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1. rész: Algoritmusok és programozás (6 téma)

1. Keresés (szekvenciális és bináris), rendezés (buborékrendezés, gyorsrendezés
(quicksort), kiválasztásos rendezés). A visszalépéses keresés (backtracking).

2. OOP/objektumorientált programozás elemek a Python, C++, Java és C# progra-
mozási nyelvekben: osztályok és objektumok; egy osztály tagjai és hozzáférés-
módosítók; konstruktorok és destruktorok.

3. Osztályok közötti kapcsolatok: származtatott osztályok és öröklési viszony; me-
tódusok felülírása; polimorfizmus; dinamikus kötés; absztrakt osztályok és in-
terfészek.

4. Osztálydiagramok és objektumok közötti kapcsolatok az UML-ben. Csomagok,
osztályok és interfészek. Osztályok és interfészek közötti kapcsolatok. Objektu-
mok. Üzenetek.

5. Lista; asszociatív tömb (map); sajátos műveletek specifikációja (megvalósítás
nélkül).

6. Adatszerkezetek és adattípusok azonosítása egy adott feladat megoldása érde-
kében (az 5. pontban megadott témákra vonatkozóan). Meglévő könyvtárak
használata a fenti adatszerkezetek esetén (Python, Java, C++, C#).

2. rész: Adatbázisok (3 téma)

1. Relációs adatbázisok; egy reláció első három normálformája.

2. Adatbázisok lekérdezése a relációs algebra operátoraival.

3. Relációs adatbázisok lekérdezése SQL segítségével (Select).

3. rész: Operációs rendszerek (3 téma)

1. Unix fájlrendszerek szerkezete.

2. Unix folyamatok: létrehozás, fork, exec, exit, wait rendszerhívások; kommuni-
káció pipe és FIFO állományok segítségével.

3. Unix shell programozás és alapvető Unix parancsok: cat, cp, cut, echo, expr, file,
find, grep, less, ls, mkdir, mv, ps, pwd, read, rm, sort, test, wc, who.
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1. fejezet Algoritmusok és programozás  

 

1.1. Programozási tételek 
 

 A feladatok feladatosztályokba sorolhatók a jellegük szerint. E feladatosztályokhoz készí-

tünk a teljes feladatosztályt megoldó algoritmusosztályt, amelyeket programozási tételeknek 

nevezünk. Bebizonyítható, hogy ezek a megoldások a szóban forgó feladatok garantáltan he-

lyes és optimális megoldásai.  

 A programozási tételek a feladat bemenete és kimenete szerint négy csoportra oszthatók: 

A. sorozathoz érték rendelése (1 sorozat – 1 érték) 

B. sorozathoz sorozat rendelése (1 sorozat – 1 sorozat) 

C. sorozatokhoz sorozat rendelése (több sorozat – 1 sorozat) 

D. sorozathoz sorozatok rendelése (1 sorozat – több sorozat) 
 

A. Sorozathoz érték rendelése 
 

1.1.1. Sorozatszámítás  
 

 Adott az N elemű X sorozat. A sorozathoz hozzá kell rendelnünk egyetlen S értéket. Ezt az 

értéket egy, az egész sorozaton értelmezett f függvény (pl. elemek összege, szorzata stb.) adja. 

Ezt a függvényt felbonthatjuk értékpárokon kiszámított függvények sorozatára, így a 

megoldás az F0 semleges elemre, valamint egy kétoperandusú műveletre épül. Az S 

kezdőértéke a semleges elem. A kétoperandusú műveletet végrehajtjuk minden Xi elemre és az S 

értékre: S ← f(Xi, S).  
 

Összeg és szorzat  

 Egyetlen kimeneti adatot számítunk ki, adott számú bemeneti adat feldolgozásának 

eredményeként, például a bemeneti adatok összegét, esetleg szorzatát kell kiszámítanunk.  
 

Megoldás  

 A feladat megoldása előtt szükséges tudni, hogy mely érték felel meg a bemeneti adatok 

halmazára és az elvégzendő műveletre nézve a semleges elemnek. Feltételezzük, hogy a 

bemeneti adatok egész számok, amelyeknek a számossága N
1
.  

 

Algoritmus Összegszámítás(N, X, S):  { Sajátos eset } 

     { Bemeneti adatok: az N elemű X sorozat, kimeneti adat: S } 

 S  0 

 Minden i = 1, N végezd el:  { minden adatot fel kell dolgoznunk } 

  S  S + Xi 

 vége(minden) 

                                                           
1 A következőkben az algoritmusok implementálása különböző típusú függvényekként szabadon választható. Ha 

a függvény egyetlen értéket számít ki, akkor ezt nem kötelező kimeneti paraméterként implementálni, hanem 

térítheti a függvény. 
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Vége(algoritmus) 

 Az előbbi algoritmus általánosítva: 
 

Algoritmus Feldolgoz(N, X, S): 

     { Bemeneti adatok: az N elemű X sorozat, kimeneti adat: S } 

 S  F0   { kezdőérték: az elvégzendő műveletre nézve semleges elem } 

 Minden i = 1, N végezd el:  { minden adatot fel kell dolgoznunk } 

  S  f(S, Xi) { f a művelet (funkció) } 

 vége(minden) 

Vége(algoritmus) 

 

1.1.2. Döntés  
 

 Adott az N elemű X sorozat és az elemein értelmezett T tulajdonság. Döntsük el, hogy léte-

zik-e a sorozatban legalább egy T tulajdonságú elem!  
 

Elemzés  

 A sorozat elemei tetszőlegesek, egyetlen jellemzőt kell feltételeznünk róluk: bármely elem-

ről el lehet dönteni, hogy rendelkezik-e az adott tulajdonsággal, vagy nem. A válasz egy 

üzenet, amelyet az alprogram kimeneti paramétere (logikai változó) értéke alapján ír ki a hívó 

programegység.  
 

Algoritmus Döntés_1(N, X, talált):  

 { Bemeneti adatok: az N elemű X sorozat. Ha az X sorozatban található } 

     { legalább egy T tulajdonságú elem, talált értéke igaz, különben hamis } 

 i  1  { kezdőérték az indexnek } 

 talált  hamis { kezdőérték a kimeneti adatnak } 

 Amíg nem talált és (i  N) végezd el:  

  Ha nem T(Xi) akkor { amíg nem találunk egy Xi-t, amely rendelkezik } 

   i  i + 1 { a T tulajdonsággal, haladunk előre } 

  különben 

   talált  igaz 

  vége(ha) 

 vége(amíg) 

Vége(algoritmus) 
 

 A fenti algoritmus megírható tömörebben is:  
 

Algoritmus Döntés_2(N, X, talált):  

 { Bemeneti adatok: az N elemű X sorozat. Ha az X sorozatban } 

 { található legalább egy T tulajdonságú elem, talált értéke igaz, különben hamis }  

 i  1 

 Amíg (i  N) és nem T(Xi) végezd el:  { amíg nem találunk egy Xi-t, amely } 

  i  i + 1 { rendelkezik a T tulajdonsággal, haladunk előre } 

 vége(amíg) 

 talált  i  N { kiértékelődik a relációs kifejezés; az érték talált értéke lesz }  

Vége(algoritmus) 
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 Egy másik megközelítésben el kell döntenünk, hogy az adatok, teljességükben, rendelkez-

nek-e egy adott tulajdonsággal vagy sem. Más szóval: nem létezik egyetlen adat sem, amely 

ne lenne T tulajdonságú. Ekkor a bemeneti adathalmaz minden elemét meg kell vizsgálnunk. 

Mivel a döntés jelentése az összes adatra érvényes, a talált változót átkereszteljük mind-re.  
 

Algoritmus Döntés_3(N, X, mind): 

     { Bemeneti adatok: az N elemű X sorozat. Kimeneti adat: ha az X sorozatban } 

     { minden elem T tulajdonságú, a mind értéke igaz, különben hamis }  

 i  1 

 Amíg (i  N) és T(Xi) végezd el:  { a nem T(Xi) részkifejezés tagadása } 

  i  i + 1 

 vége(amíg) 

 mind  i > N { az i  N részkifejezés tagadása } 

Vége(algoritmus) 

 

1.1.3. Kiválasztás 
 

 Adott az N elemű X sorozat és az elemein értelmezett T tulajdonság. Adjuk meg a sorozat 

egy T tulajdonságú elemének sorszámát! (Előfeltétel: garantáltan létezik ilyen elem.) 
 

Algoritmus Kiválasztás(N, X, hely): 

     { Bemeneti adatok: az N elemű X sorozat. } 

     { Kimeneti adat: hely, a legkisebb indexű T tulajdonságú elem sorszáma } 

 hely  1 

 Amíg nem T(Xhely) végezd el:  { nem szükséges a hely ≤ N feltétel, mivel a feladat } 

  hely  hely + 1  { garantálja legalább egy T tulajdonságú elem létezését } 

 vége(amíg) 

Vége(algoritmus) 

 

1.1.4. Szekvenciális (lineáris) keresés 
 

 Adott az N elemű X sorozat és az elemein értelmezett T tulajdonság. Vizsgáljuk meg, hogy 

létezik-e T tulajdonságú elem a sorozatban! Ha létezik, akkor adjuk meg az első ilyen elem 

helyét! 
 

Algoritmus Keres_1(N, X, hely): 

 { Bemeneti adatok: az N elemű X sorozat. Kimeneti adat: hely, a legkisebb indexű T } 

     { tulajdonságú elem indexe, illetve, sikertelen keresés esetén hely = 0 } 

 hely  0 

 i  1 

 Amíg (hely = 0) és (i ≤ N) végezd el: 

  Ha T(Xi) akkor 

   hely  i 

  különben 

   i  i + 1 

  vége(ha) 

 vége(amíg) 

Vége(algoritmus) 
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 Az adott elem tulajdonságát az Amíg feltételében is ellenőrizhetjük. Más szóval: amíg az 

aktuális elem tulajdonsága nem megfelelő, haladunk a sorozatban előre: 
 

Algoritmus Keres_2(N, X, hely): 

  { Bemeneti adatok: az N elemű X sorozat. Kimeneti adat: hely, a legkisebb indexű T } 

     { tulajdonságú elem indexe, illetve, sikertelen keresés esetén hely = 0 } 

 i  1 

 Amíg (i ≤ N) és nem T(Xi) végezd el: 

  i  i + 1 

 vége(amíg) 

 Ha i ≤ N akkor  { ha kiléptünk az Amíg-ból, mielőtt i nagyobbá vált volna N-nél, } 

  hely  i  { ⇒ találtunk adott tulajdonságú elemet az i. pozición } 

 különben 

  hely  0 { különben nem találtunk } 

 vége(ha) 

Vége(algoritmus) 
 

 Ha a feladat azt kéri, hogy keressünk meg minden olyan elemet, amely rendelkezik az 

adott tulajdonsággal, be kell járnunk a teljes adathalmazt, és vagy kiírjuk azonnal a 

pozíciókat, ahol megfelelő elemet találtunk, vagy megőrizzük ezeket egy másik sorozatban. 

Ilyenkor Minden típusú struktúrát használunk. 

 

1.1.5. Megszámlálás 
 

 Adott, N elemű X sorozatban számoljuk meg a T tulajdonságú elemeket! 
 

Elemzés 

 Nem biztos, hogy létezik legalább egy T tulajdonságú elem, tehát az is lehetséges, hogy az 

eredmény 0 lesz. Mivel minden elemet meg kell vizsgálnunk (bármely adat rendelkezhet a 

kért tulajdonsággal), Minden típusú struktúrával dolgozunk. A darabszámot a db változóban 

tároljuk. 
 

Algoritmus Megszámlálás(N, X, db): 

     { Bemeneti adatok: az N elemű X sorozat }  

     { Kimeneti adat: db, a T tulajdonságú elemek darabszáma } 

 db  0 

 Minden i = 1, N végezd el: 

  Ha T(Xi) akkor 

   db  db + 1 

  vége(ha) 

 vége(minden) 

Vége(algoritmus) 
 

1.1.6. Maximumkiválasztás 
 

 Adott az N elemű X sorozat. Határozzuk meg a sorozat legnagyobb (vagy legkisebb) 

értékét! 
 

Megoldás 
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 A megoldásban minden adatot meg kell vizsgálnunk, ezért az algoritmus egy Minden 

típusú struktúrával dolgozik. A max segédváltozó a sorozat első elemétől kap kezdőértéket. 

Algoritmus Maximumkiválasztás(N, X, max): 

 { Bemeneti adatok: az N elemű X sorozat. Kimeneti adat: max, a legnagyobb elem értéke } 

 max  X1 

 Minden i = 2, n végezd el: 

  Ha max < Xi akkor 

   max  Xi 

  vége(ha) 

 vége(minden) 

Vége(algoritmus) 
 

 A maximumot/minimumot tartalmazó segédváltozónak az adatok közül választunk kezdő-

értéket, mivel így nem áll fenn a veszély, hogy az algoritmus eredménye egy, az adataink 

között nem létező érték legyen. 

 Ha a maximum helyét kell megadnunk, az algoritmus a következő: 
 

Algoritmus MaximumHelye(N, X, hely): 

 { Bemeneti adatok: az N elemű X sorozat. Kimeneti adat: hely, a legnagyobb elem pozíciója } 

 hely  1  { hely az első elem pozíciója } 

 Minden i = 2, n végezd el: 

  Ha Xhely < Xi akkor 

   hely  i  { a maximális elem első előfordulásának helye (pozíciója) } 

  vége(ha) 

 vége(minden) 

Vége(algoritmus) 
 

 Ha minden olyan indexet meg kell határoznunk, amely indexű elemek egyenlők a legna-

gyobb elemmel és nem lehetséges/nem előnyös az adott tömböt kétszer bejárni, mert a maxi-

mumhoz tartozó adatok egy másik (esetleg bonyolult) algoritmus végrehajtásának 

eredményei, írhatunk algoritmust, amely csak egyszer járja be a sorozatot: 
 

Algoritmus MindenMaximumHelye(N, X, db, indexek): 

 { Bemeneti adatok: az N elemű X sorozat. Kimeneti adat: a db elemű indexek sorozat } 

 max  X1 

 db  1 

 indexek1  1 

 Minden i = 2, n végezd el: 

  Ha max < Xi akkor 

   max  Xi 

   db  1 

   indexekdb  i 

  különben 

   Ha max = Xi akkor 

    db  db + 1 

    indexekdb  i 

   vége(ha) 

  vége(ha) 
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 vége(minden) 

Vége(algoritmus) 

B. Sorozathoz sorozat rendelése 
 

1.1.7. Másolás 
 

 Adott az N elemű X sorozat és az elemein értelmezett f függvény. A bemeneti sorozat 

minden elemére végrehajtjuk a függvényt, az eredményét pedig a kimeneti sorozatba 

másoljuk. 
 

Algoritmus Másolás(N, X, Y): 

     { Bemeneti adatok: az N elemű X sorozat. Kimeneti adat: az N elemű Y sorozat } 

 Minden i = 1, N végezd el: 

  Yi  f(Xi) 

 vége(minden) 

Vége(algoritmus) 

 

1.1.8. Kiválogatás 
 

 Adott az N elemű X sorozat és az elemein értelmezett T tulajdonság. Válogassuk ki az 

összes T tulajdonságú elemet! 
 

Elemzés 

Az elvárások függvényében különböző megközelítések lesznek érvényesek: 

a. kiválogatás kigyűjtéssel 

b. kiválogatás kiírással 

c. kiválogatás helyben (sorrendváltoztatással vagy megőrizve az eredeti sorrendet) 

d. kiválogatás kihúzással (segédsorozattal vagy helyben) 
 

a. Kiválogatás kigyűjtéssel 

 A keresett elemeket (vagy sorszámaikat) kigyűjtjük egy sorozatba. A pozíciók sorozatának 

(vagy a kigyűjtött elemek sorozatának) hossza legfeljebb az adott sorozatéval lesz 

megegyező, mivel előfordulhat, hogy a bemeneti sorozat minden eleme adott tulajdonságú. A 

sorozat számosságát a db változóban tartjuk nyilván. 
 

Algoritmus Kiválogatás_a(N, X, db, pozíciók): 

 { Bemeneti adatok: az N elemű X sorozat. Kimeneti adat: a db elemű pozíciók sorozat } 

 db  0 

 Minden i = 1, N végezd el: 

  Ha T(Xi) akkor 

   db  db + 1 

   pozíciókdb  i { pozíciókdb-ben tároljuk az Xi helyét } 

  vége(ha) 

 vége(minden) 

Vége(algoritmus) 
 

b. Kiválogatás kiírással 
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 Ha a feladat „megelégszik” a T tulajdonságú elemek kiírásával (nem kéri ezek darabszámát 

is), az algoritmus a következő: 
 

 

 

Algoritmus Kiválogatás_b(N, X): 

     { Bemeneti adatok: az N elemű X sorozat } 

 Minden i = 1, N végezd el: 

  Ha T(Xi) akkor 

   Ki: Xi 

  vége(ha) 

 vége(minden) 

Vége(algoritmus) 
 

c. Kiválogatás helyben 

 Ha a sorozat feldolgozása közben a nem T tulajdonságú elemeket nem óhajtjuk megőrizni, 

hanem ki szeretnénk zárni ezeket a sorozatból, akkor a feladat specifikációitól függően, a 

következő lehetőségek közül fogunk választani: 
 

c1. Ha a törlés után nem kötelező, hogy az elemek az eredeti sorrendjükben maradjanak, 

akkor a törlendő elemre rámásoljuk a sorozat utolsó elemét és csökkentjük 1-gyel a sorozat 

méretét: 
 

Algoritmus Kiválogatás_c1(N, X): 

{ Bemeneti adatok: az N elemű X sorozat. Kimeneti adat: a megváltozott elemszámú X sorozat } 

 i  1 

 Amíg i ≤ N végezd el:  { nem alkalmazunk Minden-t, mivel változik az N!!! } 

  Ha nem T(Xi) akkor  { a T tulajdonságú elemeket tartjuk meg } 

   Xi  XN  { Xi-t felülírjuk XN-nel } 

   N  N – 1  { változik a sorozat hossza } 

  különben 

   i  i + 1  { i csak a különben ágon nő } 

  vége(ha) 

 vége(amíg) 

Vége(algoritmus) 
 

c2. Ha az eredeti sorozatra nincs többé szükség, de szeretnénk megőrizni az elemek eredeti 

sorrendjét, akkor a T tulajdonságú elemeket felsorakoztatjuk a sorozat elejétől kezdve. Így a 

kiválogatott elemekkel felülírjuk az eredeti adatokat. Nem használunk egy újabb sorozatot, 

hanem az adott sorozat számára lefoglalt tárrészt használva helyben végezzük a kiválogatást. 

A db változó ebben az esetben a megváltoztatott sorozatnak a számosságát tartja nyilván: 
 

Algoritmus Kiválogatás_c2(N, X, db): 

     { Bemeneti adatok: az N elemű X sorozat. Kimeneti adat: a db elemű X sorozat } 

 db  0 

 Minden i = 1, N végezd el: 

  Ha T(Xi) akkor 

   db  db + 1 
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   Xdb  Xi 

  vége(ha) 

 vége(minden) 

Vége(algoritmus) 

 

d1. Ha a törlés ideiglenes, akkor a kereséssel párhuzamosan egy logikai tömbben 

nyilvántartjuk a „törölt” elemeket. A törölt tömb elemeinek kezdőértéke hamis lesz, majd a 

törlendő elemeknek megfelelő sorszámú elemek értéke a törölt logikai tömbben igaz lesz: 
 

Algoritmus Kiválogatás_d1(N, X, törölt): 

   { Bemeneti adatok: az N elemű X sorozat. Kimeneti adat: az N elemű törölt sorozat } 

 Minden i = 1, N végezd el: 

  törölti  hamis 

 vége(minden) 

 Minden i = 1, N végezd el: 

  Ha nem T(Xi) akkor  { a T tulajdonságú elemeket tartjuk meg } 

   törölti  igaz 

  vége(ha) 

 vége(minden) 

Vége(algoritmus) 
 

d2. Egy másik megoldás, amely nem hoz létre új helyen, új sorozatot, helyben végzi a kiválo-

gatást, anélkül, hogy elmozdítaná eredeti helyükről a T tulajdonságú elemeket, a nem T tulaj-

donságú elemek helyére pedig egy speciális értéket tesz: 
 

Algoritmus Kiválogatás_d2(N, X, törölt): 

     { Bemeneti adatok: az N elemű X sorozat. Kimeneti adat: az N elemű X sorozat } 

 Minden i = 1, N végezd el: 

  Ha nem T(Xi) akkor  { a T tulajdonságú elemeket tartjuk meg } 

   Xi  speciális érték 

  vége(ha) 

 vége(minden) 

Vége(algoritmus) 

 

C. Sorozatokhoz sorozat rendelése 
 

1.1.9. Halmazok 
 

 Mielőtt egy halmazokat tartalmazó sorozatra vonatkozó műveletet alkalmaznánk, 

szükséges meggyőződnünk arról, hogy a sorozat valóban halmaz. Ez azt jelenti, hogy minden 

érték csak egyszer fordul elő. Ha kiderül, hogy a sorozat nem halmaz, halmazzá kell 

alakítanunk. 
 

a. Halmaz-e? 

 Döntsük el, hogy az adott N elemű X sorozat halmaz-e! 
 

Elemzés 
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 Egy halmaz vagy üres, vagy bizonyos számú elemet tartalmaz. Ha egy halmazt sorozattal 

implementálunk, az elemei különbözők. A következő algoritmussal eldöntjük, hogy a sorozat 

csak különböző elemeket tartalmaz-e?  

 

Algoritmus Halmaz_e(N, X, ok): 

 { Bemeneti adatok: az N elemű X sorozat. Kimeneti adat: az ok értéke igaz, } 

 i  1   { ha a sorozat halmaz, különben hamis } 

 ok  igaz 

 Amíg ok és (i < N) végezd el: 

  j  i + 1 

  Amíg (j ≤ N) és (Xi ≠ Xj) végezd el: 

   j  j + 1 

  vége(amíg) 

  ok  j > N  { ha véget ért a sorozat, nincs két azonos elem } 

  i  i + 1 

 vége(amíg) 

Vége(algoritmus) 
 

b. Halmazzá alakítás 

 Alakítsuk halmazzá az N elemű X sorozatot! 
 

Elemzés 

 Ha egy alkalmazásban ki kell zárnunk az adott sorozatból a másodszor (harmadszor stb.) 

megjelenő értékeket, akkor az előbbi algoritmust módosítjuk: amikor egy bizonyos érték meg-

jelenik másodszor, felülírjuk az utolsóval. 
 

Algoritmus HalmazzáAlakít(N, X): 

 { Bemeneti adatok: az N elemű X sorozat. } 

 {Kimeneti adatok: az új N elemű X sorozat (halmaz) } 

 i  1 

 Amíg i < N végezd el: 

  j  i + 1 

  Amíg (j ≤ N) és (Xi ≠ Xj) végezd el: 

   j  j + 1 

  vége(amíg) 

  Ha j ≤ N akkor  { találtunk egy Xj = Xi-t } 

   Xj  XN  { felülírjuk a sorozat N. elemével } 

   N  N – 1  { rövidítjük a sorozatot } 

  különben 

   i  i + 1  { haladunk tovább } 

  vége(ha) 

 vége(amíg) 

Vége(algoritmus) 

 

1.1.10. Keresztmetszet 
 

 Hozzuk létre a bemenetként kapott sorozatok keresztmetszetét! 
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Elemzés 

 Keresztmetszet alatt azt a sorozatot értjük, amely az adott sorozatok közös elemeit tartal-

mazza. Feltételezzük, hogy az adott sorozatok mind különböző elemeket tartalmaznak 

(halmazok) és nem rendezettek. 

 Az N elemű X és az M elemű Y sorozat keresztmetszetét a db elemű Z sorozatban hozzuk 

létre, tehát Z olyan elemeket tartalmaz az X sorozatból, amelyek megtalálhatók az Y-ban is. 

 

Algoritmus Keresztmetszet(N, X, M, Y, db, Z): 

     { Bemeneti adatok: az N elemű X és az M elemű Y sorozat. } 

 db  0  { Kimeneti adatok: a db elemű Z sorozat, X és Y keresztmetszete } 

 Minden i = 1, N végezd el: 

  j  1 

  Amíg (j ≤ M) és (Xi ≠ Yj) végezd el: 

   j  j + 1 

  vége(amíg) 

  Ha j ≤ M akkor 

   db  db + 1 

   Zdb  Xi 

  vége(ha) 

 vége(minden) 

Vége(algoritmus)  

 

1.1.11. Egyesítés (Unió) 
 

 Hozzuk létre az N elemű X és az M elemű Y sorozatok (halmazok) egyesített halmazát! 
 

Elemzés 

 Az egyesítés algoritmusa hasonló a keresztmetszetéhez. Nem alkalmazhatunk 

összefésülést, mivel a sorozatok nem rendezettek! A különbség abban áll, hogy olyan 

elemeket helyezünk az eredménybe, amelyek legalább az egyik sorozatban megtalálhatók. 

Előbb a Z sorozatba másoljuk az X sorozatot, majd kiválogatjuk Y-ból azokat az elemeket, 

amelyeket nem találtunk meg X-ben. 
 

Algoritmus Egyesítés(N, X, M, Y, db, Z): 

     { Bemeneti adatok: az N elemű X és az M elemű Y sorozat. } 

     { Kimeneti adatok: a db elemű Z sorozat (X és Y egyesítése) } 

 Másolás(N, X, Z) { az X sorozat minden elemét átmásoljuk a Z sorozatba } 

 db  N 

 Minden j = 1, M végezd el: 

  i  1 

  Amíg (i ≤ N) és (Xi ≠ Yj) végezd el: 

   i  i + 1 

  vége(amíg) 

  Ha i > N akkor 

   db  db + 1 
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   Zdb  Yj 

  vége(ha) 

 vége(minden) 

Vége(algoritmus) 

 

1.1.12. Összefésülés 
 

 Adott két rendezett sorozatból állítsunk elő egy harmadikat, amely legyen szintén 

rendezett! 
 

Elemzés 

 Az Egyesítés(N, X, M, Y, db, Z) és a Keresztmetszet(N, X, M, Y, db, Z) algoritmusok 

négyzetes bonyolultságúak, mivel a halmazokat implementáló sorozatok nem rendezettek. Ez 

a két művelet megvalósítható lineáris algoritmussal, ha a sorozatok rendezettek. Így az 

eredményt is rendezett formában fogjuk generálni. Ezek a sorozatok nem mindig halmazok, 

tehát néha előfordulhatnak azonos értékű elemek is. 

 Elindulunk mindkét sorozatban és a soron következő két elem összehasonlítása révén el-

döntjük, melyiket tegyük a harmadikba. Addig végezzük ezeket a műveleteket, amíg valame-

lyik sorozatnak a végére nem érünk. A másik sorozatban megmaradt elemeket átmásoljuk az 

eredménysorozatba. Mivel nem tudhatjuk előre melyik sorozat ért véget, vizsgáljuk mindkét 

sorozatot. 
 

Algoritmus Összefésülés_1(N, X, M, Y, db, Z): 

 { Bemeneti adatok: az N elemű X és az M elemű Y sorozat. A sorozatok nem halmazok. } 

     { Kimeneti adatok: a db elemű Z sorozat (X és Y elemeivel) } 

 db  0  

 i  1 

 j  1 

 Amíg (i ≤ N) és (j ≤ M) végezd el: { amíg sem X-nek, sem Y-nak nincs vége } 

  db  db + 1 

  Ha Xi < Yj akkor 

   Zdb  Xi 

   i  i + 1 

  különben 

   Zdb  Yj 

   j  j + 1 

  vége(ha) 

 vége(amíg) 

 Amíg i ≤ N végezd el:  { ha maradt még elem X-ben } 

  db  db + 1 

  Zdb  Xi 

  i  i + 1 

 vége(amíg) 

 Amíg j ≤ M végezd el:  { ha maradt még elem Y-ban } 

  db  db + 1 

  Zdb  Yj 
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  j  j + 1 

 vége(amíg) 

Vége(algoritmus) 
 

 Most feltételezzük, hogy az egyes sorozatokban egy elem csak egyszer fordul elő és azt 

szeretnénk, hogy az összefésült új sorozatban se legyenek „duplák”. Az előző algoritmust 

csak annyiban módosítjuk, hogy vizsgáljuk az egyenlőséget is. Ha a két összehasonlított érték 

egyenlő, mind a két sorozatban továbblépünk és az aktuális értéket csak egyszer írjuk be az 

eredménysorozatba. 
 

Algoritmus Összefésülés_2(N, X, M, Y, db, Z): 

    { Bemeneti adatok: az N elemű X és az M elemű Y sorozat. A sorozatok halmazok 

} 

     { Kimeneti adatok: a db elemű Z sorozat (X és Y elemeivel) } 

 db  0 

 i  1 

 j  1  

 Amíg (i ≤ N) és (j ≤ M) végezd el: 

  db  db + 1 

  Ha Xi < Yj akkor 

   Zdb  Xi 

   i  i + 1 

  különben 

   Ha Xi = Yj akkor 

    Zdb  Xi 

    i  i + 1 

    j  j + 1 

   különben 

    Zdb  Yj 

    j  j + 1 

   vége(ha) 

  vége(ha) 

 vége(amíg) 

 Amíg i ≤ N végezd el:  { ha maradt még elem X-ben } 

  db  db + 1 

  Zdb  Xi 

  i  i + 1 

 vége(amíg) 

 Amíg j ≤ m végezd el:  { ha maradt még elem Y-ban } 

  db  db + 1 

  Zdb  Yj 

  j  j + 1 

 vége(amíg) 

Vége(algoritmus) 
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 Szerencsés esetben XN = YM. Ekkor a két utolsó Amíg struktúra nem hajtódott volna végre 

egyetlen egyszer sem. Kihasználva ezt az észrevételt, elhelyezünk mindkét sorozat végére egy 

fiktív elemet (őrszem). Tehetjük az X sorozat végére az XN+1 = YM + 1 értéket és az Y sorozat 

végére az YM+1 = XN + 1 értéket. Ha a két egyesítendő sorozat nem halmaz, az eredmény sem 

lesz halmaz. Észrevesszük, hogy ebben az esetben az eredménysorozat hossza pontosan N + 

M. Az algoritmus ismétlőstruktúrája Minden típusú lesz.  
 

Algoritmus Összefésül_3(N, X, M, Y, db, Z): 

  { Bemeneti adatok: az N elemű X és az M elemű Y sorozat. A sorozatok nem halmazok } 

    { Kimeneti adatok: a db elemű Z sorozat (X és Y elemeivel) } 

 i  1 

 j  1  

 XN+1  YM + 1 

 YM+1  XN + 1 

 Minden db = 1, N + M végezd el: 

  Ha Xi < Yj akkor 

   Zdb  Xi 

   i  i + 1 

  különben 

   Zdb  Yj 

   j  j + 1 

  vége(ha) 

 vége(minden) 

Vége(algoritmus) 
 

 Ha a bemeneti sorozatok halmazokat ábrázolnak és az eredménysorozatnak is halmaznak 

kell lennie, az algoritmus a következőképpen alakul: a Minden struktúra helyett Amíg-ot 

alkalmazunk, hiszen nem tudjuk hány eleme lesz az összefésült sorozatnak (az ismétlődő 

értékek közül csak egy kerül be az új sorozatba). Ugyanakkor, az őrszemek révén az Amíg 

struktúrát addig hajtjuk végre, amíg mindkét sorozat végére nem értünk. 
 

Algoritmus Összefésül_4(N, X, M, Y, db, Z): 

    { Bemeneti adatok: az N elemű X és az M elemű Y sorozat. A sorozatok halmazok } 

     { Kimeneti adatok: a db elemű Z sorozat (X és Y elemeivel) } 

 db  0 

 i  1  

 j  1 

 XN+1  YM + 1 

 YM+1  XN + 1 

 Amíg (i ≤ N) vagy (j ≤ M) végezd el: 

  db  db + 1  

  Ha Xi < Yj akkor 

   Zdb  Xi 

   i  i + 1 

  különben 

   Ha Xi = Yj akkor 

    Zdb  Xi 
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    i  i + 1 

    j  j + 1 

   különben 

    Zdb  Yj 

    j  j + 1 

   vége(ha) 

  vége(ha) 

 vége(amíg) 

Vége(algoritmus) 

 

 

D. Sorozathoz sorozatok rendelése 
 

1.1.13. Szétválogatás 
 

 Válogassuk szét az adott N elemű X sorozat elemeit adott T tulajdonság alapján! 
 

Elemzés 

 A Kiválogatás(N, X) algoritmus egy sorozatot dolgoz fel, amelyből kiválogat bizonyos ele-

meket. Kérdés: mi történik azokkal az elemekkel, amelyeket nem válogattunk ki? Lesznek 

feladatok, amelyek azt kérik, hogy két vagy több sorozatba válogassuk szét az adott sorozatot. 
 

a. Szétválogatás két új sorozatba 

 Az adott sorozatból létrehozunk két újat: a T tulajdonsággal rendelkező adatok sorozatát, 

és a megmaradtak sorozatát. Mindkét új sorozatot az eredetivel azonos méretűnek deklaráljuk, 

mivel nem tudhatjuk előre az új sorozatok valós méretét. (Előfordulhat, hogy valamennyi 

elem átvándorol valamelyik sorozatba, és a másik üres marad.) A dby és dbz a szétválogatás 

során létrehozott Y és Z sorozatba helyezett elemek számát jelöli. 
 

Algoritmus Szétválogatás_1(N, X, dby, Y, dbz, Z): 

 dby  0  { Bemeneti adatok: az N elemű X sorozat. } 

 dbz  0  { Kimeneti adat: a dby elemű Y és a dbz elemű Z sorozat } 

 Minden i = 1, N végezd el: 

  Ha T(Xi) akkor 

   dby  dby + 1  { az adott tulajdonságú elemek, az Y sorozatba kerülnek } 

   Ydby  Xi 

  különben 

   dbz  dbz + 1  { azok, amelyek nem rendelkeznek az } 

   Zdbz  Xi  { adott tulajdonsággal, a Z sorozatba kerülnek } 

  vége(ha) 

 vége(minden) 

Vége(algoritmus) 

 

b. Szétválogatás egyetlen új sorozatba 

 A feladat megoldható egyetlen új sorozattal. A kiválogatott elemeket az új sorozat első 

részébe helyezzük (az elsőtől haladva a vége felé), a megmaradtakat az új sorozat végére (az 

utolsótól haladva az első felé). Nem fogunk ütközni, mivel pontosan N elemet fogunk N 
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helyre „átrendezni”. A megmaradt elemek az eredeti sorozatban elfoglalt relatív pozícióik 

fordított sorrendjében kerülnek az új sorozatba. 
 

Algoritmus Szétválogatás_2(N, dby, dbz, X, Y): 

 dby  0{ Bemeneti adatok: az N elemű X sorozat. Kimeneti adat: az N elemű Y sorozat; } 

 dbz  0 { az első dby elem T tulajdonságú, dbz elem pedig nem T tulajdonságú } 

 Minden i = 1, N végezd el: 

  Ha T(Xi) akkor  { a T tulajdonságú elemek az Y sorozatba kerülnek } 

   dby  dby + 1  { az első helytől kezdődően } 

   Ydby  Xi 

 

  különben 

   dbz  dbz + 1  { a többi elem szintén Y-ba kerül, az utolsó helytől kezdődően } 

   YN-dbz+1  Xi 

  vége(ha) 

 vége(minden) 

Vége(algoritmus) 

 

c) Szétválogatás helyben 

 Ha a szétválogatás után nincs már szükségünk többé az eredeti sorozatra, a szétválogatás 

elvégezhető helyben. A tömb első elemét kivesszük a helyéről és megőrizzük egy segédválto-

zóban. Az utolsó elemtől visszafelé megkeressük az első olyat, amely adott tulajdonságú, s ezt 

előre hozzuk a kivett elem helyére. Ezután a hátul felszabadult helyre elölről keresünk egy 

nem T tulajdonságú elemet, s ha találunk, azt hátratesszük. Mindezt addig végezzük, amíg a 

tömbben két irányban haladva össze nem találkozunk. 
 

Algoritmus Szétválogatás_3(N, X, db): 

   { Bemeneti adatok: az N elemű X sorozat. Kimeneti adatok: az N elemű X sorozat; } 

     { az első e elem T tulajdonságú, n – e elem pedig nem T tulajdonságú } 

 e  1   { balról jobbra haladva az első T tulajdonságú elem indexe } 

 u  N   { jobbról balra haladva az első nem T tulajdonságú elem indexe } 

 segéd  Xe 

 Amíg e < u végezd el: 

  Amíg (e < u) és nem T(Xu) végezd el: 

   u  u – 1 

  vége(amíg) 

  Ha e < u akkor 

   Xe  Xu 

   e  e + 1 

   Amíg (e < u) és T(Xe) végezd el: 

    e  e + 1 

   vége(amíg) 

   Ha e < u akkor 

    Xu  Xe 

    u  u - 1 

   vége(ha) 
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  vége(ha) 

 vége(amíg) 

 Xe  segéd  { visszahozzuk a segéd-be tett elemet } 

 Ha T(Xe) akkor db  e 

 különben db  e - 1 

 vége(ha) 

Vége(algoritmus) 
 

Megjegyzés 

 Ha egy sorozatot több részsorozatba szükséges szétválogatni több tulajdonság alapján, egy-

más után több szétválogatást fogunk végezni, mindig a kért tulajdonság alapján.  

 Előbb szétválogatjuk az adott sorozatból az első tulajdonsággal rendelkezőket, majd a 

félretett adatokból szétválogatjuk a második tulajdonsággal rendelkezőket és így tovább. 

 

1.1.14. Programozási tételek összeépítése 
 

 Az egészen egyszerű alapfeladatokat kivéve általában több programozási tételt kell 

használnunk. Ilyenkor – ahelyett, hogy simán egymás után alkalmazzuk ezeket, lehetséges 

egyszerűbb, rövidebb, hatékonyabb, gazdaságosabb algoritmust tervezni, ha összeépítjük 

őket. 
 

a. Másolással összeépítés 

 A másolás bármelyik programozási tétellel egybeépíthető. Ilyenkor az Xi bemeneti adatra 

való hivatkozást f(xi)-re cseréljük. 

Példa:  

 Adjuk meg egy számsorozat elemeinek négyzetgyökeiből álló sorozatot!  

Megoldás: másolás + sorozatszámítás 
 

b. Megszámlálással összeépítés 

 A megszámlálást általában egy döntéssel, kiválasztással vagy kereséssel építhetjük össze. 

Példa:  

 Döntsük el, hogy található-e az N elemű X sorozatban legalább K darab T tulajdonságú 

elem? Adjuk meg a sorozat K-dik T tulajdonságú elemét! 

Megoldás: megszámlálás + döntés + kiválasztás 
 

c. Maximumkiválasztással összeépítés 

A maximumkiválasztást összeépíthetjük megszámlálással, kiválogatással. 

Példa: 

 Hány darab maximumértékű elem van az adott sorozatban? Generáljuk ezen elemek 

indexeinek sorozatát! 

Megoldás: Lásd a MindenMaximumHelye(N, X, db, indexek) algoritmust. 
 

d. Kiválogatással összeépítés 

 Olyan feladatoknál, amelyeknek esetében a feldolgozást csak az adott sorozat T 

tulajdonságú elemeire kell elvégeznünk, alkalmazható a kiválogatással történő összeépítés. 
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1.2. Lépések finomítása és optimalizálás 
 

 Bonyolultabb feladatok esetében a megfelelő algoritmus leírása nem könnyű feladat. Ezért 

célszerű először a megoldást körvonalazni, és csak azután részletezni. A feladat elemzése 

során sor kerül a bemeneti és kimeneti adatok megállapítására, a megfelelő adatszerkezetek 

kiválasztására és megtervezésére, a feladat követelményeinek szétválasztására. Következik a 

megoldási módszer megállapítása, a megoldás lépéseinek leírása és a lépések finomítása, 

vagyis az algoritmus részletes kidolgozása. Következik a helyesség bizonyítása és a 

bonyolultság kiértékelése. A program megírását (kódolást) a tesztelés követi. 

 A lépések finomítása az algoritmus kidolgozását jelenti, amely a kezdeti vázlattól a 

végleges, precízen leírt algoritmusig vezet. Kiindulunk a feladat specifikációjából és fentről 

lefele tartó tervezési módszert alkalmazva újabb meg újabb változatokat dolgozunk ki, 

amelyek eleinte még tartalmaznak bizonyos, anyanyelven leírt magyarázó sorokat, amelyeket 

csak később írunk át standard utasításokkal. Így, az algoritmusnak több egymás utáni 

változata lesz, amelyek egyre bővülnek egyik változattól a másikig. 

 

1.2.1. Megoldott feladatok 
 

a. Eukleidész algoritmusa 

 Határozzuk meg két adott természetes szám legnagyobb közös osztóját (lnko) és legkisebb 

közös többszörösét (lkkt) Eukleidész algoritmusával. 
 

Algoritmus Eukleidész_1(a, b, lnko, lkkt): 

 @ kiszámítjuk a és b lnko-ját  { Bemeneti adatok: a, b. Kimeneti adatok: lnko, lkkt } 

 @ kiszámítjuk a és b lkkt-ét 

Vége(algoritmus) 
 

Lépések finomítása: Ki kell dolgoznunk a kiszámítások módját. Ha a két szám egyenlő, 

akkor lnko az a szám lesz. Ha a kisebb, mint b, nincs szükség felcserélésre: az algoritmus 

elvégzi ezt az első lépésében. Ezután kiszámítjuk r-ben a és b egészosztási maradékát. Ha a 

maradék nem 0, a következő lépésben a-t felülírjuk b-vel, b-t r-rel, és újból kiszámítjuk a 

maradékot. Addig dolgozunk, amíg a maradék 0-vá nem válik. Az utolsó osztó éppen az lnko 

lesz. Az lkkt értékét megkapjuk, ha a és b szorzatát elosztjuk az lnko-val. Az eredeti két szám 

értékét az algoritmus „tönkreteszi”, ezért szükséges ezeket elmenteni két segédváltozóba (x és 

y). 
 

Algoritmus Eukleidész_1(a, b, lnko, lkkt): 

      { Bemeneti adatok: a, b. Kimeneti adatok: lnko, lkkt } 

 x  a    { szükségünk lesz a és b értékére az lkkt kiszámításakor } 

 y  b  

 r  a mod b  { kiszámítjuk az első maradékot } 

 Amíg r ≠ 0 végezd el:  { amíg a maradék nem 0 } 

  a  b   { az osztandót felülírjuk az osztóval } 

  b  r   { az osztót felülírjuk a maradékkal } 

  r  a mod b  { kiszámítjuk az aktuális maradékot } 
 vége(amíg) 

 lnko  b   { lnko egyenlő az utolsó osztó értékével } 

 lkkt  x*y div lnko  { felhasználjuk a és b másolatait } 
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Vége(algoritmus) 

 Az algoritmust megvalósíthatjuk ismételt kivonásokkal. Amíg a két szám különbözik egy-

mástól, a nagyobbikból kivonjuk a kisebbiket, és megőrizzük a különbséget. Az lnko az utolsó 

különbség lesz. Az lkkt-t ugyanúgy számítjuk ki, mint az előző változatban. 
 

Algoritmus Eukleidész_2(a, b, lnko, lkkt): 

 x  a    { Bemeneti adatok: a, b. Kimeneti adatok: lnko, lkkt } 

 y  b 

 Amíg a ≠ b végezd el: 

  Ha a > b akkor 

   a  a - b 

  különben 

   b  b - a 

  vége(ha) 

 vége(amíg) 

 lnko  a 

 lkkt  [x*y/lnko] 

Vége(algoritmus) 

 

b. Prímszámok 

 Adva van egy nullától különböző természetes n szám. Döntsük el, hogy az adott szám 

prímszám-e vagy sem! 
 

Algoritmus Prím(n, válasz): 

      { Bemeneti adat: n. Kimeneti adat: válasz } 

 @ Megállapítjuk, hogy n prímszám-e 

 Ha n prímszám akkor 

  válasz  igaz 

 különben 

  válasz  hamis 

 vége(ha) 

Vége(algoritmus) 

 

Lépések finomítása: Ki kell dolgoznunk azt a módot, ahogyan megállapíthatjuk, hogy a 

szám prím-e. A megoldás első változatában a prímszám definíciójából indulunk ki: egy szám 

akkor prím, ha pontosan két osztója van: 1 és maga a szám. Első ötletünk tehát az, hogy az 

algoritmus számolja meg az adott n szám osztóit, elosztva ezt sorban minden számmal 1-től 

n-ig. A döntésnek megfelelő üzenetet az osztók száma alapján írjuk ki. 
 

Algoritmus Prím(n, válasz): 

 osztók_száma  0 { Bemeneti adat: n. Kimeneti adat: válasz } 

 Minden osztó = 1,n végezd el: 

  Ha n mod osztó = 0 akkor 

   osztók_száma  osztók_száma + 1 

  vége(ha) 

 vége(minden) 

 válasz  osztók_száma = 2 
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Vége(algoritmus) 

1.2.2. Az algoritmus optimalizálása  

 

 A lépésenkénti finomításnak elvben vége van, hiszen van egy helyesen működő algoritmu-

sunk. De, miután teszteljük és figyelmesen elemezzük, rájövünk, hogy az algoritmust lehetsé-

ges optimalizálni. Észrevesszük, hogy az osztások száma fölöslegesen nagy. Ezt a számot 

lehet csökkenteni, mivel ha 2 és n/2 között nincs egyetlen osztó sem, akkor biztos, hogy nincs 

n/2 és n között sem, tehát eldönthető, hogy a szám prím. Sőt elég a szám négyzetgyökéig 

keresni a lehetséges osztót, hiszen ahogy az osztó értékei nőnek a négyzetgyökig, az [n/osztó] 

hányados értékei csökkennek szintén a négyzetgyök értékéig. Ha egy, a négyzetgyöknél 

nagyobb osztóval elosztjuk az adott számot, hányadosként egy kisebb osztót kapunk, amit 

megtaláltunk volna előbb, ha létezett volna ilyen. Továbbá, a ciklus leállítható amint találtunk 

egy osztót és a válasz hamissá vált. A Minden típusú ciklust Amíg vagy Ismételd típusú 

ciklussal helyettesítjük. Mivel n nem változik a ciklus magjában, a négyzetgyök 

kiszámíttatását csak egyszer végezzük el. Azt is tudjuk, hogy az egyetlen páros prímszám a 2. 

