnyel szabadíthatjuk fel a lefoglalt memóriaterületet. A negyzetre függvény a vektor
összes elemét négyzetre emeli, és az utolsó függvény kiírja az elemeket. Az alábbi
állományban mutatjuk be ennek a modulnak egy lehetséges megvalósítását.

2.1. kódszöveg. A vektor modul.
#include <iostream>1

using namespace std;2

static int* elem;3

static int meret;4

void epit(int* az_elem, int a_meret)5

{6

meret = a_meret;7

elem = new int[meret];8

for(int i = 0; i < meret; i++)9

elem[i] = az_elem[i];10

}11

void felszabadit()12

{13

delete [] elem;14

}15

void negyzetre()16

{17

for(int i = 0; i < meret; i++)18

elem[i] *= elem[i];19

}20

void kiir()21

{22

for(int i = 0; i < meret; i++)23

cout << elem[i] << ’ ’;24

cout << endl;25

}26

Egy külön állományba helyezzük a fő függvényt. Ez a következő lehet:

2.2. kódszöveg. A fő függvényt tartalmazó állomány.
void epit(int*, int);1

void felszabadit();2

void negyzetre();3

void kiir();4

//extern int* elem;5

void main()6

{7

int x[] = {1, 2, 3, 4, 5};8

epit(x, 5);9

negyzetre();10

kiir();11

felszabadit();12

2.1. OBJEKTUMORIENTÁLT FOGALMAK 57

int y[] = {1, 2, 3, 4, 5, 6};13

epit(y, 6);14

//elem[1]=10;15

negyzetre();16

kiir();17

felszabadit();18

}19

Végrehajtva a programot az alábbi kimenetet kapjuk:

1 4 9 16 25
1 4 9 16 25 36

A vektor modul függvényeinek meghívása előtt a deklarációkat elhelyeztük a fő
függvényt tartalmazó állományban. A main függvényben előbb egy öt elemből álló x
vektorral, majd ezt követően egy hat elemből álló y vektorral végeztünk műveleteket.

Hangsúlyozzuk, hogy a vektor modul bevezetése nem tette lehetővé azt, hogy egy-
szerre két vektorral tudjunk dolgozni. Például nem tudunk olyan vektorokra vonatko-
zó műveletet értelmezni, mint az összeadás, amelyben egyszerre több vektorra volna
szükség. Figyeljük meg, hogy az x vektor által lefoglalt memóriaterületet fel kellett
szabadítani még mielőtt az y vektort létrehoztuk volna. Ez egy nagy hátránya ennek a
megközelítésnek, éppen ezért a következő pontban azt fogjuk vizsgálni, hogy milyen
módon tudunk egy olyan saját adattípust létrehozni, amely megengedi, hogy egyszerre
több példánnyal dolgozzunk. Ugyanakkor viszont nem szeretnénk lemondani a védett-
ségről sem, és ez által jutunk el az osztály (§2.1.3) fogalmának a bevezetéséhez.

Vegyük észre ugyanakkor azt is, hogy a vektor modul valóban biztosítja az adatok
védelmét. Ha a vektort az elem mutató segítségével direkt módon próbáljuk módo-
sítani, a 15. sorból eltávolítva a megjegyzés jelét, akkor fordítási hibát kapunk. Ha
ugyanezt megtesszük az 5. sorban, ez által elhelyezve egy extern típusú deklarációt a
kódban, akkor ez az állomány önmagában lefordítható lesz, viszont a szerkesztéskor
jelez hibát a rendszer. Ahhoz, hogy ez a hiba se jelenjen meg, el kell távolítanunk a
static kulcsszót a 2.1. kódszöveg 3. sorából. Ekkor már valóban módosítható lesz az
illető elem, de ez pontosan azt jelenti, hogy nincs védettség. Futtatáskor a kimenet így
módosul:

1 4 9 16 25
1 100 9 16 25 36

Levonhatjuk tehát a következtetést, hogy a moduláris programozás esetén a védett-
séget valóban a statikus változók valósítják meg.

A moduláris programozás módszerét az adatok védelmén kívül adatrejtésre is hasz-
nálhatjuk. Ennek lényege az, hogy a felhasználó csak azt a felületet kell ismerje, amin
keresztül feldolgozhatóak az adatok.

2.1.2. Absztrakt adattípusok
Az előző pontban egy példát adtunk a védettség megvalósítására moduláris prog-

ramozással. Megállapítottuk, hogy az adatoknak és függvényeknek ilyen jellegű meg-
adása nem tette lehetővé azt, hogy egyszerre több példánnyal, például két vektorral,

58 2. FEJEZET. OBJEKTUMORIENTÁLT PROGRAMOZÁS

dolgozzunk. Ezért szükségszerűen jelenik meg az az igény, hogy az adatokat és függ-
vényeket, egy különálló modulhoz hasonlóan, továbbra is egyetlen egységben tároljuk,
de legyen lehetőség arra is, hogy több példányt hozzunk létre.

Természetszerűen merül fel az a lehetőség, hogy a hagyományos struktúra rendel-
tetésének a kiterjesztése által próbáljuk meg elérni a célunkat. A C++ programozási
nyelvben egy struktúrán belül a hagyományos adatokon kívül elhelyezhetünk függ-
vénydeklarációkat, illetve definíciókat is. Ilyen módon egy új típust vezetünk be, amit
gyakran absztrakt adattípusnak (elvont adattípusnak, vagy felhasználói típusnak) ne-
vezünk. Tekintsük az alábbi taxi elvont adattípusra vonatkozó forráskódot.

2.3. kódszöveg. A Taxi felhasználói típus.
#include <iostream>1

using namespace std;2

struct Taxi {3

int fizetni;4

int indulas_ar;5

int menet_ar;6

int varakozas_ar;7

bool van_utas;8

void Kezdes();9

bool Beul();10

int Kiszall();11

void Megy(int km);12

void All(int perc);13

};14

void Taxi::Kezdes()15

{16

indulas_ar = 10;17

menet_ar = 10;18

varakozas_ar = 3;19

fizetni = 0;20

van_utas = false;21

}22

bool Taxi::Beul()23

{24

if (van_utas) return false;25

van_utas = true;26

fizetni = indulas_ar;27

return true;28

}29

int Taxi::Kiszall()30

{31

if (!van_utas) return 0;32

van_utas = false;33

return fizetni;34

}35

void Taxi::Megy(int km)36

{37

if (van_utas)38

2.1. OBJEKTUMORIENTÁLT FOGALMAK 59

fizetni += menet_ar * km;39

}40

void Taxi::All(int perc)41

{42

if (van_utas)43

fizetni += varakozas_ar * perc;44

}45

void main()46

{47

Taxi t1, t2;48

t1.Kezdes();49

t2.Kezdes();50

t1.Beul();51

t1.Megy(4);52

t2.Beul();53

t1.All(3);54

t2.Megy(6);55

t1.Megy(5);56

cout << "t1-nek fizetni: ";57

cout << t1.Kiszall() << endl;58

cout << "t2-nek fizetni: ";59

// t2.fizetni = 500;60

cout << t2.Kiszall() << endl;61

}62

A program kimenete a következő lesz:

t1-nek fizetni: 109
t2-nek fizetni: 70

Megjegyezzük, hogy a 2.3. kódszöveg 3-14 soraiban bevezetett struktúra az adato-
kon kívül függvénydeklarációkat is tartalmaz. Az elvont adattípusokon belül megadott
adatokat adattagoknak, a függvényeket pedig tagfüggvényeknek nevezzük. A tagfügg-
vényekre az adattagokhoz hasonlóan a tagkiválasztó operátorral (a pont operátor), il-
letve a struktúra-mutató operátorral (a −> operátor) hivatkozhatunk.

A struktúrán belül elhelyezhetünk függvénydefiníciókat is, de ez általában csak a
nagyon egyszerű függvények esetén ajánlott. Ha egy függvény definíciója a struktúrán
belül van, akkor inline függvényként kezeli a rendszer. Ha csak a függvény deklarációja
kerül a struktúra belsejébe, akkor a definíciót, a névterekhez hasonló módon, úgy adjuk
meg, hogy a függvény nevét a struktúra neve és a hatókör operátor előzi meg.

A 2.3. kódszöveg fő függvényéből, illetve a program kimenetéből egyértelműen
levonható az a következtetés, hogy a Taxi adatszerkezetnek egyszerre több példányával
tudunk műveleteket végezni. Az adatok védelme azonban nem valósul meg ebben az
esetben. Meggyőződhetünk erről, ha a 60. sorból eltávolítjuk a megjegyzés jelét, és
úgy fordítjuk le a kódot. A kimenet a következő lesz:

t1-nek fizetni: 109
t2-nek fizetni: 500

60 2. FEJEZET. OBJEKTUMORIENTÁLT PROGRAMOZÁS

Tehát a fizetendő összeg módosítható direkt módon, függvénymeghívás nélkül. Ez
azt jelenti, hogy nincs biztosítva az adatok védelme. A következő pontban azt vizsgál-
juk meg, hogy az absztrakt adattípus fogalma hogyan terjeszthető ki úgy, hogy lehető-
séget teremtsen az adatvédelemre.

2.1.3. Osztálydeklaráció

Az előző pontban megállapítottuk, hogy a felhasználói típus bevezetése lehetővé
teszi azt, hogy az adatszerkezetnek egyszerre több példányával tudjunk műveleteket
végezni. Ugyanakkor, az adatvédelem nem valósul meg egyszerűen az által, hogy
adatokat és függvényeket egyetlen struktúra részeként adunk meg. Annak érdekében,
hogy ezt a hiányosságot kiküszöböljék, bevezették az osztály fogalmát.

Az osztály egy olyan absztrakt adattípus, amely lehetőséget teremt az adattagok
és tagfüggvények védelmére. Az osztálydeklaráció az előző pontban ismertetett fel-
használói típus bevezetéséhez hasonló, azzal a különbséggel, hogy a struct kulcsszót a
class (osztály) fogja helyettesíteni. Az osztály tagjaira való hivatkozás a tagkiválasztó
operátorral, illetve a struktúra-mutató operátorral történhet, ugyanúgy mint az egyszerű
struktúrák, vagy az előző pontban ismertetett elvont adattípusok esetén. Ezt a kérdést
a §2.1.4. pontban tárgyaljuk részletesebben.

Mivel az osztály egy felhasználói típus, fontos különbséget tennünk maga az osz-
tály, és ennek példányai között. Egy osztály példányait objektumoknak nevezzük. Tehát
az objektum általában egy változó, amelynek a típusát az osztálya határozza meg.

Azok a függvénydefiníciók, amelyek az osztályon belül vannak inline függvényt
eredményeznek ugyanúgy, mint az előző pontban bevezetett felhasználói típusok ese-
tén. Az osztályon kívül elhelyezett függvénydefiníciók is hasonlóak lesznek, tehát az
osztály nevét és a hatókör operátort írjuk a függvénynév elé.

Egy osztályon belül a tagok védelme az elérhetőség szabályozása által valósul meg.
Az adattagok és tagfüggvények elérhetőségét a private (privát), protected (védett) és
public (nyilvános) kulcsszavakkal szabályozhatjuk. Mivel a tagok elérhetőségét változ-
tathatják meg, hozzáférés módosítóknak is nevezzük őket. A hozzáférés módosítókat
mint címkéket használjuk, azaz mindig kettőspont követi őket. Az így kapott címkék
több részre osztják az osztály törzsét, ez által szabályozva azt, hogy melyek a nyil-
vános, védett, illetve privát tagok. Például a public címkét követő összes adattag és
tagfüggvény nyilvános lesz, egészen a következő címkéig. Jegyezzük meg azt is, hogy
osztályok esetén alapértelmezés szerint a tagok privát elérhetőségűek.

A nyilvános tagok elérhetősége nincs korlátozva. Ezeket tetszőleges függvényben
használhatjuk, ahol az illető osztály egy példányával dolgozunk. A privát és védett
tagok elérhetősége korlátozott. Egyelőre nem teszünk különbséget köztük, csak később
az alosztályok (§2.2.2) tanulmányozásakor foglalkozunk ezzel a kérdéssel.

Az objektumokra épülő programozás egyik alapelve az, hogy a nem nyilvános ta-
gokat csak az illető osztály tagfüggvényeiben lehet elérni. Ez a szigorú követelmény
bizonyos fokig enyhítve van a C++ programozási nyelvben. Enek megfelelően a privát
és védett tagok elérhetősége az illető osztály tagfüggvényeire és barát (friend) függ-
vényeire korlátozódik. A barát függvény nem tagfüggvénye az illető osztálynak, de
ennek ellenére megengedjük, hogy hozzáférjen a privát és védett tagokhoz. Az előbb

2.1. OBJEKTUMORIENTÁLT FOGALMAK 61

említett alapelvet figyelembe véve megállapíthatjuk, hogy ajánlott a barát függvények
számát a minimálisra csökkenteni.

Az osztályok létrehozásakor mindig egy sajátos tagfüggvényt hív meg a rendszer,
amit konstruktornak nevezünk. Általában ezt a függvényt használjuk arra, hogy az
adattagokat kezdeti értékkel lássuk el. A C++ nyelvben a konstruktor neve mindig
megegyezik az osztály nevével, de a függvénynevek túlterhelése lehetővé teszi, hogy
egy osztály több konstruktorral rendelkezzen. A konstruktorokkal a §2.1.5. pontban
foglalkozunk részletesebben.

Az objektum létrehozása a hagyományos változók bevezetéséhez hasonló, tehát
előbb az osztály nevét kell megadni, ami egy típusnév, és ezt követően az objektum
nevét. Ha egyszerre több objektumot szeretnénk létrehozni, akkor ezeket vesszővel
választhatjuk el. Mivel minden egyes új objektum egy konstruktormeghívást is jelent,
ezért a deklaráláskor az objektumnév után kerek zárójelben meg kell adni a konstruktor
aktuális paramétereit is.

Jegyezzük meg, hogy az előző pontban bevezetett struct kulcsszóval jellemzett
felhasználói típus is tulajdonképpen egy osztály, tehát használhatók az elérhetőséget
szabályozó címkék. A lényeges különbség az, hogy a struct kulcsszó esetén a tagok
alapértelmezett elérhetősége nyilvános, míg a class esetén privát.

2.1.4. A tagokra való hivatkozás és a this mutató
Az előző pontokban láttuk, hogy egy felhasználói típus tagjaira való hivatkozást a

tagkiválasztó, illetve a struktúra-mutató operátorral (a . és −> operátorok) végezhet-
jük. A struktúra-mutató operátort akkor kell használni, ha egy objektumra hivatkozó
mutatóval rendelkezünk, ellenkező esetben a tagkiválasztó operátorral dolgozunk.

A továbbiakban moduláris programozás (§2.1.1) esetén ismertetett 2.1. kódszö-
veget módosítjuk úgy, hogy osztályokra vonatkozzon, majd ezt követően vizsgáljuk a
tagokra való hivatkozást.

2.4. kódszöveg. A vektor osztály.
#include <iostream>1

using namespace std;2

class vektor {3

public:4

vektor(int* az_elem, int a_meret);5

∼vektor() { delete [] elem; }6

void negyzetre();7

void kiir();8

private:9

int* elem;10

int meret;11

};12

vektor::vektor(int* az_elem, int a_meret)13

{14

meret = a_meret;15

elem = new int[meret];16

for(int i = 0; i < meret; i++)17

62 2. FEJEZET. OBJEKTUMORIENTÁLT PROGRAMOZÁS

elem[i] = az_elem[i];18

}19

void vektor::negyzetre()20

{21

for(int i = 0; i < meret; i++)22

elem[i] *= elem[i];23

}24

void vektor::kiir()25

{26

for(int i = 0; i < meret; i++)27

cout << elem[i] << ’ ’;28

cout << endl;29

}30

void main()31

{32

int x[] = {1, 3, 5, 7, 9};33

vektor v(x, 5);34

vektor *p = &v;35

v.kiir();36

p->negyzetre();37

p->kiir();38

v.kiir();39

}40

A fenti kódszöveg fő függvényében előbb a v vektort vezettük be, majd a p muta-
tót, amely a v vektorra hivatkozik. Ez azt is jelenti, hogy a p segítségével előidézett
változtatások a v vektorban is tükröződnek. Valóban a kimenet a következő lesz:

1 3 5 7 9
1 9 25 49 81
1 9 25 49 81

Tehát az elemenként négyzetreemelt vektor jelenik meg kétszer a képernyőn. Fi-
gyeljük meg, hogy a v esetén a tagkiválasztó operátort, a p esetén pedig a struktúra-
mutató operátort használtuk.

Figyeljük meg, hogy a tagfüggvények belsejében direkt módon hivatkozhatunk az
osztály tagjaira, nincs szükség tagkiválasztó, vagy struktúra-mutató operátorra. Mégis,
felmerül a kérdés, hogy milyen módon azonosítja a rendszer az illető adattagot, tudva
azt, hogy egy osztálynak több objektumát is létrehoztuk. A megoldás a this mutató
használatában rejlik, mivel a tagfüggvények belsejében a tagokra való hivatkozás ezzel
a mutatóval történik.

Pontosabban arról van szó, hogy minden egyes objektumon belül a rendszer létre-
hozza a this mutatót, amely az aktuális objektumra mutat. Például a 2.4. kódszöveg fő
függvényében bevezetett v objektum esetén a this ennek az objektumnak a címe. Ha
pedig az ugyanott definiált p mutatót tekintjük, akkor a this megegyezik p-vel.

Ennek alapján már könnyen azonosíthatóak a különböző objektumok tagjai. Az
illető osztály tagfüggvényeiben a rendszer egyszerűen elvégez egy helyettesítést, azaz
minden tag helyett this->tag lesz. Például a 2.4. kódszöveg negyzetre tagfüggvénye
így alakul:

2.1. OBJEKTUMORIENTÁLT FOGALMAK 63

void vektor::negyzetre()
{

for(int i = 0; i < this->meret; i++)
this->elem[i] *= this->elem[i];

}

Hangsúlyozzuk, hogy nem kell mi megadjuk a fenti esetben a this mutatót, ezt auto-
matikusan elhelyezi a rendszer. Mégis, a this mutatót explicit módon is használhatjuk,
ha erre szükség van.

2.1.5. A konstruktor
Az előző pontok alapján tudjuk, hogy egy objektum létrehozását a konstruktorral

végezzük. Továbbá, a konstruktor neve meg kell egyezzen az osztály nevével. Mégis,
mivel a függvények túlterhelhetők, egy osztálynak több konstruktora is lehet, feltéve ha
a paraméterlisták különböznek. Fontos, hogy a konstruktor nem térít vissza értéket. A
konstruktor deklarációja nem tartalmazhat semmit a visszatérítendő típus helyén, még
a void kulcsszót sem.

Az alábbi példa több konstruktor együttes használatát szemlélteti. Egy olyan osz-
tályt hozunk létre, amely különböző személyek családnevét és keresztnevét tárolja.

2.5. kódszöveg. A szemely.h fejállomány.
#include <iostream>1

using namespace std;2

class szemely {3

char* cs_nev;4

char* sz_nev;5

public:6

szemely(); //alapértelmezett konstruktor7

szemely(char* cs_n, char* sz_n);8

szemely(const szemely& sz); // másoló konstruktor9

∼szemely();10

void kiir();11

};12

szemely::szemely() {13

cs_nev = new char[1];14

*cs_nev = 0; // 0 és ’\0’ ugyanaz15

sz_nev = new char[1];16

*sz_nev = 0;17

cout << "Alapertelmezett konstruktor\n";18

}19

szemely::szemely(char* cs_n, char* sz_n)20

{21

cs_nev = new char[strlen(cs_n)+1];22

sz_nev = new char[strlen(sz_n)+1];23

strcpy(cs_nev, cs_n);24

strcpy(sz_nev, sz_n);25

cout << "Hagyomanyos konstruktor\n";26

}27

64 2. FEJEZET. OBJEKTUMORIENTÁLT PROGRAMOZÁS

szemely::szemely(const szemely& x)28

{29

cs_nev = new char[strlen(x.cs_nev)+1];30

strcpy(cs_nev, x.cs_nev);31

sz_nev = new char[strlen(x.sz_nev)+1];32

strcpy(sz_nev, x.sz_nev);33

cout << "Masolo konstruktor\n";34

}35

szemely::∼szemely() {36

cout << "Destruktor\n";37

delete[] cs_nev;38

delete[] sz_nev;39

}40

void szemely::kiir() {41

if (strlen(cs_nev) > 0)42

cout << cs_nev << ’ ’ << sz_nev << endl;43

else44

cout << "Nincs adat\n";45

}46

Ez a forráskód három konstruktort tartalmaz. Ezek közül a 8. sorbeli konstruk-
tordeklarációt hagyományosnak tekinthetjük abban az értelemben, hogy az adattagok
(családnév és keresztnév) kezdeti értékkel való ellátását valósítja meg. Figyeljük meg,
hogy két sajátos konstruktor is szerepel a fenti kódban. Az egyik az alapértelmezett
konstruktor, vagy más néven alapértelmezés szerinti konstruktor, a másik a másoló
konstruktor.

Ha a konstruktor formális paramétereinek listája üres, akkor beszélünk alapértelme-
zett konstruktorról. Az alapértelmezés szerinti konstruktornak fontos szerepe van azok-
nak az objektumoknak a létrehozásában, amelyek nem rendelkeznek kezdeti értékeket
megadó aktuális paraméterekkel. Pontosabban, ha egy osztálynak van alapértelmezett
konstruktora, akkor létrehozható olyan objektum, amely nem tartalmaz inicializáló ak-
tuális paraméterekből álló listát. Ez akkor is lehetséges, ha olyan konstruktorunk van,
amelynek az összes formális paramétere kezdeti értékkel van ellátva. Tehát az ilyen
konstruktort is alapértelmezett konstruktornak nevezhetjük.

A konstruktorokon kívül a 2.5. kódszöveg tartalmaz egy sajátos tagfüggvényt, a
destruktort, melyet az objektumok megszűnésekor hív meg a rendszer.

Tekintsük a 2.5. kódszöveget felhasználó alábbi fő függvényt:

2.6. kódszöveg. A szemely osztály objektumainak létrehozása.
#include "szemely.h"1

void main() {2

szemely BF("Bolyai", "Farkas");3

BF.kiir();4

szemely *FGy = new szemely("Farkas","Gyula");5

FGy->kiir();6

szemely A; //alapértelmezett konstruktor7

A.kiir();8

szemely Gyula(*FGy); // masoló konstruktor9

Gyula.kiir();10

2.1. OBJEKTUMORIENTÁLT FOGALMAK 65

delete FGy;11

}12

Ennek a kódnak a kimenete a következő lesz:

Hagyomanyos konstruktor
Bolyai Farkas
Hagyomanyos konstruktor
Farkas Gyula
Alapertelmezett konstruktor
Nincs adat
Masolo konstruktor
Farkas Gyula
Destruktor
Destruktor
Destruktor
Destruktor

Megfigyelhetjük, hogy először a BF objektumot hoztuk létre a hagyományos konst-
ruktorral. Ezt követően a szabad tárban jön létre egy objektum, amelyre az FGy muta-
tóval hivatkozhatunk. Itt is a hagyományos konstruktort hívta meg a rendszer, mivel a
new operátor után az osztály nevet és, kerek zárójelben, az aktuális paraméterek listáját
adtuk meg. Az A objektumot az alpértelmezett, a Gyula objektumot pedig a másoló
konstruktorral hoztuk létre.

A alapértelmezett konstruktor mindkét adattagba az üres karakterláncot másolja.
Mivel ennek a hossza zéró, a kiir tagfüggvény a „Nincs adat” üzenetet jeleníti meg.
Feltételeztük, hogy ha a családnév üres, akkor a keresztnevet sem adtuk meg.

Egy osztályt úgy is deklarálhatunk, hogy nem adunk meg konstruktort. Jegyezzük
meg, hogy ha nincs, a programozó által bevezetett konstruktor, akkor a rendszer létre-
hoz egy alapértelmezett konstruktort, és ezt hívja meg minden alkalommal, amikor egy
új objektum keletkezik. Ez a konstruktor nem ad kezdeti értékeket az adattagoknak.

Ha a programozó létrehozott egy vagy több konstruktort, akkor a rendszer nem
generál alapértelmezett konstruktort. Ha ezen konstruktorok közül egyik sem alap-
értelmezett, és szeretnénk olyan objektumot létrehozni, amely nem tartalmaz aktuális
paraméterekből álló listát, akkor kötelesek vagyunk egy alapértelmezett konstruktort
definiálni.

A másoló konstruktor célja az, hogy egy objektumot kezdeti értékekkel lásson el
egy ugyanolyan típusú objektum segítségével. Általában az

osztálynév(const osztálynév & objektum);

alakban deklaráljuk, ahol a const kulcsszó arra utal, hogy a paraméterként megadott
objektum nem változik.

Ha a programozó nem definiál másoló konstruktort, akkor a rendszer létrehoz egy
másoló konstruktort, amely az adattagok bitenkénti másolását végzi. Ez azt jelenti,
hogy megfelelteti egymásnak a rendszer az adattagokat, majd a forrás adattag bitje-
it rendre átmásolja a cél adattagba. A bitenkénti másolás általában akkor ad helyes
eredményt, ha az osztálynak nincsen mutató típusú adattagja.

66 2. FEJEZET. OBJEKTUMORIENTÁLT PROGRAMOZÁS

Például a 2.5. és 2.6. kódszövegek esetén, ha nem definiáltunk volna másoló konst-
ruktort, akkor futási időben hibát észleltünk volna. Pontosabban, kétszer próbálta vol-
na meg felszabadítani ugyanazt a memóriaterületet a rendszer. Ennek a hibának az oka
abban rejlik, hogy a Gyula objektum létrehozásakor egy bitenkénti másolást végzett a
rendszer, tehát a *FGy objektum cs_nev és sz_nev adattagjait másolta át. Mivel mind-
két adattag értéke egy cím, ezért ezt a címet másoltuk át, tehát a Gyula objektum cs_nev
és sz_nev adattagjai ugyanarra a memóriaterületre fognak mutatni, ahova a *FGy ob-
jektum adattagjai. Ez viszont nem az, amit meg szerettünk volna tenni, mivel így, ha az
egyik objektum megszűnik, a másiknak is fel lesz szabadítva a memóriaterülete és for-
dítva. E helyett a másoló konstruktort terheltük túl, amely új memóriaterületet foglal
le, és erre másolja a családnevet és keresztnevet.

Jegyezzük meg, hogy a rendszer akkor hívja meg a másoló konstruktort, ha:

• ugyanolyan típusú objektummal adunk kezdőértéket;

• egy függvénynek a paramétere egy objektum;

• egy függvény objektumot térít vissza.

Ezért, ha van mutató típusú adattag, akkor a másoló konstruktort definiálnunk kell
akkor is, ha nincs szándékunkban a kezdőértékadást ugyanolyan típusú objektummal
végezni.

A 2.6. kódszövegben a new operátorral dinamikus módon hoztuk létre az egyik
objektumot. A new utáni típust követően kerek zárójelt használtunk, és ezen belül
adtuk meg a konstruktor aktuális paramétereit.

Lehetőség van arra, hogy egy osztály törzsében osztály típusú tagokat helyezzünk
el. A következő példa keretében azt vázoljuk fel, hogy ha egy osztályon belül n da-
rab különböző osztály típusú tagot helyezünk el, akkor hogyan alakul az illető osztály
konstruktora.

class oszt {
oszt_1 ob_1;
oszt_2 ob_2;
...
oszt_n ob_n;

};

Ebben az esetben az oszt osztály konstruktorának a fejléce a következőképpen ad-
ható meg:

oszt(argumentumlista) : objektumlista

az objektumlista pedig az

ob_1(arglista_1), ob_2(arglista_2), ..., ob_n(arglista_n)

alakú kell legyen. Természetesen, sem itt, sem az osztálydeklarációban a három pont
nem része a szintaxisnak, csak jelzi a folyatatást. Az argumentumlista az oszt osztály
konstruktorában a formális paraméterek listája. Továbbá, minden egyes i értékre 1-től
n-ig az arglista_i az ob_i osztály konstruktorában az aktuális paraméterek listája. Az

2.1. OBJEKTUMORIENTÁLT FOGALMAK 67

egyes objektumok aktuális paramétererei az argumentumlistából alkotott kifejezések
lesznek.

Jegyezzük meg, hogy az objektumlistából hiányoznak azok az objektumok, ame-
lyek nem rendelkeznek a programozó által bevezetett konstruktorral. Ezen kívül hiá-
nyozhatnak az objektumlistából azok az objektumok is, amelyekre az alapértelmezett
konstruktort szeretnénk meghívni.

Egy másik fontos észrevétel a következő. Ha egy osztálynak egyik adattagja egy
objektum, akkor először ennek az objektumnak a konstruktorát hívja meg a rendszer,
majd ezt követően lesz végrehajtva az osztály konstruktorának a törzse.

A továbbiakban a 2.5. kódszöveget úgy módosítjuk, hogy eltávolítjuk a konstruk-
torokból és a destruktorból a kiírásokat, vagyis a 18., 26., 34. és 37. sorokat töröljük.
Legyen az így kapott állomány neve szemely2.h. Ezt felhasználva a következő példa
házaspárok adatait tárolja, mégpedig úgy, hogy osztály típusú tagokat használ.

2.7. kódszöveg. Osztály típusú tagok.
#include "szemely2.h"1

class hazaspar {2

szemely ferj;3

szemely feleseg;4

public:5

hazaspar() // alapértelmezett konstruktor6

{7

}8

hazaspar(szemely& aferj, szemely& afeleseg);9

hazaspar(char* cs_ferj, char* sz_ferj,10

char* cs_feleseg, char* sz_feleseg):11

ferj(cs_ferj, sz_ferj), feleseg(cs_feleseg, sz_feleseg)12

{13

}14

void kiir();15

};16

inline hazaspar::hazaspar(szemely& aferj, szemely& afeleseg):17

ferj(aferj), feleseg(afeleseg)18

{19

}20

void hazaspar::kiir()21

{22

cout << "ferj: ";23

ferj.kiir();24

cout << "feleseg: ";25

feleseg.kiir();26

}27

void main() {28

szemely Ady("Ady","Endre");29

szemely Csinszka("Boncza","Berta");30

hazaspar Hpar(Ady, Csinszka);31

Hpar.kiir();32

hazaspar Petofi("Petofi", "Sandor", "Szendrei", "Julia");33

Petofi.kiir();34

68 2. FEJEZET. OBJEKTUMORIENTÁLT PROGRAMOZÁS

hazaspar XY;35

XY.kiir();36

}37

A program kimenete a következő lesz:

ferj: Ady Endre
feleseg: Boncza Berta
ferj: Petofi Sandor
feleseg: Szendrei Julia
ferj: Nincs adat
feleseg: Nincs adat

A 2.7. kódszöveg három konstruktorral rendelkezik. Az alapértelmezett konstruk-
tor definíciója is az osztályon belülre került, ezért ez helyben kifejtett függvény (inline
függvény) lesz. Mivel a konstruktor fejlécét úgy adtuk meg, hogy hiányzik a kettős-
pont, és az azt követő objektumlista, ezért ez a konstruktor az összes osztály típusú
tagnak az alapértelmezett konstruktorát hívja meg. Erre utal az is, hogy a fő függvény-
ben az XY objektum kiírásakor a „Nincs adat” üzenet jelenik meg.

