Babes-Bolyai Tudomanyegyetem, Kolozsvar

Informatika zarodvizsga
tankonyyv

TRADITIO NOSTRA
UNACUM EUROPAE

VIRTUTIBUS SPLENDET

2018

Zarovizsga témak
Informatika szak

(a 2018. juliusi vizsgaidészaktdl érvényes)

. rész: Algoritmusok és programozas (6 téma)

. Keresés (szekvencidlis és bindris), rendezés (buborékrendezés, gyorsrendezés

(quicksort), kivalasztdsos rendezés). A visszalépéses keresés (backtracking).

. OOP/objektumorientalt programozas elemek a Python, C++, Java és C# progra-

mozasi nyelvekben: osztdlyok és objektumok; egy osztily tagjai és hozzaférés-
modositok; konstruktorok és destruktorok.

. Osztélyok kozétti kapesolatok: szdrmaztatott osztalyok és 6roklési viszony; me-

tédusok feliilirdsa; polimorfizmus; dinamikus kotés; absztrakt osztalyok és in-
terfészek.

. Osztalydiagramok és objektumok kozotti kapcsolatok az UML-ben. Csomagok,

osztalyok és interfészek. Osztalyok és interfészek kozotti kapcsolatok. Objektu-
mok. Uzenetek.

. Lista; asszociativ tomb (map); sajatos miveletek specifikdcidja (megvaldsitas

nélkiil).

. Adatszerkezetek és adattipusok azonositdsa egy adott feladat megoldédsa érde-

kében (az 5. pontban megadott témdkra vonatkozdan). Meglévd konyvtarak
hasznélata a fenti adatszerkezetek esetén (Python, Java, C++, C#).

. rész: Adatbazisok (3 téma)

. Rel4cids adatbazisok; egy relacio elsé harom normélformadja.
. Adatbazisok lekérdezése a reldcids algebra operdtoraival.

. Rel4cids adatbazisok lekérdezése SQL segitségével (Select).
. rész: Operacios rendszerek (3 téma)

. Unix féjlrendszerek szerkezete.

. Unix folyamatok: létrehozds, fork, exec, exit, wait rendszerhivasok; kommuni-

kacio pipe és FIFO allomanyok segitségével.

. Unix shell programozas és alapveté Unix parancsok: cat, cp, cut, echo, expr, file,

find, grep, less, Is, mkdir, mv, ps, pwd, read, rm, sort, test, wc, who.

Tartalomjegyzék

1. Algoritmusok és programozas (Ionescu Klara) 5
1.1. Programozdsi tételek i 5
1.2. Lépések finomitdsa és optimalizdlds, .. 21
1.3. Rendez6 algoritmusokc..oiuiininininii .. 26
L4, ReKUIZIO ... 29
1.5. A visszalépéses keresés mddszere (backtracking) 35
1.6. Az oszd meg és uralkodj médszer (divide et impera) 42
1.7. Moh6 algoritmusok (greedy médszer)ooviiiiiian... 48

2. Objektumorientalt programozas (Darvay Zsolt) 55
2.1. Objektumorientalt fogalmako i 55
2.1. Az objektumorientdlt programozdsi médszer 70

3. Adatbazisok (Varga Viorica, Molnar Andrea Eva) ..o 79
3.1. Areldciés adatmodell i 79
3.2 Normalizaldso e 80
3.3. Reldciés algebra 86
3.4. Az SQL lekérdezdnyelv 93

4. Operacioés rendszerek (Ruff Laura, Robu Judit) 113
4.1. A Unix AllomanyrendSZerovvuunitteeniieeeniiieennnnns 113
4.2, Unix folyamatoko 121
4.3. Shell programozds és alapvetd Unix parancsok 134
4.4. Javasolt feladatoko 149

4.5. Altaldnos KONYVESZEtt 150

Copyright © 2018 A szerzdk

Minden jog fenntartva! E tankonyvet, illetve annak részeit tilos reprodukalni, adat-
rogzité rendszerben tdrolni, barmilyen formaban vagy eszkozzel — elektronikus tton
vagy mas modon — kozolni a szerzok eldzetes {rasbeli engedélye nélkiil.

A szerzOk a lehetd legnagyobb koriiltekintéssel jartak el e tankonyv szerkesztése-
kor. A szerzOk nem vallalnak semmilyen garanciat e kiadvany tartalmaval, teljessé-
gével kapcsolatban. A szerz6k nem vonhatdak felel6sségre barmilyen baleset, vagy
karesemény miatt, amely kozvetlen vagy kozvetett tton kapcsolatba hozhaté e tan-
konyvvel.

1. fejezet Algoritmusok és programozas

1.1. Programozasi tételek

A feladatok feladatosztalyokba sorolhatdok a jellegiik szerint. E feladatosztalyokhoz készi-
tiink a teljes feladatosztalyt megoldd algoritmusosztalyt, amelyeket programozasi tételeknek
neveziink. Bebizonyithatd, hogy ezek a megoldasok a szoban forgé feladatok garantdltan he-
lyes és optimdalis megoldasai.

A programozasi tételek a feladat bemenete és kimenete szerint négy csoportra oszthatok:

A. sorozathoz érték rendelése (1 sorozat — 1 érték)

B. sorozathoz sorozat rendelése (1 sorozat — 1 sorozat)

C. sorozatokhoz sorozat rendelése (t6bb sorozat — 1 sorozat)
D. sorozathoz sorozatok rendelése (1 sorozat — tobb sorozat)

A. Sorozathoz érték rendelése
1.1.1. Sorozatszamitas

Adott az N elemi X sorozat. A sorozathoz hozza kell rendelniink egyetlen S értéket. Ezt az
értéket egy, az egész sorozaton értelmezett f fliggvény (pl. elemek Gsszege, szorzata stb.) adja.
Ezt a fiiggvényt felbonthatjuk értékparokon kiszamitott fliggvények sorozatara, igy a
megoldas az Fo semleges elemre, valamint egy kétoperandustt muveletre épil. Az S
kezdéértéke a semleges elem. A kétoperandusu miiveletet végrehajtjuk minden X; elemre és az S
értékre: S «— (X, S).

Osszeg és szorzat
Egyetlen kimeneti adatot szdmitunk ki, adott szdmu bemeneti adat feldolgozasanak
eredményeként, példaul a bemeneti adatok Gsszegét, esetleg szorzatat kell kiszamitanunk.

Megoldas

A feladat megoldasa el6tt sziikséges tudni, hogy mely érték felel meg a bemeneti adatok
halmazara és az elvégzend6é miveletre nézve a semleges elemnek. Feltételezziik, hogy a
bemeneti adatok egész szamok, amelyeknek a szamossaga N*.

Algoritmus Osszegszamitas(N, X, S): { Sajatos eset }
{ Bemeneti adatok: az N elemii X sorozat, kimeneti adat: S }
S« 0
Minden i = 1, N végezd el: { minden adatot fel kell dolgoznunk }
S« S+ X;
vége(minden)

! A kdvetkezdékben az algoritmusok implementalasa kiilénb6zé tipusu fiiggvényekként szabadon valaszthato. Ha
a fliggvény egyetlen értéket szamit ki, akkor ezt nem kotelezo kimeneti paraméterként implementalni, hanem
téritheti a fliggvény.

6 1. FEJEZET. ALGORITMUSOK ES PROGRAMOZAS

Vége(algoritmus)
Az el6bbi algoritmus altalanositva:

Algoritmus Feldolgoz(N, X, S):
{ Bemeneti adatok: az N elemii X sorozat, kimeneti adat: S }

S « Fg { kezddeérték: az elvégzendd miiveletre nézve semleges elem }
Minden i = 1, N végezd el: { minden adatot fel kell dolgoznunk }
S « f(S, X;) { f'a miivelet (funkcio) }
vége(minden)
Vége(algoritmus)
1.1.2. Dontés

Adott az N elemii X sorozat és az elemein értelmezett T tulajdonsag. Dontsiik el, hogy léte-
zik-e a sorozatban legalabb egy T tulajdonsagu elem!

Elemzés

A sorozat elemei tetszélegesek, egyetlen jellemz6t kell feltételezniink roluk: barmely elem-
6l el lehet donteni, hogy rendelkezik-e az adott tulajdonsaggal, vagy nem. A valasz egy
iizenet, amelyet az alprogram kimeneti paramétere (logikai valtozo) értéke alapjan ir ki a hivo
programegység.

Algoritmus Dontés_1(N, X, talalt):
{ Bemeneti adatok: az N elemii X sorozat. Ha az X sorozatban talalhato }
{ legalabb egy T tulajdonsagu elem, talalt értéke igaz, kiilonben hamis %}
i1 { kezdéeérték az indexnek }
talalt <« hamis { kezdéeérték a kimeneti adatnak }
Amig nem taldlt és (i < N) végezd el:
Ha nem T(X;) akkor { amig nem talalunk egy Xi-t, amely rendelkezik }
i i+1 { aT tulajdonsaggal, haladunk elére }
kiiléonben
talalt « igaz
vége(ha)
vége(amig)
Vége(algoritmus)

A fenti algoritmus megirhat6 tdomorebben is:

Algoritmus Dontés_2(N, X, taldlt):
{ Bemeneti adatok: az N elemii X sorozat. Ha az X sorozatban }
{ talalhato legalabb egy T tulajdonsagu elem, taldlt értéke igaz, kiilonben hamis }

ie1

Amig (i < N) és nem T(X;) végezd el: { amig nem talalunk egy Xi-t, amely }
ie—i+1 { rendelkezik a T tulajdonsdggal, haladunk elére }

vége(amig)

taldlt <« i <N { kiértékelddik a relacios kifejezés; az érték talalt értéke lesz }

Vége(algoritmus)

1. FEJEZET. ALGORITMUSOK ES PROGRAMOZAS 7

Egy masik megkozelitésben el kell donteniink, hogy az adatok, teljességiikben, rendelkez-
nek-e egy adott tulajdonsaggal vagy sem. Mas szoval: nem létezik egyetlen adat sem, amely
ne lenne T tulajdonsagu. Ekkor a bemeneti adathalmaz minden elemét meg kell vizsgalnunk.
Mivel a dontés jelentése az Osszes adatra érvényes, a talalt valtozot atkereszteljiik mind-re.

Algoritmus Dontés_3(N, X, mind):
{ Bemeneti adatok: az N elemii X sorozat. Kimeneti adat: ha az X sorozatban }
{ minden elem T tulajdonsdgu, a mind értéke igaz, kiilonben hamis }
i1
Amig (i < N) és T(X;) végezd el: { anem T(X;) részkifejezés tagaddsa }
ie«i+1
vége(amig)
mind < i > N {azi < Nrészkifejezés tagadasa }
Vége(algoritmus)

1.1.3. Kivalasztas

Adott az N elemi X sorozat és az elemein értelmezett T tulajdonsag. Adjuk meg a sorozat
egy T tulajdonsagl elemének sorszamat! (Eldfeltétel: garantaltan 1étezik ilyen elem.)

Algoritmus Kivalasztas(N, X, hely):
{ Bemeneti adatok: az N elemii X sorozat. }
{ Kimeneti adat: hely, a legkisebb indexii T tulajdonsdgii elem sorszama }

hely « 1
Amig nem T(Xhey) Végezd el: { nem sziikséges a hely < N feltétel, mivel a feladat }
hely « hely + 1 { garantdlja legalabb egy T tulajdonsdgi elem létezését }
vége(amig)
Vége(algoritmus)

1.1.4. Szekvencialis (linearis) keresés

Adott az N elemii X sorozat és az elemein értelmezett T tulajdonsag. Vizsgaljuk meg, hogy
Iétezik-e T tulajdonsagh elem a sorozatban! Ha létezik, akkor adjuk meg az elsé ilyen elem
helyét!

Algoritmus Keres_1(N, X, hely):
{ Bemeneti adatok: az N elemii X sorozat. Kimeneti adat: hely, a legkisebb indexii T }
{ tulajdonsagu elem indexe, illetve, sikertelen keresés esetén hely = 0 }
hely « ©
i1
Amig (hely = @) és (i < N) végezd el:
Ha T(X;) akkor
hely « 1
kiilénben
ie«i+1
vége(ha)
vége(amig)
Vége(algoritmus)

8 1. FEJEZET. ALGORITMUSOK ES PROGRAMOZAS

Az adott elem tulajdonsagat az Amig feltételében is ellendrizhetjiik. Mas szdval: amig az
aktualis elem tulajdonsaga nem megfeleld, haladunk a sorozatban eldre:

Algoritmus Keres_2(N, X, hely):
{ Bemeneti adatok: az N elemii X sorozat. Kimeneti adat: hely, a legkisebb indexii T }
{ tulajdonsagu elem indexe, illetve, sikertelen keresés esetén hely = 0 }
i« 1
Amig (i < N) és nem T(X;) végezd el:
ie«1i+1
vége(amig)
Ha i < N akkor { ha kiléptiink az Amig-baol, mieldtt i nagyobba valt volna N-nél, }
hely « i { = taldltunk adott tulajdonsdgu elemet az i. pozicion }
kiilénben
hely « © { kiilonben nem taldaltunk }
vége(ha)
Vége(algoritmus)

Ha a feladat azt kéri, hogy keressiink meg minden olyan elemet, amely rendelkezik az
adott tulajdonsaggal, be kell jarnunk a teljes adathalmazt, és vagy kiirjuk azonnal a
poziciokat, ahol megfelelé elemet talaltunk, vagy megorizziik ezeket egy masik sorozatban.
Ilyenkor Minden tipust struktarat hasznalunk.

1.1.5. Megszamlalas
Adott, N elemii X sorozatban szamoljuk meg a T tulajdonsagu elemeket!

Elemzés

Nem biztos, hogy létezik legalabb egy T tulajdonsagl elem, tehat az is lehetséges, hogy az
eredmény 0 lesz. Mivel minden elemet meg kell vizsgalnunk (barmely adat rendelkezhet a
kért tulajdonsaggal), Minden tipust struktaraval dolgozunk. A darabszamot a db valtozoban
taroljuk.

Algoritmus Megszamldlas(N, X, db):
{ Bemeneti adatok: az N elemii X sorozat }
{ Kimeneti adat: db, a T tulajdonsagu elemek darabszama }
db <« ©
Minden i = 1, N végezd el:
Ha T(X;) akkor
db < db + 1
vége(ha)
vége(minden)
Vége(algoritmus)

1.1.6. Maximumkivalasztas

Adott az N elemli X sorozat. Hatarozzuk meg a sorozat legnagyobb (vagy legkisebb)
értékét!

Megoldas

1. FEJEZET. ALGORITMUSOK ES PROGRAMOZAS 9

A megoldasban minden adatot meg kell vizsgalnunk, ezért az algoritmus egy Minden
tipust strukturaval dolgozik. A max segédvaltozo a sorozat els6 elemétdl kap kezdoértéket.
Algoritmus Maximumkivdlasztas(N, X, max):

{ Bemeneti adatok: az N elemii X sorozat. Kimeneti adat: max, a legnagyobb elem értéke }

max <« X;

Minden i = 2, n végezd el:

Ha max < X; akkor
max <« X;
vége(ha)
vége(minden)
Vége(algoritmus)

A maximumot/minimumot tartalmazo6 segédvaltozonak az adatok koziil valasztunk kezdo-
értéket, mivel igy nem all fenn a veszély, hogy az algoritmus eredménye egy, az adataink
kozott nem 1étez6 érték legyen.

Ha a maximum helyét kell megadnunk, az algoritmus a kovetkezo:

Algoritmus MaximumHelye(N, X, hely):

{ Bemeneti adatok: az N elemii X sorozat. Kimeneti adat: hely, a legnagyobb elem pozicidja }
hely « 1 { hely az elsé elem pozicioja }
Minden i = 2, n végezd el:

Ha Xpeiy < X; akkor
hely « i { a maximalis elem elsé eldfordulasanak helye (pozicidja) }
vége(ha)
vége(minden)
Vége(algoritmus)

Ha minden olyan indexet meg kell hataroznunk, amely indexii elemek egyenlék a legna-
gyobb elemmel és nem lehetséges/nem elényds az adott tombaot kétszer bejarni, mert a maxi-
mumhoz tartozé6 adatok egy masik (esetleg bonyolult) algoritmus végrehajtasanak
eredményei, irhatunk algoritmust, amely csak egyszer jarja be a sorozatot:

Algoritmus MindenMaximumHelye(N, X, db, indexek):
{ Bemeneti adatok: az N elemii X sorozat. Kimeneti adat: a db elemii indexek sorozat }
max < X;
db « 1
indexek; « 1
Minden i = 2, n végezd el:
Ha max < X; akkor
max < Xj
db « 1
indexeky « 1
kiilénben
Ha max = X; akkor
db « db + 1
indexeky, « i
vége(ha)
vége(ha)

10 1. FEJEZET. ALGORITMUSOK ES PROGRAMOZAS

vége(minden)
Vége(algoritmus)
B. Sorozathoz sorozat rendelése

1.1.7. Masolas

Adott az N elemii X sorozat és az elemein értelmezett f fliggvény. A bemeneti sorozat
minden elemére végrehajtjuk a fliggvényt, az eredményét pedig a kimeneti sorozatba
masoljuk.

Algoritmus Masolas(N, X, Y):
{ Bemeneti adatok: az N elemii X sorozat. Kimeneti adat: az N elemii Y sorozat }
Minden i = 1, N végezd el:
Yi « f(Xy)
vége(minden)
Vége(algoritmus)

1.1.8. Kivalogatas

Adott az N elemii X sorozat és az elemein értelmezett T tulajdonsag. Valogassuk ki az
Osszes T tulajdonsagu elemet!

Elemzés
Az elvarasok fliggvényében kiilonb6z6é megkozelitések lesznek érvényesek:
a. kivalogatas kigytjtéssel
b.kivéalogatés kiirassal
c. kivalogatas helyben (sorrendvaltoztatassal vagy megérizve az eredeti sorrendet)
d.kivéalogatas kihuzassal (segédsorozattal vagy helyben)

a. Kivalogatas kigyiijtéssel

A keresett elemeket (vagy sorszamaikat) kigy(jtjiik egy sorozatba. A pozicidk sorozatanak
(vagy a kigytjtott elemek sorozatanak) hossza legfeljebb az adott sorozatéval lesz
megegyez0, mivel el6fordulhat, hogy a bemeneti sorozat minden eleme adott tulajdonsagu. A
sorozat szamossagat a db valtozoban tartjuk nyilvan.

Algoritmus Kivalogatas_a(N, X, db, poziciok):
{ Bemeneti adatok: az N elemii X sorozat. Kimeneti adat: a db elemii poziciok sorozat }
db <« ©
Minden i = 1, N végezd el:
Ha T(X;) akkor
db < db + 1
pozicidky, « i { poziciokan-ben taroljuk az X; helyét }
vége(ha)
vége(minden)
Vége(algoritmus)

b. Kivalogatas kiirassal

1. FEJEZET. ALGORITMUSOK ES PROGRAMOZAS 11

Ha a feladat ,,megelégszik” a T tulajdonsagu elemek kiirasaval (nem kéri ezek darabszamat
is), az algoritmus a kovetkez6:

Algoritmus Kivalogatas_b(N, X):
{ Bemeneti adatok: az N elemii X sorozat }
Minden i = 1, N végezd el:
Ha T(X;) akkor
Ki: X;
vége(ha)
vége(minden)
Vége(algoritmus)

c. Kivalogatas helyben

Ha a sorozat feldolgozasa kdzben a nem T tulajdonsdgu elemeket nem 6hajtjuk megdrizni,
hanem ki szeretnénk zarni ezeket a sorozatbol, akkor a feladat specifikacioitol fiiggben, a
kovetkezo lehetoségek koziil fogunk valasztani:

cl. Ha a torlés utdn nem kotelezd, hogy az elemek az eredeti sorrendjiikkben maradjanak,
akkor a torlendé elemre ramasoljuk a sorozat utolso elemét és csokkentjiik 1-gyel a sorozat
méretét:

Algoritmus Kivdlogatas_cl1(N, X):
{ Bemeneti adatok: az N elemii X sorozat. Kimeneti adat: a megvaltozott elemszamu X sorozat }

ie1
Amig i < N végezd el: { nem alkalmazunk Minden-t, mivel valtozik az N!!! }
Ha nem T(Xi) akkor { a T tulajdonsdgu elemeket tartjuk meg }
Xi < Xy { Xi-t feliilirjuk Xy-nel }
N« N-1 { valtozik a sorozat hossza }
kiilonben
i—i+1 { i csak a kiilonben dgon né }
vége(ha)
vége(amig)
Vége(algoritmus)

c2. Ha az eredeti sorozatra nincs tobbé sziikség, de szeretnénk megdrizni az elemek eredeti
sorrend;jét, akkor a T tulajdonsagt elemeket felsorakoztatjuk a sorozat elejétél kezdve. igy a
kivalogatott elemekkel feliilirjuk az eredeti adatokat. Nem hasznalunk egy ujabb sorozatot,
hanem az adott sorozat szamara lefoglalt tarrészt hasznalva helyben végezziik a kivalogatast.
A db valtoz6 ebben az esetben a megvaltoztatott sorozatnak a szamossagat tartja nyilvan:

Algoritmus Kivalogatds c2(N, X, db):
{ Bemeneti adatok: az N elemii X sorozat. Kimeneti adat: a db elemii X sorozat }
db < 0
Minden i = 1, N végezd el:
Ha T(X;) akkor
db « db + 1

12 1. FEJEZET. ALGORITMUSOK ES PROGRAMOZAS

Xab < Xi
vége(ha)
vége(minden)
Vége(algoritmus)

dl. Ha a torlés ideiglenes, akkor a kereséssel parhuzamosan egy logikai tombben
nyilvantartjuk a ,,torolt” elemeket. A t6rolt tomb elemeinek kezddértéke hamis lesz, majd a
torlend6 elemeknek megfeleld sorszamu elemek értéke a torolt logikai tombben igaz lesz:

Algoritmus Kivalogatds di(N, X, tordlt):
{ Bemeneti adatok: az N elemii X sorozat. Kimeneti adat: az N elemii térélt sorozat }
Minden i = 1, N végezd el:
tordlt; <« hamis
vége(minden)
Minden i = 1, N végezd el:
Ha nem T(X;) akkor { a T tulajdonsagu elemeket tartjuk meg }
torolt; « igaz
vége(ha)
vége(minden)
Vége(algoritmus)

d2. Egy masik megoldas, amely nem hoz létre 0j helyen, 01j sorozatot, helyben végzi a kivalo-
gatast, anélkiil, hogy elmozditana eredeti helyiikrél a T tulajdonsagu elemeket, a nem T tulaj-
donsagu elemek helyére pedig egy specialis értéket tesz:

Algoritmus Kivalogatds d2(N, X, torolt):
{ Bemeneti adatok: az N elemii X sorozat. Kimeneti adat: az N elemii X sorozat }
Minden i = 1, N végezd el:
Ha nem T(X;) akkor { a T tulajdonsagu elemeket tartjuk meg }
Xi <« specialis érték
vége(ha)
vége(minden)
Vége(algoritmus)

C. Sorozatokhoz sorozat rendelése
1.1.9. Halmazok

Miel6tt egy halmazokat tartalmazd sorozatra vonatkozé miiveletet alkalmaznank,
sziikséges meggydzddniink arrol, hogy a sorozat valoban halmaz. Ez azt jelenti, hogy minden
érték csak egyszer fordul el6. Ha kideriil, hogy a sorozat nem halmaz, halmazza kell
alakitanunk.

a. Halmaz-e?
Dontsiik el, hogy az adott N elemti X sorozat halmaz-e!

Elemzés

1. FEJEZET. ALGORITMUSOK ES PROGRAMOZAS 13

Egy halmaz vagy iires, vagy bizonyos szamu elemet tartalmaz. Ha egy halmazt sorozattal
implementélunk, az elemei kiilonbozok. A kdvetkez6 algoritmussal eldontjiik, hogy a sorozat
csak kiilonb6zo elemeket tartalmaz-e?

Algoritmus Halmaz_e(N, X, ok):

{ Bemeneti adatok: az N elemii X sorozat. Kimeneti adat: az ok értéke igaz, }
i1 { ha a sorozat halmaz, kiilénben hamis }
ok « igaz
Amig ok és (i < N) végezd el:

j«i+1

Amig (j < N) és (X; # Xj) végezd el:

j« j+1

vége(amig)

ok < j >N { ha véget ért a sorozat, nincs két azonos elem }
ie«i+1

vége(amig)
Vége(algoritmus)

b. Halmazza alakitas
Alakitsuk halmazza az N elemu X sorozatot!

Elemzés

Ha egy alkalmazasban ki kell zarnunk az adott sorozatbdl a masodszor (harmadszor stb.)
megjelend értékeket, akkor az elébbi algoritmust modositjuk: amikor egy bizonyos érték meg-
jelenik masodszor, feliilirjuk az utolsoval.

Algoritmus HalmazzaAlakit(N, X):
{ Bemeneti adatok: az N elemii X sorozat. }
{Kimeneti adatok: az uj N elemii X sorozat (halmaz) }
ie1
Amig i < N végezd el:
j«1i+1
Amig (j < N) és (X; # Xj) végezd el:
j<«j+1
vége(amig)
Ha j < N akkor { talaltunk egy Xj = Xi-t }
Xj « Xy { feliilirjuk a sorozat N. elemével }
N« N-1 { roviditjiik a sorozatot }
kiilénben
ie—i+1 { haladunk tovabb %}
vége(ha)
vége(amig)
Vége(algoritmus)

1.1.10. Keresztmetszet

Hozzuk létre a bemenetként kapott sorozatok keresztmetszetét!

14 1. FEJEZET. ALGORITMUSOK ES PROGRAMOZAS

Elemzés

Keresztmetszet alatt azt a sorozatot értjiikk, amely az adott sorozatok kozos elemeit tartal-
mazza. Feltételezziik, hogy az adott sorozatok mind kiilonb6zé elemeket tartalmaznak
(halmazok) és nem rendezettek.

Az N elemi X és az M elemi Y sorozat keresztmetszetét a db elemii Z sorozatban hozzuk
1étre, tehat Z olyan elemeket tartalmaz az X sorozatbdl, amelyek megtalalhatok az Y-ban is.

Algoritmus Keresztmetszet(N, X, M, Y, db, Z):

{ Bemeneti adatok: az N elemii X és az M elemii Y sorozat. }
db < © { Kimeneti adatok: a db elemii Z sorozat, X és Y keresztmetszete }
Minden i = 1, N végezd el:

j« 1
Amig (j < M) és (X; # Y;) végezd el:
j«j+1
vége(amig)
Ha j < M akkor
db « db + 1
Zgp < Xy
vége(ha)
vége(minden)
Vége(algoritmus)

1.1.11. Egyesités (Unio)
Hozzuk 1étre az N elemii X és az M elem Y sorozatok (halmazok) egyesitett halmazat!

Elemzés

Az egyesités algoritmusa hasonld a keresztmetszetéhez. Nem alkalmazhatunk
Osszefésiilést, mivel a sorozatok nem rendezettek! A kiilonbség abban all, hogy olyan
elemeket helyeziink az eredménybe, amelyek legalabb az egyik sorozatban megtalalhatok.
El6bb a Z sorozatba masoljuk az X sorozatot, majd kivalogatjuk Y-bol azokat az elemeket,
amelyeket nem talaltunk meg X-ben.

Algoritmus Egyesités(N, X, M, Y, db, Z):
{ Bemeneti adatok: az N elemii X és az M elemii Y sorozat. }
{ Kimeneti adatok: a db elemii Z sorozat (X és Y egyesitése) }

Masolas(N, X, Z) { az X sorozat minden elemét datmasoljuk a Z sorozatba }
db « N
Minden j = 1, M végezd el:

i«1

Amig (i < N) és (X; # Y;) végezd el:
i« i+ 1

vége(amig)

Ha i > N akkor
db « db + 1

1. FEJEZET. ALGORITMUSOK ES PROGRAMOZAS 15

Zgp < Y;
vége(ha)
vége(minden)
Vége(algoritmus)

1.1.12. Osszefésiilés

Adott két rendezett sorozatbol allitsunk elé egy harmadikat, amely legyen szintén
rendezett!

Elemzés

Az Egyesites(N, X, M, Y, db, Z) és a Keresztmetszet(N, X, M, Y, db, Z) algoritmusok
négyzetes bonyolultsagtiak, mivel a halmazokat implemental6 sorozatok nem rendezettek. Ez
a két miivelet megvalosithato linearis algoritmussal, ha a sorozatok rendezettek. Igy az
eredményt is rendezett formaban fogjuk generalni. Ezek a sorozatok nem mindig halmazok,
tehat néha el6fordulhatnak azonos értéki elemek is.

Elindulunk mindkét sorozatban és a soron kovetkezd két elem Gsszehasonlitasa révén el-
dontjiik, melyiket tegyiik a harmadikba. Addig végezziik ezeket a miiveleteket, amig valame-
lyik sorozatnak a végére nem ériink. A masik sorozatban megmaradt elemeket atmasoljuk az
eredménysorozatba. Mivel nem tudhatjuk elére melyik sorozat ért véget, vizsgaljuk mindkét
sorozatot.

Algoritmus Osszefésiilés 1(N, X, M, Y, db, Z):
{ Bemeneti adatok: az N elemii X és az M elemii Y sorozat. A sorozatok nem halmazok. }
{ Kimeneti adatok: a db elemii Z sorozat (X és Y elemeivel) }
db <« @
i« 1
j«1
Amig (i < N) és (j < M) végezd el: { amig sem X-nek, sem Y-nak nincs vége }
db <« db + 1
Ha X; < Y; akkor
Zgp < X
i«i+1
kiilonben
Zap < Y;
j« j+1
vége(ha)
vége(amig)
Amig i < N végezd el: { ha maradt még elem X-ben }
db « db + 1
Zy, < Xj
i« i+ 1
vége(amig)
Amig j < M végezd el: { ha maradt még elem Y-ban }
db « db + 1
Zgp < Y;

16 1. FEJEZET. ALGORITMUSOK ES PROGRAMOZAS

j« j+1
vége(amig)
Vége(algoritmus)

Most feltételezziik, hogy az egyes sorozatokban egy elem csak egyszer fordul el6 és azt
szeretnénk, hogy az Osszefésiilt 1j sorozatban se legyenek ,,duplak”. Az el6z6 algoritmust
csak annyiban modositjuk, hogy vizsgaljuk az egyenldséget is. Ha a két 6sszehasonlitott érték
egyenld, mind a két sorozatban tovabblépiink és az aktualis értéket csak egyszer irjuk be az
eredménysorozatba.

Algoritmus Osszefésiilés 2(N, X, M, Y, db, Z):
{ Bemeneti adatok: az N elemii X és az M elemii Y sorozat. A sorozatok halmazok
}

{ Kimeneti adatok: a db elemii Z sorozat (X és Y elemeivel) }
db «— ©
i« 1
j«1
Amig (i < N) és (j < M) végezd el:
db « db + 1
Ha X; < Y; akkor
Zgp < Xi
i« i+ 1
kiilénben
Ha X; = Y; akkor
Zgp < Xy
i« i+ 1
j« j+1
kiilénben
Zgp < Y;
j« j+1
vége(ha)
vége(ha)
vége(amig)
Amig i < N végezd el: { ha maradt még elem X-ben }
db « db + 1
Zgp < X
i« i+ 1
vége(amig)
Amig j < m végezd el: { ha maradt még elem Y-ban }
db « db + 1
Zgp < Y5
j« j+1
vége(amig)
Vége(algoritmus)

1. FEJEZET. ALGORITMUSOK ES PROGRAMOZAS 17

Szerencsés esetben Xy = Yu. Ekkor a két utols6 Amig struktira nem hajtodott volna végre
egyetlen egyszer sem. Kihasznalva ezt az észrevételt, elhelyeziink mindkét sorozat végére egy
fiktiv elemet (drszem). Tehetjiik az X sorozat végére az Xn+1 = Yy + 1 értéket és az Y sorozat
végére az Yms1 = Xn + 1 értéket. Ha a két egyesitendd sorozat nem halmaz, az eredmény sem
lesz halmaz. Eszrevessziik, hogy ebben az esetben az eredménysorozat hossza pontosan N +
M. Az algoritmus ismétléstruktaraja Minden tipusu lesz.

Algoritmus Osszefésiil 3(N, X, M, Y, db, Z):
{ Bemeneti adatok: az N elemii X és az M elemii Y sorozat. A sorozatok nem halmazok }
{ Kimeneti adatok: a db elemii Z sorozat (X és Y elemeivel) }
i«1
j« 1
Xne1 < Yu + 1
Y < Xy + 1
Minden db = 1, N + M végezd el:
Ha X; < Y; akkor
Zgp < X
ie«i+1
kiilénben
Zgp < Y;
j« j+1
vége(ha)
vége(minden)
Vége(algoritmus)

Ha a bemeneti sorozatok halmazokat abrazolnak és az eredménysorozatnak is halmaznak
kell lennie, az algoritmus a kovetkezOképpen alakul: a Minden struktira helyett Amig-ot
alkalmazunk, hiszen nem tudjuk hany eleme lesz az Osszefésiilt sorozatnak (az ismétlddé
értekek koziil csak egy keriil be az 0j sorozatba). Ugyanakkor, az érszemek révén az Amig
strukturat addig hajtjuk végre, amig mindkét sorozat végére nem értiink.

Algoritmus Osszefésiil_4(N, X, M, Y, db, Z):
{ Bemeneti adatok: az N elemii X és az M elemii Y sorozat. A sorozatok halmazok }
{ Kimeneti adatok: a db elemii Z sorozat (X és Y elemeivel) }
db «— 0
i«1
j« 1
Xne1 < Yn + 1
Ymr < Xy + 1
Amig (i < N) vagy (j < M) végezd el:
db « db + 1
Ha X; < Y; akkor
Zgp < X
i«i+1
kiilonben
Ha X; = Y; akkor
Zgp < Xy

18 1. FEJEZET. ALGORITMUSOK ES PROGRAMOZAS

i« i+ 1
j« j+1
kiilonben
Zgp < Y5
j« j+1
vége(ha)
vége(ha)
vége(amig)
Vége(algoritmus)

D. Sorozathoz sorozatok rendelése
1.1.13. Szétvalogatas
Valogassuk szét az adott N elemi X sorozat elemeit adott T tulajdonsag alapjan!

Elemzés

A Kivalogatas(N, X) algoritmus egy sorozatot dolgoz fel, amelybdl kivalogat bizonyos ele-
meket. Kérdés: mi torténik azokkal az elemekkel, amelyeket nem valogattunk ki? Lesznek
feladatok, amelyek azt kérik, hogy két vagy tobb sorozatba valogassuk szét az adott sorozatot.

a. Szétvalogatas két j sorozatba

Az adott sorozatbdl l1étrehozunk két ujat: a T tulajdonsaggal rendelkezd adatok sorozatat,
¢s a megmaradtak sorozatat. Mindkét 01j sorozatot az eredetivel azonos méretiinek deklaraljuk,
mivel nem tudhatjuk elére az 0ij sorozatok valés méretét. (Eléfordulhat, hogy valamennyi
elem atvandorol valamelyik sorozatba, és a masik {ires marad.) A dby és dbz a szétvalogatas
soran létrehozott Y €s Z sorozatba helyezett elemek szamat jeloli.

Algoritmus Szétvalogatas_1(N, X, dby, Y, dbz, Z):
dby « © { Bemeneti adatok: az N elemii X sorozat. }
dbz « © { Kimeneti adat: a dby elemii Y és a dbz elemii Z sorozat }
Minden i = 1, N végezd el:
Ha T(X;) akkor
dby < dby + 1 { az adott tulajdonsagu elemek, az Y sorozatba keriilnek }
Yaoy < Xi
kiilénben
dbz <« dbz + 1 { azok, amelyek nem rendelkeznek az }
Zabs < Xi { adott tulajdonsdggal, a Z sorozatba keriilnek }
vége(ha)
vége(minden)
Vége(algoritmus)

b. Szétvalogatas egyetlen 1ij sorozatba

A feladat megoldhato egyetlen 1 sorozattal. A kivéalogatott elemeket az 0j sorozat elsd
részébe helyezziik (az els6tdl haladva a vége felé), a megmaradtakat az 0j sorozat végére (az
utolso6tol haladva az elsé felé). Nem fogunk iitkézni, mivel pontosan N elemet fogunk N

1. FEJEZET. ALGORITMUSOK ES PROGRAMOZAS 19

helyre ,atrendezni”. A megmaradt elemek az eredeti sorozatban elfoglalt relativ pozicidik
forditott sorrendjében keriilnek az 01j sorozatba.

Algoritmus Szétvalogatas_2(N, dby, dbz, X, Y):
dby <« ©f Bemeneti adatok: az N elemii X sorozat. Kimeneti adat: az N elemii Y sorozat; }

dbz « © { az elsé dby elem T tulajdonsagu, dbz elem pedig nem T tulajdonsdgui }
Minden i = 1, N végezd el:
Ha T(X;) akkor { a T tulajdonsagu elemek az Y sorozatba keriilnek }
dby « dby + 1 { az elsé helytdl kezdbdden }
Yaby < Xi
kiilénben

dbz < dbz + 1 { a t6bbi elem szintén Y-ba keriil, az utolso helytdl kezdédéen }
Yn-dbze1 < Xi
vége(ha)
vége(minden)
Vége(algoritmus)

¢) Szétvalogatas helyben

Ha a szétvalogatas utan nincs mar sziikségiink tobbé az eredeti sorozatra, a szétvalogatas
elvégezhetd helyben. A tomb els6 elemét kivessziik a helyérdl és megorizziik egy segédvalto-
zoban. Az utolso elemtdl visszafelé megkeressiik az els6 olyat, amely adott tulajdonsagu, s ezt
elére hozzuk a kivett elem helyére. Ezutan a hatul felszabadult helyre elolrdl keresiink egy
nem T tulajdonsagu elemet, s ha talalunk, azt hatratessziik. Mindezt addig végezziik, amig a
tombben két iranyban haladva 6ssze nem talalkozunk.