Így elérhetjük, hogy a páros számok lekezelése után csak páratlan számokat vizsgáljunk, és 

ezeket csak páratlan osztókkal próbáljuk meg elosztani. Ahhoz, hogy az algoritmusunk 

tökéletesen működjön akkor is, ha n = 1, a következőképpen járunk el: 
 

Algoritmus Prím(n, válasz): 

      { Bemeneti adat: n. Kimeneti adat: válasz } 

 Ha n = 1 akkor 

  prím  hamis 

 különben 

  Ha n páros akkor 

   prím  n = 2 

  különben 

   prím  igaz 

   osztó  3 

   négyzetgyök  [  ] { a négyzetgyök egész része } 

   Amíg prím és (osztó ≤ négyzetgyök) végezd el: 

    Ha n mod osztó = 0 akkor 

     prím  hamis 

    különben 

     osztó  osztó + 2 

    vége(ha) 

   vége(amíg) 

  vége(ha) 

 vége(ha) 

 válasz  prím 

Vége(algoritmus) 
 

 Ha ebben az algoritmusban felhasználjuk a matematikából ismert tulajdonságot, éspedig: 

minden 5-nél nagyobb prímszám 6k ± 1 alakú, akkor a vizsgálandó számok száma tovább 

csökkenthető. Mivel az előbbi állításból következik, hogy prímszámokat keresni csak 6 
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többszöröseinél 1-gyel kisebb, illetve 1-gyel nagyobb számok között érdemes, a fenti 

algoritmus a következőképpen változik:  

Algoritmus Prím(határ): 

 Ha n = 1 akkor 

  prím  hamis 

 különben 

  Ha n páros akkor 

   prím  n = 2 

  különben 

   Ha n ≤ 5 akkor { n = 3} 

    prím  igaz 

   különben 

    Ha ((n - 1) mod 6 ≠ 0) és ((n + 1) mod 6 ≠ 0) akkor  

     prím  hamis 

    különben 

     osztó  3 

     ... { tovább ugyanaz, mint az előző algoritmusban } 
 

 Továbbá, ismeretes, hogy a négyzetgyököt számoló függvény ismeretlen lépésszámban ha-

tározza meg az eredményt, amely valós szám. Ezt elkerülendő, lemondunk a négyzetgyök ki-

számításáról és az Amíg feltételét a következőképpen írjuk: 

... 

Amíg prím és (osztó * osztó  n) végezd el: 

... 

 Így, nem dolgozunk valós számokkal és nem számítjuk ki fölöslegesen a négyzetgyököt. 
 

 Ha sok számról kell eldöntenünk, hogy prím-e, érdemes előbb létrehozni Eratosztenész 

szita-módszerével prímszámok sorozatát (megfelelő darabszámmal) és az algoritmusban csak 

ennek a sorozatnak elemeivel osztani.   
 

Algoritmus Prímek(határ, prím): 

      { határ-nál kisebb számokat vizsgálunk }  

      { a generált prímszámokat a prím logikai tömb alapján lehet értékesíteni } 

 Minden i=2,határ végezd el: 

  prími  igaz { még nincs kihúzva egy szám sem } 

 vége(minden) 

 Minden i = 2, határ div 2 végezd el: 

  Ha prími akkor { ha i még nincs kihúzva } 

   k  2 * i { az első kihúzandó szám (i-nek többszöröse) } 

   Amíg k ≤ határ végezd el: 

    prímk  hamis                     { kihúzzuk a k számot } 

    k  k + i { a következő kihúzandó többszöröse i-nek } 

   vége(amíg) 

  vége(ha) 

 vége(minden) 

Vége(algoritmus) 
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1.2.3. A moduláris programozás alapszabályai 

 

 Az eredeti feladatot részfeladatokra bontjuk. Minden rész számára megtervezzük a megol-

dást jelentő algoritmust. Ezek az algoritmusok legyenek minél függetlenebbek, de álljanak jól 

definiált kapcsolatban egymással. A részfeladatok megoldásainak összessége tartalmazza a fe-

ladat megoldási algoritmusát. 
 

Moduláris dekompozíció: A moduláris dekompozíció a feladat több, egyszerűbb 

részfeladatra bontását jelenti, amely részfeladatok megoldása már egymástól függetlenül 

elvégezhető. A módszert általában ismételten alkalmazzuk, azaz a részfeladatokat magukat is 

felbontjuk. Ezzel lehetővé tesszük azt is, hogy a feladat megoldásán egyszerre több személy is 

dolgozzon. A módszer egy fával ábrázolható, ahol a fa csomópontjai az egyes dekompozíciós 

lépéseknek felelnek meg.  
 

Moduláris kompozíció: Olyan szoftverelemek létrehozását támogatja, amelyek szabadon 

kombinálhatók egymással. Algoritmusainkat a már meglévő egységekből építjük fel. 
 

Modulok tulajdonságai 

Moduláris érthetőség: A modulok önállóan is egy-egy értelmes egységet alkossanak, 

megértésükhöz minél kevesebb „szomszédos” modulra legyen szükség. 

Moduláris folytonosság: A specifikáció „kis” változtatása esetén a programban is csak „kis” 

változtatásra legyen szükség. 

Moduláris védelem: Célunk a program egészének védelme az abnormális helyzetek hatásaitól. 

Egy hiba hatása egy – esetleg néhány – modulra korlátozódjon! 
 

A modularitás alapelvei 

 A modulokat nyelvi egységek támogassák: A modulok illeszkedjenek a használt 

programozási nyelv szintaktikai egységeihez. 

 Kevés kapcsolat legyen: Minden modul minél kevesebb másik modullal 

kommunikáljon! 

 Gyenge legyen a kapcsolat: A modulok olyan kevés információt cseréljenek, amennyi 

csak lehetséges! 

 Explicit interface használata: Ha két modul kommunikál egymással, akkor annak ki 

kell derülnie legalább az egyikük szövegéből. 

 Információ elrejtés: Egy modul minden információjának rejtettnek kell lennie, kivéve, 

amit explicit módon nyilvánosnak deklaráltunk. 

 Nyitott és zárt modulok: Egy modult zártnak nevezünk, ha más modulok számára egy 

jól definiált felületen keresztül elérhető, a többi modul ezt változatlan formában 

felhasználhatja. Egy modult nyitottnak nevezünk, ha még kiterjeszthető, ha az általa 

nyújtott szolgáltatások bővíthetők vagy, ha hozzávehetünk további mezőket a benne 

levő adatszerkezetekhez, s ennek megfelelően módosíthatjuk eddigi szolgáltatásait. 
 

Az újrafelhasználhatóság igényei 
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A típusok változatossága: A moduloknak többféle típusra is működniük kell, azaz a művelete-

ket több különböző típusra is definiálni kellene. 

Egy típus, egy modul: Egy típus műveletei kerüljenek egy modulba. 

 

1.3. Rendező algoritmusok 
 

Összehasonlításon alapuló rendezések 

 Legyen egy n elemű a sorozat. Növekvően rendezett sorozatnak nevezzük a bemeneti soro-

zat olyan permutációját, amelyben a1 ≤ a2 ≤ ... ≤ an. 

 

1.3.1. Buborékrendezés (Bubble-sort) 
 

 A rendezés során páronként összehasonlítjuk a számokat és, ha a sorrend nem megfelelő, 

akkor az illető két elemet felcseréljük. Ha volt csere, a vizsgálatot újrakezdjük. Az algoritmus 

akkor ér véget, amikor az elemek páronként a megfelelő sorrendben találhatók, vagyis a 

sorozat rendezett. Mivel a sorozat első bejárása után legalább az utolsó elem a helyére kerül, 

és a ciklusmag minden újabb végrehajtása után, jobbról balra haladva újabb elemek kerülnek 

a megfelelő helyre, a ciklus lépésszáma csökkenthető. Az is előfordulhat, hogy a sorozat 

végén levő elemek már a megfelelő sorrendben vannak, és így azokat már nem kell 

rendeznünk. Tehát, elegendő a sorozatot csak az utolsó csere helyéig vizsgálni. 
 

Algoritmus BuborékRendezés(n, a): 

 k  n    { Bemeneti adatok: n, a. Kimeneti adat: a rendezett a sorozat } 

 Ismételd 

  nn  k - 1 

  rendben  igaz 

  Minden i = 1, nn végezd el: 

   Ha ai > ai + 1 akkor 

    rendben  hamis 

    ai ↔ ai + 1 

    k  i { az utolsó csere helye } 

   vége(ha) 

  vége(minden) 

 ameddig rendben 

Vége(algoritmus) 

 

1.3.2. Egyszerű felcseréléses rendezés 
 

 Ez a rendezési módszer hasonlít a buborékrendezéshez, de kötelezően elvégez minden 

páronkénti összehasonlítást (míg a buborékrendezés bonyolultsága a legjobb esetben Ω(n), ez 

az algoritmus mindig O(n
2
) bonyolultságú). Ha egy elempár sorrendje nem megfelelő, felcseréli 

őket. 
 

Algoritmus FelcserélésesRendezés(n, a): 

      { Bemeneti adatok: n, a; Kimeneti adat: a rendezett a sorozat } 

 Minden i = 1, n - 1 végezd el: 

  Minden j = i + 1, n végezd el: 
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   Ha ai > aj akkor 

    ai ↔ aj 

   vége(ha) 

  vége(minden) 

 vége(minden) 

Vége(algoritmus) 

1.3.3. Minimum/maximum kiválasztásra épülő rendezés 
 

 Növekvő sorrendbe rendezés esetén kiválaszthatjuk a sorozat legkisebb elemét. Ezt az első 

helyre tesszük úgy, hogy felcseréljük az első helyen található elemmel. A következő lépésben 

hasonlóan járunk el, de a minimumot a második helytől kezdődően keressük. A továbbiakban 

ugyanezt tesszük, míg a sorozat végére nem érünk. 
 

Algoritmus MinimumkiválasztásosRendezés(n, a): 

      { Bemeneti adatok: n, a; Kimeneti adat: a rendezett a sorozat } 

 Minden i = 1,n-1 végezd el: 

  indMin  i 

  Minden j = i+1, n végezd el: 

   Ha aindMin > aj akkor 

    indMin  j 

   vége(ha) 

  vége(minden) 

  ai ↔ aindMin 

 vége(minden) 

Vége(algoritmus) 

 

1.3.4. Beszúró rendezés  
 

 A beszúró rendezés hatékony algoritmus kisszámú elem rendezésére. Úgy dolgozik, ahogy 

bridzsezés közben a kezünkben levő lapokat rendezzük: üres bal kézzel kezdünk, a lapok 

fejjel lefelé az asztalon vannak. Felveszünk egy lapot az asztalról, és elhelyezzük a bal 

kezünkben a megfelelő helyre. Ahhoz, hogy megtaláljuk a megfelelő helyet, a felvett lapot 

összehasonlítjuk a már kezünkben levő lapokkal, jobbról balra. A bemeneti elemek helyben 

rendeződnek: a számokat az algoritmus az adott tömbön belül rakja a helyes sorrendbe, 

belőlük bármikor legfeljebb csak állandónyi tárolódik a tömbön kívül. Amikor a rendezés 

befejeződik, az eredeti tömb tartalmazza a rendezett elemeket. 
 

Algoritmus BeszúróRendezés(n, a): 

      { Bemeneti adatok: n, a. Kimeneti adat: a rendezett a sorozat } 

 Minden j = 2, n végezd el: 

  segéd  aj  { beszúrjuk aj-t az a1, ..., aj–1 rendezett sorozatba } 

  i  j - 1 

  Amíg (i > 0) és (ai > segéd) végezd el: 

   ai+1  ai 

   i  i - 1 

  vége(amíg) 

  ai+1  segéd 
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 vége(minden) 

Vége(algoritmus) 

 

 

 

Lineáris rendezések 

 Az eddigiekben tárgyalt algoritmusok a legrosszabb esetben O(n
2
) időben rendeznek n ele-

met. Ezek az algoritmusok a rendezéshez csak a bemeneti tömb elemein történő összehasonlí-

tásokat használják, ezért ezeket az algoritmusokat összehasonlító rendezéseknek is nevezzük. 

 

1.3.5. Leszámláló rendezés (ládarendezés, Binsort) 
 

 A most következő rendező algoritmus lineáris idejű. Ez az algoritmus nem az 

összehasonlítást használja a rendezéshez, hanem kihasználja a rendezendő sorozat bizonyos 

tulajdonságait, éspedig azt, hogy az elemek sorszámozható típusúak, olyan értékekkel, 

amelyek egy segédtömb indexei lehetnek. 

 A segédtömb i-edik elemében azt tartjuk nyilván, hogy hány darab i-vel egyenlő elemet ta-

láltunk az eredeti tömbben. A lineáris feldolgozás után felülírjuk az eredeti tömb elemeit a se-

gédtömb elemeinek értékei alapján. 
 

Algoritmus LádaRendezés(a, n): 

 Minden i = 1, k végezd el:  { Bemeneti adatok: n, a; Kimeneti adat: a } 

  segédi  0 

 vége(minden) 

 Minden j = 1, n végezd el: 

  segédaj  segédaj + 1 

 vége(minden) 

 q  0 

 Minden i = 1, k végezd el:  { a segéd tömbnek k eleme van } 

  Minden j = 1, segédi végezd el: 

   q  q + 1  { a segédi elemek összege n } 

   aq  i  { tehát a feldolgozások száma n } 

  vége(minden) 

 vége(minden) 

Vége(algoritmus) 

 

1.3.6. Számjegyes rendezés (radixsort) 
 

 Ha egész számokat tároló sorozatot szeretnénk rendezni, elképzelhetjük a számokat 

egymás alá írva és alkalmazhatjuk a fenti algoritmust rendre, minden számjegy-oszlopra. Ha a 

legnagyobb szám számjegyeinek darabszáma d, a sorozatot d-szer vizsgáljuk. A számjegyes 

rendezés először a legkevésbé fontos számjegy alapján rendez. A számokat az utolsó 

számjegyük alapján rendezzük oly módon, hogy ha csak ezt a számjegyet tekintjük, növekvő 

sorrendet lássunk. Ezután a számokat újra rendezzük a második legkevésbé értékes 
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számjegyük alapján. Ezt mindaddig végezzük, ameddig a számokat mind a d számjegy szerint 

nem rendeztük.  
 

Algoritmus SzámjegyesRendezés(a, d): 

 Minden i = 1, d végezd el: 

  stabil leszámlálással rendezzük az a tömböt az i-edik számjegy szerint  

 vége(minden) 

Vége(algoritmus) 

1.4. Rekurzió 
 

1.4.1. Rekurzív alprogramok 
 

 Bármely algoritmus megvalósítható iteratívan és/vagy rekurzívan. Mindkét technikának a 

lényege: bizonyos utasítások ismételt végrehajtása. Az iteratív algoritmusokban az ismétlést 

ciklusokkal valósítjuk meg. A rekurzív algoritmusokban az ismétlés azáltal valósul meg, hogy 

az illető alprogram meghívja önmagát, amikor még aktív.  

 A rekurzió egy különleges programozási stílus, inkább „technika” mint módszer. A 

rekurzív programok tömören és világosan kódolják az algoritmusokat, bonyolultságuktól 

függetlenül. A rekurzív programozás, mint fogalom, a matematikai értelmezéshez közelálló 

módon került közhasználatba. 

 Rekurzív algoritmust akkor érdemes tervezni, ha a feladat eredménye rekurzív szerkezetű, 

ha a megoldás legjobb módszere a visszalépéses keresés (backtracking ) vagy az oszd meg és 

uralkodj módszer (divide et impera), illetve ha a feldolgozandó adatok rekurzívan definiáltak 

(pl. bináris fák). Ugyanakkor előfordulhat, hogy túlságosan igénybe veszi a végrehajtási 

vermet, és a futási ideje nagyobb, mint az iteratív változatnak 

Példák 

1. A matematikában, egy fogalmat rekurzív módon definiálunk, ha a definíción belül 

felhasználjuk magát a definiálandó fogalmat. Például, a faktoriális rekurzív definícióját 

egy adott n szám esetében, a matematikus így fejezi ki:  
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2. A bináris fa Knuth által megfogalmazott definíciója már szorosan kapcsolódik az 

informatikához: Egy bináris fa vagy üres, vagy tartalmaz egy csomópontot, amelynek van 

egy bal meg egy jobb utóda, amelyek szintén bináris fák. 
 

 A programozásban a rekurzió alprogramok formájában jelenik meg, éspedig olyan függvé-

nyeket, illetve eljárásokat nevezünk rekurzívaknak, melyek meghívják önmagukat. Ha ez a 

hívás az illető alprogram összetett utasításában szerepel, közvetlen (direkt) rekurzióról beszé-

lünk. Ha egy rekurzív alprogramot egy másik alprogram hív meg, amelyet ugyanakkor az 

illető alprogram hív (közvetve, vagy közvetlenül) akkor közvetett (indirekt) rekurzióról 

beszélünk. Közvetett rekurzió esetén is arról van szó, hogy egy alprogram meghívja önmagát, 

hiszen a rekurzív hívás aközben történik, miközben a számítógép azt az összetett utasítást 

hajtja végre, amely az illető alprogramot alkotja. 

 Egy alprogram aktív a hívásától kezdődően, addig, amíg a végrehajtás visszatér a hívás he-

lyére. Egy alprogram aktív marad akkor is, ha végrehajtása során más alprogramokat hív meg.  
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 Egy rekurzív alprogram végrehajtása azonos módon történik, mint bármely nem rekurzív 

alprogramé. A rekurzív eljárások esetében is, hasonlóan a nem rekurzívakhoz, az aktiválás 

feltételezi a veremhasználatot, ahol a paramétereket, a visszatérés helyének címét, valamint a 

lokális változókat tárolja (minden aktuális aktiválás idejére) a programozási környezet.  

 Mivel a verem mérete véges, bizonyos számú aktiválás után bekövetkezhet a túlcsordulás 

és a program hibaüzenettel kilép. Mivel ezt a hibát feltétlenül el kell kerülnünk, a rekurzív al-

programot csak egy bizonyos feltétel teljesülésekor hívjuk meg újra. A legutolsó aktiválás 

alkalmával a feltétel hamis, ennek következtében nem történik újrahívás, hanem a feltétel 

másik ágának megfelelő utasítás (ennek hiányában, a feltétel utáni utasítás) kerül sorra. Új 

aktiválás csak az újrahívási feltétel teljesülésekor történik. Az újrahívások száma 

meghatározza a rekurzió mélységét, tehát, egy rekurzív megoldás csak akkor hatékony, ha ez 

a mélység nem túl nagy.  

 Ha az újrahívási feltétel egy adott pillanatban nem teljesül, az újraaktiválások sora leáll; 

ennek következtében a feltétel tagadása a rekurzióból való kilépés feltétele. A feltételnek a re-

kurzív eljárás paramétereitől kell függnie és/vagy a helyi változóktól, a kilépést a paraméterek 

és a lokális változók módosulása (egyik hívástól a másikig) biztosítja. Ha ezeket a feltételeket 

nem tartjuk be, a program hibaüzenettel kilép. Egy újrahívás (közvetlen rekurzió esetén), 

többször is előfordulhat egy rekurzív eljárásban; ebben az esetben, természetesen, különbözni 

fognak a visszatérési címek.  

 A rekurzió késlelteti az eljárás azon utasításainak végrehajtását, amelyek a rekurzív hívás 

utáni részhez tartoznak. Minden eddigi állítás igaz a rekurzív függvények esetében is, csak a 

hívás módja más. Egy rekurzív függvényt egy kifejezésből hívunk meg. 

 

1.4.2. Megoldott feladatok 

 

1. Egy szó betűinek megfordítása 
 

 Olvassunk be egymás után több betűt a szóközkarakter megjelenéséig, majd írjuk ki ezeket 

a betűket fordított sorrendben. Ne használjunk tömböt! 
 

Megoldás 

 A feladat követelményének megfelelően betűk szintjén fogunk dolgozni. A megfordított 

kiírás azt jelenti, hogy miután beolvastunk egy betűt, nem írjuk ki, csak miután beolvastuk a 

többi betűt. A fennmaradt rész esetében ugyanígy járunk el; a módszer addig folytatódik, 

amíg eljutunk az utolsó betűhöz, amikor nincs mit megfordítani.  
 

Algoritmus Fordít:  { nincs paraméter, mivel az alprogramban olvasunk be és írunk ki } 

 Be: betű  

 Ha nem szóköz akkor 

  Fordít  { meghívja önmagát, hogy megfordíthassa a fennmaradt részt } 

 különben 

  Ki: 'Fordított szó: '  { ez az utasítás egyszer hajtódik végre } 

 vége(ha) 

 Ki: betű 

Vége(algoritmus) 
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 A rekurzió meghatározza az eljárás záró részének az aktiválások fordított sorrendjében 

való végrehajtását (a fenti példában: Ki: betű), így természetes módja a feladat 

megoldásának. 

 

2. Szavak sorrendjének megfordítása 
 

 Olvassunk be n szót, majd írjuk ki ezeket (tömbhasználat nélkül) a beolvasás fordított sor-

rendjében!  
 

 

Algoritmus SzavakatFordít_1(n): 

 Be: szó  { az első hívás aktuális paramétere n = szavak száma } 

 Ha n > 1 akkor 

  SzavakatFordít_1(n-1) 

 különben 

  Ki: 'Fordított sorrendben: ' 

 vége(ha) 

 Ki: szó 

Vége(algoritmus) 
 

 Az eredeti feladat n szó megfordítását valósítja meg, a részfeladatok pedig egyre kevesebb 

szó megfordítását végzik. Ha fordítva indulunk, vagyis „megfordítjuk” egy szónak a 

sorrendjét, majd a többiét, akkor az algoritmus a következő: 
 

Algoritmus SzavakatFordít_2(i): 

 Be: szó  { most az első hívás aktuális paramétere 1 } 

 Ha i < n akkor 

  SzavakatFordít_2(i+1) 

 különben 

  Ki: 'Fordított sorrendben: ' 

 vége(ha) 

 Ki: szó 

Vége(algoritmus) 

 

3. Faktoriális 
 

 Számítsuk ki az adott n szám faktoriálisát! 
 

Megoldás 

 Felhasználjuk a faktoriális matematikai definícióját, amit a Fakt(n) alprogramban 

implementálunk. Az első hívás Fakt(n)-nel történik. 
 

Algoritmus Fakt(n):  { Bemeneti adat: n } 

 Ha n = 0 akkor 

  térítsd 1 

 különben 

  térítsd n * Fakt(n - 1) 

 vége(ha) 

Vége(algoritmus) 
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 A faktoriális tulajdonképpeni kiszámolása akkor történik, amikor kilépünk egy-egy hívás-

ból. Mivel minden egyes alkalommal más-más n paraméterre van szükség, fontos, hogy ezt 

értékként adjuk át, így kifejezéseket is írhatunk az aktuális paraméter helyére. Megjegyzendő, 

hogy a faktoriálist nem előnyös rekurzívan számolni, mivel sokkal időigényesebb, mint az 

iteratív megoldás, hiszen a Fakt(n) függvény (n+1)-szer fog aktiválódni.  

 

4. Legnagyobb közös osztó 
 

 Számítsuk ki két természetes szám (n, m ∈ N*) legnagyobb közös osztóját rekurzívan.  

Megoldás 

 Ha figyelmesen elemezzük Eukleidész algoritmusát, észrevesszük, hogy a legnagyobb 

közös osztó (Lnko(m, n)) egyenlő n-nel (ha n osztója m-nek) különben egyenlő Lnko(n, m 

mod n)-nel. Tehát fel lehet írni a következő rekurzív definíciót: 
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Algoritmus Lnko(m, n):  { Bemeneti adatok:m, n } 

 mar ← m mod n 

 Ha mar = 0 akkor 

  térítsd n 

 különben 

  térítsd Lnko(n, mar) 

 vége(ha) 

Vége(algoritmus) 
 

 Az első hívás történhet például egy kiíró utasításból: Ki: Lnko(m, n). 

 

5. Descartes-szorzat 
 

 Egy rajzon n virágot szeretnénk kiszínezni. A festékeket az 1, 2, ..., m számokkal kódoljuk. 

Bármely virág, bármilyen színű lehet, de szeretnénk tudni, hány féle módon lehetne ezeket 

különböző módon kiszínezni. Tulajdonképpen az M
n
 Descartes-szorzatot kell generálnunk: 

 

Algoritmus DescartesSzorzat(i):  { Bemeneti adat: i, az első híváskor = 1 } 

 Minden j = 1, m végezd el: 

  xi ← j 

  Ha i < n akkor 

   DescartesSzorzat(i+1) 

  különben 

   Kiír 

  vége(ha) 

 vége(minden) 

Vége(algoritmus) 

 

6. k elemű részhalmazok 
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 Adott két egész szám: n és k (1 ≤ k ≤ n). Generáljuk rekurzívan az {1, 2, ..., n} halmaz 

minden k elemet tartalmazó részhalmazát! 
 

Megoldás 

 Az {1, 2, ..., n} halmaz k elemet tartalmazó részhalmaza egy k elemű tömb segítségével kó-

dolható: x1, x2, ..., xk. A részhalmaz elemei különbözők és nem számít a sorrendjük. Ezért, a 

részhalmazok generálása során vigyázunk, hogy az x sorozatba ne generáljuk kétszer vagy 

többször ugyanazt a részhalmazt (esetleg, más sorrendű elemekkel), ugyanakkor ne veszítsünk 

el egyet sem. Ha az x sorozatba az elemeket szigorúan növekvő sorrendben tesszük (x1 < x2 < ... 

< xk), egy részhalmazt csak egyszer állíthatunk elő. Mivel minden xi szigorúan nagyobb, mint xi-

1, az értékei xi–1 + 1-től kezdődően n – (k – i)-ig nőnek. 

Algoritmus Részhalmazok(i): { k és x globális változó, xi = 0, i = 0, 1, … } 

 Minden j = xi-1 + 1, n – k + i végezd el: 

  xi  j 

  Ha i < k akkor 

   Részhalmazok(i+1) 

  különben 

   Kiír 

  vége(ha) 

 vége(minden) 

Vége(algoritmus) 
 

 A részhalmazokat generáló algoritmust az i paraméter 1 értékére hívjuk meg. 

 

7. Fibonacci-sorozat 
 

 Generáljuk a Fibonacci-sorozat első n elemét! 
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Megoldás 

 Az n-edik elem kiszámításához szükségünk van az előtte található két elemre. De ezeket 

szintén az előttük levő elemekből számítjuk ki. 
 

Algoritmus Fibo(n): 

 Ha n = 1 akkor 

  térítsd 0 

 különben 

  Ha n = 2 akkor 

   térítsd 1 

  különben  

   térítsd Fibo(n-2) + Fibo(n-1) 

  vége(ha) 

 vége(ha) 

Vége(algoritmus) 
 

 A fenti algoritmus nagyon sokszor hívja meg önmagát ugyanarra az értékre, mivel minden 

új elem kiszámításakor el kell jutnia a sorozat első eleméhez, amitől kezdődően újra, meg újra 
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generálja ugyanazokat az elemeket. A hívások számát csökkenthetjük, ha a kiszámolt 

értékeket megőrizzük egy sorozatban. Legyen ez a sorozat f, amelyet globális változóként 

kezelünk.  
 

Algoritmus Fib(n):  

 Ha n > 2 akkor  

  Fib(n-1) 

  fn ← fn-1 + fn-2 

 különben 

  f1 ← 0 

  Ha n = 2 akkor f2 ← 1 vége(ha) 

 vége(ha) 

Vége(algoritmus) 

8. Az {1, 2, ..., n} halmaz minden részhalmaza 
 

 Generáljuk az {1, 2, ..., n} halmaz minden részhalmazát! 
 

Elemzés 

 A halmazokat az x1 < x2 < ... < xi sorozattal ábrázoljuk, ahol i = 1, 2, ..., n. Az alábbi 

algoritmust i = 1-re hívjuk meg. Az x sorozat 0 indexű elemét 0 kezdőértékkel látjuk el. 

Szükségünk lesz az x0 elemre is, mivel az algoritmusban a sorozat minden xi elemét, tehát x1-

et is az előző elemből számítjuk ki. A j változóban generáljuk azokat az értékeket, amelyeket 

rendre felvesz az x sorozat aktuális eleme. Ezek a j értékek 1-gyel nagyobbak, mint a 

részhalmazba utoljára betett elem értéke és legtöbb n-nel egyenlők. Így a részhalmazokat 

lexikográfikus sorrendben generáljuk. Figyelemre méltó, hogy minden új elem generálása egy 

új részhalmazhoz vezet. 
 

Algoritmus MindenRészhalmaz(i) 

 Minden j = xi-1 + 1, n végezd el: 

  xi  j 

  Kiír(i) 

  MindenRészhalmaz(i+1) 

 vége(minden) 

Vége(algoritmus) 
 

 A kilépési feltétel lehetne xi = n, de erre nincs szükség, mivel a Minden struktúra végső 

értéke leállítja a végrehajtást: ha xi = n, a ciklusváltozó kezdőértéke xi + 1 = n + 1, tehát 

nagyobb, mint n (végső érték), így a Minden ciklusmagja nem hajtódik végre és a program 

kilép az aktuális hívásból. Az algoritmust MindenRészhalmaz(1) alakban hívjuk meg. 

 

9. Partíciók 
 

 Generáljuk az n ∈ N* szám partícióit! 
 

Megoldás 

 Partíció alatt azt a felbontást értjük, amelynek során az n ∈ N* számot pozitív számok 

összegeként írjuk fel: n = p1 + p2 + ... + pk, ahol pi ∈ N*, i = 1, 2, ..., k, k = 1, ..., n. Két 

partíciót kétféleképpen tekinthetünk különbözőnek: ha vagy az előforduló értékek vagy az 

előfordulásuk sorrendje különbözik vagy, ha csak az előforduló értékek különböznek. 
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 A generálás során, rendre kiválasztunk egy lehetséges értéket a partíció első p1 eleme szá-

mára és generáljuk a fennmaradt n – p1 szám partícióit. Ez a különbség az n új értéke lesz, 

amellyel ugyanúgy járunk el. Egy partíciót legeneráltunk, és kiírhatjuk, ha n aktuális értéke 0. 

 Az alábbi algoritmust a Partíció(1, n) utasítással hívjuk meg először. 
 

Algoritmus Partíció(i, n): 

 Minden j = 1, n végezd el: 

  pi  j 

  Ha j < n akkor 

   Partíció(i+1, n-j) 

  különben 

   Kiír(i) 

  vége(ha) 

 vége(minden) 

Vége(algoritmus) 

1.5. A visszalépéses keresés módszere (backtracking) 
 

 Az algoritmusok behatóbb tanulmányozása meggyőzött bennünket, hogy tervezésükkor 

meg kell vizsgálnunk a végrehajtásukhoz szükséges időt. Ha ez az idő elfogadhatatlanul nagy, 

más megoldásokat kell keresnünk. Egy algoritmus „elfogadható”, ha végrehajtási ideje 

polinomiális, vagyis n
k
-nal arányos (adott k-ra és n bemeneti adatra). Ha egy feladat minden 

lehetséges megoldást kér, és csak exponenciális algoritmussal tudjuk megoldani, a 

backtracking (visszalépéses keresés) módszert alkalmazzuk, amely exponenciális ugyan, de 

megpróbálja csökkenteni a generálandó próbálkozások számát. 

 

1.5.1. A visszalépéses keresés általános bemutatása 
 

 A visszalépéses keresés azon feladatok megoldásakor alkalmazható, amelyeknek eredmé-

nyét az M1 × M2 × ... × Mn Descartes-szorzatnak azon elemei alkotják, amelyek eleget tesznek 

bizonyos belső feltételeknek. Az M1 × M2 × ... × Mn Descartes-szorzat a megoldások tere (az 

eredmény egy x sorozat, amelynek xi eleme az Mi halmazból való). 

 A visszalépéses keresés nem generálja a Descartes-szorzat minden x = (x1, x2, ..., xn)  M1 

× M2 × ... × Mn elemét, hanem csak azokat, amelyeknek esetében remélhető, hogy 

megfelelnek a belső feltételeknek. Így, megpróbálja csökkenteni a próbálkozásokat. 

 Az algoritmusban az x tömb elemei egymás után, egyenként kapnak értékeket: xi számára 

csak akkor „javasolunk értéket”, ha x1, x2, ..., xi–1 már kaptak végleges értéket az aktuálisan 

generált eredményben. Az xi-re vonatkozó javaslatot akkor fogadjuk el, amikor x1, x2, ..., xi–1 

értékei az xi értékével együtt megvalósítják a belső feltételeket. Ha az i-edik lépésben a belső 

feltételek nem teljesülnek, xi számára új értéket választunk az Mi halmazból. Ha az Mi halmaz 

minden elemét kipróbáltuk, visszalépünk az i–1-edik elemhez, amely számára új értéket 

„javasolunk” az Mi–1 halmazból. Ha az i-edik lépésben a belső feltételek teljesülnek, az 

algoritmus folytatódik. Ha szükséges folytatni, mivel a számukat ismerjük és még nem 

generáltuk mindegyiket, vagy valamilyen másképp kifejezett tulajdonság alapján eldöntöttük, 

hogy még nem jutottunk eredményhez, a folytatási feltételek alapján folytatjuk az algoritmust. 
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 Azokat a lehetséges eredményeket, amelyek a megoldások teréből vették értékeiket úgy, 

hogy teljesítik a belső feltételeket, és amelyeknek esetében a folytatási feltételek nem kérnek 

további elemeket, végeredményeknek nevezzük. 

 A belső feltételek és a folytatási feltételek között szoros kapcsolat áll fenn. Ezek kifejezés-

módjának szerencsés megválasztása többnyire a számítások csökkentéséhez vezethet. A belső 

feltételeket egy külön algoritmusban vizsgáljuk: Megfelel(i), ahol i az aktuálisan generált 

elem indexe. Ez az alprogram igaz értéket térít vissza, ha az xi elem az eddig generált x1, x2, 

..., xi–1 elemekkel együtt megfelel a belső feltételeknek, és hamis értéket ellenkező esetben. 
 

Algoritmus Megfelel(i): { a függvény Megfelel értékét téríti } 

 Megfelel  igaz 

 Ha a belső feltételek x1, x2, ..., xi esetében nem teljesülnek akkor 

  Megfelel  hamis 

 vége(ha) 

Vége(algoritmus) 

 A feladat által kért eredményt a következő algoritmussal generáljuk: 
 

Algoritmus RekurzívBacktracking(i): 

 Minden mj ∈ Mi értékre végezd el: 

  xi  mj 

  Ha Megfelel(i) akkor  { megvalósulnak a belső feltételek x1, x2, ..., xi esetében } 

   Ha i < n akkor 

    RekurzívBacktracking(i+1) 

   különben 

    Ki: x1, x2, ..., xn 

   vége(ha) 

  vége(ha) 

 vége(minden) 

Vége(algoritmus) 
 

 Az algoritmust az i = 1 értékre hívjuk meg először. 

 A módszer eredményessége nagymértékben függ a folytatási feltételek szerencsés 

kiválasztásától. Minél hamarabb állítjuk le egy eredmény generálását, annál kisebb a rekurzió 

mélysége, de a feltételek nem lehetnek túl bonyolultak, mivel ezeket minden aktiválódásnál 

végrehajtja az algoritmus. 

 A módszer azoknak a feladatoknak a megoldásakor alkalmazható, amelyekben a 

követelményeknek megfelelően minden eredményt meg kell állapítanunk. Ha az M1 × ... × Mn 

Descartes-szorzat számossága nem túl nagy, valamint a feltételek biztosítanak egy nem túl 

mély rekurziót, eredményesen alkalmazható. 

 Összefoglalva, a következő lépéseket kell elvégeznünk: 

1. az eredmény kódolása – meg kell állapítanunk az xi elemek jelentését az illető feladat 

esetében, valamint meg kell határoznunk az Mi, i = 1, 2, ..., n halmazokat. 

2. a belső, majd a folytatási feltételek megállapítása. 

3. a RekurzívBacktracking(i) vagy iteratív változatának átírása. 

 

1.5.2. Megoldott feladatok 
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1. Nyolc királynő a sakktáblán 
 

 Írjuk ki az összes lehetséges módját annak, ahogyan 8 királynő elhelyezhető egy 

sakktáblán, úgy, hogy ne támadják egymást. Két királynő támadja egymást, ha ugyanazon a 

soron, oszlopon, illetve átlón helyezkedik el. 
 

Megoldás 

 Minden királynőt egymás után elhelyezünk a neki megfelelő sorba az első oszloppal 

kezdődően, amíg meg nem találjuk azt az oszlopot, amelyben nem támad más, eddig feltett 

királynőt. Ha egy királynőt nem lehet elhelyezni, visszatérünk az előzőhöz és számára tovább 

keresünk megfelelő, nagyobb sorszámú oszlopot. 

 Az eredményt egy egydimenziós tömbbel (Ki, i = 1, 2, ..., 8) kódoljuk. A tömb Ki 

elemeinek értéke az oszlop sorszáma, ahova az i-edik királynőt tettük (az i-edik sorban). A 

sakktáblának 8 oszlopa van, tehát Ki  {1, 2, …, 8}, i = 1, …, 8. Az eddigiekből következik, 

hogy egy eredmény az {1, 2, …, 8}
8
 Descartes-szorzat eleme. Tehát, ha meg akarjuk oldani a 

feladatot, tulajdonképpen az {1, 2, …, 8}
8
 Descartes-szorzat egy részhalmazát kell 

meghatároznunk, azzal a feltétellel, hogy a 8 királynő, amelyek a K1, K2, ..., K8 oszlopokban 

találhatók, ne támadja egymást. A kódolás sajátos módja biztosítja, hogy soronkénti támadási 

lehetőség nincs, hiszen minden királynő új sorba kerül. De például, ha az első két királynő 

egymást támadja, nem generálunk fölöslegesen 8
6
 = 262144 elemet a {1, 2, ..., 8}

8
 Descartes-

szorzatból. 

 A második észrevétel a feladat rekurzív megfogalmazását teszi lehetővé: elhelyezzük az 

első királynőt, rendre az első sor első, második, ..., 8-dik oszlopába, majd megoldjuk a 

feladatot a fennmaradt 7 királynő esetében, de úgy, hogy mindig ellenőrizzük, hogy egy új 

királynő ne támadjon egyet sem a már elhelyezettek közül. 

 Általánosan megfogalmazva: az i-edik királynő esetében meg kell határoznunk minden 

helyet, ahova ezt el lehet helyezni az i-edik sorban úgy, hogy ne támadjon egyet sem azok 

közül, amelyek az első, második, ..., i–1-edik sorban már el vannak helyezve. Tehát 

elhelyezzük az i-edik királynőt, majd megoldjuk ugyanezt a feladatot az i+1-edik királynő 

esetében. 

 Ha minden királynőt elhelyeztük, van egy eredmény, amit ki kell írnunk. Az elhelyezést a 

Királynő(i) rekurzív alprogram végzi el, a támadási lehetőséget a NemTámad(i) logikai függ-

vény ellenőrzi. 

 Ahhoz, hogy két királynő ne támadja egymást, a következő relációknak kell teljesülniük:  

Ki ≠ Kj, i – j ≠ | Ki – Kj |, j = 1, 2, ..., i – 1. 
 

Algoritmus NemTámad(i): 

 Jó  igaz  { Jó = lokális változó, K globális } 

 j  1 

 Amíg (j ≤ i-1) és Jó végezd el: 

  Ha (Ki = Kj) vagy (i-j = |Ki - Kj | akkor 

   Jó  hamis  { az i. és j. királynők támadják egymást } 

  különben 

   j  j + 1 

  vége(ha) 
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 vége(amíg) 

 térítsd Jó 

Vége(algoritmus) 
 

Algoritmus Királynő(i): 

 Minden j = 1, 8 végezd el: 

  Ki  j  { az i-edik királynőt a j-edik oszlopba tesszük } 

  Ha NemTámad(i) akkor  { az i-edik királynő nem támadja egyiket sem } 

   Ha i < 8 akkor 

    Királynő(i+1) 

   különben 

    Kiír 

   vége(ha) 

  vége(ha) 

 vége(minden) 

Vége(algoritmus) 
 

 Az első hívás alakja: Királynő(1). 

2. Variációk 
 

 Az óvónéni a karácsonyi ünnepélyre készül. A díszterem színpadán n széket lehet egy 

sorban elhelyezni, de a csoportban m óvódás van (n < m). Írjuk ki minden lehetséges módját 

annak, ahogy az óvódások leülhetnek az n székre. 
 

Megoldás 

 Eltérünk az előbbi mintától, hiszen fölösleges „javasolni”, hogy üljön le egy már leültetett 

gyermek. 

Az eredmény kódolása: Az xi az i-edik székre ülő gyerek nevének az indexe. Tehát xi {1, 2, 

..., m}, ahol m a gyermekek száma, (i = 1, 2, ..., n). 

Belső feltételek: xi ≠ xj, i ≠ j, i, j = 1, 2, ..., n. A belső feltételek azt fejezik ki, hogy az i. székre 

csak olyan gyerek ülhet le, aki pillanatnyilag még áll. Az ellenőrzés egyszerűbb lesz, fölhasz-

nálunk egy mégÁll logikai tömböt, ahol mégÁllj igaz, ha a j-edik gyerek még nem ült le, és 

hamis ellenkező esetben. Az xi ≠ xj, j = 1, 2, ..., i – 1 feltételek a következőképpen alakulnak 

át: mégÁllxi
 = igaz. 

Folytatási feltétel: i < n (még van szabad szék) 

 A mégÁll tömb elemeinek kezdőértéke igaz, mivel még senki nem ült le, majd az ültetési 

folyamat során a megfelelő elemek hamis értéket kapnak. Valahányszor egy ültetési rend 

megváltozik, a j-edik gyermek feláll az i-edik székről és oda más gyermek ülhet majd le. 

Ugyanakkor, a j-edik gyermek egy másik ültetési rendben újból leülhet. A j-edik gyermek 

felállítása maga után vonja a megfelelő mégÁllj visszaállítását igaz-ra. Ez a megoldás 

hatékonyabb, mint az, amelyet a mintaalgoritmus alapján készíthetnénk, mivel kevesebb 

összehasonlítást végez. 
 

Algoritmus Variáció(i): 

 Minden j = 1, m végezd el: 

  Ha mégÁllj akkor  { a j-edik gyermek még áll } 

   xi  j 
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   mégÁllj  hamis  { a j-edik gyermeket leültettük az i-edik székre } 

   Ha i < n akkor 

    Variáció(i+1) 

   különben 

    Kiír 

   vége(ha) 

   mégÁllj  igaz  { a j-edik gyermeket felállítjuk, hogy később ülhessen más székre } 

  vége(ha) 

 vége(minden) 

Vége(algoritmus) 
 

 Az első hívás alakja: Variáció(1). 

 

3. Zárójelek 
 

 Generáljunk és írjunk ki minden helyesen nyitó és csukó n zárójelet tartalmazó karakter-

láncot! Példa: ha n = 4, a helyes karakterláncok:  

(()) 

()() 

Megoldás 

Az eredmény kódolása: Ha n páros szám, az eredmények az M
n
 halmaz elemei, ahol M = 

{'(', ')'} és xi  M, i = 1, ..., n. Ha n páratlan, akkor nincs megoldás. 

Belső feltételek: Adott pillanatban ne létezzen több csukó zárójel, mint nyitó, és nyitó nem 

lehet több mint n/2. Mivel a megoldások tere kételemű halmaz, és a két elem esetében a belső 

feltétel különbözik, lemondunk a Minden struktúráról és két Ha utasítással ellenőrizzük 

ezeket. 

 Jelöljük ny-nyel és cs-vel a nyitó, illetve a csukó zárójelek számát. A folytatási feltételek 

különböznek az xi elemek értékének függvényében: 

12

)''ha

(''ha
2   -n,i=

 xny,z

 x,  
n

ny

i

i 











 

Folytatási feltételek: Mivel bármely eredményben x1 = '(' és xn = ')', a hívó programegységben 

elvégezzük az inicializálásokat: x1 ← '(' és xn ← ')'. Tehát, az algoritmus a második helytől 

kezdődően az (n – 1)-dik helyig tesz zárójeleket. Amikor az n-edik karakter következne, le-

állunk. Az első hívás alakja: Zárójel(2, 1, 0). 
 

Algoritmus Zárójel(i, ny, cs): 

 Ha i = n akkor  { kilépési feltétel } 

  Ki: x  { x egy karakterlánc } 

 különben 

  Ha ny < n div 2 akkor 

   xi  '(' 

   Zárójel(i+1, ny+1, cs) 

  vége(ha) 

  Ha cs < ny akkor 

   xi  ')' 
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   Zárójel(i+1, ny, cs+1) 

  vége(ha) 

 vége(ha) 

Vége(algoritmus) 

 

4. Labirintus 
 

 Egy labirintust egy n soros és m oszlopos L kétdimenziós tömbben tárolunk, amelyben a 

folyosónak megfelelő elemek értéke 1; ezek az értékek egymás után következnek a labirintust 

ábrázoló tömbben, egy bizonyos sorban, vagy oszlopban. Egy személyt leengednek ejtőernyő-

vel a labirintusba az (i, j) helyre. Írjunk ki minden olyan utat, amely kivezet a labirintusból! 

Egy út nem érintheti kétszer ugyanazt a helyet. A labirintusból a tömb szélén léphetünk ki. 
 

Elemzés 

Az eredmény kódolása: A feladat minden kivezető utat kér. Legyen egy ilyen út hossza k. Az 

utat az x1, x2, ..., xk és y1, y2, ..., yk sorozatokkal kódolunk, amelyek azokat a sorokat és osz-

lopokat tartalmazzák, amelyeknek érintésével kifele haladunk a labirintusból. xi  {1, 2, ..., 

n}, yi  {1, 2, ..., m}, i = 1, 2, ..., k. 

Belső feltételek: Az útvonalra a következő belső feltételek érvényesek: 

a) Folyosón kell haladnia: Lxi, yi = 1, i = 1, 2, ..., k. 

b) Nem léphet kétszer ugyanarra a helyre: (xi, yi) ≠ (xj, yj), i, j = 1, 2, ..., k, i ≠ j. 

c) Biztosítania kell a labirintusból való kijutást: xk  {1, n} vagy yk  {1, m} 

Folytatási feltételek: Tartalmazzák az a) és b) ellenőrzését minden lépésnél. A b) feltétel az 

i-edik lépésben: (xi, yi) ≠ (xj, yj), j = 1,..., i – 1. 

Az eredményt az eredmij (i = 1, 2, ..., n, j = 1, 2, ..., m) tömb segítségével tároljuk, amelyben  






helyre),(azlépnilehetnem,0

helyre),(azlépnilehetléptünk,helyre)(azamellyellépésszám,aaz

ha

ha

ji

jiji,

ij
eredmény  

 Egy bizonyos helyről négy irányba léphetünk. Az alábbi kód tartalmaz egy 

figyelemreméltó egyszerűsítést, ami a folytatási feltételeket illeti. Nem szükséges 

ellenőriznünk azt, hogy kiléptünk-e a labirintusból, mivel a hívás előtt (a labirintus beolvasása 

után) az L tömböt körülvettük egy 0-ból álló kerettel. Így az algoritmus gyorsabbá válik. Az 

algoritmust a kiindulási hely koordinátáira (i, j) és 1 lépésszámra hívjuk meg. 
 