A 9. sorban egy konstruktordeklaráció szerepel, a definíció most az osztályon kí-
vülre került. Mivel azt szeretnénk, hogy ez is helyben kifejtett függvény legyen az
inline minősítőt használjuk a függvénydefinícióban. Ez a konstruktor a személy osz-
tály másoló konstruktorával hozza létre a ferj és feleseg tagokat.

A harmadik konstruktor a családnevekkel és személynevekkel hozza létre az osz-
tály típusú tagokat. Ezért a szemely osztály hagyományos konstruktorát hívja meg a
rendszer mindkét adattagra.

2.1.6. A destruktor
Az eddigi pontok alapján tudjuk, hogy ha egy objektum megszűnik, akkor a rend-

szer automatikusan végrehajt egy sajátos tagfüggvényt, amit destruktornak nevezünk.
A továbbiakban részletesebben vizsgáljuk a destruktort.

A destruktor neve mindig a ∼ karakterrel kezdődik, és ez után az osztály neve
következik. A konstruktorhoz hasonlóan a destruktor sem térít vissza értéket, és még a
void típust sem szabad megadni a visszatérítendő érték típusaként.

Felmerül a kérdés, hogy mikor hívódnak meg az egyes destruktorok. Ez a hatókör-
től függ. Egy globális objektum destruktora a main függvény végén az exit függvény
részeként lesz végrehajtva. Ezért nem szabad az exit függvényt meghívni a destruktor-
ban, mivel ez végtelen ciklust eredményezhet.

Egy helyi objektum destruktorát akkor hívja meg a rendszer, ha annak a blokknak
a végére értünk, amelyben be volt vezetve.

Végül tekintsük azt az esetet is, amikor a new operátorral hoztunk létre a szabad
tárban egy objektumot. Ezeket dinamikus módon létrehozott objektumoknak is nevez-
zük. Ekkor a destruktort a delete operátoron keresztül hívja meg a rendszer. Valóban
ekkor lesz felszabadítva a new operátor által lefoglalt memóriaterület.

A továbbiakban egy olyan példa keretében szemléltetjük a destruktor működését,
amely minden esetben kiírja, hogy éppen mit végzett, azaz milyen konstruktort vagy
destruktort hívott meg. A kiírást most a printf függvénnyel végezzük.

2.1. OBJEKTUMORIENTÁLT FOGALMAK 69

2.8. kódszöveg. A destruktor.
#include <cstdio>1

#include <cstring>2

using namespace std;3

class kiiras {4

char* nev;5

public:6

kiiras(char* n);7

∼kiiras();8

};9

kiiras::kiiras(char* n)10

{11

nev = new char[strlen(n)+1];12

strcpy(nev, n);13

printf("Letrehoztam: %s\n", nev);14

}15

kiiras::∼kiiras()16

{17

printf("Felszabaditottam: %s\n", nev);18

delete nev;19

}20

void fuggv()21

{22

printf("Fuggvenymeghivas.\n");23

kiiras helyi("HELYI");24

}25

kiiras globalis("GLOBALIS");26

void main() {27

kiiras* dinamikus = new kiiras("DINAMIKUS");28

fuggv();29

printf("Folytatodik a fo fuggveny.\n");30

delete dinamikus;31

}32

Végrehajtva a programot, a következő kimenetet kapjuk:

Letrehoztam: GLOBALIS
Letrehoztam: DINAMIKUS
Fuggvenymeghivas.
Letrehoztam: HELYI
Felszabaditottam: HELYI
Folytatodik a fo fuggveny.
Felszabaditottam: DINAMIKUS
Felszabaditottam: GLOBALIS

A forráskódban egy kiiras nevű osztályt vezettünk be, és létrehoztuk ennek három
objektumát. Figyeljük meg, hogy a globális objektumot hozta először létre a rendszer,
ugyanakkor ennek a destruktora lesz utolsónak végrehajtva. A helyi objektum dest-
ruktora a függvényből való kilépéskor, a dinamikus objektumé pedig a delete operátor
részeként hívódik meg.

70 2. FEJEZET. OBJEKTUMORIENTÁLT PROGRAMOZÁS

2.2. Az objektumorientált programozási módszer

2.2.1. Elméleti alapok
Az objektum adattagokat és tagfüggvényeket tartalmaz. Ha nem használunk barát

függvényeket a védett tagok csak a tagfüggvényekben érhetők el. Ezt a tulajdonságot
egybezártságnak (zártságnak) nevezzük.

A gyakorlatban viszont nem csak különálló objektumokkal találkozunk. A külön-
böző objektumok közti kapcsolatok is fontosak. Egy osztály örökölheti egy másik
osztály tagjait. Az eredeti osztály neve alaposztály, vagy bázisosztály. Az örökléssel
létrehozott osztályt származtatott osztálynak nevezzük. Az adattagok, és a tagfüggvé-
nyek is öröklődnek. Ha egy osztály több alaposztállyal rendelkezik, akkor többszörös
öröklésről beszélünk. Az öröklés egy másik fontos tulajdonsága az objektumoknak.
Az objektumok egy hierarchiát alkothatnak.

Az öröklött tagfüggvények túlterhelhetőek. Nem csak a függvény neve, hanem a
paraméterlistája is ugyanaz lehet. Az objektumhierarchia különböző szintjein ugyan-
annak a műveletnek más és más értelme lehet. Ezt a tulajdonságot polimorfizmusnak
nevezzük.

2.2.2. Származtatott osztályok deklarálása
A C++ programozási nyelvben a származtatott osztályokat az alábbi módon adjuk

meg:

class oszt : alaposztálylista {
// új adattagok és tagfüggvények

};

ahol az alaposztálylista vesszővel elválasztott elemei

public alaposztály
protected alaposztály
private alaposztály

alakúak kell legyenek. Ha minden egyes esetben a public hozzáférésmódosítót hasz-
náljuk, akkor a

class oszt : public oszt_1, ..., public oszt_n {
// ...

};

alakú szerkezetet kapjuk, ahol az oszt osztály az oszt_1, ..., oszt_n osztályok származ-
tatott osztálya. Jegyezzük meg, hogy a konstruktorok és destruktorok nem öröklődnek.
A származtatott osztály konstruktorát az

oszt(paraméterlista) :
oszt_1(lista1), ..., oszt_n(lista_n)

{
// ...

}

2.2. AZ OBJEKTUMORIENTÁLT PROGRAMOZÁSI MÓDSZER 71

módon definiáljuk. A következő pontban olyan példákat adunk származtatott osztályra,
amelyek lehetőséget teremtenek a virtuális tagfüggvények bevezetésére is.

2.2.3. Virtuális tagfüggvények
Tekintsük egy olyan példát származtatott osztályra, amelyben az alap nevű osz-

tályban két függvényt deklarálunk, és a második meghívja az elsőt. Ugyanakkor a
származtatott osztályban csak az elsőt írjuk felül.

2.9. kódszöveg. Virtuális tagfüggvény.
#include <iostream>1

using namespace std;2

class alap { // az alaposztály3

public:4

void f1();5

void f2();6

};7

class szarm : public alap {8

public:9

void f1();10

};11

void alap::f1()12

{13

cout << "alap: f1\n";14

}15

void alap::f2()16

{17

cout << "alap: f2\n";18

f1(); // az f2 meghívja az f1-et.19

}20

void szarm::f1()21

{22

cout << "szarmaztatott: f1\n";23

}24

void main() {25

szarm s;26

s.f2();27

}28

Figyeljük meg, hogy csak az f 1 tagfüggvényt írtuk felül, az f 2 öröklődik az alap-
osztálytól. A fő függvényben a származtatott osztálynak hoztuk létre egy objektumát
és az erre az f 2 függvényt hívtuk meg. Felmerül a kérdés, hogy ilyen módon melyik
f 1 függvény lesz végrehajtva?

A 2.9. kódszöveg esetén az f 1 függvény kiválasztása fordítási időben történt, ezért
az alaposztály f 1 tagfüggvénye lesz végrehajtva. Ezt a tulajdonságot statikus kötésnek
nevezzük.

Ha a végrehajtandó függvény kiválasztása futási időben történik, akkor dinamikus
kötésről beszélünk. A dinamikus kötést virtuális tagfüggvények segítségével valósít-
hatjuk meg. Az f 1 tagfüggvényt kell virtuálisnak deklarálni. Ezt úgy tehetjük meg,

72 2. FEJEZET. OBJEKTUMORIENTÁLT PROGRAMOZÁS

hogy a virtual minősítőt használjuk a függvény alaposzálybeli deklarációjában. Ebben
az esetben az alaposztályt a

class alap {
public:

virtual void f1();
void f2();

};

alakban adjuk meg. Így a származtatott osztálybeli f 1 függvény lesz végrehajtva.
Figyeljük meg, hogy a virtual kulcsszót elég egyszer megadni, az alaposztálybeli

deklarációban. Ebben az esetben a származtatott osztályban deklarált túlterhelt tag-
függvény is virtuális lesz. Ha egy függvényt virtuálisnak deklaráltunk az alaposztály-
ban, akkor az osztályhierarchia tetszőleges származtatott osztályában virtuális lesz.

A továbbiakban tekintsünk egy másik példát, amelyben felmerül a virtuális tag-
függvények megadásának a szükségszerűsége. Vezessük be a racionális számokra vo-
natkozó tort nevű osztályt, amely két egész típusú adattaggal rendelkezik, melyek a
számlálónak és nevezőnek felelnek meg. Az osztály kell rendelkezzen egy olyan konst-
ruktorral, amely a számlálót és a nevezőt kezdeti értékekkel látja el. Alapértelmezetten
a számláló értéke legyen 1, a nevezőjé pedig 0. Továbbá, az osztálynak kell legyen egy
szorzat és egy szoroz nevű tagfüggvénye is. Az első a két tört szorzatát számolja ki,
a második pedig az aktuális objektumot módosítja úgy, hogy azt megszorozza a para-
méterként megadott objektummal. Ugyanakkor a tort osztálynak kell legyen egy olyan
tagfüggvénye is, amely az illető racionális számot írja ki.

A fenti osztályt felhasználva egy olyan tort_kiir nevű osztályt is létre kell hozni,
amely a szorzat tagfüggvényt úgy módosítja, hogy a művelet elvégzésén kívül maga
a művelet is jelenjen meg a szabványos kimeneten. A szoroz tagfüggvényt nem írjuk
felül, de a műveletnek ebben az esetben is meg kell jelennie.

2.10. kódszöveg. A szorzat virtuális tagfüggvény bevezetése a racionális szá-
mokra vonatkozó osztály esetén.

#include <iostream>1

using namespace std;2

class tort {3

protected:4

int szamlalo;5

int nevezo;6

public:7

tort(int szamlalo1 = 0, int nevezo1 = 1);8

/*virtual*/ tort szorzat(tort& r);9

tort& szoroz(tort& r);10

void kiir();11

};12

tort::tort(int szamlalo1, int nevezo1)13

{14

szamlalo = szamlalo1;15

nevezo = nevezo1;16

}17

// két tört szorzatát számolja ki, de nem egyszerüsít18

2.2. AZ OBJEKTUMORIENTÁLT PROGRAMOZÁSI MÓDSZER 73

tort tort::szorzat(tort& r)19

{20

return tort(szamlalo * r.szamlalo, nevezo * r.nevezo);21

}22

// az aktuális objektumot módosítja23

tort& tort::szoroz(tort& q)24

{25

*this = this->szorzat(q);26

return *this;27

}28

void tort::kiir()29

{30

if (nevezo)31

cout << szamlalo << " / " << nevezo;32

else33

cerr << "helytelen tort";34

}35

class tort_kiir: public tort {36

public:37

tort_kiir(int szamlalo1 = 0, int nevezo1 = 1);38

tort szorzat(tort& r);39

};40

inline tort_kiir::tort_kiir(int szamlalo1, int nevezo1) :41

tort(szamlalo1, nevezo1)42

{43

}44

tort tort_kiir::szorzat(tort& q)45

{46

tort r = tort(*this).szorzat(q);47

cout << "(";48

this->kiir();49

cout << ") * (";50

q.kiir();51

cout << ") = ";52

r.kiir();53

cout << endl;54

return r;55

}56

int main()57

{58

tort p(3,4), q(5,2), r;59

r = p.szoroz(q);60

p.kiir();61

cout << endl;62

r.kiir();63

cout << endl;64

tort_kiir p1(3,4), q1(5,2);65

tort r1, r2;66

r1 = p1.szorzat(q1);67

r2 = p1.szoroz(q1);68

74 2. FEJEZET. OBJEKTUMORIENTÁLT PROGRAMOZÁS

p1.kiir();69

cout << endl;70

r1.kiir();71

cout << endl;72

r2.kiir();73

cout << endl;74

return 0;75

}76

A programot végrehajtva az alábbi kimenetet kapjuk:

15 / 8
15 / 8
(3 / 4) * (5 / 2) = 15 / 8
15 / 8
15 / 8
15 / 8

Figyeljük meg, hogy a kapott eredmény nem megfelelő, mivel a művelet kiírása
csak egy alkalommal jelent meg. Ahhoz, hogy az elvárt eredményt kapjuk, a szorzat
tagfüggvényt virtuálisnak kell deklarálni, és ezt úgy tehetjuk meg, hogy a 2.10. kód-
szöveg 9. sorából eltávolítjuk a megjegyzés jelét. Ha ezt megtesszük, akkor a kimenet
így módosul:

15 / 8
15 / 8
(3 / 4) * (5 / 2) = 15 / 8
(3 / 4) * (5 / 2) = 15 / 8
15 / 8
15 / 8
15 / 8

tehát valóban kétszer jelenik meg a műveletre vonatkozó kiírás.

2.2.4. Absztrakt osztályok

Egy alaposztálynak lehetnek olyan általános tulajdonságai, amelyekről tudunk, de
nem tudjuk őket definiálni csak egy származtatott osztályban. Ebben az esetben egy
olyan virtuális tagfüggvényt deklarálhatunk, amely nem lesz definiálva az alaposztály-
ban. Azokat a tagfüggvényeket, amelyek deklarálva vannak, de nincsenek definiálva
egy adott osztályban, tiszta virtuális tagfüggvényeknek nevezzük.

A tiszta virtuális tagfüggvényt a szokásos módon deklaráljuk, de a fejléc után az
= 0 karaktereket írjuk. Ez jelzi, hogy a tagfüggvényt nem fogjuk definiálni.

Azokat az osztályokat, amelyek tartalmaznak legalább egy tiszta virtuális tagfügg-
vényt, absztrakt osztályoknak nevezzük. Az absztrakt osztályoknak nem hozhatjuk
létre objektumát.

A tiszta virtuális tagfügvényeket felül kell írni a származtatott osztályban, ellenkező
esetben az illető osztály is absztrakt lesz.

Tekintsük a következő példát

2.2. AZ OBJEKTUMORIENTÁLT PROGRAMOZÁSI MÓDSZER 75

2.11. kódszöveg. Absztrakt osztály.
#include <iostream>1

using namespace std;2

class allat {3

protected:4

double suly; // kg5

double eletkor; // ev6

double sebesseg; // km / h7

public:8

allat(double su, double k, double se);9

virtual double atlagos_suly() = 0;10

virtual double atlagos_eletkor() = 0;11

virtual double atlagos_sebesseg() = 0;12

int kover() { return suly > atlagos_suly(); }13

int gyors() { return sebesseg > atlagos_sebesseg(); }14

int fiatal() { return 2 * eletkor < atlagos_eletkor(); }15

void kiir();16

};17

allat::allat(double su, double k, double se)18

{19

suly = su;20

eletkor = k;21

sebesseg = se;22

}23

void allat::kiir()24

{25

cout << (kover() ? "kover, " : "sovany, ");26

cout << (fiatal() ? "fiatal, " : "oreg, ");27

cout << (gyors() ? "gyors" : "lassu") << endl;28

}29

class galamb : public allat {30

public:31

galamb(double su, double k, double se):32

allat(su, k, se) {}33

double atlagos_suly() { return 0.5; }34

double atlagos_eletkor() { return 6; }35

double atlagos_sebesseg() { return 90; }36

};37

class medve: public allat {38

public:39

medve(double su, double k, double se):40

allat(su, k, se) {}41

double atlagos_suly() { return 450; }42

double atlagos_eletkor() { return 43; }43

double atlagos_sebesseg() { return 40; }44

};45

class lo: public allat {46

public:47

lo(double su, double k, double se):48

76 2. FEJEZET. OBJEKTUMORIENTÁLT PROGRAMOZÁS

allat(su, k, se) {}49

double atlagos_suly() { return 1000; }50

double atlagos_eletkor() { return 36; }51

double atlagos_sebesseg() { return 60; }52

};53

void main() {54

galamb g(0.6, 1, 80);55

medve m(500, 40, 46);56

lo l(900, 8, 70);57

g.kiir();58

m.kiir();59

l.kiir();60

}61

A programot futtatva az alábbi kimenetet kapjuk:

kover, fiatal, lassu
kover, oreg, gyors
sovany, fiatal, gyors

Figyeljük meg, hogy annak ellenére, hogy az allat osztályt absztraktnak deklarál-
tuk, hasznos volt ennek bevezetése, mivel egyes tagfüggvényeket már az alaposztály
szintjén definiálni lehetett. Ezek öröklődtek a származtatottakba és így nem kellett őket
minden egyes esetben külön-külön megírni.

2.2.5. Az interfész fogalma
A C++ programozási nyelvben az interfész fogalma nincsen értelmezve abban a

formában, ahogyan az létezik a Java és C# programozási nyelvekben. De tetszőleges
olyan absztrakt osztályt, amely csak tiszta virtuális függvényeket tartalmaz interfész-
nek tekinthetünk. Természetesen ebben az esetben nem fogunk deklarálni adattagokat
sem az osztályon belül. Az előző pontban bevezetett allat nevű osztály adattagokat
is és nem virtuális függvényeket is tartalmaz, ezért ez nem tekinthető interfésznek. A
továbbiakban egy Jarmu nevű absztrakt osztályt adunk meg, amely csak tiszta virtuális
tagfüggvényekkel rendelkezik. Ugyanakkor ennek az osztálynak két származtatottját
is létrehozzuk.

2.12. kódszöveg. Absztrakt osztály, amely interfésznek tekinthető.
#include <iostream>1

using namespace std;2

class Jarmu3

{4

public:5

virtual void Indul() = 0;6

virtual void Megall() = 0;7

virtual void Megy(int km) = 0;8

virtual void All(int perc) = 0;9

};10

class Bicikli : public Jarmu11

{12

2.2. AZ OBJEKTUMORIENTÁLT PROGRAMOZÁSI MÓDSZER 77

public:13

void Indul();14

void Megall();15

void Megy(int km);16

void All(int perc);17

};18

void Bicikli::Indul() {19

cout << "Indul a bicikli." << endl;20

}21

void Bicikli::Megall() {22

cout << "Megall a bicikli." << endl;23

}24

void Bicikli::Megy(int km) {25

cout << "Biciklizik " << km << " kilometert." << endl;26

}27

void Bicikli::All(int perc) {28

cout << "A bicikli all " << perc << " percet." << endl;29

}30

class Auto : public Jarmu31

{32

public:33

void Indul();34

void Megall();35

void Megy(int km);36

void All(int perc);37

};38

void Auto::Indul() {39

cout << "Indul az auto." << endl;40

}41

void Auto::Megall() {42

cout << "Megall az auto." << endl;43

}44

void Auto::Megy(int km) {45

cout << "Az auto megy " << km << " kilometert." << endl;46

}47

void Auto::All(int perc) {48

cout << "Az auto all " << perc << " percet." << endl;49

}50

void BejarUt(Jarmu *j)51

{52

j->Indul();53

j->Megy(3);54

j->All(1);55

j->Megy(2);56

j->Megall();57

}58

int main()59

{60

Jarmu *b = new Bicikli;61

BejarUt(b);62

78 2. FEJEZET. OBJEKTUMORIENTÁLT PROGRAMOZÁS

Jarmu *a = new Auto;63

BejarUt(a);64

delete a;65

delete b;66

}67

A fő függvényben egy Bicikli és egy Auto típusú dinamikus objektumot deklarál-
tunk. Ha ezekre az objektumokra a BejarUt nevű tagfüggvényt hívjuk meg, különböző
eredményt kapunk, annak ellenére, hogy a függvénynek csak egy olyan paramétere
van, amely a Jarmu absztrakt osztályra hivatkozó mutató.

79

3. fejezet Adatbázisok

3.1. A relációs adatmodell

Az első ABKR-ek hálós vagy hierarchikus adatmodellt használták. Manapság a relációs

adatmodell a legelterjedtebb. A népszerűséget annak köszönheti, hogy nagyon egyszerű deklaratív

nyelvvel rendelkezik az adatok kezelésére, illetve lekérdezésére. A relációs adatmodell értékorientált,

ez ahhoz vezet, hogy a relációkon értelmezett műveletek eredményei szintén relációk.

Ha adottak a nDDD ,,, 21  nem szükségszerűen egymást kizáró halmazok, akkor R egy reláció

a nDDD ,,, 21  halmazokon, ha nDDDR  21 (Descartes-féle szorzat).

A relációs adatmodell szempontjából Di az Ai attribútum értékeinek tartománya (doméniuma).

Di lehet egész számok halmaza, karaktersorok halmaza, valós számok halmaza stb., n a reláció foka.

Egy ilyen relációt táblázatban ábrázolhatunk:

R A1 ... Aj ... An

r1 a11 ... a1j ... a1n

⋮

ri ai1 ... aij ... ain

⋮

rm am1 ... amj ... amn

ahol jij Da  .

A táblázat sorai a reláció elemei. Nagyon sok esetben a tábla megnevezést használják a reláció

helyett. A relációt a következőképpen jelöljük: R (A1, A2,..., An). A reláció nevét és a reláció

attribútumainak a halmazát együtt relációsémának nevezzük.

példa: Diákok reláció:

Név SzületésiDátum CsopKod

Nagy Ödön 1975-DEC-13 512

Kiss Csaba 1971-APR-20 541

Papp József 1973-JAN-6 521

példa: Könyvek reláció:

Szerző Cím Kiadó KiadÉv

C. J. Date An Introduction to Database Systems Addison-Wesley 1995

Paul Helman The Science of Database IRWIN 1994

A relációs adatmodell tulajdonságai

 A relációs adatbázis relációi vagy táblái a következő tulajdonságokkal rendelkeznek:

1. A tábla nem tartalmazhat két teljesen azonos sort, azaz két egyed előfordulás (sor) legalább egy

tulajdonság (attribútum) konkrét értékében el kell hogy térjen egymástól.

2. Kulcs értelmezése: egy S attribútumhalmaz az R reláció kulcsa, ha:

– R relációnak nem lehet két sora, melynek értékei megegyeznek az S halmaz minden

attribútumára.

– S egyetlen valódi részhalmaza sem rendelkezik a) tulajdonsággal.

80 3. FEJEZET ADATBÁZISOK

Ha a konkrét egyedek több olyan tulajdonsággal is rendelkeznek, amelyek értéke egyedi minden

egyes előfordulásra nézve, akkor több kulcsjelöltről beszélhetünk. Ezek közül egyet elsődleges

kulcsnak kell kijelölni. Az is megtörténhet, hogy nincs olyan tulajdonság, amelynek értéke egyedi

lenne az egyed-előfordulásokra nézve. Ekkor több tulajdonság értéke együtt fogja jelenteni az

elsődleges (összetett) kulcsot. Az 1. tulajdonságból következik, hogy mindig kell legyen elsődleges

kulcs, ha más nem, a teljes sor mindig egyedi. Elsődleges kulcs értéke soha nem lehet null vagy üres.

3. A táblázat sorainak vagyis az egyedelőfordulásoknak a sorrendje lényegtelen.

4. A táblázat oszlopaira vagyis a tulajdonságtípusokra, attribútumokra nevükkel hivatkozunk, tehát

két attribútumnak nem lehet ugyanaz a neve.

5. A táblázat oszlopainak a sorrendje lényegtelen.

Az adatbázis módosításakor az új információ nagyon sokféleképpen lehet hibás. Ahhoz, hogy

az adatbázis adatai helyesek legyenek, különböző feltételeknek kell eleget tenniük.

A megszorítások azon követelmények, melyeket az adatbázis adatai ki kell elégítsenek, ahhoz,

hogy helyeseknek tekinthessék őket.

Megszorítások osztályozása

1. Egyedi kulcs feltétel: egy relációban nem lehet két sor, melyeknek ugyanaz a kulcsértéke, vagyis

ha C egy R reláció kulcsa, 1 2,t t R  sorok esetén 1 2() ()C Ct t  .

2. Hivatkozási épség megszorítás: megkövetelik, hogy egy objektum által hivatkozott érték létezzen

az adatbázisban. Ez analóg azzal, hogy a hagyományos programokban tilosak azok a mutatók,

amelyek sehova se mutatnak. Külső kulcs egy KK attribútum vagy attribútumhalmaz egy R1

relációból, mely értékeinek halmaza ugyanaz, mint egy R2 reláció elsődleges kulcsának az

értékhalmaza, és az a feladata, hogy az R1 és R2 közötti kapcsolatot modellezze. R1 az a reláció,

mely hivatkozik, az R2 pedig, amelyre hivatkozik. Más megnevezés: az R2 az apa és az R1 a fiú

(egy sorhoz az R2-ből tartozhat több sor az R1-ből, az R2-ben elsődleges kulcs az attribútum ami a

kapcsolatot megteremti. Fordítva nem állhat fenn a kapcsolat, hogy egy sorhoz az R1-ből több sor

is kapcsolódjon az R2-ből). A hivatkozási épség megszorítás a következőket jelenti:
– az R2 relációban azt az attribútumot (esetleg attribútumhalmazt), melyre az R1 hivatkozik

elsődleges kulcsnak kell deklarálni,

– KK minden értéke az R1-ből kell létezzen az R2 relációban, mint elsődleges kulcs értéke.

3. Értelmezéstartomány-megszorítások: azt jelentik, hogy egy attribútum az értékeit a megadott

értékhalmazból vagy értéktartományból veheti fel.
4. Általános megszorítások: tetszőleges követelmények, amelyeket be kell tartani az

adatbázisban.

3.2. Normalizálás

3.2.1. Funkcionális függőségek

Legyen egy reláció

 R (A1, A2,..., An), ahol Ai attribútumok.

Jelöljük az attribútumok halmazát

 A = {A1, A2,..., An}.

Legyenek X és Y az R reláció attribútumhalmazának részhalmazai, vagyis AYX , . Ezeket a

jelöléseket használjuk a továbbiakban, ha esetleg nem ismételjük meg.

X attribútumhalmaz funkcionálisan meghatározza Y attribútumhalmazt (vagy Y funkcionálisan

függ X-től), ha R minden előfordulásában ugyanazt az értéket veszi fel Y, amikor az X értéke ugyanaz.

Másképp: X funkcionálisan meghatározza Y-t, ha R két sora megegyezik az X attribútumain

(azaz ezen attribútumok mindegyikéhez megfeleltetett komponensnek ugyanaz az értéke a két

sorban), akkor meg kell egyezniük az Y attribútumain is. Ezt a függőséget fomálisan YX  -nal

jelöljük.

3. FEJEZET ADATBÁZISOK 81

Relációs algebrai műveletek segítségével a következőképpen értelmezhetjük a funkcionális

függőséget:

YX  , ha Rrt  , sor esetén, melyre)()(rt XX   , akkor)()(rt yY   .

3.1. ábra: A funkcionális függőség két soron vett hatása

példa: SzállításiInformációk reláció:

SzállID SzállNév SzállCím ÁruID ÁruNév MértEgys Ár

111 Rolicom A. Iancu 15 45 Milka csoki tábla 25000

222 Sorex 22 dec. 6 45 Milka csoki tábla 26500

111 Rolicom A. Iancu 15 67 Heidi csoki tábla 17000

111 Rolicom A. Iancu 15 56 Milky way rúd 20000

222 Sorex 22 dec. 6 67 Heidi csoki tábla 18000

222 Sorex 22 dec. 6 56 Milky way rúd 22500

 Funkcionális függőségek:

SzállID  SzállNév

 SzállID  SzállCím.

Mivel mindkét függőségnek ugyanaz a bal oldala, SzállID, ezért egy sorban összegezhetjük:

SzállID  {SzállNév, SzállCím}

Szavakban, ha két sorban ugyanaz a SzállID értéke, akkor a SzállNév értéke is ugyanaz kell legyen,

illetve a SzállCím értéke is.

Ezenkívül:

 ÁruID  ÁruNév

 ÁruID  MértEgys (azzal a feltevéssel, ha más mértékegységben árulják az árut, más ID-t is kap).

Hasonlóan egy sorban:

 ÁruID  {ÁruNév, MértEgys}

A funkcionális függőséget felhasználva adhatunk még egy értelmezést a reláció kulcsának. Egy

vagy több attribútumból álló },,,{ 21 kCCC  halmaz a reláció kulcsa, ha:

 Ezek az attribútumok funkcionálisan meghatározzák a reláció minden más attribútumát, azaz

nincs az R-ben két különböző sor, amely mindegyik kCCC ,,, 21  -n megegyezne.

 Nincs olyan valódi részhalmaza },,,{ 21 kCCC  -nak, amely funkcionálisan meghatározná az R

összes többi attribútumát, azaz a kulcsnak minimálisnak kell lennie.

példa: a SzállításiInformációk reláció kulcsa a {SzállID, ÁruID}, egy szállító egy árut egy árban

szállít egy adott pillanatban. Nincs a táblában 2 sor, ahol ugyanaz legyen a SzállID és az ÁruID is.

Csak a SzállID nem elég kulcsnak, mert egy szállító több árut is szállíthat, az ÁruID sem elég, mert

egy árut több szállító is ajánlhat. □

t

r

X Y

Ha t és r

megegyezik

ezen

Akkor itt is

meg kell

egyezniük

82 3. FEJEZET ADATBÁZISOK

Szuperkulcsoknak nevezzük azon attribútumhalmazokat, melyek tartalmaznak kulcsot. A

szuperkulcsok eleget tesznek a kulcs definíció első feltételének, de nem feltétlenül tesznek eleget a

minimalitásnak. Tehát minden kulcs szuperkulcs.