Algoritmus Szétvalogatds 3(N, X, db):
{ Bemeneti adatok: az N elemii X sorozat. Kimeneti adatok: az N elemii X sorozat; }
{ az elsé e elem T tulajdonsadgii, n — e elem pedig nem T tulajdonsdagu }
e« 1 { balrol jobbra haladva az elsé T tulajdonsagu elem indexe }
u<« N { jobbrol balra haladva az elsé nem T tulajdonsdgu elem indexe }
segéd « X
Amig e < u végezd el:
Amig (e < u) és nem T(X,) végezd el:
u<«<u-1
vége(amig)
Ha e < u akkor
Xe <« X,
e« e+1
Amig (e < u) és T(X.) végezd el:
e« e+1
vége(amig)
Ha e < u akkor
Xu <« Xe
u<u-1
vége(ha)

20 1. FEJEZET. ALGORITMUSOK ES PROGRAMOZAS

vége(ha)
vége(amig)
Xe < segéd { visszahozzuk a segéd-be tett elemet }
Ha T(X.) akkor db « e
kiiléonben db < e - 1
vége(ha)
Vége(algoritmus)

Megjegyzés

Ha egy sorozatot tobb részsorozatba sziikséges szétvalogatni tobb tulajdonsag alapjan, egy-
mas utan tobb szétvalogatast fogunk végezni, mindig a kért tulajdonsag alapjan.

Elébb szétvalogatjuk az adott sorozatbol az els6 tulajdonsaggal rendelkezdket, majd a
félretett adatokbol szétvalogatjuk a masodik tulajdonsaggal rendelkezdket és igy tovabb.

1.1.14. Programozasi tételek osszeépitése

Az egészen egyszeri alapfeladatokat kivéve altaldban tobb programozasi tételt kell
hasznalnunk. llyenkor — ahelyett, hogy siman egymas utan alkalmazzuk ezeket, lehetséges
egyszeriibb, rovidebb, hatékonyabb, gazdasdgosabb algoritmust tervezni, ha &sszeépitjiik
Oket.

a. Masolassal 6sszeépités
A masolas barmelyik programozasi tétellel egybeépithetd. llyenkor az X; bemeneti adatra
valo hivatkozast f(x;)-re cseréljik.
Példa:
Adjuk meg egy szamsorozat elemeinek négyzetgyokeibol allo sorozatot!
Megoldds: masolas + sorozatszamitas

b. Megszamlalassal 6sszeépités

A megszamlalast altalaban egy dontéssel, kivalasztassal vagy kereséssel épithetjiik Gssze.
Példa:

Dontsiik el, hogy talalhato-e az N elemii X sorozatban legalabb K darab T tulajdonsagu
elem? Adjuk meg a sorozat K-dik T tulajdonsagt elemét!
Megoldas: megszamlalas + dontés + kivalasztas

¢. Maximumkivalasztassal osszeépités
A maximumkivalasztast 60sszeépithetjilk megszamlalassal, kivalogatassal.
Példa:
Hany darab maximumértékii elem van az adott sorozatban? Generaljuk ezen elemek
indexeinek sorozatat!
Megoldas: Lasd a MindenMaximumHelye(N, X, db, indexek) algoritmust.

d. Kivalogatassal 6sszeépités
Olyan feladatoknal, amelyeknek esetében a feldolgozast csak az adott sorozat T
tulajdonsagu elemeire kell elvégezniink, alkalmazhat6 a kivalogatassal torténd Gsszeépités.

1. FEJEZET. ALGORITMUSOK ES PROGRAMOZAS 21

1.2. Lépések finomitasa és optimalizalas

Bonyolultabb feladatok esetében a megfeleld algoritmus leirasa nem konnyu feladat. Ezért
célszerli el6szor a megoldast korvonalazni, és csak azutan részletezni. A feladat elemzése
soran sor keriil a bemeneti és kimeneti adatok megallapitasara, a megfeleld adatszerkezetek
kivalasztasara és megtervezésére, a feladat kovetelményeinek szétvalasztasara. Kovetkezik a
megoldasi moédszer megallapitasa, a megoldas 1€péseinek leirasa és a lépések finomitasa,
vagyis az algoritmus részletes kidolgozasa. Kovetkezik a helyesség bizonyitasa és a
bonyolultsag kiértékelése. A program megirasat (kodolast) a tesztelés koveti.

A lépések finomitasa az algoritmus kidolgozdsdat jelenti, amely a kezdeti vazlattol a
végleges, precizen leirt algoritmusig vezet. Kiindulunk a feladat specifikaciojabol és fentrol
lefele tartd tervezési modszert alkalmazva (jabb meg Gjabb valtozatokat dolgozunk ki,
amelyek eleinte még tartalmaznak bizonyos, anyanyelven leirt magyarazo sorokat, amelyeket
csak kés6bb irunk at standard utasitasokkal. gy, az algoritmusnak t5bb egymds utani
valtozata lesz, amelyek egyre boviilnek egyik valtozattol a masikig.

1.2.1. Megoldott feladatok

a. Eukleidész algoritmusa
Hatarozzuk meg két adott természetes szam legnagyobb kozos osztojat (Inko) és legkisebb
koz0s tobbszorosét (Ikkt) Eukleidész algoritmusaval.

Algoritmus Eukleidész 1(a, b, 1lnko, lkkt):
@ kiszamitjuk a és b Inko-jat { Bemeneti adatok: a, b. Kimeneti adatok: Inko, Ikkt }
@ kiszamitjuk a és b Ikkt-ét

Vége(algoritmus)

Lépések finomitasa: Ki kell dolgoznunk a kiszdmitasok modjat. Ha a két szam egyenld,
akkor Inko az a szam lesz. Ha a Kisebb, mint b, nincs sziikség felcserélésre: az algoritmus
elvégzi ezt az els6 1épésében. Ezutan kiszamitjuk r-ben a és b egészosztasi maradékat. Ha a
maradék nem 0, a kdvetkezd 1épésben a-t feliilirjuk b-vel, b-t r-rel, és Gjbol kiszamitjuk a
maradékot. Addig dolgozunk, amig a maradék 0-va nem valik. Az utolsé oszt6 éppen az Inko
lesz. Az Ikkt értékét megkapjuk, ha a és b szorzatat elosztjuk az Inko-val. Az eredeti két szam
értékét az algoritmus ,,tonkreteszi”, ezért sziikséges ezeket elmenteni két segédvaltozoba (X és

y)-

Algoritmus Eukleidész_1(a, b, 1lnko, lkkt):
{ Bemeneti adatok: a, b. Kimeneti adatok: Inko, Ikkt }

X < a { sziikségiink lesz a és b értékére az lkkt kiszamitasakor }

y < b

r < a mod b { kiszamitjuk az elsé maradékot }

Amig r # © végezd el: { amig a maradék nem 0 }
a<« b { az osztandot feliilirjuk az osztoval }
b« r { az osztot feliilirjuk a maradékkal }
r < a mod b { kiszamitjuk az aktudlis maradékot }

vége(amig)

lnko « b { Inko egyenld az utolsé oszto értékével }

1kkt « x*y div lnko { felhasznaljuk a és b masolatait }

22 1. FEJEZET. ALGORITMUSOK ES PROGRAMOZAS

Vége(algoritmus)

Az algoritmust megvalosithatjuk ismételt kivonasokkal. Amig a két szam kiilonbozik egy-
mastol, a nagyobbikbdl kivonjuk a kisebbiket, és megdrizziik a kiilonbséget. Az Inko az utolsd
kiilonbség lesz. Az Ikkt-t ugyanagy szamitjuk ki, mint az el6z6 valtozatban.

Algoritmus Eukleidész_2(a, b, 1lnko, lkkt):
X < a { Bemeneti adatok: a, b. Kimeneti adatok: Inko, Ikkt }
y < b
Amig a # b végezd el:
Ha a > b akkor
a<«<a-b
kiiléonben
b« b-a
vége(ha)
vége(amig)
Inko « a
lkkt « [x*y/lnko]
Vége(algoritmus)

b. Primszamok
Adva van egy nullatol kiilonbozd természetes n szam. Dontsiik el, hogy az adott szdm
primszam-e vagy sem!

Algoritmus Prim(n, valasz):
{ Bemeneti adat: n. Kimeneti adat: valasz }
@ Megallapitjuk, hogy n primszam-e
Ha n primszam akkor
valasz « igaz
kiilénben
valasz <« hamis
vége(ha)
Vége(algoritmus)

Lépések finomitasa: Ki kell dolgoznunk azt a médot, ahogyan megallapithatjuk, hogy a
akkor prim, ha pontosan két osztdja van: 1 és maga a szam. Els6 otletiink tehat az, hogy az
algoritmus szamolja meg az adott N szdm osztdit, elosztva ezt sorban minden szdmmal 1-t6l
n-ig. A dontésnek megfeleld iizenetet az osztok szama alapjan irjuk ki.

Algoritmus Prim(n, vdlasz):

oszték_szdama <« © { Bemeneti adat: n. Kimeneti adat: valasz }
Minden oszté = 1,n végezd el:

Ha n mod oszté = @ akkor

osztok _szama <« osztok szama + 1

vége(ha)
vége(minden)
valasz <« osztdk_szama = 2

1. FEJEZET. ALGORITMUSOK ES PROGRAMOZAS 23

Vége(algoritmus)
1.2.2. Az algoritmus optimalizalisa

A 1épésenkénti finomitasnak elvben vége van, hiszen van egy helyesen miik6do algoritmu-
sunk. De, miutan teszteljiik és figyelmesen elemezziik, rajoviink, hogy az algoritmust lehetsé-
ges optimalizalni. Eszrevessziik, hogy az osztasok szama foloslegesen nagy. Ezt a szamot
lehet csokkenteni, mivel ha 2 és n/2 kozott nincs egyetlen osztd sem, akkor biztos, hogy nincs
n/2 és n kozott sem, tehat eldonthetd, hogy a szdm prim. S6t elég a szam négyzetgyokéig
keresni a lehetséges 0sztot, hiszen ahogy az osztd értékei nének a négyzetgyokig, az [n/osztd]
hanyados értékei csokkennek szintén a négyzetgyok értékéig. Ha egy, a négyzetgyoknél
nagyobb osztoval elosztjuk az adott szdmot, hdnyadosként egy kisebb osztdt kapunk, amit
megtalaltunk volna elébb, ha létezett volna ilyen. Tovabba, a ciklus leallithaté amint talaltunk
egy o0sztot és a vdlasz hamissa valt. A Minden tipust ciklust Amig vagy Ismételd tipusu
ciklussal helyettesitjiik. Mivel n nem valtozik a ciklus magjaban, a négyzetgyok
kiszamittatasat csak egyszer végezzik el. Azt is tudjuk, hogy az egyetlen paros primszam a 2.
Igy elérhetjiik, hogy a paros szamok lekezelése utan csak paratlan szamokat vizsgaljunk, és
ezeket csak paratlan osztokkal probaljuk meg elosztani. Ahhoz, hogy az algoritmusunk
tokéletesen mitkddjon akkor is, ha n = 1, a kovetkezoképpen jarunk el:

Algoritmus Prim(n, vdlasz):
{ Bemeneti adat: n. Kimeneti adat: valasz }
Ha n = 1 akkor
prim < hamis
kiilonben
Ha n paros akkor
prim < n = 2
kiilonben
prim <« igaz
osztd « 3
négyzetgyok « [Vn] { a négyzetgyok egész része }
Amig prim és (osztd < négyzetgydk) végezd el:
Ha n mod oszt6é = @ akkor
prim <« hamis
kiilénben
0oszté « osztdo + 2
vége(ha)
vége(amig)
vége(ha)
vége(ha)
valasz « prim
Vége(algoritmus)

Ha ebben az algoritmusban felhasznaljuk a matematikabol ismert tulajdonsagot, éspedig:
minden 5-nél nagyobb primszam 6k + 1 alaku, akkor a vizsgalandd szamok szama tovabb
csokkenthetd. Mivel az elébbi allitasbol kovetkezik, hogy primszamokat keresni csak 6

24 1. FEJEZET. ALGORITMUSOK ES PROGRAMOZAS

tobbszoroseinél 1-gyel Kisebb, illetve 1-gyel nagyobb szamok kozott érdemes, a fenti
algoritmus a kovetkezdképpen valtozik:
Algoritmus Prim(hatar):
Ha n = 1 akkor
prim <« hamis
kiilénben
Ha n paros akkor
prim < n = 2

kiilonben
Ha n < 5 akkor {n=3}
prim « 1igaz
kiilénben

Ha ((n - 1) mod 6 # @) és ((n + 1) mod 6 # ©) akkor
prim < hamis
kiiléonben

0sztd « 3
{ tovdbb ugyanaz, mint az el6zé algoritmusban }

Tovabba, ismeretes, hogy a négyzetgyokot szamolo fliggvény ismeretlen 1épésszamban ha-
tarozza meg az eredményt, amely valos szam. Ezt elkeriilendd, lemondunk a négyzetgyok ki-
szamitasarol és az Amig feltételét a kovetkezoképpen irjuk:

Amig prim és (oszté * osztd < n) végezd el:

fgy, nem dolgozunk valés szamokkal és nem szamitjuk ki foloslegesen a négyzetgyokot.

Ha sok szamrdl kell eldonteniink, hogy prim-e, érdemes elébb 1étrehozni Eratosztenész
szita-modszerével primszamok sorozatat (megfeleld darabszammal) és az algoritmusban csak
ennek a sorozatnak elemeivel osztani.

Algoritmus Primek(hatar, prim):
{ hatar-nal kisebb szamokat vizsgdlunk }
{ a generalt primszamokat a prim logikai tomb alapjan lehet értékesiteni }
Minden i=2,hatdr végezd el:

prim; <« 1igaz { még nincs kihiizva egy szam sem %}
vége(minden)
Minden i = 2, hatdr div 2 végezd el:
Ha prim; akkor { ha i még nincs kihiizva }
k <2 * i { az elsé kihvizando szam (i-nek tobbszorose) }
Amig k < hatar végezd el:
prim, < hamis { kihiizzuk a k szamot }
k « k + i { a kdvetkezd kihvizando tébbszordse i-nek }
vége(amig)
vége(ha)
vége(minden)

Vége(algoritmus)

1. FEJEZET. ALGORITMUSOK ES PROGRAMOZAS 25

1.2.3. A modularis programozas alapszabalyai

Az eredeti feladatot részfeladatokra bontjuk. Minden rész szamara megtervezziik a megol-
dast jelentd algoritmust. Ezek az algoritmusok legyenek minél fiiggetlenebbek, de alljanak jol
definialt kapcsolatban egymassal. A részfeladatok megoldasainak Osszessége tartalmazza a fe-
ladat megoldasi algoritmusat.

Modularis dekompozicio: A modularis dekompozicio a feladat tobb, egyszerlibb
részfeladatra bontasat jelenti, amely részfeladatok megoldasa mar egymastol fiiggetleniil
elvégezhetd. A mddszert altalaban ismételten alkalmazzuk, azaz a részfeladatokat magukat is
felbontjuk. Ezzel lehetové tessziik azt is, hogy a feladat megoldasan egyszerre tobb személy is
dolgozzon. A mddszer egy faval abrazolhato, ahol a fa csomdpontjai az egyes dekompozicids
1épéseknek felelnek meg.

Modularis kompozicio: Olyan szoftverelemek létrehozasat tamogatja, amelyek szabadon
kombinalhatok egymassal. Algoritmusainkat a mar meglévé egységekbdl épitjiik fel.

Modulok tulajdonsagai

Modularis érthetoség: A modulok Onalléan is egy-egy értelmes egységet alkossanak,
megértésiikkhoz minél kevesebb ,,szomszédos” modulra legyen sziikség.

Modularis folytonossag: A specifikacio ,kis” valtoztatdsa esetén a programban is csak ,.kis”
valtoztatasra legyen sziikség.

Modularis védelem: Célunk a program egészének védelme az abnormalis helyzetek hatasaitol.
Egy hiba hatasa egy — esetleg néhany — modulra korlatozddjon!

A modularitas alapelvei

A modulokat nyelvi egységek tamogassdk: A modulok illeszkedjenek a hasznalt

programozasi nyelv szintaktikai egységeihez.

— Kevés kapcsolat legyen: Minden modul minél kevesebb masik modullal
kommunikaljon!

— Gyenge legyen a kapcsolat: A modulok olyan kevés informaciot cseréljenek, amennyi
csak lehetséges!

— Explicit interface hasznalata: Ha két modul kommunikal egymassal, akkor annak ki
kell deriilnie legalabb az egyikiik szovegébol.

— Informacio elrejtés: Egy modul minden informacidjanak rejtettnek kell lennie, kivéve,
amit explicit moédon nyilvanosnak deklaraltunk.

— Nyitott és zart modulok: EQy modult zdrtmak neveziink, ha mas modulok szamara egy

jol definialt feliileten keresztiil elérhetd, a tobbi modul ezt valtozatlan forméaban

felhasznalhatja. Egy modult nyitottnak neveziink, ha még kiterjeszthetd, ha az altala

nyujtott szolgaltatasok bdvithetdk vagy, ha hozzavehetiink tovabbi mezdket a benne

levé adatszerkezetekhez, s ennek megfeleléen modosithatjuk eddigi szolgaltatasait.

Az ujrafelhasznilhatosag igényei

26 1. FEJEZET. ALGORITMUSOK ES PROGRAMOZAS

A tipusok valtozatossaga: A moduloknak tobbféle tipusra is miikddniiik kell, azaz a miivelete-
ket tobb kiilonboz6 tipusra is definidlni kellene.
Egy tipus, egy modul: Egy tipus miiveletei keriiljenek egy modulba.

1.3. Rendezo algoritmusok

Osszehasonlitason alapulé rendezések
Legyen egy n elemii a sorozat. Novekvoen rendezett sorozatnak nevezziik a bemeneti soro-

c ey

1.3.1. Buborékrendezés (Bubble-sort)

A rendezés soran paronként dsszehasonlitjuk a szamokat és, ha a sorrend nem megfeleld,
akkor az illet6 két elemet felcseréljiik. Ha volt csere, a vizsgélatot Gjrakezdjiik. Az algoritmus
akkor ér véget, amikor az elemek paronként a megfelelé sorrendben talalhatok, vagyis a
sorozat rendezett. Mivel a sorozat elsé bejarasa utan legalabb az utolsé elem a helyére kertil,
¢és a ciklusmag minden Gjabb végrehajtasa utan, jobbrol balra haladva tjabb elemek keriilnek
a megfeleld helyre, a ciklus lépésszama csokkenthet. Az is eléfordulhat, hogy a sorozat
végén levd elemek mar a megfeleld sorrendben vannak, €s igy azokat mar nem kell
rendezniink. Tehat, elegendd a sorozatot csak az utolso csere helyéig vizsgalni.

Algoritmus BuborékRendezés(n, a):
k < n { Bemeneti adatok: n, a. Kimeneti adat: a rendezett a sorozat }
Ismételd
nn < k -1
rendben « igaz
Minden i = 1, nn végezd el:
Ha a; > a; .1 akkor
rendben <« hamis
di > aj +1
k « i { az utolsé csere helye }
vége(ha)
vége(minden)
ameddig rendben
Vége(algoritmus)

1.3.2. Egyszerii felcseréléses rendezés

Ez a rendezési modszer hasonlit a buborékrendezéshez, de kotelezden elvégez minden
paronkénti Gsszehasonlitast (mig a buborékrendezés bonyolultsaga a legjobb esetben Q(n), ez
az algoritmus mindig O(n?) bonyolultsag). Ha egy elempar sorrendje nem megfeleld, felcseréli
Oket.

Algoritmus FelcserélésesRendezés(n, a):
{ Bemeneti adatok: n, a; Kimeneti adat: a rendezett a sorozat }
Minden i = 1, n - 1 végezd el:
Minden j = i + 1, n végezd el:

1. FEJEZET. ALGORITMUSOK ES PROGRAMOZAS 27

Ha a; > a; akkor
a; < aj
vége(ha)
vége(minden)
vége(minden)
Vége(algoritmus)
1.3.3. Minimum/maximum Kkivalasztasra épiilé rendezés

Novekvo sorrendbe rendezés esetén kivalaszthatjuk a sorozat legkisebb elemét. Ezt az els6
helyre tessziik ugy, hogy felcseréljiik az els6 helyen talalhato elemmel. A kovetkez6 1épésben
hasonlo6an jarunk el, de a minimumot a masodik helytdl kezd6dden keressiik. A tovabbiakban
ugyanezt tessziik, mig a sorozat végére nem ériink.

Algoritmus MinimumkivdlasztasosRendezés(n, a):
{ Bemeneti adatok: n, a; Kimeneti adat: a rendezett a sorozat }
Minden i = 1,n-1 végezd el:
indMin « 1
Minden j = i+1, n végezd el:
Ha ai,amin > a; akkor
indMin « j
vége(ha)
vége(minden)
di <> Qindmin
vége(minden)
Vége(algoritmus)

1.3.4. Beszuro rendezés

A besziiré rendezés hatékony algoritmus kisszamu elem rendezésére. Ugy dolgozik, ahogy
bridzsezés kozben a keziinkben levd lapokat rendezziik: tires bal kézzel kezdiink, a lapok
fejjel lefelé az asztalon vannak. Felvesziink egy lapot az asztalrdl, és elhelyezziik a bal
keziinkben a megfeleld helyre. Ahhoz, hogy megtalaljuk a megfeleld helyet, a felvett lapot
Osszehasonlitjuk a mar keziinkben levo lapokkal, jobbrol balra. A bemeneti elemek helyben
rendezddnek: a szamokat az algoritmus az adott tdmbon beliil rakja a helyes sorrendbe,
beldliik barmikor legfeljebb csak allandonyi tarolodik a tombdn kiviil. Amikor a rendezés
befejezddik, az eredeti tomb tartalmazza a rendezett elemeket.

Algoritmus BeszlroéRendezés(n, a):
{ Bemeneti adatok: n, a. Kimeneti adat: a rendezett a sorozat }
Minden j = 2, n végezd el:

segéd « aj { besziirjuk aj-t az a, ..., aj_1 rendezett sorozatba }
i«3j-1
Amig (i > @) és (a; > segéd) végezd el:

diy1 < aj

ie«1i-1
vége(amig)
ai,1 < segéd

28 1. FEJEZET. ALGORITMUSOK ES PROGRAMOZAS

vége(minden)
Vége(algoritmus)

Linearis rendezések

Az eddigiekben targyalt algoritmusok a legrosszabb esetben O(nz) idében rendeznek n ele-
met. Ezek az algoritmusok a rendezéshez csak a bemeneti tomb elemein torténd 6sszehasonli-
tasokat hasznaljak, ezért ezeket az algoritmusokat dsszehasonlito rendezéseknek is nevezziik.

1.3.5. Leszamlalo rendezés (ladarendezés, Binsort)

A most kovetkez6 rendezé algoritmus linedris ideji. Ez az algoritmus nem az
Osszehasonlitast hasznalja a rendezéshez, hanem kihasznalja a rendezendd sorozat bizonyos
tulajdonsagait, éspedig azt, hogy az elemek sorszamozhato tipustiak, olyan értékekkel,
amelyek egy segédtomb indexei lehetnek.

A segédtomb i-edik elemében azt tartjuk nyilvan, hogy hany darab i-vel egyenl6 elemet ta-
laltunk az eredeti tdmbben. A linearis feldolgozas utan feliilirjuk az eredeti tomb elemeit a se-
gédtomb elemeinek értékei alapjan.

Algoritmus LadaRendezés(a, n):
Minden i = 1, k végezd el: { Bemeneti adatok: n, a; Kimeneti adat: a }
segéd; « ©
vége(minden)
Minden j = 1, n végezd el:
segedaj <« segedaj 1
vége(minden)
q <« ©
Minden i = 1, k végezd el: { a segéd tombnek k eleme van }
Minden j = 1, segéd; végezd el:
q<«q+1 { a segéd; elemek dsszege n '}
ag « 1 { tehat a feldolgozasok szama n }
vége(minden)
vége(minden)
Vége(algoritmus)

1.3.6. Szamjegyes rendezés (radixsort)

Ha egész szamokat tarold sorozatot szeretnénk rendezni, elképzelhetjiik a szamokat
egymas ala irva és alkalmazhatjuk a fenti algoritmust rendre, minden szamjegy-oszlopra. Ha a
legnagyobb szam szamjegyeinek darabszama d, a sorozatot d-szer vizsgaljuk. A szamjegyes
rendezés eldszor a legkevésbé fontos szdmjegy alapjan rendez. A szamokat az utolso
szamjegyiik alapjan rendezziik oly modon, hogy ha csak ezt a szamjegyet tekintjiik, novekvd
sorrendet lassunk. Ezutan a szdmokat Ujra rendezziik a masodik legkevésbé értékes

1. FEJEZET. ALGORITMUSOK ES PROGRAMOZAS 29

szamjegyiik alapjan. Ezt mindaddig végezziik, ameddig a szamokat mind a d szamjegy szerint
nem rendeztiik.

Algoritmus SzamjegyesRendezés(a, d):
Minden i = 1, d végezd el:
stabil leszamlaldssal rendezziik az a tombét az i-edik szamjegy szerint
vége(minden)
Vége(algoritmus)

1.4. Rekurzio

1.4.1. Rekurziv alprogramok

Barmely algoritmus megvalosithato iterativan és/vagy rekurzivan. Mindkét technikénak a
Iényege: bizonyos utasitasok ismételt végrehajtasa. Az iterativ algoritmusokban az ismétlést
ciklusokkal valositjuk meg. A rekurziv algoritmusokban az ismétlés azaltal valosul meg, hogy
az illetd alprogram meghivja onmagat, amikor még aktiv.

A rekurzi6 egy kiilonleges programozasi stilus, inkdbb ,technika” mint moddszer. A
rekurziv programok tomodren és vilagosan kodoljak az algoritmusokat, bonyolultsaguktol
fiiggetleniil. A rekurziv programozés, mint fogalom, a matematikai értelmezéshez kozelalld
modon keriilt kdzhasznalatba.

Rekurziv algoritmust akkor érdemes tervezni, ha a feladat eredménye rekurziv szerkezetii,
ha a megoldas legjobb modszere a visszalépéses keresés (backtracking) vagy az oszd meg és
uralkodj modszer (divide et impera), illetve ha a feldolgozando adatok rekurzivan definialtak
(pl. binaris fak). Ugyanakkor eléfordulhat, hogy tulsdgosan igénybe veszi a végrehajtasi
vermet, és a futdsi ideje nagyobb, mint az iterativ valtozatnak
Példak

1. A matematikaban, egy fogalmat rekurziv modon definidlunk, ha a definicion beliil
felhasznaljuk magat a definialando fogalmat. Példaul, a faktorialis rekurziv definicigjat
egy adott n szam esetében, a matematikus igy fejezi ki:

{1, ha n=0

nl= *
n-(n-1)!, haneN

2. A binaris fa Knuth altal megfogalmazott definicidja mar szorosan kapcsolodik az
informatikahoz: Egy bindris fa vagy iires, vagy tartalmaz egy csomopontot, amelynek van
egy bal meg egy jobb utéda, amelyek szintén bindaris fak.

A programozasban a rekurzi6 alprogramok formdjaban jelenik meg, éspedig olyan fliggvé-
nyeket, illetve eljarasokat neveziink rekurzivaknak, melyek meghivjak dnmagukat. Ha ez a
hivas az illet6 alprogram Osszetett utasitasaban szerepel, kozvetlen (direkt) rekurziorol beszé-
link. Ha egy rekurziv alprogramot egy masik alprogram hiv meg, amelyet ugyanakkor az
illeté alprogram hiv (kdzvetve, vagy kozvetleniil) akkor kdzvetett (indirekt) rekurziorol
beszéliink. Kozvetett rekurzid esetén is arrdl van sz9, hogy egy alprogram meghivja nmagat,
hiszen a rekurziv hivas akozben torténik, mikozben a szamitogép azt az Osszetett utasitast
hajtja végre, amely az illetd alprogramot alkotja.

Egy alprogram aktiv a hivasatol kezd6d6en, addig, amig a végrehajtas visszatér a hivas he-
lyére. Egy alprogram aktiv marad akkor is, ha végrehajtasa soran mas alprogramokat hiv meg.

30 1. FEJEZET. ALGORITMUSOK ES PROGRAMOZAS

Egy rekurziv alprogram végrehajtasa azonos modon torténik, mint barmely nem rekurziv
alprogramé. A rekurziv eljardsok esetében is, hasonldéan a nem rekurzivakhoz, az aktivalas
feltételezi a veremhasznalatot, ahol a paramétereket, a visszatérés helyének cimét, valamint a
lokalis valtozokat tarolja (minden aktualis aktivalas idejére) a programozasi kormyezet.

Mivel a verem mérete véges, bizonyos szamu aktivalas utan bekovetkezhet a tulcsordulas
¢és a program hibaiizenettel kilép. Mivel ezt a hibat feltétleniil el kell keriilniink, a rekurziv al-
programot csak egy bizonyos feltétel teljesiilésekor hivjuk meg fjra. A legutolsd aktivalas
alkalmaval a feltétel hamis, ennek kovetkeztében nem torténik ujrahivas, hanem a feltétel
masik aganak megfeleld utasitds (ennek hidnyaban, a feltétel utani utasitas) keriil sorra. Uj
aktivalas csak az 'jrahivasi feltétel teljesiilésekor torténik. Az Gjrahivasok szama
meghatarozza a rekurzidé mélységét, tehat, egy rekurziv megoldas csak akkor hatékony, ha ez
a mélység nem til nagy.

Ha az Ojrahivéasi feltétel egy adott pillanatban nem teljesiil, az Ujraaktivalasok sora leall;
ennek kovetkeztében a feltétel tagadasa a rekurziobol valo kilépés feltétele. A feltételnek a re-
kurziv eljaras paramétereitdl kell fliggnie és/vagy a helyi valtozoktol, a kilépést a paraméterek
¢s a lokalis valtozok modosulasa (egyik hivastol a masikig) biztositja. Ha ezeket a feltételeket
nem tartjuk be, a program hibaiizenettel kilép. Egy tjrahivas (kozvetlen rekurzid esetén),
tobbszor is eléfordulhat egy rekurziv eljarasban; ebben az esetben, természetesen, kiilonbdzni
fognak a visszatérési cimek.

A rekurzio késlelteti az eljaras azon utasitasainak végrehajtasat, amelyek a rekurziv hivas
utani részhez tartoznak. Minden eddigi allitas igaz a rekurziv fiiggvények esetében is, csak a
hivas modja mas. Egy rekurziv fliggvényt egy kifejezésbol hivunk meg.

1.4.2. Megoldott feladatok

1. Egy sz6 betiiinek megforditasa

Olvassunk be egymas utan tobb betlit a szokozkarakter megjelenéséig, majd irjuk ki ezeket
a betliket forditott sorrendben. Ne hasznaljunk tombot!

Megoldas

A feladat kovetelményének megfelelden betiik szintjén fogunk dolgozni. A megforditott
kiiras azt jelenti, hogy miutan beolvastunk egy betiit, nem irjuk ki, csak miutan beolvastuk a
tobbi betiit. A fennmaradt rész esetében ugyanigy jarunk el; a modszer addig folytatodik,
amig eljutunk az utolso6 betithoz, amikor nincs mit megforditani.

Algoritmus Fordit: { nincs paraméter, mivel az alprogramban olvasunk be és irunk ki }
Be: beti
Ha nem szdékoz akkor
Fordit { meghivia 6nmagat, hogy megfordithassa a fennmaradt részt }
kiilénben
Ki: 'Forditott szé:' { ez az utasitas egyszer hajtodik végre }
vége(ha)
Ki: betd
Vége(algoritmus)

1. FEJEZET. ALGORITMUSOK ES PROGRAMOZAS 31

A rekurzid meghatarozza az eljaras zar6 részének az aktivalasok forditott sorrendjében
vald végrehajtasat (a fenti példdban: Ki: betl), igy természetes modja a feladat
megoldasanak.

2. Szavak sorrendjének megforditasa

Olvassunk be n sz6t, majd irjuk ki ezeket (tdmbhasznalat nélkiil) a beolvasas forditott sor-
rendjében!

Algoritmus SzavakatFordit_1(n):
Be: sz6 { az elsé hivas aktudlis paramétere n = szavak szama }
Ha n > 1 akkor
SzavakatFordit_1(n-1)
kiilonben
Ki: 'Forditott sorrendben:
vége(ha)
Ki: szé6
Vége(algoritmus)

Az eredeti feladat n sz6 megforditasat valositja meg, a részfeladatok pedig egyre kevesebb
sz06 megforditasat végzik. Ha forditva indulunk, vagyis ,megforditjuk” egy szonak a
sorrendjét, majd a tobbiét, akkor az algoritmus a kovetkezo:

Algoritmus SzavakatFordit_2(i):
Be: sz6 { most az elsd hivas aktualis paramétere 1 }
Ha i < n akkor
SzavakatFordit_2(i+1)
kiilénben
Ki: 'Forditott sorrendben:
vége(ha)
Ki: sz6
Vége(algoritmus)

3. Faktorialis
Szamitsuk ki az adott n szadm faktorialisat!

Megoldas

crer

implementalunk. Az els6 hivas Fakt(n)-nel torténik.

Algoritmus Fakt(n): { Bemeneti adat: n }
Ha n = @ akkor
téritsd 1
kiilénben
téritsd n * Fakt(n - 1)
vége(ha)
Vége(algoritmus)

32 1. FEJEZET. ALGORITMUSOK ES PROGRAMOZAS

A faktorialis tulajdonképpeni kiszamolasa akkor torténik, amikor kilépiink egy-egy hivas-
bol. Mivel minden egyes alkalommal mas-mas n paraméterre van sziikség, fontos, hogy ezt
értékként adjuk at, igy kifejezéseket is irhatunk az aktualis paraméter helyére. Megjegyzendo,
hogy a faktorialist nem elényos rekurzivan szamolni, mivel sokkal idéigényesebb, mint az
iterativ megoldas, hiszen a Fakt(n) fliggvény (n+1)-szer fog aktivalodni.

4. Legnagyobb ko6zos oszt6

Szamitsuk ki két természetes szam (n, m € N*) legnagyobb kozos osztojat rekurzivan.
Megoldas
Ha figyelmesen elemezziik Eukleidész algoritmusat, észrevessziik, hogy a legnagyobb
kozos osztd (Lnko(m, n)) egyenlé n-nel (ha n osztdja m-nek) kiilonben egyenlé Lnko(n, m
mod n)-nel. Tehat fel lehet irni a kdvetkez6 rekurziv definiciot:
umquo:{m ha mmodn =0
Lnko(n,mmodn), ha mmodn =0

Algoritmus Lnko(m, n): { Bemeneti adatok:m, n }
mar « m mod n
Ha mar = 0@ akkor
téritsd n
kiilonben
téritsd Lnko(n, mar)
vége(ha)
Vége(algoritmus)

Az els6 hivas torténhet példaul egy kiir6 utasitasbol: Ki: Lnko(m, n).

5. Descartes-szorzat

Egy rajzon n viragot szeretnénk kiszinezni. A festékeket az 1, 2, ..., m szamokkal kodoljuk.
Béarmely virag, barmilyen szinii lehet, de szeretnénk tudni, hany féle modon lehetne ezeket
kiilonbdzé modon kiszinezni. Tulajdonképpen az M" Descartes-szorzatot kell generdlnunk:

Algoritmus DescartesSzorzat(i): { Bemeneti adat: i, az elsé hivaskor =1}
Minden j = 1, m végezd el:
Xi « J

Ha i < n akkor
DescartesSzorzat(i+l)
kiilonben
Kiir
vége(ha)
vége(minden)
Vége(algoritmus)

6. k elemii részhalmazok

1. FEJEZET. ALGORITMUSOK ES PROGRAMOZAS 33

Adott két egész szam: n és k (1 < k < n). Generaljuk rekurzivan az {1, 2, ..., n} halmaz
minden k elemet tartalmazo részhalmazat!

Megoldas
Az {1, 2, ..., n} halmaz k elemet tartalmazé részhalmaza egy Kk elemi tomb segitségével ko-
dolhato: Xg, Xo, ..., Xk. A részhalmaz elemei kiillonb6zok és nem szamit a sorrendjiik. Ezért, a

részhalmazok generalasa soran vigyazunk, hogy az X sorozatba ne generaljuk kétszer vagy
tobbszoOr ugyanazt a részhalmazt (esetleg, mas sorrendli elemekkel), ugyanakkor ne veszitsiink
el egyet sem. Ha az x sorozatba az elemeket szigortian névekvd sorrendben tessziik (X3 < Xz < ...
< Xx), egy részhalmazt csak egyszer allithatunk el6. Mivel minden X; szigoruan nagyobb, mint X;.
1, az értékei X; 1 + 1-t61 kezd6édben n — (K — i)-ig nének.
Algoritmus Részhalmazok(i): { k és x globalis valtozo, x;=0,1=0,1, ... }
Minden j = x;.; + 1, n - k + i végezd el:
Xi < J
Ha i < k akkor
Részhalmazok(i+1)
kiilénben
Kiir
vége(ha)
vége(minden)
Vége(algoritmus)

A részhalmazokat general6 algoritmust az i paraméter 1 értékére hivjuk meg.

7. Fibonacci-sorozat

Generaljuk a Fibonacci-sorozat elsd n elemét!

0, ha n=1
Fib(n) =41 ha n=2

Fib(n—-1) + Fib(n-2), ha n>3
Megoldas

Az n-edik elem kiszamitasdhoz sziikségiink van az eldtte taldlhatd két elemre. De ezeket
szintén az el6ttiik levo elemekbdl szamitjuk Ki.