Algoritmus Út(i, j, lépés): 

 Ha (Lij = 1) és (eredmij = 0) akkor 

     { próbálunk az (i, j) helyre lépni; ha (i, j) folyosó és még nem jártunk itt } 

  eredmij  lépés  { az (i, j) helyre lépünk } 

  Ha (i ∈ {1, n}) vagy (j ∈ {1, m}) akkor 

   Kiír  { kijárathoz értünk, kiírjuk az eredménytömböt } 

  vége(ha) 

  Út(i-1, j, lépés+1)  { próbálunk más utat is: felfele lépünk } 

  Út(i, j+1, lépés+1)  { jobbra lépünk } 

  Út(i+1, j, lépés+1)  { lefele lépünk } 

  Út(i, j-1, lépés+1)  { balra lépünk } 

  eredmij  0  { töröljük az utolsó lépést, hogy egy új útvonalon léphessünk újra ide } 

 vége(ha) 
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Vége(algoritmus) 
 

Második megoldás 
 

Algoritmus Út(i, j, lépés): 

 Minden irány = 1, 4 végezd el:  { kiválasztunk egy irányt } 

  úji  i + xirány  { (úji, újj) az új koordináták } 

  újj  j + yirány 

  Ha (úji ∈ {1, 2, ..., n}) és (újj ∈ {1, 2, ..., m}) akkor 

   Ha (Lúji,újj = 1) és (eredmúji,újj = 0) akkor 

    eredmúji,újj  lépés  { az (úji, újj) helyre lépünk } 

    Ha (úji ∈ {1, n}) vagy (újj ∈ {1, m}) akkor 

     Kiír  { kiléptünk a labirintus szélén } 

    vége(ha) 

    Út(úji, újj, lépés+1) 

    eredmúji,újj  0  { lemondunk az utolsó lépésről } 

   vége(ha) 

  vége(ha) 

 vége(minden) 

Vége(algoritmus) 

 Az Út(i, j, lépés) alprogramban a lépés pillanatban megpróbálunk az (i, j) helyről az (úji, 

újj) helyre lépni. Ezeket két konstans tömb (x, y) segítségével állapítjuk meg úgy, hogy ezek a 

négy szomszédos hely koordinátáit adják meg: x = (–1, 0, 1, 0), y = (0, 1, 0, –1). 

 Azt várnánk, hogy az algoritmus a Ha utasítás különben ágán hívja meg önmagát. Ha így 

járnánk el, elvesztenénk azokat az eredményeket, amelyeknek esetében a labirintus szélén to-

vább lehet menni, és a kilépés egy másik pontban is lehetséges. 

 Ebben a második megoldásban nem vettük körül a labirintust az első algoritmusban 

említett kerettel. Ennek következtében szükséges volt ellenőrizni, hogy az új hely, ahova lépni 

akarunk a labirintuson belül van-e. 

 Ezt az algoritmust az Út(i, j, 2) alakban hívjuk meg, de a hívás előtt eredmij ← 1, ahol (i, j) 

a kiindulási hely. 

 Általánosítva az előbbi feladatban használt rekurzív algoritmust, amely a visszalépéses 

keresés módosított változata, észrevesszük, hogy mivel az előrehaladás egy kétdimenziós 

tömbben történik, az alprogram két paramétere (i, j) annak a helynek a koordinátái, ahova 

utoljára léptünk.  
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1.6. Az oszd meg és uralkodj módszer (divide et impera) 
 

 Az oszd meg és uralkodj módszer (divide et impera) alkalmazása akkor ajánlott, amikor a 

feladatot fel lehet bontani egymástól független részfeladatokra, amelyeket az eredeti 

feladathoz hasonlóan oldunk meg, de kisebb méretű adathalmaz esetében. 

 Az eredeti feladatot felbontjuk egymástól független részfeladatokra, amelyek az eredetihez 

hasonlóak, de kisebb adathalmazra definiáltak. A részfeladatokkal hasonlóan járunk el és a 

felbontást akkor állítjuk le, amikor a feladat megoldása a lehető legjobban leegyszerűsödött. 

A maximálisan leegyszerűsített feladatot megoldjuk, majd a részfeladatok eredményeiből 

fokozatosan felépítjük a következő méretű feladat eredményeit, ezek összerakása által. Az 

utolsó összerakás az eredeti feladat végeredményét adja meg. 

 Mivel a részfeladatok csak méreteikben különböznek az eredeti feladattól, a divide et 

impera módszert a legkézenfekvőbben rekurzívan írjuk le. A felbontás megtörténik a 

rekurzióba való belépéskor, a részeredmények összerakása pedig a kilépéskor. 

 

1.6.1. Az oszd meg és uralkodj módszer általános bemutatása 
 

 A DivImp(bal, jobb, eredm) algoritmus az a1, a2, ..., an sorozatot dolgozza fel, tehát 

DivImp(1, n, eredm) alakban hívjuk meg először. Formális paraméterei a bal és a jobb (az 

aktuális részsorozat bal és jobb indexe), valamint eredm, amelyben a végeredményt 

továbbítjuk. 
 

Algoritmus DivImp(bal, jobb, eredm): 

 Ha jobb - bal < ε akkor  { ha a feladat maximálisan leegyszerűsödött } 

  Megold(bal, jobb, eredm)  { kiszámítjuk az egyszerű feladat eredm eredményét } 

 különben 

  Feloszt(bal, jobb, közép){ kiszámítjuk a közép indexet, ahol felosztjuk a sorozatot } 

  DivImp(bal, közép, eredm1)  { megoldjuk a feladatot a bal részsorozat esetében } 

  DivImp(közép+1, jobb, eredm2){ megoldjuk a feladatot a jobb részsorozat esetében } 

  Összerak(eredm1, eredm2, eredm)  { összerakjuk a részeredményeket } 

 vége(ha) 

Vége(algoritmus) 
 

 Az oszd meg és uralkodj stratégiát – természetesen – lehet iteratívan is implementálni. Az 

iteratív algoritmusok mindig gyorsabbak lesznek. A rekurzív változat előnye viszont az átlát-

hatóságában és az egyszerűségében rejlik. 

 

1.6.2. Megoldott feladatok 

 

1. Szorzat 

 Számítsuk ki n valós szám szorzatát oszd meg és uralkodj módszerrel! Egy adott 

pillanatban csak egy szorzást végezzünk! 
 

Megoldás 
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 Mivel egy adott pillanatban, egy adott művelettel, csak két szám szorzatát tudjuk 

kiszámítani, a szorzatot részszorzatokra bontjuk: a szorzótényezőket két csoportra osztjuk, 

kiszámítjuk egy-egy csoport szorzatát, majd a két csoport kiszámított szorzatát 

összeszorozzuk. Ezt a felbontást addig lehet újra, meg újra elvégezni, amíg egy csoport 

legtöbb két szorzótényezőből nem áll. 

 A Szorzat(x1, ..., xn) részfeladat általános alakja: Szorzat(xbal, ..., xjobb). Minden részfeladat 

más-más szorzatot számol ki, tehát a feladatok függetlenek egymástól. 
 

Algoritmus Szorzat(bal ,jobb): 

 Ha jobb = bal akkor  { Bemeneti adatok: bal, jobb. A függvény a szorzatot téríti } 

  térítsd xbal  { a részsorozat egy elemből áll } 

 különben 

  Ha jobb - bal = 1 akkor 

   térítsd xbal * xjobb  { a részsorozat két elemű } 

  különben  { felbontjuk a Szorzat(bal, ..., jobb) feladatot } 

   közepe ← (bal+jobb) div 2 

   p1 ← Szorzat(bal, közepe) 

   p2 ← Szorzat(közepe+1, jobb) 

   térítsd p1 * p2  { összerakjuk a részeredményeket } 

  vége(ha) 

 vége(ha) 

Vége(algoritmus) 

 

2. Bináris keresés 
 

 Adott egy n egész számból álló, növekvően rendezett sorozat. Állapítsuk meg egy adott 

szám helyét a sorozatban! Ha az illető szám nem található meg a sorozatban, a sorszámnak 

megfelelő paraméter értéke legyen 0. 
 

Megoldás 

 Mivel egy bizonyos elemet keresünk, amelynek a helye ismeretlen, az x1 < x2 < ... < xn 

sorozat közepén fogjuk először keresni. A következő esetek fordulhatnak elő:  

1. keresett = xközép ⇒ keresett a sorban a közép helyen található; 

2. keresett < xközép ⇒ mivel a sorozat rendezett, a keresett számot a sorozat első (x1, ..., xközép–1) 

felében keressük tovább; 

3. keresett > xközép ⇒ a keresett számot a sorozat második (xközép+1, ..., xn) felében keressük 

tovább. 

 Következésképpen, ahelyett, hogy a keresett elem megkeresése két részfeladatra bomlana, 

átalakul egyetlen feladattá: keressük az elemet vagy az xbal, ..., xközép–1 sorozatban, vagy az 

xközép+1, ..., xjobb sorozatban. Itt nincs szükség a divide et impera harmadik lépésére (a részered-

mények összerakására). 
 

Algoritmus BinKeres(x, bal, jobb, keresett, közép): 

     { Bemeneti adatok: x, bal, jobb, keresett. Kimeneti adat: közép } 

 Ha bal > jobb akkor 

  közép  0  { keresett nincs a sorozatban } 

 különben 

  közép  (bal+jobb) div 2 
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  Ha keresett < xközép akkor 

   BinKeres(x, bal, közép-1, keresett, közép) 

  különben 

   Ha keresett > xközép akkor 

    BinKeres(x, közép+1, jobb, keresett, közép) 

   vége(ha)  { ha keresett = xközép megvan a pozíció } 

  vége(ha) 

 vége(ha)  

Vége(algoritmus) 
 

 E feladat esetében is létezik egy iteratív megoldás, amely a végrehajtás idejét tekintve haté-

konyabb: 
 

Algoritmus BinKeresIteratív(n, x, keresett, közép): 

 bal  1 

 jobb  n 

 megvan  hamis 

 Amíg nem megvan és (bal ≤ jobb) végezd el: 

  közép  (bal+jobb) div 2 

  Ha xközép = keresett akkor 

   megvan  igaz  { közép tartalmazza a keresett helyét } 

  különben 

   Ha xközép > keresett akkor 

    jobb  közép - 1 

   különben 

    bal  közép + 1 

   vége(ha) 

  vége(ha) 

 vége(amíg) 

 Ha nem megvan akkor 

  közép  0  { ha közép értéke 0 ⇒ keresett nem található } 

 vége(ha) 

Vége(algoritmus) 

 

3. Összefésülésen alapuló rendezés (MergeSort) 
 

 Rendezzünk növekvő sorrendbe egy egész számokból álló sorozatot összefésüléssel!  
 

Megoldás 

 Ha két rendezett sorozatból úgy állítunk elő egy harmadikat, hogy ez utóbbi úgyszintén 

rendezett, összefésülésről beszélünk. De itt nem két rendezett sorozatból kell egy harmadik, 

ugyancsak rendezettet előállítanunk, hanem egyetlen sorozatot kell rendeznünk. Az adott 

sorozatot két részre osztjuk, abból a célból, hogy rendezhessük. De ezeket újból felosztjuk, 

amíg a kapott tömb, amelyet rendeznünk kell, csak egy elemből áll. Az egyelemű tömbök, 

természetesen rendezettek és megkezdődhet a tulajdonképpeni összefésülés. 
 

Algoritmus Összefésül(bal, közép, jobb): 

 Minden i = bal, közép végezd el: 
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  ai  xi 

 vége(minden) 

 Minden i = közép+1, jobb végezd el: 

  bi  xi 

 vége(minden) 

 aközép+1  végtelen 

 bjobb+1  végtelen  { strázsák } 

 i  bal 

 j  közép + 1 

 Minden k = bal, jobb végezd el: 

  Ha ai < bj akkor 

   xk  ai 

   i  i + 1 

  különben 

   xk  bj 

   j  j + 1 

  vége(ha) 

 vége(minden) 

Vége(algoritmus) 
 

Algoritmus Rendez(bal, jobb): 

 Ha bal < jobb akkor 

  közép ← (bal+jobb) div 2 

  Rendez(bal, közép) 

  Rendez(közép+1, jobb) 

  Összefésül(bal, közép, jobb) 

 vége(ha) 

Vége(algoritmus) 
 

 Az Összefésül(bal, közép, jobb) algoritmus eredménye az xbal, …, xjobb rendezett sorozat, 

amelybe tulajdonképpen ugyanazon sorozat két részsorozatát, az xbal, …, xközép és az xközép+1, 

…, xjobb részsorozatokat fésültük össze. Ezzel magyarázható annak a szükségessége, hogy az 

összefésülendő sorozatokat átmásoltuk az a illetve a b sorozatba. A hívó programegységben a 

Rendez(1, n) algoritmust hívjuk. 

 

4. Gyorsrendezés (QuickSort) 

 Fölhasználva a quiksort algoritmust, rendezzünk növekvő sorrendbe n egész számot!  
 

Megoldás 

 A gyorsrendezés az oszd meg és uralkodj módszeren alapszik, mivel az eredeti sorozatot 

úgy rendezi, hogy két rendezendő részsorozatra bontja. A részsorozatok rendezése egymástól 

függetlenül történik. A részeredmények összerakása hiányzik (hasonlóan a bináris 

kereséshez). Amikor az x1, …, xn sorozatot készülünk rendezni, előbb előkészítünk két 

részsorozatot (x1, …, xm–1 és xm+1, …, xn) úgy, hogy az x1, …, xm–1 részsorozat elemei kisebbek 

legyenek, mint az xm+1, …, xn részsorozat elemei. Közöttük található az xm, amely nagyobb, 

mint az x1, …, xm–1 részsorozat bármely eleme, és kisebb, mint az xm+1, …, xn részsorozat 

összes eleme. 
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 Azt az elemet, amely meghatározza a helyet, ahol az adott tömb két részre oszlik, 

strázsának (őrszem) nevezzük. Ennek a helynek a meghatározása kulcskérdés az algoritmus 

végrehajtása során. A strázsa m helyét úgy határozzuk meg, hogy az x1, …, xm tömbben 

legyenek azok az elemek, amelyek kisebbek, mint a strázsa és az xm+1, …, xn tömbben azok, 

amelyek nagyobbak annál. 

 Gyakran választjuk strázsának az x1-et. Elindulunk a tömb két szélső elemétől és 

felcseréljük egymás közt azokat az elemeket, amelyek nagyobbak, mint a strázsa (és a tömb 

első részében találhatók) azokkal, amelyek kisebbek, mint a strázsa (és a tömb második 

részében találhatók). Ahol ez a bejárás véget ér, ott fogjuk két részre osztani a tömböt. Egy 

ilyen feldolgozás során egy elem a végleges helyére kerül. 

 A részsorozatok rendezése érdekében ezeket hasonló módon bontjuk fel. A felbontás addig 

folytatódik, amíg a rendezendő részsorozat hossza 1 lesz. 
 

Algoritmus QuickSort(bal, jobb): 

 Ha bal < jobb akkor  { meghatározzuk azt az m helyet, ahol a sorozatot } 

     { két részre bontjuk, miközben az xm elem a végleges helyére kerül } 

  m  Strázsa_helye(bal, jobb) 

  QuickSort(bal, m)  { hasonlóan járunk el az (xbal, ..., xm) részsorozattal } 

  QuickSort(m+1, jobb)  { valamint az (xm+1, ..., xjobb) részsorozattal } 

 vége(ha) 

Vége(algoritmus) 
 

 Látható, hogy a rekurzív hívásoknak megfelelően, az algoritmus meghívja önmagát egy bal 

meg egy jobb részsorozat rendezése érdekében. Dacára annak, hogy az algoritmus nem tartal-

maz összehasonlításokat és felcseréléseket, a sorozat aközben rendeződik, miközben keressük 

a strázsa m helyét: 
 

Algoritmus StrázsaHelye(bal, jobb): 

 strázsa  xbal  { Bemeneti adatok: bal, jobb. Kimeneti adat: a strázsa helye } 

 i  bal-1 

 j  jobb+1  { megkeressük azt a j indexet, amelyre bal ≤ j < jobb } 

 Ismételd 

  Ismételd  { megkeressük azt a j indexet (jobbról balra), amelyre xj > strázsa } 

   j  j - 1 

  ameddig xj ≤ strázsa 

  Ismételd  { megkeressük azt az i indexet (balról jobbra), amelyre xi < strázsa } 

   i  i + 1 

  ameddig xi ≥ strázsa 

  Ha i < j akkor 

   xi ↔ xj  { felcseréljük ezt a két nem megfelelő tulajdonságú elemet } 

  vége(ha) 

 ameddig i ≥ j  { addig folytatjuk a keresést és felcserélést, amíg i kisebb, mint j } 

 térítsd j { megtaláltuk az új strázsa helyét } 

Vége(algoritmus) 
 

Megjegyzés 

 Ez az algoritmus főleg akkor gyors, ha a sorozat nem rendezett, egyébként előfordulhat, 

hogy az algoritmus négyzetes bonyolultságúvá válik. Ha fennáll ez a veszély, tanácsos a ren-
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dezés előtt véletlenszerűen átrendezi a bemeneti sorozatot, ezzel biztosítva a különböző 

permutációk azonos valószínűségét. Ez a módosítás nem javít a legrosszabb futási időn, de 

biztosítja, hogy a futási idő független lesz a bemeneti elemek sorrendjétől. 

5. Hanoi tornyok 

 Adva van három rúd A, B, C. Az elsőre fel van fűzve n darab, különböző átmérőjű korong 

úgy, hogy a korongok az átmérőjük csökkenő sorrendjében helyezkednek el egymás fölött. A 

másik két rúd üres. Írjuk ki minden lehetséges módját annak, ahogyan a korongokat átköltöz-

tethetjük az A rúdról a B-re, ugyanolyan sorrendben, ahogyan az A-n helyezkedtek el. 

Közben fel lehet használni, ideiglenesen a C rudat. Egy mozgatás csak egy korongot érinthet, 

és csak kisebb átmérőjű korongot helyezhetünk egy nagyobb átmérőjű korong fölé. 
 

Megoldás 

 A módszer újból a divide et impera. Az n korong átköltöztetése az A rúdról a B-re 

felbontható három, ehhez hasonló feladatra: 

1) 

 

 

 

 

 

 

2) 

 

 

 

 

 

3) 

 

 

 

 

 

 

A C B 

n-1 
korong 

n-1 
korong 

A C B 

A C B 

A C B 

n-1 
korong 

 
 A három részfeladat méretét a költöztetendő korongok száma határozza meg: n – 1, 1 és 

n – 1. A részfeladatok függetlenek, mivel az eredeti rudak konfigurációi, valamint az 

időközben váltakozva ideiglenesnek használt rudaké különbözők. A feladat felbontása 

ugyanígy folytatódik, míg olyan részfeladathoz nem érünk, amelynek mérete 1. Ennek 

megoldása egyetlen korong költöztetését jelenti. 

 A részeredmények összerakása ebben az esetben is hiányzik. 
 

Algoritmus Hanoi(n, A, B, C): 

 Ha n = 1 akkor 

  Költöztess egy korongot A-ról B-re 

 különben 

  Hanoi(n-1, A, C, B) 

  Hanoi(1, A, B, C) 

  Hanoi(n-1, C, B, A) 

 vége(ha) 
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Vége(algoritmus)  
 

 Az algoritmust a Hanoi(n, A, B, C) utasítással hívjuk, ahol az aktuális paraméterek értékei 

'A', 'B', 'C'. A Költöztess egy korongot A-ról B-re lehet pl. egy kiírás: Ki: A, '-', B. 

1.7. Mohó algoritmusok (greedy módszer) 
 

 A greedy módszert (mohó algoritmusokat) optimum-számításokra használjuk. E feladatok 

eredményei részhalmazai vagy elemei annak a Descartes-szorzatnak, amelyre a célfüggvény 

eléri minimumát vagy maximumát. 

 A mohó algoritmus mindig egyetlen eredményt határoz meg. Ezt az eredményt 

fokozatosan építjük fel: a feladatokban általában adott egy L halmaz, amelynek meg kell 

határoznunk egy M részhalmazát, amely megfelel bizonyos követelményeknek (T 

tulajdonságnak), és amely általában a végeredmény. Az M halmaz eredetileg az üres halmaz. 

Ehhez, egymás után hozzáadunk L-beli elemeket, amelyeket annak alapján választunk ki, 

hogy lokális optimumot biztosítanak. Ezek az elemek azok, amelyek a legtöbbet ígérők az 

aktuális lépésben, és amelyek megfelelnek a feladatnak az adott pillanatban. 

 Ez az algoritmus a stratégia mohó jellegének következtében kapta a greedy (mohó) elneve-

zést. Mivel a stratégia egy helyi optimum kiválasztására épül, nem biztosítja a megoldás glo-

bális optimalitását, tehát nem mindig határozza meg a legjobb megoldást. Nem lehetünk 

biztosak a megoldásban, de ha sikerül bebizonyítani, hogy az adott feladat esetében a mohó 

algoritmus optimumot határoz meg, akkor biztonságosan alkalmazható. Ugyanakkor, a 

módszert olyankor is alkalmazhatjuk, amikor a feladat pontos megoldását csak exponenciális 

algoritmussal tudjuk megadni, de ilyenkor számításba vesszük, hogy az eredmény közelítő 

érték. Ilyenkor heurisztikus mohó algoritmusról beszélünk. 

 Legyen az L halmaz, amelyet az {a1, a2, ..., an} sorozat tartalmaz, és T egy tulajdonság, 

amelyet az L részhalmazaira definiáltunk: T: T(L) → {0, 1}, ahol T(∅) = 1 (igaz, vagyis 

teljesül T). Ha T(X) = 1, akkor ⇒ T(Y) = 1, bármely Y ⊂ X részhalmaz esetében. Egy S ⊂ L 

részhalmazt eredménynek nevezünk, ha T(S) = 1. Minden lehetséges eredményből azt 

szeretnénk kiválasztani, amely optimalizálja a T: T(L) → R adott függvényt. A mohó 

algoritmus nem generál minden lehetséges részhalmazt (ami exponenciális végrehajtási 

időhöz vezetne), hanem megpróbál közvetlenül az optimális megoldás felé haladni. 

 A módszer egyszerű, a programok gyorsak, még nagyméretű adathalmazok esetében is. Az 

egyszerűség abban áll, hogy minden pillanatban, csak az adott kontextusnak megfelelő részfe-

ladatot tekintjük. A módszer különbözik a backtracking (visszalépéses keresés) módszertől 

mivel, ha egy elemről kiderül, hogy hiába volt sokat ígérő, akkor nem kerül be a megoldásba 

és soha nem térünk vissza ehhez az elemhez. Fordítva, ha egy elem bekerült egy adott 

pillanatban egy megoldásba, nem fogjuk kivenni onnan. 

 

1.7.1. A mohó algoritmus általános bemutatása 
 

 A módszer általános alakjának két változata ismeretes. A feladat megoldását az M halmaz 

tartalmazza, a megoldásokat az L – lehetséges megoldások halmazából – válogatjuk: 
 

Algoritmus Greedy_1(L, M): 

 M  ∅ 
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 Amíg M nem megoldás és L ≠ ∅ végezd el: 

  Választ(L, x)  { kiválasztjuk a legtöbbet ígérő elemet L-ből } 

  L  L\{x}  { töröljük a legtöbbet ígérő elemet L-ből } 

  Ha T(M ∪ {x}) = 1 akkor  { ha lehetséges x-et betenni a megoldásba } 

   M  M ∪ {x}  { ezt hozzáadjuk M-hez } 

  vége(ha) 

 vége(amíg) 

Vége(algoritmus) 
 

Megjegyzések 

1. Ha a kiválasztott elemet töröljük L-ből, akkor biztosítottuk az algoritmus számára, hogy L 

minden elemét csak egyszer dolgozzuk fel (töröljük, függetlenül attól, hogy betesszük az 

eredménybe vagy sem). 

2. Mivel a bemeneti adatoktól függően nem mindig találunk eredményt, a hívó 

programegységben meg kell vizsgálnunk, hogy az M halmaz valóban eredmény-e: az ilyen 

típusú feladatok megoldása során gyakran bizonyul előnyösnek, ha a tulajdonképpeni 

feldolgozás előtt előbb rendezzük a feldolgozandó adatokat (az L halmazt). 

 A rendezett sorozat elemeit ({a1, a2, ..., an}) egymás után vizsgáljuk és a követelményektől 

függően betesszük az eredménybe vagy sem (nincs szükség ezek törlésére L-ből, mivel egy 

megvizsgált elemhez nem térhetünk vissza, hiszen a rendezett sorozat elemeit rendre 

dolgozzuk fel). Az algoritmus ebben a változatban a következő: 
 

Algoritmus Greedy_2(n, a, M): 

 Feldolgoz(n, a)  { ez a feldolgozás gyakran rendezés } 

 M  ∅ 

 i  1 

 Amíg M nem megoldás és (i ≤ n) végezd el: 

  Ha T(M ∪ {ai}) = 1 akkor  { ha lehetséges } 

   M  M ∪ {ai}  { ai-t hozzáadjuk M-hez } 

  vége(ha) 

  i  i + 1 

 vége(amíg) 

Vége(algoritmus) 
 

 A fenti algoritmusok lineárisak (eltekintve a Választ(L, x) és a Feldolgoz(n, a) 

algoritmusok bonyolultságától). A tulajdonképpeni nehézséget a Választ(L, x), valamint a 

Feldolgoz(n, a) jelenti, mivel ezekbe „rejtjük” el a célfüggvényt. 

 

1.7.2. Megoldott feladatok 

 

1. Összeg 

 Adott egy n elemű, valós számokból álló sorozat. Határozzuk meg az adott sorozat azon 

részsorozatát, amelynek összege a lehető legnagyobb. 
 

Megoldás 

 Alkalmazzuk a Greedy_1(L, n) algoritmust, ahol a Választ(L, x) alprogramnak megfelelően 

az adott sorozatból kiválasztjuk a szigorúan pozitív elemeket. Ezúttal könnyű belátni, hogy az 

algoritmus garantáltan maximális összegű részsorozatot határoz meg, hiszen, ha az összeghez 



50   1. FEJEZET. ALGORITMUSOK ÉS PROGRAMOZÁS 
 

hozzáadnánk egy negatív értéket, akkor az kisebbé válna. Ha egy 0 értékű elemet adunk az 

összeghez, az nem változik. Ebből az észrevételből következik, hogy, ha a sorozat tartalmaz 0 

értékeket is, akkor több megoldás is létezik. 

Algoritmus Összeg(n, a, k, pozitívak): 

 k  0   { Bemeneti adatok: n, a. Kimeneti adatok: k, pozitívak } 

 Minden i = 1, n végezd el: 

  Ha ai > 0 akkor 

   k  k + 1 

   pozitívakk  ai 

  vége(ha) 

 vége(minden) 

Vége(algoritmus) 

 

2. Az átlagos várakozási idő minimalizálása 
 

 Egy ügyvédi irodába egyszerre érkezik n személy, akiknek az intéznivalóit az ügyvéd 

ismeri, és így azt is tudja, hogy egy-egy személlyel hány percet fog eltölteni. Állapítsuk meg 

azt a sorrendet, amelyben fogadnia kellene a személyeket ahhoz, hogy az átlagos várakozási 

idő minimális legyen. 
 

Megoldás 

 Az átlagos várakozási idő az n személy várakozási idejének számtani középarányosa, tehát 

az átlagos várakozási idő csökkentése a várakozási idők összegének csökkentését jelenti. A 

minimális várakozási időösszeget a személyekkel való tárgyalási idők növekvő sorrendben 

való rendezése eredményezi. Dacára annak, hogy ez természetesnek tűnik, be kell 

bizonyítanunk, hogy a mohó algoritmus jó megoldási módszer. 

 A mohó algoritmus alkalmazása optimális eredményt biztosít. Ahhoz, hogy minimalizáljuk 

az átlagos várakozási időt, minimalizálnunk kell a várakozási idők összegét. Egy személy 

addig várakozik, amíg az összes előtte fogadott személlyel tárgyal az ügyvéd. Ha csak két 

személy érkezett volna az irodába, akkor az lenne előnyösebb (az átlagos várakozási idő 

szempontjából), ha előbb a kevesebb időt igénylő személlyel tárgyalna az ügyvéd. Az 

eredmény tehát a személyek sorszámainak egy olyan permutációja, amelynek megfelelően az 

ügyvéd minden lépésben a legkevesebb időt igénylő személyt fogadja: M = (k1, k2, ..., kn) ∈ {(x1, 

x2, ..., xn) | xi ∈ {1, 2, ..., n}, xi ≠ xj ∀ i, j = 1, 2, ..., n, i ≠ j}. 

 Az L eredetileg az {1, 2, ..., n} halmaz. A legtöbbet ígérő x elem az L-ből annak a 

személynek a sorszáma, akinek a fogadási ideje minimális azok között, akik még az L-hez 

tartoznak. Ezt hozzáadjuk az M-hez és kizárjuk az L-ből. Ebben a megközelítésben az x 

kizárását az L-ből úgy valósítjuk meg, hogy 0 értéket másolunk rá. Minden lépésnél csak 0-tól 

különböző értéket választunk az L-ből. 

 Ettől eltérően, a következő algoritmus előbb inicializálja az M halmazt az 1, 2, ..., n sorszá-

mokkal, és növekvő sorrendbe rendezi az idők t1, t2, ..., tn sorozatát, megfelelően módosítva az 

M halmaz elemeit. A rendezés után: M = k1, k2, ..., kn és t1 ≤ t2 ≤ ... ≤ tn. A kiírást az M 

halmazban található indexpermutáció alapján végezzük. 
 

Algoritmus Sorrend(n, t, M, átlag): 

     { Bemeneti adatok: n, t, M. Kimeneti adatok: átlag, M } 
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 Minden i = 1, n végezd el: 

  Mi  i 

 vége(minden)  

 növekvőSorrendbeRendezés(n, M, t)  

     { növekvően rendezzük a t sorozatot és módosítjuk az M-et is } 

 minVárakozásiIdő  0 

 várakozásiIdő  0 

 Minden i = 1, n-1 végezd el: 

  várakozásiIdő  várakozásiIdő + ti  { a t sorozat már növekvően rendezett } 

  minVárakozásiIdő  minVárakozásiIdő + várakozásiIdő 

 vége(minden) 

 átlag  minVárakozásiIdő / n 

Vége(algoritmus) 

 

3. Buszmegállók 
 

 Egy közszállítási vállalat olyan gyorsjáratot szeretne indítani, amely csak a város főutcáján 

közlekedne, és a már létező n megálló közül használna néhányat. Ezeket a megállókat úgy 

kell kiválasztanunk, hogy két megálló között a távolság legkevesebb x méter legyen 

(gyorsjáratról van szó), és a megállók száma legyen a lehető legnagyobb (minél több utas 

használhassa). Adott a főutcán már meglevő egymás után található megállók közti távolságok 

sorozata. 
 

Megoldás 

 Az L halmazt a létező megállók sorszámai alkotják: L = {1, 2, …, n}. Ismerjük az n 

megálló közötti n – 1 távolságot: a1, a2, …, an–1.  

 Meg kell határoznunk azt a maximális elemszámú M ⊆ L részhalmazt (M = {i1, i2, …, ik}), 

amelyben a sorszámok növekvő sorrendben követik egymást (a főutcán található megállóknak 

egymás utáni sorszámaik vannak), és amelynek megfelelően bármely két kiválasztott megálló 

között a távolság legkevesebb x méter (aj+1 – aj ≥ x, j = 1, 2, …, k – 1). 
 

Algoritmus Megállók(n, a, M): 

 i  1   { Bemeneti adatok: n, a. Kimeneti adat: M } 

 M1  1   

 távAzUtolsótól  0 { az eredménybe betett utolsó megállótól mért távolság } 

 Minden j = 2, n végezd el: 

  Ha aj-1 + távAzUtolsótól ≥ x akkor 

   i  i + 1 

   Mi  j 

   távAzUtolsótól  0 

  különben 

   távAzUtolsótól  távAzUtolsótól + aj-1 

  vége(ha) 

 vége(minden) 

Vége(algoritmus) 
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 Látható, hogy az első megállót betettük a megoldásba, majd megkerestük azt a megállót, 

amelyik megfelelő távol található az elsőtől. Ha találtunk ilyent, betettük a megoldásba. Ezt 

addig folytattuk, amíg bejártuk az összes, már létező megállót. 

 

 

4. Autó bérbeadása 
 

 Egy szállítási vállalat autókat kölcsönöz. Egy bizonyos jármű iránt igen nagy az 

érdeklődés, ezért az igényeket egy évre előre jegyzik. Az igényt két számmal jelöljük, 

amelyek az év azon napjainak sorszámait jelölik, amellyel kezdődően, illetve végződően 

igénylik az illető autót. Állapítsuk meg a bérbeadást úgy, hogy a lehető legtöbb személyt 

szolgáljuk ki. Adott a személyek száma n, (n ≤ 100) és az igényelt intervallumok (ai, bi, i = 1, 

2, ..., n, ai < bi ≤ 365). Határozzuk meg a maximálisan kiszolgálható személyek számát és a 

bérbeadási időintervallumokat. 
 

Megoldás 

 A következő algoritmusban L = {2, 3, ..., n}. M kezdőértéke {1} (az első igény – a 

minimális b1 – mindig része lesz a megoldásnak, amelyet a greedy stratégia biztosít). Az L 

halmazt az algoritmus Minden típusú struktúrával számítja ki, amelyben sorra veszi a bi 

szerint rendezett igényléseket. 
 

Algoritmus AutóKölcsönzés(n, a, b, max, M): 

 növekvőSorrendbeRendezés(n, a, b) 

 M1  1  { Bemeneti adatok: n, a, b. Kimeneti adat: max, M } 

 max  1 

 Minden i = 2, n végezd el: 

  j  Mmax 

  Ha ai > bj akkor 

   max  max + 1 

   Mmax  i 

  vége(ha) 

 vége(minden) 

Vége(algoritmus) 

 

5. Hátizsák 
 

 Egy tolvaj betört egy hentesüzletbe, ahol n áru közül válogat. Minden árunak ismeri a 

súlyát és az értékét. Mivel a hátizsákjába legtöbb S súly fér, szeretne úgy válogatni, hogy a 

nyeresége maximális legyen. Ha egy áru nem fér be egészében a hátizsákba, a tolvaj levághat 

belőle egy akkora darabot, amekkora befér a hátizsákba, de ebben az esetben az áru értéke a 

súlyával arányosan csökken. 
 

Megoldás 

 A feladat a szakirodalomban „töredékes hátizsák” vagy „folytonos hátizsák” elnevezés 

alatt ismeretes. 
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 Észrevehető, hogy mivel meg volt engedve, hogy levághatunk az árukból, a hátizsák 

teljesen megtölthető, és ha minden lépésben azt az árut választjuk, amelynek az érték/súly 

aránya maximális, akkor a hátizsákba csomagolt árumennyiség összértéke is maximális lesz. 

 Bevezetjük a következő jelöléseket: Az eredmény az x = (x1, …, xn) sorozat lesz, ahol xi ∈ 

[0, 1], i = 1, 2, ..., n azt fejezi ki, hogy az i-edik árunak mekkora darabját csomagoljuk be. 

Ezen kívül: súly1 ⋅ x1 + súly2 ⋅ x2 + ... + súlyn ⋅ xn ≤ S. Az optimális eredmény az, amely 

maximalizálja az f(x) = érték1 ⋅ x1 + érték2 ⋅ x2 + ... + értékn ⋅ xn függvényt. 

Abban a sajátos esetben, amikor minden árut be lehet csomagolni a hátizsákba, x = (1, 1, ..., 

1). Ezért a továbbiakban feltételezzük, hogy súly1 + ... + súlyn > S. 

 A greedy stratégiának megfelelően, az árukat az erték/súly arány szerint csökkenő 

sorrendbe rendezzük. Az árukat ebben a sorrendben csomagoljuk a hátizsákba, amíg az meg 

nem telik. Ha egy áru nem fér a hátizsákba, levágunk belőle egy akkora darabot, amely befér. 
 

Algoritmus Hátizsák(n, S, súly, érték, sorszám, x): 

 csökkenőSorrendbeRendezés(n, súly, érték, sorszám) 

 Hely  S  { Hely a hátizsákban még szabad helyet jelöli } 

 i  1 

 Amíg (i ≤ n) és (Hely > 0) végezd el: 

  Ha súlyi ≤ Hely akkor 

   xi  1 

   Hely  Hely - súlyi 

  különben 

   xi  Hely / súlyi 

   Hely  0 

   Minden j = i+1, n végezd el: 

    xj  0 

   vége(minden) 

  vége(ha) 

  i ← i + 1 

 vége(amíg) 

Vége(algoritmus) 
 

 Az algoritmus végrehajtásának eredménye az x sorozat: x = (1, ..., 1, xj, 0, ..., 0) ahol xj ∈ [0, 1). 

Ennek alapján kiírhatjuk a becsomagolt áruk eredeti sorszámait és a hátizsák tartalmának ér-

tékét. 

 De most is, mint minden mohó algoritmus esetében, be kell bizonyítanunk, hogy az algorit-

mus optimális eredményt határoz meg. 
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2. fejezet

Objektumorientált
programozás

2.1. Objektumorientált fogalmak

2.1.1. Adatvédelem moduláris programozással

Az eljárásközpontú programozás keretében a kódot igyekszünk eljárásokra és függ-
vényekre bontani. A C és a C++ programozási nyelvekben az eljárásokat és függvé-
nyeket egyetlen névvel jellemezzük. Mindkét esetben függvényekről beszélünk, de
megkülönböztetünk olyan függvényeket, amelyek visszatérítenek egy értéket és olya-
nokat, amelyek nem. Az eljárásoknak azok a függvények felelnek meg, amelyek nem
térítenek vissza semmit. Ebben az esetben a void kulcsszóval jelezzük a visszaadandó
érték típusának a hiányát.

A nagyobb alkalmazások írásakor felmerül annak a szükségessége, hogy az álta-
lunk használt adatok védelmét megvalósítsuk. Ez azt jelentené, hogy csak a függvé-
nyeknek egy részével lehessen hozzáférni az adatokhoz. Azért van erre szükség, mert
ez által jelentősen csökken a hibalehetőségek száma. Az adatok és a rájuk vonatkozó
függvények egyetlen egységet fognak képezni. Így az adatok módosítása csak ezekkel
a függvényekkel lesz megvalósítható, másokkal nem.

Az adatok védelmére már a C programozási nyelv is lehetőséget teremtett a modu-
láris programozás által. Ha egy állomány globális hatókörében, tehát a függvényeken,
osztályokon és névtereken kívül, egy statikus változót vezetünk be, akkor ezt a változót
a deklaráció helyétől az illető állomány (modul) végéig bármely függvényben használ-
hatjuk. Ezzel ellentétben viszont más állományban még akkor sem tudunk hivatkozni
az illető változóra, ha abban egy extern típusú deklarációt helyezünk el.

A továbbiakban egy olyan példát ismertetünk, amely az adatok védelmét a modu-
láris programozás segítségével teszi lehetővé. Egy egész elemekből álló vektorokra
vonatkozó modult hozunk létre. A vektor elemeit egy int típusra hivatkozó mutató se-
gítségével tároljuk. Meg kell adnunk a vektor méretét is, tehát az elemek számát. Ezt a
két adatot a függvényeken kívül deklarált statikus változókkal vezetjük be. Az adatok
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feldolgozását a következő négy függvénnyel végezzük: epit, felszabadit, negyzetre és
kiir. Az első függvény egy egész elemekből álló tömb és egy egész szám (a méret)
segítségével létrehozza a vektort. Ha a vektorra már nincs szükség, a második függ-
vénnyel szabadíthatjuk fel a lefoglalt memóriaterületet. A negyzetre függvény a vektor
összes elemét négyzetre emeli, és az utolsó függvény kiírja az elemeket. Az alábbi
állományban mutatjuk be ennek a modulnak egy lehetséges megvalósítását.

2.1. kódszöveg. A vektor modul.
#include <iostream>1

using namespace std;2

static int* elem;3

static int meret;4

void epit(int* az_elem, int a_meret)5

{6

meret = a_meret;7

elem = new int[meret];8

for(int i = 0; i < meret; i++)9

elem[i] = az_elem[i];10

}11

void felszabadit()12

{13

delete [] elem;14

}15

void negyzetre()16

{17

for(int i = 0; i < meret; i++)18

elem[i] *= elem[i];19

}20

void kiir()21

{22

for(int i = 0; i < meret; i++)23

cout << elem[i] << ’ ’;24

cout << endl;25

}26

Egy külön állományba helyezzük a fő függvényt. Ez a következő lehet:

2.2. kódszöveg. A fő függvényt tartalmazó állomány.
void epit( int*, int);1

void felszabadit();2

void negyzetre();3

void kiir();4

//extern int* elem;5

void main()6

{7

int x[] = {1, 2, 3, 4, 5};8

epit(x, 5);9

negyzetre();10

kiir();11

felszabadit();12
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int y[] = {1, 2, 3, 4, 5, 6};13

epit(y, 6);14

//elem[1]=10;15

negyzetre();16

kiir();17

felszabadit();18

}19

Végrehajtva a programot az alábbi kimenetet kapjuk:

1 4 9 16 25
1 4 9 16 25 36

A vektor modul függvényeinek meghívása előtt a deklarációkat elhelyeztük a fő
függvényt tartalmazó állományban. A main függvényben előbb egy öt elemből álló x
vektorral, majd ezt követően egy hat elemből álló y vektorral végeztünk műveleteket.

Hangsúlyozzuk, hogy a vektor modul bevezetése nem tette lehetővé azt, hogy egy-
szerre két vektorral tudjunk dolgozni. Például nem tudunk olyan vektorokra vonatko-
zó műveletet értelmezni, mint az összeadás, amelyben egyszerre több vektorra volna
szükség. Figyeljük meg, hogy az x vektor által lefoglalt memóriaterületet fel kellett
szabadítani még mielőtt az y vektort létrehoztuk volna. Ez egy nagy hátránya ennek a
megközelítésnek, éppen ezért a következő pontban azt fogjuk vizsgálni, hogy milyen
módon tudunk egy olyan saját adattípust létrehozni, amely megengedi, hogy egyszerre
több példánnyal dolgozzunk. Ugyanakkor viszont nem szeretnénk lemondani a védett-
ségről sem, és ez által jutunk el az osztály (§2.1.3) fogalmának a bevezetéséhez.

Vegyük észre ugyanakkor azt is, hogy a vektor modul valóban biztosítja az adatok
védelmét. Ha a vektort az elem mutató segítségével direkt módon próbáljuk módo-
sítani, a 15. sorból eltávolítva a megjegyzés jelét, akkor fordítási hibát kapunk. Ha
ugyanezt megtesszük az 5. sorban, ez által elhelyezve egy extern típusú deklarációt a
kódban, akkor ez az állomány önmagában lefordítható lesz, viszont a szerkesztéskor
jelez hibát a rendszer. Ahhoz, hogy ez a hiba se jelenjen meg, el kell távolítanunk a
static kulcsszót a 2.1. kódszöveg 3. sorából. Ekkor már valóban módosítható lesz az
illető elem, de ez pontosan azt jelenti, hogy nincs védettség. Futtatáskor a kimenet így
módosul:

1 4 9 16 25
1 100 9 16 25 36

Levonhatjuk tehát a következtetést, hogy a moduláris programozás esetén a védett-
séget valóban a statikus változók valósítják meg.

A moduláris programozás módszerét az adatok védelmén kívül adatrejtésre is hasz-
nálhatjuk. Ennek lényege az, hogy a felhasználó csak azt a felületet kell ismerje, amin
keresztül feldolgozhatóak az adatok.

2.1.2. Absztrakt adattípusok
Az előző pontban egy példát adtunk a védettség megvalósítására moduláris prog-

ramozással. Megállapítottuk, hogy az adatoknak és függvényeknek ilyen jellegű meg-
adása nem tette lehetővé azt, hogy egyszerre több példánnyal, például két vektorral,
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dolgozzunk. Ezért szükségszerűen jelenik meg az az igény, hogy az adatokat és függ-
vényeket, egy különálló modulhoz hasonlóan, továbbra is egyetlen egységben tároljuk,
de legyen lehetőség arra is, hogy több példányt hozzunk létre.

Természetszerűen merül fel az a lehetőség, hogy a hagyományos struktúra rendel-
tetésének a kiterjesztése által próbáljuk meg elérni a célunkat. A C++ programozási
nyelvben egy struktúrán belül a hagyományos adatokon kívül elhelyezhetünk függ-
vénydeklarációkat, illetve definíciókat is. Ilyen módon egy új típust vezetünk be, amit
gyakran absztrakt adattípusnak (elvont adattípusnak, vagy felhasználói típusnak) ne-
vezünk. Tekintsük az alábbi taxi elvont adattípusra vonatkozó forráskódot.

2.3. kódszöveg. A Taxi felhasználói típus.
#include <iostream>1

using namespace std;2

struct Taxi {3

int fizetni;4

int indulas_ar;5

int menet_ar;6

int varakozas_ar;7

bool van_utas;8

void Kezdes();9

bool Beul();10

int Kiszall();11

void Megy(int km);12

void All(int perc);13

};14

void Taxi::Kezdes()15

{16

indulas_ar = 10;17

menet_ar = 10;18

varakozas_ar = 3;19

fizetni = 0;20

van_utas = false;21

}22

bool Taxi::Beul()23

{24

if ( van_utas ) return false;25

van_utas = true;26

fizetni = indulas_ar;27

return true;28

}29

int Taxi::Kiszall()30

{31

if ( !van_utas ) return 0;32

van_utas = false;33

return fizetni;34

}35

void Taxi::Megy(int km)36

{37

if ( van_utas )38
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fizetni += menet_ar * km;39

}40

void Taxi::All(int perc)41

{42

if ( van_utas )43

fizetni += varakozas_ar * perc;44

}45

void main()46

{47

Taxi t1, t2;48

t1.Kezdes();49

t2.Kezdes();50

t1.Beul();51

t1.Megy(4);52

t2.Beul();53

t1.All(3);54

t2.Megy(6);55

t1.Megy(5);56

cout << "t1-nek fizetni: ";57

cout << t1.Kiszall() << endl;58

cout << "t2-nek fizetni: ";59

// t2.fizetni = 500;60

cout << t2.Kiszall() << endl;61

}62

A program kimenete a következő lesz:

t1-nek fizetni: 109
t2-nek fizetni: 70

Megjegyezzük, hogy a 2.3. kódszöveg 3-14 soraiban bevezetett struktúra az adato-
kon kívül függvénydeklarációkat is tartalmaz. Az elvont adattípusokon belül megadott
adatokat adattagoknak, a függvényeket pedig tagfüggvényeknek nevezzük. A tagfügg-
vényekre az adattagokhoz hasonlóan a tagkiválasztó operátorral (a pont operátor), il-
letve a struktúra-mutató operátorral (a −> operátor) hivatkozhatunk.

A struktúrán belül elhelyezhetünk függvénydefiníciókat is, de ez általában csak a
nagyon egyszerű függvények esetén ajánlott. Ha egy függvény definíciója a struktúrán
belül van, akkor inline függvényként kezeli a rendszer. Ha csak a függvény deklarációja
kerül a struktúra belsejébe, akkor a definíciót, a névterekhez hasonló módon, úgy adjuk
meg, hogy a függvény nevét a struktúra neve és a hatókör operátor előzi meg.

A 2.3. kódszöveg fő függvényéből, illetve a program kimenetéből egyértelműen
levonható az a következtetés, hogy a Taxi adatszerkezetnek egyszerre több példányával
tudunk műveleteket végezni. Az adatok védelme azonban nem valósul meg ebben az
esetben. Meggyőződhetünk erről, ha a 60. sorból eltávolítjuk a megjegyzés jelét, és
úgy fordítjuk le a kódot. A kimenet a következő lesz:

t1-nek fizetni: 109
t2-nek fizetni: 500
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Tehát a fizetendő összeg módosítható direkt módon, függvénymeghívás nélkül. Ez
azt jelenti, hogy nincs biztosítva az adatok védelme. A következő pontban azt vizsgál-
juk meg, hogy az absztrakt adattípus fogalma hogyan terjeszthető ki úgy, hogy lehető-
séget teremtsen az adatvédelemre.

2.1.3. Osztálydeklaráció

Az előző pontban megállapítottuk, hogy a felhasználói típus bevezetése lehetővé
teszi azt, hogy az adatszerkezetnek egyszerre több példányával tudjunk műveleteket
végezni. Ugyanakkor, az adatvédelem nem valósul meg egyszerűen az által, hogy
adatokat és függvényeket egyetlen struktúra részeként adunk meg. Annak érdekében,
hogy ezt a hiányosságot kiküszöböljék, bevezették az osztály fogalmát.