Az R (A1, A2,..., An) reláció esetén Ai attribútum prím, ha létezik egy C kulcsa az R-nek, úgy

hogy CAi  . Ha egy attribútum nem része egy kulcsnak, akkor nem prím attribútumnak nevezzük.

Triviális funkcionális függőségről beszélünk, ha az Y attribútum halmaz részhalmaza az X

attribútum halmaznak)(XY  , akkor Y attribútum halmaz funkcionálisan függ X attribútum

halmaztól (YX ).

példa: Triviális funkcionális függőség: {SzállID, ÁruID} SzállID. □

Minden triviális függőség érvényes minden relációban, mivel amikor azt mondjuk, hogy „két sor

megegyezik X minden attribútumán, akkor megegyezik ezek bármelyikén is”.

Nem triviális egy 1 2 1 2p sX X X YY YK K funkcionális függőség, ha az Y-ok közül legalább egy

különbözik az X-ektől, vagyis

, [1,]jY j s  j ∈{1,2,..., s} úgy, hogy ,j kY X  k ∈{1,2,..., p}.

Teljesen nem triviális egy 1 2 1 2p sX X X YY YK K funkcionális függőség, ha az Y-ok közül

egy sem egyezik meg az X-ek valamelyikével, vagyis

, [1,]jY j s  j ∈{1,2,..., s} -re ,j kY X  k ∈{1,2,..., p}.

Parciális függőség: Ha C egy kulcsa az R relációnak, az Y attribútumhalmaz valódi részhalmaza a C-

nek (Y C) és B egy attribútum, mely nem része az Y-nak (B Y), akkor az Y B -t egy parciális

függőség. (B függ a kulcs egy részétől.)

példa: parciális függőségre: SzállID  SzállNév. □

A SzállításiInformációk relációban {SzállID, ÁruID} a kulcs, tehát

{SzállID, ÁruID} SzállNév,

mivel a kulcs funkcionálisan meghatároz minden más attribútumot, de a SzállNév függ a kulcs

egy részétől is.

Tranzitív függőség: Legyen Y A egy attribútumhalmaz és B egy attribútum, mely nem része Y-

nak (B Y). Egy Y B funkcionális függőség tranzitív függőség, ha Y nem szuperkulcs R

relációban és nem is valódi részhalmaza R egy kulcsának.
Honnan a tranzitív elnevezés? Amint látjuk, Y nem kulcs, nem része a kulcsnak, tehát egy

nemtriviális funkcionális függőség az, hogy Y funkcionálisan függ az R kulcsától (C-től). Tehát

C Y és Y B , és erre mondhatjuk, hogy B tranzitív függőséggel függ C-től.

példa: Rendelések (RendelésSzám, Dátum, VevőID, VevőNév, Részletek), egy cég rendeléseit

tartalmazó reláció. A különböző vevők rendeléseket helyeznek el a cégnél, a cég más-más számot ad a

különböző rendeléseknek, így a RendelésSzám elsődleges kulcs lesz, tehát kulcs révén funkcionálisan

meghatározza az összes többi attribútumot:

RendelésSzám VevőID.

Ezenkívül fennáll a

VevőIDVevőNév

funkcionális függőség. Tehát a VevőNév tranzitív függőséggel függ a RendelésSzámtól.

 Funkcionális függőségek tulajdonságai:

1. Ha C az  nAAAR ,...,, 21 reláció egy kulcsa, akkor  nAAAC ,...,,, 21  .

2. Ha   , akkor   , ez a triviális funkcionális függőség vagy reflexivitás.




 


)()()()(2121 rrrr

3. Ha   , akkor   , ahol   .







 


)()()()()()(212121 rrrrrr

3. FEJEZET ADATBÁZISOK 83

4. Ha   és   , akkor   , ez a funkcionális függőség tranzitív tulajdonsága.







 


)()()()()()(212121 rrrrrr

5. Ha   és A , akkor   , ahol   .

)()(
)()(

)()()()(
)()(21

21

2121

21 rr
rr

rrrr
rr 





 





Problémák:
Azokat a problémákat, amelyek akkor jelennek meg, amikor túl sok információt probálunk

egyetlen relációba belegyömöszölni, anomáliának nevezzük. Az anomáliáknak alapvető fajtái a

következők:

 Redundancia: Az információk feleslegesen ismétlődnek több sorban, mint például a

SzállításiInformációk reláció esetében a szállító címe ismétlődik.

 Módosítási problémák: Megváltoztatjuk az egyik sorban tárolt információt, miközben ugyanaz az

információ változatlan marad egy másik sorban. Például, ha a szállító címe változik, de csak egy

sorban változtatjuk meg, nem tudjuk, melyik a jó cím. Jó tervezéssel elkerülhetjük azt, hogy ilyen

hibák felmerüljenek.

 Törlési problémák: Ha az értékek halmaza üres halmazzá válik, akkor ennek mellékhatásaként

más információt is elveszthetünk. Ha például töröljük a Rolicom által szállított összes árut, az

utolsó sor törlésével elveszítjük a cég címét is.

 Illesztési problémák: Ha hozzáilleszteni akarunk egy szállítót, amely nem szállít egy árut sem, a

szállító címét kitöltjük úgy, hogy az áruhoz „null” értékeket viszünk be, melyet majd utólag ki

kell törölni, ha el nem felejtjük.

Relációk felbontása

Az anomáliák megszüntetésének elfogadott útja a relációk felbontása (dekompozíció-ja). R

felbontása egyrészt azt jelenti, hogy R attribútumait szétosztjuk úgy, hogy ezáltal két új reláció

sémáját alakítjuk ki belőlük. A felbontás másrészt azt is jelenti, hogyan töltsük fel a kapott két új

reláció sorait az R soraiból.

Legyen egy R reláció 1 2{ , , , }nA A AK sémával, R-et felbonthatjuk S és T két relációra,

amelyeknek sémái 1 2{ , , , }mB B BK , illetve {C1, C2, ..., Ck} úgy, hogy

1. 1 2{ , , , }nA A AK = 1 2 1 2{ , , , } { , , , }m kB B B C C CK U K , ahol

 1 2{ , , , }mB B BK ∩ {C1, C2, ..., Ck}≠∅.

2. Az S reláció sorai az R-ben szereplő összes sornak a 1 2{ , , , }mB B BK -re vett vetületei, azaz R

aktuális előfordulásának minden egyes t sorára vesszük a t azon komponenseit, amelyek a

1 2{ , , , }mB B BK attribútumokhoz tartoznak. Mivel a relációk halmazok, az R két különböző sorának a

projekciója ugyanazt a sort is eredményezheti az S-ben. Ha így lenne, akkor az ilyen sorokból csak

egyet kell belevennünk az S aktuális előfordulásába.

3. Hasonlóan, a T reláció sorai az R aktuális előfordulásában szereplő sorok {C1, C2, ..., Ck}

attribútumok halmazára vett projekciói.

2. S =
mBBB ,,, 21  (R); T =

mCCC ,,, 21  (R);

 Veszteségmentes felbontás

R reláció felbontása S és T relációkra veszteségmentes, ha

R = S ⋈ T

Fontos, hogy minden felbontás, amit normálformára hozás közben végzünk,

veszteségmentes legyen, vagyis ne veszítsünk információt.

84 3. FEJEZET ADATBÁZISOK

3.2.2. Normálformák

Az adatmodellezés egyik fő célja az optimalizálás, vagyis az adatmodellt alkotó egyedtípusok

lehető legjobb szerkezetének a megkeresése. Az optimális adatmodell kialakítására egyéb technikák

mellett a normalizálás szolgál. A normalizálás az a folyamat, amellyel kialakítjuk a relációk

normálformáját (NF).

A normálformák: 1NF, 2NF, 3NF, BCNF, 4NF, 5NF egymásba skatulyázottak. 2NF

matematikailag jobb, mint 1NF, a 4NF jobb, mint a BCNF, az 5NF a legjobb, 3NF alakú reláció

szükségszerűen 1NF és 2NF alakú is. Tehát a normálalakok nem függetlenek egymástól, hanem

logikusan egymásra épülnek.

Első normálforma (1NF)

Értelmezés: Egy R reláció 1NF –ben van, ha az attribútumoknak csak elemi (nem összetett vagy

ismétlődő) értékei vannak. Ez minimális feltétel, melynek egy reláció eleget kell tegyen, hogy a létező

relációs ABKR-ek kezelni tudják.

Példa: A következő reláció nincs 1NF-ben:

Alkalmazottak:
SzemSzám Név Cím Gyerek1 SzülDát1 … Gyerek5 SzülDát5

Helység Utca Szám

Ahol a Cím összetett attribútum, a Helység, Utca és Szám attribútumokból áll. A Gyerek1,

SzülDát1, Gyerek2, SzülDát2, Gyerek3, SzülDát3, Gyerek4, SzülDát4, Gyerek5, SzülDát5 ismétlődő

attribútum. Egy személynek több gyereke is lehet, érdekeltek vagyunk a gyerekek keresztnevében és

születési dátumukban. Jelenleg 5 gyerekről szóló információt tudunk eltárolni. Problémák az

ismétlődő attribútumokkal: van olyan alkalmazott, akinek nincs egy gyereke se, nagyon soknak csak

egy gyereke van, ezeknél fölöslegesen foglaljuk a háttértárolót. Jelenleg van a cégnek egy

alkalmazottja, akinek 5 gyereke van, de akármikor alkalmaznak még egyet, akinek 6 gyereke van,

akkor változtathatjuk a szerkezetet. □

1NF-re alakítás

Ha egy reláció nincs 1NF-ben, mivel tartalmaz összetett attribútumokat, első normálformára

hozhatjuk, ha az összetett attribútum helyett beírjuk az azt alkotó elemi attribútumokat. A fenti példa

esetén a Cím attribútum nem fog szerepelni a reláció attribútumai között, csak a Helység, Utca és

Szám attribútumok.

Ha adott egy R (A1, A2,..., An) reláció, mely nincs első normálformában, mivel ismétlődő

attribútumokat tartalmaz, felbontással első normálformába hozható. Jelöljük az attribútumok halmazát

 A = {A1, A2,..., An}.

Legyenek C és I az R reláció attribútumhalmazának részhalmazai, vagyis ,C I A , ahol C kulcs és I

ismétlődő attribútumhalmaz, mely tegyük fel, hogy k-szor ismétlődik. Legyen J azon attribútumok

halmaza, melyek nem részei a kulcsnak, se nem ismétlődőek, vagyis J A , J C I és

J I I . Tehát 1 2 kA C I I I J U U UK U . A felbontás után kapjuk a következő két relációsémát:

(,)S C I és (,)T C J .

Vagyis az egyik relációban a kulcs attribútum mellett az ismétlődő attribútumok (csak egyszer)

fognak szerepelni, a másikban pedig a kulcs mellett azon attribútumok, melyek nem ismétlődőek.

példa: A fenti példa esetén:

C = {SzemSzám}

I = {GyerekNév, SzülDátum}

J = {Név, Helység, Utca, Szám}.

A két új reláció:

Alkalmazott (SzemSzám, Név, Helység, Utca, Szám)

3. FEJEZET ADATBÁZISOK 85

AlkalmGyerekei (SzemSzám, GyerekNév, SzülDátum)

Ebben az esetben, ha egy alkalmazottnak csak egy gyereke van az AlkalmGyerekei relációban

egy sor lesz neki megfelelő, a SzemSzám attribútumnak ugyanazzal az értékével. Ha egy

alkalmazottnak 5 gyereke van, 5 sor, ha ugyannak az alkalmazottnak még születik egy gyereke, akkor

6 sor tartalmazza az AlkalmGyerekei relációban az illető alkalmazott gyerekeit. Ha egy

alkalmazottnak nincs egy gyereke se, az AlkalmGyerekei relációban nem lesz egy sor sem, mely

hivatkozna rá a SzemSzám segítségével.

Második normálforma (2NF)

Értelmezés: Egy reláció 2NF formában van, ha első normálformájú (1NF) és nem tartalmaz Y B

alakú parciális függőséget, ahol B nem prím attribútum.

Amint látjuk, csak akkor tevődik fel, hogy egy reláció nincs 2NF-ben, ha a kulcs összetett.

példa: A SzállításiInformációk relációja nincs 2NF-ben, mivel a reláció kulcsa a {SzállID, ÁruID} és

fennáll a SzállID SzállNév, tehát SzállNév függ a kulcs egy részétől is, tehát létezik parciális

függőség.

Megoldás: több relációra kell bontani.

2NF-re alakítás

Legyen R egy reláció, mely attribútumainak a halmaza A = {A1, A2,..., An} és C A egy kulcs.

Ha a reláció nincs második normálformában, azt jelenti létezik egy B A nem kulcs B C I

attribútumhalmaz, mely függ funkcionálisan a kulcs egy részétől, vagyis létezik D C , úgy hogy

D B .

Az R relációt felbontjuk két relációra, melyek sémái:

 T(D, B) és ()S A B

példa: Amint láttuk a 0. példa SzállításiInformációk relációjában fennállnak a:

 SzállID  {SzállNév, SzállCím}

 ÁruID  {ÁruNév, MértEgys}

funkcionális függőségek, a kulcs pedig a C ={SzállID, ÁruID}.

Első lépésben B = {SzállNév, SzállCím}, D = {SzállID}. Felbontás után kapjuk a

Szállítók (SzállID, SzállNév, SzállCím) és

SzállInf (SzállID, ÁruID, ÁruNév, MértEgys, Ár)

relációkat.

A Szállítók reláció 2NF-ben van, mivel a kulcs nem összetett, fel sem tevődik, hogy valamely

attribútum függjön a kulcs egy részétől.

 A SzállInf nincs 2NF-ben, mert fennáll a

 ÁruID  {ÁruNév, MértEgys}.

Ebben az esetben B = {ÁruNév, MértEgys}, D = {ÁruID}. Tovább bontjuk a következő két relációra:

Áruk (ÁruID, ÁruNév, MértEgys),

Szállít (SzállID, ÁruID, Ár).

Az Áruk 2NF-ben van, mert a kulcs nem összetett és 1NF-ben van. A Szállít relációban

egyetlen nem kulcs attribútum van: az Ár, és az nem függ csak az ÁruID-től, mert különböző szállító

különböző árban ajánlhatja ugyanazt az árut, sem a SzállID-től nem függ funkcionálisan, mert egy

szállító nem ajánlja ugyanabban az árban az összes árut. A kapott relációk:

Szállítók:

SzállID SzállNév SzállCím

111 Rolicom A. Iancu 15

222 Sorex 22 dec. 6

Áruk:

ÁruID ÁruNév MértEgys

45 Milka csoki tábla

86 3. FEJEZET ADATBÁZISOK

67 Heidi csoki tábla

56 Milky way rúd

Szállít:

SzállID ÁruID Ár

111 45 25000

222 45 26500

111 67 17000

111 56 20000

222 67 18000

222 56 22500

Harmadik normálforma (3NF)

Értelmezés: Egy R reláció harmadik normálformában (3NF) van, ha második normálformában van és

nem tartalmaz Y B alakú tranzitív funkcionális függőséget, ahol B nem prím attribútum.

Értelmezés: Egy R reláció harmadik normálformában (3NF) van, ha létezik az R-ben egy Y B

alakú nem triviális funkcionális függőség, akkor Y az R reláció szuperkulcsa vagy a B prím attribútum

(valamelyik kulcsnak része).

A két értelmezés ekvivalens. A második nem kéri a második normálformát, de mivel bármely

létező Y B funkcionális függőség esetén a bal oldal szuperkulcs, nem lehet annak része. Tehát

elég, ha az összes létező funkcionális függőség esetén a bal oldal szuperkulcs, akkor a tranzitív

függőség nem létezhet, mert a tranzitív függőség esetén a bal oldal nem kulcs és ez nem megengedett.

példa: A Rendelések reláció nincs 3NF-ben, mivel tartalmaz tranzitív funkcionális függőséget.

RendelésSzám VevőID

VevőIDVevőNév.

Probléma, ha így ábrázoljuk a rendeléseket, hogy ha egy vevő több rendelést is elhelyez, ami

lehetséges, akkor a vevő nevét ismételjük. Megoldás: 2 relációra bontjuk a relációt, mely nincs 3NF-

ben. □

3NF-re alakítás

Legyen R egy reláció, mely 2NF-ben van, viszont nincs 3NF-ben, attribútumainak a halmaza

A = {A1, A2,..., An} és C A elsődleges kulcs. Ha a reláció nincs harmadik normálformában, azt

jelenti, hogy létezik egy B A nem kulcs B C I attribútumhalmaz, mely tranzitív függőséggel

függ a kulcstól, vagyis létezik D, úgy hogy C D és D B . Mivel a reláció 2NF-ben van, B nem

függ funkcionálisan C-nek egy részétől, tehát D nem kulcs attribútum.

Az R relációt felbontjuk két relációra, melyek sémái:

 T (D, B) és ()S A B .

példa: A Rendelések reláció esetén: B = {VevőNév}, D = {VevőID}, a felbontás után kapott relációk:

Vevők (VevőID, VevőNév)

RendelésInf (RendelésSzám, Dátum, VevőID)

Egy adatbázis modell kialakítása szempontjából a legkedvezőbb, ha az adatbázist alkotó

relációk 3NF -ben vannak.

3.3. Relációs algebra

A relációs algebrai műveletek operandusai a relációk. A relációt a nevével szokták megadni,

például R vagy Alkalmazottak. A műveletek operátorait a következőkben részletezzük. Az

operátorokat alkalmazva a relációkra, eredményként szintén relációkat kapunk, ezekre ismét

alkalmazhatunk relációs algebrai operátorokat, így egyre bonyolultabb kifejezésekhez jutunk. Egy

lekérdezés tulajdonképpen egy relációs algebrai kifejezés. A relációs algebrai műveletek esetén

szükségünk lesz feltételekre. A feltételek a következő típusúak lehetnek:

3. FEJEZET ADATBÁZISOK 87

<attribútum_név>
<attribútum_név>

<konstans>

 
 

 
    
   
   
 
 
  

<attribútum_név> IS IN
 <reláció> (melynek egy attribútuma van)

<konstans> IS NOT IN

   
   
   

NOT <feltétel>

OR
<feltétel> <feltétel>

AND

 
 
 

A továbbiaban lássuk a relációs algebra műveleteit. Az első öt az alapvető művelet, a

következőket ki tudjuk fejezni az első öt segítségével.

1) Kiválasztás (Selection): Az R relációra alkalmazott kiválasztás operátor f feltétellel olyan új

relációt hoz létre, melynek sorai teljesítik az f feltételt. Az eredmény reláció attribútumainak a száma

megegyezik az R reláció attribútumainak a számával. Jelölés: f (R).

példa: Keressük a kis keresetű alkalmazottakat (akinek kisebb, vagy egyenlő a fizetése 500 euró-val).

A lekérdezés a következő:

 Fizetés <= 500 (Alkalmazottak)

A lekérdezés eredménye:

SzemSzám Név RészlegID Fizetés

111111 Nagy Éva 2 300

222222 Kiss Csaba 9 400

333333 Kovács István 2 500

példa: Keressük a 9-es részleg nagy fizetésű alkalmazottait (akinek 500 euró-nál nagyobb a fizetése).

A lekérdezés: Fizetés > 500 AND RészlegID = 9 (Alkalmazottak)

Az eredmény:

SzemSzám Név RészlegID Fizetés

456777 Szabó János 9 900

2) Vetítés (Projection): Adott R egy reláció A1, A2,..., An attribútumokkal. A vetítés művelet

eredményeként olyan relációt kapunk, mely R-nek csak bizonyos attribútumait tartalmazza. Ha

kiválasztunk k attribútumot az n-ből:
1 2
, , ,

ki i iA A AK -et, és ha esetleg a sorrendet is megváltoztatjuk, az

eredmény reláció a kiválasztott k attribútumhoz tartozó oszlopokat fogja tartalmazni, viszont az összes

sorból. Mivel az eredmény is egy reláció, nem lehet két azonos sor a vetítés eredményében, az azonos

sorokból csak egy marad az eredmény relációban.

Jelölés:
1 2

, , , ()
i i ik

A A A R K

példa: Ha az Alkalmazottak relációból csak az alkalmazott neve és fizetése érdekel, akkor a

következő művelet eredménye a kért reláció:

Név, Fizetés (Alkalmazottak)

88 3. FEJEZET ADATBÁZISOK

példa: Legyen ismét a Diákok tábla:

CREATE TABLE Diákok (

BeiktatásiSzám INT PRIMARY KEY,

Név VARCHAR(50),

Cím VARCHAR(100),

SzületésiDatum DATE,

CsopKod CHAR(3) REFERENCES Csoportok (CsopKod),

Átlag REAL

);

A következő vetítés:

CsopKod (Diákok)

eredménye az összes létező csoportkod a Diákok táblából. Ha egy csoportkod többször is megjelenik

a Diákok táblában, a vetítésben csak egyszer fog szerepelni. (Például a Diákok táblában 25 sor esetén

a csoportkod ’531’-es, a vetítés eredményében csak egyszer fog az ’531’-es csoportkod szerepelni.)

3) Descartes szorzat. Ha adottak az R1 és R2 relációk, a két reláció Descartes szorzata (R1  R2) azon

párok halmaza, amelyeknek első eleme az R1 tetszőleges eleme, a második pedig az R2 egy eleme. Az

eredményreláció sémája az R1 és R2 sémájának egyesítése.

Legyen R1 reláció:

A B

12 33

24 46

Legyen R2 reláció:

B C D

20 55 80

30 67 97

40 75 99

Akkor R1  R2 eredménye:

A R1.B R2.B C D

12 33 20 55 80

12 33 30 67 97

12 33 40 75 99

24 46 20 55 80

24 46 30 67 97

24 46 40 75 99

4) Egyesítés. Ha adottak az R1 és R2 relációk, R1 és R2 attribútumainak a száma megegyezik, és

ugyanabban a pozícióban levő attribútumnak ugyanaz az értékhalmaza, a két reláció egyesítése

tartalmazni fogja R1 és R2 sorait. Az egyesítésben egy elem csak egyszer szerepel, még akkor is, ha

jelen van R1– és R2 –ben is (jelölés: R1 U R2).

5) Különbség. Ha adottak az R1 és R2 relációk, R1 és R2 attribútumainak a száma megegyezik és

ugyanabban a pozícióban levő attribútumnak ugyanaz az értékhalmaza, a két reláció különbsége azon

sorok halmaza, amelyek R1-ben szerepelnek és R2-ben nem (jelölés: R1  R2).

3. FEJEZET ADATBÁZISOK 89

példa: Legyen R1:

SzemSzám Név RészlegID Fizetés

(euró)

222222 Kiss Csaba 9 400

456777 Szabó János 9 900

234555 Szilágyi Pál 2 700

333333 Kovács István 2 500

és legyen R2:

SzemSzám Név RészlegID Fizetés

(euró)

111111 Nagy Éva 2 300

456777 Szabó János 9 900

123444 Vincze Ildikó 1 800

Ekkor R1 U R2:

SzemSzám Név RészlegID Fizetés

(euró)

222222 Kiss Csaba 9 400

456777 Szabó János 9 900

234555 Szilágyi Pál 2 700

333333 Kovács István 2 500

111111 Nagy Éva 2 300

123444 Vincze Ildikó 1 800

illetve R1 - R2:

SzemSzám Név RészlegID Fizetés

(euró)

222222 Kiss Csaba 9 400

234555 Szilágyi Pál 2 700

333333 Kovács István 2 500

Ez az öt az alapvető művelet. Még vannak hasznos műveletek: ezek az öt alapvető művelettel

kifejezhetőek.

6) Metszet: Legyenek az R1 és R2 relációk, a két reláció metszete:

)(21121 RRRRR  .

7) Théta-összekapcsolás (θ-Join): Legyenek az R1 és R2 relációk. A Théta-összekapcsolás során az

R1 és R2 relációk Descartes szorzatából kiválasztjuk azon sorokat, melyek eleget tesznek a θ

feltételnek, vagyis: 1R ⋈θ 2 1 2()R R R  .

példa: Legyenek R1 és R2 a következő relációk, számítsuk ki: 1R ⋈A<D R2

R1 reláció:

A B C

11 23 32

65 76 82

97 76 82

90 3. FEJEZET ADATBÁZISOK

R2 reláció:

B C D

23 32 44

23 32 57

76 82 99

1R ⋈A<D R2:

A R1.B R1.C R2.B R2.C D

11 23 32 23 32 44

11 23 32 23 32 57

11 23 32 76 82 99

65 76 82 76 82 99

97 76 82 76 82 99

8) Természetes összekapcsolás (Natural join): Legyenek az R1 és R2 relációk. A természetes

összekapcsolás művelete akkor alkalmazható, ha az R1 és R2 relációknak egy vagy több közös

attribútuma van. Legyen B az R1, illetve C az R2 reláció attribútumainak a halmaza, a közös

attribútumok pedig: B  C = {A1, A2, …, Ap}. A természetes összekapcsolást a következő képlettel

fejezhetjük ki:

 R1 ⋈ R2 = 1(B C R  ⋈
1 1 2 1 1 2 2 2 1 2(. .) (. .) (. .) 2p pR A R A R A R A R A R A R     K

,

ahol Ri.Aj jelöli az Aj attribútumot az Ri relációból, i∈{1,2}, j ∈{1,2, …, p}.

példa: Legyenek R1 és R2 relációk a Théta-összekapcsolás példából, a természetes összekapcsolás

eredménye:

R1⋈R2 eredménye:

A B C D

11 23 32 44

11 23 32 57

65 76 82 99

97 76 82 99

R1 és R2 relációk természetes összekapcsolása esetén azokat a sorokat párosítjuk össze, amelyek

értékei az R1 és R2 sémájának összes közös attribútumán megegyeznek. Legyen r1 az R1 egy sora és r2

az R2 egy sora, ekkor az r1 és r2 párosítása akkor sikeres, ha az r1 és r2 megfelelő értékei megegyeznek

az összes A1, A2, …, Ap közös attribútumon. Ha az r1 és r2 sorok párosítása sikeres, akkor a párosítás

eredményét összekapcsolt sornak nevezzük. Az összekapcsolt sor megegyezik az r1 sorral az R1

összes attribútumán és r2 sorral az R2 összes attribútumán. Az 1R ⋈R2 eredményében R1 és R2 közös

attribútumai csak egyszer szerepelnek.

Egy olyan sort, melyet nem lehet sikeresen párosítani az összekapcsolásban szereplő másik

reláció egyetlen sorával sem, lógó (dangling) sornak nevezzünk

példa: Legyenek a Szállítók, Áruk és Szállít relációk. Ha az összes szállítási információra van

szükségünk, akkor kiszámítjuk a Szállít ⋈ Szállítók ⋈ Áruk természetes összekapcsolást, melynek

eredménye:

Szállítók:

SzállID SzállNév SzállCím

111 Rolicom A.Iancu 15

222 Sorex 22 dec. 6

3. FEJEZET ADATBÁZISOK 91

Áruk:

ÁruID ÁruNév MértEgys

45 Milka csoki tábla

67 Heidi csoki tábla

56 Milky way Rúd

Szállít:

SzállID ÁruID Ár

111 45 25000

222 45 26500

111 67 17000

111 56 20000

222 67 18000

222 56 22500

Szállít ⋈ Szállítók ⋈ Áruk eredménye:

SzállID SzállNév SzállCím ÁruID ÁruNév MértEgys Ár

111 Rolicom A.Iancu 15 45 Milka csoki Tábla 25000

222 Sorex 22 dec. 6 45 Milka csoki Tábla 26500

111 Rolicom A.Iancu 15 67 Heidi csoki Tábla 17000

111 Rolicom A.Iancu 15 56 Milky way Rúd 20000

222 Sorex 22 dec. 6 67 Heidi csoki Tábla 18000

222 Sorex 22 dec. 6 56 Milky way Rúd 22500

Relációs algebrai műveletek alkalmazásával újabb relációkat kapunk. Gyakran szükséges egy

olyan operátor, amelyik átnevezi a relációkat.

9) Átnevezés: Legyen R(A1, A2, …, An) egy reláció, az átnevezés operátor:

)(),,,(21
R

nBBBS  az R relációt S relációvá nevezi át, az attribútumokat pedig balról jobbra B1,

B2, …, Bn-né. Ha az attribútum neveket nem akarjuk megváltoztatni, akkor)(RS operátort

használunk.

10) Hányados (Quotient): Legyen R1 reláció sémája: {X1, X2,…, Xm, Y1,Y2,…,Yn}, R2 reláció sémája

pedig: {Y1, Y2, …, Yn}, tehát Y1, Y2, …,Yn közös attribútumok ugyanazon értékhalmazzal, és R1-nek

még van pluszba m attribútuma: X1, X2,…, Xm , R2-nek pedig a közöseken kívül nincs más attribútuma.

R1 az osztandó, R2 az osztó. Jelöljük X-szel és Y-nal a következő attribútumhalmazokat: X = {X1,

X2,…, Xm}, Y = {Y1,Y2,…,Yn}. Ebben az esetben jelöljük: R1 (X, Y), R2 (Y) a két relációt, melynek

hányadosát jelöljük:

R1 DIVIDE BY R2 (X)-el

Tehát a hányados reláció sémája {X1, X2,…, Xm}. A hányados relációban megjelenik egy x sor, ha

minden y sorra az R2-ből az R1-ben megjelenik egy r1 sor, melyet az x és y sorok összeragasztásából

kapunk.

Másként fogalmazva, legyen 2 reláció, egy bináris és egy unáris, az osztás eredménye a bináris

reláció azon attribútumait tartalmazza, melyek különböznek az unáris reláció attribútumaitól, és a

bináris relációból az attribútumok azon értékeit, melyek megegyeznek az unáris reláció összes

attribútum értékével.

92 3. FEJEZET ADATBÁZISOK

példa: Legyen A =
ÁruID

(Áruk) , S =
SzállID, ÁruID

(Szállít) és a következő sorok az S relációban:

SzállID ÁruID

S1 A1

S1 A2

S1 A3

S1 A4

S1 A5

S1 A6

S2 A1

S2 A2

S3 A2

S4 A2

S4 A4

S4 A5

a) Legyen A reláció:

ÁruID

A1

akkor az S DIVIDE A(SzállID) eredménye:

SzállID

S1

S2

b) esetben A reláció:

ÁruID

A2

A4

akkor S DIVIDE A(SzállID):

SzállID

S1

S4

c) esetben A reláció:

ÁruID

A1

A2

A3

A4

A5

A6

akkor S DIVIDE A(SzállID):

SzállID

S1

3. FEJEZET ADATBÁZISOK 93

3.4. Az SQL lekérdezőnyelv

A legtöbb relációs ABKR az adatbázist az SQL-nek (Structured Query Language) nevezett

lekérdezőnyelv segítségével kérdezi le és módosítja. Az SQL központi magja ekvivalens a relációs

algebrával, de sok kiterjesztést dolgoztak ki hozzá, mint például az összesítések.