Algoritmus Fibo(n):
Ha n = 1 akkor
téritsd o

kiilonben
Ha n = 2 akkor
téritsd 1
kiilonben
téritsd Fibo(n-2) + Fibo(n-1)
vége(ha)
vége(ha)
Vége(algoritmus)

A fenti algoritmus nagyon sokszor hivja meg 6nmagat ugyanarra az értékre, mivel minden
Uj elem kiszamitasakor el kell jutnia a sorozat elsé eleméhez, amitdl kezdédden ujra, meg ujra

34 1. FEJEZET. ALGORITMUSOK ES PROGRAMOZAS

generalja ugyanazokat az elemeket. A hivasok szamat csokkenthetjiik, ha a kiszamolt
értékeket megodrizzilk egy sorozatban. Legyen ez a sorozat f, amelyet globalis valtozoként
kezeliink.

Algoritmus Fib(n):
Ha n > 2 akkor
Fib(n-1)
o« foa + foz
kiilénben
f, « 0
Ha n = 2 akkor f, « 1 vége(ha)
vége(ha)
Vége(algoritmus)
8. Az {1, 2, ..., n} halmaz minden részhalmaza

Generaljuk az {1, 2, ..., n} halmaz minden részhalmazat!

Elemzés

A halmazokat az x; < X, < ... < X; sorozattal abrazoljuk, ahol i = 1, 2, ..., n. Az alabbi
algoritmust i = 1-re hivjuk meg. Az X sorozat 0 index(i elemét 0 kezdéértékkel latjuk el.
Sziikségiink lesz az Xo elemre is, mivel az algoritmusban a sorozat minden x; elemét, tehat x;-
et is az el6z6 elembdl szamitjuk ki. A j valtozoban generaljuk azokat az értékeket, amelyeket
rendre felvesz az x sorozat aktualis eleme. Ezek a j értékek 1-gyel nagyobbak, mint a
részhalmazba utoljara betett elem értéke és legtobb n-nel egyenlék. Igy a részhalmazokat
lexikografikus sorrendben generaljuk. Figyelemre méltd, hogy minden 10j elem generalasa egy
Uj részhalmazhoz vezet.

Algoritmus MindenRészhalmaz(i)
Minden j = x;.; + 1, n végezd el:
X; < J
Kiir(i)
MindenRészhalmaz(i+1)
vége(minden)
Vége(algoritmus)

A kilépési feltétel lehetne x; = n, de erre nincs sziikség, mivel a Minden struktira végsé
értéke leallitja a végrehajtast: ha xj = n, a ciklusvaltozd kezdéértéke x; + 1 = n + 1, tehat
nagyobb, mint n (végso érték), igy a Minden ciklusmagja nem hajtodik végre és a program
kilép az aktualis hivasbol. Az algoritmust MindenRészhalmaz(1) alakban hivjuk meg.

9. Particiok
Generaljuk az n € N* szam particioit!

Megoldas

Particio alatt azt a felbontést értjiik, amelynek soran az n € N* szamot pozitiv szamok
Osszegeként irjuk fel: n = py + po + ... + py, ahol pi € N*, i =1, 2, ..., k, k=1, ..., n. Két
particiot kétféleképpen tekinthetiink kiilonbozonek: ha vagy az eldfordulo értékek vagy az
elofordulasuk sorrendje kiillonbozik vagy, ha csak az eldfordulé értékek kiilonboznek.

1. FEJEZET. ALGORITMUSOK ES PROGRAMOZAS 35

A generalas soran, rendre kivalasztunk egy lehetséges értéket a particio elsé p; eleme sza-
mara és generaljuk a fennmaradt n — p; szdm particioit. Ez a kiilonbség az n 0j értéke lesz,
amellyel ugyantgy jarunk el. Egy particiot legeneraltunk, és kiirhatjuk, ha n aktualis értéke 0.

Az alabbi algoritmust a Particio(1, n) utasitassal hivjuk meg el6szor.

Algoritmus Particié(i, n):
Minden j = 1, n végezd el:
pi < J
Ha j < n akkor
Particié(i+1, n-j)
kiilonben
Kiir(i)
vége(ha)
vége(minden)
Vége(algoritmus)

1.5. A visszalépéses keresés modszere (backtracking)

Az algoritmusok behatobb tanulmanyozasa meggydzott benniinket, hogy tervezésiikkor
meg kell vizsgalnunk a végrehajtasukhoz sziikséges id6t. Ha ez az id6 elfogadhatatlanul nagy,
mas megoldasokat kell keresniink. Egy algoritmus ,,elfogadhat6”, ha végrehajtasi ideje
polinomidlis, vagyis n“-nal aranyos (adott k-ra és n bemeneti adatra). Ha egy feladat minden
lehetséges megoldast kér, és csak exponencialis algoritmussal tudjuk megoldani, a
backtracking (visszalépéses keresés) modszert alkalmazzuk, amely exponencialis ugyan, de
megprobalja csokkenteni a generaland6 probalkozasok szamat.

1.5.1. A visszalépéses keresés altalanos bemutatasa

A visszalépéses keresés azon feladatok megoldasakor alkalmazhat6, amelyeknek eredmé-
nyét az M; x M, x ... x M, Descartes-szorzatnak azon elemei alkotjak, amelyek eleget tesznek
bizonyos belsd feltételeknek. Az M; x M, x ... x M, Descartes-szorzat a megoldasok tere (az
eredmény egy x sorozat, amelynek x; eleme az M; halmazbdl valo).

A visszalépéses keresés nem generalja a Descartes-szorzat minden X = (X1, X2, ..., Xn) € My
x My x ... x M, elemét, hanem csak azokat, amelyeknek esetében remélhet, hogy
megfelelnek a belsé feltételeknek. Igy, megprobalja csokkenteni a probalkozasokat.

Az algoritmusban az x tomb elemei egymas utan, egyenként kapnak értékeket: X; szamara
csak akkor ,,javasolunk értéket”, ha X, X, ..., Xi.1 mar kaptak végleges értéket az aktualisan
generalt eredményben. Az Xj-re vonatkozé javaslatot akkor fogadjuk el, amikor xi, X2, ..., Xi1
értékei az X; értékével egylitt megvalositjak a belsd feltételeket. Ha az i-edik 1épésben a bels6
feltételek nem teljesiilnek, x; szamara 0j értéket valasztunk az M; halmazbol. Ha az M; halmaz
minden elemét kiprobaltuk, visszalépiink az i—1-edik elemhez, amely szamara 10j értéket
»javasolunk” az M1 halmazbol. Ha az i-edik 1épésben a belsd feltételek teljesiilnek, az
algoritmus folytatodik. Ha sziikséges folytatni, mivel a szadmukat ismerjiilk és még nem
generaltuk mindegyiket, vagy valamilyen masképp kifejezett tulajdonsag alapjan eldontottiik,
hogy még nem jutottunk eredményhez, a folytatdsi feltételek alapjan folytatjuk az algoritmust.

36 1. FEJEZET. ALGORITMUSOK ES PROGRAMOZAS

Azokat a lehetséges eredményeket, amelyek a megoldasok terébol vették értékeiket ugy,
hogy teljesitik a belso feltételeket, és amelyeknek esetében a folytatasi feltételek nem kérnek
tovabbi elemeket, végeredményeknek nevezziik.

A belso feltételek és a folytatasi feltételek kozott szoros kapcsolat all fenn. Ezek kifejezés-
modjanak szerencsés megvalasztasa tobbnyire a szamitasok csokkentéséhez vezethet. A belsd
feltételeket egy kiilon algoritmusban vizsgaljuk: Megfelel(i), ahol i az aktualisan generalt
elem indexe. Ez az alprogram igaz értéket térit vissza, ha az x; elem az eddig generalt X, Xp,
..., Xi-1 elemekkel egyiitt megfelel a belso feltételeknek, és hamis értéket ellenkezd esetben.

Algoritmus Megfelel(i): { a fiiggvény Megfelel értékét teriti }
Megfelel <« igaz
Ha a belsd feltételek x1, X, ..., Xi esetében nem teljesiilnek akkor
Megfelel <« hamis
vége(ha)
Vége(algoritmus)
A feladat altal kért eredményt a kovetkez6 algoritmussal generaljuk:

Algoritmus RekurzivBacktracking(i):
Minden my € M; értékre végezd el:
Xi < My
Ha Megfelel(i) akkor { megvalosulnak a belsé feltételek x1, Xy, ..., Xi esetében }
Ha i < n akkor
RekurzivBacktracking(i+1)
kiilonben
Ki: X1, X2, «.., Xnp
vége(ha)
vége(ha)
vége(minden)
Vége(algoritmus)

Az algoritmust az i = 1 értékre hivjuk meg elészor.

A modszer eredményessége nagymértékben fiigg a folytatasi feltételek szerencsés
kivalasztasatol. Minél hamarabb allitjuk le egy eredmény generalasat, annal kisebb a rekurzié
mélysége, de a feltételek nem lehetnek tal bonyolultak, mivel ezeket minden aktivalodasnal
végrehajtja az algoritmus.

A modszer azoknak a feladatoknak a megoldasakor alkalmazhatd, amelyekben a
kovetelményeknek megfeleloen minden eredményt meg kell allapitanunk. Ha az M1 X ... x M,
Descartes-szorzat szamossaga nem til nagy, valamint a feltételek biztositanak egy nem tul
mély rekurziot, eredményesen alkalmazhato.

Osszefoglalva, a kovetkez6 1épéseket kell elvégezniink:

1. az eredmény kédolasa — meg kell allapitanunk az X; elemek jelentését az illetd feladat
esetében, valamint meg kell hataroznunk az M;, i = 1, 2, ..., n halmazokat.

2. abelsé, majd a folytatasi feltételek megallapitasa.

3. a RekurzivBacktracking(i) vagy iterativ valtozatanak atirasa.

1.5.2. Megoldott feladatok

1. FEJEZET. ALGORITMUSOK ES PROGRAMOZAS 37

1. Nyolc kiralyné a sakktablan

frjuk ki az Gsszes lehetséges modjat annak, ahogyan 8 kiralynd elhelyezhetd egy
sakktablan, tgy, hogy ne tdmadjak egymast. Két kiralyné tdmadja egymast, ha ugyanazon a
soron, oszlopon, illetve atlon helyezkedik el.

Megoldas

Minden kiralyn6t egymds utdn elhelyeziink a neki megfeleld sorba az elsd oszloppal
kezdddben, amig meg nem taldljuk azt az oszlopot, amelyben nem tdmad mas, eddig feltett
kiralyndt. Ha egy kiralyndt nem lehet elhelyezni, visszatériink az el6z6hoz és szamara tovabb
keresiink megfeleld, nagyobb sorszamu oszlopot.

Az eredményt egy egydimenzios tombbel (Kj, i = 1, 2, ..., 8) kodoljuk. A tomb K;
elemeinek értéke az oszlop sorszama, ahova az i-edik kiralynét tettiik (az i-edik sorban). A
sakktablanak 8 oszlopa van, tehat K; € {1, 2, ..., 8}, 1=1, ..., 8. Az eddigiekbdl kovetkezik,
hogy egy eredmény az {1, 2, ..., 8}8 Descartes-szorzat eleme. Tehat, ha meg akarjuk oldani a
feladatot, tulajdonképpen az {1, 2, ..., 8}8 Descartes-szorzat egy részhalmazat kell
meghataroznunk, azzal a feltétellel, hogy a 8 kiralynd, amelyek a K;, K, ..., Kg 0szlopokban
talalhatok, ne tdmadja egymast. A kodolas sajatos modja biztositja, hogy soronkénti tamadasi
lehetdség nincs, hiszen minden kiralyn6 0j sorba keriil. De példaul, ha az els6 két kiralyn6
egymast timadja, nem generalunk foloslegesen 8° = 262144 elemet a {1, 2, ..., 8} Descartes-
szorzatbol.

A masodik észrevétel a feladat rekurziv megfogalmazasat teszi lehetévé: elhelyezziik az
elsd kiralyndt, rendre az els6 sor elsd, masodik, ..., 8-dik oszlopaba, majd megoldjuk a
feladatot a fennmaradt 7 kiralyné esetében, de ugy, hogy mindig ellenérizziik, hogy egy j
kiralyn6 ne tamadjon egyet sem a mar elhelyezettek koziil.

Altalanosan megfogalmazva: az i-edik kiralynd esetében meg kell hataroznunk minden
helyet, ahova ezt el lehet helyezni az i-edik sorban ugy, hogy ne tamadjon egyet sem azok
koziil, amelyek az els6, masodik, ..., i—1-edik sorban mar el vannak helyezve. Tehat
elhelyezziik az i-edik kiralyn6t, majd megoldjuk ugyanezt a feladatot az i+1-edik kiralynd
esetében.

Ha minden kiralynét elhelyeztiik, van egy eredmény, amit ki kell irnunk. Az elhelyezést a
Kiralynd(i) rekurziv alprogram végzi el, a tamadasi lehetéséget a NemTdmad(i) logikai fiigg-
vény ellendrzi.

Ahhoz, hogy két kiralyn6 ne tamadja egymast, a kovetkezo relacioknak kell teljesiilnitik:
Kiin,ifj;ﬁlKiij |,j=1, 2, . i—1.

Algoritmus NemTamad(i):
J6 « igaz { Jo = lokdlis valtozo, K globdlis }
j«1
Amig (j < i-1) és J6 végezd el:
Ha (K; = K5) vagy (i-j = |K;i - Kj| akkor
J6 « hamis { azi. ésj. kirdlyndk tamadjak egymast }
kiilonben
j«j+1
vége(ha)

38 1. FEJEZET. ALGORITMUSOK ES PROGRAMOZAS

vége(amig)
téritsd Jo
Vége(algoritmus)

Algoritmus Kiralyn6(i):
Minden j = 1, 8 végezd el:
Ki < j { az i-edik kiralynét a j-edik oszlopba tessziik }
Ha NemTamad(i) akkor { az i-edik kiralynd nem tamadja egyiket sem }
Ha i < 8 akkor
Kirdlyn6(i+1)
kiilonben
Kiir
vége(ha)
vége(ha)
vége(minden)
Vége(algoritmus)

Az elsé hivas alakja: Kiralynd(1).
2. Variaciok

Az 6vonéni a karacsonyi linnepélyre késziil. A diszterem szinpadan n széket lehet egy
sorban elhelyezni, de a csoportban m 6védas van (n < m). Irjuk ki minden lehetséges modjat
annak, ahogy az ovodasok leiilhetnek az n székre.

Megoldds

Eltériink az eldbbi mintatol, hiszen folosleges ,,javasolni”, hogy iiljon le egy mar leiiltetett
gyermek.

Az eredmény kodolasa: Az x; az i-edik székre il gyerek nevének az indexe. Tehat x; {1, 2,
..., m}, ahol m a gyermekek szama, (i=1, 2, ..., n).

Belsd feltételek: xi #X;, 1 #],1,] = 1, 2, ..., n. A belso feltételek azt fejezik ki, hogy az i. székre
csak olyan gyerek iilhet le, aki pillanatnyilag még all. Az ellen6rzés egyszeriibb lesz, f6lhasz-
nalunk egy mégAll logikai tombét, ahol mégAll; igaz, ha a j-edik gyerek még nem iilt le, és
hamis ellenkez6 esetben. Az x; #Xj,] = 1, 2, ..., i — 1 feltételek a kovetkez6képpen alakulnak
at: mégAlly, = igaz.

Folytatasi feltétel: i < n (még van szabad sz¢k)

A mégAll tomb elemeinek kezdéértéke igaz, mivel még senki nem iilt le, majd az iiltetési
folyamat soran a megfeleld elemek hamis értéket kapnak. Valahanyszor egy iiltetési rend
megvaltozik, a j-edik gyermek felall az i-edik székrél és oda mas gyermek iilhet majd le.
Ugyanakkor, a j-edik gyermek egy masik iiltetési rendben ujbdl letilhet. A j-edik gyermek
felallitdsa maga utan vonja a megfeleld mégA'llj visszaallitasat igaz-ra. Ez a megoldas
hatékonyabb, mint az, amelyet a mintaalgoritmus alapjan készithetnénk, mivel kevesebb
Osszehasonlitast végez.

Algoritmus Variacié(i):
Minden j = 1, m végezd el:
Ha mégAll; akkor { a j-edik gyermek még all }
Xi < J

1. FEJEZET. ALGORITMUSOK ES PROGRAMOZAS 39

mégAll; <« hamis { a j-edik gyermeket [eiiltettiik az i-edik székre }
Ha i < n akkor
Variacié(i+1)
kiilénben
Kiir
vége(ha)
mégAll; « igaz {aj-edik gyermeket feldllitiuk, hogy késébb iilhessen mds székre }
vége(ha)
vége(minden)
Vége(algoritmus)

Az els6 hivas alakja: Varidcio(1).

3. Zarojelek

Generaljunk és irjunk ki minden helyesen nyitd és csuko n zardjelet tartalmazo karakter-
lancot! Példa: ha n = 4, a helyes karakterlancok:
(0))
00
Megoldds
Az eredmény kédoldsa: Ha n paros szam, az eredmények az M" halmaz elemei, ahol M =
L")} ésxi e M, i=1, ..., n. Han paratlan, akkor nincs megoldas.
Belso feltételek: Adott pillanatban ne 1étezzen tobb csukd zardjel, mint nyitd, és nyitd nem
lehet tobb mint n/2. Mivel a megoldasok tere kételemii halmaz, és a két elem esetében a belsd
feltétel kilonbozik, lemondunk a Minden struktararol és két Ha utasitissal ellendrizzitk
ezeket.

Jeloljiik ny-nyel és cs-vel a nyitd, illetve a csuké zardjelek szamat. A folytatasi feltételek
kiilonboznek az X; elemek értékének fiiggvényében:

n
ny<—, hax ='(
y<3 (
z<ny, hax =)

Folytatasi feltételek: Mivel barmely eredményben X1 ='("' és X, =")', a hivd programegységben
elvégezziik az inicializalasokat: x; < (' és X, <). Tehat, az algoritmus a masodik helyt6l
kezdédben az (n — 1)-dik helyig tesz zardjeleket. Amikor az n-edik karakter kovetkezne, le-
allunk. Az els6 hivas alakja: Zardjel(2, 1, 0).

Algoritmus Zaréjel(i, ny, cs):

Ha i = n akkor { kilépési feltétel }
Ki: x { x egy karakterlanc }
kiilonben
Ha ny < n div 2 akkor
x; < ('
Zarojel(i+1l, ny+1, cs)
vége(ha)

Ha cs < ny akkor
Xi& I)l

40 1. FEJEZET. ALGORITMUSOK ES PROGRAMOZAS

Zardjel(i+l, ny, cs+1)
vége(ha)
vége(ha)
Vége(algoritmus)

4. Labirintus

Egy labirintust egy n soros és m oszlopos L kétdimenzids tombben tarolunk, amelyben a
folyosonak megfelel6 elemek értéke 1; ezek az értékek egymas utan kdvetkeznek a labirintust
abrazol6 tombben, egy bizonyos sorban, vagy oszlopban. Egy személyt leengednek ejtderny6-
vel a labirintusba az (i, j) helyre. frjunk ki minden olyan utat, amely kivezet a labirintusbol!
Egy ut nem érintheti kétszer ugyanazt a helyet. A labirintusbdl a tomb szélén 1éphetiink ki.

Elemzés
Az eredmény kédolasa: A feladat minden kivezetd utat kér. Legyen egy ilyen ut hossza k. Az
utat az xi, Xo, ..., Xk €s Y1, Y2, ..., Yk sorozatokkal kodolunk, amelyek azokat a sorokat és 0sz-
lopokat tartalmazzak, amelyeknek érintésével kifele haladunk a labirintusbol. x; € {1, 2, ...,
nhyvie{l,2,..m}i=12 ..,k
Belso feltételek: Az utvonalra a kovetkezd belso feltételek érvényesek:
a) Folyoson kell haladnia: Ly, y, =1,i1=1, 2, ..., k.
b) Nem léphet kétszer ugyanarra a helyre: (X;, yi) # (X, ¥j), 1,] =1, 2, .., K, 1 #].
¢) Biztositania kell a labirintusbol val6 kijutast: xx € {1, n} vagy yk € {1, m}
Folytatasi feltételek: Tartalmazzdk az a) és b) ellendrzését minden 1épésnél. A b) feltétel az
i-edik 1épésben: (x;, i) # (X;, ¥j), J = 1,..., i — 1.
Az eredményt az eredm;; (i=1, 2, ..., n,j =1, 2, ..., m) tomb segitségével taroljuk, amelyben
eredmény, :{azalépésszém, amellyel az(i, j) helyre Iéptiink, ha lehet Iépni az (i, j) helyre
|0, ha nem lehet Iépni az (i, j) helyre

Egy bizonyos helyrdl négy iranyba Iéphetiink. Az alabbi kod tartalmaz egy
figyelemremélté egyszertsitést, ami a folytatasi feltételeket illeti. Nem sziikséges
ellendrizniink azt, hogy kiléptiink-e a labirintusbodl, mivel a hivas elétt (a labirintus beolvasasa
utan) az L tmbét koriilvettiik egy 0-bol allé kerettel. Igy az algoritmus gyorsabba vélik. Az
algoritmust a kiindulasi hely koordinataira (i, j) és 1 1épésszamra hivjuk meg.
Algoritmus Ut(i, j, 1épés):

Ha (Li; = 1) és (eredm;; = @) akkor

{ probalunk az (i, j) helyre lépni; ha (i, j) folyosé és még nem jartunk itt }

eredm;; « lépés { az (i, j) helyre lépiink }
Ha (i € {1, n}) vagy (j € {1, m}) akkor

Kiir { kijarathoz értiink, kiirjuk az eredménytombot }
vége(ha)
Ut(i-1, j, lépés+1) { probalunk mas utat is: felfele lépiink }
Ut(i, j+1, 1lépés+1) { jobbra lépiink }
Ut(i+l, j, lépés+1) { lefele lépiink }
Ut(i, j-1, 1épés+1) { balra lépiink }

eredms; < @ { tordljiik az utolso lépést, hogy egy uj utvonalon léphessiink ujra ide }
vége(ha)

1. FEJEZET. ALGORITMUSOK ES PROGRAMOZAS 41

Vége(algoritmus)
Masodik megoldas
Algoritmus Ut(i, j, lépés):
Minden iradny = 1, 4 végezd el: { kivalasztunk egy iranyt }
UJi < 1 + Xirany { (4ji, ujj) az vj koordinatak }

UjJ < J + Yirany
Ha (uji € {1, 2, ..., n}) és (ujj € {1, 2, ..., m}) akkor

eredmyji,¢j5 < 1épés { az (Wi, ujj) helyre lépiink }
Ha (uji € {1, n}) vagy (ujj € {1, m}) akkor
Kiir { kiléptiink a labirintus szélén }
vége(ha)
Ut(uji, ajj, 1épés+1)
eredmgji,gj; < © { lemondunk az utolso lépésrdl }
vége(ha)
vége(ha)
vége(minden)
Vége(algoritmus)

Az Ut(i, j, lépés) alprogramban a lépés pillanatban megprobalunk az (i, j) helyrél az (uji,
uj]) helyre 1épni. Ezeket két konstans tomb (X, y) segitségével allapitjuk meg igy, hogy ezek a
négy szomszédos hely koordinatait adjak meg: x = (-1, 0, 1, 0), y = (0, 1, 0, -1).

Azt varnank, hogy az algoritmus a Ha utasitas kiilonben 4gén hivja meg 6nmagat. Ha igy
jarnank el, elvesztenénk azokat az eredményeket, amelyeknek esetében a labirintus szélén to-
vabb lehet menni, €s a kilépés egy masik pontban is lehetséges.

Ebben a masodik megoldasban nem vettilk koriil a labirintust az elsé algoritmusban
emlitett kerettel. Ennek kovetkeztében sziikséges volt ellendrizni, hogy az 0j hely, ahova 1épni
akarunk a labirintuson beliil van-e.

Ezt az algoritmust az Ut(i, j, 2) alakban hivjuk meg, de a hivés elstt eredm;; < 1, ahol (i, j)
a kiindulasi hely.

Altalanositva az elobbi feladatban hasznalt rekurziv algoritmust, amely a visszalépéses
keresés modositott valtozata, észrevessziik, hogy mivel az elérehaladas egy kétdimenzios
tombben torténik, az alprogram két paramétere (i, j) annak a helynek a koordinatai, ahova
utoljara 1éptiink.

42 1. FEJEZET. ALGORITMUSOK ES PROGRAMOZAS

1.6. Az oszd meg és uralkodj modszer (divide et impera)

Az oszd meg és uralkodj modszer (divide et impera) alkalmazasa akkor ajanlott, amikor a
feladatot fel lehet bontani egymastdl fiiggetlen részfeladatokra, amelyeket az eredeti
feladathoz hasonldan oldunk meg, de kisebb méretli adathalmaz esetében.

Az eredeti feladatot felbontjuk egymastdl fliggetlen részfeladatokra, amelyek az eredetihez
hasonldak, de kisebb adathalmazra definialtak. A részfeladatokkal hasonldéan jarunk el €s a
felbontast akkor allitjuk le, amikor a feladat megoldasa a lehetd legjobban leegyszeriisodott.
A maximalisan leegyszertsitett feladatot megoldjuk, majd a részfeladatok eredményeibdl
fokozatosan felépitjiik a kovetkezé méretii feladat eredményeit, ezek Osszerakasa altal. Az
utolso6 Osszerakas az eredeti feladat végeredményét adja meg.

Mivel a részfeladatok csak méreteikben kiilonboznek az eredeti feladattdl, a divide et
impera moddszert a legkézenfekvobben rekurzivan irjuk le. A felbontds megtorténik a
rekurzidba valo belépéskor, a részeredmények Osszerakasa pedig a kilépéskor.

1.6.1. Az oszd meg és uralkodj modszer altalanos bemutatasa

A Divimp(bal, jobb, eredm) algoritmus az aj, az, ..., a, sorozatot dolgozza fel, tehat
Divimp(1, n, eredm) alakban hivjuk meg el6szor. Formalis paraméterei a bal és a jobb (az
aktualis részsorozat bal és jobb indexe), valamint eredm, amelyben a végeredményt
tovabbitjuk.

Algoritmus DivImp(bal, jobb, eredm):
Ha jobb - bal < & akkor { ha a feladat maximalisan leegyszeriisodott }
Megold(bal, jobb, eredm) { kiszamitjuk az egyszerii feladat eredm eredményét }
kiilonben
Feloszt(bal, jobb, k&zép){ kiszamitjuk a kozép indexet, ahol felosztjuk a sorozatot }
DivImp(bal, kozép, eredml) { megoldjuk a feladatot a bal részsorozat esetében }
DivImp(kozép+l, jobb, eredm2){ megoldjuk a feladatot a jobb részsorozat esetében }
Osszerak(eredml, eredm2, eredm) { Osszerakjuk a részeredményeket }
vége(ha)
Vége(algoritmus)

Az oszd meg és uralkodj stratégiat — természetesen — lehet iterativan is implementalni. Az
iterativ algoritmusok mindig gyorsabbak lesznek. A rekurziv valtozat elénye viszont az atlat-
hat6sagaban és az egyszerliségében rejlik.

1.6.2. Megoldott feladatok

1. Szorzat
Szamitsuk ki n valoés szam szorzatdt oszd meg és uralkodj modszerrel! Egy adott
pillanatban csak egy szorzast végezziink!

Megoldas

1. FEJEZET. ALGORITMUSOK ES PROGRAMOZAS 43

Mivel egy adott pillanatban, egy adott miivelettel, csak két szam szorzatat tudjuk
kiszamitani, a szorzatot részszorzatokra bontjuk: a szorzétényezoket két csoportra osztjuk,
kiszamitjuk egy-egy csoport szorzatit, majd a két csoport kiszamitott szorzatat
Osszeszorozzuk. Ezt a felbontast addig lehet ujra, meg Ujra elvégezni, amig egy csoport
legtobb két szorzotényezobol nem all.

A Szorzat(xy, ..., Xn) részfeladat altalanos alakja: Szorzat(Xpa, ..., Xjoob). Minden részfeladat
mas-mas szorzatot szamol ki, tehat a feladatok fliggetlenek egymastol.

Algoritmus Szorzat(bal ,jobb):

Ha jobb = bal akkor { Bemeneti adatok: bal, jobb. 4 fiiggvény a szorzatot tériti }
téritsd Xoa { a részsorozat egy elembdl all }
kiilénben
Ha jobb - bal = 1 akkor
téritsd Xpa1 * Xjobb { a részsorozat két elemii }
kiilénben { felbontjuk a Szorzat(bal, ..., jobb) feladatot }

kbézepe « (bal+jobb) div 2
pl « Szorzat(bal, kozepe)
p2 « Szorzat(kdzepe+l, jobb)
téritsd pl * p2 { osszerakjuk a részeredményeket }
vége(ha)
vége(ha)
Vége(algoritmus)

2. Binaris keresés

Adott egy n egész szambol 4llo, novekvéen rendezett sorozat. Allapitsuk meg egy adott
szam helyét a sorozatban! Ha az illetd szam nem talalhato meg a sorozatban, a sorszamnak
megfeleld paraméter értéke legyen 0.

Megoldas

Mivel egy bizonyos elemet keresiink, amelynek a helye ismeretlen, az X3 < Xz < ... < X,

sorozat kozepén fogjuk elészor keresni. A kdvetkezd esetek fordulhatnak eld:

1. keresett = Xs.6, = Keresett a sorban a kozép helyen talalhato;

2. keresett < Xi;.¢p = mivel a sorozat rendezett, a keresett szdmot a sorozat els6 (X1, ..., Xkszép-1)
felében keressiik tovabb;

3. keresett > Xi5.6p = @ keresett szamot a sorozat masodik (Xeszep+1, ..., Xn) felében keressiik
tovabb.

Kovetkezésképpen, ahelyett, hogy a keresett elem megkeresése két részfeladatra bomlana,
atalakul egyetlen feladatta: keressiik az elemet vagy az Xpal, ..., Xezép-1 SOrozatban, vagy az
Xkizép+1s -+ Xjobb SOrOZatban. Itt nincs sziikség a divide et impera harmadik 1épésére (a részered-
mények Osszerakasara).

Algoritmus BinKeres(x, bal, jobb, keresett, kozép):
{ Bemeneti adatok: x, bal, jobb, keresett. Kimeneti adat: kozép }
Ha bal > jobb akkor
kdzép « © { keresett nincs a sorozatban }
kiilénben
kdozép <« (bal+jobb) div 2

44 1. FEJEZET. ALGORITMUSOK ES PROGRAMOZAS

Ha keresett < Xys.sp akkor
BinKeres(x, bal, kozép-1, keresett, kozép)
kiilonben
Ha keresett > Xs.4p akkor
BinKeres(x, kozép+1l, jobb, keresett, kozép)
vége(ha) { ha keresett = Xys.s, megvan a pozicio }
vége(ha)
vége(ha)
Vége(algoritmus)

E feladat esetében is 1étezik egy iterativ megoldas, amely a végrehajtas idejét tekintve haté-

konyabb:

Algoritmus BinKeresIterativ(n, x, keresett, kozép):
bal « 1
jobb <« n
megvan <« hamis
Amig nem megvan és (bal < jobb) végezd el:
kozép <« (bal+jobb) div 2
Ha Xws.¢p = keresett akkor
megvan « igaz { kozép tartalmazza a keresett helyét }
kiilénben
Ha Xs.¢p > keresett akkor
jobb « kozép - 1
kiilénben
bal « kozép + 1
vége(ha)
vége(ha)
vége(amig)
Ha nem megvan akkor
kozép « © { ha kozép értéke 0 = keresett nem talalhato }
vége(ha)
Vége(algoritmus)

3. Osszefésiilésen alapulé rendezés (MergeSort)
Rendezziink ndvekvo sorrendbe egy egész szamokbol 4ll6 sorozatot dsszeféstiléssel!

Megoldas

Ha két rendezett sorozatbol ugy allitunk eld egy harmadikat, hogy ez utdbbi ugyszintén
rendezett, osszefésiilésrdl beszélink. De itt nem két rendezett sorozatbol kell egy harmadik,
ugyancsak rendezettet eldallitanunk, hanem egyetlen sorozatot kell rendezniink. Az adott
sorozatot két részre osztjuk, abbdl a célbol, hogy rendezhessiik. De ezeket ujbol felosztjuk,
amig a kapott tomb, amelyet rendezniink kell, csak egy elembdl all. Az egyelemii tombdk,
természetesen rendezettek ¢s megkezdddhet a tulajdonképpeni Gsszefésiilés.

Algoritmus Osszefésiil(bal, kézép, jobb):
Minden i = bal, kozép végezd el:

1. FEJEZET. ALGORITMUSOK ES PROGRAMOZAS 45

d; < Xj
vége(minden)
Minden i = ko6zép+l, jobb végezd el:
b; « x;
vége(minden)
Auszeps1 < Végtelen
bjobos1 < végtelen { strazsak }
i « bal
j <« kozép + 1
Minden k = bal, jobb végezd el:
Ha a; < bj akkor
X < aj
i« 1i+1
kiilonben
X < by
j« j+1
vége(ha)
vége(minden)
Vége(algoritmus)

Algoritmus Rendez(bal, jobb):
Ha bal < jobb akkor
kdézép « (bal+jobb) div 2
Rendez(bal, kozép)
Rendez (k6zép+1l, jobb)
Osszefésiil(bal, kdzép, jobb)

vége(ha)
Vége(algoritmus)

Az Osszefésiil(bal, kozép, jobb) algoritmus eredménye az Xpal, .., Xjobb rendezett sorozat,
amelybe tulajdonképpen ugyanazon sorozat két részsorozatat, az Xpal, ..., Xkszép €S aZ Xeszep+1,

..., Xjobb Trészsorozatokat fésiiltiik ossze. Ezzel magyarazhat6 annak a sziikségessége, hogy az
Osszefésiilendd sorozatokat atmasoltuk az a illetve a b sorozatba. A hivo programegységben a
Rendez(1, n) algoritmust hivjuk.

4. Gyorsrendezés (QuickSort)
Folhasznalva a quiksort algoritmust, rendezziink névekvo sorrendbe n egész szamot!

Megoldas

A gyorsrendezés az oszd meg és uralkodj modszeren alapszik, mivel az eredeti sorozatot
ugy rendezi, hogy két rendezendd részsorozatra bontja. A részsorozatok rendezése egymastol
fiiggetlentil torténik. A részeredmények Osszerakdsa hidnyzik (hasonléan a binaris
kereséshez). Amikor az Xi, ..., Xn sorozatot késziilink rendezni, elobb el6készitiink két
részsorozatot (X1, ..., Xm-1 €S Xm+1, ..., Xn) UgY, hogy az Xy, ..., Xn_1 részsorozat elemei kisebbek
legyenek, mint az Xm+1, ..., Xn részsorozat elemei. Kozottiik talalhato az Xy, amely nagyobb,
mint az Xy, ..., Xm_1 részsorozat barmely eleme, és kisebb, mint az Xp«1, ..., X részsorozat
Osszes eleme.

46 1. FEJEZET. ALGORITMUSOK ES PROGRAMOZAS

Azt az elemet, amely meghatarozza a helyet, ahol az adott tdmb két részre oszlik,
strazsanak (6rszem) nevezziik. Ennek a helynek a meghatarozasa kulcskérdés az algoritmus
végrehajtasa soran. A strazsa m helyét ugy hatarozzuk meg, hogy az Xi, ..., Xn tombben
legyenek azok az elemek, amelyek kisebbek, mint a strazsa és az Xp+1, ..., Xn tOombben azok,
amelyek nagyobbak annal.

Gyakran valasztjuk strazsdnak az Xj-et. Elindulunk a tomb két szélsé elemétdl és
felcseréljiilk egymas kozt azokat az elemeket, amelyek nagyobbak, mint a strazsa (és a tomb
elsd részében talalhatok) azokkal, amelyek kisebbek, mint a strazsa (€s a tomb masodik
részében talalhatok). Ahol ez a bejaras véget ér, ott fogjuk két részre osztani a tombot. Egy
ilyen feldolgozas soran egy elem a végleges helyére keriil.

A részsorozatok rendezése érdekében ezeket hasonldo modon bontjuk fel. A felbontas addig
folytatodik, amig a rendezendd részsorozat hossza 1 lesz.

Algoritmus QuickSort(bal, jobb):
Ha bal < jobb akkor { meghatdrozzuk azt az m helyet, ahol a sorozatot }
{ két részre bontjuk, mikozben az Xm elem a végleges helyére keriil }
m <« Strazsa_helye(bal, jobb)

QuickSort(bal, m) { hasonléan jarunk el az (Xpal, ..., Xm) részsorozattal }
QuickSort(m+1, jobb) { valamint @z (Xm+1, ..., Xjobb) 7észsorozattal }
vége(ha)
Vége(algoritmus)

Lathato, hogy a rekurziv hivasoknak megfelelden, az algoritmus meghivja 6nmagat egy bal
meg egy jobb részsorozat rendezése érdekében. Dacara annak, hogy az algoritmus nem tartal-
maz Osszehasonlitasokat és felcseréléseket, a sorozat akozben rendezodik, mikdzben keressiik
a strazsa m helyét:

Algoritmus StrazsaHelye(bal, jobb):

strazsa <« Xpa { Bemeneti adatok: bal, jobb. Kimeneti adat: a strdzsa helye }
i « bal-1
j < jobb+1 { megkeressiik azt a j indexet, amelyre bal <j < jobb }
Ismételd

Ismételd { megkeressiik azt a j indexet (jobbrol balra), amelyre X; > strdzsa }

j«<3J-1
ameddig x; < strazsa
Ismételd { megkeressiik azt az i indexet (balrol jobbra), amelyre x; < strazsa }

i« i+1
ameddig x; > strazsa
Ha i < j akkor

Xi <> X3 { felcseréljiik ezt a két nem megfeleld tulajdonsdgui elemet }
vége(ha)
ameddig i > j { addig folytatjuk a keresést és felcserélést, amig i kisebb, mint j }
téritsd j { megtalaltuk az vj strazsa helyét }
Vége(algoritmus)
Megjegyzés

Ez az algoritmus foleg akkor gyors, ha a sorozat nem rendezett, egyébként eléfordulhat,
hogy az algoritmus négyzetes bonyolultsaguva valik. Ha fennall ez a veszély, tanacsos a ren-

1. FEJEZET. ALGORITMUSOK ES PROGRAMOZAS 47

dezés elott véletlenszerien atrendezi a bemeneti Sorozatot, ezzel biztositva a kilonbozé
permutéaciok azonos valdsziniiségét. Ez a modositds nem javit a legrosszabb futdsi idén, de
biztositja, hogy a futasi id6 fliggetlen lesz a bemeneti elemek sorrend;jétol.