Az osztály egy olyan absztrakt adattípus, amely lehetőséget teremt az adattagok
és tagfüggvények védelmére. Az osztálydeklaráció az előző pontban ismertetett fel-
használói típus bevezetéséhez hasonló, azzal a különbséggel, hogy a struct kulcsszót a
class (osztály) fogja helyettesíteni. Az osztály tagjaira való hivatkozás a tagkiválasztó
operátorral, illetve a struktúra-mutató operátorral történhet, ugyanúgy mint az egyszerű
struktúrák, vagy az előző pontban ismertetett elvont adattípusok esetén. Ezt a kérdést
a §2.1.4. pontban tárgyaljuk részletesebben.

Mivel az osztály egy felhasználói típus, fontos különbséget tennünk maga az osz-
tály, és ennek példányai között. Egy osztály példányait objektumoknak nevezzük. Tehát
az objektum általában egy változó, amelynek a típusát az osztálya határozza meg.

Azok a függvénydefiníciók, amelyek az osztályon belül vannak inline függvényt
eredményeznek ugyanúgy, mint az előző pontban bevezetett felhasználói típusok ese-
tén. Az osztályon kívül elhelyezett függvénydefiníciók is hasonlóak lesznek, tehát az
osztály nevét és a hatókör operátort írjuk a függvénynév elé.

Egy osztályon belül a tagok védelme az elérhetőség szabályozása által valósul meg.
Az adattagok és tagfüggvények elérhetőségét a private (privát), protected (védett) és
public (nyilvános) kulcsszavakkal szabályozhatjuk. Mivel a tagok elérhetőségét változ-
tathatják meg, hozzáférés módosítóknak is nevezzük őket. A hozzáférés módosítókat
mint címkéket használjuk, azaz mindig kettőspont követi őket. Az így kapott címkék
több részre osztják az osztály törzsét, ez által szabályozva azt, hogy melyek a nyil-
vános, védett, illetve privát tagok. Például a public címkét követő összes adattag és
tagfüggvény nyilvános lesz, egészen a következő címkéig. Jegyezzük meg azt is, hogy
osztályok esetén alapértelmezés szerint a tagok privát elérhetőségűek.

A nyilvános tagok elérhetősége nincs korlátozva. Ezeket tetszőleges függvényben
használhatjuk, ahol az illető osztály egy példányával dolgozunk. A privát és védett
tagok elérhetősége korlátozott. Egyelőre nem teszünk különbséget köztük, csak később
az alosztályok (§2.2.2) tanulmányozásakor foglalkozunk ezzel a kérdéssel.

Az objektumokra épülő programozás egyik alapelve az, hogy a nem nyilvános ta-
gokat csak az illető osztály tagfüggvényeiben lehet elérni. Ez a szigorú követelmény
bizonyos fokig enyhítve van a C++ programozási nyelvben. Enek megfelelően a privát
és védett tagok elérhetősége az illető osztály tagfüggvényeire és barát (friend) függ-
vényeire korlátozódik. A barát függvény nem tagfüggvénye az illető osztálynak, de
ennek ellenére megengedjük, hogy hozzáférjen a privát és védett tagokhoz. Az előbb
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említett alapelvet figyelembe véve megállapíthatjuk, hogy ajánlott a barát függvények
számát a minimálisra csökkenteni.

Az osztályok létrehozásakor mindig egy sajátos tagfüggvényt hív meg a rendszer,
amit konstruktornak nevezünk. Általában ezt a függvényt használjuk arra, hogy az
adattagokat kezdeti értékkel lássuk el. A C++ nyelvben a konstruktor neve mindig
megegyezik az osztály nevével, de a függvénynevek túlterhelése lehetővé teszi, hogy
egy osztály több konstruktorral rendelkezzen. A konstruktorokkal a §2.1.5. pontban
foglalkozunk részletesebben.

Az objektum létrehozása a hagyományos változók bevezetéséhez hasonló, tehát
előbb az osztály nevét kell megadni, ami egy típusnév, és ezt követően az objektum
nevét. Ha egyszerre több objektumot szeretnénk létrehozni, akkor ezeket vesszővel
választhatjuk el. Mivel minden egyes új objektum egy konstruktormeghívást is jelent,
ezért a deklaráláskor az objektumnév után kerek zárójelben meg kell adni a konstruktor
aktuális paramétereit is.

Jegyezzük meg, hogy az előző pontban bevezetett struct kulcsszóval jellemzett
felhasználói típus is tulajdonképpen egy osztály, tehát használhatók az elérhetőséget
szabályozó címkék. A lényeges különbség az, hogy a struct kulcsszó esetén a tagok
alapértelmezett elérhetősége nyilvános, míg a class esetén privát.

2.1.4. A tagokra való hivatkozás és a this mutató
Az előző pontokban láttuk, hogy egy felhasználói típus tagjaira való hivatkozást a

tagkiválasztó, illetve a struktúra-mutató operátorral (a . és −> operátorok) végezhet-
jük. A struktúra-mutató operátort akkor kell használni, ha egy objektumra hivatkozó
mutatóval rendelkezünk, ellenkező esetben a tagkiválasztó operátorral dolgozunk.

A továbbiakban moduláris programozás (§2.1.1) esetén ismertetett 2.1. kódszö-
veget módosítjuk úgy, hogy osztályokra vonatkozzon, majd ezt követően vizsgáljuk a
tagokra való hivatkozást.

2.4. kódszöveg. A vektor osztály.
#include <iostream>1

using namespace std;2

class vektor {3

public:4

vektor(int* az_elem, int a_meret);5

∼vektor() { delete [] elem; }6

void negyzetre();7

void kiir();8

private:9

int* elem;10

int meret;11

};12

vektor::vektor(int* az_elem, int a_meret)13

{14

meret = a_meret;15

elem = new int[meret];16

for(int i = 0; i < meret; i++)17
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elem[i] = az_elem[i];18

}19

void vektor::negyzetre()20

{21

for(int i = 0; i < meret; i++)22

elem[i] *= elem[i];23

}24

void vektor::kiir()25

{26

for(int i = 0; i < meret; i++)27

cout << elem[i] << ’ ’;28

cout << endl;29

}30

void main()31

{32

int x[] = {1, 3, 5, 7, 9};33

vektor v(x, 5);34

vektor *p = &v;35

v.kiir();36

p->negyzetre();37

p->kiir();38

v.kiir();39

}40

A fenti kódszöveg fő függvényében előbb a v vektort vezettük be, majd a p muta-
tót, amely a v vektorra hivatkozik. Ez azt is jelenti, hogy a p segítségével előidézett
változtatások a v vektorban is tükröződnek. Valóban a kimenet a következő lesz:

1 3 5 7 9
1 9 25 49 81
1 9 25 49 81

Tehát az elemenként négyzetreemelt vektor jelenik meg kétszer a képernyőn. Fi-
gyeljük meg, hogy a v esetén a tagkiválasztó operátort, a p esetén pedig a struktúra-
mutató operátort használtuk.

Figyeljük meg, hogy a tagfüggvények belsejében direkt módon hivatkozhatunk az
osztály tagjaira, nincs szükség tagkiválasztó, vagy struktúra-mutató operátorra. Mégis,
felmerül a kérdés, hogy milyen módon azonosítja a rendszer az illető adattagot, tudva
azt, hogy egy osztálynak több objektumát is létrehoztuk. A megoldás a this mutató
használatában rejlik, mivel a tagfüggvények belsejében a tagokra való hivatkozás ezzel
a mutatóval történik.

Pontosabban arról van szó, hogy minden egyes objektumon belül a rendszer létre-
hozza a this mutatót, amely az aktuális objektumra mutat. Például a 2.4. kódszöveg fő
függvényében bevezetett v objektum esetén a this ennek az objektumnak a címe. Ha
pedig az ugyanott definiált p mutatót tekintjük, akkor a this megegyezik p-vel.

Ennek alapján már könnyen azonosíthatóak a különböző objektumok tagjai. Az
illető osztály tagfüggvényeiben a rendszer egyszerűen elvégez egy helyettesítést, azaz
minden tag helyett this->tag lesz. Például a 2.4. kódszöveg negyzetre tagfüggvénye
így alakul:
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void vektor::negyzetre()
{

for(int i = 0; i < this->meret; i++)
this->elem[i] *= this->elem[i];

}

Hangsúlyozzuk, hogy nem kell mi megadjuk a fenti esetben a this mutatót, ezt auto-
matikusan elhelyezi a rendszer. Mégis, a this mutatót explicit módon is használhatjuk,
ha erre szükség van.

2.1.5. A konstruktor
Az előző pontok alapján tudjuk, hogy egy objektum létrehozását a konstruktorral

végezzük. Továbbá, a konstruktor neve meg kell egyezzen az osztály nevével. Mégis,
mivel a függvények túlterhelhetők, egy osztálynak több konstruktora is lehet, feltéve ha
a paraméterlisták különböznek. Fontos, hogy a konstruktor nem térít vissza értéket. A
konstruktor deklarációja nem tartalmazhat semmit a visszatérítendő típus helyén, még
a void kulcsszót sem.

Az alábbi példa több konstruktor együttes használatát szemlélteti. Egy olyan osz-
tályt hozunk létre, amely különböző személyek családnevét és keresztnevét tárolja.

2.5. kódszöveg. A szemely.h fejállomány.
#include <iostream>1

using namespace std;2

class szemely {3

char* cs_nev;4

char* sz_nev;5

public:6

szemely(); //alapértelmezett konstruktor7

szemely(char* cs_n, char* sz_n);8

szemely(const szemely& sz); // másoló konstruktor9

∼szemely();10

void kiir();11

};12

szemely::szemely() {13

cs_nev = new char[1];14

*cs_nev = 0; // 0 és ’\0’ ugyanaz15

sz_nev = new char[1];16

*sz_nev = 0;17

cout << "Alapertelmezett konstruktor\n";18

}19

szemely::szemely(char* cs_n, char* sz_n)20

{21

cs_nev = new char[strlen(cs_n)+1];22

sz_nev = new char[strlen(sz_n)+1];23

strcpy(cs_nev, cs_n);24

strcpy(sz_nev, sz_n);25

cout << "Hagyomanyos konstruktor\n";26

}27
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szemely::szemely(const szemely& x)28

{29

cs_nev = new char[strlen(x.cs_nev)+1];30

strcpy(cs_nev, x.cs_nev);31

sz_nev = new char[strlen(x.sz_nev)+1];32

strcpy(sz_nev, x.sz_nev);33

cout << "Masolo konstruktor\n";34

}35

szemely::∼szemely() {36

cout << "Destruktor\n";37

delete[] cs_nev;38

delete[] sz_nev;39

}40

void szemely::kiir() {41

if ( strlen(cs_nev) > 0 )42

cout << cs_nev << ’ ’ << sz_nev << endl;43

else44

cout << "Nincs adat\n";45

}46

Ez a forráskód három konstruktort tartalmaz. Ezek közül a 8. sorbeli konstruk-
tordeklarációt hagyományosnak tekinthetjük abban az értelemben, hogy az adattagok
(családnév és keresztnév) kezdeti értékkel való ellátását valósítja meg. Figyeljük meg,
hogy két sajátos konstruktor is szerepel a fenti kódban. Az egyik az alapértelmezett
konstruktor, vagy más néven alapértelmezés szerinti konstruktor, a másik a másoló
konstruktor.

Ha a konstruktor formális paramétereinek listája üres, akkor beszélünk alapértelme-
zett konstruktorról. Az alapértelmezés szerinti konstruktornak fontos szerepe van azok-
nak az objektumoknak a létrehozásában, amelyek nem rendelkeznek kezdeti értékeket
megadó aktuális paraméterekkel. Pontosabban, ha egy osztálynak van alapértelmezett
konstruktora, akkor létrehozható olyan objektum, amely nem tartalmaz inicializáló ak-
tuális paraméterekből álló listát. Ez akkor is lehetséges, ha olyan konstruktorunk van,
amelynek az összes formális paramétere kezdeti értékkel van ellátva. Tehát az ilyen
konstruktort is alapértelmezett konstruktornak nevezhetjük.

A konstruktorokon kívül a 2.5. kódszöveg tartalmaz egy sajátos tagfüggvényt, a
destruktort, melyet az objektumok megszűnésekor hív meg a rendszer.

Tekintsük a 2.5. kódszöveget felhasználó alábbi fő függvényt:

2.6. kódszöveg. A szemely osztály objektumainak létrehozása.
#include "szemely.h"1

void main() {2

szemely BF("Bolyai", "Farkas");3

BF.kiir();4

szemely *FGy = new szemely("Farkas","Gyula");5

FGy->kiir();6

szemely A; //alapértelmezett konstruktor7

A.kiir();8

szemely Gyula(*FGy); // masoló konstruktor9

Gyula.kiir();10
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delete FGy;11

}12

Ennek a kódnak a kimenete a következő lesz:

Hagyomanyos konstruktor
Bolyai Farkas
Hagyomanyos konstruktor
Farkas Gyula
Alapertelmezett konstruktor
Nincs adat
Masolo konstruktor
Farkas Gyula
Destruktor
Destruktor
Destruktor
Destruktor

Megfigyelhetjük, hogy először a BF objektumot hoztuk létre a hagyományos konst-
ruktorral. Ezt követően a szabad tárban jön létre egy objektum, amelyre az FGy muta-
tóval hivatkozhatunk. Itt is a hagyományos konstruktort hívta meg a rendszer, mivel a
new operátor után az osztály nevet és, kerek zárójelben, az aktuális paraméterek listáját
adtuk meg. Az A objektumot az alpértelmezett, a Gyula objektumot pedig a másoló
konstruktorral hoztuk létre.

A alapértelmezett konstruktor mindkét adattagba az üres karakterláncot másolja.
Mivel ennek a hossza zéró, a kiir tagfüggvény a „Nincs adat” üzenetet jeleníti meg.
Feltételeztük, hogy ha a családnév üres, akkor a keresztnevet sem adtuk meg.

Egy osztályt úgy is deklarálhatunk, hogy nem adunk meg konstruktort. Jegyezzük
meg, hogy ha nincs, a programozó által bevezetett konstruktor, akkor a rendszer létre-
hoz egy alapértelmezett konstruktort, és ezt hívja meg minden alkalommal, amikor egy
új objektum keletkezik. Ez a konstruktor nem ad kezdeti értékeket az adattagoknak.

Ha a programozó létrehozott egy vagy több konstruktort, akkor a rendszer nem
generál alapértelmezett konstruktort. Ha ezen konstruktorok közül egyik sem alap-
értelmezett, és szeretnénk olyan objektumot létrehozni, amely nem tartalmaz aktuális
paraméterekből álló listát, akkor kötelesek vagyunk egy alapértelmezett konstruktort
definiálni.

A másoló konstruktor célja az, hogy egy objektumot kezdeti értékekkel lásson el
egy ugyanolyan típusú objektum segítségével. Általában az

osztálynév(const osztálynév & objektum);

alakban deklaráljuk, ahol a const kulcsszó arra utal, hogy a paraméterként megadott
objektum nem változik.

Ha a programozó nem definiál másoló konstruktort, akkor a rendszer létrehoz egy
másoló konstruktort, amely az adattagok bitenkénti másolását végzi. Ez azt jelenti,
hogy megfelelteti egymásnak a rendszer az adattagokat, majd a forrás adattag bitje-
it rendre átmásolja a cél adattagba. A bitenkénti másolás általában akkor ad helyes
eredményt, ha az osztálynak nincsen mutató típusú adattagja.
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Például a 2.5. és 2.6. kódszövegek esetén, ha nem definiáltunk volna másoló konst-
ruktort, akkor futási időben hibát észleltünk volna. Pontosabban, kétszer próbálta vol-
na meg felszabadítani ugyanazt a memóriaterületet a rendszer. Ennek a hibának az oka
abban rejlik, hogy a Gyula objektum létrehozásakor egy bitenkénti másolást végzett a
rendszer, tehát a *FGy objektum cs_nev és sz_nev adattagjait másolta át. Mivel mind-
két adattag értéke egy cím, ezért ezt a címet másoltuk át, tehát a Gyula objektum cs_nev
és sz_nev adattagjai ugyanarra a memóriaterületre fognak mutatni, ahova a *FGy ob-
jektum adattagjai. Ez viszont nem az, amit meg szerettünk volna tenni, mivel így, ha az
egyik objektum megszűnik, a másiknak is fel lesz szabadítva a memóriaterülete és for-
dítva. E helyett a másoló konstruktort terheltük túl, amely új memóriaterületet foglal
le, és erre másolja a családnevet és keresztnevet.

Jegyezzük meg, hogy a rendszer akkor hívja meg a másoló konstruktort, ha:

• ugyanolyan típusú objektummal adunk kezdőértéket;

• egy függvénynek a paramétere egy objektum;

• egy függvény objektumot térít vissza.

Ezért, ha van mutató típusú adattag, akkor a másoló konstruktort definiálnunk kell
akkor is, ha nincs szándékunkban a kezdőértékadást ugyanolyan típusú objektummal
végezni.

A 2.6. kódszövegben a new operátorral dinamikus módon hoztuk létre az egyik
objektumot. A new utáni típust követően kerek zárójelt használtunk, és ezen belül
adtuk meg a konstruktor aktuális paramétereit.

Lehetőség van arra, hogy egy osztály törzsében osztály típusú tagokat helyezzünk
el. A következő példa keretében azt vázoljuk fel, hogy ha egy osztályon belül n da-
rab különböző osztály típusú tagot helyezünk el, akkor hogyan alakul az illető osztály
konstruktora.

class oszt {
oszt_1 ob_1;
oszt_2 ob_2;
...
oszt_n ob_n;

};

Ebben az esetben az oszt osztály konstruktorának a fejléce a következőképpen ad-
ható meg:

oszt(argumentumlista) : objektumlista

az objektumlista pedig az

ob_1(arglista_1), ob_2(arglista_2), ..., ob_n(arglista_n)

alakú kell legyen. Természetesen, sem itt, sem az osztálydeklarációban a három pont
nem része a szintaxisnak, csak jelzi a folyatatást. Az argumentumlista az oszt osztály
konstruktorában a formális paraméterek listája. Továbbá, minden egyes i értékre 1-től
n-ig az arglista_i az ob_i osztály konstruktorában az aktuális paraméterek listája. Az



2.1. OBJEKTUMORIENTÁLT FOGALMAK 67

egyes objektumok aktuális paramétererei az argumentumlistából alkotott kifejezések
lesznek.

Jegyezzük meg, hogy az objektumlistából hiányoznak azok az objektumok, ame-
lyek nem rendelkeznek a programozó által bevezetett konstruktorral. Ezen kívül hiá-
nyozhatnak az objektumlistából azok az objektumok is, amelyekre az alapértelmezett
konstruktort szeretnénk meghívni.

Egy másik fontos észrevétel a következő. Ha egy osztálynak egyik adattagja egy
objektum, akkor először ennek az objektumnak a konstruktorát hívja meg a rendszer,
majd ezt követően lesz végrehajtva az osztály konstruktorának a törzse.

A továbbiakban a 2.5. kódszöveget úgy módosítjuk, hogy eltávolítjuk a konstruk-
torokból és a destruktorból a kiírásokat, vagyis a 18., 26., 34. és 37. sorokat töröljük.
Legyen az így kapott állomány neve szemely2.h. Ezt felhasználva a következő példa
házaspárok adatait tárolja, mégpedig úgy, hogy osztály típusú tagokat használ.

2.7. kódszöveg. Osztály típusú tagok.
#include "szemely2.h"1

class hazaspar {2

szemely ferj;3

szemely feleseg;4

public:5

hazaspar() // alapértelmezett konstruktor6

{7

}8

hazaspar(szemely& aferj, szemely& afeleseg);9

hazaspar(char* cs_ferj, char* sz_ferj,10

char* cs_feleseg, char* sz_feleseg):11

ferj(cs_ferj, sz_ferj), feleseg(cs_feleseg, sz_feleseg)12

{13

}14

void kiir();15

};16

inline hazaspar::hazaspar(szemely& aferj, szemely& afeleseg):17

ferj(aferj), feleseg(afeleseg)18

{19

}20

void hazaspar::kiir()21

{22

cout << "ferj: ";23

ferj.kiir();24

cout << "feleseg: ";25

feleseg.kiir();26

}27

void main() {28

szemely Ady("Ady","Endre");29

szemely Csinszka("Boncza","Berta");30

hazaspar Hpar(Ady, Csinszka);31

Hpar.kiir();32

hazaspar Petofi("Petofi", "Sandor", "Szendrei", "Julia");33

Petofi.kiir();34
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hazaspar XY;35

XY.kiir();36

}37

A program kimenete a következő lesz:

ferj: Ady Endre
feleseg: Boncza Berta
ferj: Petofi Sandor
feleseg: Szendrei Julia
ferj: Nincs adat
feleseg: Nincs adat

A 2.7. kódszöveg három konstruktorral rendelkezik. Az alapértelmezett konstruk-
tor definíciója is az osztályon belülre került, ezért ez helyben kifejtett függvény (inline
függvény) lesz. Mivel a konstruktor fejlécét úgy adtuk meg, hogy hiányzik a kettős-
pont, és az azt követő objektumlista, ezért ez a konstruktor az összes osztály típusú
tagnak az alapértelmezett konstruktorát hívja meg. Erre utal az is, hogy a fő függvény-
ben az XY objektum kiírásakor a „Nincs adat” üzenet jelenik meg.

A 9. sorban egy konstruktordeklaráció szerepel, a definíció most az osztályon kí-
vülre került. Mivel azt szeretnénk, hogy ez is helyben kifejtett függvény legyen az
inline minősítőt használjuk a függvénydefinícióban. Ez a konstruktor a személy osz-
tály másoló konstruktorával hozza létre a ferj és feleseg tagokat.

A harmadik konstruktor a családnevekkel és személynevekkel hozza létre az osz-
tály típusú tagokat. Ezért a szemely osztály hagyományos konstruktorát hívja meg a
rendszer mindkét adattagra.

2.1.6. A destruktor
Az eddigi pontok alapján tudjuk, hogy ha egy objektum megszűnik, akkor a rend-

szer automatikusan végrehajt egy sajátos tagfüggvényt, amit destruktornak nevezünk.
A továbbiakban részletesebben vizsgáljuk a destruktort.

A destruktor neve mindig a ∼ karakterrel kezdődik, és ez után az osztály neve
következik. A konstruktorhoz hasonlóan a destruktor sem térít vissza értéket, és még a
void típust sem szabad megadni a visszatérítendő érték típusaként.

Felmerül a kérdés, hogy mikor hívódnak meg az egyes destruktorok. Ez a hatókör-
től függ. Egy globális objektum destruktora a main függvény végén az exit függvény
részeként lesz végrehajtva. Ezért nem szabad az exit függvényt meghívni a destruktor-
ban, mivel ez végtelen ciklust eredményezhet.

Egy helyi objektum destruktorát akkor hívja meg a rendszer, ha annak a blokknak
a végére értünk, amelyben be volt vezetve.

Végül tekintsük azt az esetet is, amikor a new operátorral hoztunk létre a szabad
tárban egy objektumot. Ezeket dinamikus módon létrehozott objektumoknak is nevez-
zük. Ekkor a destruktort a delete operátoron keresztül hívja meg a rendszer. Valóban
ekkor lesz felszabadítva a new operátor által lefoglalt memóriaterület.

A továbbiakban egy olyan példa keretében szemléltetjük a destruktor működését,
amely minden esetben kiírja, hogy éppen mit végzett, azaz milyen konstruktort vagy
destruktort hívott meg. A kiírást most a printf függvénnyel végezzük.
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2.8. kódszöveg. A destruktor.
#include <cstdio>1

#include <cstring>2

using namespace std;3

class kiiras {4

char* nev;5

public:6

kiiras(char* n);7

∼kiiras();8

};9

kiiras::kiiras(char* n)10

{11

nev = new char[strlen(n)+1];12

strcpy(nev, n);13

printf("Letrehoztam: %s\n", nev);14

}15

kiiras::∼kiiras()16

{17

printf("Felszabaditottam: %s\n", nev);18

delete nev;19

}20

void fuggv()21

{22

printf("Fuggvenymeghivas.\n");23

kiiras helyi("HELYI");24

}25

kiiras globalis("GLOBALIS");26

void main() {27

kiiras* dinamikus = new kiiras("DINAMIKUS");28

fuggv();29

printf("Folytatodik a fo fuggveny.\n");30

delete dinamikus;31

}32

Végrehajtva a programot, a következő kimenetet kapjuk:

Letrehoztam: GLOBALIS
Letrehoztam: DINAMIKUS
Fuggvenymeghivas.
Letrehoztam: HELYI
Felszabaditottam: HELYI
Folytatodik a fo fuggveny.
Felszabaditottam: DINAMIKUS
Felszabaditottam: GLOBALIS

A forráskódban egy kiiras nevű osztályt vezettünk be, és létrehoztuk ennek három
objektumát. Figyeljük meg, hogy a globális objektumot hozta először létre a rendszer,
ugyanakkor ennek a destruktora lesz utolsónak végrehajtva. A helyi objektum dest-
ruktora a függvényből való kilépéskor, a dinamikus objektumé pedig a delete operátor
részeként hívódik meg.
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2.2. Az objektumorientált programozási módszer

2.2.1. Elméleti alapok
Az objektum adattagokat és tagfüggvényeket tartalmaz. Ha nem használunk barát

függvényeket a védett tagok csak a tagfüggvényekben érhetők el. Ezt a tulajdonságot
egybezártságnak (zártságnak) nevezzük.

A gyakorlatban viszont nem csak különálló objektumokkal találkozunk. A külön-
böző objektumok közti kapcsolatok is fontosak. Egy osztály örökölheti egy másik
osztály tagjait. Az eredeti osztály neve alaposztály, vagy bázisosztály. Az örökléssel
létrehozott osztályt származtatott osztálynak nevezzük. Az adattagok, és a tagfüggvé-
nyek is öröklődnek. Ha egy osztály több alaposztállyal rendelkezik, akkor többszörös
öröklésről beszélünk. Az öröklés egy másik fontos tulajdonsága az objektumoknak.
Az objektumok egy hierarchiát alkothatnak.

Az öröklött tagfüggvények túlterhelhetőek. Nem csak a függvény neve, hanem a
paraméterlistája is ugyanaz lehet. Az objektumhierarchia különböző szintjein ugyan-
annak a műveletnek más és más értelme lehet. Ezt a tulajdonságot polimorfizmusnak
nevezzük.

2.2.2. Származtatott osztályok deklarálása
A C++ programozási nyelvben a származtatott osztályokat az alábbi módon adjuk

meg:

class oszt : alaposztálylista {
// új adattagok és tagfüggvények

};

ahol az alaposztálylista vesszővel elválasztott elemei

public alaposztály
protected alaposztály
private alaposztály

alakúak kell legyenek. Ha minden egyes esetben a public hozzáférésmódosítót hasz-
náljuk, akkor a

class oszt : public oszt_1, ..., public oszt_n {
// ...

};

alakú szerkezetet kapjuk, ahol az oszt osztály az oszt_1, ..., oszt_n osztályok származ-
tatott osztálya. Jegyezzük meg, hogy a konstruktorok és destruktorok nem öröklődnek.
A származtatott osztály konstruktorát az

oszt(paraméterlista) :
oszt_1(lista1), ..., oszt_n(lista_n)

{
// ...

}
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módon definiáljuk. A következő pontban olyan példákat adunk származtatott osztályra,
amelyek lehetőséget teremtenek a virtuális tagfüggvények bevezetésére is.

2.2.3. Virtuális tagfüggvények
Tekintsük egy olyan példát származtatott osztályra, amelyben az alap nevű osz-

tályban két függvényt deklarálunk, és a második meghívja az elsőt. Ugyanakkor a
származtatott osztályban csak az elsőt írjuk felül.

2.9. kódszöveg. Virtuális tagfüggvény.
#include <iostream>1

using namespace std;2

class alap { // az alaposztály3

public:4

void f1();5

void f2();6

};7

class szarm : public alap {8

public:9

void f1();10

};11

void alap::f1()12

{13

cout << "alap: f1\n";14

}15

void alap::f2()16

{17

cout << "alap: f2\n";18

f1(); // az f2 meghívja az f1-et.19

}20

void szarm::f1()21

{22

cout << "szarmaztatott: f1\n";23

}24

void main() {25

szarm s;26

s.f2();27

}28

Figyeljük meg, hogy csak az f 1 tagfüggvényt írtuk felül, az f 2 öröklődik az alap-
osztálytól. A fő függvényben a származtatott osztálynak hoztuk létre egy objektumát
és az erre az f 2 függvényt hívtuk meg. Felmerül a kérdés, hogy ilyen módon melyik
f 1 függvény lesz végrehajtva?

A 2.9. kódszöveg esetén az f 1 függvény kiválasztása fordítási időben történt, ezért
az alaposztály f 1 tagfüggvénye lesz végrehajtva. Ezt a tulajdonságot statikus kötésnek
nevezzük.

Ha a végrehajtandó függvény kiválasztása futási időben történik, akkor dinamikus
kötésről beszélünk. A dinamikus kötést virtuális tagfüggvények segítségével valósít-
hatjuk meg. Az f 1 tagfüggvényt kell virtuálisnak deklarálni. Ezt úgy tehetjük meg,
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hogy a virtual minősítőt használjuk a függvény alaposzálybeli deklarációjában. Ebben
az esetben az alaposztályt a

class alap {
public:

virtual void f1();
void f2();

};

alakban adjuk meg. Így a származtatott osztálybeli f 1 függvény lesz végrehajtva.
Figyeljük meg, hogy a virtual kulcsszót elég egyszer megadni, az alaposztálybeli

deklarációban. Ebben az esetben a származtatott osztályban deklarált túlterhelt tag-
függvény is virtuális lesz. Ha egy függvényt virtuálisnak deklaráltunk az alaposztály-
ban, akkor az osztályhierarchia tetszőleges származtatott osztályában virtuális lesz.

A továbbiakban tekintsünk egy másik példát, amelyben felmerül a virtuális tag-
függvények megadásának a szükségszerűsége. Vezessük be a racionális számokra vo-
natkozó tort nevű osztályt, amely két egész típusú adattaggal rendelkezik, melyek a
számlálónak és nevezőnek felelnek meg. Az osztály kell rendelkezzen egy olyan konst-
ruktorral, amely a számlálót és a nevezőt kezdeti értékekkel látja el. Alapértelmezetten
a számláló értéke legyen 1, a nevezőjé pedig 0. Továbbá, az osztálynak kell legyen egy
szorzat és egy szoroz nevű tagfüggvénye is. Az első a két tört szorzatát számolja ki,
a második pedig az aktuális objektumot módosítja úgy, hogy azt megszorozza a para-
méterként megadott objektummal. Ugyanakkor a tort osztálynak kell legyen egy olyan
tagfüggvénye is, amely az illető racionális számot írja ki.

A fenti osztályt felhasználva egy olyan tort_kiir nevű osztályt is létre kell hozni,
amely a szorzat tagfüggvényt úgy módosítja, hogy a művelet elvégzésén kívül maga
a művelet is jelenjen meg a szabványos kimeneten. A szoroz tagfüggvényt nem írjuk
felül, de a műveletnek ebben az esetben is meg kell jelennie.

2.10. kódszöveg. A szorzat virtuális tagfüggvény bevezetése a racionális szá-
mokra vonatkozó osztály esetén.

#include <iostream>1

using namespace std;2

class tort {3

protected:4

int szamlalo;5

int nevezo;6

public:7

tort(int szamlalo1 = 0, int nevezo1 = 1);8

/*virtual*/ tort szorzat(tort& r);9

tort& szoroz(tort& r);10

void kiir();11

};12

tort::tort(int szamlalo1, int nevezo1)13

{14

szamlalo = szamlalo1;15

nevezo = nevezo1;16

}17

// két tört szorzatát számolja ki, de nem egyszerüsít18
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tort tort::szorzat(tort& r)19

{20

return tort(szamlalo * r.szamlalo, nevezo * r.nevezo);21

}22

// az aktuális objektumot módosítja23

tort& tort::szoroz(tort& q)24

{25

*this = this->szorzat(q);26

return *this;27

}28

void tort::kiir()29

{30

if ( nevezo )31

cout << szamlalo << " / " << nevezo;32

else33

cerr << "helytelen tort";34

}35

class tort_kiir: public tort {36

public:37

tort_kiir( int szamlalo1 = 0, int nevezo1 = 1 );38

tort szorzat( tort& r);39

};40

inline tort_kiir::tort_kiir(int szamlalo1, int nevezo1) :41

tort(szamlalo1, nevezo1)42

{43

}44

tort tort_kiir::szorzat(tort& q)45

{46

tort r = tort(*this).szorzat(q);47

cout << "(";48

this->kiir();49

cout << ") * (";50

q.kiir();51

cout << ") = ";52

r.kiir();53

cout << endl;54

return r;55

}56

int main()57

{58

tort p(3,4), q(5,2), r;59

r = p.szoroz(q);60

p.kiir();61

cout << endl;62

r.kiir();63

cout << endl;64

tort_kiir p1(3,4), q1(5,2);65

tort r1, r2;66

r1 = p1.szorzat(q1);67

r2 = p1.szoroz(q1);68
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p1.kiir();69

cout << endl;70

r1.kiir();71

cout << endl;72

r2.kiir();73

cout << endl;74

return 0;75

}76

A programot végrehajtva az alábbi kimenetet kapjuk:

15 / 8
15 / 8
(3 / 4) * (5 / 2) = 15 / 8
15 / 8
15 / 8
15 / 8

Figyeljük meg, hogy a kapott eredmény nem megfelelő, mivel a művelet kiírása
csak egy alkalommal jelent meg. Ahhoz, hogy az elvárt eredményt kapjuk, a szorzat
tagfüggvényt virtuálisnak kell deklarálni, és ezt úgy tehetjuk meg, hogy a 2.10. kód-
szöveg 9. sorából eltávolítjuk a megjegyzés jelét. Ha ezt megtesszük, akkor a kimenet
így módosul:

15 / 8
15 / 8
(3 / 4) * (5 / 2) = 15 / 8
(3 / 4) * (5 / 2) = 15 / 8
15 / 8
15 / 8
15 / 8

tehát valóban kétszer jelenik meg a műveletre vonatkozó kiírás.

2.2.4. Absztrakt osztályok

Egy alaposztálynak lehetnek olyan általános tulajdonságai, amelyekről tudunk, de
nem tudjuk őket definiálni csak egy származtatott osztályban. Ebben az esetben egy
olyan virtuális tagfüggvényt deklarálhatunk, amely nem lesz definiálva az alaposztály-
ban. Azokat a tagfüggvényeket, amelyek deklarálva vannak, de nincsenek definiálva
egy adott osztályban, tiszta virtuális tagfüggvényeknek nevezzük.

A tiszta virtuális tagfüggvényt a szokásos módon deklaráljuk, de a fejléc után az
= 0 karaktereket írjuk. Ez jelzi, hogy a tagfüggvényt nem fogjuk definiálni.

Azokat az osztályokat, amelyek tartalmaznak legalább egy tiszta virtuális tagfügg-
vényt, absztrakt osztályoknak nevezzük. Az absztrakt osztályoknak nem hozhatjuk
létre objektumát.

A tiszta virtuális tagfügvényeket felül kell írni a származtatott osztályban, ellenkező
esetben az illető osztály is absztrakt lesz.

Tekintsük a következő példát
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2.11. kódszöveg. Absztrakt osztály.
#include <iostream>1

using namespace std;2

class allat {3

protected:4

double suly; // kg5

double eletkor; // ev6

double sebesseg; // km / h7

public:8

allat( double su, double k, double se);9

virtual double atlagos_suly() = 0;10

virtual double atlagos_eletkor() = 0;11

virtual double atlagos_sebesseg() = 0;12

int kover() { return suly > atlagos_suly(); }13

int gyors() { return sebesseg > atlagos_sebesseg(); }14

int fiatal() { return 2 * eletkor < atlagos_eletkor(); }15

void kiir();16

};17

allat::allat( double su, double k, double se)18

{19

suly = su;20

eletkor = k;21

sebesseg = se;22

}23

void allat::kiir()24

{25

cout << ( kover() ? "kover, " : "sovany, " );26

cout << ( fiatal() ? "fiatal, " : "oreg, " );27

cout << ( gyors() ? "gyors" : "lassu" ) << endl;28

}29

class galamb : public allat {30

public:31

galamb( double su, double k, double se):32

allat(su, k, se) {}33

double atlagos_suly() { return 0.5; }34

double atlagos_eletkor() { return 6; }35

double atlagos_sebesseg() { return 90; }36

};37

class medve: public allat {38

public:39

medve( double su, double k, double se):40

allat(su, k, se) {}41

double atlagos_suly() { return 450; }42

double atlagos_eletkor() { return 43; }43

double atlagos_sebesseg() { return 40; }44

};45

class lo: public allat {46

public:47

lo( double su, double k, double se):48
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allat(su, k, se) {}49

double atlagos_suly() { return 1000; }50

double atlagos_eletkor() { return 36; }51

double atlagos_sebesseg() { return 60; }52

};53

void main() {54

galamb g(0.6, 1, 80);55

medve m(500, 40, 46);56

lo l(900, 8, 70);57

g.kiir();58

m.kiir();59

l.kiir();60

}61

A programot futtatva az alábbi kimenetet kapjuk:

kover, fiatal, lassu
kover, oreg, gyors
sovany, fiatal, gyors

Figyeljük meg, hogy annak ellenére, hogy az allat osztályt absztraktnak deklarál-
tuk, hasznos volt ennek bevezetése, mivel egyes tagfüggvényeket már az alaposztály
szintjén definiálni lehetett. Ezek öröklődtek a származtatottakba és így nem kellett őket
minden egyes esetben külön-külön megírni.

2.2.5. Az interfész fogalma
A C++ programozási nyelvben az interfész fogalma nincsen értelmezve abban a

formában, ahogyan az létezik a Java és C# programozási nyelvekben. De tetszőleges
olyan absztrakt osztályt, amely csak tiszta virtuális függvényeket tartalmaz interfész-
nek tekinthetünk. Természetesen ebben az esetben nem fogunk deklarálni adattagokat
sem az osztályon belül. Az előző pontban bevezetett allat nevű osztály adattagokat
is és nem virtuális függvényeket is tartalmaz, ezért ez nem tekinthető interfésznek. A
továbbiakban egy Jarmu nevű absztrakt osztályt adunk meg, amely csak tiszta virtuális
tagfüggvényekkel rendelkezik. Ugyanakkor ennek az osztálynak két származtatottját
is létrehozzuk.

2.12. kódszöveg. Absztrakt osztály, amely interfésznek tekinthető.
#include <iostream>1

using namespace std;2

class Jarmu3

{4

public:5

virtual void Indul() = 0;6

virtual void Megall() = 0;7

virtual void Megy(int km) = 0;8

virtual void All(int perc) = 0;9

};10

class Bicikli : public Jarmu11

{12
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public:13

void Indul();14

void Megall();15

void Megy(int km);16

void All(int perc);17

};18

void Bicikli::Indul() {19

cout << "Indul a bicikli." << endl;20

}21

void Bicikli::Megall() {22

cout << "Megall a bicikli." << endl;23

}24

void Bicikli::Megy(int km) {25

cout << "Biciklizik " << km << " kilometert." << endl;26

}27

void Bicikli::All(int perc) {28

cout << "A bicikli all " << perc << " percet." << endl;29

}30

class Auto : public Jarmu31

{32

public:33

void Indul();34

void Megall();35

void Megy(int km);36

void All(int perc);37

};38

void Auto::Indul() {39

cout << "Indul az auto." << endl;40

}41

void Auto::Megall() {42

cout << "Megall az auto." << endl;43

}44

void Auto::Megy(int km) {45

cout << "Az auto megy " << km << " kilometert." << endl;46

}47

void Auto::All(int perc) {48

cout << "Az auto all " << perc << " percet." << endl;49

}50

void BejarUt(Jarmu *j)51

{52

j->Indul();53

j->Megy(3);54

j->All(1);55

j->Megy(2);56

j->Megall();57

}58

int main()59

{60

Jarmu *b = new Bicikli;61

BejarUt(b);62
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Jarmu *a = new Auto;63

BejarUt(a);64

delete a;65

delete b;66

}67

A fő függvényben egy Bicikli és egy Auto típusú dinamikus objektumot deklarál-
tunk. Ha ezekre az objektumokra a BejarUt nevű tagfüggvényt hívjuk meg, különböző
eredményt kapunk, annak ellenére, hogy a függvénynek csak egy olyan paramétere
van, amely a Jarmu absztrakt osztályra hivatkozó mutató.
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3. fejezet Adatbázisok 

3.1. A relációs adatmodell  

Az első ABKR-ek hálós vagy hierarchikus adatmodellt használták. Manapság a relációs 

adatmodell a legelterjedtebb. A népszerűséget annak köszönheti, hogy nagyon egyszerű deklaratív 

nyelvvel rendelkezik az adatok kezelésére, illetve lekérdezésére. A relációs adatmodell értékorientált, 

ez ahhoz vezet, hogy a relációkon értelmezett műveletek eredményei szintén relációk. 

Ha adottak a nDDD ,,, 21   nem szükségszerűen egymást kizáró halmazok, akkor R egy reláció 

a nDDD ,,, 21   halmazokon, ha nDDDR  21  (Descartes-féle szorzat). 

A relációs adatmodell szempontjából Di az Ai attribútum értékeinek tartománya (doméniuma). 

Di lehet egész számok halmaza, karaktersorok halmaza, valós számok halmaza stb., n a reláció foka. 

Egy ilyen relációt táblázatban ábrázolhatunk: 

 

R A1 ... Aj ... An 

r1 a11 ... a1j ... a1n 

⋮      

ri ai1 ... aij ... ain 

⋮      

rm am1 ... amj ... amn 

 

ahol jij Da  . 

A táblázat sorai a reláció elemei. Nagyon sok esetben a tábla megnevezést használják a reláció 

helyett. A relációt a következőképpen jelöljük: R (A1, A2,..., An). A reláció nevét és a reláció 

attribútumainak a halmazát együtt relációsémának nevezzük. 

példa: Diákok reláció: 

 

Név SzületésiDátum CsopKod 

Nagy Ödön 1975-DEC-13 512 

Kiss Csaba 1971-APR-20 541 

Papp József 1973-JAN-6 521 

 

példa: Könyvek reláció: 

 

Szerző Cím Kiadó KiadÉv 

C. J. Date An Introduction to Database Systems Addison-Wesley 1995 

Paul Helman The Science of Database IRWIN 1994 

 

A relációs adatmodell tulajdonságai 

 A relációs adatbázis relációi vagy táblái a következő tulajdonságokkal rendelkeznek: 

1. A tábla nem tartalmazhat két teljesen azonos sort, azaz két egyed előfordulás (sor) legalább egy 

tulajdonság (attribútum) konkrét értékében el kell hogy térjen egymástól. 

2. Kulcs értelmezése: egy S attribútumhalmaz az R reláció kulcsa, ha: 

– R relációnak nem lehet két sora, melynek értékei megegyeznek az S halmaz minden 

attribútumára. 

– S egyetlen valódi részhalmaza sem rendelkezik a) tulajdonsággal. 
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Ha a konkrét egyedek több olyan tulajdonsággal is rendelkeznek, amelyek értéke egyedi minden 

egyes előfordulásra nézve, akkor több kulcsjelöltről beszélhetünk. Ezek közül egyet elsődleges 

kulcsnak kell kijelölni. Az is megtörténhet, hogy nincs olyan tulajdonság, amelynek értéke egyedi 

lenne az egyed-előfordulásokra nézve. Ekkor több tulajdonság értéke együtt fogja jelenteni az 

elsődleges (összetett) kulcsot. Az 1. tulajdonságból következik, hogy mindig kell legyen elsődleges 

kulcs, ha más nem, a teljes sor mindig egyedi. Elsődleges kulcs értéke soha nem lehet null vagy üres. 

3. A táblázat sorainak vagyis az egyedelőfordulásoknak a sorrendje lényegtelen. 

4. A táblázat oszlopaira vagyis a tulajdonságtípusokra, attribútumokra nevükkel hivatkozunk, tehát 

két attribútumnak nem lehet ugyanaz a neve. 

5. A táblázat oszlopainak a sorrendje lényegtelen.  

Az adatbázis módosításakor az új információ nagyon sokféleképpen lehet hibás. Ahhoz, hogy 

az adatbázis adatai helyesek legyenek, különböző feltételeknek kell eleget tenniük. 

A megszorítások azon követelmények, melyeket az adatbázis adatai ki kell elégítsenek, ahhoz, 

hogy helyeseknek tekinthessék őket. 

 

Megszorítások osztályozása 

1. Egyedi kulcs feltétel: egy relációban nem lehet két sor, melyeknek ugyanaz a kulcsértéke, vagyis 

ha C egy R reláció kulcsa, 1 2,t t R   sorok esetén 1 2( ) ( )C Ct t  . 

2. Hivatkozási épség megszorítás: megkövetelik, hogy egy objektum által hivatkozott érték létezzen 

az adatbázisban. Ez analóg azzal, hogy a hagyományos programokban tilosak azok a mutatók, 

amelyek sehova se mutatnak. Külső kulcs egy KK attribútum vagy attribútumhalmaz egy R1 

relációból, mely értékeinek halmaza ugyanaz, mint egy R2 reláció elsődleges kulcsának az 

értékhalmaza, és az a feladata, hogy az R1 és R2 közötti kapcsolatot modellezze. R1 az a reláció, 

mely hivatkozik, az R2 pedig, amelyre hivatkozik. Más megnevezés: az R2 az apa és az R1 a fiú 

(egy sorhoz az R2-ből tartozhat több sor az R1-ből, az R2-ben elsődleges kulcs az attribútum ami a 

kapcsolatot megteremti. Fordítva nem állhat fenn a kapcsolat, hogy egy sorhoz az R1-ből több sor 

is kapcsolódjon az R2-ből). A hivatkozási épség megszorítás a következőket jelenti: 
– az R2 relációban azt az attribútumot (esetleg attribútumhalmazt), melyre az R1 hivatkozik 

elsődleges kulcsnak kell deklarálni, 

– KK minden értéke az R1-ből kell létezzen az R2 relációban, mint elsődleges kulcs értéke. 

3. Értelmezéstartomány-megszorítások: azt jelentik, hogy egy attribútum az értékeit a megadott 

értékhalmazból vagy értéktartományból veheti fel. 
4. Általános megszorítások: tetszőleges követelmények, amelyeket be kell tartani az 

adatbázisban. 
 

3.2. Normalizálás 

3.2.1. Funkcionális függőségek 

Legyen egy reláció 

 R (A1, A2,..., An), ahol Ai attribútumok.  

Jelöljük az attribútumok halmazát 

 A = {A1, A2,..., An}.  

Legyenek X és Y az R reláció attribútumhalmazának részhalmazai, vagyis AYX , . Ezeket a 

jelöléseket használjuk a továbbiakban, ha esetleg nem ismételjük meg. 

X attribútumhalmaz funkcionálisan meghatározza Y attribútumhalmazt (vagy Y funkcionálisan 

függ X-től), ha R minden előfordulásában ugyanazt az értéket veszi fel Y, amikor az X értéke ugyanaz. 