Az SQL-nek számos verziója ismeretes, szabványokat is dolgoztak ki, ezek közül a

legismertebb az SQL-92 vagy SQL2. A napjainkban használt ABKR-ek lekérdezőnyelvei ezt a

szabványt tartják be. Az SQL egy új szabványa az SQL3, mely rekurzióval, objektumokkal,

triggerekkel stb. terjeszti ki az SQL2-őt. Számos kereskedelmi ABKR már meg is valósította az SQL3

néhány javaslatát.

3.4.1. Egyszerű lekérdezések SQL-ben

A relációs algebra vízszintes kiválasztás műveletét:

 f (R)

az SQL a SELECT, FROM és WHERE kulcsszavak segítségével valósítja meg a

következőképpen:

 SELECT *

 FROM R

 WHERE f;

példa: Legyen a NagyKer nevű adatbázis a következő relációsémákkal:

Részlegek (RészlegID, Név, Helység, ManSzemSzám);

Alkalmazottak (SzemSzám, Név, Fizetés, Cím, RészlegID);

Managerek (SzemSzám);

ÁruCsoportok (CsopID, Név, RészlegID);

Áruk (ÁruID, Név, MértEgys, MennyRakt, CsopID);

Szállítók (SzállID, Név, Helység, UtcaSzám);

Vevők (VevőID, Név, Helység, UtcaSzám, Mérleg, Hihetőség);

Szállít (SzállID, ÁruID, Ár);

Szerződések (SzerződID, Dátum, Részletek, VevőID);

Tételek (TételID, Dátum, SzerződID);

Szerepel (TételID, ÁruID, RendMenny, SzállMenny).

Legyen a következő lekérdezés:

„Keressük azon alkalmazottakat, akik a 9-es részlegnél dolgoznak és a fizetésük nagyobb, mint

500 euró”.

 SELECT *

 FROM Alkalmazottak

 WHERE RészlegID = 9 AND Fizetés > 500; □

A FROM kulcsszó után adhatjuk meg azokat a relációkat, jelen esetben csak egyet, melyre a

lekérdezés vonatkozik, a fenti példa esetén az Alkalmazottak reláció.

A kiválasztás feltételét a WHERE kulcsszó után tudjuk megadni. A példánk esetében azok a

sorok fognak a lekérdezés eredményében megjelenni, melyek eleget tesznek a WHERE után megadott

feltételnek, vagyis az alkalmazott RészlegID attribútumának az értéke 9 és a Fizetés attribútum értéke

nagyobb, mint 500.

A SELECT kulcsszó utáni * azt jelenti, hogy az eredmény reláció fogja tartalmazni a FROM

után megadott reláció összes attribútumát.

Az SQL nyelv nem különbözteti meg a kis és nagy betűket. Nem szükséges új sorba írni a

FROM és WHERE kulcsszavakat, általában a fenti módon szokták megadni, de lehet egy sorban kis

betűkkel is.

select * from alkalmazottak where részlegID = 9 and fizetés > 500;

A relációs algebra vetítés művelete

94 3. FEJEZET ADATBÁZISOK

1 2
, , , ()

i i ik
A A A R K

a SELECT-SQL parancs segítségével a következőképpen adható meg:

 SELECT
1 2
, , ,

ki i iA A AK

 FROM R;

A SELECT kulcsszó után megadhatjuk az R reláció bármely attribútumát és az eredmény sorok

ezen attribútumokat fogják csak tartalmazni, ugyanazzal a névvel, amivel az R relációban szerepelnek.

példa: Legyen a következő relációs algebrai lekérdezés:

Név, Fizetés (Alkalmazottak)

SELECT-SQL parancs segítségével a következőképpen írható fel:

 SELECT Név, Fizetés

 FROM Alkalmazottak; □

A lekérdezés feldogozása során a FROM kulcsszó után megadott relációt a feldolgozó

végigjárja, minden sor esetén ellenőrzi a WHERE kulcsszó után megadott feltétel teljesül-e. Azon

sorokat, melyek esetén a feltétel teljesül, az eredmény relációba helyezzük. A feldogozás

hatékonyságát növeli, ha a feltételben szereplő attribútumok szerint létezik indexállomány.

A vetítés során kapott eredmény reláció esetén megváltoztathatjuk az attribútumok neveit az

AS kulcsszó segítségével, ha a FROM után szereplő reláció attribútum nevei nem felelnek meg. Az

AS nem kötelező. A SELECT kulcsszó után kifejezést is használhatunk.

példa: Ha például a fizetést nem euró-ban, hanem $-ban szeretnénk és az euró/dollár arány mondjuk

1.1, akkor a nagy fizetésű alkalmazottakat a 9-es részlegből a következő paranccsal kapjuk meg:

 SELECT Név AS Név9, Fizetés * 1.1 AS Fizetes$
FROM Alkalmazottak

WHERE RészlegID = 9 AND Fizetés > 500;

Tehát az eredmény reláció két oszlopot fog tartalmazni, melyek nevei: Név9, illetve Fizetés$. □

A WHERE kulcsszó utáni feltétel lehet egyszerű vagy összetett. Összetett feltétel esetén

használhatjuk az AND, OR és NOT logikai műveleteket. A műveletek sorrendjének a

meghatározására használhatunk zárójeleket, ha ezek megelőzési sorrendje nem felel meg. Az SQL

nyelvben is, mint a legtöbb programozási nyelvben a NOT megelőzi az AND és OR műveletet, az

AND pedig az OR-t.

példa: „Keressük a 3-as és 6-os részleg alkalmazottait akiknek kicsi a fizetése, 200 eurónal kisebb.”

A következő paranccsal kapjuk meg:

 SELECT Név, Fizetés

 FROM Alkalmazottak

 WHERE (RészlegID = 3 OR RészlegID = 6) AND Fizetés < 200;

Ha a zárójelet nem tettük volna ki, akkor csak a 6-os részlegből válogatta volna ki a kis

fizetésűeket, és az eredmény relációban a 3-as részlegből az összes alkalmazott szerepelt volna. □

Az SQL rendszerek háromértékű logikát használnak, vagyis egy kifejezés (feltétel) logikai

értéke lehet: igaz (1), hamis (0), ismeretlen (unknown) (0.5). Egy kifejezés logikai értéke akkor

ismeretlen, ha a kifejezésben szereplő valamelyik operandus értéke NULL. Egy WHERE-beli állítás

értékét hamisnak tekintjük akkor is, ha a kifejezés értéke „ismeretlen”. A NOT, AND és OR

operátorok igazságértékét a következő táblázat adja meg:

AND FALSE NULL TRUE OR FALSE NULL TRUE

FALSE FALSE FALSE FALSE FALSE FALSE NULL TRUE
NOT

FALSE NULL TRUE

NULL FALSE NULL TRUE NULL NULL NULL TRUE TRUE NULL FALSE

TRUE FALSE NULL TRUE TRUE TRUE TRUE NULL

3. FEJEZET ADATBÁZISOK 95

Karakterláncok összehasonlítása esetén használhatjuk a LIKE kulcsszót, hogy a

karakterláncokat egy mintával hasonlítsunk össze a következőképpen:

 k LIKE m

ahol k egy karakterlánc és m egy minta. A mintában használhatjuk a % és _ karaktereket. A % jelnek

a k-ban megfelel bármilyen karakter 0 vagy nagyobb hosszúságú sorozata. Az _ jelnek megfelel egy

akármilyen karakter a k-ból. A LIKE kulcsszó segítségével képezett feltétel igaz, ha a k karakterlánc

megfelel az m mintának.

példa: SELECT *
 FROM Alkalmazottak

 WHERE Név LIKE ‘Kovács%’;

A lekérdezés eredménye azon alkalmazottakat tartalmazza, kiknek a neve a ‘Kovács’

karaktersorral kezdődik. Megkapjuk az összes Kovács vezetéknevű alkalmazottat, de a ‘Kovácsovics’

vezetéknevűt is, ha ilyen létezik az adatbázisban. Ha csak a Kovács vezetéknevűeket akarjuk, akkor a

‘Kovács %’ mintát használjuk. □

Használhatjuk a

k NOT LIKE m

szűrő feltételt is.

Más szűrőfeltételek a BETWEEN és IN kulcsszóval képezhetők. A BETWEEN kulcsszó

segítségével megadunk egy intervallumot, és azt vizsgáljuk, hogy adott oszlop, mely értéke esik a

megadott intervallumba. (Az oszlop itt szintén lehet származtatott oszlop, kifejezés.)

WHERE <oszlop> BETWEEN <kifejezés_1> AND <kifejezés_2 >

példa: SELECT Név
 FROM Alkalmazottak

 WHERE Fizetés BETWEEN 300 AND 500;

Ugyanazt az eredményt adja, mint a:

 SELECT Név

 FROM Alkalmazottak

 WHERE Fizetés >= 300 AND Fizetés <=500; □

Az IN operátor után megadunk egy értéklistát, és azt vizsgáljuk, hogy az adott oszlop mely

mezőinek értéke egyezik az adott lista valamelyik elemével. (Az oszlop lehet származtatott oszlop,

kifejezés is.)

 WHERE <oszlop> IN (<kifejezés_1>, <kifejezés_2> [,...])

példa: Legyen az Egyetem nevű adatbázis a következő relációsémákkal:

 Szakok (SzakKod, SzakNév, Nyelv);

 Csoportok (CsopKod, Evfolyam, SzakKod);

 Diákok (BeiktatásiSzám, Név, SzemSzám, Cím, SzületésiDatum, CsopKod,

Átlag);

 TanszékCsoportok (TanszékCsopKod, Név);

 Tanszékek (TanszékKod, Név, TanszékCsopKod);

 Beosztások (BeosztásKod, Név);

 Tanárok (TanárKod, Név, SzemSzám, Cím, PhD, TanszékKod, BeosztásKod,

 Fizetés);

 Tantárgyak (TantKod, Név);

 Tanít (TanárKod, TantKod);

 Jegyek (BeiktatásiSzám, TantKod, Datum, Jegy)

A diákok összes jegyét eltároljuk a Jegyek relációban, több szemeszterben sok jegye van egy diáknak.

A Diákok táblában az utolsó szemeszter vagy utolsó év átlaga szerepel az Átlag oszlopban, ami

alapján eldöntik például, hogy kap-e a diák bentlakást, ösztöndíjat stb.

96 3. FEJEZET ADATBÁZISOK

Keressük az ’531’-es, ’532’-s és ’631’-es csoportok diákjait:

 SELECT Név

 FROM Diákok

 WHERE CsopKod IN ('531', '532', '631'); □

A SELECT SQL parancs lehetőséget ad az eredmény reláció rendezésére az ORDER BY

kulcsszavak segítségével. Alapértelmezés szerint növekvő sorrendben történik a rendezés, de ha

csökkenő sorrendet szeretnénk, akkor a DESC kulcsszót használhatjuk.

példa: Ha a fenti lekérdezést kiegészítjük azzal, hogy a diákokat csoporton belül, névsor szerinti

sorrendben akarjuk megadni, akkor a SELECT parancsot kiegészítjük az ORDER BY után a

megfelelő attribútumokkal a következőképpen:

 SELECT Név

 FROM Diákok

 WHERE CsopKod IN ('531', '532', '631')

ORDER BY CsopKod, Név; □

példa: A diákokat átlag szerint csökkenő sorrendben adja meg:

 SELECT Név

 FROM Diákok

ORDER BY Átlag DESC; □

3.4.2. Több relációra vonatkozó lekérdezések

A relációs algebra egyik fontos tulajdonsága, hogy a műveletek eredménye szintén reláció, és az

eredmény operandus lehet a következő műveletben. Az SELECT-SQL is kihasználja ezt, a relációkat

összekapcsolhatjuk, egyesíthetjük, metszetet vagy különbséget is számíthatunk.

A Descartes szorzat

R1  R2

műveletét a következő SQL parancs valósítja meg:

 SELECT *

 FROM R1, R2;

A Théta-összekapcsolást:

1R ⋈θ R2

a következő paranccsal adhatjuk meg:

 SELECT *
FROM R1, R2

WHERE  ;

A leggyakrabban használt műveletet, a természetes összekapcsolást

R1 ⋈ R2 = 1(B C R  ⋈
1 1 2 1 1 2 2 2 1 2(. .) (. .) (. .) 2p pR A R A R A R A R A R A R     K

),

a következőképpen írhatjuk SQL-ben:

 SELECT *

 FROM R1, R2

 WHERE 1 1 2 1 1 2 2 2 1 2. . AND . . AND AND . .p pR A R A R A R A R A R A  K ;

Ebben az általános esetben a két összekapcsolandó relációnak p darab közös attribútuma van. A

gyakorlatban általában a két relációnak egy közös attribútuma van. Amint látjuk, ha több relációban is

szerepel ugyanaz az attribútum név, előtagként a reláció nevét használjuk.

példa: Legyenek a következő relációk:

 Csoportok (CsopKod, Evfolyam, SzakKod);

3. FEJEZET ADATBÁZISOK 97

Diákok (BeiktatásiSzám, Név, Cím, SzületésiDatum, CsopKod, Átlag);

Ha a diákok esetén szeretnénk kiírni az évfolyamot és szakkódot is, akkor ezt a következő SQL

parancs segítségével érjük el:

 SELECT Név, CsopKod, Evfolyam, SzakKod

 FROM Diákok, Csoportok

 WHERE Diákok.CsopKod = Csoportok.CsopKod;

Tehát a WHERE kulcsszó után megadjuk a join feltételt. Ha elfelejtjük a join feltételt az eredmény

Descartes szorzat lesz, melynek méretei nagyon nagyok lehetnek.

Vannak olyan ABKR-ek, melyek az előbbi feladat megoldására a JOIN kulcsszót is elfogadják (pl.

MS SQL Server):

 SELECT Név, CsopKod, Evfolyam, SzakKod

 FROM Diákok INNER JOIN Csoportok

 ON Diákok.CsopKod = Csoportok.CsopKod;

Később látjuk majd az OUTER JOIN-t is.□

Amint az egyszerű lekérdezéseknél láttuk, a WHERE kulcsszó után a kiválasztás feltételét

adtuk meg. Ha több reláció összekapcsolása mellett kiválasztás műveletet is meg akarunk adni, a join

feltétel után AND logikai művelettel a kiválasztás feltételét is megadhatjuk.

példa: Az összes harmadéves diák nevét a következő paranccsal is megkaphatjuk:

 SELECT Név

 FROM Diákok, Csoportok

 WHERE Diákok.CsopKod = Csoportok.CsopKod

AND Evfolyam = 3; □

Kettőnél több relációt is összekapcsolhatunk természetes összekapcsolással, fontos, hogy az

összes join feltételt megadjuk. Ha az összekapcsolandó relációk száma k, és minden két-két relációnak

egy-egy közös attribútuma van, akkor a join feltételek száma k–1. Ha tehát 4 relációt kapcsolunk

össze, a join feltételek száma minumum 3.

példa: A NagyKer nevű adatbázisra vonatkozóan legyen a következő lekérdezés:

„Adjuk meg azon szállítók nevét és címét, kik szállítanak édességet” (ÁruCsoportok.Név = ‘édesség’)

 SELECT Szállítók.Név, Szállítók.Helység, Szállítók.UtcaSzám

 FROM ÁruCsoportok, Áruk, Szállít, Szállítók

 WHERE ÁruCsoportok.CsopID = Áruk.CsopID

 AND Áruk.ÁruID = Szállít.ÁruID

 AND Szállít.SzállID = Szállítók.SzállID

AND ÁruCsoportok.Név = 'édesség'; □

Az SQL lehetőséget ad arra, hogy a FROM záradékban szereplő R relációhoz

hozzárendeljünk egy másodnevet, melyet sorváltozónak nevezünk. Sorváltozót akkor használunk, ha

rövidebb vagy más nevet akarunk adni a relációnak, illetve ha a FROM után kétszer is ugyanaz a

reláció szerepel. Ha használtunk másodnevet, akkor az adott lekérdezésben azt kell használjuk.

példa: Keressük azon alkalmazottakat, akik ugyanazon a címen laknak, például férj és feleség, vagy

szülő és gyerek.

 SELECT Alk1.Név AS Név1, Alk2.Név AS Név2

 FROM Alkalmazottak AS Alk1, Alkalmazottak AS Alk2

 WHERE Alk1.Cím = Alk2.Cím

 AND Alk1.Név < Alk2.Név;

A lekérdező feldolgozó ugyanazt a relációt kell kétszer bejárja, hogy a kért párokat megtalálja. Ha az

Alk1.Név < Alk2.Név feltételt nem tettük volna, akkor minden alkalmazott bekerülne az eredménybe

önmagával is párosítva. Ezt esetleg a <> feltétellel is megoldhattuk volna, de akkor egy férj−feleség

páros kétszer is bekerült volna, csak más sorrendben. Például: (‘Kovács István’, ‘Kovács Sára’) és

98 3. FEJEZET ADATBÁZISOK

(‘Kovács Sára’, ‘Kovács István’) is. Mivel gyereknek lehet ugyanaz a neve, mint a szülőnek, ezért

jobb megoldás a: Alk1.Név < Alk2.Név feltételt kicserélni a következő feltétellel:

Alk1.SzemSzám < Alk2. SzemSzám; □

Algoritmus egy egyszerű SELECT−SQL lekérdezés kiértékelésére:

Input: R1, R2,…, Rn relációk a FROM záradék után

Begin

 Minden t1 sorra az R1-ből

 Minden t2 sorra az R2-ből

 …

 Minden tn sorra az Rn-ből

 Ha a WHERE záradék igaz a t1, t2, …, tn attribútumainak az értékeire

Akkor
A SELECT záradék attribútumainak értékeiből alkotott sort az eredményhez adjuk

End

A relációs algebra halmazműveleteit (egyesítés, metszet és különbség) használhatjuk az SQL

nyelvben, azzal a feltétellel, hogy az operandus relációknak ugyanaz legyen az attribútumhalmaza. A

megfelelő kulcsszavak: UNION az egyesítésnek, INTERSECT a metszetnek és EXCEPT a

különbségnek.

példa: Legyenek a Szállítók és Vevők relációk a NagyKer adatbázisból és a következő lekérdezés:

„Keressük a kolozsvári cégeket, akikkel kapcsolatban áll a cégünk.” A megoldást a következő

lekérdezés adja:

 (SELECT Név, UtcaSzám

 FROM Szállítók

 WHERE Helység = 'Kolozsvár')

 UNION

 (SELECT Név, UtcaSzám

 FROM Vevők

 WHERE Helység = 'Kolozsvár'); □

példa: Legyenek az Alkalmazottak és Managerek relációk a NagyKer adatbázisból és a „Keressük

azon alkalmazottakat, akik nem managerek” lekérdezés:

 (SELECT SzemSzám, Név FROM Alkalmazottak)

 EXCEPT

 (SELECT SzemSzám, Név FROM Managerek, Alkalmazottak

 WHERE Managerek.SzemSzám = Alkalmazottak.SzemSzám);

A fenti parancs esetén a második SELECT parancsban a join műveletre azért volt szükségünk, hogy a

managernek keressük meg a nevét is, mert a különbség művelet esetén fontos, hogy az operandus

relációknak ugyanaz az attribútumhalmaza legyen.

Ha az alkalmazott névre nem vagyunk kíváncsiak, akkor a következő SQL parancs azon

alkalmazottak személyi számát adja meg, akik nem managerek.

(SELECT SzemSzám FROM Alkalmazottak)

 EXCEPT

 (SELECT SzemSzám FROM Managerek);

A feladatot oly módon is megoldhatjuk, ha a kereskedelmi rendszer nem támogatja az EXCEPT

műveletet, hogy alkalmazzuk a NOT EXISTS vagy NOT IN záradékot.

példa: Legyen az Egyetem adatbázisa, és tegyük fel, hogy van olyan eset, hogy egy fiatal tanársegéd

a matematika szakról, tehát elvégezte a matematika szakot, de még diák az informatika szakon.

Legyen a következő lekérdezés: „keressük azon tanárokat, akik még diákok”. A megoldás:

(SELECT Név FROM Tanárok)

 INTERSECT

(SELECT Név FROM Diákok);

3. FEJEZET ADATBÁZISOK 99

A feladatot a következőképpen is megoldhatjuk, ha a kereskedelmi rendszer nem támogatja az

INTERSECT műveletet:

SELECT Név FROM Tanárok

WHERE EXISTS

 (SELECT Név FROM Diákok

 WHERE Diákok.SzemSzám = Tanárok.SzemSzám); □

3.4.3. Ismétlődő sorok

Az SQL nyelv relációi az absztrakt módon definiált relációktól abban különböznek, hogy az

SQL nem tekinti őket halmaznak, azaz a relációk multihalmazok A SELECT parancs eredményében

szerepelhet két vagy több teljesen azonos sor, viszont van lehetőség ezen ismétlődések

megszüntetésére.

A SELECT kulcsszó után a DISTINCT szó segítségével kérhetjük az azonos sorok

megszüntetését.

példa: Az Egyetem adatbázisa esetén keressük azon csoportokat, amelyekben vannak olyan diákok,

akiknek átlaga kisebb, mint 7.

SELECT DISTINCT CsopKod

FROM Diákok

WHERE Átlag < 7;

A parancs a Diákok táblából kiválogatja azokat a sorokat, ahol az átlag kisebb, mint 7, ezen

sorok diákokról szóló információkat tartalmaznak, többek között a csoportkódot is. Egy csoportban

több diák is lehet, akiknek az átlaga kisebb, mint 7, ezért, ha nem használjuk a DISTINCT kulcsszót,

akkor előfordulhat, hogy egy csoportkód többször is szerepel az eredményben. □

A SELECT paranccsal ellentétben, a UNION, EXCEPT és INTERSECT halmazelméleti

műveletek megszüntetik az ismétlődéseket. Ha nem szeretnénk, hogy az ismétlődő sorok eltűnjenek, a

műveletet kifejező kulcsszó után az ALL kulcsszót kell használjuk.

példa: Az Egyetem adatbázisból keressük a személyeket, akik lehetnek tanárok vagy diákok. A

következő parancs nem szünteti meg az ismétlődéseket:

(SELECT Név FROM Tanárok)

 UNION ALL

(SELECT Név FROM Diákok);

Tehát, ha van olyan tanár, aki közben diák is, akkor az kétszer fog szerepelni az eredményben. □

3.4.4. Összesítő függvények és csoportosítás

Az SQL nyelv lehetőséget ad egy oszlopban szereplő értékek összegezésére, vagyis hogy

meghatározzuk a legkisebb, legnagyobb vagy átlag értéket egy adott oszlopból. Az összesítés

művelete egy oszlop értékeiből egy új értéket hoz létre. Ezenkívül a reláció egyes sorait bizonyos

feltétel szerint csoportosíthatjuk, például egy oszlop értéke szerint, és a csoporton belül végezhetünk

összesítéseket.

Összesítő függvények a következők:

– SUM, megadja az oszlop értékeinek az összegét;

– AVG, megadja az oszlop értékeinek a átlagértékét;

– MIN, megadja az oszlop értékeinek a minimumát;

– MAX, megadja az oszlop értékeinek a maximumát;

– COUNT, megadja az oszlopban szereplő értékek számát, beleértve az ismétlődéseket is, ha azok

nincsenek megszüntetve a DISTINCT kulcsszóval.

Ezeket a függvényeket egy skalár értékre alkalmazhatjuk, általában egy SELECT záradékbeli

oszlopra.

100 3. FEJEZET ADATBÁZISOK

példa: A következő lekérdezés segítségével megkapjuk az alkalmazottak átlagos fizetését:

SELECT AVG(Fizetés)

FROM Alkalmazottak; □

példa: Ha az alkalmazottak számára vagyunk kíváncsiak:

SELECT COUNT(*)

FROM Alkalmazottak; □

Mindkét példa esetén biztosak vagyunk abban, hogy egy alkalmazott csak egyszer szerepel a

relációban, mivel a személyi szám elsődleges kulcs. A COUNT()összesítő függvénynek több formája

is van:

 COUNT(*) - az eredmény-reláció kardinalitását (az összes sor számát) adja vissza

 COUNT(oszlop_név)- azon sorok számát adja vissza, ahol oszlop_név értéke NULL-tól

különböző érték

 COUNT(DISTINCT oszlop_név)- megszámolja, hány különböző értéke van az oszlop_név

mezőnek.

példa: Az Egyetem adatbázis esetén keressük azon csoportoknak a számát, amelyekben vannak olyan

diákok, akik átlaga kisebb, mint 7:

SELECT COUNT(DISTINCT CsopKod)

FROM Diákok

WHERE Átlag < 7;□

Az eddigi összesítések az egész relációra vonatkoztak. Sok esetben a reláció sorait

csoportosítani szeretnénk egy vagy több oszlop értékei szerint. Például az alkalmazottak átlagfizetését

minden részlegen belül akarjuk meghatározni. Az Egyetem adatbázisban minden csoport esetén

keressük a legnagyobb átlagot, a diákok számát. A csoportosítást a GROUP BY kulcsszó segítségével

érjük el. A parancs általános formája:

SELECT < csoportosító oszlopok listája >,

 <összesítő-függvény>(<oszlop>)

FROM <reláció>

[WHERE <feltétel>]

[GROUP BY <csoportosító oszlopok listája>]

[HAVING <csoportosítási-feltétel>]

[ORDER BY <oszlop>];

A GROUP BY után megadjuk a csoportosító attribútumok (oszlopok) listáját, melyek azonos

értéke szerint történik a csoportosítás. Csak ezeket az oszlopokat válogathatjuk ki a SELECT kulcsszó

után és azokat, melyekre valamilyen összesítő függvényt alkalmazunk. Azon oszlopoknak, melyekre

összesítő függvényt alkalmaztunk, érdemes más nevet adni, hogy könnyebben tudjunk hivatkozni rá.

példa: Legyenek az Alkalmazottak reláció sorai:

SzemSzám Név RészlegID Fizetés

(euró)

111111 Nagy Éva 2 300

222222 Kiss Csaba 9 400

456777 Szabó János 9 900

234555 Szilágyi Pál 2 700

123444 Vincze Ildikó 1 800

333333 Kovács István 2 500

A részlegeken belüli átlagfizetést a következő parancs segítségével kapjuk meg:

SELECT RészlegID, AVG(Fizetés), MIN(Fizetés), MAX(Fizetés), SUM(Fizetés)

FROM Alkalmazottak

GROUP BY RészlegID;

3. FEJEZET ADATBÁZISOK 101

A kapott eredmény:

RészlegID AVG(Fizetés) MIN(Fizetés) MAX(Fizetés) SUM(Fizetés)

1 800 800 800 800

2 500 300 700 1500

9 650 400 900 1300

A lekérdezés processzor először rendezi a reláció sorait a csoportosítandó oszlop értékei szerint, utána

azokat a sorokat, ahol ezen oszlopoknak ugyanaz az értéke, az eredmény relációban csak egy sor fogja

képviselni, ahol megadhatjuk az oszlop értékét, amely a lekérdezett relációban minden sorban

ugyanaz. A többi oszlopra csakis összesítéseket végezhetünk. Ha a SELECT kulcsszó után olyan

oszlopot választunk ki, melynek értékei különbözőek a lekérdezett relációban, a lekérdezés processzor

nem tudja, hogy a különböző értékekből melyiket válassza az eredménybe. Van olyan implementálása

a SELECT−SQL parancsnak, mely megengedi, hogy egy olyan oszlopot is kiválasszunk, mely nincs a

csoportosító attribútumok között és a processzor vagy az első, vagy az utolsó értéket választja a

különböző értékek közül.

A SELECT parancs megengedi viszont, hogy a csoportosító attribútum hiányozzon a vetített

attribútumok listájából.

példa: A következő lekérdezés helyes:

 SELECT AVG(Fizetés) AS ÁtlagFizetés

FROM Alkalmazottak

 GROUP BY RészlegID;

eredménye pedig:

ÁtlagFizetés

800

500

650

példa: Legyen a Szállít (SzállID, ÁruID, Ár) reláció. Egy árut több szállító is ajánlhatja, különböző

árban. Sok esetben szükségünk van az átlagárra, amiben ajánlanak egy árut. A következő lekérdezés

minden áru esetén meghatározza az átlagárat, amiben a különböző szállítók ajánlják.

SELECT ÁruID, AVG(Ár) AS ÁtlagÁr

FROM Szállít

GROUP BY ÁruID; □

 A GROUP BY záradékot használhatjuk többrelációs lekérdezésben is. A lekérdezés

processzor először az operandus relációkkal a WHERE feltételét figyelembe véve elvégzi a join,

esetleg a Descartes szorzat műveletet és ennek az eredmény relációjára alkalmazza a csoportosítást.

példa: Ha a fenti példa esetén kíváncsiak vagyunk az árunak a nevére:

 SELECT Áruk.Név, AVG(Ár)

 FROM Szállít. ÁruID = Áruk.ÁruID

 WHERE Szállít, Áruk

 GROUP BY Áruk.Név;

Remélhetőleg az áru neve is egyedi kulcs, tehát nem fordul elő egy áru név több ÁruID esetén is, mert

a fenti példában a Név attribútum szerint csoportosítunk. Ha nem egyedi a név, akkor a fenti

lekérdezés az összes azonos nevű árunak az átlagát adja meg, de sok esetben ez megfelel a

felhasználónak. Megoldhatjuk úgy is, hogy először ÁruID szerint, majd áru név szerint

csoportosítunk, lásd a csoportosítást több oszlopra. □

Amint a SELECT parancsnak az általános formájánál láttuk, lehetséges több csoportosítási

attribútum is.

102 3. FEJEZET ADATBÁZISOK

példa: Legyenek a következő relációk az Egyetem adatbázisból:

 Tanszékek (TanszékKod, Név, TanszékCsopKod);

 Beosztások (BeosztásKod, Név);

 Tanárok (TanárKod, Név, SzemSzám, Cím, PhD, BeosztásKod, TanszékKod,

 Fizetés);

és a következő lekérdezés: „Számítsuk ki a tanárok átlagfizetését tanszékeken belül, beosztásokra

leosztva!”