5. Hanoi tornyok

Adva van harom rud A, B, C. Az elsére fel van fiizve n darab, kiilonboz6 atmérdjia korong
ugy, hogy a korongok az atmérdjiik csokkend sorrendjében helyezkednek el egymas folott. A
masik két rad iires. frjuk ki minden lehetséges modjat annak, ahogyan a korongokat atkoltoz-
tethetjik az A radrol a B-re, ugyanolyan sorrendben, ahogyan az A-n helyezkedtek el.
Kozben fel lehet hasznalni, ideiglenesen a C rudat. Egy mozgatés csak egy korongot érinthet,
¢s csak kisebb atmérdjii korongot helyezhetiink egy nagyobb atmérdjii korong folé.

Megoldas
A modszer jbol a divide et impera. Az n korong atkoltoztetése az A radrol a B-re
felbonthat6 harom, ehhez hasonlé feladatra:

1)
n-1
korong [>
A B C
2)
n-1
S — B | Korong
A B C
3)
D —— n-1
—] korong
A B C
A B C

A harom részfeladat méretét a koltoztetendd korongok szdma hatdrozza meg: n — 1, 1 és
n—1. A részfeladatok fliggetlenek, mivel az eredeti rudak konfiguraciéi, valamint az
idoékozben valtakozva ideiglenesnek hasznalt rudaké kiilonb6zok. A feladat felbontasa
ugyanigy folytatodik, mig olyan részfeladathoz nem ériink, amelynek mérete 1. Ennek
megoldasa egyetlen korong koltoztetését jelenti.

A részeredmények Osszerakasa ebben az esetben is hidnyzik.

Algoritmus Hanoi(n, A, B, C):
Ha n = 1 akkor
Kéltoztess egy korongot A-rol B-re
kiilénben
Hanoi(n-1, A, C, B)
Hanoi(1, A, B, C)
Hanoi(n-1, C, B, A)
vége(ha)

48 1. FEJEZET. ALGORITMUSOK ES PROGRAMOZAS

Vége(algoritmus)

Az algoritmust a Hanoi(n, A, B, C) utasitassal hivjuk, ahol az aktualis paraméterek értékei
"A', 'B', 'C'. A Kdltoztess egy korongot A-rol B-re lehet pl. egy kiiras: Ki: A, '-', B.
1.7. Moh¢ algoritmusok (greedy modszer)

A greedy maodszert (moho algoritmusokat) optimum-szamitasokra hasznaljuk. E feladatok
eredményei részhalmazai vagy elemei annak a Descartes-szorzatnak, amelyre a célfiiggvény
eléri minimumat vagy maximumat.

A moho algoritmus mindig egyetlen eredményt hataroz meg. Ezt az eredményt
fokozatosan épitjiik fel: a feladatokban altalaban adott egy L halmaz, amelynek meg kell
hataroznunk egy M részhalmazat, amely megfelel bizonyos kovetelményeknek (T
tulajdonsagnak), és amely altaldban a végeredmény. Az M halmaz eredetileg az {ires halmaz.
Ehhez, egymas utan hozzaadunk L-beli elemeket, amelyeket annak alapjan valasztunk ki,
hogy lokalis optimumot biztositanak. Ezek az elemek azok, amelyek a legtobbet igérdk az
aktualis 1épésben, és amelyek megfelelnek a feladatnak az adott pillanatban.

Ez az algoritmus a stratégia moho jellegének kovetkeztében kapta a greedy (mohd) elneve-
zést. Mivel a stratégia egy helyi optimum kivalasztasara épiil, nem biztositja a megoldas glo-
balis optimalitasat, tehat nem mindig hatdrozza meg a legjobb megoldast. Nem lehetiink
biztosak a megoldasban, de ha sikeriil bebizonyitani, hogy az adott feladat esetében a moho
algoritmus optimumot hataroz meg, akkor biztonsagosan alkalmazhat6é. Ugyanakkor, a
modszert olyankor is alkalmazhatjuk, amikor a feladat pontos megoldasat csak exponencialis
algoritmussal tudjuk megadni, de ilyenkor szamitasba vessziik, hogy az eredmény kozelitd
érték. Ilyenkor heurisztikus moh¢ algoritmusrol beszéliink.

Legyen az L halmaz, amelyet az {a;, ay, ..., an} sorozat tartalmaz, és T egy tulajdonsag,
amelyet az L részhalmazaira definialtunk: T: T(L) — {0, 1}, ahol T(@) = 1 (igaz, vagyis
teljesiil T). Ha T(X) = 1, akkor = T(Y) = 1, barmely Y < X részhalmaz esetében. Egy S c L
részhalmazt eredménynek neveziink, ha T(S) = 1. Minden lehetséges eredménybdl azt
szeretnénk kivalasztani, amely optimalizalja a T: T(L) — R adott figgvényt. A moho
algoritmus nem general minden lehetséges részhalmazt (ami exponencialis végrehajtasi
id6hoz vezetne), hanem megprobal kdzvetleniil az optimalis megoldas felé haladni.

A modszer egyszer(, a programok gyorsak, még nagyméretii adathalmazok esetében is. Az
egyszerliség abban all, hogy minden pillanatban, csak az adott kontextusnak megfeleld részfe-
ladatot tekintjiikk. A modszer kiilonbozik a backtracking (visszalépéses keresés) modszert6l
mivel, ha egy elemrdl kideriil, hogy hidba volt sokat igérd, akkor nem keriil be a megoldasba
és soha nem tériink vissza ehhez az elemhez. Forditva, ha egy elem bekeriilt egy adott
pillanatban egy megoldasba, nem fogjuk kivenni onnan.

1.7.1. A moho algoritmus altalanos bemutatasa

A modszer altalanos alakjanak két valtozata ismeretes. A feladat megoldasat az M halmaz
tartalmazza, a megoldasokat az L — lehetséges megoldasok halmazabdl — valogatjuk:

Algoritmus Greedy 1(L, M):
M« 0@

1. FEJEZET. ALGORITMUSOK ES PROGRAMOZAS 49

Amig M nem megoldds és L # @ végezd el:

Vvalaszt(L, x) { kivalasztjuk a legtobbet igérd elemet L-bol }
L « L\{x} { toroljiik a legtobbet igérd elemet L-bol }
Ha T(M U {x}) = 1 akkor { ha lehetséges X-et betenni a megoldasba }
M« MU {x} { ezt hozzdadjuk M-hez }
vége(ha)
vége(amig)
Vége(algoritmus)
Megjegyzések

1. Ha a kivalasztott elemet tordljiik L-bol, akkor biztositottuk az algoritmus szamara, hogy L
minden elemét csak egyszer dolgozzuk fel (toroljiik, fiiggetleniil attdl, hogy betessziik az
eredménybe vagy sem).

2. Mivel a bemeneti adatoktdl fiiggéen nem mindig talalunk eredményt, a hivo
programegységben meg kell vizsgalnunk, hogy az M halmaz valéban eredmény-e: az ilyen
tipusu feladatok megoldasa soran gyakran bizonyul elényosnek, ha a tulajdonképpeni
feldolgozas el6tt elébb rendezziik a feldolgozandd adatokat (az L halmazt).

A rendezett sorozat elemeit ({ay, ay, ..., ay}) egymas utan vizsgaljuk és a kovetelményektol
fiiggben betessziik az eredménybe vagy sem (nincs sziikség ezek torlésére L-bol, mivel egy
megvizsgalt elemhez nem térhetiink vissza, hiszen a rendezett sorozat elemeit rendre
dolgozzuk fel). Az algoritmus ebben a valtozatban a kovetkezo:

Algoritmus Greedy_2(n, a, M):
Feldolgoz(n, a) { ez a feldolgozas gyakran rendezés }
M« 0
i«1
Amig M nem megoldds és (i < n) végezd el:
Ha T(M U {a;}) = 1 akkor { ha lehetséges }
M« MU {a;} { aj-t hozzdadjuk M-hez }
vége(ha)
i«i+1
vége(amig)
Vége(algoritmus)

A fenti algoritmusok linearisak (eltekintve a Valaszt(L, x) és a Feldolgoz(n, a)
algoritmusok bonyolultsagatol). A tulajdonképpeni nehézséget a Vilaszt(L, x), valamint a
Feldolgoz(n, a) jelenti, mivel ezekbe ,,rejtjiik” el a célfiiggvényt.

1.7.2. Megoldott feladatok

1. Osszeg
Adott egy n elemd, valoés szamokbol allo sorozat. Hatarozzuk meg az adott sorozat azon
részsorozatat, amelynek 0sszege a lehetd legnagyobb.

Megoldds

Alkalmazzuk a Greedy_1(L, n) algoritmust, ahol a Vdlaszt(L, X) alprogramnak megfeleléen
az adott sorozatbol kivalasztjuk a szigortian pozitiv elemeket. Ezlttal konny{ belatni, hogy az
algoritmus garantaltan maximalis 0sszegl részsorozatot hataroz meg, hiszen, ha az 6sszeghez

50 1. FEJEZET. ALGORITMUSOK ES PROGRAMOZAS

hozzaadnank egy negativ értéket, akkor az kisebbé valna. Ha egy 0 értékii elemet adunk az
Osszeghez, az nem valtozik. Ebbdl az észrevételbdl kovetkezik, hogy, ha a sorozat tartalmaz 0
értékeket is, akkor tobb megoldas is 1étezik.
Algoritmus Osszeg(n, a, k, pozitivak):
k < © { Bemeneti adatok: n, a. Kimeneti adatok: k, pozitivak }
Minden i = 1, n végezd el:
Ha a; > 0 akkor
k <« k+1
pozitivaky <« a;
vége(ha)
vége(minden)
Vége(algoritmus)

2. Az atlagos varakozasi id6 minimalizalasa

Egy iigyvédi irodaba egyszerre érkezik n személy, akiknek az intéznivaloit az iigyvéd
ismeri, és igy azt is tudja, hogy egy-egy személlyel hany percet fog eltdlteni. Allapitsuk meg
azt a sorrendet, amelyben fogadnia kellene a személyeket ahhoz, hogy az atlagos varakozasi
1d6 minimalis legyen.

Megoldas

Az atlagos varakozasi id6 az n személy varakozasi idejének szamtani kdozéparanyosa, tehat
az atlagos varakozasi id6 csokkentése a varakozasi idok dsszegének csokkentését jelenti. A
minimalis varakozasi id60sszeget a személyekkel vald targyalasi idék novekvo sorrendben
valo rendezése eredményezi. Dacara annak, hogy ez természetesnek tiinik, be kell
bizonyitanunk, hogy a moho algoritmus j6 megoldasi modszer.

A moh¢ algoritmus alkalmazasa optimalis eredményt biztosit. Ahhoz, hogy minimalizaljuk
az atlagos varakozasi idot, minimalizalnunk kell a varakozasi idoék Osszegét. Egy személy
addig varakozik, amig az Osszes elotte fogadott személlyel targyal az ligyvéd. Ha csak két
személy érkezett volna az irodaba, akkor az lenne elénydsebb (az atlagos varakozasi id6
szempontjabol), ha el6bb a kevesebb id6t igénylé személlyel targyalna az iigyvéd. Az
eredmény tehat a személyek sorszdmainak egy olyan permutacidja, amelynek megfelelden az
tigyvéd minden 1épésben a legkevesebb idot igényld személyt fogadja: M = (K, K, ..., kn) € {(X1,
X2, o Xn) | Xi €41, 2, ., NEXi#X VI J=1,2, .0, 1 #]}

Az L eredetileg az {1, 2, ..., n} halmaz. A legtdbbet igéré x elem az L-bdl annak a
személynek a sorszama, akinek a fogadasi ideje minimalis azok kozott, akik még az L-hez
tartoznak. Ezt hozzdadjuk az M-hez és kizarjuk az L-b6l. Ebben a megkozelitésben az x
kizarasat az L-bol Ggy valositjuk meg, hogy 0 értéket masolunk ra. Minden 1épésnél csak 0-tol
kiilonbozo értéket valasztunk az L-bal.

Ettdl eltérden, a kovetkezo algoritmus eldbb inicializalja az M halmazt az 1, 2, ..., n sorsza-
mokkal, és novekvo sorrendbe rendezi az idok ty, t, ..., t, sorozatat, megfeleléen modositva az
M halmaz elemeit. A rendezés utan: M = kq, ko, ..., ky és t; <t, < ... <t,. A kiirast az M
halmazban talalhaté indexpermutaci6 alapjan végezziik.

Algoritmus Sorrend(n, t, M, atlag):
{ Bemeneti adatok: n, t, M. Kimeneti adatok: atlag, M }

1. FEJEZET. ALGORITMUSOK ES PROGRAMOZAS 51

Minden i = 1, n végezd el:

M; « i
vége(minden)
novekvéSorrendbeRendezés(n, M, t)

{ névekvéen rendezziik a t sorozatot és modositjuk az M-et is }

minVarakozasiId6 <« ©
varakozasiId6 « ©
Minden i = 1, n-1 végezd el:

varakozdsild6 <« varakozdasiId6 + t; { a t sorozat mar novekvden rendezett }
minVarakozdsiId6 <« minVarakozasiId6 + varakozasiIdé
vége(minden)
atlag < minVdarakozasiId6 / n
Vége(algoritmus)

3. Buszmegallok

Egy kozszallitasi vallalat olyan gyorsjaratot szeretne inditani, amely csak a varos féutcdjan
kozlekedne, és a mar 1étezd n megallod koziil hasznalna néhanyat. Ezeket a megallokat tgy
kell kivalasztanunk, hogy két megalld kozott a tavolsag legkevesebb X méter legyen
(gyorsjaratrol van szd), és a megallok szdma legyen a lehetd legnagyobb (minél tobb utas
hasznalhassa). Adott a féutcan mar meglevo egymas utan talalhatdo megallok kozti tavolsagok
sorozata.

Megoldas

Az L halmazt a 1étez0 megallok sorszamai alkotjak: L = {1, 2, ..., n}. Ismerjiik az n
megall6 kozotti n — 1 tavolsagot: ai, a, ..., ana.

Meg kell hataroznunk azt a maximalis elemszami M € L részhalmazt (M = {iy, i, ..., ik}),

amelyben a sorszamok novekvo sorrendben kovetik egymast (a foutcan talalhaté megalloknak
egymas utani sorszamaik vannak), és amelynek megfeleléen barmely két kivalasztott megallo
kozott a tavolsag legkevesebb x méter (aj+1 —aj>X,j=1,2, ..., k—1).

Algoritmus Megallék(n, a, M):

i« 1 { Bemeneti adatok: n, a. Kimeneti adat: M }
M « 1
tavAzUtolsétdél « 0 { az eredménybe betett utolso megallotol mért tavolsag }

Minden j = 2, n végezd el:
Ha aj.; + tavAzUtolsotdl 2 x akkor
i« i+ 1
M; <« J
tavAzUtolsotol « ©
kiilénben
tdvAzUtolsotol « tavAzUtolsotdl + aj,
vége(ha)
vége(minden)
Vége(algoritmus)

52 1. FEJEZET. ALGORITMUSOK ES PROGRAMOZAS

Lathato, hogy az els6 megallot betettiik a megoldasba, majd megkerestiik azt a megallot,
amelyik megfeleld tavol talalhato az elsétdl. Ha taldltunk ilyent, betettiik a megoldasba. Ezt
addig folytattuk, amig bejartuk az 6sszes, mar l1étez6 megallot.

4. Auté bérbeadasa

Egy szallitasi vallalat autokat kolcsondz. Egy bizonyos jarmii irdnt igen nagy az
érdeklédés, ezért az igényeket egy évre eldre jegyzik. Az igényt két szadmmal jeldljik,
amelyek az év azon napjainak sorszamait jeldlik, amellyel kezdddden, illetve végzddden
igénylik az illetd autot. Allapitsuk meg a bérbeadast igy, hogy a lehetd legtobb személyt
szolgaljuk ki. Adott a személyek szama n, (n < 100) és az igényelt intervallumok (&, b;, 1 =1,
2, ..., N, a; < bj <365). Hatarozzuk meg a maximalisan kiszolgalhat6 személyek szamat és a
bérbeadasi iddintervallumokat.

Megoldas

A kovetkezo algoritmusban L = {2, 3, ..., n}. M kezdéértéke {1} (az els6 igény — a
minimalis b; — mindig része lesz a megoldasnak, amelyet a greedy stratégia biztosit). Az L
halmazt az algoritmus Minden tipust struktiraval szamitja ki, amelyben sorra veszi a bj
szerint rendezett igényléseket.

Algoritmus AutdéKdlcsonzés(n, a, b, max, M):
novekvéSorrendbeRendezés(n, a, b)
M « 1 { Bemeneti adatok: n, a, b. Kimeneti adat: max, M }
max <« 1
Minden i = 2, n végezd el:
J < Muax
Ha a; > b; akkor
max < max + 1
Mpax < 1
vége(ha)
vége(minden)
Vége(algoritmus)

5. Hatizsak

Egy tolvaj betort egy hentesiizletbe, ahol n aru koziil valogat. Minden arunak ismeri a
sulyat és az értékét. Mivel a hatizsékjaba legtobb S suly fér, szeretne gy valogatni, hogy a
nyeresége maximalis legyen. Ha egy aru nem fér be egészében a hatizsakba, a tolvaj levaghat
beldle egy akkora darabot, amekkora befér a hatizsakba, de ebben az esetben az aru értéke a
sulyaval aranyosan csokken.

Megoldas
A feladat a szakirodalomban ,,toredékes hatizsa
alatt ismeretes.

2

vagy ,,folytonos hatizsak” elnevezés

1. FEJEZET. ALGORITMUSOK ES PROGRAMOZAS 53

Eszreveheté, hogy mivel meg volt engedve, hogy levaghatunk az arukbol, a hatizsak
teljesen megtolthetd, és ha minden 1épésben azt az arut valasztjuk, amelynek az értéklsuly
aranya maximalis, akkor a hatizsakba csomagolt arumennyiség 0sszértéke is maximalis lesz.

Bevezetjiik a kovetkezo jeloléseket: Az eredmény az X = (X, ..., Xn) Sorozat lesz, ahol x; €
[0, 1], i =1, 2, ..., n azt fejezi ki, hogy az i-edik arunak mekkora darabjat csomagoljuk be.
Ezen kivill: suly; - Xg + suly, - X + ... + suly, - Xy < S. Az optimalis eredmény az, amely
maximalizalja az f(X) = értéky - X1 + értéky - Xo + ... + értéky - X, figgvényt.

Abban a sajatos esetben, amikor minden arut be lehet csomagolni a hatizsakba, x = (1, 1, ...,
1). Ezért a tovabbiakban feltételezziik, hogy suly1 + ... + suly, > S.

A greedy stratégianak megfeleléen, az arukat az ertéklsuly arany szerint csokkend
sorrendbe rendezziik. Az arukat ebben a sorrendben csomagoljuk a hatizsdkba, amig az meg
nem telik. Ha egy aru nem fér a hatizsakba, levagunk bel6le egy akkora darabot, amely befér.

Algoritmus Hatizsak(n, S, suly, érték, sorszam, x):
csokkendSorrendbeRendezés(n, suly, érték, sorszam)
Hely « S { Hely a hatizsakban még szabad helyet jeloli }
i« 1
Amig (i < n) és (Hely > ©) végezd el:

Ha suly; < Hely akkor
X; «— 1
Hely <« Hely - suly;
kiilénben
X; < Hely / suly;
Hely « ©
Minden j = i+l1, n végezd el:
Xj < @
vége(minden)
vége(ha)
iei+ 1
vége(amig)
Vége(algoritmus)

Az algoritmus végrehajtasanak eredménye az x sorozat: x = (1, ..., 1, x;, 0, ..., 0) ahol x; € [0, 1).
Ennek alapjan kiirhatjuk a becsomagolt aruk eredeti sorszamait és a hatizsak tartalmanak ér-
tékét.

De most is, mint minden moho algoritmus esetében, be kell bizonyitanunk, hogy az algorit-
mus optimalis eredményt hataroz meg.

54

2. fejezet

Objektumorientalt
programozas

2.1. Objektumorientalt fogalmak

2.1.1. Adatvédelem modularis programozassal

Az eljaraskozponti programozds keretében a kodot igyeksziink eljarasokra és fiigg-
vényekre bontani. A C és a C++ programozasi nyelvekben az eljarasokat és fiiggvé-
nyeket egyetlen névvel jellemezziik. Mindkét esetben fiiggvényekrdl beszEliink, de
megkiilonboztetiink olyan fliggvényeket, amelyek visszatéritenek egy értéket és olya-
nokat, amelyek nem. Az eljardsoknak azok a fiiggvények felelnek meg, amelyek nem
téritenek vissza semmit. Ebben az esetben a void kulcsszéval jelezziik a visszaadandd
érték tipusanak a hidnyat.

A nagyobb alkalmazésok irasakor felmeriil annak a sziikségessége, hogy az alta-
lunk haszndlt adatok védelmét megvaldsitsuk. Ez azt jelentené, hogy csak a fiiggvé-
nyeknek egy részével lehessen hozzaférni az adatokhoz. Azért van erre sziikség, mert
ez altal jelentGsen csokken a hibalehetdségek szama. Az adatok és a rdjuk vonatkozé
fiiggvények egyetlen egységet fognak képezni. Igy az adatok médositasa csak ezekkel
a fiiggvényekkel lesz megvaldsithat, masokkal nem.

Az adatok védelmére mar a C programozasi nyelv is lehetGséget teremtett a modu-
ldris programozds altal. Ha egy dllomdny globdlis hatékorében, tehét a fiiggvényeken,
osztalyokon é€s névtereken kiviil, egy statikus valtoz6t vezetiink be, akkor ezt a valtozét
a deklaréci6 helyétdl az illet6 dllomany (modul) végéig barmely fiiggvényben hasznal-
hatjuk. Ezzel ellentétben viszont mds dllomdnyban még akkor sem tudunk hivatkozni
az illet6 valtozdra, ha abban egy extern tipusu deklaraciot helyeziink el.

A tovédbbiakban egy olyan példat ismertetiink, amely az adatok védelmét a modu-
laris programozas segitségével teszi lehetévé. Egy egész elemekbdl allé vektorokra
vonatkozé modult hozunk 1étre. A vektor elemeit egy int tipusra hivatkoz6 mutat6 se-
gitségével taroljuk. Meg kell adnunk a vektor méretét is, tehat az elemek szdmat. Ezt a
két adatot a fiiggvényeken kiviil deklaralt statikus valtozokkal vezetjiik be. Az adatok

55

22

23

24

25

26

56 2. FEJEZET. OBJEKTUMORIENTALT PROGRAMOZAS

feldolgozasat a kovetkezd négy fiiggvénnyel végezzik: epit, felszabadit, negyzetre és
kiir. Az els6 fiiggvény egy egész elemekbdl all6 tomb és egy egész szdm (a méret)
segitségével létrehozza a vektort. Ha a vektorra mdr nincs sziikség, a méasodik fiigg-
vénnyel szabadithatjuk fel a lefoglalt memoriateriiletet. A negyzetre fliggvény a vektor
Osszes elemét négyzetre emeli, és az utolsé fliggvény kiirja az elemeket. Az aldbbi
allomanyban mutatjuk be ennek a modulnak egy lehetséges megvaldsitasat.

2.1. kédszoveg. A vektor modul.

#include <iostream>

using namespace std;

static int* elem;

static int meret;

void epit (int* az_elem, int a_meret)

{

meret = a_meret;

elem = new int[meret];

for(int 1 = 0; 1 < meret; 1i++)
elem[i] = az_elem[i];

}
void felszabadit ()
{
delete [] elem;
}
void negyzetre ()
{
for(int 1 = 0; 1 < meret; i++)
elem[i] *= elem[i];
}
void kiir ()
{
for(int 1 = 0; 1 < meret; i++)
cout << elem[i] << ' ';
cout << endl;
}

Egy kiilon dllomanyba helyezziik a {6 fiiggvényt. Ez a kovetkez6 lehet:

2.2. kédszoveg. A £6 fiiggvényt tartalmazé allomany.
void epit (int*, int);
void felszabadit () ;
void negyzetre();
void kiir();
//extern intx elem;
void main ()
{
int x[] = {1, 2, 3, 4, 5};
epit (x, 5);
negyzetre () ;
kiir();
felszabadit () ;

2.1. OBJEKTUMORIENTALT FOGALMAK 57

int y[] = {1, 2, 3, 4, 5, 6};
epit (y, 6);

//elem[1]1=10;

negyzetre () ;

kiir();

felszabadit ();
}

Végrehajtva a programot az aldbbi kimenetet kapjuk:

149 16 25
14 9 16 25 36

A vektor modul fiiggvényeinek meghivasa el6tt a deklaraciokat elhelyeztiik a f6
fuggvényt tartalmazé dllomanyban. A main fiiggvényben el6bb egy 6t elembdl allé x
vektorral, majd ezt kovetéen egy hat elembdl 4ll6 y vektorral végeztiink miiveleteket.

Hangstlyozzuk, hogy a vektor modul bevezetése nem tette lehet6vé azt, hogy egy-
szerre két vektorral tudjunk dolgozni. Példdul nem tudunk olyan vektorokra vonatko-
z6 miiveletet értelmezni, mint az dsszeadds, amelyben egyszerre tobb vektorra volna
szitkség. Figyeljik meg, hogy az x vektor altal lefoglalt memdriateriiletet fel kellett
szabaditani még mielStt az y vektort 1étrehoztuk volna. Ez egy nagy hatranya ennek a
megkozelitésnek, éppen ezért a kovetkez6 pontban azt fogjuk vizsgélni, hogy milyen
moédon tudunk egy olyan sajat adattipust 1étrehozni, amely megengedi, hogy egyszerre
tobb példannyal dolgozzunk. Ugyanakkor viszont nem szeretnénk lemondani a védett-
ségrol sem, és ez altal jutunk el az osztdly (§2.1.3) fogalménak a bevezetéséhez.

Vegyiik észre ugyanakkor azt is, hogy a vektor modul valéban biztositja az adatok
védelmét. Ha a vektort az elem mutaté segitségével direkt médon prébaljuk moédo-
sitani, a 15. sorbdl eltdvolitva a megjegyzés jelét, akkor forditdsi hibat kapunk. Ha
ugyanezt megtessziik az 5. sorban, ez dltal elhelyezve egy extern tipusu deklariciét a
kédban, akkor ez az dllomany 6nmagdban lefordithaté lesz, viszont a szerkesztéskor
jelez hibat a rendszer. Ahhoz, hogy ez a hiba se jelenjen meg, el kell tavolitanunk a
static kulcssz6t a 2.1. kédszoveg 3. sorabdl. Ekkor mar valoban médosithaté lesz az
illet elem, de ez pontosan azt jelenti, hogy nincs védettség. Futtatdskor a kimenet igy
médosul:

149 16 25
1 100 9 16 25 36

Levonhatjuk tehat a kovetkeztetést, hogy a modularis programozas esetén a védett-
séget val6ban a statikus véltozok valésitjak meg.

A moduldris programozds médszerét az adatok védelmén kiviil adatrejtésre is hasz-
ndlhatjuk. Ennek 1ényege az, hogy a felhaszndl6 csak azt a feliiletet kell ismerje, amin
keresztiil feldolgozhatéak az adatok.

2.1.2. Absztrakt adattipusok

Az el6z6 pontban egy példat adtunk a védettség megvaldsitdsara modularis prog-
ramozassal. Megallapitottuk, hogy az adatoknak és fiiggvényeknek ilyen jellegli meg-
addsa nem tette lehetévé azt, hogy egyszerre tobb példannyal, példdul két vektorral,

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

58 2. FEJEZET. OBJEKTUMORIENTALT PROGRAMOZAS

dolgozzunk. Ezért sziikségszertien jelenik meg az az igény, hogy az adatokat és fiigg-
vényeket, egy kiilonallé modulhoz hasonléan, tovabbra is egyetlen egységben taroljuk,
de legyen lehetdség arra is, hogy tobb példanyt hozzunk Iétre.

Természetszertien meriil fel az a lehet&ség, hogy a hagyomanyos struktira rendel-
tetésének a kiterjesztése dltal probaljuk meg elérni a célunkat. A C++ programozasi
nyelvben egy struktirdn beliil a hagyomédnyos adatokon kiviil elhelyezhetiink fiigg-
vénydeklaraciodkat, illetve definicidkat is. Ilyen médon egy tj tipust vezetiink be, amit
gyakran absztrakt adattipusnak (elvont adattipusnak, vagy felhaszndloi tipusnak) ne-
veziink. Tekintsiik az alabbi taxi elvont adattipusra vonatkozé forraskodot.

2.3. kédszoveg. A Taxi felhasznaloi tipus.

#include <iostream>
using namespace std;
struct Taxi {
int fizetni;
int indulas_ar;
int menet_ar;
int varakozas_ar;
bool van_utas;
void Kezdes () ;
bool Beul();
int Kiszall();
void Megy (int km);
void All (int perc);
bi
void Taxi::Kezdes /()
{
indulas_ar = 10;
menet_ar = 10;
varakozas_ar = 3;
fizetni = 0;
van_utas = false;
}
bool Taxi::Beul ()
{

if (van_utas) return false;
van_utas = true;
fizetni = indulas_ar;

return true;
}
int Taxi::Kiszall ()
{
if (!'van_utas) return 0;
van_utas = false;
return fizetni;
}
void Taxi::Megy (int km)
{

if (van_utas)

39
40
41
42
43
44
45

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

2.1. OBJEKTUMORIENTALT FOGALMAK 59

fizetni += menet_ar x km;
}
void Taxi::All (int perc)
{
if (van_utas)
fizetni += varakozas_ar * perc;
}
void main ()
{
Taxi tl, t2;
tl.Kezdes () ;
t2.Kezdes () ;
tl.Beul();
tl.Megy(4);
t2.Beul () ;
tl1.A11(3);
t2.Megy (6);
tl.Megy (5);

cout << "tl-nek fizetni: ",
cout << tl.Kiszall() << endl;
cout << "t2-nek fizetni: ",

// t2.fizetni = 500;
cout << t2.Kiszall() << endl;
}

A program kimenete a kovetkezd lesz:

tl-nek fizetni: 109
t2-nek fizetni: 70

Megjegyezziik, hogy a 2.3. kédszoveg 3-14 soraiban bevezetett struktira az adato-
kon kiviil fiiggvénydeklardcidkat is tartalmaz. Az elvont adattipusokon beliil megadott
adatokat adattagoknak, a fuggvényeket pedig ragfiiggvényeknek nevezziik. A tagfiigg-
vényekre az adattagokhoz hasonléan a tagkivéalaszt6 operatorral (a pont operator), il-
letve a struktira-mutat6 operatorral (a —> operator) hivatkozhatunk.

A strukturan beliil elhelyezhetiink fiiggvénydefinicidkat is, de ez altaldban csak a
nagyon egyszeri fiiggvények esetén ajanlott. Ha egy fiiggvény definicidja a struktirdn
beliil van, akkor inline fiiggvényként kezeli a rendszer. Ha csak a fiiggvény deklaracidja
keriil a struktira belsejébe, akkor a definiciét, a névterekhez hasonlé médon, dgy adjuk
meg, hogy a fiiggvény nevét a struktdra neve és a hatokor operator eldzi meg.

A 2.3. kodszoveg f6 fiiggvényébdl, illetve a program kimenetébdl egyértelmiien
levonhat6 az a kovetkeztetés, hogy a Taxi adatszerkezetnek egyszerre tobb példanydval
tudunk miiveleteket végezni. Az adatok védelme azonban nem valdsul meg ebben az
esetben. Meggy6zddhetiink errdl, ha a 60. sorbdl eltavolitjuk a megjegyzés jelét, és
ugy forditjuk le a kédot. A kimenet a kdvetkezd lesz:

tl-nek fizetni: 109
t2-nek fizetni: 500

60 2. FEJEZET. OBJEKTUMORIENTALT PROGRAMOZAS

Tehat a fizetendd 6sszeg médosithatéd direkt médon, fiiggvénymeghivas nélkil. Ez
azt jelenti, hogy nincs biztositva az adatok védelme. A kovetkez8 pontban azt vizsgél-
juk meg, hogy az absztrakt adattipus fogalma hogyan terjeszthetd ki gy, hogy lehetd-
séget teremtsen az adatvédelemre.

2.1.3. Osztalydeklaracio

Az el6z6 pontban megallapitottuk, hogy a felhaszndl6i tipus bevezetése lehetové
teszi azt, hogy az adatszerkezetnek egyszerre tobb példanyaval tudjunk miveleteket
végezni. Ugyanakkor, az adatvédelem nem valésul meg egyszerlien az <al, hogy
adatokat és fiiggvényeket egyetlen struktira részeként adunk meg. Annak érdekében,
hogy ezt a hidnyossédgot kikiiszoboljék, bevezették az osztdly fogalmat.

Az osztdly egy olyan absztrakt adattipus, amely lehet&séget teremt az adattagok
és tagfiiggvények védelmére. Az osztdlydeklardcio az el6z6 pontban ismertetett fel-
haszndléi tipus bevezetéséhez hasonld, azzal a kiilonbséggel, hogy a struct kulcsszot a
class (osztaly) fogja helyettesiteni. Az osztdly tagjaira val6 hivatkozds a tagkivédlasztod
operatorral, illetve a struktira-mutat6 operatorral torténhet, ugyanigy mint az egyszerd
struktirdk, vagy az el6z6 pontban ismertetett elvont adattipusok esetén. Ezt a kérdést
a §2.1.4. pontban targyaljuk részletesebben.

Mivel az osztdly egy felhaszndldi tipus, fontos kiilonbséget tenniink maga az osz-
taly, és ennek példanyai kozott. Egy osztily példanyait objektumoknak nevezziik. Tehat
az objektum <aldban egy véltozo, amelynek a tipusat az osztdlya hatdrozza meg.

Azok a fliggvénydefinicidk, amelyek az osztalyon beliil vannak inline fiiggvényt
eredményeznek ugyanigy, mint az el6z6 pontban bevezetett felhasznaléi tipusok ese-
tén. Az osztdlyon kiviil elhelyezett fiiggvénydefiniciok is hasonldak lesznek, tehat az
osztdly nevét és a hatokor operatort frjuk a fiiggvénynév elé.

Egy osztilyon beliil a tagok védelme az elérhetdség szabalyozasa éltal valosul meg.
Az adattagok és tagfiiggvények elérhet8ségét a private (privat), protected (védett) és
public (nyilvanos) kulcsszavakkal szabdlyozhatjuk. Mivel a tagok elérhetSségét valtoz-
tathatjadk meg, hozzdférés modositoknak is nevezziik ket. A hozzaférés modositokat
mint cimkéket hasznaljuk, azaz mindig kettGspont koveti Sket. Az igy kapott cimkék
tobb részre osztjdk az osztily torzsét, ez altal szabdlyozva azt, hogy melyek a nyil-
vanos, védett, illetve privat tagok. Példaul a public cimkét kovetd Osszes adattag és
tagfiiggvény nyilvanos lesz, egészen a kovetkezd cimkéig. Jegyezziik meg azt is, hogy
osztalyok esetén alapértelmezés szerint a tagok privat elérhet6ségliek.

A nyilvanos tagok elérhetSsége nincs korlatozva. Ezeket tetszdleges fiiggvényben
hasznalhatjuk, ahol az illetd osztily egy példanyaval dolgozunk. A privat és védett
tagok elérhetdsége korlatozott. Egyel6re nem tesziink kiillonbséget koztiik, csak késébb
az alosztalyok (§2.2.2) tanulmédnyozasakor foglalkozunk ezzel a kérdéssel.

Az objektumokra épiil6 programozds egyik alapelve az, hogy a nem nyilvédnos ta-
gokat csak az illetd osztaly tagfiiggvényeiben lehet elérni. Ez a szigord kovetelmény
bizonyos fokig enyhitve van a C++ programozasi nyelvben. Enek megfeleléen a privat
és védett tagok elérhetdsége az illetd osztaly tagfiiggvényeire €s bardt (friend) fiigg-
vényeire korlatozédik. A bardt fliggvény nem tagfiiggvénye az illetd osztalynak, de
ennek ellenére megengedjiik, hogy hozzaférjen a privat és védett tagokhoz. Az elébb

2.1. OBJEKTUMORIENTALT FOGALMAK 61

emlitett alapelvet figyelembe véve megallapithatjuk, hogy ajanlott a barat fiiggvények
szdmat a minimdlisra csokkenteni.

Az osztilyok létrehozdsakor mindig egy sajatos tagfiiggvényt hiv meg a rendszer,
amit konstruktornak neveziink. Altaldban ezt a fiiggvényt hasznaljuk arra, hogy az
adattagokat kezdeti értékkel lassuk el. A C++ nyelvben a konstruktor neve mindig
megegyezik az osztily nevével, de a fiiggvénynevek tilterhelése lehetové teszi, hogy
egy osztaly tobb konstruktorral rendelkezzen. A konstruktorokkal a §2.1.5. pontban
foglalkozunk részletesebben.

Az objektum létrehozdsa a hagyomdnyos valtozok bevezetéséhez hasonld, tehat
elébb az osztdly nevét kell megadni, ami egy tipusnéy, és ezt kovetGen az objektum
nevét. Ha egyszerre tobb objektumot szeretnénk létrehozni, akkor ezeket vessz6vel
véalaszthatjuk el. Mivel minden egyes Uj objektum egy konstruktormeghivést is jelent,
ezért a deklaralaskor az objektumnév utdn kerek zardjelben meg kell adni a konstruktor
aktualis paramétereit is.