Másképp: X funkcionálisan meghatározza Y-t, ha R két sora megegyezik az X attribútumain 

(azaz ezen attribútumok mindegyikéhez megfeleltetett komponensnek ugyanaz az értéke a két 

sorban), akkor meg kell egyezniük az Y attribútumain is. Ezt a függőséget fomálisan YX  -nal 

jelöljük. 



3. FEJEZET ADATBÁZISOK  81 

Relációs algebrai műveletek segítségével a következőképpen értelmezhetjük a funkcionális 

függőséget:  

YX  , ha Rrt  ,  sor esetén, melyre )()( rt XX   , akkor )()( rt yY   . 

 

3.1. ábra: A funkcionális függőség két soron vett hatása 

példa: SzállításiInformációk reláció: 

 

SzállID SzállNév SzállCím ÁruID ÁruNév MértEgys Ár 

111 Rolicom A. Iancu 15 45 Milka csoki tábla 25000 

222 Sorex 22 dec. 6 45 Milka csoki tábla 26500 

111 Rolicom A. Iancu 15 67 Heidi csoki tábla 17000 

111 Rolicom A. Iancu 15 56 Milky way rúd 20000 

222 Sorex 22 dec. 6 67 Heidi csoki tábla 18000 

222 Sorex 22 dec. 6 56 Milky way rúd 22500 

 

     Funkcionális függőségek: 

SzállID   SzállNév 

         SzállID   SzállCím.  

Mivel mindkét függőségnek ugyanaz a bal oldala, SzállID, ezért egy sorban összegezhetjük: 

SzállID   {SzállNév, SzállCím} 

Szavakban, ha két sorban ugyanaz a SzállID értéke, akkor a SzállNév értéke is ugyanaz kell legyen, 

illetve a SzállCím értéke is.  

Ezenkívül: 

    ÁruID   ÁruNév 

    ÁruID   MértEgys (azzal a feltevéssel, ha más mértékegységben árulják az árut, más ID-t is kap). 

Hasonlóan egy sorban:  

     ÁruID   {ÁruNév, MértEgys} 

 

A funkcionális függőséget felhasználva adhatunk még egy értelmezést a reláció kulcsának. Egy 

vagy több attribútumból álló },,,{ 21 kCCC   halmaz a reláció kulcsa, ha: 

 Ezek az attribútumok funkcionálisan meghatározzák a reláció minden más attribútumát, azaz 

nincs az R-ben két különböző sor, amely mindegyik  kCCC ,,, 21  -n megegyezne. 

 Nincs olyan valódi részhalmaza },,,{ 21 kCCC  -nak, amely funkcionálisan meghatározná az R 

összes többi attribútumát, azaz a kulcsnak minimálisnak kell lennie. 

példa: a SzállításiInformációk reláció kulcsa a {SzállID, ÁruID}, egy szállító egy árut egy árban 

szállít egy adott pillanatban. Nincs a táblában 2 sor, ahol ugyanaz legyen a SzállID és az ÁruID is. 

Csak a SzállID nem elég kulcsnak, mert egy szállító több árut is szállíthat, az ÁruID sem elég, mert 

egy árut több szállító is ajánlhat. □ 

 

t 

r 

X Y 

Ha t és r  

megegyezik 

ezen 

Akkor itt is   

meg kell 

egyezniük  
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Szuperkulcsoknak nevezzük azon attribútumhalmazokat, melyek tartalmaznak kulcsot. A 

szuperkulcsok eleget tesznek a kulcs definíció első feltételének, de nem feltétlenül tesznek eleget a 

minimalitásnak. Tehát minden kulcs szuperkulcs. 

Az R (A1, A2,..., An) reláció esetén Ai attribútum prím, ha létezik egy C kulcsa az R-nek, úgy 

hogy CAi  . Ha egy attribútum nem része egy kulcsnak, akkor nem prím attribútumnak nevezzük. 

Triviális funkcionális függőségről beszélünk, ha az Y attribútum halmaz részhalmaza az X 

attribútum halmaznak )( XY  , akkor Y attribútum halmaz funkcionálisan függ X attribútum 

halmaztól ( YX  ). 

példa: Triviális funkcionális függőség: {SzállID, ÁruID} SzállID. □ 

Minden triviális függőség érvényes minden relációban, mivel amikor azt mondjuk, hogy „két sor 

megegyezik X minden attribútumán, akkor megegyezik ezek bármelyikén is”. 

Nem triviális egy 1 2 1 2p sX X X YY YK K  funkcionális függőség, ha az Y-ok közül legalább egy 

különbözik az X-ektől, vagyis 

, [1, ]jY j s   j ∈{1,2,..., s} úgy, hogy ,j kY X  k ∈{1,2,..., p}.   

Teljesen nem triviális egy 1 2 1 2p sX X X YY YK K  funkcionális függőség, ha az Y-ok közül 

egy sem egyezik meg az X-ek valamelyikével, vagyis 

, [1, ]jY j s   j ∈{1,2,..., s} -re ,j kY X   k ∈{1,2,..., p}. 

Parciális függőség: Ha C egy kulcsa az R relációnak, az Y attribútumhalmaz valódi részhalmaza a C-

nek (Y C ) és B egy attribútum, mely nem része az Y-nak ( B Y ), akkor az Y B -t egy parciális 

függőség. (B függ a kulcs egy részétől.) 

példa: parciális függőségre: SzállID   SzállNév. □ 

A SzállításiInformációk relációban {SzállID, ÁruID} a kulcs, tehát 

{SzállID, ÁruID} SzállNév, 

mivel a kulcs funkcionálisan meghatároz minden más attribútumot, de a SzállNév függ a kulcs 

egy részétől is. 

Tranzitív függőség: Legyen Y A  egy attribútumhalmaz és B egy attribútum, mely nem része Y-

nak ( B Y ). Egy Y B  funkcionális függőség tranzitív függőség, ha Y nem szuperkulcs R 

relációban és nem is valódi részhalmaza R egy kulcsának. 
Honnan a tranzitív elnevezés? Amint látjuk, Y nem kulcs, nem része a kulcsnak, tehát egy 

nemtriviális funkcionális függőség az, hogy Y funkcionálisan függ az R kulcsától (C-től). Tehát 

C Y  és Y B , és erre mondhatjuk, hogy B tranzitív függőséggel függ C-től.  

példa: Rendelések (RendelésSzám, Dátum, VevőID, VevőNév, Részletek), egy cég rendeléseit 

tartalmazó reláció. A különböző vevők rendeléseket helyeznek el a cégnél, a cég más-más számot ad a 

különböző rendeléseknek, így a RendelésSzám elsődleges kulcs lesz, tehát kulcs révén funkcionálisan 

meghatározza az összes többi attribútumot: 

RendelésSzám VevőID. 

Ezenkívül fennáll a  

VevőIDVevőNév  

funkcionális függőség. Tehát a VevőNév tranzitív függőséggel függ a RendelésSzámtól. 
 

     Funkcionális függőségek tulajdonságai: 

1. Ha C az  nAAAR ,...,, 21  reláció egy kulcsa, akkor  nAAAC ,...,,, 21  . 

2. Ha   , akkor   , ez a triviális funkcionális függőség vagy reflexivitás.  




 


)()()()( 2121 rrrr  

3. Ha   , akkor   ,  ahol   . 







 


)()()()()()( 212121 rrrrrr  
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4. Ha    és   , akkor   , ez a funkcionális függőség tranzitív tulajdonsága. 







 


)()()()()()( 212121 rrrrrr  

5. Ha    és A , akkor   , ahol   . 

)()(
)()(

)()()()( 
)()( 21

21

2121

21 rr
rr

rrrr
rr 





 



  

 

Problémák: 
Azokat a problémákat, amelyek akkor jelennek meg, amikor túl sok információt probálunk 

egyetlen relációba belegyömöszölni, anomáliának nevezzük. Az anomáliáknak alapvető fajtái a 

következők: 

 Redundancia: Az információk feleslegesen ismétlődnek több sorban, mint például a 

SzállításiInformációk reláció esetében a szállító címe ismétlődik. 

 Módosítási problémák: Megváltoztatjuk az egyik sorban tárolt információt, miközben ugyanaz az 

információ változatlan marad egy másik sorban. Például, ha a szállító címe változik, de csak egy 

sorban változtatjuk meg, nem tudjuk, melyik a jó cím. Jó tervezéssel elkerülhetjük azt, hogy ilyen 

hibák felmerüljenek. 

 Törlési problémák: Ha az értékek halmaza üres halmazzá válik, akkor ennek mellékhatásaként 

más információt is elveszthetünk. Ha például töröljük a Rolicom által szállított összes árut, az 

utolsó sor törlésével elveszítjük a cég címét is. 

 Illesztési problémák: Ha hozzáilleszteni akarunk egy szállítót, amely nem szállít egy árut sem, a 

szállító címét kitöltjük úgy, hogy az áruhoz „null” értékeket viszünk be, melyet majd utólag ki 

kell törölni, ha el nem felejtjük. 

 

Relációk felbontása 

Az anomáliák megszüntetésének elfogadott útja a relációk felbontása (dekompozíció-ja). R 

felbontása egyrészt azt jelenti, hogy R attribútumait szétosztjuk úgy, hogy ezáltal két új reláció 

sémáját alakítjuk ki belőlük. A felbontás másrészt azt is jelenti, hogyan töltsük fel a kapott két új 

reláció sorait az R soraiból. 

Legyen egy R reláció 1 2{ , , , }nA A AK  sémával, R-et felbonthatjuk S és T  két relációra, 

amelyeknek sémái 1 2{ , , , }mB B BK , illetve {C1, C2, ..., Ck} úgy, hogy 

1. 1 2{ , , , }nA A AK  = 1 2 1 2{ , , , } { , , , }m kB B B C C CK U K , ahol 

 1 2{ , , , }mB B BK ∩ {C1, C2, ..., Ck}≠∅. 

2. Az S reláció sorai az R-ben szereplő összes sornak a 1 2{ , , , }mB B BK -re vett vetületei, azaz R 

aktuális előfordulásának minden egyes t sorára vesszük a t azon komponenseit, amelyek a 

1 2{ , , , }mB B BK  attribútumokhoz tartoznak. Mivel a relációk halmazok, az R két különböző sorának a 

projekciója ugyanazt a sort is eredményezheti az S-ben. Ha így lenne, akkor az ilyen sorokból csak 

egyet kell belevennünk az S aktuális előfordulásába. 

3. Hasonlóan, a T reláció sorai az R aktuális előfordulásában szereplő sorok {C1, C2, ..., Ck} 

attribútumok halmazára vett projekciói. 

2. S = 
mBBB ,,, 21  (R); T = 

mCCC ,,, 21   (R); 

     Veszteségmentes felbontás 

R reláció felbontása S és T relációkra veszteségmentes, ha 

R = S ⋈ T 

Fontos, hogy minden felbontás, amit normálformára hozás közben végzünk, 

veszteségmentes legyen, vagyis ne veszítsünk információt. 
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3.2.2. Normálformák 

Az adatmodellezés egyik fő célja az optimalizálás, vagyis az adatmodellt alkotó egyedtípusok 

lehető legjobb szerkezetének a megkeresése. Az optimális adatmodell kialakítására egyéb technikák 

mellett a normalizálás szolgál. A normalizálás az a folyamat, amellyel kialakítjuk a relációk 

normálformáját (NF). 

A normálformák: 1NF, 2NF, 3NF, BCNF, 4NF, 5NF egymásba skatulyázottak. 2NF 

matematikailag jobb, mint 1NF, a 4NF jobb, mint a BCNF, az 5NF a legjobb, 3NF alakú reláció 

szükségszerűen 1NF és 2NF alakú is. Tehát a normálalakok nem függetlenek egymástól, hanem 

logikusan egymásra épülnek. 

Első normálforma (1NF) 

Értelmezés: Egy R reláció 1NF –ben van, ha az attribútumoknak csak elemi (nem összetett vagy 

ismétlődő) értékei vannak. Ez minimális feltétel, melynek egy reláció eleget kell tegyen, hogy a létező 

relációs ABKR-ek kezelni tudják. 

Példa: A következő reláció nincs 1NF-ben: 

 

Alkalmazottak: 
SzemSzám Név Cím Gyerek1 SzülDát1 … Gyerek5 SzülDát5 

Helység Utca Szám 

 

Ahol a Cím összetett attribútum, a Helység, Utca és Szám attribútumokból áll. A Gyerek1, 

SzülDát1, Gyerek2, SzülDát2, Gyerek3, SzülDát3, Gyerek4, SzülDát4, Gyerek5, SzülDát5 ismétlődő 

attribútum. Egy személynek több gyereke is lehet, érdekeltek vagyunk a gyerekek keresztnevében és 

születési dátumukban. Jelenleg 5 gyerekről szóló információt tudunk eltárolni. Problémák az 

ismétlődő attribútumokkal: van olyan alkalmazott, akinek nincs egy gyereke se, nagyon soknak csak 

egy gyereke van, ezeknél fölöslegesen foglaljuk a háttértárolót. Jelenleg van a cégnek egy 

alkalmazottja, akinek 5 gyereke van, de akármikor alkalmaznak még egyet, akinek 6 gyereke van, 

akkor változtathatjuk a szerkezetet. □ 

1NF-re alakítás 

Ha egy reláció nincs 1NF-ben, mivel tartalmaz összetett attribútumokat, első normálformára 

hozhatjuk, ha az összetett attribútum helyett beírjuk az azt alkotó elemi attribútumokat. A fenti példa 

esetén a Cím attribútum nem fog szerepelni a reláció attribútumai között, csak a Helység, Utca és 

Szám attribútumok.  

Ha adott egy R (A1, A2,..., An) reláció, mely nincs első normálformában, mivel ismétlődő 

attribútumokat tartalmaz, felbontással első normálformába hozható. Jelöljük az attribútumok halmazát 

 A = {A1, A2,..., An}.  

Legyenek C és I az R reláció attribútumhalmazának részhalmazai, vagyis ,C I A , ahol C kulcs és I 

ismétlődő attribútumhalmaz, mely tegyük fel, hogy k-szor ismétlődik. Legyen J azon attribútumok 

halmaza, melyek nem részei a kulcsnak, se nem ismétlődőek, vagyis J A , J C I  és 

J I I . Tehát 1 2 kA C I I I J U U UK U . A felbontás után kapjuk a következő két relációsémát: 

( , )S C I  és ( , )T C J .  

Vagyis az egyik relációban a kulcs attribútum mellett az ismétlődő attribútumok (csak egyszer) 

fognak szerepelni, a másikban pedig a kulcs mellett azon attribútumok, melyek nem ismétlődőek. 

példa: A fenti példa esetén: 

C = {SzemSzám} 

I = {GyerekNév, SzülDátum} 

J = {Név, Helység, Utca, Szám}. 

A két új reláció: 

Alkalmazott (SzemSzám, Név, Helység, Utca, Szám) 
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AlkalmGyerekei (SzemSzám, GyerekNév, SzülDátum) 

Ebben az esetben, ha egy alkalmazottnak csak egy gyereke van az AlkalmGyerekei relációban 

egy sor lesz neki megfelelő, a SzemSzám attribútumnak ugyanazzal az értékével. Ha egy 

alkalmazottnak 5 gyereke van, 5 sor, ha ugyannak az alkalmazottnak még születik egy gyereke, akkor 

6 sor tartalmazza az AlkalmGyerekei relációban az illető alkalmazott gyerekeit. Ha egy 

alkalmazottnak nincs egy gyereke se, az AlkalmGyerekei relációban nem lesz  egy sor sem, mely 

hivatkozna rá a SzemSzám segítségével. 

Második normálforma (2NF) 

Értelmezés: Egy reláció 2NF formában van, ha első normálformájú (1NF) és nem tartalmaz Y B  

alakú parciális függőséget, ahol B nem prím attribútum. 

Amint látjuk, csak akkor tevődik fel, hogy egy reláció nincs 2NF-ben, ha a kulcs összetett. 

példa: A SzállításiInformációk relációja nincs 2NF-ben, mivel a reláció kulcsa a {SzállID, ÁruID} és 

fennáll a SzállID SzállNév, tehát SzállNév függ a kulcs egy részétől is, tehát létezik parciális 

függőség. 

Megoldás: több relációra kell bontani. 

2NF-re alakítás 

Legyen R egy reláció, mely attribútumainak a halmaza A = {A1, A2,..., An} és C A  egy kulcs. 

Ha a reláció nincs második normálformában, azt jelenti létezik egy B A  nem kulcs B C I  

attribútumhalmaz, mely függ funkcionálisan a kulcs egy részétől, vagyis létezik D C , úgy hogy 

D B . 

Az R relációt felbontjuk két relációra, melyek sémái:  

  T(D, B) és ( )S A B  

példa: Amint láttuk a 0. példa SzállításiInformációk relációjában fennállnak a: 

 SzállID   {SzállNév, SzállCím} 

  ÁruID   {ÁruNév, MértEgys} 

funkcionális függőségek, a kulcs pedig a C ={SzállID, ÁruID}. 

Első lépésben B = {SzállNév, SzállCím}, D = {SzállID}. Felbontás után kapjuk a  

Szállítók (SzállID, SzállNév, SzállCím) és 

SzállInf (SzállID, ÁruID, ÁruNév, MértEgys, Ár)  

relációkat. 

A Szállítók reláció 2NF-ben van, mivel a kulcs nem összetett, fel sem tevődik, hogy valamely 

attribútum függjön a kulcs egy részétől. 

          A SzállInf nincs 2NF-ben, mert fennáll a 

  ÁruID   {ÁruNév, MértEgys}. 

Ebben az esetben B = {ÁruNév, MértEgys}, D = {ÁruID}. Tovább bontjuk a következő két relációra:  

Áruk (ÁruID, ÁruNév, MértEgys), 

Szállít (SzállID, ÁruID, Ár). 

Az Áruk 2NF-ben van, mert a kulcs nem összetett és 1NF-ben van. A Szállít relációban 

egyetlen nem kulcs attribútum van: az Ár, és az nem függ csak az ÁruID-től, mert különböző szállító 

különböző árban ajánlhatja ugyanazt az árut, sem a SzállID-től nem függ funkcionálisan, mert egy 

szállító nem ajánlja ugyanabban az árban az összes árut. A kapott relációk: 

Szállítók: 

SzállID SzállNév SzállCím 

111 Rolicom A. Iancu 15 

222 Sorex 22 dec. 6 

Áruk: 

ÁruID ÁruNév MértEgys 

45 Milka csoki tábla 
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67 Heidi csoki tábla 

56 Milky way rúd 

Szállít: 

SzállID ÁruID Ár 

111 45 25000 

222 45 26500 

111 67 17000 

111 56 20000 

222 67 18000 

222 56 22500 

Harmadik normálforma (3NF) 

Értelmezés: Egy R reláció harmadik normálformában (3NF) van, ha második normálformában van és 

nem tartalmaz Y B  alakú tranzitív funkcionális függőséget, ahol B nem prím attribútum. 

Értelmezés: Egy R reláció harmadik normálformában (3NF) van, ha létezik az R-ben egy Y B  

alakú nem triviális funkcionális függőség, akkor Y az R reláció szuperkulcsa vagy a B prím attribútum 

(valamelyik kulcsnak része). 

A két értelmezés ekvivalens. A második nem kéri a második normálformát, de mivel bármely 

létező Y B  funkcionális függőség esetén a bal oldal szuperkulcs, nem lehet annak része. Tehát 

elég, ha az összes létező funkcionális függőség esetén a bal oldal szuperkulcs, akkor a tranzitív 

függőség nem létezhet, mert a tranzitív függőség esetén a bal oldal nem kulcs és ez nem megengedett. 

példa: A Rendelések reláció nincs 3NF-ben, mivel tartalmaz tranzitív funkcionális függőséget. 

RendelésSzám VevőID 

VevőIDVevőNév. 

Probléma, ha így ábrázoljuk a rendeléseket, hogy ha egy vevő több rendelést is elhelyez, ami 

lehetséges, akkor a vevő nevét ismételjük. Megoldás: 2 relációra bontjuk a relációt, mely nincs 3NF-

ben. □ 

3NF-re alakítás 

Legyen R egy reláció, mely 2NF-ben van, viszont nincs 3NF-ben, attribútumainak a halmaza   

A = {A1, A2,..., An} és C A  elsődleges kulcs. Ha a reláció nincs harmadik normálformában, azt 

jelenti, hogy létezik egy B A  nem kulcs B C I  attribútumhalmaz, mely tranzitív függőséggel 

függ a kulcstól, vagyis létezik D, úgy hogy C D  és D B . Mivel a reláció 2NF-ben van, B nem 

függ funkcionálisan C-nek egy részétől, tehát D nem kulcs attribútum. 

Az R relációt felbontjuk két relációra, melyek sémái:  

  T (D, B) és ( )S A B . 

példa: A Rendelések reláció esetén: B = {VevőNév}, D = {VevőID}, a felbontás után kapott relációk:  

Vevők (VevőID, VevőNév) 

RendelésInf (RendelésSzám, Dátum, VevőID) 

Egy adatbázis modell kialakítása szempontjából a legkedvezőbb, ha az adatbázist alkotó 

relációk 3NF -ben vannak. 

3.3. Relációs algebra 

A relációs algebrai műveletek operandusai a relációk. A relációt a nevével szokták megadni, 

például R vagy Alkalmazottak. A műveletek operátorait a következőkben részletezzük. Az 

operátorokat alkalmazva a relációkra, eredményként szintén relációkat kapunk, ezekre ismét 

alkalmazhatunk relációs algebrai operátorokat, így egyre bonyolultabb kifejezésekhez jutunk. Egy 

lekérdezés tulajdonképpen egy relációs algebrai kifejezés. A relációs algebrai műveletek esetén 

szükségünk lesz feltételekre. A feltételek a következő típusúak lehetnek: 
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<attribútum_név>
<attribútum_név>  

<konstans>

 
 

 
    
   
   
 
 
  

 

    

<attribútum_név> IS IN
  <reláció> (melynek egy attribútuma van)

<konstans> IS NOT IN

   
   
   

 

         

NOT <feltétel> 

OR
<feltétel>  <feltétel>

AND

 
 
 

 

 

A továbbiaban lássuk a relációs algebra műveleteit. Az első öt az alapvető művelet, a 

következőket ki tudjuk fejezni az első öt segítségével. 

1) Kiválasztás (Selection): Az R relációra alkalmazott kiválasztás operátor f feltétellel olyan új 

relációt hoz létre, melynek sorai teljesítik az f feltételt. Az eredmény reláció attribútumainak a száma 

megegyezik az R reláció attribútumainak a számával. Jelölés: f (R). 

példa: Keressük a kis keresetű alkalmazottakat (akinek kisebb, vagy egyenlő a fizetése 500 euró-val). 

A lekérdezés a következő: 

           Fizetés <= 500 (Alkalmazottak)          

A lekérdezés eredménye: 

 

SzemSzám Név RészlegID Fizetés 

111111 Nagy Éva 2 300 

222222 Kiss Csaba 9 400 

333333 Kovács István 2 500 

 

példa: Keressük a 9-es részleg nagy fizetésű alkalmazottait (akinek 500 euró-nál nagyobb a fizetése). 

A lekérdezés:  Fizetés > 500 AND RészlegID = 9 (Alkalmazottak)          

 

Az eredmény: 

SzemSzám Név RészlegID Fizetés 

456777 Szabó János 9 900 

 

2) Vetítés (Projection): Adott R egy reláció A1, A2,..., An attribútumokkal. A vetítés művelet 

eredményeként olyan relációt kapunk, mely R-nek csak bizonyos attribútumait tartalmazza. Ha 

kiválasztunk k attribútumot az n-ből: 
1 2
, , ,

ki i iA A AK -et, és ha esetleg a sorrendet is megváltoztatjuk, az 

eredmény reláció a kiválasztott k attribútumhoz tartozó oszlopokat fogja tartalmazni, viszont az összes 

sorból. Mivel az eredmény is egy reláció, nem lehet két azonos sor a vetítés eredményében, az azonos 

sorokból csak egy marad az eredmény relációban. 

Jelölés: 
1 2

, , , ( )
i i ik

A A A R K
 

példa: Ha az Alkalmazottak relációból csak az alkalmazott neve és fizetése érdekel, akkor a 

következő művelet eredménye a kért reláció: 

 

Név, Fizetés (Alkalmazottak)  
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példa: Legyen ismét a Diákok tábla: 

CREATE TABLE Diákok ( 

BeiktatásiSzám INT PRIMARY KEY, 

Név VARCHAR(50), 

Cím VARCHAR(100), 

SzületésiDatum DATE, 

CsopKod CHAR(3) REFERENCES Csoportok (CsopKod), 

Átlag REAL 

); 

A következő vetítés: 

CsopKod (Diákok)  

eredménye az összes létező csoportkod a Diákok táblából. Ha egy csoportkod többször is megjelenik 

a Diákok táblában, a vetítésben csak egyszer fog szerepelni. (Például a Diákok táblában 25 sor esetén 

a csoportkod ’531’-es, a vetítés eredményében csak egyszer fog az ’531’-es csoportkod szerepelni.) 

 

3) Descartes szorzat. Ha adottak az R1 és R2 relációk, a két reláció Descartes szorzata (R1   R2) azon 

párok halmaza, amelyeknek első eleme az R1 tetszőleges eleme, a második pedig az R2 egy eleme. Az 

eredményreláció sémája az R1 és R2 sémájának egyesítése. 

Legyen R1 reláció: 

 

A B 

12 33 

24 46 

 

Legyen R2 reláció:  

 

B C D 

20 55 80 

30 67 97 

40 75 99 

 

Akkor R1   R2 eredménye: 

 

A R1.B R2.B C D 

12 33 20 55 80 

12 33 30 67 97 

12 33 40 75 99 

24 46 20 55 80 

24 46 30 67 97 

24 46 40 75 99 

 

4) Egyesítés. Ha adottak az R1 és R2 relációk, R1 és R2 attribútumainak a száma megegyezik, és 

ugyanabban a pozícióban levő attribútumnak ugyanaz az értékhalmaza, a két reláció egyesítése 

tartalmazni fogja R1 és R2 sorait. Az egyesítésben egy elem csak egyszer szerepel, még akkor is, ha 

jelen van R1– és R2 –ben is (jelölés: R1 U R2).  
 

5) Különbség. Ha adottak az R1 és R2 relációk, R1 és R2 attribútumainak a száma megegyezik és 

ugyanabban a pozícióban levő attribútumnak ugyanaz az értékhalmaza, a két reláció különbsége azon 

sorok halmaza, amelyek R1-ben szerepelnek és R2-ben nem (jelölés: R1   R2).  
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példa: Legyen R1: 

 

SzemSzám Név RészlegID Fizetés 

(euró) 

222222 Kiss Csaba 9 400 

456777 Szabó János 9 900 

234555 Szilágyi Pál 2 700 

333333 Kovács István 2 500 

 

és legyen R2: 

 

SzemSzám Név RészlegID Fizetés 

(euró) 

111111 Nagy Éva 2 300 

456777 Szabó János 9 900 

123444 Vincze Ildikó 1 800 

 

Ekkor R1 U R2: 

 

SzemSzám Név RészlegID Fizetés 

(euró) 

222222 Kiss Csaba 9 400 

456777 Szabó János 9 900 

234555 Szilágyi Pál 2 700 

333333 Kovács István 2 500 

111111 Nagy Éva 2 300 

123444 Vincze Ildikó 1 800 

 

illetve R1 - R2: 

 

SzemSzám Név RészlegID Fizetés 

(euró) 

222222 Kiss Csaba 9 400 

234555 Szilágyi Pál 2 700 

333333 Kovács István 2 500 

 

Ez az öt az alapvető művelet. Még vannak hasznos műveletek: ezek az öt alapvető művelettel 

kifejezhetőek. 

6) Metszet: Legyenek az R1 és R2 relációk, a két reláció metszete: 

)( 21121 RRRRR  .  

 

7) Théta-összekapcsolás (θ-Join): Legyenek az R1 és R2 relációk. A Théta-összekapcsolás során az 

R1 és R2 relációk Descartes szorzatából kiválasztjuk azon sorokat, melyek eleget tesznek a θ 

feltételnek, vagyis: 1R ⋈θ 2 1 2( )R R R  . 

példa: Legyenek R1 és R2 a következő relációk, számítsuk ki: 1R ⋈A<D R2 

R1 reláció: 

A B C 

11 23 32 

65 76 82 

97 76 82 
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R2 reláció: 

B C D 

23 32 44 

23 32 57 

76 82 99 

1R ⋈A<D R2: 

A R1.B R1.C R2.B R2.C D 

11 23 32 23 32 44 

11 23 32 23 32 57 

11 23 32 76 82 99 

65 76 82 76 82 99 

97 76 82 76 82 99 

 

8) Természetes összekapcsolás (Natural join): Legyenek az R1 és R2 relációk. A természetes 

összekapcsolás művelete akkor alkalmazható, ha az R1 és R2 relációknak egy vagy több közös 

attribútuma van. Legyen B az R1, illetve C az R2 reláció attribútumainak a halmaza, a közös 

attribútumok pedig: B  C = {A1, A2, …, Ap}. A természetes összekapcsolást a következő képlettel 

fejezhetjük ki: 

 R1 ⋈ R2 = 1(B C R  ⋈ 
1 1 2 1 1 2 2 2 1 2( . . ) ( . . ) ( . . ) 2p pR A R A R A R A R A R A R     K

, 

ahol Ri.Aj jelöli az Aj attribútumot az Ri relációból, i∈{1,2}, j ∈{1,2, …, p}. 

példa: Legyenek R1 és R2 relációk a Théta-összekapcsolás példából, a természetes összekapcsolás 

eredménye: 

R1⋈R2 eredménye: 

A B C D 

11 23 32 44 

11 23 32 57 

65 76 82 99 

97 76 82 99 

 

R1 és R2 relációk természetes összekapcsolása esetén azokat a sorokat párosítjuk össze, amelyek 

értékei az R1 és R2 sémájának összes közös attribútumán megegyeznek. Legyen r1 az R1 egy sora és r2 

az R2 egy sora, ekkor az r1 és r2 párosítása akkor sikeres, ha az r1 és r2 megfelelő értékei megegyeznek 

az összes A1, A2, …, Ap közös attribútumon. Ha az r1 és r2 sorok párosítása sikeres, akkor a párosítás 

eredményét összekapcsolt sornak nevezzük. Az összekapcsolt sor megegyezik az r1 sorral az R1 

összes attribútumán és r2 sorral az R2 összes attribútumán. Az 1R ⋈R2 eredményében R1 és R2 közös 

attribútumai csak egyszer szerepelnek. 

Egy olyan sort, melyet nem lehet sikeresen párosítani az összekapcsolásban szereplő másik 

reláció egyetlen sorával sem, lógó (dangling) sornak nevezzünk 

példa: Legyenek a Szállítók, Áruk és Szállít relációk. Ha az összes szállítási információra van 

szükségünk, akkor kiszámítjuk a Szállít ⋈ Szállítók ⋈ Áruk természetes összekapcsolást, melynek 

eredménye: 

Szállítók: 

SzállID SzállNév SzállCím 

111 Rolicom A.Iancu 15 

222 Sorex 22 dec. 6 
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Áruk: 

ÁruID ÁruNév MértEgys 

45 Milka csoki tábla 

67 Heidi csoki tábla 

56 Milky way Rúd 

Szállít: 

SzállID ÁruID Ár 

111 45 25000 

222 45 26500 

111 67 17000 

111 56 20000 

222 67 18000 

222 56 22500 

Szállít ⋈ Szállítók ⋈ Áruk eredménye: 

SzállID SzállNév SzállCím ÁruID ÁruNév MértEgys Ár 

111 Rolicom A.Iancu 15 45 Milka csoki Tábla 25000 

222 Sorex 22 dec. 6 45 Milka csoki Tábla 26500 

111 Rolicom A.Iancu 15 67 Heidi csoki Tábla 17000 

111 Rolicom A.Iancu 15 56 Milky way Rúd 20000 

222 Sorex 22 dec. 6 67 Heidi csoki Tábla 18000 

222 Sorex 22 dec. 6 56 Milky way Rúd 22500 

Relációs algebrai műveletek alkalmazásával újabb relációkat kapunk. Gyakran szükséges egy 

olyan operátor, amelyik átnevezi a relációkat. 

 

9) Átnevezés: Legyen R(A1, A2, …, An) egy reláció, az átnevezés operátor: 

)(),,,( 21
R

nBBBS   az R relációt S relációvá nevezi át, az attribútumokat pedig balról jobbra B1, 

B2, …, Bn-né. Ha az attribútum neveket nem akarjuk megváltoztatni, akkor )(RS  operátort 

használunk. 

  

10) Hányados (Quotient): Legyen R1 reláció sémája: {X1, X2,…, Xm, Y1,Y2,…,Yn}, R2 reláció sémája 

pedig: {Y1, Y2, …, Yn}, tehát Y1, Y2, …,Yn  közös attribútumok ugyanazon értékhalmazzal, és R1-nek 

még van pluszba m attribútuma: X1, X2,…, Xm , R2-nek pedig a közöseken kívül nincs más attribútuma. 

R1 az osztandó, R2 az osztó. Jelöljük X-szel és Y-nal a következő attribútumhalmazokat: X = {X1, 

X2,…, Xm}, Y = {Y1,Y2,…,Yn}. Ebben az esetben jelöljük: R1 (X, Y), R2 (Y) a két relációt, melynek 

hányadosát jelöljük:   

R1 DIVIDE BY R2 (X)-el 

Tehát a hányados reláció sémája {X1, X2,…, Xm}. A hányados relációban megjelenik egy x sor, ha 

minden y sorra az R2-ből az R1-ben megjelenik egy r1 sor, melyet az x és y sorok összeragasztásából 

kapunk.  

Másként fogalmazva, legyen 2 reláció, egy bináris és egy unáris, az osztás eredménye a bináris 

reláció azon attribútumait tartalmazza, melyek különböznek az unáris reláció attribútumaitól, és a 

bináris relációból az attribútumok azon értékeit, melyek megegyeznek az unáris reláció összes 

attribútum értékével.   

 

 

 

 

 

 

 

 



92  3. FEJEZET ADATBÁZISOK 

 

példa: Legyen A = 
ÁruID

(Áruk) , S = 
SzállID, ÁruID

(Szállít)  és a következő sorok az S relációban: 

 

SzállID ÁruID 

S1 A1 

S1 A2 

S1 A3 

S1 A4 

S1 A5 

S1 A6 

S2 A1 

S2 A2 

S3 A2 

S4 A2 

S4 A4 

S4 A5 
 

a) Legyen A reláció: 

ÁruID 

A1 

 

akkor az  S DIVIDE A(SzállID) eredménye: 

 

SzállID 

S1 

S2 

 

b) esetben A reláció: 

 

ÁruID 

A2 

A4 

 

akkor S DIVIDE A(SzállID): 

 

SzállID 

S1 

S4 

 

c) esetben A reláció: 
 

ÁruID 

A1 

A2 

A3 

A4 

A5 

A6 

 

akkor S DIVIDE A(SzállID): 

 

SzállID 

S1 
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3.4. Az SQL lekérdezőnyelv 

A legtöbb relációs ABKR az adatbázist az SQL-nek (Structured Query Language) nevezett 

lekérdezőnyelv segítségével kérdezi le és módosítja. Az SQL központi magja ekvivalens a relációs 

algebrával, de sok kiterjesztést dolgoztak ki hozzá, mint például az összesítések. 

Az SQL-nek számos verziója ismeretes, szabványokat is dolgoztak ki, ezek közül a 

legismertebb az SQL-92 vagy SQL2. A napjainkban használt ABKR-ek lekérdezőnyelvei ezt a 

szabványt tartják be. Az SQL egy új szabványa az SQL3, mely rekurzióval, objektumokkal, 

triggerekkel stb. terjeszti ki az SQL2-őt. Számos kereskedelmi ABKR már meg is valósította az SQL3 

néhány javaslatát. 

3.4.1. Egyszerű lekérdezések SQL-ben 

A relációs algebra vízszintes kiválasztás műveletét: 

  f (R) 

az SQL a SELECT, FROM és WHERE kulcsszavak segítségével valósítja meg a 

következőképpen: 

 SELECT * 

 FROM R 

 WHERE f; 

példa: Legyen a NagyKer nevű adatbázis a következő relációsémákkal: 

Részlegek (RészlegID, Név, Helység, ManSzemSzám); 

Alkalmazottak (SzemSzám, Név, Fizetés, Cím, RészlegID); 

Managerek (SzemSzám); 

ÁruCsoportok (CsopID, Név, RészlegID); 

Áruk (ÁruID, Név, MértEgys, MennyRakt, CsopID); 

Szállítók (SzállID, Név, Helység, UtcaSzám); 

Vevők (VevőID, Név, Helység, UtcaSzám, Mérleg, Hihetőség); 

Szállít (SzállID, ÁruID, Ár); 

Szerződések (SzerződID, Dátum, Részletek, VevőID); 

Tételek (TételID, Dátum, SzerződID); 

Szerepel (TételID, ÁruID, RendMenny, SzállMenny). 

Legyen a következő lekérdezés: 

„Keressük azon alkalmazottakat, akik a 9-es részlegnél dolgoznak és a fizetésük nagyobb, mint 

500 euró”. 

 SELECT * 

 FROM Alkalmazottak 

 WHERE RészlegID = 9 AND Fizetés > 500; □ 

A FROM kulcsszó után adhatjuk meg azokat a relációkat, jelen esetben csak egyet, melyre a 

lekérdezés vonatkozik, a fenti példa esetén az Alkalmazottak reláció. 

A kiválasztás feltételét a WHERE kulcsszó után tudjuk megadni. A példánk esetében azok a 

sorok fognak a lekérdezés eredményében megjelenni, melyek eleget tesznek a WHERE után megadott 

feltételnek, vagyis az alkalmazott RészlegID attribútumának az értéke 9 és a Fizetés attribútum értéke 

nagyobb, mint 500. 

A SELECT kulcsszó utáni * azt jelenti, hogy az eredmény reláció fogja tartalmazni a FROM 

után megadott reláció összes attribútumát. 

Az SQL nyelv nem különbözteti meg a kis és nagy betűket. Nem szükséges új sorba írni a 

FROM és WHERE kulcsszavakat, általában a fenti módon szokták megadni, de lehet egy sorban kis 

betűkkel is. 

select * from alkalmazottak where részlegID = 9 and fizetés > 500; 

A relációs algebra vetítés művelete 
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1 2
, , , ( )

i i ik
A A A R K

 

a SELECT-SQL parancs segítségével a következőképpen adható meg: 

 SELECT 
1 2
, , ,

ki i iA A AK  

 FROM R; 

A SELECT kulcsszó után megadhatjuk az R reláció bármely attribútumát és az eredmény sorok 

ezen attribútumokat fogják csak tartalmazni, ugyanazzal a névvel, amivel az R relációban szerepelnek. 

példa: Legyen a következő relációs algebrai lekérdezés: 

Név, Fizetés (Alkalmazottak)  

SELECT-SQL parancs segítségével a következőképpen írható fel: 

  SELECT Név, Fizetés 

 FROM Alkalmazottak; □ 

A lekérdezés feldogozása során a FROM kulcsszó után megadott relációt a feldolgozó 

végigjárja, minden sor esetén ellenőrzi a WHERE kulcsszó után megadott feltétel teljesül-e. Azon 

sorokat, melyek esetén a feltétel teljesül, az eredmény relációba helyezzük. A feldogozás 

hatékonyságát növeli, ha a feltételben szereplő attribútumok szerint létezik indexállomány. 

A vetítés során kapott eredmény reláció esetén megváltoztathatjuk az attribútumok neveit az 

AS kulcsszó segítségével, ha a FROM után szereplő reláció attribútum nevei nem felelnek meg. Az 

AS nem kötelező. A SELECT kulcsszó után kifejezést is használhatunk. 

példa: Ha például a fizetést nem euró-ban, hanem $-ban szeretnénk és az euró/dollár arány mondjuk 

1.1, akkor a nagy fizetésű alkalmazottakat a 9-es részlegből a következő paranccsal kapjuk meg: 

          SELECT Név AS Név9, Fizetés * 1.1 AS Fizetes$ 
FROM Alkalmazottak 

WHERE RészlegID = 9 AND Fizetés > 500; 

Tehát az eredmény reláció két oszlopot fog tartalmazni, melyek nevei: Név9, illetve Fizetés$. □ 

A WHERE kulcsszó utáni feltétel lehet egyszerű vagy összetett. Összetett feltétel esetén 

használhatjuk az AND, OR és NOT logikai műveleteket. A műveletek sorrendjének a 

meghatározására használhatunk zárójeleket, ha ezek megelőzési sorrendje nem felel meg. Az SQL 

nyelvben is, mint a legtöbb programozási nyelvben a NOT megelőzi az AND és OR műveletet, az 

AND pedig az OR-t.  

példa: „Keressük a 3-as és 6-os részleg alkalmazottait akiknek kicsi a fizetése, 200 eurónal kisebb.” 

A következő paranccsal kapjuk meg: 

 SELECT Név, Fizetés 

 FROM Alkalmazottak 

 WHERE (RészlegID = 3 OR RészlegID = 6) AND Fizetés < 200; 

Ha a zárójelet nem tettük volna ki, akkor csak a 6-os részlegből válogatta volna ki a kis 

fizetésűeket, és az eredmény relációban a 3-as részlegből az összes alkalmazott szerepelt volna. □ 

Az SQL rendszerek háromértékű logikát használnak, vagyis egy kifejezés (feltétel) logikai 

értéke lehet: igaz (1), hamis (0), ismeretlen (unknown) (0.5). Egy kifejezés logikai értéke akkor 

ismeretlen, ha a kifejezésben szereplő valamelyik operandus értéke NULL.  Egy WHERE-beli állítás 

értékét hamisnak tekintjük akkor is, ha a kifejezés értéke „ismeretlen”. A NOT, AND és OR 

operátorok igazságértékét a következő táblázat adja meg: 

 

 

AND FALSE NULL TRUE  OR FALSE NULL TRUE      

FALSE FALSE FALSE FALSE  FALSE FALSE NULL TRUE  
NOT 

FALSE NULL TRUE 

NULL FALSE NULL TRUE  NULL NULL NULL TRUE  TRUE NULL FALSE 

TRUE FALSE NULL TRUE  TRUE TRUE TRUE NULL      
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Karakterláncok összehasonlítása esetén használhatjuk a LIKE kulcsszót, hogy a 

karakterláncokat egy mintával hasonlítsunk össze a következőképpen: 

 k LIKE m 

ahol k egy karakterlánc és m egy minta. A mintában használhatjuk a % és _ karaktereket. A % jelnek 

a k-ban megfelel bármilyen karakter 0 vagy nagyobb hosszúságú sorozata. Az _ jelnek megfelel egy 

akármilyen karakter a k-ból. A LIKE kulcsszó segítségével képezett feltétel igaz, ha a k karakterlánc 

megfelel az m mintának. 

példa: SELECT * 
 FROM Alkalmazottak 

 WHERE Név LIKE ‘Kovács%’; 

A lekérdezés eredménye azon alkalmazottakat tartalmazza, kiknek a neve a ‘Kovács’ 

karaktersorral kezdődik. Megkapjuk az összes Kovács vezetéknevű alkalmazottat, de a ‘Kovácsovics’ 

vezetéknevűt is, ha ilyen létezik az adatbázisban. Ha csak a Kovács vezetéknevűeket akarjuk, akkor a 

‘Kovács %’ mintát használjuk. □ 

Használhatjuk a  

k NOT LIKE m 

szűrő feltételt is. 

Más szűrőfeltételek a BETWEEN és IN kulcsszóval képezhetők. A BETWEEN kulcsszó 

segítségével megadunk egy intervallumot, és azt vizsgáljuk, hogy adott oszlop, mely értéke esik a 

megadott intervallumba. (Az oszlop itt szintén lehet származtatott oszlop, kifejezés.)  

WHERE <oszlop> BETWEEN <kifejezés_1> AND <kifejezés_2 > 

példa:  SELECT Név 
 FROM Alkalmazottak 

      WHERE Fizetés BETWEEN 300 AND 500; 

Ugyanazt az eredményt adja, mint a: 

      SELECT Név 

 FROM Alkalmazottak 

      WHERE Fizetés >= 300 AND Fizetés <=500; □ 

Az IN operátor után megadunk egy értéklistát, és azt vizsgáljuk, hogy az adott oszlop mely 

mezőinek értéke egyezik az adott lista valamelyik elemével. (Az oszlop lehet származtatott oszlop, 

kifejezés is.) 

   WHERE <oszlop> IN (<kifejezés_1>, <kifejezés_2> [,...])  

példa: Legyen az Egyetem nevű adatbázis a következő relációsémákkal: 

   Szakok (SzakKod, SzakNév, Nyelv); 

   Csoportok (CsopKod, Evfolyam, SzakKod); 

   Diákok (BeiktatásiSzám, Név, SzemSzám, Cím, SzületésiDatum, CsopKod, 

Átlag); 

   TanszékCsoportok (TanszékCsopKod, Név); 

   Tanszékek (TanszékKod, Név, TanszékCsopKod); 

   Beosztások (BeosztásKod, Név); 

   Tanárok (TanárKod, Név, SzemSzám, Cím, PhD, TanszékKod, BeosztásKod, 

  Fizetés); 

   Tantárgyak (TantKod, Név); 

   Tanít (TanárKod, TantKod); 

   Jegyek (BeiktatásiSzám, TantKod, Datum, Jegy) 

A diákok összes jegyét eltároljuk a Jegyek relációban, több szemeszterben sok jegye van egy diáknak. 

A Diákok táblában az utolsó szemeszter vagy utolsó év átlaga szerepel az Átlag oszlopban, ami 

alapján eldöntik például, hogy kap-e a diák bentlakást, ösztöndíjat stb. 
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Keressük az ’531’-es, ’532’-s és ’631’-es csoportok diákjait: 

 SELECT Név 

 FROM Diákok  

 WHERE CsopKod IN ('531', '532', '631'); □ 

A SELECT SQL parancs lehetőséget ad az eredmény reláció rendezésére az ORDER BY 

kulcsszavak segítségével. Alapértelmezés szerint növekvő sorrendben történik a rendezés, de ha 

csökkenő sorrendet szeretnénk, akkor a DESC kulcsszót használhatjuk. 

példa: Ha a fenti lekérdezést kiegészítjük azzal, hogy a diákokat csoporton belül, névsor szerinti 

sorrendben akarjuk megadni, akkor a SELECT parancsot kiegészítjük az ORDER BY után a 

megfelelő attribútumokkal a következőképpen: 

 SELECT Név 

 FROM Diákok  

 WHERE CsopKod IN ('531', '532', '631') 

ORDER BY CsopKod, Név; □ 

példa: A diákokat átlag szerint csökkenő sorrendben adja meg: 

 SELECT Név 

 FROM Diákok  

ORDER BY Átlag DESC; □ 

3.4.2. Több relációra vonatkozó lekérdezések 

A relációs algebra egyik fontos tulajdonsága, hogy a műveletek eredménye szintén reláció, és az 

eredmény operandus lehet a következő műveletben. Az SELECT-SQL is kihasználja ezt, a relációkat 

összekapcsolhatjuk, egyesíthetjük, metszetet vagy különbséget is számíthatunk.  