 SELECT TanszékKod, BeosztásKod, AVG(Fizetés)

FROM Tanárok

 GROUP BY TanszékKod, BeosztásKod

Ha a Tanárok tábla tartalma:

Tanár

Kod

Név Cím PhD Beosztás

Kod

Tanszék

Kod

Fizetés

KB12 Kiss Béla Petőfi u. 12 Y ADJ ALG 150

NL03 Nagy László Kossuth u. 3 Y ADJ REN 160

KG05 Kovács Géza Ady tér 5 N ADJ ALG 160

PI14 Péter István Dóm tér 14 N TNS REN 120

NT55 Németh Tamás Dózsa u. 55 Y PRO ALG 300

VS77 Vígh Sándor Rózsa u. 77 Y PRO REN 310

LL63 Lukács Lóránt Viola u. 63 Y ADJ REN 170

LS07 László Samu Rákóczi u. 7 N TNS REN 110

KP52 Kerekes Péter Váczi u. 52 Y PRO ALG 280

a lekérdezés eredménye:

Tanszék

Kod

Beosztás

Kod

AVG

(Fizetés)

ALG ADJ 155

ALG PRO 290

REN ADJ 165

REN PRO 310

REN TNS 115

példa: Megismételve egy előbbi példát:

 SELECT Áruk. ÁruID, Áruk.Név, AVG(Ár)

 FROM Szállít. ÁruID = Áruk.ÁruID

 WHERE Szállít, Áruk

 GROUP BY Áruk.ÁruID, Áruk.Név;

Az áru név szerinti csoportosítás nem fog újabb csoportokat behozni, de nem válogathatjuk ki a Név

oszlopot, ha nem szerepelt a csoportosítási attribútumok között. A vetítés attribútumai között nem kell

feltétlenül szerepeljen az ÁruID, de ha egy név többször is előfordul, akkor az eredmény furcsa lesz.

 A csoportosítás után kapott eredmény reláció soraira a HAVING kulcsszót használva egy

feltételt alkalmazhatunk. Ha csoportosítás előtt szeretnénk kiszűrni sorokat, azokra a WHERE feltételt

lehet alkalmazni. A HAVING kulcsszó utáni feltételben azon oszlopok szerepelhetnek, melyekre a

SELECT parancsban összesítő függvényt alkalmaztunk.

példa: Keressük azon részlegeket, ahol az alkalmazottak átlagfizetése nagyobb, mint 500 euró,

átlagfizetés szerint növekvő sorrendben.

 SELECT RészlegID, AVG(Fizetés)

FROM Alkalmazottak

GROUP BY RészlegID

HAVING AVG(Fizetés) > 500

ORDER BY AVG(Fizetés);

3. FEJEZET ADATBÁZISOK 103

A fenti adatokat figyelembe véve az eredmény reláció a következő lesz:

RészlegID AVG(Fizetés)

9 650

1 800

Ha nem adjuk meg az ORDER BY záradékot, akkor a GROUP BY záradékban megadott oszlopok

szerint rendezi az eredményt.

példa: Helytelen a következő parancs:

 SELECT RészlegID, AVG(Fizetés)

FROM Alkalmazottak

WHERE AVG(Fizetés) > 500

GROUP BY RészlegID;

példa: Keressük azon tanszékeket, ahol a tanársegédeket kivéve a tanárok átlagfizetése nagyobb, mint

240 euró.

SELECT TanszékKod, AVG(Fizetés)

FROM Tanárok

WHERE BeosztásKod <> ‘TNS’

GROUP BY TanszékKod

HAVING AVG(Fizetés) > 240;

3.4.5. Alkérdések

A WHERE záradékban eddig a feltételben skaláris értékeket tudtunk összehasonlítani. Az

alkérdések segítségével sorokat vagy relációkat tudunk összehasonlítani. Egy alkérdés egy olyan

kifejezés, mely egy relációt eredményez, például egy select-from-where kifejezés.

Alkérdést tartalmazó SELECT SQL parancs általános formája a következő:

SELECT <attribútum_lista>

FROM <tábla>

WHERE <kifejezés> <operátor>

 (SELECT <attribútum_lista>

 FROM <tábla>);

A rendszer először az alkérdést hajtja végre és annak eredményét használja a „fő” lekérdezés, kivéve

a korrelált alkérdéseket.

Alkérdéseket annak megfelelően csoportosíthatjuk, hogy az eredménye hány sort és hány oszlopot

tartalmaz:

 egy oszlopot, egy sort, vagyis egy skalár értéket ad vissza (single-row);

 egy oszlopot, több sort, ún. többsoros alkérdés (multiple-row subquery);

 több oszlopot, több sort, ún. több oszlopos alkérdés (multiple-column);

Ha egy attribútum egyetlen értékére van szükségünk, ebben az esetben a select-from-where

kifejezés skalár értéket ad vissza, mely konstansként használható. A select-from-where kifejezés

eredményeként kapott konstanst egy attribútummal vagy egy másik konstanssal összehasonlíthatjuk.

Nagyon fontos, hogy az alkérdés select-from-where kifejezése csak egy attribútumnak egyetlen

értékét adja eredményül, különben hibajelzést kapunk.

példa: Legyenek a Részlegek és Alkalmazottak relációk a NagyKer adatbázisból, és a következő

lekérdezés: „Keressük a ’Tervezés’ nevű részleg managerének a nevét.” A megoldás alkérdés

segítségével:

1) SELECT Név

2) FROM Alkalmazottak

3) WHERE SzemSzám =

4) (SELECT ManSzemSzám

104 3. FEJEZET ADATBÁZISOK

5) FROM Részlegek

6) WHERE Név = ’Tervezés’);

Amint látjuk, az alkérdés (4−6 sorok) csak egy oszlopot választ ki a manager személyi számát, de

még abban is biztosak kell legyünk, hogy csak egy ’Tervezés’ nevű részleg legyen az adatbázisban.

Ezt elérhetjük ha egyedi kulcs megszorítást kérünk a Részlegek relációra a CREATE TABLE

parancsban a UNIQUE kulcsszó segítségével. Abban az esetben, ha az alkérdés nulla vagy egynél

több sort eredményez, a lekérdezés futás közbeni hibát fog jelezni. Az „Összesítések” alfejezet 0.

példájának az adatait figyelembe véve az alkérdés eredményül az 123444 személyi számot adja, és a

lekérdezés a következőképpen hajtódik végre:

SELECT Név

FROM Alkalmazottak

WHERE SzemSzám = 123444

A lekérdezés eredménye: ‘Vincze Ildikó’ lesz.□

A skalár értéket adó alkérdéssel használható operátorok az: =, <, <=, >, >=, <>.

példa: „Keressük azon alkalmazottakat, kiknek fizetése nagyobb, mint annak az alkalmazottnak,

kinek a személyi száma 333333.”

SELECT Név

FROM Alkalmazottak

WHERE Fizetés >

 (SELECT Fizetés

 FROM Alkalmazottak

 WHERE SzemSzám = 333333); □

példa: „Keressük azon alkalmazottakat, kiknek a fizetése az összes alkalmazott minimális fizetésével

egyenlő.”

SELECT Név

FROM Alkalmazottak

WHERE Fizetés =

 (SELECT MIN(Fizetés)

 FROM Alkalmazottak); □

példa: „Keressük azon részlegeket és az alkalmazottak minimális fizetését a részlegből, ahol a

minimális fizetés nagyobb, mint a minimális fizetés a 2-es ID-jű részlegből.”

SELECT RészlegID, MIN(Fizetés)

FROM Alkalmazottak

 GROUP BY RészlegID

 HAVING MIN(Fizetés) >

 (SELECT MIN(Fizetés)

 FROM Alkalmazottak

 WHERE RészlegID = 2);

A lekérdezés processzor először az alkérdést értékeli ki, ennek eredményeként egy skalár értéket

(300) kapunk és a fő lekérdezés ezzel a skalár értékkel fog dolgozni. □

Csínján kell bánjunk a csoportosítással.

Példa: Egy helytelen SELECT parancs:

SELECT SzemSzám, Név

FROM Alkalmazottak

WHERE Fizetés =

 (SELECT MIN(Fizetés)

 FROM Alkalmazottak

 GROUP BY RészlegID);

Az alkérdés több sort is visszaad, pontosan annyit, ahány különböző RészlegID létezik az

Alkalmazottak táblában, minden részleg esetén a minimális fizetést adja vissza. Az egyenlőség az

alkérdés előtt csak egy skaláris értéket vár. □

3. FEJEZET ADATBÁZISOK 105

A többsoros alkérdések esetén a WHERE záradék feltétele olyan operátorokat tartalmazhat,

amelyeket egy R relációra alkalmazhatunk, ebben az esetben az eredmény logikai érték lesz. Bizonyos

operátoroknak egy skaláris s értékre is szükségük van. Ilyen operátorok:

▸ EXISTS R – feltétel, mely akkor és csak akkor igaz, ha R nem üres.

példa: SELECT Név
FROM Alkalmazottak, Managerek

WHERE Alkalmazottak. SzemSzám = Managerek.SzemSzám

AND EXISTS

 (SELECT *

 FROM Alkalmazottak

 WHERE Fizetés > 500);

A fenti példa csak abban az esetben adja meg a managerek nevét, ha van legalább egy

alkalmazott, kinek a fizetése nagyobb, mint 500 euró.

▸ s IN R, mely akkor igaz, ha s egyenlő valamelyik R-beli értékkel. Az s NOT IN R akkor igaz, ha

s egyetlen R-beli értékkel sem egyenlő.

példa: Legyen a NagyKer adatbázis és a következő lekérdezés: „Adjuk meg azon szállítók nevét és

címét, akik valamilyen csokit szállítanak” (Áruk.Név LIKE ‘%csoki%’)

1) SELECT Név, Helység, UtcaSzám

2) FROM Szállítók

3) WHERE SzállID IN

4) (SELECT SzállID

5) FROM Szállít

6) WHERE ÁruID IN

7) (SELECT ÁruID

8) FROM Áruk

9) WHERE Név LIKE ‘%csoki%’)

);

A 7−9 sor alkérdése az összes olyan árut választja ki, melynek nevében szerepel a csoki.

Legyen a csoki áruk azonosítóinak a halmaza: CsokiID. A 4−6 sor a Szállít táblából azon SzállID-kat

választja ki, ahol az ÁruID benne van a CsokiID halmazban. Nevezzük a csokit szállítók

azonosítóinak a halmazát CsokiSzállIDk-nak. Az 1−3 sorok segítségével megkaphatjuk a csokit

szállítók nevét és címét. □

A kereskedelmi rendszerek különböző mélységig tudják az alkérdéseket kezelni. Van olyan,

amelyik csak 1 alkérdést engedélyez.

▸ s > ALL R, mely akkor igaz, ha s nagyobb, mint az R reláció minden értéke, ahol az R

relációnak csak egy oszlopa van. A > operátor helyett bármelyik összehasonlítási operátort

használhatjuk. Az s <> ALL R eredménye ugyanaz, mint az s NOT IN R feltételé.

példa: Legyen a következő lekérdezés:

SELECT SzemSzám, Név

FROM Alkalmazottak

WHERE Fizetés > ALL

 (SELECT MIN(Fizetés)

 FROM Alkalmazottak

 GROUP BY RészlegID);

Ugyanezt a lekérdezést láttuk egyenlőséggel az alkérdés előtt, helytelen példaként. Mivel az

alkérdés több sort is visszaad, a „> ALL” operátort alkalmazva, a Fizetés oszlop értékét

összehasonlítja az összes minimális fizetés értékkel az alkérdésből. Tehát a lekérdezés megadja azon

alkalmazottakat, kiknek fizetése nagyobb, mint a minimális fizetés minden részlegből. □

▸ s > ANY R, mely akkor igaz, ha s nagyobb az R egyoszlopos reláció legalább egy értékénél. A >

operátor helyett akármelyik összehasonlítási operátort használhatjuk.

106 3. FEJEZET ADATBÁZISOK

példa: „Keressük azokat a tanárokat, akik beosztása nem professzor, és van olyan professzor, akinek

a fizetésénél az illető tanárnak nagyobb a fizetése.”

SELECT Név, BeosztásKod, Fizetés

FROM Tanárok

 WHERE Fizetés > ANY

(SELECT Fizetés

 FROM Tanárok

 WHERE BeosztásKod = ‘PRO’)

 AND BeosztásKod <> ‘PRO’; □

A több oszlopos alkérdés esetén, a SELECT kulcsszó után megadhatunk több mint egy oszlopot, és

szükségszerűen a fő lekérdezésben is ugyanannyi oszlopot kell megadjunk az összehasonlító operátor

bal oldalán is. Az összehasonlítás párokra vonatkozik.

példa: „Keressük azokat a tanárokat, akiknek a fizetése egyenlő az algebra tanszék beosztásnak

megfelelő átlag fizetésével.”

SELECT Név, BeosztásKod, Fizetés

FROM Tanárok

 WHERE BeosztásKod, Fizetés IN

(SELECT BeosztásKod, AVG(Fizetés)

 FROM Tanárok

 WHERE TanszékKod = ‘ALG’

 GROUP BY BeosztásKod); □

Az alkérdés meghatározza az algebra tanszéken belül a beosztásoknak megfelelő átlagfizetéseket. A

fő lekérdezés akkor fog egy tanárt kiválasztani, ha az alkérdés eredményhalmazában megtalálja a

tanár beosztás kodja mellett a fizetést is, az értékpárt.

3.4.6. Korrelált alkérdések

Az eddig bemutatott alkérdések esetén az alkérdés csak egyszer kerül kiértékelésre és a kapott

eredményt a magasabb rendű lekérdezés hasznosítja. A beágyazott alkérdéseket úgy is lehet

használni, hogy az alkérdés többször is kiértékelésre kerül. Az alkérdés többszöri kiértékelését egy, az

alkérdésen kívüli sorváltozóval érjük el. Az ilyen típusú alkérdést korrelált alkérdésnek nevezzük.

példa: Az Egyetem adatbázis esetén keressük azon diákokat, akik egyedül vannak a csoportjukban

10-es átlaggal.

SELECT Név, CsopKod

FROM Diákok D1

WHERE Átlag = 10 AND NOT EXISTS

 (SELECT D2.BeiktatásiSzám

 FROM Diákok D2

 WHERE D1.CsopKod = D2.CsopKod

 AND D1.BeiktatásiSzám <> D2.BeiktatásiSzám

 AND D2.Átlag = 10);

A lekérdezés kiértékelése során a D1 sorváltozó végigjárja a Diákok relációt. Minden sorra a

D1-ből a D2 sorváltozó segítségével ismét végigjárjuk a Diákok relációt.

Legyen d1 egy sor a Diákok relációból, amelyet a fő lekérdezés az eredménybe helyez, ha

megfelel a WHERE utáni feltételnek. Először is a d1.Átlag értéke 10 kell legyen és az alkérdés

eredménye pedig üres halmaz. Az alkérdés akkor fog sorokat tartalmazni, ha létezik a Diákok

relációban egy d2 sor, mely esetén ugyanaz a csoport kód, mint a d1 sor esetén, az átlag értéke 10 és a

beiktatási szám különbözik a d1 sor BeiktatásiSzám attribútum értéketől. Ez azt jelenti, hogy az

adatbázisban találtunk egy másik diákot, ugyanabból a csoportból, akinek az átlaga 10-es. Mivel az

alkérdésben vannak sorok, nem fogja a d1 sort kiválasztani. Ha az alkérdés üres halmaz, akkor

kiválasztja a d1-et, és ekkor találtunk olyan diákot, aki egyedül van a csoportjában 10-es átlaggal. □

3. FEJEZET ADATBÁZISOK 107

3.4.7. Más típusú összekapcsolási műveletek

A relációs algebra természetes összekapcsolás műveletét eddig a SELECT parancs segítségével

láttuk implementálva. Ha a WHERE záradékban adjuk meg a feltételt, vagy INNER JOIN kulcsszót

használunk, csak azok a sorok kerülnek be az eredmény relációba, melyek esetében a közös

attribútum ugyanaz az értéke mindkét relációban megtalálható. (A lógó sorok nem kerülnek be az

eredménybe.) Bizonyos esetekben szükségünk van a lógó sorokra is.

Az OUTER JOIN kulcsszó segítségével azon sorok is megjelennek az eredményben, melyek

értéke a közös attribútumra nem található meg a másik táblában, vagyis a lógó sorok, melyekben a

másik tábla attribútumai NULL értékeket kapnak. Tehát a külső összekapcsolás (outer join)

eredménye tartalmazza a belső összekapcsolás (inner join) eredménye mellett a lógó sorokat is. A

külső összekapcsolás 3−féle lehet:

R LEFT OUTER JOIN S ON R.X = S.X

eredménye tartalmazza a bal oldali R reláció összes sorát, azokat is, amelyek esetében az X

attribútumhalmaz értéke nem létezik az S reláció X értékei között. Ezt a műveletet külső baloldali

összekapcsolásnak nevezzük. Az eredmény az S attribútumait is tartalmazza NULL értékekkel.

R RIGHT OUTER JOIN S ON R.X = S.X

eredménye a jobb oldali S reláció összes sorát tartalmazza, azokat is amelyek esetében az X

attribútumhalmaz értéke nem létezik az R reláció X értékei között. Ezt a műveletet külső jobboldali

összekapcsolásnak nevezzük. Az eredmény az R attribútumait is tartalmazza NULL értékekkel.

R FULL OUTER JOIN S ON R.X = S.X

eredménye azon sorokat tartalmazza, melyek esetében a közös attribútum értéke megegyezik mindkét

relációban és mind a bal oldali R reláció lógó sorait, mind az S reláció lógó sorait magában foglalja.

példa: Legyenek az Alkalmazottak és Részlegek reláció sorai:

SzemSzám Név RészlegID Fizetés

111111 Nagy Éva 2 300

222222 Kiss Csaba 9 400

456777 Szabó János 9 900

234555 Szilágyi Pál 2 700

123444 Vincze Ildikó 1 800

567765 Katona József NULL 600

556789 Lukács Anna NULL 700

333333 Kovács István 2 500

RészlegID RNév ManagerSzemSzám

1 Tervezés 123444

2 Könyvelés 234555

3 Eladás NULL

9 Beszerzés 456777

Legyen a következő lekérdezés:

SELECT * FROM Alkalmazottak

INNER JOIN Részlegek

ON Alkalmazottak.RészlegID = Részlegek. RészlegID;

108 3. FEJEZET ADATBÁZISOK

Az eredmény:

SzemSzám Név RészlegID Fizetés RNév ManagerSzemS

zám

111111 Nagy Éva 2 300 Könyvelés 234555

222222 Kiss Csaba 9 400 Beszerzés 456777

456777 Szabó János 9 900 Beszerzés 456777

234555 Szilágyi Pál 2 700 Könyvelés 234555

123444 Vincze Ildikó 1 800 Tervezés 123444

333333 Kovács István 2 500 Könyvelés 234555

Tehát azon alkalmazottak esetén, ahol a RészlegID megtalálható a Részlegek táblában megkapjuk a

megfelelő részleg nevét és a manager személyi számát. Lógó sorok nem jelennek meg az

eredményben. □

példa: Tekintsük az alábbi lekérdezést:

SELECT * FROM Alkalmazottak

LEFT OUTER JOIN Részlegek

ON Alkalmazottak.RészlegID = Részlegek. RészlegID;

A lekérdezés eredménye:

SzemSzám Név RészlegID Fizetés RNév Manager

SzemSzám

111111 Nagy Éva 2 300 Könyvelés 234555

222222 Kiss Csaba 9 400 Beszerzés 456777

456777 Szabó János 9 900 Beszerzés 456777

234555 Szilágyi Pál 2 700 Könyvelés 234555

123444 Vincze Ildikó 1 800 Tervezés 123444

567765 Katona József NULL 600 NULL NULL

556789 Lukács Anna NULL 700 NULL NULL

333333 Kovács István 2 500 Könyvelés 234555

Ebben az esetben az Alkalmazottak összes sora, és a lógó sorok is megjelennek az

eredményben, a Részlegek attribútumai a lógó sorok esetén NULL értéket kapnak. □

példa: Tekintsük az alábbi lekérdezést:

SELECT * FROM Alkalmazottak

RIGHT OUTER JOIN Részlegek

ON Alkalmazottak.RészlegID = Részlegek. RészlegID;

A lekérdezés eredménye:

SzemSzám Név RészlegID Fizetés RNév Manager

SzemSzám

111111 Nagy Éva 2 300 Könyvelés 234555

222222 Kiss Csaba 9 400 Beszerzés 456777

456777 Szabó János 9 900 Beszerzés 456777

234555 Szilágyi Pál 2 700 Könyvelés 234555

123444 Vincze Ildikó 1 800 Tervezés 123444

333333 Kovács István 2 500 Könyvelés 234555

NULL NULL 3 NULL Eladás NULL

Ebben az esetben a Részlegek összes sora jelenik meg, mivel ez a jobb oldali reláció. Az

Alkalmazottak reláció attribútumai a lógó részleg esetén NULL értékeket kapnak. □

3. FEJEZET ADATBÁZISOK 109

példa: Tekintsük az alábbi lekérdezést:

SELECT * FROM Alkalmazottak

FULL OUTER JOIN Részlegek

ON Alkalmazottak.RészlegID = Részlegek. RészlegID;

A lekérdezés eredménye:

SzemSzám Név RészlegID Fizetés RNév ManagerSzemS

zám

111111 Nagy Éva 2 300 Könyvelés 234555

222222 Kiss Csaba 9 400 Beszerzés 456777

456777 Szabó János 9 900 Beszerzés 456777

234555 Szilágyi Pál 2 700 Könyvelés 234555

123444 Vincze Ildikó 1 800 Tervezés 123444

333333 Kovács István 2 500 Könyvelés 234555

567765 Katona József NULL 600 NULL NULL

556789 Lukács Anna NULL 700 NULL NULL

NULL NULL 3 NULL Eladás NULL

Csoportosítás esetén is használhatóak a külső összekapcsolási műveletek. □

példa: „Adjuk meg minden részleg esetén az ott dolgozó alkalmazottak számát! Írassuk ki azon

részlegeket is, amelyekhez egyetlen alkalmazott sincs hozzárendelve!”

SELECT Részlegek.RészlegID, COUNT(SzemSzám) as AlkalmazottSzám

FROM Részlegek

LEFT OUTER JOIN Alkalmazottak

ON Alkalmazottak.RészlegID = Részlegek.RészlegID

GROUP BY Részlegek.RészlegID;

A lekérdezés eredménye:

RészlegID Alkalmazott

Szám

1 1

2 3

3 0

9 2

Példafeladatok

1. i) Tervezzünk relációs adatbázissémát, melynek táblái 3NF-ban vannak és egy software cég

következő információit tárolják:

 tevékenységek: tevékenység kódja, leírása, tevékenység típusa;

 alkalmazottak: alkalmazott kódja, nev, tevékenységek listája, csoport, melynek tagja,

csoport vezetője.

Egy tevékenységet a kódja azonosít, egy alkalmazottat szintén. Egy alkalmazott egy csoportnak tagja,

egy csoportnak egy vezetője van, aki szintén a cég alkalmazottja. Egy alkalmazott több

tevékenységben is részt vehet, illetve egy tevékenységnél több alkalmazott is dolgozhat.

Indokoljuk, hogy a táblák 3NF-ban vannak! Írjuk fel a funkcionális függőségeket!

ii) Relációs algebrát vagy SELECT-SQL parancsot használva, az i) pont adatbázisára vonatkozóan

adjuk meg:

a) azokat az alkalmazottakat a nevükkel, akik dolgoznak legalább egy “tervezés” típusú

tevékenységnél és nem dolgoznak egyetlen “tesztelés” típusú tevékenységnél sem;

b) azokat az alkalmazottakat a nevükkel, akik olyan csoportok vezetői, amelyekhez legalább 10

alkalmazott tartozik!

110 3. FEJEZET ADATBÁZISOK

2. i) Tervezzünk relációs adatbázissémát, melynek táblái 3NF-ban vannak és a következő

információikat tárolják:

 tantárgyak: tantárgy kódja, megnevezése, kreditek száma;

 diákok: diák kódja, neve, születési dátuma, csoportjának kódja, évfolyamra, szakra

vonatkozó információk, azon tantárgyak listája, amelyekből vizsgázott (a vizsga dátuma és a

jegy is tárolandó)!

Indokoljuk, hogy a táblák 3NF-ban vannak! Írjuk fel a funkcionális függőségeket!

ii) Relációs algebrát vagy SELECT-SQL parancsot használva, az i) pont adatbázisára vonatkozóan

adjuk meg:

a) azokat a tantárgyakat a megnevezésükkel, amelyek esetén nincsenek átmenő jegyek (átmenő

jegy>=5);

b) azokat a diákokat (név, csoport, sikeres vizsgák száma), akik több, mint 5 vizsgán átmenő jegyet

kaptak. Ha egy diáknak több jegye is van egy tárgyból, csak egyszer számoljuk!

3. i) Tervezzünk relációs adatbázissémát, melynek táblái 3NF-ban vannak és államvizsgára iratkozott

diákokról a következő adatokat tárolják: beiktatási szám, diák neve, elvégzett szak kódja és neve,

szakdolgozat címe, irányító tanár kódja és neve, azon intézet kódja és megnevezése, amelyhez az

irányító tanár tartozik, a dolgozat megvédéséhez szükséges software-k listája, (pl.: VB.Net, MS SQL

Server, Oracle, C#, Delphi, C++, IE stb.), illetve hardver-szükségletek listája (pl.: 1Gb RAM, 512Mb

RAM, DVD Reader stb.). Írjuk fel a funkcionális függőségeket, és indokoljuk, hogy a táblák 3NF-ban

vannak!

ii) Relációs algebrát vagy SELECT-SQL parancsot használva (legalább egyszer mindegyiket) az i)

pont adatbázisára vonatkozóan adjuk meg:

a) azon diákokat (Név, Szakdolgozat címe, Vezető tanár neve), akiknek államvizsga vezető tanára

egy adott intézethez tartozik;

b) egy adott intézet esetén a diákok számát, akik vezető tanára az adott intézethez tartozik;

c) azon tanárokat (név, tanszéke neve), akik nem vezettek államvizsgát;

d) azon diákok nevét, akik Oracle-t is és C#-ot is igényeltek!

4. i) Tervezzünk relációs adatbázissémát, melynek táblái 3NF-ban vannak és filmekről szóló

információikat tárolnak:

 színészek: színész kódja, neve, neme, weboldala, országa;

 filmek: film kódja, címe, megjelenési dátuma, stúdió neve, stúdió weboldala, stúdió országa,

rendező neve, rendező weboldala, rendező országa, színészek listája, film típusainak listája!

Írjuk fel a létező funkcionális függőségeket, és indokoljuk, hogy a végső táblák 3NF-ban vannak!

ii). Relációs algebrát vagy SELECT-SQL parancsot használva, az i) pont adatbázisára vonatkozóan

adjuk meg:

a. azokat az filmeket (cím, megjelenési dátum, stúdió neve), melyekben Julia Roberts és Richard Gere

együtt szerepelnek;

b. azokat a színészeket (név, web oldal), akik a legtöbb filmben játszottak!

5. Adjunk példát az R(ABCD) reláció olyan soraira, melyekben az ABC→D funkcionális függőség

nincs betartva!

6. Legyen R és S két reláció a következő sorokkal:

Mi lesz a következő lekérdezés eredménye:

((DA, EC), S) - A;C(R)?

3. FEJEZET ADATBÁZISOK 111

7. Legyen a következő reláció: Személyek(Kód, Név, SzületésiDátum, Város, Szakma), ahol a Kód

mező a reláció elsődleges kulcsa; és a következő lekérdezés:

Város (Szakma=’Programozó’ (Személyek)).

Írjuk le szavakban, mi lesz a lekérdezés eredménye, majd adjuk meg a lekérdezést SQL parancs

segítségével!

8. Legyen az R reláció szerkezete: R(a, b). A Q1 és Q2 lekérdezések eredményei a SELECT *

FROM R parancs által visszatérített sorok lesznek.

Q1: UPDATE R SET b = 10 WHERE a = 20;

 SELECT * FROM R;

Q2: DELETE FROM R WHERE a = 20;

 INSERT INTO R VALUES(20,10);

 SELECT * FROM R;

Határozzuk meg, hogy a következő kijelentések közül melyek igazak, függetlenül az R tábla

tartalmától. Magyarázzuk!

a) Q1 és Q2 ugyanazt az eredményt adják.

b) Q1 eredménye mindig részhalmaza (bennfoglaltatik) Q2 eredményének.

c) Q2 eredménye mindig részhalmaza (bennfoglaltatik) Q1 eredményének.

d) Q1 és Q2 különböző eredményeket adnak.

9. Az alábbiakban az S reláció egy előfordulása látható, a reláció sémája:

S[FK1, FK2, A, B, C, D, E], kulcsa: {FK1, FK2}.

Adjunk választ az alábbi kérdésekre:
A. Hány rekordja lesz a lekérdezés eredményének?

SELECT *

FROM S

WHERE A LIKE 'a_'

a. 5

b. 4

c. 0

d. 1

e. Egyik sem a fentiek közül.

B. Mennyi a különbség a két lekérdezés eredmény-relációinak kardinalitásai között?

SELECT FK2, FK1, COUNT(DISTINCT B)

FROM S

GROUP BY FK2, FK1

HAVING FK1 = 1

SELECT FK2, FK1, COUNT(C)

FROM S

GROUP BY FK2, FK1

HAVING FK1 = 2

112 3. FEJEZET ADATBÁZISOK

a. 1

b. 0

c. -1

d. -2

e. Egyik sem a fentiek közül.

C. Az alábbi állítások közül melyik helyes?

a. Az alábbi funkcionális függőségek közül legalább egy nincs kielégítve a reláció adatai által:

 {A} → {B}, {FK1, FK2} → {A, B}, {FK1} → {A}.

b. A reláció adatait figyelembe véve, biztosan kijelenthetjük, hogy legalább egy az alábbi

funkcionális függőségek közül fennáll az S sémára vonatkozóan: {A} → {B}, {FK1} → {A, B},

{FK1} → {A}.

c. Az alábbi funkcionális függőségek közül legalább kettő nincs kielégítve a reláció adatai által:

{FK2} → {A, B}, {A} → {E}, {A, B} → {E}, {B} → {C, E}.

d. A reláció adatait figyelembe véve, biztosan kijelenthetjük, hogy legalább kettő az alábbi

funkcionális függőségek közül fennáll az S sémára vonatkozóan: {FK2} → {A, B}, {A} → {E},

{A, B} → {E}, {B} → {C, E}.

e. Egyik sem helyes a fentiek közül.

D. Hány rekordja lesz a lekérdezés eredményének?

SELECT *

FROM S

WHERE B = 'b1' OR D = 5

a. 2

b. 3

c. 1

d. 5

e. Egyik sem a fentiek közül.

113

4. fejezet Operációs rendszerek

4.1. A Unix állományrendszer

4.1.1. Állományok típusa

Az operációs rendszerek a különféle, összetartozó adatokat állományokban avagy file-okban

tárolják.

A UNIX megkülönböztet közönséges-, illetve speciális állományokat. A közönséges

állomány teljesen strukturálatlan, egyszerűen bájtok sorozata. Egy UNIX file végét nem

jelzik speciális karakterek, a filenak akkor van vége, amikor az olvasó rutin hibajelzéssel tér

vissza. Standard bemenet esetén a file végét újsorban ^D jelzi.