Jegyezziik meg, hogy az el6z6 pontban bevezetett struct kulcsszoval jellemzett
felhaszndl6i tipus is tulajdonképpen egy osztdly, tehat haszndlhatok az elérhet6séget
szabdlyoz6 cimkék. A lényeges kiilonbség az, hogy a struct kulcsszé esetén a tagok
alapértelmezett elérhetdsége nyilvanos, mig a class esetén privét.

2.1.4. A tagokra valé hivatkozas és a this mutaté

P

Az el6z6 pontokban lattuk, hogy egy felhaszndléi tipus tagjaira valé hivatkozast a
tagkivélaszto, illetve a struktira-mutaté operdtorral (a . és —> operatorok) végezhet-
juk. A struktdra-mutat6 operatort akkor kell haszndlni, ha egy objektumra hivatkozd
mutatéval rendelkeziink, ellenkezd esetben a tagkivélaszté operdtorral dolgozunk.

A tovédbbiakban moduldris programozds (§2.1.1) esetén ismertetett 2.1. kodszo-
veget médositjuk gy, hogy osztdlyokra vonatkozzon, majd ezt kbvetéen vizsgaljuk a
tagokra val6 hivatkozast.

2.4. kodszoveg. A vektor osztaly.

#include <iostream>
using namespace std;
class vektor {
public:
vektor (intx az_elem, int a_meret);
~vektor () { delete [] elem; }
void negyzetre();
void kiir();
private:
int* elem;
int meret;
}i
vektor::vektor (int* az_elem, int a_meret)
{
meret = a_meret;
elem = new int[meret];
for(int 1 = 0; 1 < meret; i++)

19
20
21
22
23
24
25
2
27
28
29
30
31
32
33
34
35
36
37
38
39
40

62 2. FEJEZET. OBJEKTUMORIENTALT PROGRAMOZAS

elem[i] = az_elem[i];
}
void vektor::negyzetre ()
{
for(int 1 = 0; 1 < meret; i++)
elem[i] #*= elem[i];
}
void vektor::kiir ()
{
for(int 1 = 0; 1 < meret; 1i++)
cout << elem[i] << ' ';
cout << endl;
}
void main ()

{

int x[] = {1, 3, 5, 7, 9};
vektor v(x, 5);
vektor *p = &v;

v.kiir();
p—>negyzetre();
p—>kiir();
v.kiir();

}

A fenti kodszoveg f6 fiiggvényében elébb a v vektort vezettiik be, majd a p muta-
tot, amely a v vektorra hivatkozik. Ez azt is jelenti, hogy a p segitségével elGidézett
véltoztatdsok a v vektorban is tiikroz6dnek. Valéban a kimenet a kovetkezd lesz:

13579
1 9 25 49 81
1 9 25 49 81

Tehét az elemenként négyzetreemelt vektor jelenik meg kétszer a képerny6n. Fi-
gyeljiik meg, hogy a v esetén a tagkivalaszté operdtort, a p esetén pedig a struktira-
mutaté operdtort hasznaltuk.

Figyeljiik meg, hogy a tagfiiggvények belsejében direkt médon hivatkozhatunk az
osztély tagjaira, nincs sziikség tagkivalasztd, vagy struktira-mutaté operatorra. Mégis,
felmeriil a kérdés, hogy milyen médon azonositja a rendszer az illet6 adattagot, tudva
azt, hogy egy osztdlynak tobb objektumat is létrehoztuk. A megoldas a this mutatd
hasznélatdban rejlik, mivel a tagfiiggvények belsejében a tagokra valé hivatkozas ezzel
a mutatéval torténik.

Pontosabban arrdl van szd, hogy minden egyes objektumon beliil a rendszer 1étre-
hozza a this mutat6t, amely az aktudlis objektumra mutat. Példdul a 2.4. kédszoveg 6
fliggvényében bevezetett v objektum esetén a this ennek az objektumnak a cime. Ha
pedig az ugyanott definidlt p mutatét tekintjiik, akkor a this megegyezik p-vel.

Ennek alapjan mar konnyen azonosithatéak a kiilonb6zé objektumok tagjai. Az
illet6 osztaly tagfiiggvényeiben a rendszer egyszeriien elvégez egy helyettesitést, azaz
minden tag helyett this->tag lesz. Példaul a 2.4. kédszoveg negyzetre tagfiiggvénye
igy alakul:

20
21
22
23
24
25
26
27

2.1. OBJEKTUMORIENTALT FOGALMAK 63

void vektor::negyzetre ()
{
for(int i = 0; 1 < this->meret; i++)
this->elem[i] %= this->elem[i];

}

Hangstilyozzuk, hogy nem kell mi megadjuk a fenti esetben a this mutatét, ezt auto-
matikusan elhelyezi a rendszer. Mégis, a this mutatét explicit médon is haszndlhatjuk,
ha erre sziikség van.

2.1.5. A konstruktor

Az el6z6 pontok alapjan tudjuk, hogy egy objektum létrehozasat a konstruktorral
végezziik. Tovabb4, a konstruktor neve meg kell egyezzen az osztaly nevével. Mégis,
mivel a fiiggvények tilterhelhetok, egy osztalynak tobb konstruktora is lehet, feltéve ha
a paraméterlistak kiilonboznek. Fontos, hogy a konstruktor nem térit vissza értéket. A
konstruktor deklardcidja nem tartalmazhat semmit a visszatéritendd tipus helyén, még
a void kulcsszét sem.

Az alabbi példa tobb konstruktor egyiittes haszndlatit szemlélteti. Egy olyan osz-
talyt hozunk létre, amely kiilonboz6 személyek csalddnevét és keresztnevét tarolja.

2.5. kédszoveg. A szemely.h fejallomany.

#include <iostream>
using namespace std;
class szemely {
char*x cs_nev;
char*x sz_nev;
public:
szemely () ; //alapértelmezett konstruktor
szemely (char* cs_n, charx sz_n);
szemely (const szemelyé& sz); // masold konstruktor
~szemely () ;
void kiir();

}i

szemely::szemely () |
cs_nev = new char[1l];
xcs_nev = 0; // 0 és "\0’ ugyanaz
sz_nev = new char[1l];
*sz_nev = 0;

cout << "Alapertelmezett konstruktor\n";
}
szemely::szemely (char*x cs_n, charx sz_n)
{
cs_nev = new char[strlen(cs_n)+1];
sz_nev = new char[strlen(sz_n)+1];
strcpy (cs_nev, cs_n);
strcpy (sz_nev, sz_n);
cout << "Hagyomanyos konstruktor\n";

28
29
30
31
32
33
34
35
36
a7
38
39
40
41
42
43
44
45
46

64 2. FEJEZET. OBJEKTUMORIENTALT PROGRAMOZAS

szemely::szemely (const szemely& Xx)

{

cs_nev = new char[strlen(x.cs_nev)+1];
strcpy (cs_nev, x.cs_nev);
sz_nev = new char[strlen(x.sz_nev)+1];

strcpy(sz_nev, x.sz_nev);
cout << "Masolo konstruktor\n";
}
szemely: :~szemely () {
cout << "Destruktor\n";
delete[] cs_nev;
delete[] sz_nev;
}
void szemely::kiir () {
if (strlen(cs_nev) > 0)
cout << cs_nev << ' ' << sz_nev << endl;
else
cout << "Nincs adat\n";
}

Ez a forraskéd harom konstruktort tartalmaz. Ezek koziil a 8. sorbeli konstruk-
tordeklaraciét hagyomanyosnak tekinthetjiik abban az értelemben, hogy az adattagok
(csalddnév és keresztnév) kezdeti értékkel val ellatasat valositja meg. Figyeljiikk meg,
hogy két sajatos konstruktor is szerepel a fenti kédban. Az egyik az alapértelmezett
konstruktor, vagy mds néven alapértelmezés szerinti konstruktor, a masik a mdsolo
konstruktor.

Ha a konstruktor formalis paramétereinek listdja iires, akkor beszéliink alapértelme-
zett konstruktorrdl. Az alapértelmezés szerinti konstruktornak fontos szerepe van azok-
nak az objektumoknak a létrehozdsdban, amelyek nem rendelkeznek kezdeti értékeket
megadé aktudlis paraméterekkel. Pontosabban, ha egy osztdlynak van alapértelmezett
konstruktora, akkor 1étrehozhat6 olyan objektum, amely nem tartalmaz inicializalé ak-
tudlis paraméterekbdl all6 listat. Ez akkor is lehetséges, ha olyan konstruktorunk van,
amelynek az Osszes formadlis paramétere kezdeti értékkel van ellatva. Tehat az ilyen
konstruktort is alapértelmezett konstruktornak nevezhetjiik.

A konstruktorokon kiviil a 2.5. kddszoveg tartalmaz egy sajatos tagfiiggvényt, a
destruktort, melyet az objektumok megsziinésekor hiv meg a rendszer.

Tekintsiik a 2.5. kédszoveget felhasznalo alabbi 6 fiiggvényt:

2.6. kédszoveg. A szemely osztaly objektumainak létrehozasa.

#include "szemely.h"

void main () {
szemely BF ("Bolyai", "Farkas");
BF.kiir ();
szemely xFGy = new szemely ("Farkas","Gyula");
FGy->kiir();
szemely A; //alapértelmezett konstruktor
A.kiir();
szemely Gyula (xFGy); // masold konstruktor
Gyula.kiir();

2.1. OBJEKTUMORIENTALT FOGALMAK 65

delete FGy;
}

Ennek a kédnak a kimenete a kovetkezs lesz:

Hagyomanyos konstruktor
Bolyai Farkas
Hagyomanyos konstruktor
Farkas Gyula
Alapertelmezett konstruktor
Nincs adat

Masolo konstruktor
Farkas Gyula

Destruktor

Destruktor

Destruktor

Destruktor

Megfigyelhetjiik, hogy el8szor a BF objektumot hoztuk létre a hagyoményos konst-
ruktorral. Ezt kdvetSen a szabad tarban jon 1étre egy objektum, amelyre az FGy muta-
téval hivatkozhatunk. Itt is a hagyomdnyos konstruktort hivta meg a rendszer, mivel a
new operator utan az osztaly nevet és, kerek zaréjelben, az aktudlis paraméterek listajat
adtuk meg. Az A objektumot az alpértelmezett, a Gyula objektumot pedig a masold
konstruktorral hoztuk 1étre.

A alapértelmezett konstruktor mindkét adattagba az iires karakterldncot méasolja.
Mivel ennek a hossza z€rd, a kiir tagfiiggvény a ,,Nincs adat” tizenetet jeleniti meg.
Feltételeztiik, hogy ha a csaladnév iires, akkor a keresztnevet sem adtuk meg.

Egy osztalyt dgy is deklardlhatunk, hogy nem adunk meg konstruktort. Jegyezziik
meg, hogy ha nincs, a programoz¢ 4ltal bevezetett konstruktor, akkor a rendszer létre-
hoz egy alapértelmezett konstruktort, és ezt hivja meg minden alkalommal, amikor egy
4j objektum keletkezik. Ez a konstruktor nem ad kezdeti értékeket az adattagoknak.

Ha a programozé 1étrehozott egy vagy tobb konstruktort, akkor a rendszer nem
generdl alapértelmezett konstruktort. Ha ezen konstruktorok koziil egyik sem alap-
értelmezett, és szeretnénk olyan objektumot létrehozni, amely nem tartalmaz aktudlis
paraméterekbdl all6 listat, akkor kotelesek vagyunk egy alapértelmezett konstruktort
definidlni.

A madsol6 konstruktor célja az, hogy egy objektumot kezdeti értékekkel 1dsson el
egy ugyanolyan tipusd objektum segitségével. Altaldban az

osztdlynév (const osztalynév & objektum);

alakban deklaréljuk, ahol a const kulcssz6 arra utal, hogy a paraméterként megadott
objektum nem véltozik.

Ha a programozé nem definidl masolé konstruktort, akkor a rendszer létrehoz egy
masol6 konstruktort, amely az adattagok bitenkénti mdsoldsdt végzi. Ez azt jelenti,
hogy megfelelteti egymdsnak a rendszer az adattagokat, majd a forrds adattag bitje-
it rendre dtmdsolja a cél adattagba. A bitenkénti mdsolds altaldban akkor ad helyes
eredményt, ha az osztdlynak nincsen mutato tipust adattagja.

66 2. FEJEZET. OBJEKTUMORIENTALT PROGRAMOZAS

Példaul a 2.5. és 2.6. kédszovegek esetén, ha nem definidltunk volna masol6 konst-
ruktort, akkor futdsi id6ben hibat észleltiink volna. Pontosabban, kétszer prébalta vol-
na meg felszabaditani ugyanazt a memoriateriiletet a rendszer. Ennek a hibdnak az oka
abban rejlik, hogy a Gyula objektum létrehozdsakor egy bitenkénti masolast végzett a
rendszer, tehat a *FGy objektum cs_nev és sz_nev adattagjait mésolta 4t. Mivel mind-
két adattag értéke egy cim, ezért ezt a cimet masoltuk at, tehat a Gyula objektum cs_nev
és sz_nev adattagjai ugyanarra a memdriateriiletre fognak mutatni, ahova a *FGy ob-
jektum adattagjai. Ez viszont nem az, amit meg szerettiink volna tenni, mivel igy, ha az
egyik objektum megsziinik, a mésiknak is fel lesz szabaditva a memoriateriilete és for-
ditva. E helyett a mésol6 konstruktort terheltiik til, amely 4j memdriateriiletet foglal
le, és erre masolja a csalddnevet és keresztnevet.

Jegyezziik meg, hogy a rendszer akkor hivja meg a masol6 konstruktort, ha:

P

e ugyanolyan tipust objektummal adunk kezd&értéket;
e cgy fiiggvénynek a paramétere egy objektum;
e cgy fiiggvény objektumot térit vissza.

Ezért, ha van mutat6 tipusu adattag, akkor a masolé konstruktort definidlnunk kell
akkor is, ha nincs szdndékunkban a kezd6értékaddst ugyanolyan tipust objektummal
végezni.

A 2.6. kédszovegben a new operatorral dinamikus médon hoztuk létre az egyik
objektumot. A new utdni tipust kdvetéen kerek zardjelt hasznéltunk, és ezen beliil
adtuk meg a konstruktor aktudlis paramétereit.

Lehet&ség van arra, hogy egy osztdly torzsében osztily tipusu tagokat helyezziink
el. A kovetkez6 példa keretében azt vazoljuk fel, hogy ha egy osztilyon beliil n da-
rab kiilonboz6 osztaly tipusu tagot helyeziink el, akkor hogyan alakul az illetd osztaly
konstruktora.

class oszt |
oszt_1 ob_1;
oszt_2 ob_2;

oszt_n ob_n;

}i

Ebben az esetben az oszt osztdly konstruktoranak a fejléce a kovetkez6képpen ad-
hat6 meg:

oszt (argumentumlista) : objektumlista
az objektumlista pedig az
ob_1(arglista_1), ob_2(arglista_2), ..., ob_n(arglista_n)

alaki kell legyen. Természetesen, sem itt, sem az osztilydeklardcioban a harom pont
nem része a szintaxisnak, csak jelzi a folyatatast. Az argumentumlista az oszt osztaly
konstruktordban a formalis paraméterek listdja. Tovabb4, minden egyes i értékre 1-t61
n-ig az arglista_i az ob_i osztily konstruktordban az aktudlis paraméterek listdja. Az

22
23
24
25
26
27
28
29
30
31
32
33
34

2.1. OBJEKTUMORIENTALT FOGALMAK 67

egyes objektumok aktudlis paramétererei az argumentumlistdbol alkotott kifejezések
lesznek.

Jegyezziik meg, hogy az objektumlistabol hidnyoznak azok az objektumok, ame-
lyek nem rendelkeznek a programozé éltal bevezetett konstruktorral. Ezen kiviil hia-
nyozhatnak az objektumlistdbdl azok az objektumok is, amelyekre az alapértelmezett
konstruktort szeretnénk meghivni.

Egy masik fontos észrevétel a kovetkez8. Ha egy osztdlynak egyik adattagja egy
objektum, akkor el6szor ennek az objektumnak a konstruktorat hivja meg a rendszer,
majd ezt kovetSen lesz végrehajtva az osztaly konstruktordnak a torzse.

A tovédbbiakban a 2.5. kdédszoveget tigy mddositjuk, hogy eltavolitjuk a konstruk-
torokbdl és a destruktorbdl a kifrdsokat, vagyis a 18., 26., 34. és 37. sorokat toroljiik.
Legyen az igy kapott alloméany neve szemely2.h. Ezt felhasznalva a kovetkezé példa
hdzaspdrok adatait tarolja, mégpedig gy, hogy osztély tipusu tagokat hasznal.

2.7. kodszoveg. Osztaly tipusu tagok.

#include "szemely2.h"
class hazaspar {
szemely ferj;
szemely feleseg;
public:
hazaspar () // alapértelmezett konstruktor
{
}
hazaspar (szemely& afer]j, szemely& afeleseq);
hazaspar (charx cs_ferj, charx sz_ferj,
charx cs_feleseg, charx sz_feleseq):
ferj(cs_ferj, sz_ferj), feleseg(cs_feleseg, sz_feleseq)
{
}
void kiir();
}i
inline hazaspar::hazaspar (szemely& aferj, szemely& afeleseq):
ferj(afer]j), feleseg(afeleseq)
{
}
void hazaspar::kiir()
{
cout << "ferj: ";
ferj.kiir();
cout << "feleseg: ",
feleseg.kiir();
}
void main () {
szemely Ady ("Ady", "Endre");
szemely Csinszka ("Boncza", "Berta");
hazaspar Hpar (Ady, Csinszka);
Hpar.kiir();
hazaspar Petofi ("Petofi", "Sandor", "Szendrei", "Julia");
Petofi.kiir();

35

36
37

68 2. FEJEZET. OBJEKTUMORIENTALT PROGRAMOZAS

hazaspar XY;
XY.kiir();
}

A program kimenete a kdvetkezd lesz:

ferj: Ady Endre
feleseg: Boncza Berta
ferj: Petofi Sandor
feleseg: Szendrei Julia
ferj: Nincs adat
feleseg: Nincs adat

A 2.7. kédszoveg hdrom konstruktorral rendelkezik. Az alapértelmezett konstruk-
tor definicidja is az osztalyon beliilre keriilt, ezért ez helyben kifejtett fliggvény (inline
fiiggvény) lesz. Mivel a konstruktor fejlécét gy adtuk meg, hogy hidnyzik a kettSs-
pont, és az azt kovetd objektumlista, ezért ez a konstruktor az dsszes osztly tipusu
tagnak az alapértelmezett konstruktort hivja meg. Erre utal az is, hogy a {6 fiiggvény-
ben az XY objektum kiirdsakor a ,, Nincs adat” izenet jelenik meg.

A 9. sorban egy konstruktordeklardci6 szerepel, a definicié most az osztdlyon ki-
viilre keriilt. Mivel azt szeretnénk, hogy ez is helyben kifejtett fiiggvény legyen az
inline mindsitét hasznaljuk a fiiggvénydefiniciéban. Ez a konstruktor a személy osz-
tdly masolo konstruktordval hozza 1€tre a ferj és feleseg tagokat.

A harmadik konstruktor a csalddnevekkel és személynevekkel hozza 1étre az osz-
taly tipusu tagokat. Ezért a szemely osztidly hagyomdnyos konstruktordt hivja meg a
rendszer mindkét adattagra.

2.1.6. A destruktor

Az eddigi pontok alapjan tudjuk, hogy ha egy objektum megsziinik, akkor a rend-
szer automatikusan végrehajt egy sajdtos tagfliggvényt, amit destruktornak neveziink.
A tovéabbiakban részletesebben vizsgaljuk a destruktort.

A destruktor neve mindig a ~ karakterrel kezdddik, és ez utan az osztily neve
kovetkezik. A konstruktorhoz hasonléan a destruktor sem térit vissza értéket, és még a
void tipust sem szabad megadni a visszatéritendd érték tipusaként.

Felmeriil a kérdés, hogy mikor hivédnak meg az egyes destruktorok. Ez a hatékor-
t6l fiigg. Egy globalis objektum destruktora a main fiiggvény végén az exit fliggvény
részeként lesz végrehajtva. Ezért nem szabad az exit fliggvényt meghivni a destruktor-
ban, mivel ez végtelen ciklust eredményezhet.

Egy helyi objektum destruktorat akkor hivja meg a rendszer, ha annak a blokknak
a végére értiink, amelyben be volt vezetve.

Végiil tekintsiik azt az esetet is, amikor a new operatorral hoztunk 1étre a szabad
tarban egy objektumot. Ezeket dinamikus mddon létrehozott objektumoknak is nevez-
ziik. Ekkor a destruktort a delete operatoron keresztiil hivja meg a rendszer. Valéban
ekkor lesz felszabaditva a new operator altal lefoglalt memoriateriilet.

A tovabbiakban egy olyan példa keretében szemléltetjitk a destruktor miikodését,
amely minden esetben kiirja, hogy éppen mit végzett, azaz milyen konstruktort vagy
destruktort hivott meg. A kifrdst most a printf fiiggvénnyel végezziik.

22

23

24

25

26

27

28

29

30

31

32

2.1. OBJEKTUMORIENTALT FOGALMAK 69

2.8. kodszoveg. A destruktor.

#include <cstdio>
#include <cstring>
using namespace std;
class kiiras {
char* nev;
public:
kiiras (charx n);
~kiiras () ;
}i
kiiras::kiiras (char* n)
{
nev = new char[strlen(n)+1];
strcpy (nev, n);
printf ("Letrehoztam: %s\n", nev);
}
kiiras::~kiiras()
{
printf ("Felszabaditottam: %s\n", nev) ;
delete nev;
}
void fuggv ()
{
printf("Fuggvenymeghivas.\n");
kiiras helyi ("HELYI");
}
kiiras globalis ("GLOBALIS");

void main () {
kiiras* dinamikus = new kiiras ("DINAMIKUS");
fuggv () ;

printf ("Folytatodik a fo fuggveny.\n");
delete dinamikus;

}

Végrehajtva a programot, a kovetkezd kimenetet kapjuk:

Letrehoztam: GLOBALIS
Letrehoztam: DINAMIKUS
Fuggvenymeghivas.
Letrehoztam: HELYI
Felszabaditottam: HELYI
Folytatodik a fo fuggveny.
Felszabaditottam: DINAMIKUS
Felszabaditottam: GLOBALIS

A forrdskédban egy kiiras nevi osztilyt vezettiink be, és 1étrehoztuk ennek harom
objektumat. Figyeljiik meg, hogy a globdlis objektumot hozta el6szor 1étre a rendszer,
ugyanakkor ennek a destruktora lesz utolsénak végrehajtva. A helyi objektum dest-
ruktora a fiiggvénybdl vald kilépéskor, a dinamikus objektumé pedig a delete operator
részeként hivodik meg.

70 2. FEJEZET. OBJEKTUMORIENTALT PROGRAMOZAS

2.2. Az objektumorientalt programozasi moédszer

2.2.1. Elméleti alapok

Az objektum adattagokat és tagfiiggvényeket tartalmaz. Ha nem haszndlunk barat
fliggvényeket a védett tagok csak a tagfiiggvényekben érhet6k el. Ezt a tulajdonsdgot
egybezdrtsdgnak (zdrtsdgnak) nevezzik.

A gyakorlatban viszont nem csak kiilénall objektumokkal taldlkozunk. A kiilon-
boz6 objektumok kozti kapcsolatok is fontosak. Egy osztily 6rokolheti egy masik
osztaly tagjait. Az eredeti osztdly neve alaposztdly, vagy bdzisosztdly. Az drokléssel
l1étrehozott osztalyt szdrmaztatott osztdlynak nevezzik. Az adattagok, és a tagfiiggvé-
nyek is oroklédnek. Ha egy osztdly tobb alaposztéllyal rendelkezik, akkor t0bbszoros
oroklésrol beszE€link. Az oroklés egy masik fontos tulajdonsaga az objektumoknak.
Az objektumok egy hierarchiat alkothatnak.

Az oroklott tagfiiggvények tilterhelhet6ek. Nem csak a fiiggvény neve, hanem a
paraméterlistdja is ugyanaz lehet. Az objektumhierarchia kiilonbozd szintjein ugyan-
annak a miiveletnek mds és mdas értelme lehet. Ezt a tulajdonsdgot polimorfizmusnak
nevezziik.

2.2.2. Szarmaztatott osztalyok deklaralasa

A C++ programozasi nyelvben a szdrmaztatott osztdlyokat az aldbbi médon adjuk
meg:

class oszt : alaposztalylista {
// 43 adattagok és tagfiiggvények
}i

ahol az alaposztalylista vesszdvel elvdlasztott elemei

public alaposztély
protected alaposztaly
private alaposztédly

alakdak kell legyenek. Ha minden egyes esetben a public hozzaférésmddositét hasz-
naljuk, akkor a

class oszt : public oszt_1, ..., public oszt_n {
VA
}i

alaku szerkezetet kapjuk, ahol az oszt osztdly az oszt_1, ..., oszt_n osztalyok szarmaz-
tatott osztdlya. Jegyezziik meg, hogy a konstruktorok és destruktorok nem 6roklédnek.
A szarmaztatott osztdly konstruktorit az

oszt (paraméterlista)

oszt_1(listal), ..., oszt_n(lista_n)
{

/]
}

2.2. AZ OBJEKTUMORIENTALT PROGRAMOZASI MODSZER 71

mdédon definidljuk. A kovetkezd pontban olyan példdkat adunk szarmaztatott osztalyra,
amelyek lehet&séget teremtenek a virtudlis tagfiiggvények bevezetésére is.

2.2.3. Virtualis tagfiiggvények

Tekintsiik egy olyan példat szarmaztatott osztilyra, amelyben az alap nevii osz-
tilyban két fliggvényt deklardlunk, és a masodik meghivja az els6t. Ugyanakkor a
szarmaztatott osztalyban csak az els6t {rjuk feliil.

2.9. kddszoveg. Virtualis tagfiiggvény.

#include <iostream>
using namespace std;
class alap { // az alaposztaly
public:
void f£1();
void £2();
i
class szarm : public alap {
public:
void f1();
}i
void alap::£f1()
{
cout << "alap: f1\n";
}
void alap::£2()
{
cout << "alap: f2\n";
£1(); // az f2 meghivja az fl-et.
}
void szarm::fl ()
{
cout << "szarmaztatott: £f1\n";
}
void main () {
szarm s;
s.f2();
}

Figyeljiik meg, hogy csak az f1 tagfiiggvényt irtuk feliil, az f2 6roklédik az alap-
osztalytdl. A {6 fliggvényben a szarmaztatott osztalynak hoztuk létre egy objektumat
és az erre az f2 fliggvényt hivtuk meg. Felmeriil a kérdés, hogy ilyen médon melyik
f1 fiiggvény lesz végrehajtva?

A 2.9. kédszoveg esetén az f1 fiiggvény kivélasztasa forditdsi idGben tortént, ezért
az alaposztaly f1 tagfiiggvénye lesz végrehajtva. Ezt a tulajdonsagot statikus kotésnek
nevezzik.

Ha a végrehajtandé fiiggvény kivalasztasa futasi idében torténik, akkor dinamikus
kotésrdl beszélink. A dinamikus kotést virtudlis tagfiiggvények segitségével valosit-
hatjuk meg. Az f1 tagfiiggvényt kell virtudlisnak deklardlni. Ezt dgy tehetjiikk meg,

72 2. FEJEZET. OBJEKTUMORIENTALT PROGRAMOZAS

P

hogy a virtual mindsit6t hasznaljuk a fiiggvény alaposzélybeli deklardcidjaban. Ebben
az esetben az alaposztilyt a

class alap {

public:
virtual void f1();
void £2();

}i

alakban adjuk meg. Igy a szdrmaztatott osztdlybeli f1 fiiggvény lesz végrehajtva.

Figyeljiik meg, hogy a virfual kulcsszot elég egyszer megadni, az alaposztalybeli
deklardciéban. Ebben az esetben a szdrmaztatott osztdlyban deklaralt tilterhelt tag-
fliggvény is virtudlis lesz. Ha egy fiiggvényt virtudlisnak deklardltunk az alaposztaly-
ban, akkor az osztdlyhierarchia tetszleges szarmaztatott osztalyaban virtuélis lesz.

A tovabbiakban tekintsiink egy masik példat, amelyben felmeriil a virtudlis tag-
fiiggvények megadasanak a sziikségszerlisége. Vezessiik be a raciondlis szdmokra vo-
natkoz6 tort nevl osztdlyt, amely két egész tipusu adattaggal rendelkezik, melyek a
szdmlalonak és nevezdnek felelnek meg. Az osztdly kell rendelkezzen egy olyan konst-
ruktorral, amely a szdml4l6t és a nevez6t kezdeti értékekkel 14tja el. Alapértelmezetten
a szamlalo értéke legyen 1, a nevez6jé pedig 0. Tovabba, az osztalynak kell legyen egy
szorzat és egy szoroz nevi tagfiiggvénye is. Az elsd a két tort szorzatat szamolja ki,
a masodik pedig az aktudlis objektumot médositja ugy, hogy azt megszorozza a para-
méterként megadott objektummal. Ugyanakkor a fort osztilynak kell legyen egy olyan
tagfiiggvénye is, amely az illetd raciondlis szdmot irja ki.

A fenti osztdlyt felhaszndlva egy olyan fort_kiir nevii osztalyt is 1étre kell hozni,
amely a szorzat tagfiiggvényt gy médositja, hogy a mivelet elvégzésén kiviil maga
a miivelet is jelenjen meg a szabvanyos kimeneten. A szoroz tagfiiggvényt nem irjuk
feliil, de a miiveletnek ebben az esetben is meg kell jelennie.

2.10. kodszoveg. A szorzat virtualis tagfiiggvény bevezetése a racionalis sza-
mokra vonatkozoé osztaly esetén.

#include <iostream>
using namespace std;
class tort {
protected:
int szamlalo;
int nevezo;
public:
tort (int szamlalol = 0, int nevezol = 1);
/*virtualx/ tort szorzat (tort& r);
tort& szoroz(tort& r);
void kiir();
}i
tort::tort (int szamlalol, int nevezol)
{
szamlalo = szamlalol;
nevezo = nevezol;
}

// két tdrt szorzatat szamolja ki, de nem egyszeriisit

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

2.2. AZ OBJEKTUMORIENTALT PROGRAMOZASI MODSZER 73

tort tort::szorzat (tort& r)
{
return tort(szamlalo » r.szamlalo, nevezo * r.nevezo);
}
// az aktudlis objektumot mdédositja
tort& tort::szoroz (tort& q)
{
+this = this->szorzat (q);
return *this;
}
void tort::kiir ()
{
if (nevezo)
cout << szamlalo << " / " << nevezo;
else
cerr << "helytelen tort";
}
class tort_kiir: public tort {
public:
tort_kiir(int szamlalol = 0, int nevezol =1);
tort szorzat(tort& r);
}i
inline tort_kiir::tort_kiir(int szamlalol, int nevezol)
tort (szamlalol, nevezol)
{
}
tort tort_kiir::szorzat (tort& q)
{
tort r = tort (xthis).szorzat (q);
cout << "(";
this->kiir();
cout << ") x (";
g.kiir();
cout << ") = ";
r.kiir();
cout << endl;
return r;

int main ()

tort p(3,4), g(5,2), r;

r = p.szoroz(qg);

p.-kiir();

cout << endl;

r.kiir();

cout << endl;

tort_kiir pl(3,4), gl(5,2);
tort rl, r2;

rl = pl.szorzat (ql);

r2 = pl.szoroz(ql);

69
70
71
72
73
74
75

76

74 2. FEJEZET. OBJEKTUMORIENTALT PROGRAMOZAS

pl.kiir();
cout << endl;
rl.kiir();
cout << endl;
r2.kiir();
cout << endl;
return 0;

}
A programot végrehajtva az aldbbi kimenetet kapjuk:

15 /
15
(3
15
15
15

NN N N
O 0 00 & 00 00

Figyeljiik meg, hogy a kapott eredmény nem megfeleld, mivel a miivelet kiirdsa
csak egy alkalommal jelent meg. Ahhoz, hogy az elvart eredményt kapjuk, a szorzat
tagfiiggvényt virtudlisnak kell deklarélni, és ezt tigy tehetjuk meg, hogy a 2.10. kéd-
szoveg 9. sorabdl eltavolitjuk a megjegyzés jelét. Ha ezt megtessziik, akkor a kimenet
igy médosul:

15 /
15
(3
(3
15
15
15 /

N N

tehdt val6ban kétszer jelenik meg a miiveletre vonatkozo kiiras.

2.2.4. Absztrakt osztalyok

Egy alaposztilynak lehetnek olyan altalanos tulajdonsdgai, amelyekr6l tudunk, de
nem tudjuk Sket definidlni csak egy szdrmaztatott osztdlyban. Ebben az esetben egy
olyan virtudlis tagfiiggvényt deklardlhatunk, amely nem lesz definidlva az alaposztaly-
ban. Azokat a tagfiiggvényeket, amelyek deklardlva vannak, de nincsenek definidlva
egy adott osztalyban, tiszta virtudlis tagfiiggvényeknek nevezzik.

A tiszta virtudlis tagfiiggvényt a szokdsos médon deklaraljuk, de a fejléc utdn az
= 0 karaktereket irjuk. Ez jelzi, hogy a tagfiiggvényt nem fogjuk definidlni.

Azokat az osztalyokat, amelyek tartalmaznak legaldbb egy tiszta virtudlis tagfiigg-
vényt, absztrakt osztdlyoknak nevezzilk. Az absztrakt osztidlyoknak nem hozhatjuk
1étre objektumat.

A tiszta virtualis tagfiigvényeket feliil kell irni a szarmaztatott osztalyban, ellenkezé
esetben az illetd osztdly is absztrakt lesz.

Tekintsiik a kovetkezd példat

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

2.2. AZ OBJEKTUMORIENTALT PROGRAMOZASI MODSZER

2.11. kédszoveg. Absztrakt osztaly.

#include <iostream>
using namespace std;
class allat {

protected:
double suly; // kg
double eletkor; // ev
double sebesseg; // km / h
public:
allat (double su, double k, double se);
virtual double atlagos_suly() = 0;
virtual double atlagos_eletkor() = 0;
virtual double atlagos_sebesseg() = 0;
int kover () { return suly > atlagos_suly(); }
int gyors () { return sebesseg > atlagos_sebesseg();
int fiatal() { return 2 x eletkor < atlagos_eletkor();

void kiir();
}i
allat::allat (double su, double k, double se)
{

suly = su;
eletkor = k;
sebesseg = se;

}
void allat::kiir ()

{

cout << (kover() ? "kover, " : "sovany, ");
cout << (fiatal() 2 "fiatal, " : "oreg, ");
cout << (gyors() ? '"gyors" : "lassu") << endl;

}

class galamb : public allat {

public:

galamb (double su, double k, double se):
allat (su, k, se) {}
double atlagos_suly () { return 0.5; }

double atlagos_eletkor() { return 6; }
double atlagos_sebesseg() { return 90; }
}i
class medve: public allat {
public:

medve (double su, double k, double se):
allat (su, k, se) {}
double atlagos_suly() { return 450; }
double atlagos_eletkor () { return 43; }
double atlagos_sebesseg() { return 40; }
bi
class lo: public allat {
public:
lo(double su, double k, double se):

}

75

49
50
51
52
53
54
55
56
57
58
59
60

61

76 2. FEJEZET. OBJEKTUMORIENTALT PROGRAMOZAS

allat (su, k, se) {}
double atlagos_suly () { return 1000; }
double atlagos_eletkor () { return 36; }
double atlagos_sebesseg() { return 60; }
}i
void main () {
galamb g(0.6, 1, 80);
medve m (500, 40, 406);
lo 1(900, 8, 70);
g.kiir();
m.kiir();
1l.kiir();
}

A programot futtatva az aldbbi kimenetet kapjuk:

kover, fiatal, lassu
kover, oreg, gyors
sovany, fiatal, gyors

Figyeljiik meg, hogy annak ellenére, hogy az allat osztilyt absztraktnak deklardl-
tuk, hasznos volt ennek bevezetése, mivel egyes tagfiiggvényeket mar az alaposztily
szintjén definidlni lehetett. Ezek 6roklédtek a szarmaztatottakba és igy nem kellett ket
minden egyes esetben kiilon-kiilon megirni.

2.2.5. Az interfész fogalma

A C++ programozasi nyelvben az interfész fogalma nincsen értelmezve abban a
formdban, ahogyan az 1étezik a Java és C# programozasi nyelvekben. De tetsz6leges
olyan absztrakt osztdlyt, amely csak tiszta virtudlis fliggvényeket tartalmaz interfész-
nek tekinthetiink. Természetesen ebben az esetben nem fogunk deklaralni adattagokat
sem az osztilyon beliil. Az el6z6 pontban bevezetett allat nevii osztaly adattagokat
is és nem virtudlis fiiggvényeket is tartalmaz, ezért ez nem tekinthetd interfésznek. A
tovabbiakban egy Jarmu nevii absztrakt osztalyt adunk meg, amely csak tiszta virtudlis
tagfiiggvényekkel rendelkezik. Ugyanakkor ennek az osztdlynak két szarmaztatottjat

is 1étrehozzuk.

2.12. kédszoveg. Absztrakt osztaly, amely interfésznek tekinthetd.