A Descartes szorzat 

R1   R2  

műveletét a következő SQL parancs valósítja meg: 

 SELECT * 

 FROM R1, R2; 

A Théta-összekapcsolást:  

1R ⋈θ R2  

a következő paranccsal adhatjuk meg: 

           SELECT * 
FROM R1, R2 

WHERE  ; 

A leggyakrabban használt műveletet, a természetes összekapcsolást  

R1 ⋈ R2 = 1(B C R  ⋈ 
1 1 2 1 1 2 2 2 1 2( . . ) ( . . ) ( . . ) 2p pR A R A R A R A R A R A R     K

), 

a következőképpen írhatjuk SQL-ben:  

 SELECT * 

 FROM R1, R2 

 WHERE 1 1 2 1 1 2 2 2 1 2. .  AND . .  AND  AND . .p pR A R A R A R A R A R A  K ; 

Ebben az általános esetben a két összekapcsolandó relációnak p darab közös attribútuma van. A 

gyakorlatban általában a két relációnak egy közös attribútuma van. Amint látjuk, ha több relációban is 

szerepel ugyanaz az attribútum név, előtagként a reláció nevét használjuk. 

példa: Legyenek a következő relációk: 

    Csoportok (CsopKod, Evfolyam, SzakKod); 
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Diákok (BeiktatásiSzám, Név, Cím, SzületésiDatum, CsopKod, Átlag); 

Ha a diákok esetén szeretnénk kiírni az évfolyamot és szakkódot is, akkor ezt a következő SQL 

parancs segítségével érjük el: 

 SELECT Név, CsopKod, Evfolyam, SzakKod 

 FROM Diákok, Csoportok 

 WHERE Diákok.CsopKod = Csoportok.CsopKod; 

Tehát a WHERE kulcsszó után megadjuk a join feltételt. Ha elfelejtjük a join feltételt az eredmény 

Descartes szorzat lesz, melynek méretei nagyon nagyok lehetnek.  

Vannak olyan ABKR-ek, melyek az előbbi feladat megoldására a JOIN kulcsszót is elfogadják (pl. 

MS SQL Server): 

 SELECT Név, CsopKod, Evfolyam, SzakKod 

 FROM Diákok INNER JOIN Csoportok 

 ON Diákok.CsopKod = Csoportok.CsopKod; 

Később látjuk majd az OUTER JOIN-t is.□ 

Amint az egyszerű lekérdezéseknél láttuk, a WHERE kulcsszó után a kiválasztás feltételét 

adtuk meg. Ha több reláció összekapcsolása mellett kiválasztás műveletet is meg akarunk adni, a join 

feltétel után AND logikai művelettel a kiválasztás feltételét is megadhatjuk. 

példa: Az összes harmadéves diák nevét a következő paranccsal is megkaphatjuk: 

 SELECT Név 

 FROM Diákok, Csoportok 

 WHERE Diákok.CsopKod = Csoportok.CsopKod  

AND Evfolyam = 3; □ 

Kettőnél több relációt is összekapcsolhatunk természetes összekapcsolással, fontos, hogy az 

összes join feltételt megadjuk. Ha az összekapcsolandó relációk száma k, és minden két-két relációnak 

egy-egy közös attribútuma van, akkor a join feltételek száma k–1. Ha tehát 4 relációt kapcsolunk 

össze, a join feltételek száma minumum 3. 

példa: A NagyKer nevű adatbázisra vonatkozóan legyen a következő lekérdezés: 

„Adjuk meg azon szállítók nevét és címét, kik szállítanak édességet” (ÁruCsoportok.Név = ‘édesség’) 

 SELECT Szállítók.Név, Szállítók.Helység, Szállítók.UtcaSzám 

 FROM ÁruCsoportok, Áruk, Szállít, Szállítók 

 WHERE ÁruCsoportok.CsopID = Áruk.CsopID 

  AND Áruk.ÁruID = Szállít.ÁruID 

  AND Szállít.SzállID = Szállítók.SzállID 

AND ÁruCsoportok.Név = 'édesség'; □ 

Az SQL lehetőséget ad arra, hogy a FROM záradékban szereplő R relációhoz 

hozzárendeljünk egy másodnevet, melyet sorváltozónak nevezünk. Sorváltozót akkor használunk, ha 

rövidebb vagy más nevet akarunk adni a relációnak, illetve ha a FROM után kétszer is ugyanaz a 

reláció szerepel. Ha használtunk másodnevet, akkor az adott lekérdezésben azt kell használjuk. 

példa: Keressük azon alkalmazottakat, akik ugyanazon a címen laknak, például férj és feleség, vagy 

szülő és gyerek. 

 SELECT Alk1.Név AS Név1, Alk2.Név AS Név2 

 FROM Alkalmazottak AS Alk1, Alkalmazottak AS Alk2 

 WHERE Alk1.Cím = Alk2.Cím  

  AND Alk1.Név < Alk2.Név; 

A lekérdező feldolgozó ugyanazt a relációt kell kétszer bejárja, hogy a kért párokat megtalálja. Ha az 

Alk1.Név < Alk2.Név feltételt nem tettük volna, akkor minden alkalmazott bekerülne az eredménybe 

önmagával is párosítva. Ezt esetleg a <> feltétellel is megoldhattuk volna, de akkor egy férj−feleség 

páros kétszer is bekerült volna, csak más sorrendben. Például: (‘Kovács István’, ‘Kovács Sára’) és 
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(‘Kovács Sára’, ‘Kovács István’) is. Mivel gyereknek lehet ugyanaz a neve, mint a szülőnek, ezért 

jobb megoldás a: Alk1.Név < Alk2.Név feltételt kicserélni a következő feltétellel: 

Alk1.SzemSzám < Alk2. SzemSzám; □ 

Algoritmus egy egyszerű SELECT−SQL lekérdezés kiértékelésére: 

Input: R1, R2,…, Rn relációk a FROM záradék után 

Begin 

   Minden t1 sorra az R1-ből 

      Minden t2 sorra az R2-ből 

   … 

 Minden tn sorra az Rn-ből 

    Ha a WHERE záradék igaz a t1, t2, …, tn attribútumainak az értékeire  

Akkor 
A SELECT záradék attribútumainak értékeiből alkotott sort az eredményhez adjuk 

End 

A relációs algebra halmazműveleteit (egyesítés, metszet és különbség)  használhatjuk az SQL 

nyelvben, azzal a feltétellel, hogy az operandus relációknak ugyanaz legyen az attribútumhalmaza. A 

megfelelő kulcsszavak: UNION az egyesítésnek, INTERSECT a metszetnek és EXCEPT a 

különbségnek.  

példa: Legyenek a Szállítók és Vevők relációk a NagyKer adatbázisból és a következő lekérdezés: 

„Keressük a kolozsvári cégeket, akikkel kapcsolatban áll a cégünk.” A megoldást a következő 

lekérdezés adja: 

 (SELECT Név, UtcaSzám 

   FROM Szállítók 

   WHERE Helység = 'Kolozsvár') 

  UNION 

 (SELECT Név, UtcaSzám 

   FROM Vevők 

   WHERE Helység = 'Kolozsvár'); □ 

példa: Legyenek az Alkalmazottak és Managerek relációk a NagyKer adatbázisból és a „Keressük 

azon alkalmazottakat, akik nem managerek” lekérdezés: 

 (SELECT SzemSzám, Név FROM Alkalmazottak) 

  EXCEPT 

 (SELECT SzemSzám, Név FROM Managerek, Alkalmazottak 

  WHERE Managerek.SzemSzám = Alkalmazottak.SzemSzám); 

A fenti parancs esetén a második SELECT parancsban a join műveletre azért volt szükségünk, hogy a 

managernek keressük meg a nevét is, mert a különbség művelet esetén fontos, hogy az operandus 

relációknak ugyanaz az attribútumhalmaza legyen. 

Ha az alkalmazott névre nem vagyunk kíváncsiak, akkor a következő SQL parancs azon 

alkalmazottak személyi számát adja meg, akik nem managerek. 

(SELECT SzemSzám FROM Alkalmazottak) 

 EXCEPT 

     (SELECT SzemSzám FROM Managerek); 

A feladatot oly módon is megoldhatjuk, ha a kereskedelmi rendszer nem támogatja az EXCEPT 

műveletet, hogy alkalmazzuk a NOT EXISTS vagy NOT IN záradékot. 

példa: Legyen az Egyetem adatbázisa, és tegyük fel, hogy van olyan eset, hogy egy fiatal tanársegéd 

a matematika szakról, tehát elvégezte a matematika szakot, de még diák az informatika szakon. 

Legyen a következő lekérdezés: „keressük azon tanárokat, akik még diákok”. A megoldás: 

(SELECT Név FROM Tanárok) 

 INTERSECT 

(SELECT Név FROM Diákok); 
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A feladatot a következőképpen is megoldhatjuk, ha a kereskedelmi rendszer nem támogatja az 

INTERSECT műveletet: 

SELECT Név FROM Tanárok 

WHERE EXISTS 

 (SELECT Név FROM Diákok 

 WHERE Diákok.SzemSzám = Tanárok.SzemSzám); □ 

3.4.3. Ismétlődő sorok 

Az SQL nyelv relációi az absztrakt módon definiált relációktól abban különböznek, hogy az 

SQL nem tekinti őket halmaznak, azaz a relációk multihalmazok A SELECT parancs eredményében 

szerepelhet két vagy több teljesen azonos sor, viszont van lehetőség ezen ismétlődések 

megszüntetésére. 

A SELECT kulcsszó után a DISTINCT szó segítségével kérhetjük az azonos sorok 

megszüntetését. 

példa: Az Egyetem adatbázisa esetén keressük azon csoportokat, amelyekben vannak olyan diákok, 

akiknek átlaga kisebb, mint 7.  

SELECT DISTINCT CsopKod  

FROM Diákok 

WHERE Átlag < 7; 

A parancs a Diákok táblából kiválogatja azokat a sorokat, ahol az átlag kisebb, mint 7, ezen 

sorok diákokról szóló információkat tartalmaznak, többek között a csoportkódot is. Egy csoportban 

több diák is lehet, akiknek az átlaga kisebb, mint 7, ezért, ha nem használjuk a DISTINCT kulcsszót, 

akkor előfordulhat, hogy egy csoportkód többször is szerepel az eredményben. □ 

A SELECT paranccsal ellentétben, a UNION, EXCEPT és INTERSECT halmazelméleti 

műveletek megszüntetik az ismétlődéseket. Ha nem szeretnénk, hogy az ismétlődő sorok eltűnjenek, a 

műveletet kifejező kulcsszó után az ALL kulcsszót kell használjuk. 

példa: Az Egyetem adatbázisból keressük a személyeket, akik lehetnek tanárok vagy diákok. A 

következő parancs nem szünteti meg az ismétlődéseket:  

(SELECT Név FROM Tanárok) 

 UNION ALL 

(SELECT Név FROM Diákok); 

Tehát, ha van olyan tanár, aki közben diák is, akkor az kétszer fog szerepelni az eredményben. □ 

3.4.4. Összesítő függvények és csoportosítás 

Az SQL nyelv lehetőséget ad egy oszlopban szereplő értékek összegezésére, vagyis hogy 

meghatározzuk a legkisebb, legnagyobb vagy átlag értéket egy adott oszlopból. Az összesítés 

művelete egy oszlop értékeiből egy új értéket hoz létre. Ezenkívül a reláció egyes sorait bizonyos 

feltétel szerint csoportosíthatjuk, például egy oszlop értéke szerint, és a csoporton belül végezhetünk 

összesítéseket. 

Összesítő függvények a következők: 

– SUM, megadja az oszlop értékeinek az összegét; 

– AVG, megadja az oszlop értékeinek a átlagértékét; 

– MIN, megadja az oszlop értékeinek a minimumát; 

– MAX, megadja az oszlop értékeinek a maximumát; 

– COUNT, megadja az oszlopban szereplő értékek számát, beleértve az ismétlődéseket is, ha azok 

nincsenek megszüntetve a DISTINCT kulcsszóval. 

Ezeket a függvényeket egy skalár értékre alkalmazhatjuk, általában egy SELECT záradékbeli 

oszlopra. 
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példa: A következő lekérdezés segítségével megkapjuk az alkalmazottak átlagos fizetését: 

SELECT AVG(Fizetés) 

FROM Alkalmazottak; □ 

példa: Ha az alkalmazottak számára vagyunk kíváncsiak: 

SELECT COUNT(*) 

FROM Alkalmazottak; □ 

Mindkét példa esetén biztosak vagyunk abban, hogy egy alkalmazott csak egyszer szerepel a 

relációban, mivel a személyi szám elsődleges kulcs. A COUNT()összesítő függvénynek több formája 

is van:  

 COUNT(*) - az eredmény-reláció kardinalitását (az összes sor számát) adja vissza  

 COUNT(oszlop_név)- azon sorok számát adja vissza, ahol oszlop_név értéke NULL-tól 

különböző érték 

 COUNT(DISTINCT oszlop_név)- megszámolja, hány különböző értéke van az oszlop_név 

mezőnek. 

példa: Az Egyetem adatbázis esetén keressük azon csoportoknak a számát, amelyekben vannak olyan 

diákok, akik átlaga kisebb, mint 7: 

SELECT COUNT(DISTINCT CsopKod) 

FROM Diákok 

WHERE Átlag < 7;□ 

Az eddigi összesítések az egész relációra vonatkoztak. Sok esetben a reláció sorait 

csoportosítani szeretnénk egy vagy több oszlop értékei szerint. Például az alkalmazottak átlagfizetését 

minden részlegen belül akarjuk meghatározni. Az Egyetem adatbázisban minden csoport esetén 

keressük a legnagyobb átlagot, a diákok számát. A csoportosítást a GROUP BY kulcsszó segítségével 

érjük el. A parancs általános formája: 

SELECT < csoportosító oszlopok listája >, 

  <összesítő-függvény>(<oszlop>) 

FROM <reláció> 

[WHERE <feltétel>] 

[GROUP BY <csoportosító oszlopok listája>] 

[HAVING <csoportosítási-feltétel>] 

[ORDER BY <oszlop>]; 

A GROUP BY után megadjuk a csoportosító attribútumok (oszlopok) listáját, melyek azonos 

értéke szerint történik a csoportosítás. Csak ezeket az oszlopokat válogathatjuk ki a SELECT kulcsszó 

után és azokat, melyekre valamilyen összesítő függvényt alkalmazunk. Azon oszlopoknak, melyekre 

összesítő függvényt alkalmaztunk, érdemes más nevet adni, hogy könnyebben tudjunk hivatkozni rá. 

példa: Legyenek az Alkalmazottak reláció sorai: 

 

SzemSzám Név RészlegID Fizetés 

(euró) 

111111 Nagy Éva 2 300 

222222 Kiss Csaba 9 400 

456777 Szabó János 9 900 

234555 Szilágyi Pál 2 700 

123444 Vincze Ildikó 1 800 

333333 Kovács István 2 500 

A részlegeken belüli átlagfizetést a következő parancs segítségével kapjuk meg: 

SELECT RészlegID, AVG(Fizetés), MIN(Fizetés), MAX(Fizetés), SUM(Fizetés) 

FROM Alkalmazottak 

GROUP BY RészlegID; 



3. FEJEZET ADATBÁZISOK  101 

A kapott eredmény: 

RészlegID AVG(Fizetés) MIN(Fizetés) MAX(Fizetés) SUM(Fizetés) 

1 800 800 800 800 

2 500 300 700 1500 

9 650 400 900 1300 

A lekérdezés processzor először rendezi a reláció sorait a csoportosítandó oszlop értékei szerint, utána 

azokat a sorokat, ahol ezen oszlopoknak ugyanaz az értéke, az eredmény relációban csak egy sor fogja 

képviselni, ahol megadhatjuk az oszlop értékét, amely a lekérdezett relációban minden sorban 

ugyanaz. A többi oszlopra csakis összesítéseket végezhetünk. Ha a SELECT kulcsszó után olyan 

oszlopot választunk ki, melynek értékei különbözőek a lekérdezett relációban, a lekérdezés processzor 

nem tudja, hogy a különböző értékekből melyiket válassza az eredménybe. Van olyan implementálása 

a SELECT−SQL parancsnak, mely megengedi, hogy egy olyan oszlopot is kiválasszunk, mely nincs a 

csoportosító attribútumok között és a processzor vagy az első, vagy az utolsó értéket választja a 

különböző értékek közül. 

A SELECT parancs megengedi viszont, hogy a csoportosító attribútum hiányozzon a vetített 

attribútumok listájából.  

példa: A következő lekérdezés helyes: 

 SELECT AVG(Fizetés) AS ÁtlagFizetés 

FROM Alkalmazottak 

 GROUP BY RészlegID; 

eredménye pedig: 

ÁtlagFizetés 

800 

500 

650 

példa: Legyen a Szállít (SzállID, ÁruID, Ár) reláció. Egy árut több szállító is ajánlhatja, különböző 

árban. Sok esetben szükségünk van az átlagárra, amiben ajánlanak egy árut. A következő lekérdezés 

minden áru esetén meghatározza az átlagárat, amiben a különböző szállítók ajánlják. 

SELECT ÁruID, AVG(Ár) AS ÁtlagÁr 

FROM Szállít 

GROUP BY ÁruID; □ 

 A GROUP BY záradékot használhatjuk többrelációs lekérdezésben is. A lekérdezés 

processzor először az operandus relációkkal a WHERE feltételét figyelembe véve elvégzi a join, 

esetleg a Descartes szorzat műveletet és ennek az eredmény relációjára alkalmazza a csoportosítást. 

példa: Ha a fenti példa esetén kíváncsiak vagyunk az árunak a nevére: 

 SELECT Áruk.Név, AVG(Ár) 

 FROM Szállít. ÁruID = Áruk.ÁruID 

 WHERE Szállít, Áruk 

 GROUP BY Áruk.Név;  

Remélhetőleg az áru neve is egyedi kulcs, tehát nem fordul elő egy áru név több ÁruID esetén is, mert 

a fenti példában a Név attribútum szerint csoportosítunk. Ha nem egyedi a név, akkor a fenti 

lekérdezés az összes azonos nevű árunak az átlagát adja meg, de sok esetben ez megfelel a 

felhasználónak. Megoldhatjuk úgy is, hogy először ÁruID szerint, majd áru név szerint 

csoportosítunk, lásd a csoportosítást több oszlopra. □ 

Amint a SELECT parancsnak az általános formájánál láttuk, lehetséges több csoportosítási 

attribútum is.  
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példa: Legyenek a következő relációk az Egyetem adatbázisból: 

   Tanszékek (TanszékKod, Név, TanszékCsopKod); 

   Beosztások (BeosztásKod, Név); 

   Tanárok (TanárKod, Név, SzemSzám, Cím, PhD, BeosztásKod, TanszékKod, 

  Fizetés); 

és a következő lekérdezés: „Számítsuk ki a tanárok átlagfizetését tanszékeken belül, beosztásokra 

leosztva!” 

     SELECT TanszékKod, BeosztásKod, AVG(Fizetés) 

FROM Tanárok 

     GROUP BY TanszékKod, BeosztásKod 

Ha a Tanárok tábla tartalma: 

Tanár

Kod 

Név Cím PhD Beosztás 

Kod 

Tanszék 

Kod 

Fizetés 

KB12 Kiss Béla Petőfi u. 12 Y ADJ ALG 150 

NL03 Nagy László Kossuth u. 3 Y ADJ REN 160 

KG05 Kovács Géza Ady tér 5 N ADJ ALG 160 

PI14 Péter István Dóm tér 14 N TNS REN 120 

NT55 Németh Tamás Dózsa u. 55 Y PRO ALG 300 

VS77 Vígh Sándor Rózsa u. 77 Y PRO REN 310 

LL63 Lukács Lóránt Viola u. 63 Y ADJ REN 170 

LS07 László Samu  Rákóczi u. 7 N TNS REN 110 

KP52 Kerekes Péter Váczi u. 52 Y PRO ALG 280 

a lekérdezés eredménye: 

Tanszék 

Kod 

Beosztás

Kod 

AVG 

(Fizetés) 

ALG ADJ 155 

ALG PRO 290 

REN ADJ 165 

REN PRO 310 

REN TNS 115 

példa: Megismételve egy előbbi példát:  

 SELECT Áruk. ÁruID, Áruk.Név, AVG(Ár) 

 FROM Szállít. ÁruID = Áruk.ÁruID 

 WHERE Szállít, Áruk 

 GROUP BY Áruk.ÁruID, Áruk.Név; 

Az áru név szerinti csoportosítás nem fog újabb csoportokat behozni, de nem válogathatjuk ki a Név 

oszlopot, ha nem szerepelt a csoportosítási attribútumok között. A vetítés attribútumai között nem kell 

feltétlenül szerepeljen az ÁruID, de ha egy név többször is előfordul, akkor az eredmény furcsa lesz.  

  

 A csoportosítás után kapott eredmény reláció soraira a HAVING kulcsszót használva egy 

feltételt alkalmazhatunk. Ha csoportosítás előtt szeretnénk kiszűrni sorokat, azokra a WHERE feltételt 

lehet alkalmazni. A HAVING kulcsszó utáni feltételben azon oszlopok szerepelhetnek, melyekre a 

SELECT parancsban összesítő függvényt alkalmaztunk. 

példa: Keressük azon részlegeket, ahol az alkalmazottak átlagfizetése nagyobb, mint 500 euró, 

átlagfizetés szerint növekvő sorrendben. 

 SELECT RészlegID, AVG(Fizetés) 

FROM Alkalmazottak 

GROUP BY RészlegID 

HAVING AVG(Fizetés) > 500 

ORDER BY AVG(Fizetés); 
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A fenti adatokat figyelembe véve az eredmény reláció a következő lesz: 

RészlegID AVG(Fizetés) 

9 650 

1 800 

Ha nem adjuk meg az ORDER BY záradékot, akkor a GROUP BY záradékban megadott oszlopok 

szerint rendezi az eredményt. 

példa: Helytelen a következő parancs: 

 SELECT RészlegID, AVG(Fizetés) 

FROM Alkalmazottak 

WHERE AVG(Fizetés) > 500 

GROUP BY RészlegID; 

példa: Keressük azon tanszékeket, ahol a tanársegédeket kivéve a tanárok átlagfizetése nagyobb, mint 

240 euró. 

SELECT TanszékKod, AVG(Fizetés) 

FROM Tanárok 

WHERE BeosztásKod <> ‘TNS’ 

GROUP BY TanszékKod 

HAVING AVG(Fizetés) > 240; 

3.4.5. Alkérdések 

A WHERE záradékban eddig a feltételben skaláris értékeket tudtunk összehasonlítani. Az 

alkérdések segítségével sorokat vagy relációkat tudunk összehasonlítani. Egy alkérdés egy olyan 

kifejezés, mely egy relációt eredményez, például egy select-from-where kifejezés. 

Alkérdést tartalmazó SELECT SQL parancs általános formája a következő: 

SELECT <attribútum_lista> 

FROM <tábla> 

WHERE <kifejezés> <operátor> 

   (SELECT <attribútum_lista> 

              FROM <tábla>); 

A rendszer először az alkérdést hajtja végre és annak eredményét használja a „fő” lekérdezés, kivéve 

a korrelált alkérdéseket. 

Alkérdéseket annak megfelelően csoportosíthatjuk, hogy az eredménye hány sort és hány oszlopot 

tartalmaz: 

 egy oszlopot, egy sort, vagyis egy skalár értéket ad vissza (single-row); 

 egy oszlopot, több sort, ún. többsoros alkérdés (multiple-row subquery); 

 több oszlopot, több sort, ún. több oszlopos alkérdés (multiple-column); 

Ha egy attribútum egyetlen értékére van szükségünk, ebben az esetben a select-from-where 

kifejezés skalár értéket ad vissza, mely konstansként használható. A select-from-where kifejezés 

eredményeként kapott konstanst egy attribútummal vagy egy másik konstanssal összehasonlíthatjuk. 

Nagyon fontos, hogy az alkérdés select-from-where kifejezése csak egy attribútumnak egyetlen 

értékét adja eredményül, különben hibajelzést kapunk. 

példa: Legyenek a Részlegek és Alkalmazottak relációk a NagyKer adatbázisból, és a következő 

lekérdezés: „Keressük a ’Tervezés’ nevű részleg managerének a nevét.” A megoldás alkérdés 

segítségével: 

1) SELECT Név  

2)  FROM Alkalmazottak 

3)  WHERE SzemSzám = 

4)  (SELECT ManSzemSzám 
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5)     FROM Részlegek 

6)     WHERE Név = ’Tervezés’); 

Amint látjuk, az alkérdés (4−6 sorok) csak egy oszlopot választ ki a manager személyi számát, de 

még abban is biztosak kell legyünk, hogy csak egy ’Tervezés’ nevű részleg legyen az adatbázisban. 

Ezt elérhetjük ha egyedi kulcs megszorítást kérünk a Részlegek relációra a CREATE TABLE 

parancsban a UNIQUE kulcsszó segítségével. Abban az esetben, ha az alkérdés nulla vagy egynél 

több sort eredményez, a lekérdezés futás közbeni hibát fog jelezni. Az „Összesítések” alfejezet 0. 

példájának az adatait figyelembe véve az alkérdés eredményül az 123444 személyi számot adja, és a 

lekérdezés a következőképpen hajtódik végre: 

SELECT Név  

FROM Alkalmazottak 

WHERE SzemSzám = 123444 

A lekérdezés eredménye: ‘Vincze Ildikó’ lesz.□ 

A skalár értéket adó alkérdéssel használható operátorok az: =, <, <=, >, >=, <>. 

példa: „Keressük azon alkalmazottakat, kiknek fizetése nagyobb, mint annak az alkalmazottnak, 

kinek a személyi száma 333333.” 

SELECT Név  

FROM Alkalmazottak 

WHERE Fizetés > 

 (SELECT Fizetés 

  FROM Alkalmazottak 

  WHERE SzemSzám = 333333); □ 

példa: „Keressük azon alkalmazottakat, kiknek a fizetése az összes alkalmazott minimális fizetésével 

egyenlő.” 

SELECT Név  

FROM Alkalmazottak 

WHERE Fizetés = 

  (SELECT MIN(Fizetés) 

   FROM Alkalmazottak); □ 

példa: „Keressük azon részlegeket és az alkalmazottak minimális fizetését a részlegből, ahol a 

minimális fizetés nagyobb, mint a minimális fizetés a 2-es ID-jű részlegből.” 

SELECT RészlegID, MIN(Fizetés) 

FROM Alkalmazottak 

   GROUP BY RészlegID 

   HAVING MIN(Fizetés) > 

    (SELECT MIN(Fizetés) 

     FROM Alkalmazottak 

     WHERE RészlegID = 2); 

A lekérdezés processzor először az alkérdést értékeli ki, ennek eredményeként egy skalár értéket 

(300) kapunk és a fő lekérdezés ezzel a skalár értékkel fog dolgozni. □ 

Csínján kell bánjunk a csoportosítással.  

Példa: Egy helytelen SELECT parancs: 

SELECT SzemSzám, Név 

FROM Alkalmazottak 

WHERE Fizetés =  

 (SELECT MIN(Fizetés) 

  FROM Alkalmazottak 

   GROUP BY RészlegID); 

Az alkérdés több sort is visszaad, pontosan annyit, ahány különböző RészlegID létezik az 

Alkalmazottak táblában, minden részleg esetén a minimális fizetést adja vissza. Az egyenlőség az 

alkérdés előtt csak egy skaláris értéket vár. □ 
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A többsoros alkérdések esetén a WHERE záradék feltétele olyan operátorokat tartalmazhat, 

amelyeket egy R relációra alkalmazhatunk, ebben az esetben az eredmény logikai érték lesz. Bizonyos 

operátoroknak egy skaláris s értékre is szükségük van. Ilyen operátorok: 

▸ EXISTS R – feltétel, mely akkor és csak akkor igaz, ha R nem üres. 

példa:  SELECT Név  
FROM Alkalmazottak, Managerek 

WHERE Alkalmazottak. SzemSzám = Managerek.SzemSzám 

AND EXISTS 

   (SELECT * 

   FROM Alkalmazottak 

   WHERE Fizetés > 500); 

A fenti példa csak abban az esetben adja meg a managerek nevét, ha van legalább egy 

alkalmazott, kinek a fizetése nagyobb, mint 500 euró. 

▸ s IN R, mely akkor igaz, ha s egyenlő valamelyik R-beli értékkel. Az s NOT IN R akkor igaz, ha 

s egyetlen R-beli értékkel sem egyenlő. 

példa: Legyen a NagyKer adatbázis és a következő lekérdezés: „Adjuk meg azon szállítók nevét és 

címét, akik valamilyen csokit szállítanak” (Áruk.Név LIKE ‘%csoki%’)  

1) SELECT Név, Helység, UtcaSzám 

2) FROM Szállítók 

3) WHERE SzállID IN 

4)        (SELECT SzállID 

5)         FROM Szállít 

6)         WHERE ÁruID IN 

7)   (SELECT ÁruID 

8)    FROM Áruk 

9)    WHERE Név LIKE ‘%csoki%’) 

          ); 

A 7−9 sor alkérdése az összes olyan árut választja ki, melynek nevében szerepel a csoki. 

Legyen a csoki áruk azonosítóinak a halmaza: CsokiID. A 4−6 sor a Szállít táblából azon SzállID-kat 

választja ki, ahol az ÁruID benne van a CsokiID halmazban. Nevezzük a csokit szállítók 

azonosítóinak a halmazát CsokiSzállIDk-nak. Az 1−3 sorok segítségével megkaphatjuk a csokit 

szállítók nevét és címét. □ 

A kereskedelmi rendszerek különböző mélységig tudják az alkérdéseket kezelni. Van olyan, 

amelyik csak 1 alkérdést engedélyez. 

▸ s > ALL R, mely akkor igaz, ha s nagyobb, mint az R reláció minden értéke, ahol az R 

relációnak csak egy oszlopa van. A > operátor helyett bármelyik összehasonlítási operátort 

használhatjuk. Az s <> ALL R eredménye ugyanaz, mint az s NOT IN R feltételé. 

példa: Legyen a következő lekérdezés: 

SELECT SzemSzám, Név 

FROM Alkalmazottak 

WHERE Fizetés > ALL 

 (SELECT MIN(Fizetés) 

  FROM Alkalmazottak 

 GROUP BY RészlegID); 

Ugyanezt a lekérdezést láttuk egyenlőséggel az alkérdés előtt, helytelen példaként. Mivel az 

alkérdés több sort is visszaad, a „> ALL” operátort alkalmazva, a Fizetés oszlop értékét 

összehasonlítja az összes minimális fizetés értékkel az alkérdésből. Tehát a lekérdezés megadja azon 

alkalmazottakat, kiknek fizetése nagyobb, mint a minimális fizetés minden részlegből. □ 

▸ s > ANY R, mely akkor igaz, ha s nagyobb az R egyoszlopos reláció legalább egy értékénél. A > 

operátor helyett akármelyik összehasonlítási operátort használhatjuk. 
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példa: „Keressük azokat a tanárokat, akik beosztása nem professzor, és van olyan professzor, akinek 

a fizetésénél az illető tanárnak nagyobb a fizetése.” 

SELECT Név, BeosztásKod, Fizetés 

FROM Tanárok 

 WHERE Fizetés > ANY 

(SELECT Fizetés 

  FROM Tanárok 

  WHERE BeosztásKod = ‘PRO’) 

  AND BeosztásKod <> ‘PRO’; □ 

A több oszlopos alkérdés esetén, a SELECT kulcsszó után megadhatunk több mint egy oszlopot, és 

szükségszerűen a fő lekérdezésben is ugyanannyi oszlopot kell megadjunk az összehasonlító operátor 

bal oldalán is. Az összehasonlítás párokra vonatkozik. 

példa: „Keressük azokat a tanárokat, akiknek a fizetése egyenlő az algebra tanszék beosztásnak 

megfelelő átlag fizetésével.” 

SELECT Név, BeosztásKod, Fizetés 

FROM Tanárok 

 WHERE BeosztásKod, Fizetés IN 

(SELECT BeosztásKod, AVG(Fizetés) 

 FROM Tanárok 

 WHERE TanszékKod = ‘ALG’ 

 GROUP BY BeosztásKod); □ 

Az alkérdés meghatározza az algebra tanszéken belül a beosztásoknak megfelelő átlagfizetéseket. A 

fő lekérdezés akkor fog egy tanárt kiválasztani, ha az alkérdés eredményhalmazában megtalálja a 

tanár beosztás kodja mellett a fizetést is, az értékpárt.  

3.4.6. Korrelált alkérdések 

Az eddig bemutatott alkérdések esetén az alkérdés csak egyszer kerül kiértékelésre és a kapott 

eredményt a magasabb rendű lekérdezés hasznosítja. A beágyazott alkérdéseket úgy is lehet 

használni, hogy az alkérdés többször is kiértékelésre kerül. Az alkérdés többszöri kiértékelését egy, az 

alkérdésen kívüli sorváltozóval érjük el. Az ilyen típusú alkérdést korrelált alkérdésnek nevezzük. 

példa: Az Egyetem adatbázis esetén keressük azon diákokat, akik egyedül vannak a csoportjukban 

10-es átlaggal. 

SELECT Név, CsopKod 

FROM Diákok D1 

WHERE Átlag = 10 AND NOT EXISTS 

  (SELECT D2.BeiktatásiSzám 

    FROM Diákok D2 

    WHERE D1.CsopKod = D2.CsopKod 

   AND D1.BeiktatásiSzám <> D2.BeiktatásiSzám 

   AND D2.Átlag = 10); 

A lekérdezés kiértékelése során a D1 sorváltozó végigjárja a Diákok relációt. Minden sorra a 

D1-ből a D2 sorváltozó segítségével ismét végigjárjuk a Diákok relációt. 

Legyen d1 egy sor a Diákok relációból, amelyet a fő lekérdezés az eredménybe helyez, ha 

megfelel a WHERE utáni feltételnek. Először is a d1.Átlag értéke 10 kell legyen és az  alkérdés 

eredménye pedig üres halmaz. Az alkérdés akkor fog sorokat tartalmazni, ha létezik a Diákok 

relációban egy d2 sor, mely esetén ugyanaz a csoport kód, mint a d1 sor esetén, az átlag értéke 10 és a 

beiktatási szám különbözik a d1 sor BeiktatásiSzám attribútum értéketől. Ez azt jelenti, hogy az 

adatbázisban találtunk egy másik diákot, ugyanabból a csoportból, akinek az átlaga 10-es. Mivel az 

alkérdésben vannak sorok, nem fogja a d1 sort kiválasztani. Ha az alkérdés üres halmaz, akkor 

kiválasztja a d1-et, és ekkor találtunk olyan diákot, aki egyedül van a csoportjában 10-es átlaggal. □ 
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3.4.7. Más típusú összekapcsolási műveletek 

A relációs algebra természetes összekapcsolás műveletét eddig a SELECT parancs segítségével 

láttuk implementálva. Ha a WHERE záradékban adjuk meg a feltételt, vagy INNER JOIN kulcsszót 

használunk, csak azok a sorok kerülnek be az eredmény relációba, melyek esetében a közös 

attribútum ugyanaz az értéke mindkét relációban megtalálható. (A lógó sorok nem kerülnek be az 

eredménybe.) Bizonyos esetekben szükségünk van a lógó sorokra is. 

Az OUTER JOIN kulcsszó segítségével azon sorok is megjelennek az eredményben, melyek 

értéke a közös attribútumra nem található meg a másik táblában, vagyis a lógó sorok, melyekben a 

másik tábla attribútumai NULL értékeket kapnak. Tehát a külső összekapcsolás (outer join) 

eredménye tartalmazza a belső összekapcsolás (inner join) eredménye mellett a lógó sorokat is. A 

külső összekapcsolás 3−féle lehet: 

R LEFT OUTER JOIN S ON R.X = S.X 

eredménye tartalmazza a bal oldali R reláció összes sorát, azokat is, amelyek esetében az X 

attribútumhalmaz értéke nem létezik az S reláció X értékei között. Ezt a műveletet külső baloldali 

összekapcsolásnak nevezzük. Az eredmény az S attribútumait is tartalmazza NULL értékekkel. 

R RIGHT OUTER JOIN S ON R.X = S.X 

eredménye a jobb oldali S reláció összes sorát tartalmazza, azokat is amelyek esetében az X 

attribútumhalmaz értéke nem létezik az R reláció X értékei között. Ezt a műveletet külső jobboldali 

összekapcsolásnak nevezzük. Az eredmény az R attribútumait is tartalmazza NULL értékekkel. 

R FULL OUTER JOIN S ON R.X = S.X 

eredménye azon sorokat tartalmazza, melyek esetében a közös attribútum értéke megegyezik mindkét 

relációban és mind a bal oldali R reláció lógó sorait, mind az S reláció lógó sorait magában foglalja.  

példa: Legyenek az Alkalmazottak és Részlegek reláció sorai: 

 

SzemSzám Név RészlegID Fizetés  

111111 Nagy Éva 2 300 

222222 Kiss Csaba 9 400 

456777 Szabó János 9 900 

234555 Szilágyi Pál 2 700 

123444 Vincze Ildikó 1 800 

567765 Katona József NULL 600 

556789 Lukács Anna NULL 700 

333333 Kovács István 2 500 

 

RészlegID RNév ManagerSzemSzám 

1 Tervezés 123444 

2 Könyvelés 234555 

3 Eladás NULL 

9 Beszerzés 456777 

 

Legyen a következő lekérdezés: 

SELECT * FROM Alkalmazottak  

INNER JOIN Részlegek 

ON Alkalmazottak.RészlegID = Részlegek. RészlegID; 
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Az eredmény: 

 

SzemSzám Név RészlegID Fizetés  RNév ManagerSzemS

zám 

111111 Nagy Éva 2 300 Könyvelés 234555 

222222 Kiss Csaba 9 400 Beszerzés 456777 

456777 Szabó János 9 900 Beszerzés 456777 

234555 Szilágyi Pál 2 700 Könyvelés 234555 

123444 Vincze Ildikó 1 800 Tervezés 123444 

333333 Kovács István 2 500 Könyvelés 234555 

Tehát azon alkalmazottak esetén, ahol a RészlegID megtalálható a Részlegek táblában megkapjuk a 

megfelelő részleg nevét és a manager személyi számát. Lógó sorok nem jelennek meg az 

eredményben. □ 

példa: Tekintsük az alábbi lekérdezést: 

SELECT * FROM Alkalmazottak  

LEFT OUTER JOIN Részlegek 

ON Alkalmazottak.RészlegID = Részlegek. RészlegID; 

A lekérdezés eredménye: 

 

SzemSzám Név RészlegID Fizetés  RNév Manager 

SzemSzám 

111111 Nagy Éva 2 300 Könyvelés 234555 

222222 Kiss Csaba 9 400 Beszerzés 456777 

456777 Szabó János 9 900 Beszerzés 456777 

234555 Szilágyi Pál 2 700 Könyvelés 234555 

123444 Vincze Ildikó 1 800 Tervezés 123444 

567765 Katona József NULL 600 NULL NULL 

556789 Lukács Anna NULL 700 NULL NULL 

333333 Kovács István 2 500 Könyvelés 234555 

Ebben az esetben az Alkalmazottak összes sora, és a lógó sorok is megjelennek az 

eredményben, a Részlegek attribútumai a lógó sorok esetén NULL értéket kapnak. □ 

példa: Tekintsük az alábbi lekérdezést: 

SELECT * FROM Alkalmazottak  

RIGHT OUTER JOIN Részlegek 

ON Alkalmazottak.RészlegID = Részlegek. RészlegID; 

A lekérdezés eredménye: 
 

SzemSzám Név RészlegID Fizetés  RNév Manager 

SzemSzám 

111111 Nagy Éva 2 300 Könyvelés 234555 

222222 Kiss Csaba 9 400 Beszerzés 456777 

456777 Szabó János 9 900 Beszerzés 456777 

234555 Szilágyi Pál 2 700 Könyvelés 234555 

123444 Vincze Ildikó 1 800 Tervezés 123444 

333333 Kovács István 2 500 Könyvelés 234555 

NULL NULL 3 NULL Eladás NULL 

Ebben az esetben a Részlegek összes sora jelenik meg, mivel ez a jobb oldali reláció. Az 

Alkalmazottak reláció attribútumai a lógó részleg esetén NULL értékeket kapnak. □ 
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példa: Tekintsük az alábbi lekérdezést: 

SELECT * FROM Alkalmazottak  

FULL OUTER JOIN Részlegek 

ON Alkalmazottak.RészlegID = Részlegek. RészlegID; 

A lekérdezés eredménye: 
 

SzemSzám Név RészlegID Fizetés  RNév ManagerSzemS

zám 

111111 Nagy Éva 2 300 Könyvelés 234555 

222222 Kiss Csaba 9 400 Beszerzés 456777 

456777 Szabó János 9 900 Beszerzés 456777 

234555 Szilágyi Pál 2 700 Könyvelés 234555 

123444 Vincze Ildikó 1 800 Tervezés 123444 

333333 Kovács István 2 500 Könyvelés 234555 

567765 Katona József NULL 600 NULL NULL 

556789 Lukács Anna NULL 700 NULL NULL 

NULL NULL 3 NULL Eladás NULL 

Csoportosítás esetén is használhatóak a külső összekapcsolási műveletek. □ 

példa: „Adjuk meg minden részleg esetén az ott dolgozó alkalmazottak számát! Írassuk ki azon 

részlegeket is, amelyekhez egyetlen alkalmazott sincs hozzárendelve!” 

SELECT Részlegek.RészlegID, COUNT(SzemSzám) as AlkalmazottSzám 

FROM Részlegek  

LEFT OUTER JOIN Alkalmazottak 

ON Alkalmazottak.RészlegID = Részlegek.RészlegID  

GROUP BY Részlegek.RészlegID; 

A lekérdezés eredménye: 

RészlegID Alkalmazott

Szám  

1 1 

2 3 

3 0 

9 2 

 

Példafeladatok 
 

1. i) Tervezzünk relációs adatbázissémát, melynek táblái 3NF-ban vannak és egy software cég 

következő információit tárolják: 

 tevékenységek: tevékenység kódja, leírása, tevékenység típusa; 

 alkalmazottak: alkalmazott kódja, nev, tevékenységek listája, csoport, melynek tagja, 

csoport vezetője. 

Egy tevékenységet a kódja azonosít, egy alkalmazottat szintén. Egy alkalmazott egy csoportnak tagja, 

egy csoportnak egy vezetője van, aki szintén a cég alkalmazottja. Egy alkalmazott több 

tevékenységben is részt vehet, illetve egy tevékenységnél több alkalmazott is dolgozhat.  

Indokoljuk, hogy a táblák 3NF-ban vannak! Írjuk fel a funkcionális függőségeket! 

ii)  Relációs algebrát vagy SELECT-SQL parancsot használva, az i) pont adatbázisára vonatkozóan 

adjuk meg: 

a) azokat az alkalmazottakat a nevükkel, akik dolgoznak legalább egy “tervezés” típusú 

tevékenységnél és nem dolgoznak egyetlen “tesztelés” típusú tevékenységnél sem; 

b) azokat az alkalmazottakat a nevükkel, akik olyan csoportok vezetői, amelyekhez legalább 10 

alkalmazott tartozik! 
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2. i) Tervezzünk relációs adatbázissémát, melynek táblái 3NF-ban vannak és a következő 

információikat tárolják: 

 tantárgyak: tantárgy kódja, megnevezése, kreditek száma; 

 diákok: diák kódja, neve, születési dátuma, csoportjának kódja, évfolyamra, szakra 

vonatkozó információk, azon tantárgyak listája, amelyekből vizsgázott (a vizsga dátuma és a 

jegy is tárolandó)! 

Indokoljuk, hogy a táblák 3NF-ban vannak! Írjuk fel a funkcionális függőségeket! 

ii) Relációs algebrát vagy SELECT-SQL parancsot használva, az i) pont adatbázisára vonatkozóan 

adjuk meg: 

a) azokat a tantárgyakat a megnevezésükkel, amelyek esetén nincsenek átmenő jegyek (átmenő 

jegy>=5); 

b) azokat a diákokat (név, csoport, sikeres vizsgák száma), akik több, mint 5 vizsgán átmenő jegyet 

kaptak. Ha egy diáknak több jegye is van egy tárgyból, csak egyszer számoljuk! 

 

3. i) Tervezzünk relációs adatbázissémát, melynek táblái 3NF-ban vannak és államvizsgára iratkozott 

diákokról a következő adatokat tárolják: beiktatási szám, diák neve, elvégzett szak kódja és neve, 

szakdolgozat címe, irányító tanár kódja és neve, azon intézet kódja és megnevezése, amelyhez az 

irányító tanár tartozik, a dolgozat megvédéséhez szükséges software-k listája, (pl.: VB.Net, MS SQL 

Server, Oracle, C#, Delphi, C++, IE stb.), illetve hardver-szükségletek listája (pl.: 1Gb RAM, 512Mb 

RAM, DVD Reader stb.). Írjuk fel a funkcionális függőségeket, és indokoljuk, hogy a táblák 3NF-ban 

vannak! 

ii) Relációs algebrát vagy SELECT-SQL parancsot használva (legalább egyszer mindegyiket) az i) 

pont adatbázisára vonatkozóan adjuk meg: 

a) azon diákokat (Név, Szakdolgozat címe, Vezető tanár neve), akiknek államvizsga vezető tanára 

egy adott intézethez tartozik;  

b) egy adott intézet esetén a diákok számát, akik vezető tanára az adott intézethez tartozik; 

c) azon tanárokat (név, tanszéke neve), akik nem vezettek államvizsgát;    

d) azon diákok nevét, akik Oracle-t is és C#-ot is igényeltek! 

 

4. i) Tervezzünk relációs adatbázissémát, melynek táblái 3NF-ban vannak és filmekről szóló 

információikat tárolnak: 

 színészek: színész kódja, neve, neme, weboldala, országa; 

 filmek: film kódja, címe, megjelenési dátuma, stúdió neve, stúdió weboldala, stúdió országa, 

rendező neve, rendező weboldala, rendező országa, színészek listája, film típusainak listája! 

Írjuk fel a létező funkcionális függőségeket, és indokoljuk, hogy a végső táblák 3NF-ban vannak! 

ii). Relációs algebrát vagy SELECT-SQL parancsot használva, az i) pont adatbázisára vonatkozóan 

adjuk meg: 

a. azokat az filmeket (cím, megjelenési dátum, stúdió neve), melyekben Julia Roberts és Richard Gere 

együtt szerepelnek; 

b. azokat a színészeket (név, web oldal), akik a legtöbb filmben játszottak! 

 

5. Adjunk példát az R(ABCD) reláció olyan soraira, melyekben az ABC→D funkcionális függőség 

nincs betartva! 

 

6. Legyen R és S két reláció a következő sorokkal: 

 
Mi lesz a következő lekérdezés eredménye: 

((DA, EC),  S) - A;C(R)? 
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7. Legyen a következő reláció: Személyek(Kód, Név, SzületésiDátum, Város, Szakma), ahol a Kód 

mező a reláció elsődleges kulcsa; és a következő lekérdezés: 

Város (Szakma=’Programozó’ (Személyek)). 

Írjuk le szavakban, mi lesz a lekérdezés eredménye, majd adjuk meg a lekérdezést SQL parancs 

segítségével! 

 

8. Legyen az R reláció szerkezete: R(a, b). A Q1 és Q2 lekérdezések eredményei a SELECT * 

FROM R parancs által visszatérített sorok lesznek. 
 