Egy speciális állomány ezzel szemben meghatározott szerkezetű, különleges célt

szolgál. A kövegtkező fajta speciális állományokról beszélhetünk: katalógus (directory),

eszköz (device), szimbolikus lánc (symbolic link), nevesített FIFO csővezeték (named pipe,

FIFO), illetve kommunikációs végpont (socket).

Beszélhetünk továbbá a folyamatok közötti kommunikációt, illetve szinkronizálást

szolgáló eszközökről, melyeket a rendszerhívások szintaktikai szempontból szintén

állományként látnak. Ezeket az eszközöket a Unix magja kezeli: név nélküli csővezeték

(pipe), osztott memória szegmensek, üzenetsorok, szemaforok.

Egy közönséges állomány oktettjeit feldolgozhatjuk szekvenciálisan, de hozzáférhetünk

közvetlenül is egy bizonyos bájthoz, a sorszámának segítségével.

Egy katalógusfile csupán a tartalmát illetően különbözik egy közönséges állománytól. A

katalógusban szereplő minden file-hoz (közönséges állomány, alkatalógus, stb.) tartalmaz egy

bejegyzést. Minden felhasználó rendelkezik egy úgynevezett alapkatalógussal (home

directory), mely az általa használt közönséges állományokat, illetve általa létrehozottt

alkatalógusokat tartalmazza (~ vagy $HOME).

Minden katalógus két speciális bemenetet tartalmaz:

"." (pont) magára a katalógusra mutat;

 ".." (két egymásutáni pont), a szülőkatalógusra mutat (parent directory).

Minden állományrendszer egyetlen gyökér katalógust (root directory) tartalmaz: /.

A katalógusszerkezetet egy faszerkezet (gráf) határozza meg. Az elérési út megadásánál az

elválasztójel a /. Kétféle módon megadott elérési útról beszélhetünk:

 abszolút elérési út: a gyökérhez (/) képest megadott hely.

 relatív elérési út: az aktuális katalógushoz (.) képest megadott hely (egy elérési út

relatív, ha nem a / vagy ~ jelekkel kezdődik).

A katalógus, amelyben a felhasználó éppen dolgozik, az úgynevezett aktuális katalógus

(current directory). Ennek megváltoztatása a cd parancs segítségével lehetséges. Az aktuális

katalógus abszolút elérési útját (a gyökér katalógustól kezdődően) a pwd parancs adja meg.

Létrehozhatunk egy új katalógust az mkdir parancs segítségével, egy katalógus törlését

pedig a rmdir parancs teszi lehetővé.

114 4. FEJEZET OPERÁCIÓS RENDSZEREK

4.1.2. Állományok jellemzői

Egy állományt az alábbi tulajdonságok jellemeznek:

• név

• inode szám – az állomány tulajdonságait tároló inode tábla megfelelő bemenetének

azonosítója

• típus

• méret

• tulajdonos (owner)

• csoport (group)

• hozzáférési jogok

• létrehozás, utolsó hozzáférés ill. utolsó módosítás dátuma és ideje

• láncszám – hány különböző katalógusbemenet hivatkozik ugyanarra az állományra

A következő hozzáférési jogokat különböztetjük meg:

• olvasási jog – 4 (read permission): az állomány olvasható, ill. a katalógus tartalma

listázható

• írási jog – 2 (write permission): az állomány módosítható, ill. a katalógusban

állományokat lehet létrehozni és törölni

• végrehajtási jog – 1 (execute permission): az állomány programként végrehajtható,

ill. a katalógusban levő állományok/ katalógusok hozzáférhetőek, be lehet lépni a

katalógusba

• setuid: a programfile a file jogaival fut (nem a futtató jogaival!)

• setgid: a programfile a file csoportjának jogaival fut

• sticky: a katalógusban állományt törölni vagy átnevezni csak a tulajdonos tud

Egy állomány hozzáférési jogai négy csoportba sorolhatóak:

– speciális jogok (setuid – 4, setgid – 2, sticky – 1)

– a file tulajdonosának jogai (owner, owner user)

– a file csoportjának jogai (group)

– mindenki más jogai (other users)

A chmod parancs segítségével módosíthatjuk egy állomány hozzáférési jogait. A jogok

megadása kétféleképpen történhet: numerikusan vagy szimbolikusan.

A numerikus (oktális számokkal történő) megadás esetén a parancs a következőképpen néz

ki:

chmod [-R] perm-mode file ...

ahol perm-mode a beállítani kívánt új hozzáférési jogosultság. Több filenevet is meg lehet

adni szükség szerint. (A -R opcióval rekurzív módon, a megadott katalógus alatti teljes

állományrendszeren módosítja a jogosultságokat.) A beállítani kívánt jogokat oktális szám

formájában kell megadni, az alábbiak szerint: az olvasás értéke 4, az írásé 2, a végrehajtásé 1,

ezeket az értékeket össze kell adni, és így tulajdonosi kategóriánként képződik három oktális

számjegy, ezeket kell beírni. Ha például azt akarjuk, hogy a file1 állományunkat a tulajdonos

tudja olvasni, írni, végrehajtani, a csoporttagok végrehajtani és olvasni, a többiek pedig csak

olvasni, akkor a jogosultságok kódolása 4+2+1, 4+1, 4, azaz 754 lesz:

$ chmod 754 file1

4. FEJEZET OPERÁCIÓS RENDSZEREK 115

$ ls -l file1

-rwxr-xr-- 1 tsim1234 student 27 2013-03-17 15:56 file1

Speciális jogok beállítását is tartalmazó példa:
$ chmod 4751 file1

$ ls -l file1

 -rwsr-x--x 1 tsim1234 student 27 2013-03-17 15:56 file1

A másik megadási mód a szimbolikus beállítás, ennek a következő a szintaxisa (a who, op

illetve perm között a szóköz csak a láthatóság miatt szerepel):

chmod [-R] who op perm file ...

ahol who a tulajdonosi kategóriát adja meg, lehetséges értékei'u' (tulajdonos, user), 'g'

(csoport, group), 'o' (egyéb, others), illetve 'a' (mindenki, all), ami az előző hármat

magában foglaló alapértelmezés.

perm a megfelelő művelet, 'rwxst' lehet a már látott módon.

op értéke +-= lehet. '+' a megfelelő jog engedélyezését jelenti, '-' a jog letiltását, '='

pedig a jog abszolút értékre állítását. Néhány példa:
$ ls -l file1

-rw-rw-rw- 1 tsim1234 student 27 2013-03-17 15:56 file1

$ chmod 754 file1

$ ls -l file1

-rwxr-xr-- 1 tsim1234 student 27 2013-03-17 15:56 file1

$ chmod u-w file1 # tulajdonosnak írásvédett

$ ls -l file1

-r-xr-xr-- 1 tsim1234 student 27 2013-03-17 15:56 file1

$ chmod a+x file1 # mindenkinek végrehajtható

$ ls -l file1

-r-xr-xr-x 1 tsim1234 student 27 2013-03-17 15:56 file1

$ chmod u=rwxs,g=rx,o=r file1

$ ls -l file1

-rwsr-xr-- 1 tsim1234 student 27 2013-03-17 15:56 file1

Katalógusfile és inode

A fizikai file-ok adatait (a név kivételével) az inode tábla tartalmazza (i-bög). Minden fizikai

file-nak megfelel egy (és csak egy) inode.

Egy katalógusállomány a katalógusban szereplő minden file-hoz tartalmaz egy bejegyzést.

Egy katalógus bejegyzés csak a file nevét és inode számát tartalmazza, amint azt a 4.1 ábra

szemlélteti:

állománynév (tetszőleges hosszúságú) inode szám

4.1 ábra Egy katalógus bejegyzés szerkezete

Az inode szám kilistázható az ls –i paranccsal. Az inode szám meghatározza az állományt

leíró inode-ot.

Egy inode mérete 64 vagy 128 byte (állományrendszerenként különbözik). Egy inode az

alábbi információkat tartalmazza az állománnyal kapcsolatban:

 tulajdonosát

116 4. FEJEZET OPERÁCIÓS RENDSZEREK

 csoportját

 hozzáférési jogait

 hosszát

 létrehozás és utolsó módosítás dátumát

 típusát

 láncszámát – hány különböző katalógusbemenet hivatkozik ugyanarra az állományra

 mutatókat a file által lefoglalt blokkokra (lásd később, a 4.1.3. alfejezetben

részletesebben)

Láncolás (link)

Bizonyos esetekben szükség lehet arra, hogy az állományrendszer egy részét több felhasználó

megosztva használhassa, például ha egy adatbázishoz többen is szeretnének hozzáférni. A

Unix alapú állományrendszerek lehetővé teszik, hogy ugyanazt az állományt több néven is

elérhessük. Ezt nevezzük láncolásnak. A láncolás kitűnően használható névütközések

feloldására, illetve helytakarékosság szempontjából is hasznos lehet.

Kétféle láncolást különböztetünk meg: merev láncolás (hard link), illetve szimbolikus

láncolás (soft link).

Merev láncoláskor egy új katalógus bejegyzést hozunk létre, amely az eredeti inode-ra mutat

és növeljük az inode-ban a láncszámot. Csak közönséges állományokra alkalmazható. A

láncszám megadja, hogy hány helyről hivatkozunk ugyanarra a file-ra. Az új file-hivatkozás

teljesen egyenértékű az eredetivel (pl. amennyiben módosítjuk az állományt a hard linkkel

hivatkozva rá, láthatjuk, hogy az eredeti névvel hivatkozott állomány is módosult).

File törlésekor töröljük a directory bemenetet és csökkentjük az inode-ban a láncszámot; ha a

láncszám értéke 0 lesz, akkor az inode bejegyzést is töröljük (a file többet nem elérhető).

Pl. Hard link létrehozására:
$ ln regi ujlink

$ ls -li
total 8

2098858 -rw-r--r-- 2 tsim1234 student 19 2013-03-17 19:26 regi

2098858 -rw-r--r-- 2 tsim1234 student 19 2013-03-17 19:26 ujlink

Láthatjuk, hogy az állományrendszerben két egyenértékű állomány jött létre: a régi neve regi,

a létrehozott új állományé pedig ujlink. Mindkét katalógusbemenet ugyanarra az inode-ra

mutat, illetve mindkét állománynál láthatjuk, hogy két helyről történik rá hivatkozás (a

láncszám 2).

Hard linket kizárólag ugyanazon az állományrendszeren belül hozhatunk csak létre.

Szimbolikus láncolás (soft link) esetén az új katalógus-bejegyzés nem a file inode-jára mutat,

hanem egy speciális file-ra, ami tartalmazza a láncolt file nevét. ln –s paranccsal hozható

létre. A létrehozott file típusa l lesz.

$ ln -s file1 szimbolikus
$ ls -l

total 8

-rw-r--r-- 1 tsim1234 student 27 2013-03-17 15:56 file1

lrwxrwxrwx 1 tsim1234 student 4 2013-03-17 19:34 szimbolikus -> file1

4. FEJEZET OPERÁCIÓS RENDSZEREK 117

Láthatjuk, hogy a láncszám értéke az eredeti állománynál változatlan. A legtöbb művelet a

lánc helyett az eredeti állományon hajtódik végre, kivéve pl. az mv és rm parancsokat.

A szimbolikus láncnak a hozzáférési jogait nem lehet módosítani, mivel az eredeti állomány

jogai számítanak.

Az eredeti állomány törlésekor a lánc megmarad, de érvénytelenné válik.

A szimbolikus láncolás lehetővé teszi katalógus, illetve különböző fájlrendszerben levő fájlok

láncolását is.

Az állományoknak a merev- vagy szimbolikus láncokkal együtt egy faszerkezet feleltethető

meg. A faszerkezet lényege, hogy bármelyik állomány vagy katalógus egyetlen szülővel

rendelkezik. Ebből adódóan bármelyik katalógusról vagy állományról legyen szó, ennek a

gyökértől kezdődően egyetlen elérési út (path) felel meg. A katalógus vagy állomány és

ennek szülőkatalógusa közötti kapcsolatot természetes kapcsolatnak nevezzük. Ez a kapcsolat

automatikusan létrejön az alkatalógus vagy állomány létrehozásakor.

4.2 ábra Állományrendszer. Egyszerű példa.

A 4.2 ábrán egy egyszerű állományrendszerre láthatunk példát. Az ábécé nagy betűivel

közönséges állományokat, katalógusokat, illetve láncokat jelöltünk. Természetesen lehetőség

van arra, hogy ugyanazt a nevet használjuk az állományrendszer különböző pontjain, hiszen a

katalógusszerkezeten belül az elérési úttal együtt egyértelműen meghatározható, hogy melyik

állományról van szó.

A közönséges állományokat körökkel jelöltük, a katalógusokat pedig téglalappal.

A kapcsolatokat háromféle nyíl jelöli:

 Folytonos vonal – természetes kapcsolat

 Szaggatott vonal – a saját katalógus, illetve szülőkatalógus esetén

 Pontozott vonal – szimbolikus vagy merev lánc.

A fenti példában 12 csomópontot (közönséges állomány vagy katalógus) különböztetünk

meg.

118 4. FEJEZET OPERÁCIÓS RENDSZEREK

Feltételezzük, hogy a pontozott vonallal jelölt két lánc szimbolikus lánc. A kényelem

kedvéért a szimbolikus láncokat az elérési út legvégén szereplő betű alapján neveztük el. A

két lánc létrehozása pl. az alábbi parancsok segítségével történhet:

cd /A

ln -s /B/D/G G Az első lánc létrehozása

cd /B/D

ln -s /A/E E A második lánc létrehozása

Feltételezzük, hogy az aktuális katalógus éppen a B. Úgy fogjuk bejárni a fát, hogy előbb a

katalógust, majd az alkatalógusait járjuk be balról jobbra. Az alábbi 12 sor mind a 12

csomópontot érinti. Amennyiben többféleképpen is hivatkozhatunk ugyanarra a csomópontra,

az egyenértékű hivatkozások ugyanabban a sorban jelennek meg. A szimbolikus linket is

használó hivatkozásokat aláhúztuk.

/ ..

/A ../A

/A/D ../A/D

/A/E ../A/E D/E ./D/E

/A/E/F ../A/E/F D/E/F ./D/E/F

/A/E/G ../A/E/G D/E/G ./D/E/G

/B .

/B/D D ./D

/B/D/G D/G ./D/G /A/G ../A/G

/B/E E ./E

/B/F F ./F

/C ../C

4.1.3. A UNIX logikai lemez szerkezete

A különböző Unix disztribúciók megjelenésével elkerülhetetlenné vált a különböző

fájlrendszerek megjelenése, melyek főképp az egyes disztribúciókra jellemzőek. Például:

 A Solaris az ufs állományrendszert használja;

 A Linux előszeretettel használja az ext2 illetve ext3 fájlrendszereket;

 Az IRIX sajátja az xfs;

stb.

Minden egyes Unix alapú fájlrendszernek vannak bizonyos sajátos paraméterei (az illető

állományrendszerre jellemző konstans értékek), mint pl.: egy blokk mérete, egy inode mérete,

a lemezen tárolt adatokat meghatározó cím hossza, hány direkt címet tartalmaz az inode és

hány hivatkozás szerepel a indirekt címek listájában. Ezen konstansok értékétől függetlenül,

egy új állomány bejegyzése, illetve ennek az adataihoz való hozzáférés, hasonló elvek alapján

történik.

Mount

A Unix állományrendszer egységes fájlrendszer, az elérési út nem tartalmaz lemezegység

nevet. A különböző logikai vagy fizikai lemezen levő fájlrendszert becsatoljuk (mount) a

rendszerbe. Egy üres directory-hoz csatlakoztatható az új fájlrendszer, ennek gyökér

4. FEJEZET OPERÁCIÓS RENDSZEREK 119

katalógusára az eredetileg üres directory nevével hivatkozhatunk. A felhasználó számára

észrevétlen, hogy mi melyik fájlrendszerben van.

Logikai lemezek és blokkok

Az alábbiakban az ext2 állományrendszer jellemzőit vesszük alapul.

Íme néhány fontosabb jellemző:

A lemez és memória közötti adatátvitel alapegysége a blokk. Azonos méretű blokkokat

használ a rendszer. Egy blokk mérete – ami egyébként változó lehet –, a rendszer

generálásakor állítható be (mke2fs). Az állományok nyilvántartása az inode táblázat

segítségével történik. A katalógus a fájlok neve és inode száma között hoz létre kapcsolatot.

A directory is egy fájl.

Az ext2 fájlrendszerben a tárolóhely blokkokra van felosztva, ezek pedig blokk csoportokat

alkotnak. A rendszer számára kritikus információk ismétlődnek minden csoportban, amint azt

a 4.3 ábra szemlélteti:

4.3 ábra Logikai lemez szerkezete

Egy bizonyos állomány adatai tipikusan ugyanazon a blokkcsoporton belül foglalnak helyet,

amennyiben ez lehetséges. Ez azért jelentős, mivel hosszú, összefüggő adatsorozat

beolvasásakor minimalizálja a lemezhozzáférések számát.

Minden egyes blokk-csoport tartalmazza az ún. szuperblokk (super block) másolatát, egy

csoport deszkriptort (group descriptor), egy blokk bittérképet (block bitmap), egy inode

bittérképet (inode bitmap), egy inode táblát (inode table), végül pedig a tulajdonképpeni

adatokat tartalmazó blokkokat.

A szuperblokk az operációs rendszer bootolásához szükséges fontos információt tartalmaz,

emiatt minden blokkcsoport tartalmaz egy biztonsági másolatot róla. Ennek ellenére tipikusan

csak a fájlrendszer legelső blokkjában szereplő adatokat használja a rendszer bootoláskor.

A szuperblokk a következő információkat tartalmazza:

• Magic Number – 0xEF53 – ext2 esetén.

• Revision Level – verzió szám

120 4. FEJEZET OPERÁCIÓS RENDSZEREK

• Mount Count and Maximum Mount Count – a fájlrendszer teljes ellenőrzése

ajánlott, ha eléri max-ot

• Block Group Number – a blokkcsoport száma, amelyikben ez a szuperblokk van,

• Block Size – blokk mérete byte-okban

• Blocks per Group – blokkok száma egy csoportban

• Free Blocks – szabad blokkok a fájlrendszerben

• Free Inodes – szabad inode-ok a fájlrendszerben

• First Inode – első inode

A csoport deszkriptor minden egyes blokk csoport esetén az alábbi információt tartalmazza:

• Blocks Bitmap – a „block allocation bitmap” blokk száma

• Inode Bitmap – az „inode bitmap” blokk száma

• Inode Table – az inode tábla kezdő blokkjának a száma

• Free blocks count, Free Inodes count, Used directory count – azaz szabad

blokkok, szabad inode-ok, illetve használt direktory-bemenetek száma

Egy állományhoz tartozó blokkok nyilvántartása

Amint láthattuk, egy állománnyal kapcsolatos információk az illető állományt leíró inode-ban

szerepelnek. Az inode az állomány különböző jellemzői mellett az illető állományhoz tartozó

adatblokkokat azonosító mutatókat tartalmaz, a 4.4 ábrán szemléltetett logika szerint:

4.4 ábra Egy állományhoz tartozó adatblokkok nyilvántartása

Az ext2 állományrendszer konkrétan 12 direkt blokkra mutató címet tartalmaz (az állomány

első 12 blokkjára tehát közvetlen hivatkozást tartalmaz), Ezt követi egy indirektáló blokkra

vonatkozó mutató (mely további közvetlen adatblokkokra vonatkozó mutatókat tartalmaz),

majd egy kétszeres indirektáló blokkra, végül pedig egy háromszoros indirektáló blokkra

vonatkozó mutató következik.

4. FEJEZET OPERÁCIÓS RENDSZEREK 121

Egy állomány tetszőleges adatblokkjához való hozzáférés legtöbb 4 lemezhozzáférést

igényel. Rövid állományok esetében azonban ennél lényegesen kevesebb hozzáférésre van

szükség (hiszen az első 12 blokk adatai közvetlenül elérhetőek). Mindaddig amíg az

állomány meg van nyitva, ennek inode-ja be van töltve a belső memóriába.

4.2. Unix folyamatok

Unix folyamatok: létrehozás, fork, exec, exit, wait; kommunikáció pipe illetve FIFO

állományon keresztül.

4.2.1. A folyamatkezelést szolgáló fontosabb rendszerhívások

Ebben az alfejezetben a folyamatkezeléshez szükséges legfontosabb rendszerhívások

működését mutatjuk be: fork, exit, wait és exec*. Kezdjük a folyamat

létrehozásáért felelős fork()rendszerhívással.

Unix folyamatok létrehozása. A fork rendszerhívás.

A Unix operációs rendszerben egy új folyamat létrehozása a fork() rendszerhívással

történik. Ennek szintaxisa:

#include <sys/types.h>

#include <unistd.h>

pid_t fork(void);

Sikeres végrehajtás esetén ennek hatása a következő:

– új folyamattábla bemenet jön létre, melynek tartalma a szülőtől lesz átmásolva

– az adat és veremszegmens duplázva lesz

– mindkét folyamat esetén egy-egy mutató a közös kódszegmensre mutat

– a gyerek örökli a szülőtől a megnyitott állományokat

– a fork utáni utasítástól egymástól függetlenül dolgozik a szülő és a gyerek

folyamat ugyanazzal a kódszegmenssel

Az újonnan létrehozott folyamatot gyerekfolyamatnak, a fork() hívást végrehajtó

folyamatot pedig szülőfolyamatnak nevezzük. Leszámítva, hogy külön adat-, illetve

veremszegmenssel rendelkeznek, a gyerekfolyamat csupán az alábbiakban különbözik a

szülőtől: azonosítója (PID), a szülő azonosítója (PPID), a fork hívás visszatérített értéke

(sikeres végrehajtás esetén ugyanis a fork a rendszerhívást végrehajtó szülőfolyamatban a

gyerekfolyamat pid-jét, a gyerekfolyamatban pedig 0-t térít vissza).

A szülőfolyamat azonosítóját, illetve magának a folyamatnak az azonosítóját az alábbi

rendszerhívások segítségével kérdezhetjük le:

#include <sys/types.h>

#include <unistd.h>

pid_t getppid(void); //PPID lekérdezése

pid_t getpid(void); //PID lekérdezése

122 4. FEJEZET OPERÁCIÓS RENDSZEREK

A 4.5 ábra szemlélteti a fork működési mechanizmusát.

Hiba esetén a fork –1-et térít vissza, természetesen az errno változó megfelelőképpen be

lesz állítva, a hiba okát jelezve. Hiba léphet fel a fork hívás kapcsán, amennyiben:

 nincs elég szabad memóriaterület, hogy a szülő képének másolata létrejöhessen;

 a folyamatok száma meghaladja a megengedett maximális értéket.

A fork hívás fentebb leírt viselkedése lehetővé teszi, hogy a szülő, illetve gyerekfolyamat

párhuzamos működését a következőképpen adjuk meg:

pid = fork();

if (pid == 0)

{

 /* gyerek folyamat *

}

else

{

 /* szülő folyamat */

}

4.5 ábra Fork mechanizmus

4. FEJEZET OPERÁCIÓS RENDSZEREK 123

Ugyanez hibakezeléssel együtt a következőképpen néz ki:

switch (fork())

{

 case -1:
 perror(„fork”);
 exit(1);

 case 0:
 /* gyerek folyamat */
 default:
 /* szülő folyamat */
}

A alábbi program a fork használatát példázza:

#include <sys/types.h>

#include <unistd.h>

#include <stdio.h>

#include <errno.h>

#include <stdlib.h>

int main(){

 int pid,i;

 printf(”\nProgram kezdete:\n”);
 if ((pid=fork())<0){

 perror(”fork() hiba\n”);
 exit(1);

 }

 if (pid==0){//gyerekfolyamat

 for (i=1;i<=10;i++){

 sleep(2); // 2 másodpercnyi várakozás

 printf(”\t %d SZULO %d GYEREKE:3*%d=%d\n”,getppid(),getpid(),i,3*i);
 }

 printf(”GYEREK vege\n”);
 }

 else{// pid>0 szülőfolyamat

 printf(”Letrehoztam a %d GYEREKet\n”,pid);
 for (i=1;i<=10;i++){

 sleep(1); //1 másorpercnyi várakozás

 printf(”%d SZULO: 2*%d=%d\n”,getpid(),i,2*i);
 }

 printf(”SZULO vege\n”);
 }

}

Szándékosan írtuk úgy a kódot, hogy a gyerekfolyamatnak hosszabb ideig kelljen várakoznia,

mint a szülőnek (komplex számítások végzése közepette gyakran megtörténik, hogy az egyik

folyamat által végzett műveletek hosszabb időbe telnek, mint a másik folyamat esetében).

Ennek következtében a szülő hamarabb befejeződik. A kapott eredmények a következők:

Program kezdete:

Lerehoztam a 30584 GYEREKet

30583 SZULO: 2*1=2

 30583 SZULO 30584 GYEREKE:3*1=3

30583 SZULO: 2*2=4

30583 SZULO: 2*3=6

 30583 SZULO 30584 GYEREKE:3*2=6

30583 SZULO: 2*4=8

30583 SZULO: 2*5=10

 30583 SZULO 30584 GYEREKE:3*3=9

124 4. FEJEZET OPERÁCIÓS RENDSZEREK

30583 SZULO: 2*6=12

30583 SZULO: 2*7=14

 30583 SZULO 30584 GYEREKE:3*4=12

30583 SZULO: 2*8=16

30583 SZULO: 2*9=18

 30583 SZULO 30584 GYEREKE:3*5=15

30583 SZULO: 2*10=20

SZULO vege

 1 SZULO 30584 GYEREKE:3*6=18

 1 SZULO 30584 GYEREKE:3*7=21

 1 SZULO 30584 GYEREKE:3*8=24

 1 SZULO 30584 GYEREKE:3*9=27

 1 SZULO 30584 GYEREKE:3*10=30

GYEREK vege

Az exit és wait hívások

Egy program befejezése az alábbi rendszerhívások segítségével történhet:

• ANSI C
#include <stdlib.h>

void exit(int exit_code);

• Posix
#include <unistd.h>

void _exit(int exit);_

• Rendellenes befejezés
#include <stdlib.h>

 void abort(void);

Befejezés után a folyamat zombie állapotba kerül mindaddig, amíg a szülő egy wait

függvénnyel le nem kérdezi a befejezési kódot. A zombie állapotban levő folyamat esetében a

rendszer minden erőforrást felszabadít, kivéve a folyamattábla bemenetet. Amennyiben a

befejezett folyamatot létrehozó szülőfolyamat már korábban véget ért, akkor az illető

folyamat szülőfolyamata az 1-es folyamatazonosítójú speciális init folyamat lesz.

Az init folyamat mindig meghívja a wait függvényt.

A folyamat befejeződésekor a rendszer egy SIGCLD üzenettel értesíti a szülőfolyamatot.

A szülő bevárhatja valamelyik gyerek befejeződését: wait, waitpid függvények egyikét

használva. Ezek hatására:

– várakozhat (ha minden gyereke fut),

– érzékelheti, hogyha egy gyerek befejeződött,

– visszatéríthet hibát (ha nincs gyereke)

A wait illetve waitpid hívások szintaxisa a következő:
#include <sys/types.h>

#include <sys/wait.h>

pid_t wait(int *status);

pid_t waitpid(pid_t pid, int *status, int opt);

Különbségek a wait és a waitpid között:

• a wait felfüggeszti a hívó folyamatot, amíg a gyerek befejeződik, ezzel szemben a

waitpid egy külön opciót kínál fel (opt), melynek használatával a felfüggesztés

elkerülhető,

• a waitpid nem mindig az első gyerek befejezéséig vár, hanem a pid változóban

megadott azonosítójú gyerek befejezéséig,

• a waitpid az opt argumentum segítségével engedélyezi a programok vezérlését.

4. FEJEZET OPERÁCIÓS RENDSZEREK 125

• A wait függvény visszatérési értéke azon gyerekfolyamat azonosítója, amely éppen

befejeződött.

• A waitpid -1 értéket térít vissza, ha nem létezik a pid-ben megadott azonosítójú

folyamat, vagy az nem gyereke a hívó folyamatnak.

A waitpid függvényhívásnál megadható pid változó lehet:

• pid = -1 – bármely gyerekre várakozhat; ekvivalens a wait-tel,

• pid > 0 – a pid azonosítójú folyamatra várakozik,

• pid = 0 – bármely olyan folyamatra várakozik, amelynek a csoportazonosítója

megegyezik a hívó programéval,

• pid < -1 – bármely olyan folyamatra várakozik, amelynek a csoportazonosítója

megegyezik a megadott érték abszolút értékben.

Külső program végrehajtása; az exec függvénycsalád

A legtöbb más operációs rendszerhez hasonlóan a Unix is biztosít lehetőséget arra, hogy

elindítsunk egy programot egy másikból. Ezt a mechanizmust az exec* függvénycsalád teszi

lehetővé. Amint látni fogjuk, a fork illetve exec* rendszerhívások kombinálása nagyfokú

rugalmasságot biztosít a folyamatkezelést illetően.

Az exec* függvénycsalád

• az aktív folyamat kódját egy másikkal helyettesíti (betölt egy új programot)

• új kód, adat és veremszegmens jön létre, a régieket felszabadítja

• a folyamattábla bemenetet örökli az eredeti folyamattól

Az exec* utáni utasítás csak hiba esetén hajtódik végre.

A 4.1 táblázat összegzi az exec* függvénycsaládba tartozó rendszerhívásokat és ezek

jellemzőit (három kritérium szerint hat függvényt kínál fel a rendszer):

Függvény paraméter keresési út környezet

execl lista ./ marad

execv tömb ./ marad

execlp lista PATH marad

execvp tömb PATH marad

execle lista ./ változik

execve tömb ./ változik

4.1 táblázat Az exec* függvénycsalád

126 4. FEJEZET OPERÁCIÓS RENDSZEREK

Az egyes függvények szintaxisa:
#include <unistd.h>

int execl(const char *path,

 /* elérési út */

 const char *arg0,
 /* programnév */

 const char *arg1,
 /* paraméterek */

...

 const char *argn,
 NULL);
 /* a paraméterek vége */

int execv(const char *path, char *argv[]);
int execlp(const char *filename,
 /* a futtatható állomány neve */

 const char *arg0,
 const char *arg1
 ...
 const char *argn,
 NULL);
int execvp(const char *filename, char *argv[]);

int execle(const char *path,

 const char *arg0,
 const char *arg1,
 ...
 const char *argn,
 NULL,
 char *envp[]);
 /* környezeti változók */
int execve(const char *path, char *argv[], char *envp[]);

Az egyes változók jelentése:

• path: mutató egy karaktersorhoz, amely a futtatható állomány keresési útvonalát jelöli,

• filename: mutató a futtatható állomány nevéhez; ha a név nem kezdődik a gyökérrel (és

nincs megadva a teljes útvonal), akkor az állományt a PATH változó által definiált

katalógusokban keresi a rendszer,

• arg0: mutató a futtatható állomány nevéhez,

• arg1, arg2, ..., argn: mutatók, amelyek a programnak átadott paramétereket jelölik,

• argv: mutató a paramétervektorhoz (a 0-dik paraméter az állomány neve),

• envp: mutató az új környezeti változókhoz, amelyek a vektorban egyenként

változó=érték alakban jelennek meg.