#include <iostream>
using namespace std;
class Jarmu

{

public:
virtual void Indul() = 0;
virtual void Megall() = 0;
virtual void Megy (int km) = 0;
virtual void All (int perc) = 0;

}i
class Bicikli : public Jarmu

{

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
4
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

2.2. AZ OBJEKTUMORIENTALT PROGRAMOZASI MODSZER 77

public:
void Indul () ;
void Megall();
void Megy (int km);
void All (int perc);
}i
void Bicikli::Indul () {
cout << "Indul a bicikli." << endl;
}
void Bicikli::Megall() {
cout << "Megall a bicikli." << endl;
}
void Bicikli::Megy (int km) {
cout << "Biciklizik " << km << " kilometert." << endl;
}
void Bicikli::All (int perc) {
cout << "A bicikli all " << perc << " percet." << endl;
}
class Auto : public Jarmu
{
public:
void Indul () ;
void Megall();
void Megy (int km);
void All (int perc);
}i
void Auto::Indul () {
cout << "Indul az auto." << endl;
}
void Auto::Megall () {
cout << "Megall az auto." << endl;
}
void Auto::Megy (int km) {
cout << "Az auto megy " << km << " kilometert." << endl;
}
void Auto::All (int perc) {
cout << "Az auto all " << perc << " percet." << endl;
}
void BejarUt (Jarmu =*7j)
{
j=>Indul () ;
j->Megy (3) ;
J->A11(1);
j—>Megy (2) ;
j—>Megall () ;

int main ()

Jarmu *b = new Bicikli;
BejarUt (b) ;

63

64

65

66

67

78 2. FEJEZET. OBJEKTUMORIENTALT PROGRAMOZAS

Jarmu *a = new Auto;
BejarUt (a) ;
delete a;
delete Db;
}

A f6 fuggvényben egy Bicikli €s egy Auto tipust dinamikus objektumot deklaral-
tunk. Ha ezekre az objektumokra a BejarUt nevii tagfiiggvényt hivjuk meg, kiilonb6z8
eredményt kapunk, annak ellenére, hogy a fiiggvénynek csak egy olyan paramétere
van, amely a Jarmu absztrakt osztalyra hivatkozé mutato.

3.fejezet Adatbazisok

3.1. A relacios adatmodell

Az els6 ABKR-ek halés vagy hierarchikus adatmodellt hasznaltdk. Manapsag a reldciods
adatmodell a legelterjedtebb. A népszerliséget annak koszonheti, hogy nagyon egyszeri deklarativ
nyelvvel rendelkezik az adatok kezelésére, illetve lekérdezésére. A relacids adatmodell értékorientalt,
ez ahhoz vezet, hogy a relacidkon értelmezett miiveletek eredményei szintén relaciok.

Ha adottak a D,, D, ,K , D, nem sziikségszeriien egymast kizaré halmazok, akkor R egy relacio

a D;,D,,K,D, halmazokon, ha R < D, x D, xK x D, (Descartes-féle szorzat).

A relacios adatmodell szempontjabol D; az A; attributum értékeinek tartomanya (doméniuma).
D; lehet egész szamok halmaza, karaktersorok halmaza, valos szamok halmaza stb., n a relacio foka.
Egy ilyen relaciot tdblazatban dbrazolhatunk:

RIA o A . A
rq diy a.lj din
I adj1 djj din
M |{@8m . @m .. @m

ahol a;€D;.

A tablazat sorai a relaci6 elemei. Nagyon sok esetben a tabla megnevezést hasznaljak a relacio
helyett. A relaciot a kovetkezOképpen jeloljik: R (A;, Ag,..., Ay). A relacido nevét és a relacio
attriblitumainak a halmazat egyiitt reldciosémdanak nevezziik.

példa: Diakok relacio:

Név SziiletésiDdatum CsopKod

Nagy Odén 1975-DEC-13 512

Kiss Csaba 1971-APR-20 541

Papp Jozsef 1973-JAN-6 521

példa: Konyvek relacio:
Szerzé Cim Kiado KiadEv

C. J. Date An Introduction to Database Systems Addison-Wesley 1995
Paul Helman The Science of Database IRWIN 1994

A relaciés adatmodell tulajdonsagai

A relacids adatbazis relacidi vagy tablai a kovetkezo tulajdonsagokkal rendelkeznek:
1. A tabla nem tartalmazhat két teljesen azonos sort, azaz két egyed el6fordulas (sor) legalabb egy
tulajdonsag (attributum) konkrét értékében el kell hogy térjen egymastol.
2. Kulcs értelmezése: egy S attributumhalmaz az R relécio kulcsa, ha:
— R relacionak nem lehet két sora, melynek értékei megegyeznek az S halmaz minden
attriblitumara.
— Segyetlen valodi részhalmaza sem rendelkezik a) tulajdonsaggal.

79

80 3. FEJEZET ADATBAZISOK

Ha a konkrét egyedek tobb olyan tulajdonsaggal is rendelkeznek, amelyek értéke egyedi minden
egyes elofordulasra nézve, akkor tobb kulcsjeloltr6]l beszélhetiink. Ezek koziil egyet elsddleges
kulcsnak kell kijel6lni. Az is megtorténhet, hogy nincs olyan tulajdonsag, amelynek értéke egyedi
lenne az egyed-eléfordulasokra nézve. Ekkor tobb tulajdonsag értéke egyiitt fogja jelenteni az
elsédleges (osszetett) kulcsot. Az 1. tulajdonsagbol kovetkezik, hogy mindig kell legyen els6dleges
kulcs, ha mas nem, a teljes sor mindig egyedi. Elsddleges kulcs értéke soha nem lehet null vagy iires.
3. A tablazat sorainak vagyis az egyedel6fordulasoknak a sorrendje Iényegtelen.
4. A tablazat oszlopaira vagyis a tulajdonsagtipusokra, attribitumokra neviikkel hivatkozunk, tehat
két attribitumnak nem lehet ugyanaz a neve.
5. A tabléazat oszlopainak a sorrendje Iényegtelen.
Az adatbazis modositasakor az 7ij informacié nagyon sokféleképpen lehet hibas. Ahhoz, hogy
az adatbazis adatai helyesek legyenek, kiilonb6zo feltételeknek kell eleget tenniiik.
A megszoritasok azon kovetelmények, melyeket az adatbazis adatai ki kell elégitsenek, ahhoz,
hogy helyeseknek tekinthessék oket.

Megszoritasok osztalyozasa

1. Egyedi kulcs feltétel: egy relacioban nem lehet két sor, melyeknek ugyanaz a kulcsértéke, vagyis
ha C egy R relaci6 kulcsa, Vt,,t, € R sorok esetén 7 (t,) # 7. (t,) .

2. Hivatkozasi épség megszoritas: megkovetelik, hogy egy objektum altal hivatkozott érték 1étezzen
az adatbazisban. Ez analdg azzal, hogy a hagyomanyos programokban tilosak azok a mutatok,
amelyek sehova se mutatnak. Kiilsé kulcs egy KK attribitum vagy attribitumhalmaz egy R;
relaciobol, mely értékeinek halmaza ugyanaz, mint egy R, relacidé elsddleges kulcsanak az
értékhalmaza, és az a feladata, hogy az R; és R, kozotti kapcesolatot modellezze. R; az a relacid,
mely hivatkozik, az R, pedig, amelyre hivatkozik. Mas megnevezés: az R, az apa és az R; a fin
(egy sorhoz az R,-bél tartozhat tobb sor az Ry-b6l, az Ry-ben elsédleges kulcs az attribitum ami a
kapcsolatot megteremti. Forditva nem allhat fenn a kapcsolat, hogy egy sorhoz az R;-b6l t6bb sor
is kapcsolodjon az Ro-bol). A hivatkozasi épség megszoritas a kovetkezoket jelenti:

— az R, relacidban azt az attribitumot (esetleg attributumhalmazt), melyre az R; hivatkozik
elsodleges kulcsnak kell deklaralni,
— KK minden értéke az R;-bdl kell 1étezzen az R, relacidban, mint elsddleges kulcs értéke.

3. Ertelmezéstartomdany-megszoritasok: azt jelentik, hogy egy attriblitum az értékeit a megadott
értékhalmazbol vagy értéktartomanybdl veheti fel.

4. Altaldnos megszoritdsok: tetszbleges kovetelmények, amelyeket be kell tartani az
adatbazisban.

3.2. Normalizdlas

3.2.1. Funkcionalis fiiggoségek

Legyen egy relacio
R (A1, Az,..., Ay), ahol A; attribatumok.
Jeloljiik az attribatumok halmazat
A= {Al, Az,..., An}
Legyenek X és Y az R relacio attribitumhalmazanak részhalmazai, vagyis X,Y < A. Ezeket a
jeloléseket hasznaljuk a tovabbiakban, ha esetleg nem ismételjiik meg.
X attribitumhalmaz funkcionalisan meghatarozza Y attribitumhalmazt (vagy Y funkciondlisan
fiigg X-t6]), ha R minden eléfordulasaban ugyanazt az értéket veszi fel Y, amikor az X értéke ugyanaz.
Masképp: X funkcionalisan meghatarozza Y-t, ha R két sora megegyezik az X attributumain
(azaz ezen attributumok mindegyikéhez megfeleltetett komponensnek ugyanaz az értéke a két
sorban), akkor meg kell egyeznilik az Y attribGtumain is. Ezt a fliggéséget fomalisan X —Y -nal
jeloljik.

3. FEJEZET ADATBAZISOK

81

Relécios algebrai miiveletek segitségével a kovetkezoképpen értelmezhetjiik a funkcionalis

fligglséget:

X =Y, ha Vt,r R sor esetén, melyre 7z, (t) = 7 (r), akkor 7z, (t) =7, (r) .

v

"

X Y
Hatésr Akkor itt is
megegyezik meg kell
ezen egyezniik

3.1. abra: A funkcionalis fiiggdség két soron vett hatasa

példa: Szallitasilnformaciok relacio:

7

SzdllID | SzdlINév SzdllCim | ArulD AruNévy MértEgys Ar
111 Rolicom A. lancu 15 45 Milka csoki tabla 25000
222 Sorex 22 dec. 6 45 Milka csoki tabla 26500
111 Rolicom A. lancu 15 67 Heidi csoki tabla 17000
111 Rolicom A. lancu 15 56 Milky way rad 20000
222 Sorex 22 dec. 6 67 Heidi csoki tabla 18000
222 Sorex 22 dec. 6 56 Milky way rad 22500

Funkcionalis fiiggdségek:
SzallID — SzalINév
SzalllD — SzallCim.

Mivel mindkét fliggdségnek ugyanaz a bal oldala, SzallID, ezért egy sorban dsszegezhet;jiik:

SzallID — {SzallNév, SzallCim}
Szavakban, ha két sorban ugyanaz a SzallID értéke, akkor a SzalINév értéke is ugyanaz kell legyen,
illetve a SzallCim értéke is.

Ezenkivil:

AruID — AruNév
ArulD — MértEgys (azzal a feltevéssel, ha mas mértékegységben aruljak az arut, mas ID-t is kap).
Hasonloéan egy sorban:
AruID — {AruNév, MértEgys}

A funkcionalis fiiggéséget felhasznalva adhatunk még egy értelmezést a relacié kulcsanak. Egy

vagy tobb attributumbol all6 {C,,C,,K ,C,} halmaz a reldcié kulcsa, ha:

e Ezek az attribitumok funkciondlisan meghatdrozzak a relacid minden mas attributumat, azaz

nincs az R-ben két kiilonb6z6 sor, amely mindegyik C,,C,,K ,C, -n megegyezne.

e Nincs olyan valodi részhalmaza {C,,C,,K ,C, }-nak, amely funkcionalisan meghatarozna az R

Osszes tobbi attributumat, azaz a kulcsnak minimalisnak kell lennie.

példa: a Szallitasilnforméaciok relacio kulcsa a {SzallID, ArulD}, egy szallitd egy arut egy arban
szallit egy adott pillanatban. Nincs a tablaban 2 sor, ahol ugyanaz legyen a SzallID és az ArulD is.
Csak a SzallID nem elég kulcsnak, mert egy szallitd tobb arut is szallithat, az ArulD sem elég, mert
egy arut tobb szallito is ajanlhat. o

82 3. FEJEZET ADATBAZISOK

Szuperkulcsoknak nevezzilk azon attributumhalmazokat, melyek tartalmaznak kulcsot. A
szuperkulcsok eleget tesznek a kulcs definicio elsé feltételének, de nem feltétleniil tesznek eleget a
minimalitasnak. Tehat minden kulcs szuperkulcs.

Az R (A, Ay,..., Ap) relécio esetén A attributum prim, ha létezik egy C kulcsa az R-nek, tigy
hogy A, € C . Ha egy attribitum nem része egy kulcsnak, akkor nem prim attribitumnak nevezziik.

Trivialis funkcionalis fiiggdségrol beszéliink, ha az Y attributum halmaz részhalmaza az X

attributum halmaznak \g= X), akkor Y attribitum halmaz funkcionalisan fiigg X attriblitum
halmaztol (X —Y).

példa: Trivialis funkcionalis fiiggdség: {SzallID, AruID} — SzallID. o

Minden trividlis fliggdség érvényes minden relacidoban, mivel amikor azt mondjuk, hogy ,,két sor
megegyezik X minden attribatuman, akkor megegyezik ezek barmelyikén is”.
Nem trivialis egy X, X,K X —>Y,Y,KY, funkcionalis fliggbség, ha az Y-ok koziil legalabb egy
kiilonbozik az X-ektol, vagyis

3Y;, jelLs] j €{1,2,..., s} ugy, hogy Y; = X, ,Vk €{1,2,..., p}.

Teljesen nem trivialis egy X, X,K X, —>Y,Y,KY, funkcionalis fiiggdség, ha az Y-ok koziil

egy sem egyezik meg az X-ek valamelyikével, vagyis
VY, jelLs]je{l.2,.. s}reY; =X,V ke{l,2,.., p}

Parcialis fiiggdség: Ha C egy kulcsa az R relacionak, az Y attributumhalmaz valddi részhalmaza a C-
nek (Y = C) és B egy attributum, mely nem része az Y-nak (B ¢Y), akkor az Y — B -t egy parcialis
fliggoség. (B fiigg a kulcs egy részétol.)

példa: parcialis fliggdségre: SzalllD — SzallNév. o

A Szillitasilnformaciok relacioban {SzallID, AruID} a kulcs, tehat

{SzallID, ArulD} — SzalINév,

mivel a kulcs funkcionalisan meghataroz minden mas attribitumot, de a SzallNév fligg a kulcs
egy részétdl is.
Tranzitiv fiiggoség: Legyen Y — A egy attribitumhalmaz és B egy attribatum, mely nem része Y-
nak (B¢Y). Egy Y — B funkcionalis fliggéség tranzitiv fliggdség, ha Y nem szuperkulcs R
relacioban és nem is valodi részhalmaza R egy kulcsanak.

Honnan a tranzitiv elnevezés? Amint latjuk, Y nem kulcs, nem része a kulcsnak, tehat egy
nemtrivialis funkcionalis fliggdség az, hogy Y funkciondlisan fiigg az R kulcsatol (C-tol). Tehat
C—>Y és Y — B, és erre mondhatjuk, hogy B tranzitiv fiiggdséggel fiigg C-tol.

példa: Rendelések (RendelésSzam, Datum, VevdéID, VevoNév, Részletek), egy cég rendeléseit
tartalmazo relacid. A kiillonbozoé vevok rendeléseket helyeznek el a cégnél, a cég mas-mas szamot ad a
kiilonb6z6 rendeléseknek, igy a RendelésSzam elsédleges kulcs lesz, tehat kulcs révén funkcionalisan
meghatarozza az 6sszes tobbi attributumot:

RendelésSzam — VevdID.
Ezenkiviil fennall a

VevoID — VevoNév
funkcionalis fiiggdség. Tehat a VevoNév tranzitiv fliggdséggel fiigg a RendelésSzamtol.

Funkcionalis fiiggéségek tulajdonsagai:

1.HaCaz R[Al, Ay,... An] relacio egy kulcsa, akkor C — S,V C {Al, A,..., An}
2.Ha f < «,akkor ¢ — [, ez a trivialis funkcionalis fliggdség vagy reflexivitas.
I, ()= Ha(rz)ﬁ:glnﬁ(rl) = Hﬁ(rZ) >a—>p

3. Haa— g ,akkory — B, Vy ahol a c y .
Hy(rl) = Hy(rZ)a?yHa(rl) = Ha(rz)a?ﬂnﬁ(rl) = Hﬂ(rz) =>y—->p

3. FEJEZET ADATBAZISOK 83

4. Haa— f és f— y,akkor ¢ — y, ez a funkcionalis fliggdség tranzitiv tulajdonsaga.
I1,(r)=1,() = H/;’(rl) = Hﬁ(rZ) = H;/(rl) = Hy(rZ) =a—-y
a—>pf By

5Haa— B és y < A,akkor ay — By,ahol ay=a Uy .
Ha(rl) ZHa(rz) = Hﬁ(rl) ZHﬂ(rZ)

Hay(rl) :HO‘V(rZ): Hy(rl) :Hy(rz)

:Hﬂy(rl) = Hﬂy(rZ)

Problémak:

Azokat a problémakat, amelyek akkor jelennek meg, amikor tul sok informaciét probalunk
egyetlen relacioba belegyomoszolni, anomalianak nevezzilkk. Az anomalidknak alapvetd fajtai a
kovetkezOk:

e Redundancia: Az informaciok feleslegesen ismétlddnek tobb sorban, mint példaul a
Szallitasilnformaciok relacio esetében a szallitd cime ismétlodik.

o Modositasi problemdak: Megvaltoztatjuk az egyik sorban tarolt informaciot, mikozben ugyanaz az
informéacid valtozatlan marad egy masik sorban. Példaul, ha a szallité cime valtozik, de csak egy
sorban valtoztatjuk meg, nem tudjuk, melyik a jo cim. Jo tervezéssel elkeriilhetjiik azt, hogy ilyen
hibak felmertiljenek.

o Torlési problémak: Ha az értékek halmaza iires halmazza valik, akkor ennek mellékhatasaként
mas informdacidt is elveszthetlink. Ha példéaul tordljiik a Rolicom altal szallitott dsszes arut, az
utolso sor torlésével elveszitjikk a cég cimét is.

o [llesztési problémak: Ha hozzailleszteni akarunk egy szallitot, amely nem szallit egy arut sem, a
szallité cimét kitoltjik ugy, hogy az aruhoz ,,null” értékeket visziink be, melyet majd utdlag ki
kell tor6lni, ha el nem felejtjik.

Relaciok felbontasa

Az anomalidk megsziintetésének elfogadott utja a relaciok felbontasa (dekompozicié-ja). R
felbontasa egyrészt azt jelenti, hogy R attributumait szétosztjuk ugy, hogy ezaltal két uj relacid
sémajat alakitjuk ki bel6liik. A felbontas masrészt azt is jelenti, hogyan toltsiik fel a kapott két 0j
relacio sorait az R soraibol.

Legyen egy R relacio {A,A, K,A} sémaval, R-et felbonthatjuk S és T két relaciora,
amelyeknek sémai {B,,B,,K ,B,}, illetve {Cy, C,, ..., Ci} tigy, hogy

1.{A.AK,A} ={B,B, K B _}U{C,C,K ,C.},ahol

{B,,B,,K B, }n {Cy, Cy, ..., C}+ .

2. Az S relaci6 sorai az R-ben szerepld dsszes sornak a {B,,B,,K , B, }-re vett vetiiletei, azaz R
aktualis eléfordulasanak minden egyes t sorara vesszik a t azon komponenseit, amelyek a
{B,.B,,K ,B,.} attribitumokhoz tartoznak. Mivel a relaciok halmazok, az R két kiilonb6z6 soranak a

projekcidja ugyanazt a sort is eredményezheti az S-ben. Ha igy lenne, akkor az ilyen sorokbol csak
egyet kell belevenniink az S aktualis eléfordulasaba.

3. Hasonléan, a T relacié sorai az R aktualis el6forduldsidban szereplé sorok {Ci, C,, ..., C¢}
attribitumok halmazara vett projekcioi.

2.S= o, 8,k 8, (R); T= e, e,k C, (R);

Veszteségmentes felbontas

R reléci6 felbontasa S és T relaciokra veszteségmentes, ha

R=SiT
Fontos, hogy minden felbontas, amit normalformara hozas kozben végziink,
veszteségmentes legyen, vagyis ne veszitslink informaciot.

84 3. FEJEZET ADATBAZISOK

3.2.2. Normalformak

Az adatmodellezés egyik f6 célja az optimalizalas, vagyis az adatmodellt alkotd egyedtipusok
lehetd legjobb szerkezetének a megkeresése. Az optimalis adatmodell kialakitasara egyéb technikak
mellett a normalizdlds szolgdl. A normalizalas az a folyamat, amellyel kialakitjuk a relaciok
normalformajat (NF).

A normalformdk: INF, 2NF, 3NF, BCNF, 4NF, 5NF egymasba skatulyazottak. 2NF
matematikailag jobb, mint 1NF, a 4NF jobb, mint a BCNF, az SNF a legjobb, 3NF alaku relacio
sziikkségszertien INF és 2NF alaku is. Tehat a normalalakok nem fiiggetlenek egymastol, hanem
logikusan egymasra épiilnek.

Els6é normalforma (1INF)

Ertelmezés: Egy R relacié INF —ben van, ha az attribitumoknak csak elemi (nem Osszetett vagy
ismétlodd) értékei vannak. Ez minimalis feltétel, melynek egy relacio eleget kell tegyen, hogy a 1étez6
relacios ABKR-ek kezelni tudjak.

Példa: A kovetkezd relacid nincs 1NF-ben:
Alkalmazottak:

SzemSzam |Név | Cim Gyerekl SziilDat1 ...| Gyerek5 SziilDat5
Helység ‘ Utca ‘ Szam

Ahol a Cim Osszetett attributum, a Helység, Utca és Szam attributumokbol all. A Gyerekl,
SziilDat1, Gyerek2, SziilDat2, Gyerek3, SziilDat3, Gyerek4, SziilDat4, GyerekS, SziilDat5 ismétlodo
attributum. Egy személynek tobb gyereke is lehet, érdekeltek vagyunk a gyerekek keresztnevében és
sziiletési datumukban. Jelenleg 5 gyerekr6l sz6lé informaciot tudunk eltdrolni. Probléméak az
ismétlddd attribuitumokkal: van olyan alkalmazott, akinek nincs egy gyereke se, nagyon soknak csak
egy gyereke van, ezeknél foloslegesen foglaljuk a hattértarolot. Jelenleg van a cégnek egy
alkalmazottja, akinek 5 gyercke van, de akarmikor alkalmaznak még egyet, akinek 6 gyereke van,
akkor valtoztathatjuk a szerkezetet. O

INF-re alakitas

Ha egy relacié nincs 1NF-ben, mivel tartalmaz Osszetett attribatumokat, elsé normalformara
hozhatjuk, ha az Osszetett attributum helyett beirjuk az azt alkot6 elemi attributumokat. A fenti példa
esetén a Cim attribitum nem fog szerepelni a relacié attributumai kozott, csak a Helység, Utca és
Szam attributumok.

Ha adott egy R (A;, A,,..., Ay) relacid, mely nincs elsé normalformaban, mivel ismétlédo
attribitumokat tartalmaz, felbontassal els¢ normalformaba hozhat6. Jeldljiik az attributumok halmazat

A= {Al, Az,..., An}
Legyenek C és | az R relaci6 attribitumhalmazanak részhalmazai, vagyis C,1 — A, ahol C kulcs és |
ismétl6dé attributumhalmaz, mely tegyiik fel, hogy k-szor ismétlddik. Legyen J azon attributumok
halmaza, melyek nem részei a kulcsnak, se nem ismétlédéek, vagyis J < A, JI C=J ¢és
JI 1= . Tehat A=CUI, UIl, UK I, UJ . A felbontas utan kapjuk a kovetkez6 két relaciosémat:

S(C,1) és T(C,J).

Vagyis az egyik relacioban a kulcs attributum mellett az ismétlédé attribiitumok (csak egyszer)
fognak szerepelni, a masikban pedig a kulcs mellett azon attribtitumok, melyek nem ismétléddek.

példa: A fenti példa esetén:
C = {SzemSzadm}
| = {GyerekNév, SziilDatum}
J = {Név, Helység, Utca, Szam}.
A két yj relacio:

Alkalmazott (SzemSzam, Név, Helység, Utca, Szam)

3. FEJEZET ADATBAZISOK 85

AlkalmGyerekei (SzemSzéam, GyerekNév, SzilDatum)

Ebben az esetben, ha egy alkalmazottnak csak egy gyereke van az AlkalmGyerekei relacioban
egy sor lesz neki megfeleld, a SzemSzam attribatumnak ugyanazzal az értékével. Ha egy
alkalmazottnak 5 gyereke van, 5 sor, ha ugyannak az alkalmazottnak még sziiletik egy gyereke, akkor
6 sor tartalmazza az AlkalmGyerekei relacidban az illetd alkalmazott gyerekeit. Ha egy
alkalmazottnak nincs egy gyereke se, az AlkalmGyerekei relacioban nem lesz egy sor sem, mely
hivatkozna ra a SzemSzam segitségével.

Masodik normalforma (2NF)

Ertelmezés: Egy relacio 2NF formaban van, ha elsé normalforméaju (INF) és nem tartalmaz Y — B
alak parcialis fliggdséget, ahol B nem prim attributum.
Amint latjuk, csak akkor tevédik fel, hogy egy relacio nincs 2NF-ben, ha a kulcs Osszetett.

példa: A Szallitasilnformaciok relacioja nincs 2NF-ben, mivel a relacié kulcsa a {SzallID, ArulD} és
fennall a SzallID — SzallNév, tehat SzallNév fiigg a kulcs egy részEtdl is, tehat létezik parcialis
fliggbség.

Megoldas: tobb relaciora kell bontani.

2NF-re alakitas

Legyen R egy relacié, mely attributumainak a halmaza A = {Ay, A,,..., Ay} és C < A egy kulcs.
Ha a relacié nincs masodik normalformaban, azt jelenti 1étezik egy B< A nem kulcs Bl C=C
attribitumhalmaz, mely fiigg funkcionalisan a kulcs egy részétdl, vagyis 1étezik D — C, ugy hogy
D—>B.
Az R relaciot felbontjuk két relaciora, melyek sémai:
T(D, B) és S(A—B)

srer

SzalllD — {SzallNév, SzallCim}
AruID — {AruNév, MértEgys}
funkcionalis fliggdségek, a kulcs pedig a C ={SzallID, ArulD}.
Els6 Iépésben B = {SzalINév, SzallCim}, D = {SzallID}. Felbontas utan kapjuk a

Szallitdék (SzallID, Sz&llNév, SzAallCim) és
Sz411Inf (Sz4l1ID, ArulD, AruNév, MértEgys, Ar)

relaciokat.
A Szallitok relacio 2NF-ben van, mivel a kulcs nem 6sszetett, fel sem tevdik, hogy valamely
attribitum fiiggjon a kulcs egy részétol.
A SzallInf nincs 2NF-ben, mert fennall a
ArulD — {AruNév, MértEgys}.
Ebben az esetben B = {AruNév, MértEgys}, D = {ArulD}. Tovabb bontjuk a kovetkezd két relaciora:
Aruk (ArulD, AruNév, MértEgys),
Sz4llit (Sz&l1l1D, ArulID, Ar).

Az Aruk 2NF-ben van, mert a kulcs nem Osszetett és 1NF-ben van. A Szallit relacioban
egyetlen nem kulcs attribitum van: az Ar, és az nem fiigg csak az AruID-t8], mert kiilonbozé szallitd
kiilonboz6 arban ajanlhatja ugyanazt az arut, sem a SzallID-t6] nem fiigg funkciondlisan, mert egy
szallitdo nem ajanlja ugyanabban az arban az Gsszes arut. A kapott relaciok:

Szallitok:
SzdllID SzdlINéy SzdllCim
111 Rolicom A. lancu 15
222 Sorex 22 dec. 6
Aruk:
ArulD AruNév MértEgys
45 Milka csoki tabla

86 3. FEJEZET ADATBAZISOK

67 Heidi csoki tabla
56 Milky way rad
Szallit:
SzallID | ArulD Ar

111 45 25000
222 45 26500
111 67 17000
111 56 20000
222 67 18000
222 56 22500

Harmadik normalforma (3NF)

Ertelmezés: Egy R relacié harmadik normdlformdban (3NF) van, ha masodik normalformaban van és
nem tartalmaz Y — B alaka tranzitiv funkciondlis figg6séget, ahol B nem prim attribatum.
Ertelmezés: EqQy R relacié harmadik normalforméban (3NF) van, ha létezik az R-ben egy Y — B
alaktl nem trivialis funkcionalis fiiggdség, akkor Y az R relacié szuperkulcsa vagy a B prim attributum
(valamelyik kulcsnak része).

A két értelmezés ekvivalens. A masodik nem kéri a masodik normalformat, de mivel barmely
1étez6 Y — B funkcionalis fliggdség esetén a bal oldal szuperkulcs, nem lehet annak része. Tehat
elég, ha az Osszes Iétezd funkcionalis fliggdség esetén a bal oldal szuperkulcs, akkor a tranzitiv
fliggdség nem létezhet, mert a tranzitiv fiiggdség esetén a bal oldal nem kulcs és ez nem megengedett.

példa: A Rendelések relacié nincs 3NF-ben, mivel tartalmaz tranzitiv funkcionalis fiigg6séget.

RendelésSzam — VevoID

VevoID — VevoNév.

Probléma, ha igy abrazoljuk a rendeléseket, hogy ha egy vevd tobb rendelést is elhelyez, ami
lehetséges, akkor a vevd nevét ismételjiik. Megoldas: 2 relaciora bontjuk a relaciot, mely nincs 3NF-
ben. O

3NF-re alakitas

Legyen R egy relacio, mely 2NF-ben van, viszont nincs 3NF-ben, attributumainak a halmaza
A = {A;, Ay..., Ay} és Cc A elsédleges kules. Ha a relacié nincs harmadik normalformaban, azt
jelenti, hogy létezik egy B A nem kulcs Bl C = attribitumhalmaz, mely tranzitiv fiiggéséggel
fiigg a kulcestol, vagyis 1étezik D, tigy hogy C — D és D — B. Mivel a relacié 2NF-ben van, B nem
fligg funkcionalisan C-nek egy részétol, tehat D nem kulcs attributum.

Az R relaciot felbontjuk két relaciora, melyek sémai:
T(D,B)és S(A—B).

példa: A Rendelések relacio esetén: B = {VevoNév}, D = {VevoID}, a felbontas utan kapott relaciok:

Vevék (VevdID, VevdNév)
RendelésInf (RendelésSzam, Datum, Vevd&ID)

Egy adatbazis modell kialakitdsa szempontjabol a legkedvezdbb, ha az adatbazist alkotd
relaciok 3NF -ben vannak.

3.3. Relacids algebra

A relacios algebrai milveletek operandusai a relaciok. A relaciot a nevével szoktak megadni,
példaul R vagy Alkalmazottak. A miiveletek operatorait a kovetkezokben részletezziik. Az
operatorokat alkalmazva a relaciokra, eredményként szintén relaciokat kapunk, ezekre ismét
alkalmazhatunk relacios algebrai operatorokat, igy egyre bonyolultabb kifejezésekhez jutunk. Egy
lekérdezés tulajdonképpen egy relacios algebrai kifejezés. A relacids algebrai miiveletek esetén
sziikségiink lesz feltételekre. A feltételek a kovetkezo tipusuak lehetnek:

3. FEJEZET ADATBAZISOK 87

<>
L , < | (<attribatum_név>
<attribatum_név>
<= <konstans>
>
>=

{<attribt]tum_név>} { IS IN

<relacio> (melynek egy attribituma van)
<konstans> ISNOT IN

NOT <feltétel>

, OR ,
<feltétel> <feltétel>
AND

A tovabbiaban lassuk a relacids algebra miiveleteit. Az elsé 6t az alapveté mivelet, a
kovetkezoket ki tudjuk fejezni az elso ot segitségével.

1) Kivalasztas (Selection). Az R relaciora alkalmazott kivdlaszids operator f feltétellel olyan 0j
relaciot hoz létre, melynek sorai teljesitik az f feltételt. Az eredmény relécio attributumainak a szdma
megegyezik az R relacio attribitumainak a szamaval. Jel6lés: o (R).

példa: Keressiik a kis keresetii alkalmazottakat (akinek kisebb, vagy egyenl6 a fizetése 500 eurd-val).
A lekérdezés a kovetkezo:
OFizetss < 500 (Alkalmazottak)
A lekérdezés eredménye:

SzemSzdm Név RészlegID | Fizetés
111111 Nagy Eva 2 300
222222 Kiss Csaba 9 400
333333 Kovacs Istvan 2 500

példa: Keressiik a 9-es részleg nagy fizetésii alkalmazottait (akinek 500 eur6-nal nagyobb a fizetése).
A lekérdezés: Orizetss > 500 AND RészlegID = 9 (Alkal mazottak)

Az eredmény:

SzemSzdm Néy RészlegID | Fizetés
456777 Szabo Janos 9 900

2) Vetités (Projection). Adott R egy relacio A;, A,,..., A, attribtumokkal. A vetités miivelet
eredményeként olyan relaciot kapunk, mely R-nek csak bizonyos attribitumait tartalmazza. Ha
kivélasztunk K attributumot az n-bol: A, A K, A -et, és ha esetleg a sorrendet is megvéltoztatjuk, az
eredmény relacié a kivalasztott k attribitumhoz tartozé oszlopokat fogja tartalmazni, viszont az Gsszes
sorbol. Mivel az eredmény is egy relacio, nem lehet két azonos sor a vetités eredményében, az azonos
sorokbol csak egy marad az eredmény relacioban.

Jelolés: p A KA, R)

példa: Ha az Alkalmazottak relaciobol csak az alkalmazott neve és fizetése érdekel, akkor a
kovetkez6 miivelet eredménye a kért relacio:

Ty, Fizetes (AIkalmazottak)

88 3. FEJEZET ADATBAZISOK

példa: Legyen ismét a Didkok tabla:

CREATE TABLE Didkok (
BeiktatdsiSzam INT PRIMARY KEY,
Név VARCHAR (50),
Cim VARCHAR (100),
SziiletésiDatum DATE,
CsopKod CHAR(3) REFERENCES Csoportok (CsopKod),
Atlag REAL
)i
A kovetkezo6 vetités:

ﬂCSOpKod (D I é.kO k)

eredménye az Osszes 1étez6 csoportkod a Didkok tablabol. Ha egy csoportkod tobbszor is megjelenik
a Diakok tablaban, a vetitésben csak egyszer fog szerepelni. (Példaul a Didkok tablaban 25 sor esetén
a csoportkod *531°-es, a vetités eredményében csak egyszer fog az *531°-es csoportkod szerepelni.)

3) Descartes szorzat. Ha adottak az R; és R, relacidk, a két relacié Descartes szorzata (Ry X R,) azon
parok halmaza, amelyeknek els6 eleme az R; tetszdleges eleme, a masodik pedig az R, egy eleme. Az
eredményrelacio sémaja az R; €s R, sémajanak egyesitése.

Legyen R; relacio:

A B
12 | 33
24 | 46
Legyen R; relacio:
B C D

20 55 80
30 67 97
40 75 99

Akkor R; X R, eredménye:

A Ri.B | R,.B C D
12 33 20 55 80
12 33 30 67 97
12 33 40 75 99
24 46 20 55 80
24 46 30 67 97
24 46 40 75 99

4) Egyesités. Ha adottak az R; és R, relaciok, R; és R, attribitumainak a szdma megegyezik, és
ugyanabban a pozicidban levd attributumnak ugyanaz az értékhalmaza, a két relacio egyesitése
tartalmazni fogja R; és R, sorait. Az egyesitésben egy elem csak egyszer szerepel, még akkor is, ha
jelen van R;— és R, —ben is (jel6lés: Ry U R,).

5) Kiilonbség. Ha adottak az R; és R, relacidk, R; és R, attributumainak a szdma megegyezik és
ugyanabban a pozicidban levd attribitumnak ugyanaz az értékhalmaza, a két relacio kiillonbsége azon
sorok halmaza, amelyek R;-ben szerepelnek és R,-ben nem (jel6lés: Ry — Ry).

3. FEJEZET ADATBAZISOK

példa: Legyen R;:

SzemSzdam Név RészleglD | Fizetés
(euro)
222222 Kiss Csaba 9 400
456777 Szabo Janos 9 900
234555 Szilagyi Pal 2 700
333333 Kovacs Istvan 2 500
és legyen R;:
SzemSzdm Névy RészlegID | Fizetés
(euro)
111111 Nagy Eva 2 300
456777 Szabo Janos 9 900
123444 Vincze ldiké 1 800
Ekkor R; U R,:
SzemSzdam Név RészleglD | Fizetés
(euro)
222222 Kiss Csaba 9 400
456777 Szabé Janos 9 900
234555 Szilagyi Pal 2 700
333333 Kovacs Istvan 2 500
111111 Nagy Eva 2 300
123444 Vincze Ildikéd 1 800
illetve R; - Ry:
SzemSzdam Név RészleglD | Fizetés
(euro)
222222 Kiss Csaba 9 400
234555 Szilagyi Pal 2 700
333333 Kovacs Istvan 2 500

89

Ez az 6t az alapveté miivelet. Még vannak hasznos miiveletek: ezek az 6t alapvetd miivelettel

kifejezhetdek.

6) Metszet: Legyenek az R; és R, relaciok, a két relacié metszete:

R NR,=R —(R -R,).