Q1:  UPDATE R SET b = 10 WHERE a = 20; 

   SELECT * FROM R; 

 

Q2:  DELETE FROM R WHERE a = 20; 

   INSERT INTO R VALUES(20,10); 

   SELECT * FROM R; 
 

Határozzuk meg, hogy a következő kijelentések közül melyek igazak, függetlenül az R tábla 

tartalmától. Magyarázzuk! 

a) Q1 és Q2 ugyanazt az eredményt adják. 

b) Q1 eredménye mindig részhalmaza (bennfoglaltatik) Q2 eredményének. 

c) Q2 eredménye mindig részhalmaza (bennfoglaltatik) Q1 eredményének. 

d) Q1 és Q2 különböző eredményeket adnak. 
 

9. Az alábbiakban az S reláció egy előfordulása látható, a reláció sémája: 

S[FK1, FK2, A, B, C, D, E], kulcsa: {FK1, FK2}. 
 

 
 

Adjunk választ az alábbi kérdésekre: 
A. Hány rekordja lesz a lekérdezés eredményének? 

 

SELECT * 

FROM S 

WHERE A LIKE 'a_' 

a. 5 

b. 4 

c. 0 

d. 1 

e. Egyik sem a fentiek közül. 
 

B.  Mennyi a különbség a két lekérdezés eredmény-relációinak kardinalitásai között? 
 

SELECT FK2, FK1, COUNT(DISTINCT B) 

FROM S 

GROUP BY FK2, FK1 

HAVING FK1 = 1 

 

SELECT FK2, FK1, COUNT(C) 

FROM S 

GROUP BY FK2, FK1 

HAVING FK1 = 2 
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a. 1 

b. 0 

c. -1 

d. -2 

e. Egyik sem a fentiek közül. 
 

C. Az alábbi állítások közül melyik helyes? 

a. Az alábbi funkcionális függőségek közül legalább egy nincs kielégítve a reláció adatai által: 

 {A} → {B}, {FK1, FK2} → {A, B}, {FK1} → {A}. 

b. A reláció adatait figyelembe véve, biztosan kijelenthetjük, hogy legalább egy az alábbi 

funkcionális függőségek közül fennáll az S sémára vonatkozóan: {A} → {B}, {FK1} → {A, B}, 

{FK1} → {A}. 

c. Az alábbi funkcionális függőségek közül legalább kettő nincs kielégítve a reláció adatai által:  

{FK2} → {A, B}, {A} → {E}, {A, B} → {E}, {B} → {C, E}. 

d. A reláció adatait figyelembe véve, biztosan kijelenthetjük, hogy legalább kettő az alábbi 

funkcionális függőségek közül fennáll az S sémára vonatkozóan: {FK2} → {A, B}, {A} → {E}, 

{A, B} → {E}, {B} → {C, E}. 

e. Egyik sem helyes a fentiek közül. 

 

D. Hány rekordja lesz a lekérdezés eredményének? 
 

SELECT * 

FROM S 

WHERE B = 'b1' OR D = 5  
 

a. 2 

b. 3 

c. 1 

d. 5 

e. Egyik sem a fentiek közül. 
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4. fejezet Operációs rendszerek 

4.1. A Unix állományrendszer 

4.1.1. Állományok típusa 

Az operációs rendszerek a különféle, összetartozó adatokat állományokban avagy file-okban 

tárolják.  

A UNIX megkülönböztet közönséges-, illetve speciális állományokat. A közönséges 

állomány teljesen strukturálatlan, egyszerűen bájtok sorozata. Egy UNIX file végét nem 

jelzik speciális karakterek, a filenak akkor van vége, amikor az olvasó rutin hibajelzéssel tér 

vissza. Standard bemenet esetén a file végét újsorban ^D jelzi. 

Egy speciális állomány ezzel szemben meghatározott szerkezetű, különleges célt 

szolgál. A kövegtkező fajta speciális állományokról beszélhetünk: katalógus  (directory), 

eszköz (device), szimbolikus lánc (symbolic link), nevesített FIFO csővezeték (named pipe, 

FIFO), illetve kommunikációs végpont (socket). 

Beszélhetünk továbbá a folyamatok közötti kommunikációt, illetve szinkronizálást 

szolgáló eszközökről, melyeket a rendszerhívások szintaktikai szempontból szintén 

állományként látnak. Ezeket az eszközöket a Unix magja kezeli: név nélküli csővezeték 

(pipe), osztott memória szegmensek, üzenetsorok, szemaforok. 

 

Egy közönséges állomány oktettjeit feldolgozhatjuk szekvenciálisan, de hozzáférhetünk 

közvetlenül is egy bizonyos bájthoz, a sorszámának segítségével.  

 

Egy katalógusfile csupán a tartalmát illetően különbözik egy közönséges állománytól. A 

katalógusban szereplő minden file-hoz (közönséges állomány, alkatalógus, stb.) tartalmaz egy 

bejegyzést. Minden felhasználó rendelkezik egy úgynevezett alapkatalógussal (home 

directory), mely az általa használt közönséges állományokat, illetve általa létrehozottt 

alkatalógusokat tartalmazza (~ vagy $HOME). 

Minden katalógus két speciális bemenetet tartalmaz: 

"." (pont) magára a katalógusra mutat;  

 ".." (két egymásutáni pont), a szülőkatalógusra mutat (parent directory). 

 

Minden állományrendszer egyetlen gyökér katalógust (root directory) tartalmaz: /. 

 

A katalógusszerkezetet egy faszerkezet (gráf) határozza meg. Az elérési út megadásánál az 

elválasztójel a /. Kétféle módon megadott elérési útról beszélhetünk: 

 abszolút elérési út: a gyökérhez (/) képest megadott hely. 

 relatív elérési út: az aktuális katalógushoz (.) képest megadott hely (egy elérési út 

relatív, ha nem a / vagy ~ jelekkel kezdődik). 

 

A katalógus, amelyben a felhasználó éppen dolgozik, az úgynevezett aktuális katalógus 

(current directory). Ennek megváltoztatása a cd parancs segítségével lehetséges. Az aktuális 

katalógus abszolút elérési útját (a gyökér katalógustól kezdődően) a pwd parancs adja meg. 

Létrehozhatunk egy új katalógust az mkdir parancs segítségével, egy katalógus törlését 

pedig a rmdir parancs teszi lehetővé.  
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4.1.2. Állományok jellemzői 

Egy állományt az alábbi tulajdonságok jellemeznek: 

• név 

• inode szám – az állomány tulajdonságait tároló inode tábla megfelelő bemenetének 

azonosítója 

• típus 

• méret 

• tulajdonos (owner) 

• csoport (group) 

• hozzáférési jogok 

• létrehozás, utolsó hozzáférés ill. utolsó módosítás dátuma és ideje 

• láncszám – hány különböző katalógusbemenet hivatkozik ugyanarra az állományra 

 

A következő hozzáférési jogokat különböztetjük meg: 

• olvasási jog – 4 (read permission): az állomány olvasható, ill. a katalógus tartalma 

listázható 

• írási jog – 2 (write permission): az állomány módosítható, ill. a katalógusban 

állományokat lehet létrehozni és törölni 

• végrehajtási jog – 1 (execute permission): az állomány programként végrehajtható, 

ill. a katalógusban levő állományok/ katalógusok hozzáférhetőek, be lehet lépni a 

katalógusba 

• setuid: a programfile a file jogaival fut (nem a futtató jogaival!)  

• setgid: a programfile a file csoportjának jogaival fut 

• sticky: a katalógusban állományt törölni vagy átnevezni csak a tulajdonos tud 

  

Egy állomány hozzáférési jogai négy csoportba sorolhatóak: 

– speciális jogok (setuid – 4, setgid – 2, sticky – 1) 

– a file tulajdonosának jogai (owner, owner user) 

– a file csoportjának jogai (group) 

– mindenki más jogai (other users) 

 

A chmod parancs segítségével módosíthatjuk egy állomány hozzáférési jogait. A jogok 

megadása kétféleképpen történhet: numerikusan vagy szimbolikusan. 

A numerikus (oktális számokkal történő) megadás esetén a parancs a következőképpen néz 

ki: 

chmod [-R] perm-mode file ... 

ahol perm-mode a beállítani kívánt új hozzáférési jogosultság. Több filenevet is meg lehet 

adni szükség szerint. (A -R opcióval rekurzív módon, a megadott katalógus alatti teljes 

állományrendszeren módosítja a jogosultságokat.) A beállítani kívánt jogokat oktális szám 

formájában kell megadni, az alábbiak szerint: az olvasás értéke 4, az írásé 2, a végrehajtásé 1, 

ezeket az értékeket össze kell adni, és így tulajdonosi kategóriánként képződik három oktális 

számjegy, ezeket kell beírni. Ha például azt akarjuk, hogy a file1 állományunkat a tulajdonos 

tudja olvasni, írni, végrehajtani, a csoporttagok végrehajtani és olvasni, a többiek pedig csak 

olvasni, akkor a jogosultságok kódolása 4+2+1, 4+1, 4, azaz 754 lesz: 

$ chmod 754 file1 
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$ ls -l file1 

-rwxr-xr-- 1 tsim1234 student 27 2013-03-17 15:56 file1 

 

Speciális jogok beállítását is tartalmazó példa: 
$ chmod 4751 file1 

$ ls -l file1 

 -rwsr-x--x 1 tsim1234 student 27 2013-03-17 15:56 file1 

 

A másik megadási mód a szimbolikus beállítás, ennek a következő a szintaxisa (a who, op 

illetve perm között a szóköz csak a láthatóság miatt szerepel): 

chmod [-R] who op perm   file ... 

ahol who a tulajdonosi kategóriát adja meg, lehetséges értékei'u' (tulajdonos, user), 'g' 

(csoport, group), 'o' (egyéb, others), illetve 'a' (mindenki, all), ami az előző hármat 

magában foglaló alapértelmezés. 

perm a megfelelő művelet, 'rwxst' lehet a már látott módon. 

op értéke +-= lehet. '+' a megfelelő jog engedélyezését jelenti, '-' a jog letiltását, '=' 

pedig a jog abszolút értékre állítását. Néhány példa: 
$ ls -l file1 

-rw-rw-rw- 1 tsim1234 student 27 2013-03-17 15:56 file1 

$ chmod 754 file1 

$ ls -l file1 

-rwxr-xr-- 1 tsim1234 student 27 2013-03-17 15:56 file1 

$ chmod u-w file1 # tulajdonosnak írásvédett 

$ ls -l file1 

-r-xr-xr-- 1 tsim1234 student 27 2013-03-17 15:56 file1 

$ chmod a+x file1 # mindenkinek végrehajtható 

$ ls -l file1 

-r-xr-xr-x 1 tsim1234 student 27 2013-03-17 15:56 file1 

$ chmod u=rwxs,g=rx,o=r file1 

$ ls -l file1 

-rwsr-xr-- 1 tsim1234 student 27 2013-03-17 15:56 file1 

 

Katalógusfile és inode 

A fizikai file-ok adatait (a név kivételével) az inode tábla tartalmazza (i-bög). Minden fizikai 

file-nak megfelel egy (és csak egy) inode. 

 

Egy katalógusállomány a katalógusban szereplő minden file-hoz tartalmaz egy bejegyzést. 

Egy katalógus bejegyzés csak a file nevét és inode számát tartalmazza, amint azt a 4.1 ábra 

szemlélteti: 

 

állománynév (tetszőleges hosszúságú) inode szám 

4.1 ábra Egy katalógus bejegyzés szerkezete 

 

Az inode szám kilistázható az ls –i paranccsal. Az inode szám meghatározza az állományt 

leíró inode-ot. 

Egy inode mérete 64 vagy 128 byte (állományrendszerenként különbözik). Egy inode az 

alábbi információkat tartalmazza az állománnyal kapcsolatban: 

 tulajdonosát 
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 csoportját 

 hozzáférési jogait 

 hosszát 

 létrehozás és utolsó módosítás dátumát 

 típusát 

 láncszámát – hány különböző katalógusbemenet hivatkozik ugyanarra az állományra 

 mutatókat a file által lefoglalt blokkokra (lásd később, a 4.1.3. alfejezetben 

részletesebben) 

Láncolás (link) 

Bizonyos esetekben szükség lehet arra, hogy az állományrendszer egy részét több felhasználó 

megosztva használhassa, például ha egy adatbázishoz többen is szeretnének hozzáférni. A 

Unix alapú állományrendszerek lehetővé teszik, hogy ugyanazt az állományt több néven is 

elérhessük. Ezt nevezzük láncolásnak. A láncolás kitűnően használható névütközések 

feloldására, illetve helytakarékosság szempontjából is hasznos lehet. 

 

Kétféle láncolást különböztetünk meg: merev láncolás (hard link), illetve szimbolikus 

láncolás (soft link).  

 

Merev láncoláskor egy új katalógus bejegyzést hozunk létre, amely az eredeti inode-ra mutat 

és növeljük az inode-ban a láncszámot. Csak közönséges állományokra alkalmazható. A 

láncszám megadja, hogy hány helyről hivatkozunk ugyanarra a file-ra. Az új file-hivatkozás 

teljesen egyenértékű az eredetivel (pl. amennyiben módosítjuk az állományt a hard linkkel 

hivatkozva rá, láthatjuk, hogy az eredeti névvel hivatkozott állomány is módosult). 

File törlésekor töröljük a directory bemenetet és csökkentjük az inode-ban a láncszámot; ha a 

láncszám értéke 0 lesz, akkor az inode bejegyzést is töröljük (a file többet nem elérhető). 

 

Pl. Hard link létrehozására: 
$ ln  regi  ujlink 

$ ls -li 
total 8 

2098858 -rw-r--r-- 2 tsim1234 student 19 2013-03-17 19:26 regi 

2098858 -rw-r--r-- 2 tsim1234 student 19 2013-03-17 19:26 ujlink 

 

Láthatjuk, hogy az állományrendszerben két egyenértékű állomány jött létre: a régi neve regi,  

a létrehozott új állományé pedig ujlink. Mindkét katalógusbemenet ugyanarra az inode-ra 

mutat, illetve mindkét állománynál láthatjuk, hogy két helyről történik rá hivatkozás (a 

láncszám 2).  

Hard linket kizárólag ugyanazon az állományrendszeren belül hozhatunk csak létre. 

 

Szimbolikus láncolás (soft link) esetén az új katalógus-bejegyzés nem a file inode-jára mutat, 

hanem egy speciális file-ra, ami tartalmazza a láncolt file nevét. ln –s  paranccsal hozható 

létre. A létrehozott file típusa l lesz. 

 
$ ln -s file1 szimbolikus 
$ ls -l 

total 8 

-rw-r--r-- 1 tsim1234 student 27 2013-03-17 15:56 file1 

lrwxrwxrwx 1 tsim1234 student  4 2013-03-17 19:34 szimbolikus -> file1 
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Láthatjuk, hogy a láncszám értéke az eredeti állománynál változatlan. A legtöbb művelet a 

lánc helyett az eredeti állományon hajtódik végre, kivéve pl. az mv és rm parancsokat. 

A szimbolikus láncnak a hozzáférési jogait nem lehet módosítani, mivel az eredeti állomány 

jogai számítanak. 

Az eredeti állomány törlésekor a lánc megmarad, de érvénytelenné válik.  

A szimbolikus láncolás lehetővé teszi katalógus, illetve különböző fájlrendszerben levő fájlok 

láncolását is. 

Az állományoknak a merev- vagy szimbolikus láncokkal együtt egy faszerkezet feleltethető 

meg. A faszerkezet lényege, hogy bármelyik állomány vagy katalógus egyetlen szülővel 

rendelkezik. Ebből adódóan bármelyik katalógusról vagy állományról legyen szó, ennek a 

gyökértől kezdődően egyetlen elérési út (path) felel meg. A katalógus vagy állomány és 

ennek szülőkatalógusa közötti kapcsolatot természetes kapcsolatnak nevezzük. Ez a kapcsolat 

automatikusan létrejön az alkatalógus vagy állomány létrehozásakor.  

 

 

 

4.2 ábra Állományrendszer. Egyszerű példa. 

 

A 4.2 ábrán egy egyszerű állományrendszerre láthatunk példát. Az ábécé nagy betűivel 

közönséges állományokat, katalógusokat, illetve láncokat jelöltünk. Természetesen lehetőség 

van arra, hogy ugyanazt a nevet használjuk az állományrendszer különböző pontjain, hiszen a 

katalógusszerkezeten belül az elérési úttal együtt egyértelműen meghatározható, hogy melyik 

állományról van szó. 

A közönséges állományokat körökkel jelöltük, a katalógusokat pedig téglalappal. 

 

A kapcsolatokat háromféle nyíl jelöli: 

 Folytonos vonal – természetes kapcsolat 

 Szaggatott vonal – a saját katalógus, illetve szülőkatalógus esetén 

 Pontozott vonal – szimbolikus vagy merev lánc. 

 

A fenti példában 12 csomópontot (közönséges állomány vagy katalógus) különböztetünk 

meg.  
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Feltételezzük, hogy a pontozott vonallal jelölt két lánc szimbolikus lánc. A kényelem 

kedvéért a szimbolikus láncokat az elérési út legvégén szereplő betű alapján neveztük el. A 

két lánc létrehozása pl. az alábbi parancsok segítségével történhet: 

 
cd  /A 

ln  -s  /B/D/G  G  Az első lánc létrehozása 

cd  /B/D 

ln  -s  /A/E  E  A második lánc létrehozása 

 

Feltételezzük, hogy az aktuális katalógus éppen a B. Úgy fogjuk bejárni a fát, hogy előbb a 

katalógust, majd az alkatalógusait járjuk be balról jobbra. Az alábbi 12 sor mind a 12 

csomópontot érinti. Amennyiben többféleképpen is hivatkozhatunk ugyanarra a csomópontra,  

az egyenértékű hivatkozások ugyanabban a sorban jelennek meg. A szimbolikus linket is 

használó hivatkozásokat aláhúztuk. 

 

/ ..     

/A ../A     

/A/D ../A/D     

/A/E ../A/E D/E ./D/E   

/A/E/F ../A/E/F D/E/F ./D/E/F   

/A/E/G ../A/E/G D/E/G ./D/E/G   

/B .     

/B/D D ./D    

/B/D/G D/G ./D/G /A/G ../A/G  

/B/E E ./E    

/B/F F ./F    

/C ../C     

 

4.1.3. A UNIX logikai lemez szerkezete 

A különböző Unix disztribúciók megjelenésével elkerülhetetlenné vált a különböző 

fájlrendszerek megjelenése, melyek főképp az egyes disztribúciókra jellemzőek. Például: 

 A Solaris az ufs állományrendszert használja; 

 A Linux előszeretettel használja az ext2 illetve ext3 fájlrendszereket; 

 Az IRIX sajátja az xfs; 

stb. 

Minden egyes Unix alapú fájlrendszernek vannak bizonyos sajátos paraméterei (az illető 

állományrendszerre jellemző konstans értékek), mint pl.: egy blokk mérete, egy inode mérete,  

a lemezen tárolt adatokat meghatározó cím hossza, hány direkt címet tartalmaz az inode és 

hány hivatkozás szerepel a indirekt címek listájában. Ezen konstansok értékétől függetlenül, 

egy új állomány bejegyzése, illetve ennek az adataihoz való hozzáférés, hasonló elvek alapján 

történik. 

Mount 

A Unix állományrendszer egységes fájlrendszer, az elérési út nem tartalmaz lemezegység 

nevet. A különböző logikai vagy fizikai lemezen levő fájlrendszert becsatoljuk (mount) a 

rendszerbe. Egy üres directory-hoz csatlakoztatható az új fájlrendszer, ennek gyökér 
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katalógusára az eredetileg üres directory nevével hivatkozhatunk. A felhasználó számára 

észrevétlen, hogy mi melyik fájlrendszerben van.  

 

Logikai lemezek és blokkok 

Az alábbiakban az ext2 állományrendszer jellemzőit vesszük alapul. 

Íme néhány fontosabb jellemző: 

A lemez és memória közötti adatátvitel alapegysége a blokk. Azonos méretű blokkokat 

használ a rendszer. Egy blokk mérete – ami egyébként változó lehet –, a rendszer 

generálásakor állítható be (mke2fs). Az állományok nyilvántartása az inode táblázat 

segítségével történik. A katalógus a fájlok neve és inode száma között hoz létre kapcsolatot. 

A directory is egy fájl.  

 

Az ext2 fájlrendszerben a tárolóhely blokkokra van felosztva, ezek pedig blokk csoportokat 

alkotnak. A rendszer számára kritikus információk ismétlődnek minden csoportban, amint azt 

a 4.3 ábra szemlélteti: 

 

4.3 ábra Logikai lemez szerkezete 

Egy bizonyos állomány adatai tipikusan ugyanazon a blokkcsoporton belül foglalnak helyet, 

amennyiben ez lehetséges. Ez azért jelentős, mivel hosszú, összefüggő adatsorozat 

beolvasásakor minimalizálja a lemezhozzáférések számát. 

Minden egyes blokk-csoport tartalmazza az ún. szuperblokk (super block) másolatát, egy 

csoport deszkriptort (group descriptor), egy blokk bittérképet (block bitmap), egy inode 

bittérképet (inode bitmap), egy inode táblát (inode table), végül pedig a tulajdonképpeni 

adatokat tartalmazó blokkokat. 

 

A szuperblokk az operációs rendszer bootolásához szükséges fontos információt tartalmaz, 

emiatt minden blokkcsoport tartalmaz egy biztonsági másolatot róla. Ennek ellenére tipikusan 

csak a fájlrendszer legelső blokkjában szereplő adatokat használja a rendszer bootoláskor. 

 

A szuperblokk a következő információkat tartalmazza: 

• Magic Number – 0xEF53 – ext2 esetén.  

• Revision Level – verzió szám 
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• Mount Count and Maximum Mount Count – a fájlrendszer teljes ellenőrzése 

ajánlott, ha eléri max-ot  

• Block Group Number – a blokkcsoport száma, amelyikben ez a szuperblokk van,  

• Block Size – blokk mérete byte-okban  

• Blocks per Group – blokkok száma egy csoportban 

• Free Blocks – szabad blokkok a fájlrendszerben 

• Free Inodes – szabad inode-ok a fájlrendszerben 

• First Inode – első inode  

 

A csoport deszkriptor minden egyes blokk csoport esetén az alábbi információt tartalmazza:  

• Blocks Bitmap – a „block allocation bitmap” blokk száma 

• Inode Bitmap – az „inode bitmap” blokk száma 

• Inode Table – az inode tábla kezdő blokkjának a száma 

• Free blocks count, Free Inodes count, Used directory count – azaz szabad 

blokkok, szabad inode-ok, illetve használt direktory-bemenetek száma 

Egy állományhoz tartozó blokkok nyilvántartása 

Amint láthattuk, egy állománnyal kapcsolatos információk az illető állományt leíró inode-ban 

szerepelnek. Az inode az állomány különböző jellemzői mellett az illető állományhoz tartozó 

adatblokkokat azonosító mutatókat tartalmaz, a 4.4 ábrán szemléltetett logika szerint: 

 

4.4 ábra Egy állományhoz tartozó adatblokkok nyilvántartása 

 

Az ext2 állományrendszer konkrétan 12 direkt blokkra mutató címet tartalmaz (az állomány 

első 12 blokkjára tehát közvetlen hivatkozást tartalmaz), Ezt követi egy indirektáló blokkra 

vonatkozó mutató (mely további közvetlen adatblokkokra vonatkozó mutatókat tartalmaz), 

majd egy kétszeres indirektáló blokkra, végül pedig egy háromszoros indirektáló blokkra 

vonatkozó mutató következik. 
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Egy állomány tetszőleges adatblokkjához való hozzáférés legtöbb 4 lemezhozzáférést 

igényel. Rövid állományok esetében azonban ennél lényegesen kevesebb hozzáférésre van 

szükség (hiszen az első 12 blokk adatai közvetlenül elérhetőek). Mindaddig amíg az 

állomány meg van nyitva, ennek inode-ja be van töltve a belső memóriába.  

 

 

4.2. Unix folyamatok 

 

Unix folyamatok: létrehozás, fork, exec, exit, wait; kommunikáció pipe illetve FIFO 

állományon keresztül. 

 

4.2.1. A folyamatkezelést szolgáló fontosabb rendszerhívások 

Ebben az alfejezetben a folyamatkezeléshez szükséges legfontosabb rendszerhívások 

működését mutatjuk be: fork, exit, wait és exec*. Kezdjük a folyamat 

létrehozásáért felelős fork()rendszerhívással. 

Unix folyamatok létrehozása. A fork rendszerhívás. 

A Unix operációs rendszerben egy új folyamat létrehozása a fork() rendszerhívással 

történik. Ennek szintaxisa: 
 
#include <sys/types.h>  

#include <unistd.h>  

pid_t fork(void);  

 

Sikeres végrehajtás esetén ennek hatása a következő:  

– új folyamattábla bemenet jön létre, melynek tartalma a szülőtől lesz átmásolva 

– az adat és veremszegmens duplázva lesz 

– mindkét folyamat esetén egy-egy mutató a közös kódszegmensre mutat 

– a gyerek örökli a szülőtől a megnyitott állományokat 

– a fork utáni utasítástól egymástól függetlenül dolgozik a szülő és a gyerek 

folyamat ugyanazzal a kódszegmenssel  

 

Az újonnan létrehozott folyamatot gyerekfolyamatnak, a fork() hívást végrehajtó 

folyamatot pedig szülőfolyamatnak nevezzük. Leszámítva, hogy külön adat-, illetve 

veremszegmenssel rendelkeznek, a gyerekfolyamat csupán az alábbiakban különbözik a 

szülőtől: azonosítója (PID), a szülő azonosítója (PPID), a fork hívás visszatérített értéke 

(sikeres végrehajtás esetén ugyanis a fork a rendszerhívást végrehajtó szülőfolyamatban a 

gyerekfolyamat pid-jét, a gyerekfolyamatban pedig 0-t térít vissza). 

A szülőfolyamat azonosítóját, illetve magának a folyamatnak az azonosítóját az alábbi 

rendszerhívások segítségével kérdezhetjük le: 
 
#include <sys/types.h>  

#include <unistd.h>  

pid_t getppid(void); //PPID lekérdezése 

pid_t getpid(void);  //PID lekérdezése 
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A 4.5 ábra szemlélteti a fork működési mechanizmusát. 

Hiba esetén a fork –1-et térít vissza, természetesen az errno változó megfelelőképpen be 

lesz állítva, a hiba okát jelezve. Hiba léphet fel a fork hívás kapcsán, amennyiben: 

 nincs elég szabad memóriaterület, hogy a szülő képének másolata létrejöhessen; 

 a folyamatok száma meghaladja a megengedett maximális értéket. 

A fork hívás fentebb leírt viselkedése lehetővé teszi, hogy a szülő, illetve gyerekfolyamat 

párhuzamos működését a következőképpen adjuk meg:  
 

pid = fork(); 

if (pid == 0) 

{ 

  /* gyerek folyamat * 

} 

else 

{ 

  /* szülő folyamat */ 

} 

 

 

 

 

4.5 ábra Fork mechanizmus 
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Ugyanez hibakezeléssel együtt a következőképpen néz ki: 
 

switch (fork()) 

{ 

   case -1: 
     perror(„fork”); 
     exit(1); 

   case 0: 
    /* gyerek folyamat */ 
   default: 
    /* szülő folyamat */ 
} 

 

A alábbi program a fork használatát példázza: 
 

#include <sys/types.h>  

#include <unistd.h>  

#include <stdio.h> 

#include <errno.h> 

#include <stdlib.h> 

int main(){ 

   int pid,i; 

   printf(”\nProgram kezdete:\n”); 
   if ((pid=fork())<0){  

     perror(”fork() hiba\n”); 
     exit(1); 

   } 

   if (pid==0){//gyerekfolyamat 

     for (i=1;i<=10;i++){ 

       sleep(2);  // 2 másodpercnyi várakozás 

       printf(”\t %d SZULO %d GYEREKE:3*%d=%d\n”,getppid(),getpid(),i,3*i); 
     } 

     printf(”GYEREK vege\n”); 
   } 

   else{// pid>0 szülőfolyamat 

     printf(”Letrehoztam a %d GYEREKet\n”,pid); 
     for (i=1;i<=10;i++){ 

       sleep(1);  //1 másorpercnyi várakozás 

       printf(”%d SZULO: 2*%d=%d\n”,getpid(),i,2*i); 
     } 

     printf(”SZULO vege\n”); 
   } 

} 

 

Szándékosan írtuk úgy a kódot, hogy a gyerekfolyamatnak hosszabb ideig kelljen várakoznia, 

mint a szülőnek (komplex számítások végzése közepette gyakran megtörténik, hogy az egyik 

folyamat által végzett műveletek hosszabb időbe telnek, mint a másik folyamat esetében). 

Ennek következtében a szülő hamarabb befejeződik. A kapott eredmények a következők: 
 

Program kezdete: 

Lerehoztam a 30584 GYEREKet 

30583 SZULO: 2*1=2 

         30583 SZULO 30584 GYEREKE:3*1=3 

30583 SZULO: 2*2=4 

30583 SZULO: 2*3=6 

         30583 SZULO 30584 GYEREKE:3*2=6 

30583 SZULO: 2*4=8 

30583 SZULO: 2*5=10 

         30583 SZULO 30584 GYEREKE:3*3=9 
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30583 SZULO: 2*6=12 

30583 SZULO: 2*7=14 

         30583 SZULO 30584 GYEREKE:3*4=12 

30583 SZULO: 2*8=16 

30583 SZULO: 2*9=18 

         30583 SZULO 30584 GYEREKE:3*5=15 

30583 SZULO: 2*10=20 

SZULO vege 

         1 SZULO 30584 GYEREKE:3*6=18 

         1 SZULO 30584 GYEREKE:3*7=21 

         1 SZULO 30584 GYEREKE:3*8=24 

         1 SZULO 30584 GYEREKE:3*9=27 

         1 SZULO 30584 GYEREKE:3*10=30 

GYEREK vege 

Az exit és wait hívások 

Egy program befejezése az alábbi rendszerhívások segítségével történhet: 

• ANSI C 
#include <stdlib.h> 

void exit(int exit_code);  

• Posix 
#include <unistd.h> 

void _exit(int exit);_  

• Rendellenes befejezés 
#include <stdlib.h> 

   void abort(void);  
 

Befejezés után a folyamat zombie állapotba kerül mindaddig, amíg a szülő egy wait 

függvénnyel le nem kérdezi a befejezési kódot. A zombie állapotban levő folyamat esetében a 

rendszer minden erőforrást felszabadít, kivéve a folyamattábla bemenetet. Amennyiben a 

befejezett folyamatot létrehozó szülőfolyamat már korábban véget ért, akkor az illető 

folyamat szülőfolyamata az 1-es folyamatazonosítójú speciális init folyamat lesz. 

Az init folyamat mindig meghívja a wait függvényt.  
 

A folyamat befejeződésekor a rendszer egy SIGCLD üzenettel értesíti a szülőfolyamatot.  

A szülő bevárhatja valamelyik gyerek befejeződését: wait, waitpid függvények egyikét 

használva. Ezek hatására: 

– várakozhat (ha minden gyereke fut), 

– érzékelheti, hogyha egy gyerek befejeződött,  

– visszatéríthet hibát (ha nincs gyereke)  
 

A wait illetve waitpid hívások szintaxisa a következő: 
#include <sys/types.h> 

#include <sys/wait.h>  

pid_t wait(int *status); 

pid_t waitpid(pid_t pid, int *status, int opt);  

 

Különbségek a wait és a waitpid között:  

• a wait felfüggeszti a hívó folyamatot, amíg a gyerek befejeződik, ezzel szemben a 

waitpid egy külön opciót kínál fel (opt), melynek használatával a felfüggesztés 

elkerülhető,  

• a waitpid nem mindig az első gyerek befejezéséig vár, hanem a pid változóban 

megadott azonosítójú gyerek befejezéséig,  

• a waitpid az opt argumentum segítségével engedélyezi a programok vezérlését. 
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• A wait függvény visszatérési értéke azon gyerekfolyamat azonosítója, amely éppen 

befejeződött.  

• A waitpid -1 értéket térít vissza, ha nem létezik a pid-ben megadott azonosítójú 

folyamat, vagy az nem gyereke a hívó folyamatnak.  
 

A waitpid függvényhívásnál megadható pid változó lehet:  

• pid = -1 – bármely gyerekre várakozhat; ekvivalens a wait-tel,  

• pid > 0 – a pid azonosítójú folyamatra várakozik,  

• pid = 0 – bármely olyan folyamatra várakozik, amelynek a csoportazonosítója 

megegyezik a hívó programéval,  

• pid < -1 – bármely olyan folyamatra várakozik, amelynek a csoportazonosítója 

megegyezik a megadott érték abszolút értékben.  

 

Külső program végrehajtása; az exec függvénycsalád 

 

A legtöbb más operációs rendszerhez hasonlóan a Unix is biztosít lehetőséget arra, hogy 

elindítsunk egy programot egy másikból. Ezt a mechanizmust az exec* függvénycsalád teszi 

lehetővé. Amint látni fogjuk, a fork illetve exec* rendszerhívások kombinálása nagyfokú 

rugalmasságot biztosít a folyamatkezelést illetően. 

 

Az exec*  függvénycsalád 

• az aktív folyamat kódját egy másikkal helyettesíti (betölt egy új programot) 

• új kód, adat és veremszegmens jön létre, a régieket felszabadítja 

• a folyamattábla bemenetet örökli az eredeti folyamattól 

Az exec* utáni utasítás csak hiba esetén hajtódik végre.  

A 4.1 táblázat összegzi az exec* függvénycsaládba tartozó rendszerhívásokat és ezek 

jellemzőit (három kritérium szerint hat függvényt kínál fel a rendszer): 

 

Függvény paraméter keresési út környezet 

execl lista ./ marad 

execv tömb ./ marad 

execlp lista PATH marad 

execvp tömb PATH marad 

execle lista ./ változik 

execve tömb ./ változik 

 

4.1 táblázat  Az exec* függvénycsalád 
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Az egyes függvények szintaxisa: 
#include <unistd.h>  

int execl(const char *path,  

                 /* elérési út */ 

         const char *arg0,  
                 /* programnév */ 

         const char *arg1,  
                 /* paraméterek */ 

... 

         const char *argn, 
         NULL);  
                /* a paraméterek vége */  

int execv(const char *path, char *argv[]); 
int execlp(const char *filename,  
       /* a futtatható állomány neve */ 

           const char *arg0, 
           const char *arg1 
             ... 
           const char *argn, 
           NULL);  
int execvp(const char *filename, char *argv[]);  

 
int execle(const char *path, 

           const char *arg0, 
           const char *arg1, 
           ... 
           const char *argn, 
           NULL, 
           char *envp[]);  
          /* környezeti változók */  
int execve(const char *path, char *argv[], char *envp[]); 

 

Az egyes változók jelentése:  

• path: mutató egy karaktersorhoz, amely a futtatható állomány keresési útvonalát jelöli,  

• filename: mutató a futtatható állomány nevéhez; ha a név nem kezdődik a gyökérrel (és 

nincs megadva a teljes útvonal), akkor az állományt a PATH változó által definiált 

katalógusokban keresi a rendszer,  

• arg0: mutató a futtatható állomány nevéhez, 

• arg1, arg2, ..., argn: mutatók, amelyek a programnak átadott paramétereket jelölik,  

• argv: mutató a paramétervektorhoz (a 0-dik paraméter az állomány neve),  

• envp: mutató az új környezeti változókhoz, amelyek a vektorban egyenként 

változó=érték alakban jelennek meg.  

Az utolsó paraméter mindig NULL (a paraméterlista végét jelöli).  

 

4.2.2. Folyamatok közti kommunikáció pipe-on keresztül 

A pipe mechanizmus 

A pipe mechanizmus megjelenését a Unix alapú rendszerekben az indokolta, hogy lehetővé 

tegye a gyerekfolyamat szülővel való kommunikációját. 

Általában a szülő folyamat átirányítja a standard kimenetét (stdout) egy pipefileba, a 

gyerekfolyamat pedig a standard bemenetét (stdin) veszi ugyanabból a pipefileból. Az 

ilyen jellegű kapcsolat jelölésére shell szinten a “|” operátort szokás használni. 

Pl. who|sort|less 

A pipe mechanizmus ugyanakkor C programból is alkalmazható. 
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A pipefile egy speciális név nélküli file (nem tartozik hozzá directory bemenet). Mérete 

korlátozott, általában 10 (12) blokk.  

A 4.1.3 alfejezetben láthattuk, hogy az inode táblázat egy bemenete 13 (15) címet tartalmaz, 

amiből 10 (12) direkt cím, majd ezt követi egy egyszeres, egy kétszeres, illetve egy 

háromszoros indirektáló cím. 

Pipefile esetén nincs indirektálás, emiatt az adathozzáférés (egy indirektálást is használó 

közönséges állományhoz képest) gyors. 

A két folyamat (szülő-, illetve gyerekfolyamat) közösen használja a pipefilet: egyik ír, a 

másik olvas – megnyitáskor két deszkriptort kapunk vissza, egyet írásra, és egyet olvasásra. 

_________________________________ 

|       |       |       |      

_________________________________ 

                            
           olvas            ír  

Az adatok olvasása/írása a pipefileba úgy történik, mint egy körkörös pufferbe (ha az betelt, 

kezdődik az elejéről). Az adatok olvasása/írása FIFO elv alapján történik (a legrégebben beírt 

adat lesz leghamarabb kiolvasva). Egy bizonyos információt csak egyszer lehet kiolvasni. A 

szinkronizálást a filemutatók közt a rendszer végzi, mégpedig a termelő/fogyasztó elv 

alapján: 

• egy folyamat, amelyik írni akar a pipefile-ba (termelő) csak akkor fog tudni írni 

(termelni), ha az nem telt meg (amennyiben meg van telve, várakozási állapotba jut, 

amíg egy másik folyamat ki nem olvas belőle). 

• a folyamat, amelyik olvas (fogyasztó) csak akkor olvashat, ha van mit. Különben 

blokálva lesz (wait állapot), míg egy másik folyamat adatot nem helyez a pipefile-ba.  

• a pipefile adataihoz csak szekvenciálisan lehet hozzáférni  

 

Pipe mechanizmus a gyakorlatban 

A szülőfolyamat hozza létre a pipefile-t (pipe). Ugyanaz a szülő létrehoz egy vagy több 

gyerek-folyamatot (fork rendszerhívás). Egyes folyamatok írni fognak a pipefile-ba (write 

- fd[1]), mások pedig olvasni  (read - fd[0]). Elvileg a szülő- és gyerekfolyamat is 

megkapja az író- és olvasó deszkriptort is, egyetlen pipefile-t mégis csupán egyirányú 

kommunikációra szokás használni (a nem használt deszkriptorokat zárjuk be!). Fontos, hogy 

a szülő-gyerek közti kommunikációt szolgáló pipefile-t még a fork hívás előtt hozzuk létre, 

hiszen így a fork hívást követően a gyerekfolyamat örökli a megnyitott deszkriptorokat. Az 

4.6 ábra szemlélteti a pipefile-on keresztül történő kommunikációt. 

 

 

4.6 ábra Kommunikáció szülő és gyerek között pipefile-on keresztül 

 

Kétirányú kommunikáció megvalósításához két pipefile létrehozására van szükségünk. 

 

 

 



128  4. FEJEZET OPERÁCIÓS RENDSZEREK 

 

Pipe létrehozása 

A pipefile létrehozása a pipe rendszerhívással történik. Ennek szintaxisa: 
 

#include <unistd.h>  

int pipe(int pfd[2]);  

 

A függvény 0-t térít vissza, ha a létrehozás sikerült, és -1-et, ha nem. A pfd egy két elemű 

táblázat, ahol a pfd[0]-ból olvasunk, és a pfd[1]-be írunk. A pfd[1]-be való írás során 

(write) az adatok a pipe fileba kerülnek, míg a pfd[0]-ból olvasva (read) törlődnek onnan. 

Hiba esetén az errno változó a hiba kódját fogja tartalmazni. 

 

Pipe bezárása 

A nem használt pipe végeket ajánlatos minél előbb bezárni! Ez a close rendszerhívással 

történik, melynek szintaxisa: 
 

#include <unistd.h>  

int close(int pfd);  

 

A függvény 0-t térít vissza, ha a bezárás sikerült, és -1-et különben. A pfd argumentum egy 

egész szám, tehát csak az állomány egyik végét zárja be.  

 

Pipe írása, olvasása 

A pipefile-ba való írás, illetve a beírt adatok kiolvasása az alábbi függvények valamelyikének 

segítségével történhet: 

 
#include <unistd.h>  

ssize_t read(int pfd, void *buf, size_t count);  

ssize_t write(int pfd, const void *buf, size_t count);  

 

vagy 

  
#include <stdio.h>  

int fscanf(FILE *stream, const char *format,...);  

int fprintf(FILE *stream, const char *format, ...);  

 

A második változatot főként standard fájlok esetén használjuk. A pipefileok kezelésére a 

read és write függvényeket ajánljuk. Paraméterként meg kell adnunk a pipefile egyik 

végének azonosítóját (pfd), a buf puffer vagy érték, míg a count változóba ennek méretét 

adjuk meg. A függvények visszatérített értéke a pipe-ból sikeresen kiolvasott (beírt) bájtok 

száma. Korábban említettük, hogy amennyiben üres pipefileból próbálunk olvasni, a folyamat 

blokálódik a read műveleten mindaddig, amíg valaki nem ír a pipe-ba. Fontos azonban 

megjegyezni, hogy amennyiben a pipefilehoz tartozó összes (!) íródeszkriptort bezártuk, a 

read művelet azonnal visszatér 0 értékkel. 

Példa: who | sort implementálása pipe illetve exec* hívások segítségével 

 

Tekintsük az alábbi összetett shell parancsot: 

 
$ who | sort 
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Az alábbi példa a két parancs (who és sort) pipe-on keresztül történő összefűzését valósítja 

meg. A szülőfolyamat (mely a shell parancsértelmezőt helyettesíti) két gyerekfolyamatot hoz 

létre, ezek pedig megfelelőképpen átirányítják a bemenetüket, illetve kimenetüket. Az első 

gyerekfolyamat a who parancsot hajtja végre, a másik pedig a sort parancsot, a 

szülőfolyamat pedig megvárja a befejeződésüket. A forráskód a következő: 

 
//whoSort.c  

//a $who|sort shell parancsok osszefuzeset valositja meg pipe segitsegevel 

#include <unistd.h> 

#include <sys/types.h> 

#include <sys/wait.h>    

#include <stdlib.h>          

int main (){ 

            

      int p[2]; 

      pipe (p); 

      if (fork () == 0) {  // elso gyerek  

         dup2 (p[1], 1);  // standard kimenet atiranyitasa 

         close (p[0]); 

         execlp ("who", "who", NULL); 

      } 

      else if (fork () == 0) { // masodik gyerek  

         dup2 (p[0], 0);  // standard bemenet atiranyitasa 

         close (p[1]); 

         execlp ("sort", "sort", NULL);// sort vegrehajtasa 

      } 

      else {    // szulo  

         close (p[0]); 

         close (p[1]); 

         wait (NULL); 

         wait (NULL); 

      } 

      exit(0); 

} 
 

Megjegyzés: a fenti példa jobb megértéséhez ajánljuk, hogy az olvasó nézzen utána a Unix 

kézikönyvekben (man) a dup2 rendszerhívás működésének. Esetünkben a dup2 egyik 

paramétere egy pipefile deszkriptor. 

 

4.2.3. Folyamatok közti kommunikáció FIFO állományon keresztül 

A  FIFO mechanizmus 

A pipe mechanizmus legnagyobb hátránya, hogy csak egymással „rokoni” viszonyban levő 

folyamatok között használhatjuk: a pipe-on keresztül kommunikáló folyamatok a pipe-ot 

létrehozó folyamat leszármazottai kell legyenek, hiszen az író-, illetve olvasó deszkriptor 

egyedi, és mindkettő a fork() hívás következtében adódik át a gyerekfolyamat(ok)nak. 

Az 1985-ös év tájékán jelent meg a FIFO (névvel ellátott csővezeték vagy pipe) 

állomány (Unix System V). A FIFO állomány a közönséges fájl és a pipe kombinációja. A 

pipe-al szemben a FIFO állománynak van egy szimbolikus neve, és egy katalógus, ahová 

létrehozzuk, ezt leszámítva, azonban megőrzi a pipe fájlok összes jellemzőit. A FIFO 

állománynak saját neve van, tehát bármely folyamat meg tudja nyitni, nem csak a közös őssel 

rendelkező folyamatok. Amennyiben az ls -l paranccsal kilistázzuk az állományt, a file 

típusát p-vel (pipe) jelöli a rendszer.  
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Egy FIFO állomány létrehozása az mknod vagy mkfifo függvények valamelyikével történik.  

 

 

Szintaxis: 
#include <sys/types.h>  

#include <sys/stat.h>  

int mknod(char *pathname, int mode,0);  

int mkfifo(const char *pathname, mode_t mode); 

ahol: 

• pathname – elérési útvonal 

• mode – típus és hozzáférési jogok (pl. S_IFIFO|0666) 

• visszatérített érték: 

 0 sikeres létrehozás esetén 

 -1 hiba esetén 

 

Shell paranccsal is létrehozhatunk FIFO állományt: 
$ mknod FIFOnev  p  

vagy 
$ mkfifo FIFOnev 

 

 

FIFO álomány megnyitása  

A FIFO állomány megnyitása az open rendszerhívással történik. Szintaxisa: 
 

#include <sys/types.h>  

#include <sys/stat.h>  

int open(const char *pathname, int flags);  

ahol 

• pathname – elérési útvonal 

• flags – hozzáférési jogok 

– O_RDONLY, csak olvasható,  

– O_WRONLY, csak írható,  

– O_RDWR, olvasható és írható.  

– O_NONBLOCK, O_NDELAY – nincs várakozás (lásd a 4.2 táblázatot) 

• visszatérített érték: 

– file leíró – sikeres megnyitás esetén 

– -1 – hiba esetén 

 

Az írás, olvasás, bezárás ugyanúgy történik, mint a közönséges állományok esetén (read, 

write, illetve close függvények). A FIFO állomány törlése pedig az unlink hívással 

történik. Szintaxisa: 
#include <unistd.h>  

int unlink(const char *pathname);  

 

A FIFO állomány használata a következő forgatókönyv szerint történik: 

Egy folyamat a szimbolikus név alapján létrehozza a FIFO állományt az mknod vagy 

mkfifo függvények segítségével. Egy folyamat, amely információt szeretne közölni egy 

másikkal, megnyitja a FIFO állományt az open függvénnyel, és a write segítségével beírja 

az adatokat. Egy másik folyamat, amely az adatokat szeretné kiolvasni, megnyitja a FIFO 

állományt olvasásra az open függvénnyel, majd a read segítségével kiolvassa a kívánt 

információt. Egy folyamat a szimbolikus név alapján törli a FIFO állományt az unlink 

függvénnyel. Az állomány törlése a rm shell parancs segítségével is megtehető. 
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A 4.2 táblázat összefoglalja, hogy mi történik a FIFO állomány megnyitásakor, valamint 

írás/olvasáskor, attól függően, hogy az O_NONBLOCK (O_NDELAY) flag be van-e állítva 

vagy sem. 