Az utolsó paraméter mindig NULL (a paraméterlista végét jelöli).

4.2.2. Folyamatok közti kommunikáció pipe-on keresztül

A pipe mechanizmus

A pipe mechanizmus megjelenését a Unix alapú rendszerekben az indokolta, hogy lehetővé

tegye a gyerekfolyamat szülővel való kommunikációját.

Általában a szülő folyamat átirányítja a standard kimenetét (stdout) egy pipefileba, a

gyerekfolyamat pedig a standard bemenetét (stdin) veszi ugyanabból a pipefileból. Az

ilyen jellegű kapcsolat jelölésére shell szinten a “|” operátort szokás használni.

Pl. who|sort|less

A pipe mechanizmus ugyanakkor C programból is alkalmazható.

4. FEJEZET OPERÁCIÓS RENDSZEREK 127

A pipefile egy speciális név nélküli file (nem tartozik hozzá directory bemenet). Mérete

korlátozott, általában 10 (12) blokk.

A 4.1.3 alfejezetben láthattuk, hogy az inode táblázat egy bemenete 13 (15) címet tartalmaz,

amiből 10 (12) direkt cím, majd ezt követi egy egyszeres, egy kétszeres, illetve egy

háromszoros indirektáló cím.

Pipefile esetén nincs indirektálás, emiatt az adathozzáférés (egy indirektálást is használó

közönséges állományhoz képest) gyors.

A két folyamat (szülő-, illetve gyerekfolyamat) közösen használja a pipefilet: egyik ír, a

másik olvas – megnyitáskor két deszkriptort kapunk vissza, egyet írásra, és egyet olvasásra.

| | | |

  
 olvas ír

Az adatok olvasása/írása a pipefileba úgy történik, mint egy körkörös pufferbe (ha az betelt,

kezdődik az elejéről). Az adatok olvasása/írása FIFO elv alapján történik (a legrégebben beírt

adat lesz leghamarabb kiolvasva). Egy bizonyos információt csak egyszer lehet kiolvasni. A

szinkronizálást a filemutatók közt a rendszer végzi, mégpedig a termelő/fogyasztó elv

alapján:

• egy folyamat, amelyik írni akar a pipefile-ba (termelő) csak akkor fog tudni írni

(termelni), ha az nem telt meg (amennyiben meg van telve, várakozási állapotba jut,

amíg egy másik folyamat ki nem olvas belőle).

• a folyamat, amelyik olvas (fogyasztó) csak akkor olvashat, ha van mit. Különben

blokálva lesz (wait állapot), míg egy másik folyamat adatot nem helyez a pipefile-ba.

• a pipefile adataihoz csak szekvenciálisan lehet hozzáférni

Pipe mechanizmus a gyakorlatban

A szülőfolyamat hozza létre a pipefile-t (pipe). Ugyanaz a szülő létrehoz egy vagy több

gyerek-folyamatot (fork rendszerhívás). Egyes folyamatok írni fognak a pipefile-ba (write

- fd[1]), mások pedig olvasni (read - fd[0]). Elvileg a szülő- és gyerekfolyamat is

megkapja az író- és olvasó deszkriptort is, egyetlen pipefile-t mégis csupán egyirányú

kommunikációra szokás használni (a nem használt deszkriptorokat zárjuk be!). Fontos, hogy

a szülő-gyerek közti kommunikációt szolgáló pipefile-t még a fork hívás előtt hozzuk létre,

hiszen így a fork hívást követően a gyerekfolyamat örökli a megnyitott deszkriptorokat. Az

4.6 ábra szemlélteti a pipefile-on keresztül történő kommunikációt.

4.6 ábra Kommunikáció szülő és gyerek között pipefile-on keresztül

Kétirányú kommunikáció megvalósításához két pipefile létrehozására van szükségünk.

128 4. FEJEZET OPERÁCIÓS RENDSZEREK

Pipe létrehozása

A pipefile létrehozása a pipe rendszerhívással történik. Ennek szintaxisa:

#include <unistd.h>

int pipe(int pfd[2]);

A függvény 0-t térít vissza, ha a létrehozás sikerült, és -1-et, ha nem. A pfd egy két elemű

táblázat, ahol a pfd[0]-ból olvasunk, és a pfd[1]-be írunk. A pfd[1]-be való írás során

(write) az adatok a pipe fileba kerülnek, míg a pfd[0]-ból olvasva (read) törlődnek onnan.

Hiba esetén az errno változó a hiba kódját fogja tartalmazni.

Pipe bezárása

A nem használt pipe végeket ajánlatos minél előbb bezárni! Ez a close rendszerhívással

történik, melynek szintaxisa:

#include <unistd.h>

int close(int pfd);

A függvény 0-t térít vissza, ha a bezárás sikerült, és -1-et különben. A pfd argumentum egy

egész szám, tehát csak az állomány egyik végét zárja be.

Pipe írása, olvasása

A pipefile-ba való írás, illetve a beírt adatok kiolvasása az alábbi függvények valamelyikének

segítségével történhet:

#include <unistd.h>

ssize_t read(int pfd, void *buf, size_t count);

ssize_t write(int pfd, const void *buf, size_t count);

vagy

#include <stdio.h>

int fscanf(FILE *stream, const char *format,...);

int fprintf(FILE *stream, const char *format, ...);

A második változatot főként standard fájlok esetén használjuk. A pipefileok kezelésére a

read és write függvényeket ajánljuk. Paraméterként meg kell adnunk a pipefile egyik

végének azonosítóját (pfd), a buf puffer vagy érték, míg a count változóba ennek méretét

adjuk meg. A függvények visszatérített értéke a pipe-ból sikeresen kiolvasott (beírt) bájtok

száma. Korábban említettük, hogy amennyiben üres pipefileból próbálunk olvasni, a folyamat

blokálódik a read műveleten mindaddig, amíg valaki nem ír a pipe-ba. Fontos azonban

megjegyezni, hogy amennyiben a pipefilehoz tartozó összes (!) íródeszkriptort bezártuk, a

read művelet azonnal visszatér 0 értékkel.

Példa: who | sort implementálása pipe illetve exec* hívások segítségével

Tekintsük az alábbi összetett shell parancsot:

$ who | sort

4. FEJEZET OPERÁCIÓS RENDSZEREK 129

Az alábbi példa a két parancs (who és sort) pipe-on keresztül történő összefűzését valósítja

meg. A szülőfolyamat (mely a shell parancsértelmezőt helyettesíti) két gyerekfolyamatot hoz

létre, ezek pedig megfelelőképpen átirányítják a bemenetüket, illetve kimenetüket. Az első

gyerekfolyamat a who parancsot hajtja végre, a másik pedig a sort parancsot, a

szülőfolyamat pedig megvárja a befejeződésüket. A forráskód a következő:

//whoSort.c

//a $who|sort shell parancsok osszefuzeset valositja meg pipe segitsegevel

#include <unistd.h>

#include <sys/types.h>

#include <sys/wait.h>

#include <stdlib.h>

int main (){

 int p[2];

 pipe (p);

 if (fork () == 0) { // elso gyerek

 dup2 (p[1], 1); // standard kimenet atiranyitasa

 close (p[0]);

 execlp ("who", "who", NULL);

 }

 else if (fork () == 0) { // masodik gyerek

 dup2 (p[0], 0); // standard bemenet atiranyitasa

 close (p[1]);

 execlp ("sort", "sort", NULL);// sort vegrehajtasa

 }

 else { // szulo

 close (p[0]);

 close (p[1]);

 wait (NULL);

 wait (NULL);

 }

 exit(0);

}

Megjegyzés: a fenti példa jobb megértéséhez ajánljuk, hogy az olvasó nézzen utána a Unix

kézikönyvekben (man) a dup2 rendszerhívás működésének. Esetünkben a dup2 egyik

paramétere egy pipefile deszkriptor.

4.2.3. Folyamatok közti kommunikáció FIFO állományon keresztül

A FIFO mechanizmus

A pipe mechanizmus legnagyobb hátránya, hogy csak egymással „rokoni” viszonyban levő

folyamatok között használhatjuk: a pipe-on keresztül kommunikáló folyamatok a pipe-ot

létrehozó folyamat leszármazottai kell legyenek, hiszen az író-, illetve olvasó deszkriptor

egyedi, és mindkettő a fork() hívás következtében adódik át a gyerekfolyamat(ok)nak.

Az 1985-ös év tájékán jelent meg a FIFO (névvel ellátott csővezeték vagy pipe)

állomány (Unix System V). A FIFO állomány a közönséges fájl és a pipe kombinációja. A

pipe-al szemben a FIFO állománynak van egy szimbolikus neve, és egy katalógus, ahová

létrehozzuk, ezt leszámítva, azonban megőrzi a pipe fájlok összes jellemzőit. A FIFO

állománynak saját neve van, tehát bármely folyamat meg tudja nyitni, nem csak a közös őssel

rendelkező folyamatok. Amennyiben az ls -l paranccsal kilistázzuk az állományt, a file

típusát p-vel (pipe) jelöli a rendszer.

130 4. FEJEZET OPERÁCIÓS RENDSZEREK

Egy FIFO állomány létrehozása az mknod vagy mkfifo függvények valamelyikével történik.

Szintaxis:
#include <sys/types.h>

#include <sys/stat.h>

int mknod(char *pathname, int mode,0);

int mkfifo(const char *pathname, mode_t mode);

ahol:

• pathname – elérési útvonal

• mode – típus és hozzáférési jogok (pl. S_IFIFO|0666)

• visszatérített érték:

 0 sikeres létrehozás esetén

 -1 hiba esetén

Shell paranccsal is létrehozhatunk FIFO állományt:
$ mknod FIFOnev p

vagy
$ mkfifo FIFOnev

FIFO álomány megnyitása

A FIFO állomány megnyitása az open rendszerhívással történik. Szintaxisa:

#include <sys/types.h>

#include <sys/stat.h>

int open(const char *pathname, int flags);

ahol

• pathname – elérési útvonal

• flags – hozzáférési jogok

– O_RDONLY, csak olvasható,

– O_WRONLY, csak írható,

– O_RDWR, olvasható és írható.

– O_NONBLOCK, O_NDELAY – nincs várakozás (lásd a 4.2 táblázatot)

• visszatérített érték:

– file leíró – sikeres megnyitás esetén

– -1 – hiba esetén

Az írás, olvasás, bezárás ugyanúgy történik, mint a közönséges állományok esetén (read,

write, illetve close függvények). A FIFO állomány törlése pedig az unlink hívással

történik. Szintaxisa:
#include <unistd.h>

int unlink(const char *pathname);

A FIFO állomány használata a következő forgatókönyv szerint történik:

Egy folyamat a szimbolikus név alapján létrehozza a FIFO állományt az mknod vagy

mkfifo függvények segítségével. Egy folyamat, amely információt szeretne közölni egy

másikkal, megnyitja a FIFO állományt az open függvénnyel, és a write segítségével beírja

az adatokat. Egy másik folyamat, amely az adatokat szeretné kiolvasni, megnyitja a FIFO

állományt olvasásra az open függvénnyel, majd a read segítségével kiolvassa a kívánt

információt. Egy folyamat a szimbolikus név alapján törli a FIFO állományt az unlink

függvénnyel. Az állomány törlése a rm shell parancs segítségével is megtehető.

4. FEJEZET OPERÁCIÓS RENDSZEREK 131

A 4.2 táblázat összefoglalja, hogy mi történik a FIFO állomány megnyitásakor, valamint

írás/olvasáskor, attól függően, hogy az O_NONBLOCK (O_NDELAY) flag be van-e állítva

vagy sem.

feltételek normál O_NDELAY

beállítva

FIFO megnyitva

csak írásra, de

olvasó folyamat

nincs

várakozik mindaddig, amíg egy másik folyamat

meg nem nyitja írásra a FIFO állományt

azonnal visszatér,

várakozás és

hibajelzés nélkül

FIFO megnyitása

írásra, de olvasó

folyamat nincs

várakozik mindaddig, amíg egy másik folyamat

meg nem nyitja olvasásra a FIFO állományt

azonnal visszatér,

hibajelzéssel: az

errno értéke
ENXIO

olvasás FIFO

vagy pipe fileból,

de nincs

olvasnivaló adat

várakozik mindaddig, amíg adatok nem kerülnek a

FIFO állományba, vagy amíg nincs egyetlen olyan

folyamat sem, amely írásra nyitotta meg a FIFO

állományt. A kiolvasott byte-ok számát téríti

vissza, ha új adatok jelentek meg vagy 0-t, ha

nincs több író folyamat.

azonnal visszatér és

0-t térít vissza

írás FIFO vagy

pipe fileba,

amikor az tele van

várakozik mindaddig, amíg ürül hely a FIFO

állományban, majd annyi adatot ír bele, amennyi

számára hely van

azonnal visszatér és

0-t térít vissza

4.2 táblázat Az O_NONBLOCK (O_NDELAY) flag hatása

Példa: kliens/szerver kommunikáció FIFO-n keresztül

A kliens/szerver modell gyakran használt a programozásban. A következőkben a

kliens/szerver modellt mutatjuk be, ahol a kommunikáció FIFO állományon keresztül

történik. A példában a szerver nagyon egyszerű feladatot lát el, hiszen célunk a

kommunikáció bemutatása: a kliens küld egy számot a szervernek, mire a szerver válaszként

visszaküldi a szám négyzetét.

Megjegyzések:

• a szerver létrehoz egy szerverfifot, amelyre az összes kliens csatlakozni fog,

• minden kliensnek külön FIFO-ja van, amelyet a kliens maga hoz létre; ezért amikor a

kliens a szervernek elküldi a kérést, valahogyan jeleznie kell, hogy milyen nevű FIFO-n

keresztül szeretné a választ megkapni; a legegyszerűbb, ha a kliens FIFO-jának

nevében szerepel a kliens folyamatazonosítója is, így a név egyértelmű,

• a kliens előbb megnyitja a saját FIFO-ját olvasásra, s csak azután küldi el az üzenetet a

szerver felé,

• a szerver FIFO-ja csak a szerver befejeződésekor záródik be,

• a kliens FIFO-ját a szerver oldalon a szerver a válaszadás után bezárja; ha újabb kérés

érkezik, újból megnyitja,

• ha a kliens befejezte működését be kell zárnia a saját FIFO-ját.

Mivel a FIFO-n küldött adatok típusa megegyezik a szerverben és a kliensben, a könnyebb

kezelhetőség érdekében ajánlatos egy közös adatszerkezetet létrehozni, és ezt egy külön

fejlécállományban tárolni. Esetünkben ez a következő lesz:

132 4. FEJEZET OPERÁCIÓS RENDSZEREK

Közös headerállomány (struktura.h)

typedef struct elem

{

 int szam;

 int pid;

} azon;

Szerver program (szerver.c):

#include <stdio.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <unistd.h>

#include <stdlib.h>

#include "struktura.h" /* a fent megadott fejlec */

int main(void)

{

 int fd, fd1; /* szerver- es kliensfifo */

 char s[15]; /* kliensfifo neve; pl. fifo_143 */

 azon t; /* kuldeni kivant "csomag" */

 mkfifo("szerverfifo", S_IFIFO|0666); // a szerver letrehozza a sajat

 // fifo-jat */

 fd = open("szerverfifo", O_RDONLY); /* megnyitja olvasasra */

 do /* amig 0-t nem kuld egy kliens */

 {

 while(!read(fd, &t, sizeof(t))); /* szam kiolvasasa */

 t.szam = t.szam * t.szam;

 sprintf(s, "fifo_%d", t.pid); // a pid segitsegevel meghat. a

 // kliensfifo nevet

 fd1 = open(s, O_WRONLY); /* kliensfifo megnyitasa irasra */

 write(fd1, &t, sizeof(t));

 close(fd1); /* adatok elkuldve */

 } while (t.szam);

 close(fd); /* szerverfifo vege */

 unlink("szerverfifo"); /* torli a szerverfifot */

 exit(0);

}

Kliens program (kliens.c):

#include <stdio.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <stdlib.h>

#include <fcntl.h>

#include <unistd.h>

#include "struktura.h" /* a fenti fejlecallomany */

int main(int argc, char *argv[]) // a szamot a parancssorban adjuk

 // meg

{

 int fd, fd1; /* kliens- es szerverfifo */

 char s[15];

 azon t;

4. FEJEZET OPERÁCIÓS RENDSZEREK 133

 if (argc != 2) /* nincs megadva argumentum, hiba */

 {

 printf("hasznalat: kliens <szam>\n");

 exit(1);

 }

 sprintf(s, "fifo_%d", getpid()); // meghat. a fifonevet a pid

 // segitsegevel

 mkfifo(s, S_IFIFO|0666); /* letrehoz egy kliensfifot */

 fd = open("szerverfifo", O_WRONLY);

 t.pid = getpid(); /* a kuldeni kivant adatok */

 t.szam = atoi(argv[1]); /* string atalakitasa szamma */

 write(fd, &t, sizeof(t)); /* kuldi a szervernek */

 fd1 = open(s, O_RDONLY);

 read(fd1, &t, sizeof(t)); /* a valasz */

 close(fd1);

 unlink(s); /* kliensfifo torlese */

 printf("a negyzete: %d\n", t.szam);

 exit(0);

}

134 4. FEJEZET OPERÁCIÓS RENDSZEREK

4.3. Shell programozás és alapvető Unix parancsok

Parancsértelmező (Bourne shell - sh)

4.3.1. Egy parancsértelmező – shell – működése

A parancsértelmező (shell vagy burok) egy speciális program, mely egy interfészt biztosít a

felhasználó illetve az operációs rendszer magja (az ún. kernel) között. Ebből a szemszögből

kétféleképpen tekinthetünk a shell-re:

1. mint parancs nyelvre, mely közvetít a számítógép és a felhasználó között. Amint egy

felhasználó bejelentkezik a rendszerbe és/vagy megnyit egy parancsablakot, implicit

módon indul a shell, mint parancsértelmező. A shell egy prompt-ot ír ki a standard

kimenetre (ami általában egy terminálhoz van hozzárendelve), arra várva, hogy a

felhasználó parancsokat írjon be vagy valamilyen parancsállományt indítson el,

esetleg paramétereket is megadva neki.

2. mint programozási nyelvre, melynek alapeleme a Unix parancs (szemantikailag a

programozási nyelvek hozzárendelés utasításával tekinthető egyenértékűnek). A

klasszikus programozási nyelvekből a feltétel igazságértékének megfelelője itt a

parancsok sorozatából az utolsónak a visszatérített értéke: a 0 érték igaz-at (true)

jelent, ettől különböző érték pedig a hamis (false) megfelelője. Egy shell támogatja a

következő fogalmakat: változó, konstans, kifejezés, vezérlő szerkezetek, alprogram. A

szintaktikai követelményeket illetően, ezek minimálisra lettek csökkentve: a

paramétereket határoló zárójelek elhagyása, változódeklaráció hiánya, stb.

Egy terminálablak megnyitásakor elindított shell aktív marad mindaddig, amíg az illető ablak

be nem zárul. A shell gyakorlatilag az alábbi algoritmus szerint működik:

Amíg (be nem zárult a munkafázis)

 Kiírja prompt-ot;

 Olvas a parancssorból;

 Ha (a sor végén '&' karakter van) akkor

 Létrehoz egy új folyamatot, mely végrehajtja a beírt parancsot

 Nem vár a végrehajtás befejezésére

 Különben

 Létrehoz egy új folyamatot, mely végrehajtja a beírt parancsot

 Vár a végrehajtás befejezésére

 HaVége

AmígVége

Megjegyezzük, hogy amint az a fenti algoritmusból is kiderül, egy parancsot kétféleképpen

hajthatunk végre:

 előtérben (foreground) – Ebben az esetben a shell elindítja a parancs végrehajtását,

megvárja ennek befejeződését, majd ezután ismét kiírja a prompt-ot. Újabb parancsot

csak ezt követően vihetünk be. Bármely Unix parancs esetén ez az implicit

végrehajtásmód.

 háttérben (background) – a végrehajtás a háttérben – rejtett módon – zajlik. Ebben az

esetben a shell elindítja a folyamatot, mely a parancs végrehajtásáért felelős, de nem

várja meg ennek befejeződését, hanem azonnal kiírja a prompt-ot, ezzel felkínálva a

4. FEJEZET OPERÁCIÓS RENDSZEREK 135

lehetőséget a felhasználó számára, hogy újabb parancsot indítson. Amennyiben a

parancsot a háttérben kívánjuk elindítani, a '&' speciális karakterrel kell lezárnunk azt.

Egy Unix parancsablakban bármennyi folyamat indítható a háttérben, de csak egyetlen egy

előtérben. Példaként tekintsük az alábbi három parancsot, melyből kettőt háttérben indítunk

(egy állomány-másolás -cp-, és egy fordítás -gcc-), illetve egyet előtérben (állomány

szerkesztése a vi szövegszerkesztővel):
 $ cp A B &

 $ gcc x.c &

 $ vi H

4.3.2. Shell programozás

A Bourne shell (sh) rövid bemutatása

Az alábbiakban a legegyszerűbb Unix shell, az sh használatát mutatjuk be. Kezdjük néhány

alapvető szintaktikai konvencióval.

Egy Unix parancs általános alakját a következőképpen adhatjuk meg:
parancsnév [opciók] [kifejezések] [állományok]

• ahol az opció

– általában 1 betű

– az opciók csoportja „-“ jellel kezdődik

– ki-be kapcsolás: -, +

Pl.:

Az aktuális katalógus összes állományának kilistázása (beleértve a rejtett

állományokat is), hosszú formátummal:
 ls –al

Az abc nevű állomány tulajdonosának végrehajtási jogot adunk az illető állományra

vonatkozóan:
 chmod u+x abc

• a kifejezések – a parancs argumentumai

• a mezők között az elválasztó a szóköz

• az állománynevek tekintetében az alábbi konvenciók érvényesek:

• ennek hossza max. 255 karakterre korlátozott

• a shell különbséget tesz kis és nagybetű között

• nincs kiterjesztés

• néhány speciális karaktert nem ajánlott használni állománynévben:

<>|&[]*?-!/

• akárhány pont „.” szerepelhet az állománynévben, és ezek bárhol

megjelenhetnek, esetleg néhány esetben speciális jelentése lehet a pontnak:

• . a név elején – rejtett állományt jelöl (pl. .forward)

• . az utolsó betű(k) előtt – program forráskódja (pl. prog.C, p.cpp)

• amikor állománynevekre hivatkozunk, használhatjuk az alábbi helyettesítő

karaktereket:

• ? az állománynévben – egyetlen tetszőleges karaktert helyettesít

• * az állománynévben – 0 vagy több tetszőleges karaktert jelöl

Pl.

a?b lehet aab; a1b; axb; a_b; stb.

136 4. FEJEZET OPERÁCIÓS RENDSZEREK

a*b lehet: ab; a1b; aaaaab; a_xxxb; stb.

a?b*x* lehet: a1bx; a_bcdefx3; de nem lehet abcdx

A shell néhány karakternek vagy karakterkombinációnak speciális jelentést tulajdonít. Ezeket

metakaraktereknek nevezzük. Ilyen metakarakterek a következők:

• >  kimenet átirányítása

• >>  kimenet additív átirányítása

• <  bemenet átirányítása

• <<string  „here document”  szabványos bemenet következik egészen a stringet

(sor elején) tartalmazó sorig

• |  pipeline (csővezeték)

• *  egyezés bármely lánccal (üressel is)

• ?  egyezés a filenévben egyetlen karakterrel

• [...]  egyezés a file-névben bármely, a zárójelben levő karakterrel (pl. [abc]; [a-z];

[1-9]; [A-Za-z])

• ;  parancslezáró

• &  parancslezáró háttérfolyamatoknál

• '…'  betű szerint értelmezi a közé írt karaktersort

• "…"  szintén betű szerinti értelmezés, de a shell értelmezi a következő speciális

karaktereket: $, `…`, \

• `…`  a közrezárt parancs helyére (a fordított aposztrófokat is beleértve) a végrehajtás

eredménye kerül. Amennyiben például az aktuális katalógus a /home/user1, és a

parancssorba az alábbi parancsot írjuk
$ echo Az aktuális katalógus: `pwd`

eredményül a következő üzenetet kapjuk a standard kimeneten:
Az aktuális katalógus: /home/user1

Amennyiben azonban azt írnánk a parancssorba, hogy
$ echo Az aktuális katalógus: pwd

ezt kapnánk:
Az aktuális katalógus: pwd

• \  levédi az utána következő karaktert

• #  a sor hátralevő része kommentár

• $i  $0,..., $9  a shell argumentumai

• $var  a var változó értéke

• &&  p1 && p2  futtatja a p1 parancsot, ha az sikeres, futtatja p2-t

• ||  p1|| p2  futtatja p1-et, ha az sikertelen volt, futtatja p2-t

A Bourne shell (sh) az alábbi shell változókat kínálja fel:

• $# – az argumentumok számát adja meg

• $* – minden argumentum, egyetlen karakterláncként tekintve:

"$1 $2 . . . $n";

• $@– a parancssor összes argumentuma, stringek sorozataként tekintve:
"$1" "$2"..."$n";

• $- – opciók

• $? – az utoljára végrehajtott parancs visszatérési értéke

• $$ – a burok folyamatazonosítója

• $! – az utolsó háttérben indított folyamat folyamatazonosítója

4. FEJEZET OPERÁCIÓS RENDSZEREK 137

A shell által létrehozott bármelyik folyamat örököl egy sor standard, meghatározott nevű

változót. Ezeknek a változóknak az összessége alkotja az illető folyamat úgynevezett

környezetét (environment). Ezek közül a környezeti változók közül felsorolunk néhányat:

• $HOME – home directory (vagy alapkatalógus)

• $IFS – argumentumszavakat elválasztó karakterek (implicit módon a szóköz,

<TAB>, illetve újsor karakterek)

• $MAIL – az elektronikus postát tároló állomány nevét tartalmazza. Amennyiben

megváltozik az adott file tartalma, a rendszer üzenetet ír ki. A $MAILCHECK változó

adja meg, hogy milyen időközönként figyelje a rendszer az új levelek érkezését.

• $PATH – útvonal: a végrehajtható állományok keresési útvonalát adja meg. Amikor

beírunk a parancssorba egy shell parancsot, a shell a $PATH-ban felsorolt, „:”-al

elválasztott elérési utakban keres egy megadott nevű végrehajtható állományt. A

keresés a $PATH-ban balról jobbra történik, és amint megvan az első találat, a

keresés véget ér. Megjegyezzük, hogy a keresés kizárólag a megadott elérési utakon

történik, az aktuális katalógusban csak akkor keres a rendszer, ha ez explicit módon

hozzá van adva a PATH változóhoz.

A felhasználó tetszés szerint módosíthatja a PATH értékét. Például ha a meglévő

értékhez hozzá szeretnénk adni az aktuális katalógust, az alapkatalógust, és ennek bin

nevű alkatalógusát, ezt a következőképpen tehetjük meg:
$ PATH=${PATH}:.:${HOME}:${HOME}/bin

• $PS1 – prompt karakterlánc, implicit módon $ közönséges felhasználó esetén

(megj. a példákban ez a prompt jelenik meg a sor elején), illetve # a root felhasználó

esetében

• $PS2 – parancs folytatásakor használt másodlagos prompt: >

• $LOGNAME – a bejelentkezett felhasználó azonosítója.

• $SHELL – a használt parancsértelmezőt adja meg

• $TERM – a használt terminál típusát adja meg

• $TZ – a beállított időzónát adja meg

Pozicionális shell változók:

Korábban –a shell metakaraktereinek felsorolásakor– említettük, hogy a $i (ahol i egy

számjegy) sajátos jelentéssel bír:

• $0 – a parancsállomány nevét adja meg

• $1-$9 – segítségével hivatkozhatunk a parancssor első 9 argumentumára

Tegyük fel, hogy a parancssorból a következőképpen hívtunk meg egy parancsot:
$ parancs arg1 arg2 ... argn

Amennyiben a fenti parancs egy parancsállomány (shell script) neve, melyet az

alapértelmezett shell fog kiértékelni, akkor a script-en belül az alábbi módon hivatkozhatunk

a parancs nevére, illetve az első 9 argumentumra:

$ parancs arg1 arg2 ... arg9 arg10 ... argn

 ^ ^ ^ ... ^

 | | | ... |

 $0 $1 $2 ... $9

Ha több, mint 9 paramétert adtunk meg, nem fog elveszlődni egyik sem, azonban egy adott

ponton csak az első 9-re hivatkozhatunk a megadott módon.

138 4. FEJEZET OPERÁCIÓS RENDSZEREK

A burok beépített változóin-, illetve a pozicionális shell változókon kívül a felhasználó

definiálhat saját változókat. Egy var nevű változó esetében ennek értékére $var-al

hivatkozunk. A változók értéke karaktersor. Akkor is, ha egy bizonyos kontextusban egy

változót számként interpretálunk, ennek ábrázolása a számjegyeinek megfelelő karakterek

ASCII kódjának sorozataként történik.

A változókat nem kell deklarálni, egy változó definiálása gyakorlatilag megegyezik a

változónak való első értékadással, és az alábbi módon történik:

$ valtozonev=karaktersor

A kiértékelés során a shell létrehoz egy változót a megadott (valtozonev) névvel, melynek

értéke a megadott (karaktersor) karaktersor. Fontos megjegyeznünk, hogy az

egyenlőségjel előtt, illetve után nincs szóköz! Amennyiben azt szeretnénk, hogy a megadott

karaktersorban egy vagy több szóköz szerepeljen, akkor ezeket le kell védenünk.

Egy shell változó lokális az őt létrehozó folyamatra nézve. Ezzel együtt van rá lehetőség,

hogy a változót örököljék az illető folyamat gyerekfolyamatai, amennyiben a változót

definiáló folyamatba az alábbi deklarációt írjuk:

$ export valtozonev

ahol valtozonev annak a változónak a neve, amelyet szeretnénk, hogy a gyerekfolyamatok

örököljenek.

Egy változó értékének a behelyettesítése többféleképpen történhet. Tekintsük azt a két

lehetőséget, amelyik a változó értékét adja vissza vagy üres stringet, amennyiben a változó

nincs meghatározva:
$valtozonev

${valtozonev}

A második formát akkor használjuk, ha az első nem tenné lehetővé, hogy egyértelműen meg

lehessen határozni a változó nevét (például amikor az egy karaktersoron belül található).