7) Théta-osszekapcsolas (6-Join): Legyenek az R; és R, reldciok. A Théta-dsszekapcsolds soran az

R és R, relaciok Descartes szorzatabol kivalasztjuk azon sorokat, melyek eleget tesznek a @

feltételnek, vagyis: R, ><oR, =0,(R, xR,) .

példa: Legyenek R; és R, a kovetkez6 relaciok, szamitsuk ki: R, P R,

R; relacio:

A B C
11 | 23 | 32
65 | 76 | 82
97 | 76 | 82

90 3. FEJEZET ADATBAZISOK

R, relacio:

B C D
23 | 32 | 44
23 | 32 | 57
76 | 82 | 99

F\)1 Dla<p Ry:

A Ri.B | R.C | Rn.B | R,.C | D
11 23 32 23 32 44
11 23 32 23 32 57
11 23 32 76 82 99
65 76 82 76 82 99
97 76 82 76 82 99

8) Természetes dsszekapcsolas (Natural join): Legyenek az Ry és R, relaciok. A természetes
Osszekapcsolas miivelete akkor alkalmazhato, ha az R; és R, relacioknak egy vagy tobb kozos
attribatuma van. Legyen B az Ry, illetve C az R; relacié attribitumainak a halmaza, a kozos
attributumok pedig: B n C = {Ay, Ay, ..., Ap}. A természetes Osszekapcsolast a kovetkezd képlettel
fejezhetjiik ki:

Ri D4 Ra = 750c (R (5 =R, A)A(R AR AR AR AR A Ro

ahol R.A; jeloli az A attribitumot az R; relaciobol, i€{1,2}, j €{1,2, ..., p}.
példa: Legyenek R; és R, relaciok a Théta-Gsszekapcsolas példabodl, a természetes Gsszekapcsolas
eredménye:

R <R, eredménye:

A B C D
11 23 32 44
11 23 32 57
65 76 82 99
97 76 82 99

R; és R, relaciok természetes Osszekapcsolasa esetén azokat a sorokat parositjuk Ossze, amelyek
értékei az R; és R, sémajanak Osszes kozos attributuman megegyeznek. Legyen ry az R; egy sora és I
az R, egy sora, ekkor az r; és r, parositasa akkor sikeres, ha az r; és r, megfeleld értékei megegyeznek
az 0sszes Ay, Ay, ..., Ap kozOs attribitumon. Ha az r; és r, sorok parositésa sikeres, akkor a parosités
eredményét dsszekapcsolt sornak nevezziik. Az Gsszekapcsolt sor megegyezik az r; sorral az R;
Osszes attributuman ¢és r, sorral az R, dsszes attriblituman. Az R <R, eredményében R; és R, kzos

attributumai csak egyszer szerepelnek.
Egy olyan sort, melyet nem lehet sikeresen parositani az 6sszekapcsolasban szerepld masik
relacio egyetlen soraval sem, /0go (dangling) sornak nevezziink

példa: Legyenek a Szallitok, Aruk és Szallit relaciok. Ha az Osszes szallitasi informaciora van

sziikségiink, akkor kiszamitjuk a Szallit >4 Szallitok < Aruk természetes osszekapcsolast, melynek
eredménye:
Szallitok:

SzallID SzalINév SzallCim
111 Rolicom A.lancu 15
222 Sorex 22 dec. 6

3. FEJEZET ADATBAZISOK

Aruk:
ArulD AruNév MértEgys
45 Milka csoki tabla
67 Heidi csoki tabla
56 Milky way Rud
Szallit:
SzallID | ArulD Ar
111 45 25000
222 45 26500
111 67 17000
111 56 20000
222 67 18000
222 56 22500
Szallit > Szallitok > Aruk eredménye:

SzdllID SzdallNév SzdllCim | ArulD AruNév MértEgys Ar
111 Rolicom A.lancul5 |45 Milka csoki Téabla 25000
222 Sorex 22 dec. 6 45 Milka csoki Tabla 26500
111 Rolicom A.lancu 15 | 67 Heidi csoki Téabla 17000
111 Rolicom A.lancul5 |56 Milky way Rud 20000
222 Sorex 22 dec. 6 67 Heidi csoki Téabla 18000
222 Sorex 22 dec. 6 56 Milky way Rud 22500

91

Relacids algebrai miiveletek alkalmazasaval ujabb relaciokat kapunk. Gyakran sziikséges egy
olyan operator, amelyik atnevezi a relaciokat.

9) Atnevezés: Legyen R(Ay, A, ...
Pss, 8,k 8, (R) az R relaciét S relaciéva nevezi at, az attributumokat pedig balrdl jobbra By,

, An) egy relécio, az atnevezés operator:

Bz, ..., Byné. Ha az attribtum neveket nem akarjuk megvéltoztatni, akkor pg(R) operatort

hasznalunk.

10) Hanyados (Quotient): Legyen R; relacié sémaja: {Xy, Xa,..., X, Y1,Y2,...,Yn}, R relacié sémadja
pedig: {Y1, Yo, ..., Yo}, tehat Yy, Yo, ...,Y, kOz0s attribltumok ugyanazon értékhalmazzal, és Ri-nek
még van pluszba m attribituma: Xy, Xo,..., Xy , Ry-nek pedig a kozoseken kiviil nincs mas attributuma.
R; az osztando, R, az osztd. Jeloljik X-szel és Y-nal a kovetkez6 attributumhalmazokat: X = {Xq,
Xopeowy Xmb Y = {Y1,Y5,...,Yy}. Ebben az esetben jeloljik: Ry (X, Y), Ry (Y) a két relaciot, melynek
hanyadosat jeloljiik:

R, DIVIDE BY R, (X)-el

Tehat a hanyados relacié séméja {X;, Xy,..., Xn}. A hanyados relacioban megjelenik egy X sor, ha
minden y sorra az R,-bdl az R;-ben megjelenik egy r; sor, melyet az x és y sorok Gsszeragasztasabol
kapunk.

Masként fogalmazva, legyen 2 relacio, egy binaris és egy unaris, az osztas eredménye a binaris
relacio azon attributumait tartalmazza, melyek kiilonboznek az unaris relacid attributumaitol, és a
binaris relaciobol az attribitumok azon értékeit, melyek megegyeznek az unaris relacid Osszes
attributum értékével.

92 3. FEJEZET ADATBAZISOK

példa: Legyen A= 7, (Aruk), S = T 41D, AriD (Szallit) és a kovetkezd sorok az S relacidban:
SzdllID | ArulD
S1 Al
S1 A2
S1 A3
S1 Ad
S1 A5
S1 A6
S2 Al
S2 A2
S3 A2
S4 A2
S4 Ad
S4 A5
a) Legyen A relacio:
ArulD
Al

akkor az S DIVIDE A(SzallID) eredménye:

SzallID
Sl
S2

b) esetben A relacio:

ArulD
A2
Al

akkor S DIVIDE A(SzallID):

SzallID
S1
S4

c) esetben A relacio:

ArulD
Al
A2
A3
A4
A5
Ab

akkor S DIVIDE A(SzallID):

SzalllD
Sl

3. FEJEZET ADATBAZISOK 93

3.4. Az SQL lekérdezonyely

A legtobb relacios ABKR az adatbazist az SQL-nek (Structured Query Language) nevezett
lekérdezényelv segitségével kérdezi le és modositja. Az SQL kdzponti magja ekvivalens a relacios
algebraval, de sok kiterjesztést dolgoztak ki hozza, mint példaul az 6sszesitések.

Az SQL-nek szamos verzidja ismeretes, szabvanyokat is dolgoztak ki, ezek kozil a
legismertebb az SQL-92 vagy SQL2. A napjainkban hasznalt ABKR-ek lekérdezOnyelvei ezt a
szabvanyt tartjdk be. Az SQL egy 10j szabvanya az SQL3, mely rekurzidval, objektumokkal,
triggerekkel stb. terjeszti ki az SQL2-6t. Szamos kereskedelmi ABKR mar meg is valdsitotta az SQL3
néhany javaslatat.

3.4.1. Egyszerii lekérdezések SQL-ben

A relacios algebra vizszintes kivalasztas miiveletét:
o1 (R)

az SQL a SELECT, FROM ¢és WHERE kulcsszavak segitségével valositia meg a
kovetkezoképpen:

SELECT *
FROM R
WHERE f£;

példa: Legyen a NagyKer nevil adatbazis a kovetkezo relaciosémakkal:

Részlegek (RészlegID, Név, Helység, ManSzemSzdam) ;
Alkalmazottak (SzemSzam, Név, Fizetés, Cim, RészleglD);
Managerek (SzemSzam) ;

AruCsoportok (CsopID, Név, RészlegID);

Aruk (AruID, Név, MértEgys, MennyRakt, CsopID);
Szallitdék (SzalllID, Név, Helység, UtcaSzéam);

Vevdék (Vev&ID, Név, Helység, UtcaSzam, Mérleg, Hihetdség);
Szallit (Sz&l1lI1D, AruID, Ar);

Szerz8dések (Szerzd8dID, Datum, Részletek, VevdID);
Tételek (TétellID, Datum, Szerzd&dID);

Szerepel (TétellID, ArulID, RendMenny, Sz&llMenny) .

Legyen a kovetkez6 lekérdezés:
»Keressiik azon alkalmazottakat, akik a 9-es részlegnél dolgoznak ¢és a fizetésiik nagyobb, mint
500 eurd”.

SELECT *
FROM Alkalmazottak
WHERE RészlegID = 9 AND Fizetés > 500; O

A FROM kulcsszé utan adhatjuk meg azokat a relaciokat, jelen esetben csak egyet, melyre a
lekérdezés vonatkozik, a fenti példa esetén az Alkalmazottak relacio.

A kivalasztas feltételét a WHERE kulcsszo utan tudjuk megadni. A példank esetében azok a
sorok fognak a lekérdezés eredményében megjelenni, melyek eleget tesznek a WHERE utan megadott
feltételnek, vagyis az alkalmazott RészlegID attributumanak az értéke 9 és a Fizetés attributum értéke
nagyobb, mint 500.

A SELECT kulcssz6 utani * azt jelenti, hogy az eredmény relacio fogja tartalmazni a FROM
utan megadott relacid dsszes attributumat.

Az SQL nyelv nem kiilonbozteti meg a kis €s nagy betiiket. Nem sziikséges 10j sorba irni a
FROM ¢és WHERE kulcsszavakat, altalaban a fenti médon szoktak megadni, de lehet egy sorban kis
bettikkel is.

select * from alkalmazottak where részlegID = 9 and fizetés > 500;

A relacids algebra vetités miivelete

94 3. FEJEZET ADATBAZISOK

7a, ., (R)

a SELECT-SQL parancs segitségével a kovetkezoképpen adhaté meg:

SELECT A, A K, A
FROM R;
A SELECT kulcssz6 utan megadhatjuk az R relacié barmely attributumat €s az eredmény sorok
ezen attributumokat fogjak csak tartalmazni, ugyanazzal a névvel, amivel az R relacioban szerepelnek.

példa: Legyen a kovetkez6 relacios algebrai lekérdezés:

T Név, Fizetés (AI kal maZOttak)

SELECT-SQL parancs segitségével a kovetkezoképpen irhato fel:

SELECT Név, Fizetés
FROM Alkalmazottak; O

A lekérdezés feldogozésa soran a FROM kulcsszé utan megadott relaciot a feldolgozo
végigjarja, minden sor esetén ellendrzi a WHERE kulcssz6 utan megadott feltétel teljesiil-e. Azon
sorokat, melyek esetén a feltétel teljesiil, az eredmény relacioba helyezziik. A feldogozas
hatékonysagat noveli, ha a feltételben szerepld attribitumok szerint l1étezik indexallomany.

A vetités soran kapott eredmény relacid esetén megvdltoztathatjuk az attributumok neveit az
AS kulcsszo segitségével, ha a FROM utan szerepld relacid attributum nevei nem felelnek meg. Az
AS nem kotelez6. A SELECT kulcsszo utan kifejezést is hasznalhatunk.

példa: Ha példaul a fizetést nem eurd-ban, hanem $-ban szeretnénk és az eurd/dollar arany mondjuk
1.1, akkor a nagy fizetésii alkalmazottakat a 9-es részlegbdl a kdvetkezd paranccsal kapjuk meg:

SELECT Név AS Név9, Fizetés * 1.1 AS Fizetes$
FROM Alkalmazottak
WHERE RészlegID = 9 AND Fizetés > 500;

Tehat az eredmény relacio két oszlopot fog tartalmazni, melyek nevei: Név9, illetve Fizetés$. o

A WHERE kulcsszo utdni feltétel lehet egyszerii vagy odsszetett. Osszetett feltétel esetén
hasznalhatjuk az AND, OR ¢és NOT logikai miveleteket. A miveletek sorrendjének a
meghatarozasara hasznalhatunk zardjeleket, ha ezek megel6zési sorrendje nem felel meg. Az SQL
nyelvben is, mint a legtobb programozasi nyelvben a NOT megel6zi az AND és OR miiveletet, az
AND pedig az OR-t.

példa: ,,Keressiik a 3-as és 6-os részleg alkalmazottait akiknek kicsi a fizetése, 200 eurdnal kisebb.”
A kovetkez6 paranccsal kapjuk meg:

SELECT Név, Fizetés
FROM Alkalmazottak
WHERE (RészlegID = 3 OR RészlegID = 6) AND Fizetés < 200;

Ha a zarojelet nem tettiikk volna ki, akkor csak a 6-os részlegbdl valogatta volna ki a kis
fizetéstieket, €s az eredmény relacioban a 3-as részlegbdl az sszes alkalmazott szerepelt volna. O

Az SQL rendszerek haromértékli logikat hasznalnak, vagyis egy kifejezés (feltétel) logikali
értéke lehet: igaz (1), hamis (0), ismeretlen (unknown) (0.5). Egy kifejezés logikai értéke akkor
ismeretlen, ha a kifejezésben szereplé valamelyik operandus értéke NULL. Egy WHERE-beli allitas
értékét hamisnak tekintjiik akkor is, ha a kifejezés értéke ,,ismeretlen”. A NOT, AND és OR
operatorok igazsagértékét a kovetkezo tablazat adja meg:

AND | FALSE NULL TRUE OR | FALSE NULL TRUE
FALSE | FALSE FALSE FALSE FALSE | FALSE NULL TRUE NOT.|FALSE NULL TRUE
NULL | FALSE NULL TRUE NULL | NULL NULL TRUE | TRUE NULL FALSE

TRUE | FALSE NULL TRUE TRUE | TRUE TRUE NULL

3. FEJEZET ADATBAZISOK 95

Karakterlancok 0Osszehasonlitasa esetén hasznalhatjuk a LIKE kulcsszot, hogy a
karakterlancokat egy mintaval hasonlitsunk 6ssze a kdvetkezdképpen:

k LIKE m

ahol k egy karakterlanc és m egy minta. A mintaban hasznalhatjuk a % és _ karaktereket. A % jelnek
a k-ban megfelel barmilyen karakter 0 vagy nagyobb hosszlisagu sorozata. Az _ jelnek megfelel egy
akarmilyen karakter a k-bol. A LIKE kulcsszo segitségével képezett feltétel igaz, ha a k karakterlanc
megfelel az m mintanak.

példa: SELECT *
FROM Alkalmazottak
WHERE Név LIKE ‘Kovacs$%’';

A lekérdezés eredménye azon alkalmazottakat tartalmazza, kiknek a neve a ‘Kovacs’
karaktersorral kezdodik. Megkapjuk az 6sszes Kovacs vezetéknevii alkalmazottat, de a ‘Kovacsovics’
vezetékneviit is, ha ilyen 1étezik az adatbazisban. Ha csak a Kovacs vezetékneviieket akarjuk, akkor a
‘Kovacs %’ mintat hasznaljuk. o
Hasznalhatjuk a

k NOT LIKE m

szir6 feltételt is.

Mas szirbfeltételek a BETWEEN és IN kulcsszoval képezhetok. A BETWEEN kulcsszo
segitségével megadunk egy intervallumot, €s azt vizsgaljuk, hogy adott oszlop, mely értéke esik a
megadott intervallumba. (Az oszlop itt szintén lehet szarmaztatott oszlop, kifejezés.)

WHERE <oszlop> BETWEEN <kifejezés 1> AND <kifejezés 2 >

példa: SELECT Név
FROM Alkalmazottak
WHERE Fizetés BETWEEN 300 AND 500;

Ugyanazt az eredményt adja, mint a:

SELECT Név
FROM Alkalmazottak
WHERE Fizetés >= 300 AND Fizetés <=500; O

Az IN operator utdn megadunk egy értéklistat, €s azt vizsgaljuk, hogy az adott oszlop mely
mezdinek értéke egyezik az adott lista valamelyik elemével. (Az oszlop lehet szarmaztatott oszlop,
kifejezés is.)

WHERE <oszlop> IN (<kifejezés 1>, <kifejezés 2> [,...])
példa: Legyen az Egyetem nevii adatbazis a kdvetkezo relaciosémakkal:

Szakok (SzakKod, SzakNév, Nyelv);

Csoportok (CsopKod, Evfolyam, SzakKod);

Didkok (BeiktatédsiSzam, Név, SzemSzéam, Cim, SzliletésiDatum, CsopKod,
Atlag);

TanszékCsoportok (TanszékCsopKod, Név);

Tanszékek (TanszékKod, Név, TanszékCsopKod) ;

Beosztasok (BeosztasKod, Név);

Tanédrok (TanadrKod, Név, SzemSzam, Cim, PhD, TanszékKod, BeosztéasKod,

Fizetés);

Tantadrgyak (TantKod, Név);

Tanit (TanarKod, TantKod);

Jegyek (BeiktatédsiSzéam, TantKod, Datum, Jegy)

A diakok 6sszes jegyét eltaroljuk a Jegyek relacioban, tobb szemeszterben sok jegye van egy didknak.
A Diakok tablaban az utolsé szemeszter vagy utolsd év atlaga szerepel az Atlag oszlopban, ami
alapjan eldontik példaul, hogy kap-e a diak bentlakast, 6sztondijat stb.

96 3. FEJEZET ADATBAZISOK

Keressiik az ’531°-es, ’532’-s és *631’-es csoportok didkjait:

SELECT Név
FROM Didkok
WHERE CsopKod IN ('531', '532', 'e31'"); O

A SELECT SQL parancs lehetéséget ad az eredmény relacié rendezésére az ORDER BY
kulcsszavak segitségével. Alapértelmezés szerint novekvo sorrendben torténik a rendezés, de ha
csokkend sorrendet szeretnénk, akkor a DESC kulcsszot hasznalhatjuk.

példa: Ha a fenti lekérdezést kiegészitjiik azzal, hogy a didkokat csoporton beliil, névsor szerinti
sorrendben akarjuk megadni, akkor a SELECT parancsot kiegészitjik az ORDER BY utan a
megfeleld attributumokkal a kovetkezoképpen:

SELECT Név

FROM Didkok

WHERE CsopKod IN ('531', '532', '631'")
ORDER BY CsopKod, Név; O

példa: A diakokat atlag szerint csokkend sorrendben adja meg:

SELECT Név
FROM Diakok
ORDER BY Atlag DESC; O

3.4.2. Tobb relaciora vonatkozo lekérdezések

A reléciés algebra egyik fontos tulajdonsaga, hogy a miiveletek eredménye szintén relacid, és az
eredmény operandus lehet a kdvetkezé miiveletben. Az SELECT-SQL is kihasznalja ezt, a relaciokat
Osszekapcsolhatjuk, egyesithetjiik, metszetet vagy kiilonbséget is szamithatunk.

A Descartes szorzat
R; X Ry
miveletét a kovetkezd SQL parancs valositja meg:

SELECT *
FROM R,, Ry;

A Théta-6sszekapcsolast:
Rl > R2

a kovetkez0 paranccsal adhatjuk meg:

SELECT *
FROM R1, R,
WHERE @ ;

A leggyakrabban hasznalt miiveletet, a természetes dsszekapcsolast
Ri > Ry = 75 ¢ (RUP (5 Ak, m)n(R AR A)AK AR AR,) R2)
a kovetkezOképpen irhatjuk SQL-ben:

SELECT *
FROM R;, R,

wHERE R.A =R, A ANDR,.A, =R,,A) ANDK ANDR A =R, A ;
Ebben az altalanos esetben a két dsszekapcsolando relacionak p darab kozos attributuma van. A
gyakorlatban altaldban a két relacionak egy kozos attributuma van. Amint latjuk, ha tobb relacioban is
szerepel ugyanaz az attributum név, el6tagként a relacio nevét hasznaljuk.

példa: Legyenek a kdvetkezo relaciok:
Csoportok (CsopKod, Evfolyam, SzakKod);

3. FEJEZET ADATBAZISOK 97

Didkok (BeiktatdsiSzam, Név, Cim, SziiletésiDatum, CsopKod, Atlag);

Ha a diakok esetén szeretnénk kiirni az évfolyamot és szakkodot is, akkor ezt a kovetkezd6 SQL
parancs segitségével érjiik el:
SELECT Név, CsopKod, Evfolyam, SzakKod

FROM Diakok, Csoportok
WHERE Didkok.CsopKod = Csoportok.CsopKod;

Tehat a WHERE kulcsszé utan megadjuk a join feltételt. Ha elfelejtjiik a join feltételt az eredmény
Descartes szorzat lesz, melynek méretei nagyon nagyok lehetnek.

Vannak olyan ABKR-ek, melyek az elobbi feladat megoldasara a JOIN kulcsszot is elfogadjak (pl.
MS SQL Server):

SELECT Név, CsopKod, Evfolyam, SzakKod
FROM Didkok INNER JOIN Csoportok
ON Didkok.CsopKod = Csoportok.CsopKod;

Kés6bb latjuk majd az OUTER JOIN-t is.o0

Amint az egyszerl lekérdezéseknél lattuk, a WHERE kulcsszé utan a kivalasztas feltételét
adtuk meg. Ha tobb relacio dsszekapcsolasa mellett kivalasztas miiveletet is meg akarunk adni, a join
feltétel utan AND logikai miivelettel a kivalasztas feltételét is megadhatjuk.

példa: Az 6sszes harmadéves didk nevét a kovetkezd paranccsal is megkaphatjuk:

SELECT Név

FROM Diédkok, Csoportok

WHERE Didkok.CsopKod = Csoportok.CsopKod
AND Evfolyam = 3; O

Kett6nél tobb relaciot is dsszekapcsolhatunk természetes Gsszekapcsolassal, fontos, hogy az
Osszes join feltételt megadjuk. Ha az 6sszekapcsolandd relaciok szama k, és minden két-két relacionak
egy-egy kozos attribituma van, akkor a join feltételek szama k—1. Ha tehat 4 relaciot kapcsolunk
Ossze, a join feltételek szama minumum 3.

példa: A NagyKer nevii adatbazisra vonatkozdan legyen a kovetkez6 lekérdezés:
,»Adjuk meg azon szallitok nevét és cimét, kik szallitanak édességet” (AruCsoportok Név = ‘édesség’)

SELECT Sz4allitdék.Név, Szallitdk.Helység, Szallitdk.UtcaSzam
FROM AruCsoportok, Aruk, Szallit, Szallitok
WHERE AruCsoportok.CsopID = Aruk.CsopID

AND Aruk.AruID = Sz&llit.ArulID

AND Sz&llit.SzallID = Sza&llitdk.SzalllID

AND AruCsoportok.Név = 'édesség'; O

Az SQL lehet6séget ad arra, hogy a FROM zdradékban szerepldé R reldcidhoz
hozzarendeljiink egy masodnevet, melyet sorvaltozonak neveziink. Sorvaltozot akkor hasznalunk, ha
rovidebb vagy mas nevet akarunk adni a relacionak, illetve ha a FROM utan kétszer is ugyanaz a
relacio szerepel. Ha hasznaltunk masodnevet, akkor az adott lekérdezésben azt kell hasznaljuk.

példa: Keressiik azon alkalmazottakat, akik ugyanazon a cimen laknak, példaul férj és feleség, vagy
szilo és gyerek.

SELECT Alkl.Név AS Névl, Alk2.Név AS Név2
FROM Alkalmazottak AS Alkl, Alkalmazottak AS Alk2
WHERE Alkl.Cim = Alk2.Cim

AND Alkl.Név < Alk2.Név;

A lekérdez6 feldolgozo ugyanazt a relaciot kell kétszer bejarja, hogy a kért parokat megtalalja. Ha az
Alk1.Név < Alk2.Név feltételt nem tettiik volna, akkor minden alkalmazott bekeriilne az eredménybe
Onmagaval is parositva. Ezt esetleg a <> feltétellel is megoldhattuk volna, de akkor egy férj—feleség
paros kétszer is bekeriilt volna, csak mas sorrendben. Példaul: (‘Kovacs Istvan’, ‘Kovacs Sara’) és

98 3. FEJEZET ADATBAZISOK

(‘Kovacs Sara’, ‘Kovacs Istvan’) is. Mivel gyereknek lehet ugyanaz a neve, mint a sziilének, ezért
jobb megoldas a: Alkl.Név < Alk2.Né¢v feltételt kicserélni a kovetkezo feltétellel:

Alkl.SzemSzam < Alk2. SzemSzam; O

Algoritmus egy egyszerit SELECT—SQL lekérdezés kiértékelésére:
Input: Ry, Ry,..., Ry relaciok a FROM zaradék utan
Begin
Minden t; sorra az R;-bél
Minden t, sorra az R,-bél

Minden t, sorra az R,-bdl
Ha a WHERE zaradék igaz a ty, t,, ..., t, attribitumainak az értékeire
Akkor
A SELECT zaradék attributumainak értékeibdl alkotott sort az eredményhez adjuk
End

A relécios algebra halmazmiiveleteit (egyesités, metszet és kiilonbség) hasznalhatjuk az SQL
nyelvben, azzal a feltétellel, hogy az operandus relacioknak ugyanaz legyen az attriblitumhalmaza. A
megfeleld kulcsszavak: UNION az egyesitésnek, INTERSECT a metszetnek és EXCEPT a
kiilonbségnek.

példa: Legyenek a Szallitok és Vevok relaciok a NagyKer adatbazisbol €s a kovetkezd lekérdezés:
»Keressiik a kolozsvari cégeket, akikkel kapcsolatban all a cégiink.” A megoldast a kovetkezd
lekérdezés adja:

(SELECT Név, UtcaSzéam
FROM Szallitdk
WHERE Helység = 'Kolozsvar')
UNION
(SELECT Név, UtcaSzam
FROM Vevdk
WHERE Helység = 'Kolozsvar'); O

példa: Legyenek az Alkalmazottak és Managerek relaciok a NagyKer adatbazisbol és a ,,Keressiik
azon alkalmazottakat, akik nem managerek” lekérdezés:

(SELECT SzemSzam, Név FROM Alkalmazottak)
EXCEPT
(SELECT SzemSzé&m, Név FROM Managerek, Alkalmazottak
WHERE Managerek.SzemSzdm = Alkalmazottak.SzemSzéam) ;

A fenti parancs esetén a masodik SELECT parancsban a join miiveletre azért volt sziikségiink, hogy a
managernek keressiik meg a nevét is, mert a kiilonbség miivelet esetén fontos, hogy az operandus
relacidknak ugyanaz az attribitumhalmaza legyen.

Ha az alkalmazott névre nem vagyunk kivancsiak, akkor a kovetkez6 SQL parancs azon
alkalmazottak személyi szamat adja meg, akik nem managerek.

(SELECT SzemSzam FROM Alkalmazottak)
EXCEPT
(SELECT SzemSzam FROM Managerek) ;

A feladatot oly mddon is megoldhatjuk, ha a kereskedelmi rendszer nem tdmogatja az EXCEPT
miveletet, hogy alkalmazzuk a NOT EXISTS vagy NOT IN zaradékot.

példa: Legyen az Egyetem adatbazisa, és tegyiik fel, hogy van olyan eset, hogy egy fiatal tanarsegéd
a matematika szakrol, tehat elvégezte a matematika szakot, de még didk az informatika szakon.
Legyen a kovetkezo lekérdezés: ,keressiik azon tanarokat, akik még diakok”. A megoldas:

(SELECT Név FROM Tanarok)

INTERSECT
(SELECT Név FROM Diédkok);

3. FEJEZET ADATBAZISOK 99

A feladatot a kovetkezOképpen is megoldhatjuk, ha a kereskedelmi rendszer nem tamogatja az
INTERSECT miiveletet:

SELECT Név FROM Tanarok
WHERE EXISTS
(SELECT Név FROM Didkok
WHERE Didkok.SzemSza&m = Tanarok.SzemSzam); O

3.4.3. Ismétlodoé sorok

Az SQL nyelv relacidi az absztrakt modon definialt relacioktol abban kiillonboznek, hogy az
SQL nem tekinti 6ket halmaznak, azaz a relaciok multihalmazok A SELECT parancs eredményében
szerepelhet két vagy tOobb teljesen azonos sor, viszont van lehetdség ezen ismétlodések
megsziintetésére.

A SELECT kulcssz6 utan a DISTINCT sz6 segitségével kérhetjik az azonos sorok
megsziintetését.

példa: Az Egyetem adatbazisa esetén keressiik azon csoportokat, amelyekben vannak olyan diakok,
akiknek atlaga kisebb, mint 7.

SELECT DISTINCT CsopKod
FROM Didkok
WHERE Atlag < 7;

A parancs a Diadkok tablabodl kivalogatja azokat a sorokat, ahol az atlag kisebb, mint 7, ezen
sorok diakokrol szold informacidkat tartalmaznak, tobbek kozott a csoportkodot is. Egy csoportban
tobb didk is lehet, akiknek az atlaga kisebb, mint 7, ezért, ha nem hasznaljuk a DISTINCT kulcsszot,
akkor el6fordulhat, hogy egy csoportkod tdbbszor is szerepel az eredményben. o

A SELECT paranccsal ellentétben, a UNION, EXCEPT ¢s INTERSECT halmazelméleti
miveletek megsziintetik az ismétlddéseket. Ha nem szeretnénk, hogy az ismétl6do sorok eltiinjenek, a
miveletet kifejez6 kulcsszo utan az ALL kulcsszot kell hasznaljuk.

példa: Az Egyetem adatbazisbol keressiik a személyeket, akik lehetnek tanarok vagy diakok. A
kovetkezo parancs nem sziinteti meg az ismétlodéseket:

(SELECT Név FROM Tanarok)
UNION ALL
(SELECT Név FROM Diakok):;

Tehat, ha van olyan tanar, aki kozben didk is, akkor az kétszer fog szerepelni az eredményben. o

3.4.4. Osszesité fiiggvények és csoportositis

Az SQL nyelv lehetdséget ad egy oszlopban szerepld értékek Osszegezésére, vagyis hogy
meghatarozzuk a legkisebb, legnagyobb vagy atlag értéket egy adott oszlopbol. Az dsszesités
miivelete egy oszlop értékeibdl egy j értéket hoz létre. Ezenkiviil a relacidé egyes sorait bizonyos
feltétel szerint csoportosithatjuk, példaul egy oszlop értéke szerint, és a csoporton beliil végezhetiink
Osszesitéseket.

Osszesit6 fiiggvények a kovetkezok:

— SUM, megadja az oszlop értékeinek az 6sszegét;

— AVG, megadja az oszlop értékeinek a atlagértékét;

— MIN, megadja az oszlop értékeinek a minimumat;

— MAX, megadja az oszlop értékeinek a maximumat;

— COUNT, megadja az oszlopban szerepld értékek szamat, beleértve az ismétlddéseket is, ha azok
nincsenek megsziintetve a DISTINCT kulcsszéval.

Ezeket a fliggvényeket egy skalar értékre alkalmazhatjuk, altalaban egy SELECT zaradékbeli
oszlopra.

100 3. FEJEZET ADATBAZISOK

példa: A kovetkezd lekérdezés segitségével megkapjuk az alkalmazottak atlagos fizetését:

SELECT AVG (Fizetés)
FROM Alkalmazottak; O

példa: Ha az alkalmazottak szdmara vagyunk kivancsiak:

SELECT COUNT (*)
FROM Alkalmazottak; O

Mindkét példa esetén biztosak vagyunk abban, hogy egy alkalmazott csak egyszer szerepel a
relacidban, mivel a személyi szam elsddleges kulcs. A COUNT () Osszesitd fliggvénynek tobb formaja
is van:

® COUNT (*) - az eredmény-relacio kardinalitasat (az dsszes sor szamat) adja vissza

® COUNT (oszlop_név)- azon sorok szamat adja vissza, ahol oszlop név értéke NULL-t6l
kiilonbozé érték

® COUNT (DISTINCT oszlop név)- megszamolja, hany kiilonbdzé értéke van az oszlop név
mezOnek.

példa: Az Egyetem adatbazis esetén keressiik azon csoportoknak a szamat, amelyekben vannak olyan
diakok, akik atlaga kisebb, mint 7:
SELECT COUNT (DISTINCT CsopKod)

FROM Didkok
WHERE Atlag < 7;0

Az eddigi Osszesitések az egész relaciora vonatkoztak. Sok esetben a relacid sorait
csoportositani szeretnénk egy vagy tobb oszlop értékei szerint. Példaul az alkalmazottak atlagfizetését
minden részlegen belill akarjuk meghatarozni. Az Egyetem adatbazisban minden csoport esetén
keressiik a legnagyobb atlagot, a diakok szamat. A csoportositdst a GROUP BY kulcsszd segitségével
érjiik el. A parancs altalanos formaja:

SELECT < csoportositd oszlopok listaja >,
<6sszesitdé-flggvény> (<oszlop>)

FROM <relacié>

[WHERE <feltétel>]

[GROUP BY <csoportositd oszlopok listaja>]

[HAVING <csoportositéasi-feltétel>]

[ORDER BY <oszlop>];

A GROUP BY utan megadjuk a csoportosito attribitumok (oszlopok) listajat, melyek azonos
értéke szerint torténik a csoportositas. Csak ezeket az oszlopokat valogathatjuk ki a SELECT kulcsszo
utan és azokat, melyekre valamilyen Osszesité fliggvényt alkalmazunk. Azon oszlopoknak, melyekre
Osszesito fiiggvényt alkalmaztunk, érdemes mas nevet adni, hogy konnyebben tudjunk hivatkozni ra.

példa: Legyenek az Alkalmazottak relacio sorai:

SzemSzdam Név RészleglD | Fizetés

(euro)
111111 Nagy Eva 2 300
222222 Kiss Csaba 9 400
456777 Szabd Janos 9 900
234555 Szilagyi Pal 2 700
123444 Vincze I1diko 1 800
333333 Kovacs Istvan 2 500

A részlegeken beliili atlagfizetést a kovetkez6 parancs segitségével kapjuk meg:

SELECT RészlegID, AVG(Fizetés), MIN(Fizetés), MAX(Fizetés), SUM(Fizetés)
FROM Alkalmazottak
GROUP BY RészleglID;

3. FEJEZET ADATBAZISOK

A kapott eredmény:

RészlegID | AVG(Fizetés) MIN(Fizetés) MAX(Fizetés) SUM(Fizetés)
1 800 800 800 800
2 500 300 700 1500
9 650 400 900 1300

101

A lekérdezés processzor el6szor rendezi a relacio sorait a csoportositandd oszlop értékei szerint, utana
azokat a sorokat, ahol ezen oszlopoknak ugyanaz az értéke, az eredmény relacioban csak egy sor fogja
képviselni, ahol megadhatjuk az oszlop értékét, amely a lekérdezett relacioban minden sorban
ugyanaz. A tobbi oszlopra csakis Osszesitéseket végezhetiink. Ha a SELECT kulcsszoé utan olyan
oszlopot valasztunk ki, melynek értékei kiilonbozéek a lekérdezett relacioban, a lekérdezés processzor
nem tudja, hogy a kiilonbozo értékekbdl melyiket valassza az eredménybe. Van olyan implementalasa
a SELECT-SQL parancsnak, mely megengedi, hogy egy olyan oszlopot is kivalasszunk, mely nincs a
csoportositd attributumok kozott €s a processzor vagy az elsd, vagy az utolsd értéket valasztja a
kiilonboz6 értékek koziil.

A SELECT parancs megengedi viszont, hogy a csoportositd attribitum hidnyozzon a vetitett
attribiitumok listajabol.

példa: A kovetkezd lekérdezés helyes:

SELECT AVG (Fizetés) AS AtlagFizetés
FROM Alkalmazottak
GROUP BY RészleglID;

eredménye pedig:

AtlagFizetés
800
500
650

példa: Legyen a Szallit (SzallID, ArulD, Ar) relacié. Egy arut tobb szallité is ajanlhatja, kiilonbozé
arban. Sok esetben sziikségiink van az atlagarra, amiben ajanlanak egy arut. A kovetkezd lekérdezés
minden aru esetén meghatarozza az atlagarat, amiben a kiillonboz6 szallitok ajanljak.

SELECT AruID, AVG(Ar) AS Atlaghr
FROM Szallit
GROUP BY AruID; O

A GROUP BY =zaradékot hasznalhatjuk tobbrelacios lekérdezésben is. A lekérdezés
processzor elészor az operandus relaciokkal a WHERE feltételét figyelembe véve elvégzi a join,

srcr

példa: Ha a fenti példa esetén kivancsiak vagyunk az arunak a nevére:

SELECT Aruk.Név, AVG(Ar)

FROM Sz&llit. ArulID = Aruk.ArulID
WHERE Sz&llit, Aruk

GROUP BY Aruk.Név;

Remélhetéleg az aru neve is egyedi kulcs, tehat nem fordul eld egy aru név tébb ArulD esetén is, mert
a fenti példdban a Név attributum szerint csoportositunk. Ha nem egyedi a név, akkor a fenti
lekérdezés az Osszes azonos nevil arunak az atlagat adja meg, de sok esetben ez megfelel a
felhasznalonak. Megoldhatjuk Ggy is, hogy elészor ArulD szerint, majd aru név szerint
csoportositunk, lasd a csoportositast tobb oszlopra. O

Amint a SELECT parancsnak az altalanos formajanal lattuk, lehetséges tobb csoportositasi
attributum is.

102 3. FEJEZET ADATBAZISOK

példa: Legyenek a kdvetkezd relaciok az Egyetem adatbazisbol:

Tanszékek (TanszékKod, Név, TanszékCsopKod) ;

Beosztasok (BeosztéasKod, Név);

Tandrok (TandrKod, Név, SzemSzam, Cim, PhD, BeosztédsKod, TanszékKod,
Fizetés);

és a kovetkezd lekérdezés: ,,Szamitsuk ki a tanarok atlagfizetését tanszékeken beliil, beosztasokra
leosztva!”