 

feltételek normál O_NDELAY 

beállítva 

FIFO megnyitva 

csak írásra, de 

olvasó folyamat  

nincs 

várakozik mindaddig, amíg egy másik folyamat 

meg nem nyitja írásra a FIFO állományt 

azonnal visszatér, 

várakozás és 

hibajelzés nélkül  

FIFO megnyitása 

írásra, de olvasó 

folyamat nincs 

várakozik mindaddig, amíg egy másik folyamat 

meg nem nyitja olvasásra a FIFO állományt 

azonnal visszatér, 

hibajelzéssel: az 

errno értéke 
ENXIO 

olvasás FIFO 

vagy pipe fileból, 

de nincs 

olvasnivaló adat 

várakozik mindaddig, amíg adatok nem kerülnek a 

FIFO állományba, vagy amíg nincs egyetlen olyan 

folyamat sem, amely írásra nyitotta meg a FIFO 

állományt. A kiolvasott byte-ok számát téríti 

vissza, ha új adatok jelentek meg vagy 0-t, ha 

nincs több író folyamat.  

azonnal visszatér és 

0-t térít vissza 

írás FIFO vagy 

pipe fileba, 

amikor az tele van 

várakozik mindaddig, amíg ürül hely a FIFO 

állományban, majd annyi adatot ír bele, amennyi 

számára hely van 

azonnal visszatér és 

0-t térít vissza 

4.2 táblázat Az O_NONBLOCK (O_NDELAY) flag hatása 

Példa: kliens/szerver kommunikáció FIFO-n keresztül 

A kliens/szerver modell gyakran használt a programozásban. A következőkben a 

kliens/szerver modellt mutatjuk be, ahol a kommunikáció FIFO állományon keresztül 

történik. A példában a szerver nagyon egyszerű feladatot lát el, hiszen célunk a 

kommunikáció bemutatása: a kliens küld egy számot a szervernek, mire a szerver válaszként 

visszaküldi a szám négyzetét. 

 

Megjegyzések: 

• a szerver létrehoz egy szerverfifot, amelyre az összes kliens csatlakozni fog, 

• minden kliensnek külön FIFO-ja van, amelyet a kliens maga hoz létre; ezért amikor a 

kliens a szervernek elküldi a kérést, valahogyan jeleznie kell, hogy milyen nevű FIFO-n 

keresztül szeretné a választ megkapni; a legegyszerűbb, ha a kliens FIFO-jának 

nevében szerepel a kliens folyamatazonosítója is, így a név egyértelmű, 

• a kliens előbb megnyitja a saját FIFO-ját olvasásra, s csak azután küldi el az üzenetet a 

szerver felé, 

• a szerver FIFO-ja csak a szerver befejeződésekor  záródik be, 

• a kliens FIFO-ját a szerver oldalon a szerver a válaszadás után bezárja; ha újabb kérés 

érkezik, újból megnyitja, 

• ha a kliens befejezte működését be kell zárnia a saját FIFO-ját. 

 

Mivel a FIFO-n küldött adatok típusa megegyezik a szerverben és a kliensben, a könnyebb 

kezelhetőség érdekében ajánlatos egy közös adatszerkezetet létrehozni, és ezt egy külön 

fejlécállományban tárolni. Esetünkben ez a következő lesz: 
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Közös headerállomány (struktura.h) 
 

typedef struct elem 

{ 

  int szam; 

  int pid; 

} azon; 

 

Szerver program (szerver.c): 
 

#include <stdio.h> 

#include <sys/types.h> 

#include <sys/stat.h> 

#include <fcntl.h> 

#include <unistd.h> 

#include <stdlib.h> 

#include "struktura.h"                  /* a fent megadott fejlec */ 

 

int main(void) 

{ 

  int fd, fd1;                          /* szerver- es kliensfifo */ 

  char s[15];                           /* kliensfifo neve; pl. fifo_143 */ 

  azon t;                               /* kuldeni kivant "csomag" */ 

 

  mkfifo("szerverfifo", S_IFIFO|0666);  // a szerver letrehozza a sajat 

            // fifo-jat */ 

  fd = open("szerverfifo", O_RDONLY);   /* megnyitja olvasasra */ 

 

  do                                    /* amig 0-t nem kuld egy kliens */ 

  { 

    while(!read(fd, &t, sizeof(t)));    /* szam kiolvasasa */ 

    t.szam = t.szam * t.szam; 

    sprintf(s, "fifo_%d", t.pid);       // a pid segitsegevel meghat. a 

  // kliensfifo nevet  

    fd1 = open(s, O_WRONLY);            /* kliensfifo megnyitasa irasra */ 

    write(fd1, &t, sizeof(t)); 

    close(fd1);                         /* adatok elkuldve */ 

  } while (t.szam); 

  close(fd);                            /* szerverfifo vege */ 

  unlink("szerverfifo");                /* torli a szerverfifot */ 

  exit(0); 

} 

 

Kliens program (kliens.c): 

 
#include <stdio.h> 

#include <sys/types.h> 

#include <sys/stat.h> 

#include <stdlib.h> 

#include <fcntl.h> 

#include <unistd.h> 

#include "struktura.h"                  /* a fenti fejlecallomany */ 

 

int main(int argc, char *argv[])        // a szamot a parancssorban adjuk  

          // meg  

{ 

  int fd, fd1;                          /* kliens- es szerverfifo */ 

  char s[15]; 

  azon t; 
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  if (argc != 2)                       /* nincs megadva argumentum, hiba */ 

  { 

    printf("hasznalat: kliens <szam>\n"); 

    exit(1); 

  } 

 

  sprintf(s, "fifo_%d", getpid());    // meghat. a fifonevet a pid  

          // segitsegevel  

  mkfifo(s, S_IFIFO|0666);              /* letrehoz egy kliensfifot */ 

  fd = open("szerverfifo", O_WRONLY); 

  t.pid = getpid();                     /* a kuldeni kivant adatok */ 

  t.szam = atoi(argv[1]);               /* string atalakitasa szamma */ 

  write(fd, &t, sizeof(t));             /* kuldi a szervernek */ 

  fd1 = open(s, O_RDONLY); 

  read(fd1, &t, sizeof(t));             /* a valasz */ 

  close(fd1); 

  unlink(s);                            /* kliensfifo torlese */ 

  printf("a negyzete: %d\n", t.szam); 

  exit(0); 

} 

  



134  4. FEJEZET OPERÁCIÓS RENDSZEREK 

 

4.3. Shell programozás és alapvető Unix parancsok 

 

Parancsértelmező (Bourne shell - sh) 

4.3.1. Egy parancsértelmező – shell – működése 

A parancsértelmező (shell vagy burok) egy speciális program, mely egy interfészt biztosít a 

felhasználó illetve az operációs rendszer magja (az ún. kernel) között. Ebből a szemszögből 

kétféleképpen tekinthetünk a shell-re:  

 

1. mint parancs nyelvre, mely közvetít a számítógép és a felhasználó között. Amint egy 

felhasználó bejelentkezik a rendszerbe és/vagy megnyit egy parancsablakot, implicit 

módon indul a shell, mint parancsértelmező. A shell egy prompt-ot ír ki a standard 

kimenetre (ami általában egy terminálhoz van hozzárendelve), arra várva, hogy a 

felhasználó parancsokat írjon be vagy valamilyen parancsállományt indítson el, 

esetleg paramétereket is megadva neki.  

 

2. mint programozási nyelvre, melynek alapeleme a Unix parancs (szemantikailag a 

programozási nyelvek hozzárendelés utasításával tekinthető egyenértékűnek). A 

klasszikus programozási nyelvekből a feltétel igazságértékének megfelelője itt a 

parancsok sorozatából az utolsónak a visszatérített értéke: a 0 érték igaz-at (true) 

jelent, ettől különböző érték pedig a hamis (false) megfelelője. Egy shell támogatja a 

következő fogalmakat: változó, konstans, kifejezés, vezérlő szerkezetek, alprogram. A 

szintaktikai követelményeket illetően, ezek minimálisra lettek csökkentve: a 

paramétereket határoló zárójelek elhagyása, változódeklaráció hiánya, stb.  

 

Egy terminálablak megnyitásakor elindított shell aktív marad mindaddig, amíg az illető ablak 

be nem zárul. A shell gyakorlatilag az alábbi algoritmus szerint működik: 

 
Amíg ( be nem zárult a munkafázis )  

   Kiírja prompt-ot; 

   Olvas a parancssorból; 

   Ha ( a sor végén '&' karakter van ) akkor 

     Létrehoz egy új folyamatot, mely végrehajtja a beírt parancsot 

     Nem vár a végrehajtás befejezésére 

   Különben 

     Létrehoz egy új folyamatot, mely végrehajtja a beírt parancsot 

     Vár a végrehajtás befejezésére 

   HaVége 

AmígVége 

 

Megjegyezzük, hogy amint az a fenti algoritmusból is kiderül, egy parancsot kétféleképpen 

hajthatunk végre: 

 előtérben (foreground) – Ebben az esetben a shell elindítja a parancs végrehajtását, 

megvárja ennek befejeződését, majd ezután ismét kiírja a prompt-ot. Újabb parancsot 

csak ezt követően vihetünk be. Bármely Unix parancs esetén ez az implicit 

végrehajtásmód.  

 háttérben (background) – a végrehajtás a háttérben – rejtett módon – zajlik. Ebben az 

esetben a shell elindítja a folyamatot, mely a parancs végrehajtásáért felelős, de nem 

várja meg ennek befejeződését, hanem azonnal kiírja a prompt-ot, ezzel felkínálva a 
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lehetőséget a felhasználó számára, hogy újabb parancsot indítson. Amennyiben a 

parancsot a háttérben kívánjuk elindítani, a '&' speciális karakterrel kell lezárnunk azt. 

 

Egy Unix parancsablakban bármennyi folyamat indítható a háttérben, de csak egyetlen egy 

előtérben. Példaként tekintsük az alábbi három parancsot, melyből kettőt háttérben indítunk 

(egy állomány-másolás -cp-, és egy fordítás -gcc-), illetve egyet előtérben (állomány 

szerkesztése a vi szövegszerkesztővel): 
 $ cp A B & 

 $ gcc x.c & 

 $ vi H 

 

4.3.2. Shell programozás 

A Bourne shell (sh) rövid bemutatása 

 

Az alábbiakban a legegyszerűbb Unix shell, az sh használatát mutatjuk be. Kezdjük néhány 

alapvető szintaktikai konvencióval. 

 

Egy Unix parancs általános alakját a következőképpen adhatjuk meg: 
parancsnév [opciók] [kifejezések] [állományok] 

• ahol az opció 

– általában 1 betű 

– az opciók csoportja „-“ jellel kezdődik 

– ki-be kapcsolás: -, + 

Pl.: 

Az aktuális katalógus összes állományának kilistázása (beleértve a rejtett 

állományokat is), hosszú formátummal: 
 ls –al 

Az abc nevű állomány tulajdonosának végrehajtási jogot adunk az illető állományra 

vonatkozóan: 
    chmod u+x abc  

• a kifejezések – a parancs argumentumai 

• a mezők között az elválasztó a szóköz  

• az állománynevek tekintetében az alábbi konvenciók érvényesek: 

• ennek hossza max. 255 karakterre korlátozott 

• a shell különbséget tesz kis és nagybetű között 

• nincs kiterjesztés 

• néhány speciális karaktert nem ajánlott használni állománynévben:  

<>|&[]*?-!/ 

• akárhány pont „.” szerepelhet az állománynévben, és ezek bárhol 

megjelenhetnek, esetleg néhány esetben speciális jelentése lehet a pontnak: 

• . a név elején – rejtett állományt jelöl (pl. .forward) 

• . az utolsó betű(k) előtt – program forráskódja (pl. prog.C, p.cpp)  

• amikor állománynevekre hivatkozunk, használhatjuk az alábbi helyettesítő 

karaktereket: 

• ? az állománynévben – egyetlen tetszőleges karaktert helyettesít 

• * az állománynévben – 0 vagy több tetszőleges karaktert jelöl 

Pl.   

a?b   lehet aab; a1b; axb; a_b; stb. 
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a*b lehet: ab; a1b; aaaaab; a_xxxb; stb. 

a?b*x* lehet: a1bx; a_bcdefx3; de nem lehet abcdx  

 

A shell néhány karakternek vagy karakterkombinációnak speciális jelentést tulajdonít. Ezeket 

metakaraktereknek nevezzük. Ilyen metakarakterek a következők: 

• >   kimenet átirányítása  

• >>   kimenet additív átirányítása  

• <   bemenet átirányítása  

• <<string   „here document”  szabványos bemenet következik egészen a stringet 

(sor elején) tartalmazó sorig  

• |   pipeline (csővezeték)  

• *   egyezés bármely lánccal (üressel is)  

• ?   egyezés a filenévben egyetlen karakterrel  

• [...]   egyezés a file-névben bármely, a zárójelben levő karakterrel (pl. [abc]; [a-z]; 

[1-9]; [A-Za-z])  

• ;   parancslezáró  

• &   parancslezáró háttérfolyamatoknál  

• '…'    betű szerint értelmezi a közé írt karaktersort  

• "…"  szintén betű szerinti értelmezés, de a shell értelmezi a következő speciális 

karaktereket: $, `…`, \  

• `…`   a közrezárt parancs helyére (a fordított aposztrófokat is beleértve) a végrehajtás 

eredménye kerül. Amennyiben például az aktuális katalógus a /home/user1, és a 

parancssorba az alábbi parancsot írjuk 
$ echo Az aktuális katalógus: `pwd` 

eredményül a következő üzenetet kapjuk a standard kimeneten: 
Az aktuális katalógus: /home/user1 

Amennyiben azonban azt írnánk a parancssorba, hogy 
$ echo Az aktuális katalógus: pwd 

ezt kapnánk: 
Az aktuális katalógus: pwd 

• \    levédi az utána következő karaktert  

• #   a sor hátralevő része kommentár  

• $i   $0,..., $9  a shell argumentumai  

• $var  a var változó értéke  

• &&  p1 && p2  futtatja a p1 parancsot, ha az sikeres, futtatja p2-t  

• ||   p1|| p2  futtatja p1-et, ha az sikertelen volt, futtatja p2-t  

 

A Bourne shell (sh) az alábbi shell változókat kínálja fel: 

• $# – az argumentumok számát adja meg  

• $* – minden argumentum, egyetlen karakterláncként tekintve: 

"$1 $2 . . . $n"; 

• $@– a parancssor összes argumentuma, stringek sorozataként tekintve:  
"$1" "$2"..."$n"; 

• $-  – opciók  

• $?  – az utoljára végrehajtott parancs visszatérési értéke  

• $$ – a burok folyamatazonosítója  

• $!  – az utolsó háttérben indított folyamat folyamatazonosítója  
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A shell által létrehozott bármelyik folyamat örököl egy sor standard, meghatározott nevű 

változót. Ezeknek a változóknak az összessége alkotja az illető folyamat úgynevezett 

környezetét (environment). Ezek közül a környezeti változók közül felsorolunk néhányat: 

• $HOME – home directory (vagy alapkatalógus) 

• $IFS – argumentumszavakat elválasztó karakterek (implicit módon a szóköz, 

<TAB>, illetve újsor karakterek) 

• $MAIL – az elektronikus postát tároló állomány nevét tartalmazza. Amennyiben 

megváltozik az adott file tartalma, a rendszer üzenetet ír ki. A $MAILCHECK változó 

adja meg, hogy milyen időközönként figyelje a rendszer az új levelek érkezését. 

• $PATH – útvonal: a végrehajtható állományok keresési útvonalát adja meg. Amikor 

beírunk a parancssorba egy shell parancsot, a shell a $PATH-ban felsorolt, „:”-al 

elválasztott elérési utakban keres egy megadott nevű végrehajtható állományt. A 

keresés a $PATH-ban balról jobbra történik, és amint megvan az első találat, a 

keresés véget ér. Megjegyezzük, hogy a keresés kizárólag a megadott elérési utakon 

történik, az aktuális katalógusban csak akkor keres a rendszer, ha ez explicit módon 

hozzá van adva a PATH változóhoz. 

A felhasználó tetszés szerint módosíthatja a PATH értékét. Például ha a meglévő 

értékhez hozzá szeretnénk adni az aktuális katalógust, az alapkatalógust, és ennek bin 

nevű alkatalógusát, ezt a következőképpen tehetjük meg: 
$ PATH=${PATH}:.:${HOME}:${HOME}/bin 

• $PS1 – prompt karakterlánc, implicit módon $ közönséges felhasználó esetén 

(megj. a példákban ez a prompt jelenik meg a sor elején), illetve # a root felhasználó 

esetében  

• $PS2 – parancs folytatásakor használt másodlagos prompt: > 

• $LOGNAME – a bejelentkezett felhasználó azonosítója. 

• $SHELL – a használt parancsértelmezőt adja meg 

• $TERM – a használt terminál típusát adja meg 

• $TZ – a beállított időzónát adja meg 

 

Pozicionális shell változók: 

Korábban –a shell metakaraktereinek felsorolásakor– említettük, hogy a $i (ahol i egy 

számjegy) sajátos jelentéssel bír: 

• $0 – a parancsállomány nevét adja meg  

• $1-$9 – segítségével hivatkozhatunk a parancssor első 9 argumentumára 

Tegyük fel, hogy a parancssorból a következőképpen hívtunk meg egy parancsot: 
$  parancs  arg1  arg2  ... argn 

Amennyiben a fenti parancs egy parancsállomány (shell script) neve, melyet az 

alapértelmezett shell fog kiértékelni, akkor a script-en belül az alábbi módon hivatkozhatunk 

a parancs nevére, illetve az első 9 argumentumra: 

 

$  parancs  arg1  arg2  ... arg9 arg10 ... argn 

       ^      ^     ^   ...   ^ 

       |      |     |   ...   | 

       $0     $1    $2  ...   $9 

 

Ha több, mint 9 paramétert adtunk meg, nem fog elveszlődni egyik sem, azonban egy adott 

ponton csak az első 9-re hivatkozhatunk a megadott módon.  
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A burok beépített változóin-, illetve a pozicionális shell változókon kívül a felhasználó 

definiálhat saját változókat. Egy var nevű változó esetében ennek értékére $var-al 

hivatkozunk. A változók értéke karaktersor. Akkor is, ha egy bizonyos kontextusban egy 

változót számként interpretálunk, ennek ábrázolása a számjegyeinek megfelelő karakterek 

ASCII kódjának sorozataként történik. 

A változókat nem kell deklarálni, egy változó definiálása gyakorlatilag megegyezik a 

változónak való első értékadással, és az alábbi módon történik: 

 
$ valtozonev=karaktersor 

 

A kiértékelés során a shell létrehoz egy változót a megadott (valtozonev) névvel, melynek 

értéke a megadott (karaktersor) karaktersor. Fontos megjegyeznünk, hogy az 

egyenlőségjel előtt, illetve után nincs szóköz! Amennyiben azt szeretnénk, hogy a megadott 

karaktersorban egy vagy több szóköz szerepeljen, akkor ezeket le kell védenünk. 
 

Egy shell változó lokális az őt létrehozó folyamatra nézve. Ezzel együtt van rá lehetőség, 

hogy a változót örököljék az illető folyamat gyerekfolyamatai, amennyiben a változót 

definiáló folyamatba az alábbi deklarációt írjuk: 

 
$ export valtozonev  

 

ahol valtozonev annak a változónak a neve, amelyet szeretnénk, hogy a gyerekfolyamatok 

örököljenek. 

 

Egy változó értékének a behelyettesítése többféleképpen történhet. Tekintsük azt a két 

lehetőséget, amelyik a változó értékét adja vissza vagy üres stringet, amennyiben a változó 

nincs meghatározva: 
$valtozonev 

${valtozonev} 

A második formát akkor használjuk, ha az első nem tenné lehetővé, hogy egyértelműen meg 

lehessen határozni a változó nevét (például amikor az egy karaktersoron belül található).  

Lássunk néhány egyszerű példát. Tegyük fel, hogy a billentyűzetről az alábbi három sort 

visszük be egymás után:  
 $ szo1=sivatagban 

 $ szo2=kutat 

 $ echo A $szo1 egy csapat $szo2 as 

 

Az echo parancs végrehajtásakor, mely egy sor kiírását végzi el, előbb sor kerül a szo1, 

illetve szo2 változók behelyettesítésére a megfelelő értékkel, az eredmény pedig:  
A sivatagban egy csapat kutat as 

 

Ha ezzel szemben az alábbi parancsot írjuk be: 
$ echo A $szo1 megkezdodott a $szo2as  

 

Az eredmény a következő lesz: 
A sivatagban megkezdodott a 

 

mivel a shell a $szo2as változó értékét próbálja behelyettesíteni, az pedig nincs definiálva, 

azaz üres string lesz az értéke. Az ehhez hasonló helyzetek elkerülésére használhatjuk a 

másodikként megadott helyettesítési formát:  
$ echo A $szo1 megkezdodott a ${szo2}as  
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A parancs végrehajtásának eredménye ekkor:  
A sivatagban megkezdodott a kutatas 

 

 

Az sh 13 kulcsszóval rendelkezik. Ezek az alábbiak:  
if then else elif fi 

case in esac 

for while until do done 

Az sh által használt vezérlő szerkezetek  

 

Az if vezérlő szerkezet szintaxisa a következő: 

 
if utasítások1  

then utasítások2  

[elif utasítások3  

 then utasítások4  

...  

elif utasításokn-1  

 then utasításokn]  

[else utasításokn+1]  

fi  

 

Egy if utasításon belül tehát akárhány elif ... then ág szerepelhet, az utasítás végén 

pedig megjelenhet (de csak egyszer) az else .... 

Megjegyezzük, hogy az if, then, elif, fi kulcsszavak szintaktikai szempontból úgy 

viselkednek, mintha külön parancsok lennének, ezért vagy új sorba kell írnunk őket, vagy –

amennyiben valamelyik nincs külön sorban – a parancsokat egymástól elválasztó „;”-vel kell 

azt elválasztanunk a sor többi részétől. 

 

A if-et vagy elif-et követő parancslistának kettős szerepe van: egyrészt a listában levő 

parancsok végrehajtása, másrészt a végrehajtás igazságértékének a meghatározása. Egy 

parancslista végrehajtásának értéke true, amennyiben a listából az utoljára végrehajtott 

parancs visszatérített értéke 0. A végrehajtás értéke false, ha a visszatérített érték zérótól 

különböző. A then vagy else után következő parancslista ennek az igazságértéknek a 

függvényében hajtódik végre vagy sem. 

Az if utasítás a következőképpen működik: 

• Végre lesz hajtva az if-et követő parancslista. Amennyiben a végrehajtott 

utasítássorozat igazságértéke true, akkor a then ágon szereplő parancsok sorozata 

hajtódik végre, és az if utasítás végrehajtása befejeződik. Ellenkező esetben (a 

végrehajtott utasítássorozat igazságértéke false) a következő lépés következik: 

• amennyiben van egy vagy több elif ág, akkor rendre végrehajtódik az őket követő 

parancslista, mindaddig, amíg valamelyiknek az igazságértéke igaz (true) nem lesz. Ezt 

követően az utána következő then ág parancsai hatódnak végre és az if utasítás 

végrehajtása befejeződik. Ellenkező esetben (vagy egyáltalán nincs elif vagy az 

összes parancslista false-ra értékelődik ki), az alábbi lépés következik: 

• amennyiben van else ág, végrehajtódik az else utáni parancslista és az if 

végehajtása befejeződik. Ellenkező esetben (nincs else ág): 

• az if végrehajtása befejeződik és az if-et követő utasítással folytatódik a végrehajtás. 

 



140  4. FEJEZET OPERÁCIÓS RENDSZEREK 

 

Az alábbiakban példaként bemutatunk – két változatban – egy parancsállományt, mely egy 

szöveges állomány sorait ábécésorrendbe rendezve listázza ki. Az állomány nevét a 

parancssor első paramétereként adjuk meg. Az első változat: 

 

if  [  $#  -eq  0 ] 

  then  echo  "Használat: $0 állománynév" 

  else  sort $1  |  more 

fi 

 

A bemutatott változat csupán azt ellenőrzi, hogy megadtunk-e egy paramétert a 

parancssorban. A következő változat alaposabb ellenőrzést végez (azt is megvizsgáljuk, hogy 

a paraméterként megadott állomány létezik-e): 

 

 

if  [  $#  -eq  0 ] 

  then echo "Használat: $0 állománynév" 

  elif  [  ! -f ”$1” ] 

    then  echo "$1 állomány nem létezik" 

  else  sort $1  |  more 

fi 

 

Ismétlő struktúrák  

 

A shell négyféle ismétlő struktúrával rendelkezik: for két változatban, while és until. 

Ezek szintaxisa: 

 
for változónév  

do  

 utasítások  

done  

 

for változónév in szavak  

do  

 utasítások  

done  

 

while utasítások1  

do  

 utasítások2  

done  

 

until utasítások1  

do  

 utasítások2  

done  

 

A for ismétlő struktúra 

A shell ismétlő struktúrái közül ez a leggyakrabban használt. Két alakja van, mindkettő egy 

változónév nevű kontroll-változót használ (a változó neve természetesen tetszőleges lehet). 
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Az első formában a változónév rendre felveszi a parancssorban megadott összes paraméter 

értékét: $1, $2, ..., (tulajdonképpen a $@ változóból veszi a shell az értékeket). Ezek 

mindegyikére végrehajtja a ciklus törzsében levő utasításokat.  

 

A második alakban az in után következő szavak listája szóközökkel elválasztott egyszerű 

szavakat jelöl vagy helyettesítő karaktereket tartalmazó állománynevek szerepelhetnek ott, 

melyek ki lesznek terjesztve az összes illeszkedő állománynévre, így végül egy állomány-

listát kapunk. A változónév rendre felveszi a lista elemeinek értékét, és mindegyikre végre 

lesz hajtva az utasítások sorozata. 

 

Lássunk néhány példát. Az első példa egyenként rendezi és kilistázza a paraméterként 

megadott állományok tartalmát: 
for  allomany 

  do   

    sort  $allomany  | more 

  done 

 

Feltételezzük, hogy a parancsállomány neve rendez. Ebben az esetben a következő parancs: 
$  rendez  A  b  C  

 

az alábbi parancsokat fogja generélni és végrehajtani: 
sort  A  | more 

sort  b  | more 

sort  C  | more 

 

Ugyanezt a hatást érjük el, amennyiben az állománynevek a rendez parancsállományon belül 

vannak felsorolva: 

 
for  allomany in  A  b  C 

  do  

    sort  $allomany  |  more 

  done 

 

a parancsállományt pedig a következőképpen hívjuk meg (ezúttal paraméterek nélkül): 
$  rendez  

 

Végül rendezzük az aktuális katalógus összes olyan állományát, melynek neve „adat”-tal 

végződik:  

 
for  allomany  in  *adat 

  do 

    sort  $allomany  |  more 

  done 

 

Az alábbi példa az összes bejelentkezett felhasználónak küld egy mailt: 

 
for x in `who | cut -f1 -d ' ' ` 

  do 

mail -s "Udvozlet" ${x}@scs.ubbcluj.ro <<UZENET 

Elnezest a zavarasert. Ezt az uzenetet csupan a for ciklus 

tesztelese vegett kuldtuk el. 

UZENET 

  Done 
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A while és until ismétlő struktúrák 

A kétféle utasítás hasonlít egymáshoz, amennyiben mindkettő előbb az utasítások1 

utasítássorozatot hajtja végre. A végrehajtott utasítássorozat igazságértékétől (azaz az utolsó 

parancs visszaadott értékétől) függően végrehajtódik vagy sem a do és done közötti 

utasítások2 utasítássorozat, majd ismét az utasítások1 kiértékelésére kerül sor vagy 

befejeződik a ciklus végrehajtása. 

A while ciklus végrehajtása akkor fejeződik be, ha az utasítások1 utasítássorozat utolsó 

parancsának visszaadott értéke zérótól különböző. Ezzel ellentétben az until ciklus akkor 

fejeződik be, amikor 0-t kapunk vissza. 

 

Az alábbi példában a paraméterként megadott állományok rendezését/kilistázását 

megvalósító feladatot láthatjuk while majd until ciklust használva: 

 
while  [  $#  -gt  0 ] 

  do  

    if  [  -f ”$1” ] 

      then  sort  $1  |  more 

      else  echo  "nincs $1 file" 

    fi 

    shift 

  done 

until  [  $#  -eq  0 ] 

  do  

    if  [  -f ”$1” ] 

      then  sort  $1  |  more 

      else  echo  "nincs $1 file" 

    fi 

    shift 

  done 

 

A true, false, break, continue utasítások 

Egyszerű utasításokról van szó, de végrehajtásuknak kizárólag a ciklikus vezérlő szerkezetek 

kontextusában van értelme.  

 

A break illetve continue a for, while vagy until utasítások befejezését illetve a ciklus 

újraiterálását vonják maguk után. Az említett parancsok a C nyelvből lettek kölcsönözve 

(ahol kizárólag a legbelső ciklusra vonatkozik a hatásuk), és a shell által kiterjesztve. 

Szintaxisuk a következő: 

 
break  [ n ] 

continue  [ n ] 

 

A break parancs a ciklus törzsének elhagyását kéri, ezt követően a végrehajtás a ciklus utáni 

utasítással folytatódik. Amennyiben az n paraméter hiányzik, akkor a break utasítást 

tartalmazó legbelső ciklus elhagyására kerül sor. Ha viszont az n is jelen van és a break 

legalább n egymásba ágyazott ciklus belsejében van, akkor az n. ciklust követő utasítással 

folytatódik a végrehajtás.  

 

A continue utasítás a következő iterációval folytatja a ciklus végrehajtását. Az n paraméter 

nélkül a legbelső ciklus lesz újraiterálva, különben az n. ciklus, amelybe a continue bele 

van ágyazva. 

Az újraiterálás a for esetében azt jelenti, hogy a ciklusváltozó a következő értéket kapja 

meg, while és until esetében pedig a while vagy until után következő utasítássorozat 

lesz ismét végrehajtva. 
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Reguláris kifejezések 

 

A reguláris kifejezés (regular expression) egy egy mintát meghatározó karaktersorozatot 

jelent, mely akár több konkrét karaktersorra is illeszkedhet. A Unix által rendelkezésre 

bocsátott eszközök között számos olyan szerepel, mely mintaillesztést használ, ilyen például 

a grep vagy egrep parancs, mely a bemeneti sorok közül kiszűri a megadott mintára 

illeszkedőket. 

A reguláris kifejezésekben szerepelhetnek speciális jelentést hordozó karakterek, ezeket 

metakaraktereknek hívjuk, hasonlóan a shell-ben a fájlnév behelyettesítéskor használt 

speciális karakterekhez. Vigyázzunk azonban, mivel két, egymástól különböző, fogalomról 

van szó, ne keverjük össze a használatukat. 

A reguláris kifejezésekben használt metakarakterek a következők: 

.[]\^$* 

A kiterjesztett reguláris kifejezésekben (extended regular expression, a továbbiakban a ktrk. 

rövidítést használjuk) az alábbi metakarakterek szerepelhetnek (ezeket pl. az egrep 

mintaillesztő tudja értelmezni): 

.[]\^$*+(){}| 

 

 Az alábbiakban megadjuk a reguláris kifejezéseket meghatározó szabályokat. 

– metakaraktereket nem tartalmazó kifejezés csak sajátmagára illeszkedik (pl. az abc 

reguláris kifejezés kizárólag az abc karaktersorra illeszkedik) 

– \c - a c karakterre illeszkedik (pl. \* a *-ra; \\ a \-re) 

– . (pont) - bármelyik (nem újsor) karakterre illeszkedik (pl. ab. illeszkedik az aba, abb, 

abc, ... abz, ab0 stb. karaktersorozatokra) 

– ha e reg. kif., akkor e* az e reguláris kifejezés 0 vagy többszöri előfordulására 

illeszkedik (pl.  a*  illeszkedik az üres stringre, a, aa, aaa,..-ra 

– e+ (ktrk.) – e 1 vagy többszöri előfordulására illeszkedik. Helyettesíthető ee*-al. 

– [...] – illeszkedik az abban a pozícióban lévő bármely, a zárójelben felsorolt 

karakterre. (Pl. [aeiou] az angol ábécé bármelyik kisbetűvel írt magánhangzójára 

illeszkedik)  

– egymás után következő karaktereket rövidíteni lehet Pl. [0-9a-z]  

– a nyitó zárójelet követő ^  a felsorolt karakterek tagadása. (Pl. [^0-9] 

illeszkedik bármely, nem számjegy karakterre)  

– a - karaktert a \- karakterpáros jelöli. 

– a ] zárójel csak a felsorolás első tagja lehet. 

– Nevesített karakterosztályok. Ezek konkrét jelentése függhet a nyelvi lokalizációtól. 

Ahhoz, hogy a hagyományos interpretáció érvényesüljön, fontos, hogy az LC_ALL 

környezeti változó értéke C-re legyen állítva 

– [:alnum:] – alfanumerikus karakterek bármelyikére illeszkedik (egyenértékű a 

következő kifejezéssel, az ASCII kódolást tekintve [0-9A-Za-z])   

– [:alpha:] – bármelyik betűre illeszkedik ([A-Za-z]) 

– [:cntrl:] – vezérlő karakterek ([\x00-\x1F\x7F])   

– [:digit:] – számjegy  

– [:graph:] – látható karakterek (minden karakter, kivéve a vezérlő karaktereket 

és szóközöket) 

– [:lower:] – kisbetű ([a-z]) 

– [:print:] – látható karakterek és szóközök (minden karakter, kivéve a vezérlő 

karaktereket) 
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–  [:punct:] – központozásban használt jelek ([!"\#$%&'()*+,\-

./:;<=>?@\[\\\]^_`{|}~])  

–  [:space:] – tetszőleges fehér karakter, az újsort is beleértve ([ \t\r\n\v\f]) 

–  [:upper:] –  nagybetű ([A-Z]) 

–  [:xdigit:] – hexa számjegy ([A-Fa-f0-9]) 

– e1 \| e2 – ktrk: e1|e2 – illeszkedik e1 vagy e2-re.  

(Pl  [a-z]|\. - az adott pozicióban csak kisbetű vagy pont lehet)   

– ^ a sor elejére, $  a sor végére illeszti a mintát.  

Pl. ^$  vagy ^ *$ - üres sor,  ^[^0-9]*$ - számot nem tartalmazó sor  

– \(...\) – ktrk: (…) – illeszkedik a zárójelbe tett kifejezésre, és egyben 

megjelöli azt (csoportosításra is használt).  

– \n, ahol n szám - a zárójelezéssel kijelölt mintára hivatkozik, a kijelölés 

sorrendjében.  

Pl. ^\(.\)\(.\).*\2\1$ – ktrk: ^(.)(.).*\2\1$ – olyan sor, ahol a sor első két 

karaktere tükörszimmetrikus az utolsó két karakterre. 

– c\{m,n\} – ktrk: c{m,n} –, ahol m és n 256-nál kisebb nemnegativ egész - a 

minta legalább m-szer, és legfennebb n-szer fordul elő egymás után.  

– csak n - pontosan n előfordulás  

– csak m- legalább m előfordulás 

 

Megoldott példafeladatok 

1. Példa : egy felügyelőprogram 

 

Egy Unix rendszerben a gyakorlatban nemegyszer szükség lehet arra, hogy egy bizonyos 

katalógus változásait felügyelet alatt tartsuk. Tegyük fel, hogy a felügyelet a 

következőképpen történik: az első paraméterként (másodpercben) megadott  t  időközönként 

a program elvégzi a (második paraméterként megadott) megfigyelt katalógus tartalmának 

részletes összefoglalását. Amennyiben ez az összefoglalás megegyezik a t másodperccel 

ezelőtt lementettel, a program további t másodpercet vár, majd ismét ellenőrzi a katalógus 

tartalmát és így tovább. Az első olyan esetben, amikor különbséget talál a program a régi, 

illetve új tartalom között, kiír egy megfelelő üzenetet, és befejeződik. 

A feladatot a megfigyel nevű shell script fogja elvégezni, melyet a következőkben 

mutatunk be. 

A programmal kapcsolatos néhány megjegyzés: 

 A t illetve katalogus változók a két vizsgálat között eltelt időintervallumot 

valamint a megfigyelt katalógust adják meg. A t változó inicializálása a $1 (első) 

paraméteren keresztül történik. Amennyiben ez hiányzik, a t változó a 60 implicit 

értéket kapja. Hasonlóképpen, a katalogus változó értékét megadhatjuk a $2 

(második) paraméter segítségével, ennek hiányában pedig az alapkatalógus lesz az 

alapértelmezett érték.  

 Az x változó a katalógus tartalmának utolsó előtti összefoglalóját tartalmazza, y pedig 

a legutolsót jegyzi meg.  
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#!/bin/sh 

katalogus=${2-${HOME}}         # $2 hiányában az alapkatalógus 

                               # lesz az alapértelmezett 

t=${1-60}                      # $1 hiányában t=60 

x=`ls -l $katalogus`           # régi összefoglaló 

while true 

do 

    sleep $t                   # t mp.-t vár 

    y=`ls -l $katalogus`       # új összefoglaló 

    if [ "$x" != "$y" ]        # megegyeznek? 

      then 

        echo "A $katalogus katalógus tartalma megváltozott." 

        exit 0 

 else  

   echo "Semmi változás. Várunk újabb $t másodpercet." 

    fi 

    x=$y                       # megjegyezzük a legutóbbi  

                               # összefoglalót 

Done 

 

Egy ilyen programot különböző helyzetekben használhatunk. Egy lehetséges eset a 

következő: egy tetszőleges felhasználó két terminálablakot nyitott meg, és az egyikben az 

alábbi parancsot írja be: 
$  megfigyel 10 

Amennyiben a másik terminálablakban módosítjuk a $HOME alapkatalógus tartalmát, 

például létrehozunk egy új állományt a  cat >A  paranccsal, akkor a másik terminálablakban 

legtöbb 10 másodpercen belül megjelenik az üzenet, mely a módosulásról értesít. 

2. példa: break és continue használata 

A break és continue utasítások használatának példázására tekintsük a következő feladatot: 

keressünk az aktuális katalógusban egy szöveges állományt, melyben találunk olyan sort, 

amiben az első szó 5 karakternél hosszabb. A feladatot megoldó program a következő: 

 
for x in * 

  do 

   if ! file -b $x | grep -q text 

     then 

      echo $x nem szöveges állomány. Lássuk a következőt... 

      continue 

   fi 

   #a szo1 változóban megjegyezzük egy sor első szavát 

   #(szóelválasztónak a szóköz karaktert tekintjük) 

   for szo1 in `cat $x | cut -d" " -f1` 

    do 

    #megvizsgaljuk, hogy a sor nem-e üres, illetve az első szó  

    #hosszát 

      if [ ! -z ”$szo1” ] && [ `expr length $szo1` -ge 5 ] 

        then 

         echo A $x fileban megtaláltuk $szo1 szót, \ 

              melynek  hossza `expr length $szo1` 

         #kilépünk` 

         break 2 

      fi 

    done 

  done 
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A szöveges állományok kiválasztását a file és grep parancsok összekombinálásának 

segítségével valósítjuk meg. Az első találó szó esetében elhagyjuk a két for ciklust a break 

utasítás segítségével. Amennyiben elhagyjuk a break paraméterét, ki lesz írva minden 

állomány első olyan szava, mely megfelel a követelményeknek, ha pedig a break-et 

tartalmazó sort kikommentezzük, az összes találó szót megkapjuk.  

 

3. példa: közönséges állományok összefűzése 

Egy olyan sh script megírására van szükség, melyet az alábbi módon hívunk meg: 
$ pall katalogus 

Ennek hatására pedig a /tmp katalógusban hozzon létre egy olyan szöveges állományt, mely 

magába foglalja a megadott katalógusban vagy ennek alkatalógusaiban található összes 

kinyomtatható állomány tartalmát. Az eredményként szolgáló szöveges állományban, az őt 

alkotó minden egyes állomány elején egy, az állományt azonosító fejlécet helyezünk el.  

 

Mikor hasznos egy ilyen alkalmazás? Tegyük fel, hogy egy felhasználónak egy bizonyos 

katalógusszerkezetben rengeteg szöveges állománya, shell script-je, forráskódja, stb. van. 

Ahelyett, hogy ezeket külön-külön kellene kinyomtassa, a felhasználó használhatja a fentebb 

említett funkcionalitást megvalósító programot. 

 

A pall program az egrep szűrő segítségével beazonosítja az összes olyan folyamatot, 

melyek kinyomtathatóak, végül egyesíti ezeket egyetlen nyomtatható állományba. A pall 

program forráskódja a következő: 

 

 
#!/bin/sh 

if [ $# -ne 1 ] 

  then echo "Hasznalat:  $0 katalogus" >&2 

       exit 1 

fi 

if [ ! -d "$1" ] 

  then echo "$1 nem letezik vagy nem katalogus" >&2 

       exit 2 

fi 

rm /tmp/${LOGNAME}Listazas /tmp/${LOGNAME}Listazni >/dev/null 2>&1 

 

osszSorokSzama=0 

find $1 -type f -print | sort | while read file 

  do 

    if file $file | egrep "exec|data|empty|reloc|cannot open" >/dev/null 2>&1 

      then 

        continue 

      else 

        sorokSzama=`wc -l <"$file"` 

        sor=${osszSorokSzama}" a "`file $file`" allomanyig" 

        echo $sor >/dev/tty 

        echo $sor >> /tmp/${LOGNAME}Listazni 

        echo $sor >> /tmp/${LOGNAME}Listazas 

        pr -f $file >> /tmp/${LOGNAME}Listazas 

        osszSorokSzama=`expr $osszSorokSzama + $sorokSzama` 

  fi 

  done 

echo "Osszesites: $osszSorokSzama sor" >>/tmp/${LOGNAME}Listazni 

echo "Osszesites: $osszSorokSzama sor" >>/tmp/${LOGNAME}Listazas 

cat /tmp/${LOGNAME}Listazas >>/tmp/${LOGNAME}Listazni 
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rm  /tmp/${LOGNAME}Listazas 

A program létrehozza a /tmp/${LOGNAME}Listazas állományt, melynek elején egy 

tartalomjegyzék található, ami tartalmazza az állományok nevét, illetve a sorok számában 

mért hosszát. A sorokSzama nevű változó az aktuálisan feldolgozott állomány sorainak 

számát tartalmazza. Az osszSorokSzama változóban összegezzük a sorok számát az 

állományok összefűzése során. 

A kinyomtatható állományokra vonatkozó részletesebb információért ajánljuk az 

/usr/share/magic (Linux alatt), illetve /etc/magic (Solaris) állományok 

tanulmányozását, ugyanis ezeket használja a file parancs az állomány típusának 

meghatározására. 

 

4. példa: bejelentkezett felhasználó folyamatai  

Olvassunk be felhasználóneveket a billentyűzetről, üres karaktersor beolvasásáig.  

Amennyiben létezik az illető felhasználó, és be van jelentkezve, írjuk ki az általa éppen 

futtatott folyamatok nevét, és ezek számát (mindeniket csak egyszer vesszük számításba), 

különben írjunk ki megfelelő hibaüzenetet (nemlétező felhasználó vagy az illető felhasználó 

nincs bejelentkezve). 

Megjegyzések: egy végtelen ciklusban (: olyan utasítás, mely mindig 0-t térít vissza) 

beolvasunk (read utasítás) egy felhasználónevet. Ha a beolvasott karaktersor üres, kilépünk 

a ciklusból (break). Megvizsgáljuk, hogy a beolvasott felhasználónév benne van-e az 

/etc/passwd állományban, mely a rendszer felhasználóiról tárol információt (a 

felhasználónév a sor elején kell szerepeljen, utána pedig egy „:” következik, ez választja 

ugyanis el az illető felhasználóhoz kapcsolt különböző adatokat egymástól). Ha megtaláltuk a 

felhasználót, azt is megvizsgáljuk, hogy be  van-e jelentkezve (who parancs). Ha valamelyik 

feltétel nem teljesül, kiírjuk a megfelelő hibaüzenetet, különben a flymtk változóba 

mentjük az illető folyamatait (lásd a ps parancsot. Ennek „–u” opciójával adjuk meg a 

felhasználót, akinek a folyamatai érdekelnek, illetve az „o” opció segítségével formázzuk a 

kimenetet. Mivel azt szeretnénk, hogy minden parancs csak egyszer jelenjen meg, ezért 

rendezzük a kimenet sorait a sort parancs „–u” opciójával). A wc parancs segítségével 

megszámoljuk a folyamatokat (az elmentett karaktersorban szereplő szavak száma). Fontos, 

hogy a ps parancsot csak egyszer hajtsuk végre, ezért mentettük el a kimenetét egy 

változóban, hogy ebben számoljuk meg a folyamatok számát, és ne egy újabb ps hívás 

kimenetében, ami megtörténhet, hogy más eredményt adna.  

 
#!/bin/sh 

while : 

do 

  echo "Kerek egy felhasznalonevet (ures sor - befejezes):" 

  read user 

  if [  "$user" = "" ] 

    then 

      break 

    fi 

 

  if grep -q "^$user:" /etc/passwd 

    then 

       if who|grep -q "^$user " 

         then 

           #megjegyezzuk egy valtozoban a $user felhasznalo folyamatait 

           flymtk=`ps -u $user o comm=|sort -u` 

           #kiirjuk a folyamatokat es ezek szamat 

           echo "$user felhasznalo folyamatai:"; echo $flymtk 

           echo "   `echo  $flymtk|wc -w` folyamatot futtat" 
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         else 

           echo $user felhasznalo nincs bejelentkezve 

       fi 

    else 

      echo  $user felhasznalo nem letezik a rendszerben 

    fi 

done 
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4.4. Javasolt feladatok 

I. 

a. Írjuk le röviden a fork rendszerhívás működését, és ennek lehetséges visszatérítési 

értékeit. 

b. Mit ír ki a képernyőre az alábbi programrész, feltételezve, hogy a fork rendszerhívás 

sikeresen hajtódik végre? Indokoljuk a választ. 

 
int main() { 

int n = 1; 

if(fork() == 0) { 

n = n + 1; 

exit(0); 

} 

n = n + 2; 

printf(“%d: %d\n”, getpid(), n); 

wait(0); 

return 0; 

} 

 

c. Mit ír ki a képernyőre az alábbi shell script? Magyarázzuk meg az első három sor 

működését. 

 

1 for F in *.txt; do 

  K=`grep abc $F` 

  if [ “$K” != “” ]; then 

     echo $F 

  fi 

done 

2 

3 

4 

5 

6 

 

II. 

a. Adott az alábbi kódrészlet. Adjuk meg azokat a sorokat, amelyek a képernyőn fognak 

megjelenni, abban a sorrendben, ahogy azok ki lesznek írva, feltételezve, hogy a fork 

rendszerhívás sikerrel tér vissza. Indokoljuk a választ. 

 
int main() { 

int i; 

for(i=0; i<2; i++) { 

printf("%d: %d\n", getpid(), i); 

if(fork() == 0) { 

printf("%d: %d\n", getpid(), i); 

exit(0); 

} 

} 

for(i=0; i<2; i++) { 

wait(0); 

} 

return 0; 

} 
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b. Magyarázzuk meg az alábbi shell script működését. Mi történik akkor, ha a lista.txt 

állomány eredetileg hiányzik?  

Adjuk hozzá az alábbi kódrészlethez az új lista.txt állományt generáló hiányzó sort (a lista.txt 

a megadott kódrészlet által generált változtatásban érintett állományok listáját kell 

tartalmazza). 

  
more lista.txt 

rm lista.txt 

for f in *.sh; do 

if [ ! -x $f ]; then 

chmod 700 $f 

fi 

done 

mail -s "Erintett allomanyok" admin@scs.ubbcluj.ro <lista.txt 
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