Lássunk néhány egyszerű példát. Tegyük fel, hogy a billentyűzetről az alábbi három sort

visszük be egymás után:
 $ szo1=sivatagban

 $ szo2=kutat

 $ echo A $szo1 egy csapat $szo2 as

Az echo parancs végrehajtásakor, mely egy sor kiírását végzi el, előbb sor kerül a szo1,

illetve szo2 változók behelyettesítésére a megfelelő értékkel, az eredmény pedig:
A sivatagban egy csapat kutat as

Ha ezzel szemben az alábbi parancsot írjuk be:
$ echo A $szo1 megkezdodott a $szo2as

Az eredmény a következő lesz:
A sivatagban megkezdodott a

mivel a shell a $szo2as változó értékét próbálja behelyettesíteni, az pedig nincs definiálva,

azaz üres string lesz az értéke. Az ehhez hasonló helyzetek elkerülésére használhatjuk a

másodikként megadott helyettesítési formát:
$ echo A $szo1 megkezdodott a ${szo2}as

4. FEJEZET OPERÁCIÓS RENDSZEREK 139

A parancs végrehajtásának eredménye ekkor:
A sivatagban megkezdodott a kutatas

Az sh 13 kulcsszóval rendelkezik. Ezek az alábbiak:
if then else elif fi

case in esac

for while until do done

Az sh által használt vezérlő szerkezetek

Az if vezérlő szerkezet szintaxisa a következő:

if utasítások1

then utasítások2

[elif utasítások3

 then utasítások4

...

elif utasításokn-1

 then utasításokn]

[else utasításokn+1]

fi

Egy if utasításon belül tehát akárhány elif ... then ág szerepelhet, az utasítás végén

pedig megjelenhet (de csak egyszer) az else

Megjegyezzük, hogy az if, then, elif, fi kulcsszavak szintaktikai szempontból úgy

viselkednek, mintha külön parancsok lennének, ezért vagy új sorba kell írnunk őket, vagy –

amennyiben valamelyik nincs külön sorban – a parancsokat egymástól elválasztó „;”-vel kell

azt elválasztanunk a sor többi részétől.

A if-et vagy elif-et követő parancslistának kettős szerepe van: egyrészt a listában levő

parancsok végrehajtása, másrészt a végrehajtás igazságértékének a meghatározása. Egy

parancslista végrehajtásának értéke true, amennyiben a listából az utoljára végrehajtott

parancs visszatérített értéke 0. A végrehajtás értéke false, ha a visszatérített érték zérótól

különböző. A then vagy else után következő parancslista ennek az igazságértéknek a

függvényében hajtódik végre vagy sem.

Az if utasítás a következőképpen működik:

• Végre lesz hajtva az if-et követő parancslista. Amennyiben a végrehajtott

utasítássorozat igazságértéke true, akkor a then ágon szereplő parancsok sorozata

hajtódik végre, és az if utasítás végrehajtása befejeződik. Ellenkező esetben (a

végrehajtott utasítássorozat igazságértéke false) a következő lépés következik:

• amennyiben van egy vagy több elif ág, akkor rendre végrehajtódik az őket követő

parancslista, mindaddig, amíg valamelyiknek az igazságértéke igaz (true) nem lesz. Ezt

követően az utána következő then ág parancsai hatódnak végre és az if utasítás

végrehajtása befejeződik. Ellenkező esetben (vagy egyáltalán nincs elif vagy az

összes parancslista false-ra értékelődik ki), az alábbi lépés következik:

• amennyiben van else ág, végrehajtódik az else utáni parancslista és az if

végehajtása befejeződik. Ellenkező esetben (nincs else ág):

• az if végrehajtása befejeződik és az if-et követő utasítással folytatódik a végrehajtás.

140 4. FEJEZET OPERÁCIÓS RENDSZEREK

Az alábbiakban példaként bemutatunk – két változatban – egy parancsállományt, mely egy

szöveges állomány sorait ábécésorrendbe rendezve listázza ki. Az állomány nevét a

parancssor első paramétereként adjuk meg. Az első változat:

if [$# -eq 0]

 then echo "Használat: $0 állománynév"

 else sort $1 | more

fi

A bemutatott változat csupán azt ellenőrzi, hogy megadtunk-e egy paramétert a

parancssorban. A következő változat alaposabb ellenőrzést végez (azt is megvizsgáljuk, hogy

a paraméterként megadott állomány létezik-e):

if [$# -eq 0]

 then echo "Használat: $0 állománynév"

 elif [! -f ”$1”]

 then echo "$1 állomány nem létezik"

 else sort $1 | more

fi

Ismétlő struktúrák

A shell négyféle ismétlő struktúrával rendelkezik: for két változatban, while és until.

Ezek szintaxisa:

for változónév

do

 utasítások

done

for változónév in szavak

do

 utasítások

done

while utasítások1

do

 utasítások2

done

until utasítások1

do

 utasítások2

done

A for ismétlő struktúra

A shell ismétlő struktúrái közül ez a leggyakrabban használt. Két alakja van, mindkettő egy

változónév nevű kontroll-változót használ (a változó neve természetesen tetszőleges lehet).

4. FEJEZET OPERÁCIÓS RENDSZEREK 141

Az első formában a változónév rendre felveszi a parancssorban megadott összes paraméter

értékét: $1, $2, ..., (tulajdonképpen a $@ változóból veszi a shell az értékeket). Ezek

mindegyikére végrehajtja a ciklus törzsében levő utasításokat.

A második alakban az in után következő szavak listája szóközökkel elválasztott egyszerű

szavakat jelöl vagy helyettesítő karaktereket tartalmazó állománynevek szerepelhetnek ott,

melyek ki lesznek terjesztve az összes illeszkedő állománynévre, így végül egy állomány-

listát kapunk. A változónév rendre felveszi a lista elemeinek értékét, és mindegyikre végre

lesz hajtva az utasítások sorozata.

Lássunk néhány példát. Az első példa egyenként rendezi és kilistázza a paraméterként

megadott állományok tartalmát:
for allomany

 do

 sort $allomany | more

 done

Feltételezzük, hogy a parancsállomány neve rendez. Ebben az esetben a következő parancs:
$ rendez A b C

az alábbi parancsokat fogja generélni és végrehajtani:
sort A | more

sort b | more

sort C | more

Ugyanezt a hatást érjük el, amennyiben az állománynevek a rendez parancsállományon belül

vannak felsorolva:

for allomany in A b C

 do

 sort $allomany | more

 done

a parancsállományt pedig a következőképpen hívjuk meg (ezúttal paraméterek nélkül):
$ rendez

Végül rendezzük az aktuális katalógus összes olyan állományát, melynek neve „adat”-tal

végződik:

for allomany in *adat

 do

 sort $allomany | more

 done

Az alábbi példa az összes bejelentkezett felhasználónak küld egy mailt:

for x in `who | cut -f1 -d ' ' `

 do

mail -s "Udvozlet" ${x}@scs.ubbcluj.ro <<UZENET

Elnezest a zavarasert. Ezt az uzenetet csupan a for ciklus

tesztelese vegett kuldtuk el.

UZENET

 Done

142 4. FEJEZET OPERÁCIÓS RENDSZEREK

A while és until ismétlő struktúrák

A kétféle utasítás hasonlít egymáshoz, amennyiben mindkettő előbb az utasítások1

utasítássorozatot hajtja végre. A végrehajtott utasítássorozat igazságértékétől (azaz az utolsó

parancs visszaadott értékétől) függően végrehajtódik vagy sem a do és done közötti

utasítások2 utasítássorozat, majd ismét az utasítások1 kiértékelésére kerül sor vagy

befejeződik a ciklus végrehajtása.

A while ciklus végrehajtása akkor fejeződik be, ha az utasítások1 utasítássorozat utolsó

parancsának visszaadott értéke zérótól különböző. Ezzel ellentétben az until ciklus akkor

fejeződik be, amikor 0-t kapunk vissza.

Az alábbi példában a paraméterként megadott állományok rendezését/kilistázását

megvalósító feladatot láthatjuk while majd until ciklust használva:

while [$# -gt 0]

 do

 if [-f ”$1”]

 then sort $1 | more

 else echo "nincs $1 file"

 fi

 shift

 done

until [$# -eq 0]

 do

 if [-f ”$1”]

 then sort $1 | more

 else echo "nincs $1 file"

 fi

 shift

 done

A true, false, break, continue utasítások

Egyszerű utasításokról van szó, de végrehajtásuknak kizárólag a ciklikus vezérlő szerkezetek

kontextusában van értelme.

A break illetve continue a for, while vagy until utasítások befejezését illetve a ciklus

újraiterálását vonják maguk után. Az említett parancsok a C nyelvből lettek kölcsönözve

(ahol kizárólag a legbelső ciklusra vonatkozik a hatásuk), és a shell által kiterjesztve.

Szintaxisuk a következő:

break [n]

continue [n]

A break parancs a ciklus törzsének elhagyását kéri, ezt követően a végrehajtás a ciklus utáni

utasítással folytatódik. Amennyiben az n paraméter hiányzik, akkor a break utasítást

tartalmazó legbelső ciklus elhagyására kerül sor. Ha viszont az n is jelen van és a break

legalább n egymásba ágyazott ciklus belsejében van, akkor az n. ciklust követő utasítással

folytatódik a végrehajtás.

A continue utasítás a következő iterációval folytatja a ciklus végrehajtását. Az n paraméter

nélkül a legbelső ciklus lesz újraiterálva, különben az n. ciklus, amelybe a continue bele

van ágyazva.

Az újraiterálás a for esetében azt jelenti, hogy a ciklusváltozó a következő értéket kapja

meg, while és until esetében pedig a while vagy until után következő utasítássorozat

lesz ismét végrehajtva.

4. FEJEZET OPERÁCIÓS RENDSZEREK 143

Reguláris kifejezések

A reguláris kifejezés (regular expression) egy egy mintát meghatározó karaktersorozatot

jelent, mely akár több konkrét karaktersorra is illeszkedhet. A Unix által rendelkezésre

bocsátott eszközök között számos olyan szerepel, mely mintaillesztést használ, ilyen például

a grep vagy egrep parancs, mely a bemeneti sorok közül kiszűri a megadott mintára

illeszkedőket.

A reguláris kifejezésekben szerepelhetnek speciális jelentést hordozó karakterek, ezeket

metakaraktereknek hívjuk, hasonlóan a shell-ben a fájlnév behelyettesítéskor használt

speciális karakterekhez. Vigyázzunk azonban, mivel két, egymástól különböző, fogalomról

van szó, ne keverjük össze a használatukat.

A reguláris kifejezésekben használt metakarakterek a következők:

.[]\^$*

A kiterjesztett reguláris kifejezésekben (extended regular expression, a továbbiakban a ktrk.

rövidítést használjuk) az alábbi metakarakterek szerepelhetnek (ezeket pl. az egrep

mintaillesztő tudja értelmezni):

.[]\^$*+(){}|

 Az alábbiakban megadjuk a reguláris kifejezéseket meghatározó szabályokat.

– metakaraktereket nem tartalmazó kifejezés csak sajátmagára illeszkedik (pl. az abc

reguláris kifejezés kizárólag az abc karaktersorra illeszkedik)

– \c - a c karakterre illeszkedik (pl. * a *-ra; \\ a \-re)

– . (pont) - bármelyik (nem újsor) karakterre illeszkedik (pl. ab. illeszkedik az aba, abb,

abc, ... abz, ab0 stb. karaktersorozatokra)

– ha e reg. kif., akkor e* az e reguláris kifejezés 0 vagy többszöri előfordulására

illeszkedik (pl. a* illeszkedik az üres stringre, a, aa, aaa,..-ra

– e+ (ktrk.) – e 1 vagy többszöri előfordulására illeszkedik. Helyettesíthető ee*-al.

– [...] – illeszkedik az abban a pozícióban lévő bármely, a zárójelben felsorolt

karakterre. (Pl. [aeiou] az angol ábécé bármelyik kisbetűvel írt magánhangzójára

illeszkedik)

– egymás után következő karaktereket rövidíteni lehet Pl. [0-9a-z]

– a nyitó zárójelet követő ^ a felsorolt karakterek tagadása. (Pl. [^0-9]

illeszkedik bármely, nem számjegy karakterre)

– a - karaktert a \- karakterpáros jelöli.

– a] zárójel csak a felsorolás első tagja lehet.

– Nevesített karakterosztályok. Ezek konkrét jelentése függhet a nyelvi lokalizációtól.

Ahhoz, hogy a hagyományos interpretáció érvényesüljön, fontos, hogy az LC_ALL

környezeti változó értéke C-re legyen állítva

– [:alnum:] – alfanumerikus karakterek bármelyikére illeszkedik (egyenértékű a

következő kifejezéssel, az ASCII kódolást tekintve [0-9A-Za-z])

– [:alpha:] – bármelyik betűre illeszkedik ([A-Za-z])

– [:cntrl:] – vezérlő karakterek ([\x00-\x1F\x7F])

– [:digit:] – számjegy

– [:graph:] – látható karakterek (minden karakter, kivéve a vezérlő karaktereket

és szóközöket)

– [:lower:] – kisbetű ([a-z])

– [:print:] – látható karakterek és szóközök (minden karakter, kivéve a vezérlő

karaktereket)

144 4. FEJEZET OPERÁCIÓS RENDSZEREK

– [:punct:] – központozásban használt jelek ([!"\#$%&'()*+,\-

./:;<=>?@\[\\\]^_`{|}~])

– [:space:] – tetszőleges fehér karakter, az újsort is beleértve ([\t\r\n\v\f])

– [:upper:] – nagybetű ([A-Z])

– [:xdigit:] – hexa számjegy ([A-Fa-f0-9])

– e1 \| e2 – ktrk: e1|e2 – illeszkedik e1 vagy e2-re.

(Pl [a-z]|\. - az adott pozicióban csak kisbetű vagy pont lehet)

– ^ a sor elejére, $ a sor végére illeszti a mintát.

Pl. ^$ vagy ^ *$ - üres sor, ^[^0-9]*$ - számot nem tartalmazó sor

– \(...\) – ktrk: (…) – illeszkedik a zárójelbe tett kifejezésre, és egyben

megjelöli azt (csoportosításra is használt).

– \n, ahol n szám - a zárójelezéssel kijelölt mintára hivatkozik, a kijelölés

sorrendjében.

Pl. ^\(.\)\(.\).*\2\1$ – ktrk: ^(.)(.).*\2\1$ – olyan sor, ahol a sor első két

karaktere tükörszimmetrikus az utolsó két karakterre.

– c\{m,n\} – ktrk: c{m,n} –, ahol m és n 256-nál kisebb nemnegativ egész - a

minta legalább m-szer, és legfennebb n-szer fordul elő egymás után.

– csak n - pontosan n előfordulás

– csak m- legalább m előfordulás

Megoldott példafeladatok

1. Példa : egy felügyelőprogram

Egy Unix rendszerben a gyakorlatban nemegyszer szükség lehet arra, hogy egy bizonyos

katalógus változásait felügyelet alatt tartsuk. Tegyük fel, hogy a felügyelet a

következőképpen történik: az első paraméterként (másodpercben) megadott t időközönként

a program elvégzi a (második paraméterként megadott) megfigyelt katalógus tartalmának

részletes összefoglalását. Amennyiben ez az összefoglalás megegyezik a t másodperccel

ezelőtt lementettel, a program további t másodpercet vár, majd ismét ellenőrzi a katalógus

tartalmát és így tovább. Az első olyan esetben, amikor különbséget talál a program a régi,

illetve új tartalom között, kiír egy megfelelő üzenetet, és befejeződik.

A feladatot a megfigyel nevű shell script fogja elvégezni, melyet a következőkben

mutatunk be.

A programmal kapcsolatos néhány megjegyzés:

 A t illetve katalogus változók a két vizsgálat között eltelt időintervallumot

valamint a megfigyelt katalógust adják meg. A t változó inicializálása a $1 (első)

paraméteren keresztül történik. Amennyiben ez hiányzik, a t változó a 60 implicit

értéket kapja. Hasonlóképpen, a katalogus változó értékét megadhatjuk a $2

(második) paraméter segítségével, ennek hiányában pedig az alapkatalógus lesz az

alapértelmezett érték.

 Az x változó a katalógus tartalmának utolsó előtti összefoglalóját tartalmazza, y pedig

a legutolsót jegyzi meg.

4. FEJEZET OPERÁCIÓS RENDSZEREK 145

#!/bin/sh

katalogus=${2-${HOME}} # $2 hiányában az alapkatalógus

 # lesz az alapértelmezett

t=${1-60} # $1 hiányában t=60

x=`ls -l $katalogus` # régi összefoglaló

while true

do

 sleep $t # t mp.-t vár

 y=`ls -l $katalogus` # új összefoglaló

 if ["$x" != "$y"] # megegyeznek?

 then

 echo "A $katalogus katalógus tartalma megváltozott."

 exit 0

 else

 echo "Semmi változás. Várunk újabb $t másodpercet."

 fi

 x=$y # megjegyezzük a legutóbbi

 # összefoglalót

Done

Egy ilyen programot különböző helyzetekben használhatunk. Egy lehetséges eset a

következő: egy tetszőleges felhasználó két terminálablakot nyitott meg, és az egyikben az

alábbi parancsot írja be:
$ megfigyel 10

Amennyiben a másik terminálablakban módosítjuk a $HOME alapkatalógus tartalmát,

például létrehozunk egy új állományt a cat >A paranccsal, akkor a másik terminálablakban

legtöbb 10 másodpercen belül megjelenik az üzenet, mely a módosulásról értesít.

2. példa: break és continue használata

A break és continue utasítások használatának példázására tekintsük a következő feladatot:

keressünk az aktuális katalógusban egy szöveges állományt, melyben találunk olyan sort,

amiben az első szó 5 karakternél hosszabb. A feladatot megoldó program a következő:

for x in *

 do

 if ! file -b $x | grep -q text

 then

 echo $x nem szöveges állomány. Lássuk a következőt...

 continue

 fi

 #a szo1 változóban megjegyezzük egy sor első szavát

 #(szóelválasztónak a szóköz karaktert tekintjük)

 for szo1 in `cat $x | cut -d" " -f1`

 do

 #megvizsgaljuk, hogy a sor nem-e üres, illetve az első szó

 #hosszát

 if [! -z ”$szo1”] && [`expr length $szo1` -ge 5]

 then

 echo A $x fileban megtaláltuk $szo1 szót, \

 melynek hossza `expr length $szo1`

 #kilépünk`

 break 2

 fi

 done

 done

146 4. FEJEZET OPERÁCIÓS RENDSZEREK

A szöveges állományok kiválasztását a file és grep parancsok összekombinálásának

segítségével valósítjuk meg. Az első találó szó esetében elhagyjuk a két for ciklust a break

utasítás segítségével. Amennyiben elhagyjuk a break paraméterét, ki lesz írva minden

állomány első olyan szava, mely megfelel a követelményeknek, ha pedig a break-et

tartalmazó sort kikommentezzük, az összes találó szót megkapjuk.

3. példa: közönséges állományok összefűzése

Egy olyan sh script megírására van szükség, melyet az alábbi módon hívunk meg:
$ pall katalogus

Ennek hatására pedig a /tmp katalógusban hozzon létre egy olyan szöveges állományt, mely

magába foglalja a megadott katalógusban vagy ennek alkatalógusaiban található összes

kinyomtatható állomány tartalmát. Az eredményként szolgáló szöveges állományban, az őt

alkotó minden egyes állomány elején egy, az állományt azonosító fejlécet helyezünk el.

Mikor hasznos egy ilyen alkalmazás? Tegyük fel, hogy egy felhasználónak egy bizonyos

katalógusszerkezetben rengeteg szöveges állománya, shell script-je, forráskódja, stb. van.

Ahelyett, hogy ezeket külön-külön kellene kinyomtassa, a felhasználó használhatja a fentebb

említett funkcionalitást megvalósító programot.

A pall program az egrep szűrő segítségével beazonosítja az összes olyan folyamatot,

melyek kinyomtathatóak, végül egyesíti ezeket egyetlen nyomtatható állományba. A pall

program forráskódja a következő:

#!/bin/sh

if [$# -ne 1]

 then echo "Hasznalat: $0 katalogus" >&2

 exit 1

fi

if [! -d "$1"]

 then echo "$1 nem letezik vagy nem katalogus" >&2

 exit 2

fi

rm /tmp/${LOGNAME}Listazas /tmp/${LOGNAME}Listazni >/dev/null 2>&1

osszSorokSzama=0

find $1 -type f -print | sort | while read file

 do

 if file $file | egrep "exec|data|empty|reloc|cannot open" >/dev/null 2>&1

 then

 continue

 else

 sorokSzama=`wc -l <"$file"`

 sor=${osszSorokSzama}" a "`file $file`" allomanyig"

 echo $sor >/dev/tty

 echo $sor >> /tmp/${LOGNAME}Listazni

 echo $sor >> /tmp/${LOGNAME}Listazas

 pr -f $file >> /tmp/${LOGNAME}Listazas

 osszSorokSzama=`expr $osszSorokSzama + $sorokSzama`

 fi

 done

echo "Osszesites: $osszSorokSzama sor" >>/tmp/${LOGNAME}Listazni

echo "Osszesites: $osszSorokSzama sor" >>/tmp/${LOGNAME}Listazas

cat /tmp/${LOGNAME}Listazas >>/tmp/${LOGNAME}Listazni

4. FEJEZET OPERÁCIÓS RENDSZEREK 147

rm /tmp/${LOGNAME}Listazas

A program létrehozza a /tmp/${LOGNAME}Listazas állományt, melynek elején egy

tartalomjegyzék található, ami tartalmazza az állományok nevét, illetve a sorok számában

mért hosszát. A sorokSzama nevű változó az aktuálisan feldolgozott állomány sorainak

számát tartalmazza. Az osszSorokSzama változóban összegezzük a sorok számát az

állományok összefűzése során.

A kinyomtatható állományokra vonatkozó részletesebb információért ajánljuk az

/usr/share/magic (Linux alatt), illetve /etc/magic (Solaris) állományok

tanulmányozását, ugyanis ezeket használja a file parancs az állomány típusának

meghatározására.

4. példa: bejelentkezett felhasználó folyamatai

Olvassunk be felhasználóneveket a billentyűzetről, üres karaktersor beolvasásáig.

Amennyiben létezik az illető felhasználó, és be van jelentkezve, írjuk ki az általa éppen

futtatott folyamatok nevét, és ezek számát (mindeniket csak egyszer vesszük számításba),

különben írjunk ki megfelelő hibaüzenetet (nemlétező felhasználó vagy az illető felhasználó

nincs bejelentkezve).

Megjegyzések: egy végtelen ciklusban (: olyan utasítás, mely mindig 0-t térít vissza)

beolvasunk (read utasítás) egy felhasználónevet. Ha a beolvasott karaktersor üres, kilépünk

a ciklusból (break). Megvizsgáljuk, hogy a beolvasott felhasználónév benne van-e az

/etc/passwd állományban, mely a rendszer felhasználóiról tárol információt (a

felhasználónév a sor elején kell szerepeljen, utána pedig egy „:” következik, ez választja

ugyanis el az illető felhasználóhoz kapcsolt különböző adatokat egymástól). Ha megtaláltuk a

felhasználót, azt is megvizsgáljuk, hogy be van-e jelentkezve (who parancs). Ha valamelyik

feltétel nem teljesül, kiírjuk a megfelelő hibaüzenetet, különben a flymtk változóba

mentjük az illető folyamatait (lásd a ps parancsot. Ennek „–u” opciójával adjuk meg a

felhasználót, akinek a folyamatai érdekelnek, illetve az „o” opció segítségével formázzuk a

kimenetet. Mivel azt szeretnénk, hogy minden parancs csak egyszer jelenjen meg, ezért

rendezzük a kimenet sorait a sort parancs „–u” opciójával). A wc parancs segítségével

megszámoljuk a folyamatokat (az elmentett karaktersorban szereplő szavak száma). Fontos,

hogy a ps parancsot csak egyszer hajtsuk végre, ezért mentettük el a kimenetét egy

változóban, hogy ebben számoljuk meg a folyamatok számát, és ne egy újabb ps hívás

kimenetében, ami megtörténhet, hogy más eredményt adna.

#!/bin/sh

while :

do

 echo "Kerek egy felhasznalonevet (ures sor - befejezes):"

 read user

 if ["$user" = ""]

 then

 break

 fi

 if grep -q "^$user:" /etc/passwd

 then

 if who|grep -q "^$user "

 then

 #megjegyezzuk egy valtozoban a $user felhasznalo folyamatait

 flymtk=`ps -u $user o comm=|sort -u`

 #kiirjuk a folyamatokat es ezek szamat

 echo "$user felhasznalo folyamatai:"; echo $flymtk

 echo " `echo $flymtk|wc -w` folyamatot futtat"

148 4. FEJEZET OPERÁCIÓS RENDSZEREK

 else

 echo $user felhasznalo nincs bejelentkezve

 fi

 else

 echo $user felhasznalo nem letezik a rendszerben

 fi

done

4. FEJEZET OPERÁCIÓS RENDSZEREK 149

4.4. Javasolt feladatok

I.

a. Írjuk le röviden a fork rendszerhívás működését, és ennek lehetséges visszatérítési

értékeit.

b. Mit ír ki a képernyőre az alábbi programrész, feltételezve, hogy a fork rendszerhívás

sikeresen hajtódik végre? Indokoljuk a választ.

int main() {

int n = 1;

if(fork() == 0) {

n = n + 1;

exit(0);

}

n = n + 2;

printf(“%d: %d\n”, getpid(), n);

wait(0);

return 0;

}

c. Mit ír ki a képernyőre az alábbi shell script? Magyarázzuk meg az első három sor

működését.

1 for F in *.txt; do

 K=`grep abc $F`

 if [“$K” != “”]; then

 echo $F

 fi

done

2

3

4

5

6

II.

a. Adott az alábbi kódrészlet. Adjuk meg azokat a sorokat, amelyek a képernyőn fognak

megjelenni, abban a sorrendben, ahogy azok ki lesznek írva, feltételezve, hogy a fork

rendszerhívás sikerrel tér vissza. Indokoljuk a választ.

int main() {

int i;

for(i=0; i<2; i++) {

printf("%d: %d\n", getpid(), i);

if(fork() == 0) {

printf("%d: %d\n", getpid(), i);

exit(0);

}

}

for(i=0; i<2; i++) {

wait(0);

}

return 0;

}

150 4. FEJEZET OPERÁCIÓS RENDSZEREK

b. Magyarázzuk meg az alábbi shell script működését. Mi történik akkor, ha a lista.txt

állomány eredetileg hiányzik?

Adjuk hozzá az alábbi kódrészlethez az új lista.txt állományt generáló hiányzó sort (a lista.txt

a megadott kódrészlet által generált változtatásban érintett állományok listáját kell

tartalmazza).

more lista.txt

rm lista.txt

for f in *.sh; do

if [! -x $f]; then

chmod 700 $f

fi

done

mail -s "Erintett allomanyok" admin@scs.ubbcluj.ro <lista.txt

4.5. Általános könyvészet

1. ***: Linux man magyarul, http://people.inf.elte.hu/csa/MAN/HTML/index.htm

2. A.S. Tanenbaum, A.S. Woodhull, Operációs rendszerek, 2007, Panem Kiadó.

3. Alexandrescu, Programarea modernă in C++. Programare generică si modele de

proiectare aplicate, Editura Teora, 2002.

4. Angster Erzsébet: Objektumorientált tervezés és programozás Java, 4KÖR Bt, 2003.

5. Bartók Nagy János, Laufer Judit, UNIX felhasználói ismeretek, Openinfo

6. Bjarne Stroustrup: A C++ programozási nyelv, Kiskapu kiadó, Budapest, 2001.

7. Bjarne Stroustrup: The C++ Programming Language Special Edition, AT&T, 2000.

8. Boian F.M. Frentiu M., Lazăr I. Tambulea L. Informatica de bază. Presa Universitară

Clujeana, Cluj, 2005

9. Boian F.M., Ferdean C.M., Boian R.F., Dragoş R.C., Programare concurentă pe

platforme Unix, Windows, Java, Ed. Albastră, Cluj-Napoca, 2002

10. Boian F.M., Vancea A., Bufnea D., Boian R.,F., Cobârzan C., Sterca A., Cojocar D.,

Sisteme de operare, RISOPRINT, 2006

11. Bradley L. Jones: C# mesteri szinten 21 nap alatt, Kiskapu kiadó, Budapest, 2004.

12. Bradley L. Jones: SAMS Teach Yourself the C# Language in 21 Days, Pearson

Education,2004.

13. Cormen, T., Leiserson, C., Rivest, R., Introducere în algoritmi, Editura Computer

Libris Agora, Cluj, 2000

14. DATE, C.J., An Introduction to Database Systems (8th Edition), Addison-Wesley,

2004.

15. Eckel B., Thinking in C++, vol I-II, http://www.mindview.net

16. Ellis M.A., Stroustrup B., The annotated C++ Reference Manual, Addison-Wesley,

1995

17. Frentiu M., Lazăr I. Bazele programării. Partea I-a: Proiectarea algoritmilor

18. Herbert Schildt: Java. The Complete Reference, Eighth Edition, McGraw-Hill, 2011.

19. Horowitz, E., Fundamentals of Data Structures in C++, Computer Science Press,

1995

4. FEJEZET OPERÁCIÓS RENDSZEREK 151

20. J. D. Ullman, J. Widom: Adatbázisrendszerek - Alapvetés, Panem kiado, 2008.

21. ULLMAN, J., WIDOM, J., A First Course in Database Systems (3rd Edition),

Addison-Wesley + Prentice-Hall, 2011.

22. Kiadó Kft, 1998, http://www.szabilinux.hu/ufi/main.htm

23. Niculescu,V., Czibula, G., Structuri fundamentale de date şi algoritmi. O perspectivă

orientată obiect., Ed. Casa Cărţii de Stiinţă, Cluj-Napoca, 2011

24. RAMAKRISHNAN, R., Database Management Systems. McGraw-Hill, 2007,

http://pages.cs.wisc.edu/~dbbook/openAccess/thirdEdition/slides/slides3ed.html

25. Robert Sedgewick: Algorithms, Addison-Wesley, 1984

26. Simon Károly: Kenyerünk Java. A Java programozás alapjai, Presa Universitară

Clujeană, 2010.

27. Tâmbulea L., Baze de date, Facultatea de matematică şi Informatică, Centrul de

Formare Continuă şi Invăţământ la Distanţă, Cluj-Napoca, 2003

28. V. Varga: Adatbázisrendszerek (A relációs modelltől az XML adatokig), Editura

Presa Universitară Clujeană, 2005, p. 260. ISBN 973-610-372-2