SELECT TanszékKod, BeosztasKod, AVG (Fizetés)
FROM Tanéarok
GROUP BY TanszékKod, BeosztasKod

Ha a Tanarok tabla tartalma:

Tanar Név Cim PhD | Beosztds Tanszék | Fizetés
Kod Kod Kod
KB12 Kiss Béla Pet6fiu. 12 Y ADJ ALG 150
NLO03 Nagy Laszlo Kossuth u. 3 Y ADJ REN 160
KGO05 | Kovéacs Géza Ady tér 5 N ADJ ALG 160
Pl14 Péter Istvan Doém tér 14 N TNS REN 120
NT55 Németh Tamas Dézsa u. 55 Y PRO ALG 300
VS77 Vigh Sandor Rézsa u. 77 Y PRO REN 310
LL63 Lukacs Lorant Viola u. 63 Y ADJ REN 170
LS07 Laszl6 Samu Rakoczi u. 7 N TNS REN 110
KP52 Kerekes Péter Vacziu. 52 Y PRO ALG 280

a lekérdezés eredménye:

Tanszék | Beosztds AVG
Kod Kod (Fizetés)
ALG ADJ 155
ALG PRO 290
REN ADJ 165
REN PRO 310
REN TNS 115

példa: Megismételve egy elébbi példat:

SELECT Aruk. AruID, Aruk.Név, AVG(Ar)
FROM Sz&llit. ArulID = Aruk.ArulID
WHERE Sz&llit, Aruk

GROUP BY Aruk.AruID, Aruk.Név;

Az aru név szerinti csoportositas nem fog ujabb csoportokat behozni, de nem valogathatjuk ki a Név
oszlopot, ha nem szerepelt a csoportositasi attributumok kozott. A vetités attributumai k6z6tt nem kell
feltétleniil szerepeljen az ArulD, de ha egy név tobbszor is eléfordul, akkor az eredmény furcsa lesz.

A csoportositas utan kapott eredmény relacido soraira a HAVING kulcsszot hasznalva egy
feltételt alkalmazhatunk. Ha csoportositas eldtt szeretnénk kiszlirni sorokat, azokra a WHERE feltételt
lehet alkalmazni. A HAVING kulcsszo utani feltételben azon oszlopok szerepelhetnek, melyekre a
SELECT parancsban 0sszesit6 fliggvényt alkalmaztunk.

példa: Keressiik azon részlegeket, ahol az alkalmazottak atlagfizetése nagyobb, mint 500 euro,
atlagfizetés szerint névekvo sorrendben.

SELECT RészlegID, AVG(Fizetés)
FROM Alkalmazottak

GROUP BY RészlegID

HAVING AVG (Fizetés) > 500
ORDER BY AVG (Fizetés);

3. FEJEZET ADATBAZISOK 103

A fenti adatokat figyelembe véve az eredmény relacio a kdvetkezd lesz:

RészleglD | AVG(Fizetés)
9 650
1 800

Ha nem adjuk meg az ORDER BY zaradékot, akkor a GROUP BY zaradékban megadott oszlopok
szerint rendezi az eredményt.

példa: Helytelen a kdvetkez6 parancs:

SELECT RészleglID, AVG (Fizetés)
FROM Alkalmazottak

WHERE AVG (Fizetés) > 500
GROUP BY RészleglID;

példa: Keressiik azon tanszékeket, ahol a tanarsegédeket kivéve a tanarok atlagfizetése nagyobb, mint
240 euro.

SELECT TanszékKod, AVG(Fizetés)
FROM Tanéarok

WHERE BeosztasKod <> ‘TNS’/
GROUP BY TanszékKod

HAVING AVG (Fizetés) > 240;

3.4.5. Alkérdések

A WHERE zaradékban eddig a feltételben skaldris értékeket tudtunk Osszehasonlitani. Az
alkérdések segitségével sorokat vagy relacidkat tudunk Osszehasonlitani. Egy alkérdés egy olyan
kifejezés, mely egy relaciot eredményez, példaul egy select-from-where kifejezés.

Alkérdést tartalmaz6é SELECT SQL parancs altalanos formaja a kovetkezd:

SELECT <attributum lista>
FROM <tébla>
WHERE <kifejezés> <operéator>
(SELECT <attribGtum lista>
FROM <tébla>);

A rendszer el6szor az alkérdést hajtja végre és annak eredményét hasznalja a ,,f6” lekérdezés, kivéve
a korrelalt alkérdéseket.

Alkérdéseket annak megfelelden csoportosithatjuk, hogy az eredménye hany sort és hany oszlopot
tartalmaz:

e egy oszlopot, egy sort, vagyis egy skalar értéket ad vissza (single-row);
e egy oszlopot, tobb sort, Gn. tobbsoros alkérdés (multiple-row subquery);
e tobb oszlopot, tobb sort, Gn. t6bb oszlopos alkérdés (multiple-column);

Ha egy attribitum egyetlen értékére van sziikségiink, ebben az esetben a select-from-where
kifejezés skalar értéket ad vissza, mely konstansként hasznalhatd. A select-from-where kifejezés
eredményeként kapott konstanst egy attributummal vagy egy masik konstanssal 0sszehasonlithatjuk.
Nagyon fontos, hogy az alkérdés select-from-where kifejezése csak egy attributumnak egyetlen
értekét adja eredményiil, kiilonben hibajelzést kapunk.

példa: Legyenek a Részlegek és Alkalmazottak relaciok a NagyKer adatbazisbol, és a kdvetkezo
lekérdezés: ,Keressiik a ’Tervezés’ nevil részleg managerének a nevét.” A megoldas alkérdés
segitségével:

1) SELECT Név

2) FROM Alkalmazottak

3) WHERE SzemSzam =

4) (SELECT ManSzemSzam

104 3. FEJEZET ADATBAZISOK

5) FROM Részlegek
0) WHERE Név = ’'Tervezés’);

Amint latjuk, az alkérdés (4—6 sorok) csak egy oszlopot valaszt ki a manager személyi szamat, de
még abban is biztosak kell legyiink, hogy csak egy ’Tervezés’ nevil részleg legyen az adatbazisban.
Ezt elérhetjiik ha egyedi kulcs megszoritdst kériink a Részlegek reldciora a CREATE TABLE
parancsban a UNIQUE kulcsszd segitségével. Abban az esetben, ha az alkérdés nulla vagy egynél
tobb sort eredményez, a lekérdezés futds kdzbeni hibat fog jelezni. Az ,,Osszesitések” alfejezet O.
példdjanak az adatait figyelembe véve az alkérdés eredményiil az 123444 személyi szamot adja, és a
lekérdezés a kovetkezoképpen hajtodik végre:

SELECT Név
FROM Alkalmazottak
WHERE SzemSzam = 123444

A lekérdezés eredménye: ‘Vincze I1dikd’ lesz.o
A skalar értéket ado alkérdéssel hasznalhaté operdtorok az: =, <, <=, >, >=, <>,

példa: , Keressiikk azon alkalmazottakat, kiknek fizetése nagyobb, mint annak az alkalmazottnak,
kinek a személyi szama 333333.”

SELECT Név
FROM Alkalmazottak
WHERE Fizetés >
(SELECT Fizetés
FROM Alkalmazottak
WHERE SzemSzam = 333333); O

példa: ,,Keressiik azon alkalmazottakat, kiknek a fizetése az 9sszes alkalmazott minimalis fizetésével
egyenld.”

SELECT Név

FROM Alkalmazottak

WHERE Fizetés =
(SELECT MIN (Fizetés)
FROM Alkalmazottak); O

példa: ,Keressiik azon részlegeket és az alkalmazottak minimalis fizetését a részlegbdl, ahol a
minimalis fizetés nagyobb, mint a minimalis fizetés a 2-es ID-ji részlegbol.”

SELECT RészlegID, MIN(Fizetés)
FROM Alkalmazottak
GROUP BY RészlegID
HAVING MIN (Fizetés) >
(SELECT MIN (Fizetés)
FROM Alkalmazottak
WHERE RészlegID = 2);

A lekérdezés processzor el6szor az alkérdést értékeli ki, ennek eredményeként egy skalar értéket
(300) kapunk és a {6 lekérdezés ezzel a skalar értékkel fog dolgozni. O

Csinjan kell banjunk a csoportositassal.
Példa: Egy helytelen SELECT parancs:

SELECT SzemSzam, Név
FROM Alkalmazottak
WHERE Fizetés =
(SELECT MIN (Fizetés)
FROM Alkalmazottak
GROUP BY RészleglID);

Az alkérdés tobb sort is visszaad, pontosan annyit, ahdny kiilonboz6 RészlegID létezik az
Alkalmazottak tablaban, minden részleg esetén a minimalis fizetést adja vissza. Az egyenlOség az
alkérdés elott csak egy skalaris értéket var. o

3. FEJEZET ADATBAZISOK 105

A tébbsoros alkérdések esetén a WHERE zaradék feltétele olyan operdtorokat tartalmazhat,
amelyeket egy R relaciora alkalmazhatunk, ebben az esetben az eredmény logikai érték lesz. Bizonyos
operatoroknak egy skalaris s értékre is sziikségiik van. Ilyen operatorok:

» EXISTS R- feltétel, mely akkor és csak akkor igaz, ha R nem {ires.

példa: SELECT Név
FROM Alkalmazottak, Managerek
WHERE Alkalmazottak. SzemSzam = Managerek.SzemSzam
AND EXISTS
(SELECT *
FROM Alkalmazottak
WHERE Fizetés > 500);

A fenti példa csak abban az esetben adja meg a managerek nevét, ha van legalabb egy
alkalmazott, kinek a fizetése nagyobb, mint 500 euro.

» s IN R, mely akkor igaz, ha s egyenld valamelyik R-beli értékkel. Az s NOT IN R akkor igaz, ha
s egyetlen R-beli értékkel sem egyenld.

példa: Legyen a NagyKer adatbazis ¢és a kovetkez6 lekérdezés: ,, Adjuk meg azon szallitok nevét ¢s
cimét, akik valamilyen csokit szallitanak” (Aruk.Név LIKE “%csoki%"’)

SELECT Név, Helység, UtcaSzam
FROM Sz&llitdk
WHERE Sz&11ID IN
(SELECT SzalllID
FROM Sz&allit
WHERE AruID IN
(SELECT ArulD
FROM Aruk
WHERE Név LIKE ‘%csoki%’)

=

W 00 J o U b W N

)

A 7-9 sor alkérdése az Osszes olyan arut valasztja ki, melynek nevében szerepel a csoki.
Legyen a csoki aruk azonositdinak a halmaza: CsokilD. A 4—6 sor a Szallit tablabol azon SzallID-kat
valasztia ki, ahol az ArulD benne van a CsokilD halmazban. Nevezziik a csokit szallitok
azonositoinak a halmazat CsokiSzalllDk-nak. Az 1-3 sorok segitségével megkaphatjuk a csokit
szallitok nevét és cimét. o

A kereskedelmi rendszerek kiilonb6zé mélységig tudjak az alkérdéseket kezelni. Van olyan,
amelyik csak 1 alkérdést engedélyez.

» s > ALL R, mely akkor igaz, ha s nagyobb, mint az R relaci6 minden értéke, ahol az R
relacionak csak egy oszlopa van. A > operator helyett barmelyik O6sszehasonlitdsi operatort
hasznalhatjuk. Az s <> ALL Reredménye ugyanaz, mintaz s NOT IN R feltételé.

példa: Legyen a kovetkezo lekérdezés:

SELECT SzemSzam, Név

FROM Alkalmazottak

WHERE Fizetés > ALL
(SELECT MIN(Fizetés)
FROM Alkalmazottak
GROUP BY RészleglID);

Ugyanezt a lekérdezést lattuk egyenldséggel az alkérdés el6tt, helytelen példaként. Mivel az
alkérdés tobb sort is visszaad, a ,> ALL” operatort alkalmazva, a Fizetés oszlop értékét
Osszehasonlitja az dsszes minimalis fizetés értékkel az alkérdésbol. Tehat a lekérdezés megadja azon
alkalmazottakat, kiknek fizetése nagyobb, mint a minimalis fizetés minden részlegbdl. o

» s > ANY R, mely akkor igaz, ha s nagyobb az R egyoszlopos relacio legalabb egy értékénél. A >
operator helyett akarmelyik 6sszehasonlitasi operatort hasznalhatjuk.

106 3. FEJEZET ADATBAZISOK

példa: , Keressiik azokat a tanarokat, akik beosztdsa nem professzor, és van olyan professzor, akinek
a fizetésénél az illetd tanarnak nagyobb a fizetése.”

SELECT Név, BeosztasKod, Fizetés
FROM Tan&rok
WHERE Fizetés > ANY
(SELECT Fizetés
FROM Tanarok
WHERE BeosztdsKod = ‘PRO')
AND BeosztéasKod <> ‘PRO'; O

A t0bb oszlopos alkérdés esetén, a SELECT kulcsszo utan megadhatunk tobb mint egy oszlopot, és
sziikségszeriien a f0 lekérdezésben is ugyanannyi oszlopot kell megadjunk az 6sszehasonlitd operator
bal oldalan is. Az dsszehasonlitas parokra vonatkozik.

példa: ,Keressiikk azokat a tanarokat, akiknek a fizetése egyenld az algebra tanszék beosztasnak
megfeleld atlag fizetésével.”

SELECT Név, BeosztasKod, Fizetés
FROM Tanarok
WHERE BeosztasKod, Fizetés IN
(SELECT BeosztasKod, AVG(Fizetés)
FROM Tanarok
WHERE TanszékKod = ‘ALG’
GROUP BY BeosztéasKod); O

Az alkérdés meghatarozza az algebra tanszéken beliil a beosztasoknak megfeleld atlagfizetéseket. A
f6 lekérdezés akkor fog egy tanart kivalasztani, ha az alkérdés eredményhalmazdban megtaldlja a
tanar beosztas kodja mellett a fizetést is, az értékpart.

3.4.6. Korrelalt alkérdések

Az eddig bemutatott alkérdések esetén az alkérdés csak egyszer keriil kiértékelésre €s a kapott
eredményt a magasabb rendii lekérdezés hasznositja. A beadgyazott alkérdéseket gy is lehet
hasznalni, hogy az alkérdés tobbszor is kiértékelésre keriil. Az alkérdés tobbszori kiértékelését egy, az
alkérdésen kiviili sorvaltozoval érjiik el. Az ilyen tipust alkérdést korrelalt alkérdésnek nevezziik.

példa: Az Egyetem adatbazis esetén keressiik azon didkokat, akik egyediil vannak a csoportjukban
10-es atlaggal.

SELECT Név, CsopKod
FROM Didkok D1
WHERE Atlag = 10 AND NOT EXISTS
(SELECT D2.BeiktatédsiSzam
FROM Didkok D2
WHERE D1.CsopKod = D2.CsopKod
AND D1.BeiktatédsiSzam <> D2.BeiktatdsiSzéam
AND D2.Atlag = 10);

A lekérdezés kiértékelése soran a D1 sorvaltozo végigjarja a Didkok relaciot. Minden sorra a
D1-bol a D2 sorvaltozo segitségével ismét végigjarjuk a Diakok relaciot.

Legyen d1 egy sor a Didkok relaciobol, amelyet a f6 lekérdezés az eredménybe helyez, ha
megfelel a WHERE uténi feltételnek. Eloszor is a d1.Atlag értéke 10 kell legyen és az alkérdés
eredménye pedig iires halmaz. Az alkérdés akkor fog sorokat tartalmazni, ha 1étezik a Didkok
relacioban egy d2 sor, mely esetén ugyanaz a csoport kod, mint a d1 sor esetén, az atlag értéke 10 és a
beiktatasi szam kiilonbozik a d1 sor BeiktatasiSzam attributum értéket6l. Ez azt jelenti, hogy az
adatbazisban talaltunk egy masik diakot, ugyanabbdl a csoportb6l, akinek az atlaga 10-es. Mivel az
alkérdésben vannak sorok, nem fogja a dl sort kivalasztani. Ha az alkérdés iires halmaz, akkor
kivalasztja a d1-et, és ekkor talaltunk olyan diakot, aki egyediil van a csoportjaban 10-es atlaggal. o

3. FEJEZET ADATBAZISOK 107

3.4.7. Mas tipusu osszekapcsolasi miiveletek

A relacios algebra természetes 0sszekapcsolas miiveletét eddig a SELECT parancs segitségével
lattuk implementalva. Ha a WHERE zéaradékban adjuk meg a feltételt, vagy INNER JOIN kulcsszot
hasznalunk, csak azok a sorok keriilnek be az eredmény relacioba, melyek esetében a kozos
attributum ugyanaz az értéke mindkét relacioban megtalalhato. (A 16g6 sorok nem keriilnek be az
eredménybe.) Bizonyos esetekben sziikségiink van a 106g6 sorokra is.

Az OUTER JOIN kulcsszo segitségével azon sorok is megjelennek az eredményben, melyek
értéke a kozos attribitumra nem taldlhaté meg a masik tablaban, vagyis a 10g6 sorok, melyekben a
masik tabla attribitumai NULL értékeket kapnak. Tehat a kiilsé dsszekapesolds (outer join)
eredménye tartalmazza a bels6 Osszekapcsolas (inner join) eredménye mellett a 16gd sorokat is. A
kiilsé osszekapesolds 3—féle lehet:

R LEFT OUTER JOIN S ON R.X = S.X

eredménye tartalmazza a bal oldali R reldcié Osszes sorat, azokat is, amelyek esetében az X
attributumhalmaz értéke nem létezik az S relacid X értékei kozott. Ezt a miiveletet kiilsé baloldali
Osszekapcsolasnak nevezziik. Az eredmény az S attributumait is tartalmazza NULL értékekkel.

R RIGHT OUTER JOIN S ON R.X = S.X

eredménye a jobb oldali S relacid Osszes sorat tartalmazza, azokat is amelyek esetében az X
attribitumhalmaz értéke nem létezik az R relacid X értékei kozott. Ezt a miveletet kiilsé jobboldali

Osszekapcsolasnak nevezziik. Az eredmény az R attributumait is tartalmazza NULL értékekkel.
R FULL OUTER JOIN S ON R.X = S.X

eredménye azon sorokat tartalmazza, melyek esetében a kdzos attributum értéke megegyezik mindkét
relacioban és mind a bal oldali R relacio 16g6 sorait, mind az S relacié 16g6 sorait magaban foglalja.

példa: Legyenck az Alkalmazottak és Részlegek relacio sorai:

SzemSzdm Néy RészlegID | Fizetés
111111 Nagy Eva 2 300
222222 Kiss Csaba 9 400
456777 Szabd Janos 9 900
234555 Szilagyi Pal 2 700
123444 Vincze Ildiko 1 800
567765 Katona Jozsef NULL 600
556789 Lukacs Anna NULL 700
333333 Kovacs Istvan 2 500

RészleglD RNév ManagerSzemSzdm
1 Tervezés 123444
2 Konyvelés 234555
3 Eladas NULL
9 Beszerzés 456777

Legyen a kovetkezo lekérdezés:

SELECT * FROM Alkalmazottak

INNER JOIN Részlegek
ON Alkalmazottak.RészlegID =

Részlegek. RészleglD;

108 3. FEJEZET ADATBAZISOK

Az eredmény:

SzemSzam Név RészleglD | Fizetés RNév ManagerSzemS
zdm
111111 Nagy Eva 2 300 Konyvelés 234555
222222 Kiss Csaba 9 400 Beszerzés 456777
456777 Szab6 Janos 9 900 Beszerzés 456777
234555 Szilagyi Pal 2 700 Konyvelés 234555
123444 Vincze ldiké 1 800 Tervezés 123444
333333 Kovacs Istvan 2 500 Konyvelés 234555

Tehat azon alkalmazottak esetén, ahol a RészlegID megtalalhaté a Részlegek tablaban megkapjuk a
megfeleld részleg nevét €s a manager személyi szamat. Logd sorok nem jelennek meg az
eredményben. O

példa: Tekintsiik az alabbi lekérdezést:

SELECT * FROM Alkalmazottak
LEFT OUTER JOIN Részlegek
ON Alkalmazottak.RészlegID = Részlegek. RészlegID;

A lekérdezés eredménye:

SzemSzam Név RészlegID | Fizetés RNév Manager

SzemSzam
111111 Nagy Eva 2 300 Konyvelés 234555
222222 Kiss Csaba 9 400 Beszerzés 456777
456777 Szabd Janos 9 900 Beszerzés 456777
234555 Szilagyi Pal 2 700 Konyvelés 234555
123444 Vincze Ildiké 1 800 Tervezés 123444
567765 Katona Jozsef NULL 600 NULL NULL
556789 Lukacs Anna NULL 700 NULL NULL
333333 Kovacs Istvan 2 500 Konyvelés 234555

Ebben az esetben az Alkalmazottak Osszes sora, és a 10gd sorok is megjelennek az
eredményben, a Részlegek attribuitumai a 16g6 sorok esetén NULL értéket kapnak. o

példa: Tekintsiik az alabbi lekérdezést:

SELECT * FROM Alkalmazottak
RIGHT OUTER JOIN Részlegek
ON Alkalmazottak.RészlegID = Részlegek. RészlegID;

A lekérdezés eredménye:

SzemSzdam Név RészleglD | Fizetés RNév Manager

SzemSzdam
111111 Nagy Eva 2 300 Konyvelés 234555
222222 Kiss Csaba 9 400 Beszerzés 456777
456777 Szab6 Janos 9 900 Beszerzés 456777
234555 Szilagyi Pal 2 700 Konyvelés 234555
123444 Vincze Ildiké 1 800 Tervezés 123444
333333 Kovacs Istvan 2 500 Konyvelés 234555
NULL NULL 3 NULL Eladés NULL

Ebben az esetben a Részlegek Osszes sora jelenik meg, mivel ez a jobb oldali relacié. Az
Alkalmazottak relacid attributumai a 106g6 részleg esetén NULL értékeket kapnak. o

3. FEJEZET ADATBAZISOK 109

példa: Tekintsiik az alabbi lekérdezést:

SELECT * FROM Alkalmazottak
FULL OUTER JOIN Részlegek
ON Alkalmazottak.RészlegID = Részlegek. RészlegID;

A lekérdezés eredménye:

SzemSzdam Név RészleglD | Fizetés RNéy ManagerSzemS
zdm
111111 Nagy Eva 2 300 Konyvelés 234555
222222 Kiss Csaba 9 400 Beszerzés 456777
456777 Szab6 Janos 9 900 Beszerzés 456777
234555 Szilagyi Pal 2 700 Konyvelés 234555
123444 Vincze [ldiko 1 800 Tervezés 123444
333333 Kovécs Istvan 2 500 Konyvelés 234555
567765 Katona Jozsef NULL 600 NULL NULL
556789 Lukacs Anna NULL 700 NULL NULL
NULL NULL 3 NULL Eladés NULL

Csoportositas esetén is hasznalhatoak a kiilsé 6sszekapcsolasi miiveletek. o

példa: ,Adjuk meg minden részleg esetén az ott dolgozo alkalmazottak szamat! frassuk ki azon
részlegeket is, amelyekhez egyetlen alkalmazott sincs hozzarendelve!”

SELECT Részlegek.RészlegID, COUNT (SzemSzam) as AlkalmazottSzam
FROM Részlegek
LEFT OUTER JOIN Alkalmazottak
ON Alkalmazottak.RészlegID = Részlegek.RészlegID
GROUP BY Részlegek.RészleglID;
A lekérdezés eredménye:

RészlegID | Alkalmazott
Szdam
1 1
2 3
3 0
9 2

Példafeladatok

1. i) Tervezziink relaciés adatbazissémat, melynek tablai 3NF-ban vannak és egy software cég
kovetkezo informacioit taroljak:
o tevékenységek: tevékenység kodja, leirdsa, tevékenység tipusa;
o alkalmazottak: alkalmazott kodja, nev, tevékenységek listaja, csoport, melynek tagja,
csoport vezetdje.
Egy tevékenységet a kodja azonosit, egy alkalmazottat szintén. Egy alkalmazott egy csoportnak tagja,
egy csoportnak egy vezetdje van, aki szintén a cég alkalmazottja. Egy alkalmazott tobb
tevékenységben is részt vehet, illetve egy tevékenységnél tobb alkalmazott is dolgozhat.
Indokoljuk, hogy a tabldk 3NF-ban vannak! irjuk fel a funkcionalis fiiggéségeket!
i) Relacios algebrat vagy SELECT-SQL parancsot hasznalva, az i) pont adatbazisara vonatkozdan
adjuk meg:
a) azokat az alkalmazottakat a neviikkel, akik dolgoznak legalabb egy “tervezés” tipusu
tevékenységnél és nem dolgoznak egyetlen “tesztelés” tipust tevékenységnél sem;
b) azokat az alkalmazottakat a neviikkel, akik olyan csoportok vezet6i, amelyekhez legalabb 10
alkalmazott tartozik!

110 3. FEJEZET ADATBAZISOK

2. i) Tervezziink relacios adatbazissémat, melynek tablai 3NF-ban vannak és a kovetkezd
informacioikat taroljak:

e tantargyak: tantargy kodja, megnevezése, kreditek szama;

o diakok: didk kodja, neve, sziiletési datuma, csoportjanak kodja, évfolyamra, szakra
vonatkozo6 informaciok, azon tantargyak listaja, amelyekbdl vizsgazott (a vizsga datuma és a
jegy is tarolando)!

Indokoljuk, hogy a tablak 3NF-ban vannak! frjuk fel a funkcionalis fiiggéségeket!

ii) Relacios algebrat vagy SELECT-SQL parancsot hasznalva, az i) pont adatbazisara vonatkozdan

adjuk meg:

a) azokat a tantargyakat a megnevezésiikkel, amelyek esetén nincsenek atmend jegyek (atmend
jegy>=5);

b) azokat a didkokat (név, csoport, sikeres vizsgak szama), akik tobb, mint 5 vizsgan atmend jegyet
kaptak. Ha egy diaknak tobb jegye is van egy targybol, csak egyszer szamoljuk!

3. i) Tervezziink relacids adatbazissémat, melynek tablai 3NF-ban vannak és allamvizsgéra iratkozott

didkokrol a kovetkezd adatokat taroljak: beiktatdsi szam, didk neve, elvégzett szak kodja és neve,

szakdolgozat cime, iranyitd tanar kodja és neve, azon intézet kodja és megnevezése, amelyhez az

iranyit6 tanar tartozik, a dolgozat megvédéséhez sziikséges software-k listaja, (pl.: VB.Net, MS SQL

Server, Oracle, C#, Delphi, C++, IE sth.), illetve hardver-sziikségletek listaja (pl.: 1Gb RAM, 512Mb

RAM, DVD Reader stb.). {rjuk fel a funkcionalis fiiggdségeket, és indokoljuk, hogy a tabldk 3NF-ban

vannak!

ii) Relacios algebrat vagy SELECT-SQL parancsot hasznalva (legalabb egyszer mindegyiket) az i)

pont adatbazisara vonatkozéan adjuk meg:

a) azon diadkokat (Név, Szakdolgozat cime, Vezetd tanar neve), akiknek allamvizsga vezetd tanara
egy adott intézethez tartozik;

b) egy adott intézet esetén a didkok szamat, akik vezetd tanara az adott intézethez tartozik;

C) azon tanarokat (név, tanszéke neve), akik nem vezettek allamvizsgat;

d) azon didkok nevét, akik Oracle-t is és C#-0t is igényeltek!

4. i) Tervezziink relaciés adatbazissémat, melynek tablai 3NF-ban vannak és filmekrél szo6lo
informacioikat tarolnak:
e szinészek: szinész kddja, neve, neme, weboldala, orszaga;
o filmek: film kédja, cime, megjelenési datuma, stadio neve, stidid weboldala, stidioé orszaga,
rendezd neve, rendezé weboldala, rendezd orszaga, szinészek listaja, film tipusainak listaja!
frjuk fel a 1étez6 funkcionalis fliiggdségeket, és indokoljuk, hogy a végsd tablak 3NF-ban vannak!
ii). Relacios algebrat vagy SELECT-SQL parancsot hasznélva, az i) pont adatbazisara vonatkozdan
adjuk meg:
a. azokat az filmeket (cim, megjelenési datum, stidié neve), melyekben Julia Roberts és Richard Gere
egylitt szerepelnek;
b. azokat a szinészeket (név, web oldal), akik a legtobb filmben jatszottak!

5. Adjunk példat az R(ABCD) relécio olyan soraira, melyekben az ABC—D funkcionalis fiiggdség
nincs betartval

6. Legyen R és S két relacio a kdvetkezd sorokkal:

-
|

]
5]
)
)

I

oS

\
R: | 2 St

wn] i]

IS)

)

(%]

|

Mi lesz a kovetkezd lekérdezés eredménye:
p((D—A, E-C), S) - tac(R)?

3. FEJEZET ADATBAZISOK

7. Legyen a kovetkezd relacio: Személyek(Kod, Név, SziiletésiDdatum, Varos, Szakma), ahol a Kod

mez0 a relacio elsddleges kulcsa; és a kovetkezo lekérdezés:
TlWiros (GSzakma=’Programoz(’)’ (Szemelyek))-

frjuk le szavakban, mi lesz a lekérdezés eredménye, majd adjuk meg a lekérdezést SQL parancs

segitségével!

8. Legyen az R relaci6 szerkezete: R(a, b). A Q; és Q, lekérdezések eredményei a SELECT *

FROM R parancs altal visszatéritett sorok lesznek.

Qi UPDATE R SET b = 10 WHERE a = 20;
SELECT * FROM R;

Q,: DELETE FROM R WHERE a = 20;
INSERT INTO R VALUES (20,10);
SELECT * FROM R;

Hatarozzuk meg, hogy a kovetkezd kijelentések koziil melyek igazak, fliggetleniil az R tabla

tartalmatol. Magyarazzuk!
a) Qi és Q,ugyanazt az eredményt adjak.

b) Q; eredménye mindig részhalmaza (bennfoglaltatik) Q, eredményének.
c) Q,eredménye mindig részhalmaza (bennfoglaltatik) Q; eredményének.

d) Qi és Q, kiilonb6z6 eredményeket adnak.

9. Az alabbiakban az S relacio6 egy eléfordulasa lathatd, a relacié sémaja:
S[FKy, FKy, A, B, C, D, E], kulcsa: {FK;, FK,}.

FK1 FK2 A B C D E
1 1 al bl cl 7 2
1 2 a_ b3 cl 5 2
1 3 a2 bl c2 null 2
2 1 a3 b3 c2 null 100
2 2 a3 b3 c3 null 100

Adjunk valaszt az alabbi kérdésekre:
A. Hany rekordja lesz a lekérdezés eredményének?

SELECT *

FROM S

WHERE A LIKE 'a_'
5

4

0

1

Egyik sem a fentiek koziil.

PoooTe

B. Mennyi a kiilonbség a két lekérdezés eredmény-relacidinak kardinalitasai kozott?

SELECT FK2, FK1, COUNT(DISTINCT B)
FROM S

GROUP BY FK2, FKI1

HAVING FK1 = 1

SELECT FK2, FK1, COUNT (C)
FROM S

GROUP BY FK2, FKI1

HAVING FK1 = 2

112 3. FEJEZET ADATBAZISOK

a 1

b. 0

c. -1

d. -2

e. Egyik sem a fentiek koziil.

C. Az alabbi allitasok koziil melyik helyes?

a. Az alabbi funkcionalis fiiggdségek koziil legalabb egy nincs kielégitve a relacio adatai altal:
{A} — {B}, {FKy, FK,} — {A, B}, {FK1} — {A}.

b. A relacio adatait figyelembe véve, biztosan kijelenthetjiik, hogy legalabb egy az alabbi
funkcionalis fliggdségek koziil fennall az S sémara vonatkozoan: {A} — {B}, {FK,;} — {A, B},
{FKi} — {A}.
C. Az alabbi funkcionalis fliggdségek koziil legalabb kettd nincs kielégitve a relacio adatai altal:
{FKz} — {A, B}, {A} — {E}, {A, B} — {E}, {B} — {C, E}.
d. A relacio adatait figyelembe véve, biztosan kijelenthetjiik, hogy legalabb kett6 az alabbi
funkcionalis fliggdségek koziil fennall az S sémara vonatkozoan: {FK,} — {A, B}, {A} — {E},
{A, B} — {E}, {B} — {C,E}.
e. Egyik sem helyes a fentiek koziil.

D. Hany rekordja lesz a lekérdezés eredményének?

SELECT *
FROM S
WHERE B = 'bl' OR D = 5

2
3
1
5
Egyik sem a fentiek koziil.

Poo o

4.fejezet Operacios rendszerek

4.1. A Unix allomanyrendszer

4.1.1. Allomanyok tipusa

Az operacios rendszerek a kiilonféle, 6sszetartozo adatokat dal/lomdanyokban avagy file-okban
taroljak.

A UNIX megkiilonboztet kozonséges-, illetve specialis allomanyokat. A kdzonséges
allomany teljesen strukturdlatlan, egyszerien bajtok sorozata. Egy UNIX file végét nem
jelzik specialis karakterek, a filenak akkor van vége, amikor az olvaso6 rutin hibajelzéssel tér
vissza. Standard bemenet esetén a file végét ujsorban "D jelzi.

Egy specialis allomany ezzel szemben meghatarozott szerkezetii, kiilonleges célt
szolgal. A kovegtkezd fajta specialis allomanyokrol beszélhetiink: katalogus (directory),
eszkoz (device), szimbolikus lanc (symbolic link), nevesitett FIFO csévezeték (named pipe,
FIFO), illetve kommunikacidos végpont (socket).

Beszélhetiink tovabbd a folyamatok kozotti kommunikaciot, illetve szinkronizalast
szolgdlo eszkozokrdl, melyeket a rendszerhivasok szintaktikai szempontbdl szintén
allomanyként latnak. Ezeket az eszkdzoket a Unix magja kezeli: név nélkiili csdvezeték
(pipe), osztott memoria szegmensek, iizenetsorok, szemaforok.

Egy kozomséges allomany oktettjeit feldolgozhatjuk szekvencialisan, de hozzaférhetiink
kozvetleniil is egy bizonyos bajthoz, a sorszdmanak segitségével.

Eqy kataldgusfile csupan a tartalmat illetéen kiilonbozik egy kozonséges allomanytol. A
katalégusban szereplé minden file-hoz (k6zonséges allomany, alkatalogus, stb.) tartalmaz egy
bejegyzést. Minden felhasznaldé rendelkezik egy ugynevezett alapkatalogussal (home
directory), mely az altala hasznalt kozonséges allomanyokat, illetve altala létrehozottt
alkatalogusokat tartalmazza (~ vagy $SHOME).
Minden katalogus két specialis bemenetet tartalmaz:

" . " (pont) magara a katalogusra mutat;

" " (két egymasutani pont), a sziilokatalogusra mutat (parent directory).

Minden alloméanyrendszer egyetlen gyokér katalogust (root directory) tartalmaz: /.

A katalogusszerkezetet egy faszerkezet (graf) hatarozza meg. Az elérési ut megadasanal az
elvalasztojel a /. Kétféle modon megadott elérési utrol beszélhetiink:
— abszolut elérési ut: a gyokérhez (/) képest megadott hely.
— relativ elérési ut: az aktudlis katalogushoz (.) képest megadott hely (egy elérési ut
relativ, ha nem a / vagy ~ jelekkel kezdddik).

A katalogus, amelyben a felhaszndld éppen dolgozik, az ugynevezett aktudlis katalogus
(current directory). Ennek megvaltoztatasa a cd parancs segitségével lehetséges. Az aktualis
katalogus abszolut elérési utjat (a gyokér katalogustol kezdédéen) a pwd parancs adja meg.
Létrehozhatunk egy 1j katalogust az mkdir parancs segitségével, egy katalogus torlését
pedig a rmdir parancs teszi lehet6vé.

113

114 4. FEJEZET OPERACIOS RENDSZEREK

4.1.2. Allomanyok jellemzéi

Egy allomanyt az alabbi tulajdonsagok jellemeznek:

* név

* inode szdm — az allomany tulajdonséagait tarold inode tabla megfelelé bemenetének
azonositoja

* tipus

* méret

* tulajdonos (owner)

« csoport (group)

* hozzéaférési jogok

* létrehozas, utols6 hozzaférés ill. utols6 modositas datuma és ideje

* lancszam — hany kiilonb6z0 katalogusbemenet hivatkozik ugyanarra az allomanyra

A kovetkezd hozzaférési jogokat kiilonboztetjilk meg:

* olvasasi jog — 4 (read permission): az allomany olvashato, ill. a katalégus tartalma
listazhato

* irasi jog — 2 (write permission): az allomany moddosithato, ill. a katalogusban
allomanyokat Iehet 1étrehozni és torolni

» végrehajtasi jog — 1 (execute permission): az allomany programként végrehajthato,
ill. a katalogusban levd allomanyok/ katalogusok hozzaférhetek, be lehet 1épni a
katalogusba

» setuid: a programfile a file jogaival fut (nem a futtat6 jogaival!)

» setgid: a programfile a file csoportjanak jogaival fut

 sticky: a kataldgusban allomanyt t6rolni vagy atnevezni csak a tulajdonos tud

Egy allomany hozzaférési jogai négy csoportba sorolhatdak:
— specialis jogok (setuid — 4, setgid — 2, sticky — 1)
— afile tulajdonoséanak jogai (owner, owner user)
— afile csoportjanak jogai (group)
— mindenki méas jogai (other users)

rrrrr

megadasa kétféleképpen torténhet: numerikusan vagy szimbolikusan.

A numerikus (oktalis szamokkal torténd) megadas esetén a parancs a kovetkezéképpen néz
ki:

chmod [-R] perm-mode file ...

rrrrr

adni sziikség szerint. (A -R opcidval rekurziv modon, a megadott katalogus alatti teljes
allomanyrendszeren modositja a jogosultsagokat.) A bedllitani kivant jogokat oktdlis szam
formajaban kell megadni, az alabbiak szerint: az olvasas értéke 4, az irdsé 2, a végrehajtasé 1,
ezeket az értekeket Ossze kell adni, és igy tulajdonosi kategérianként képzodik harom oktalis
szamjegy, ezeket kell beirni. Ha példaul azt akarjuk, hogy a filel allomanyunkat a tulajdonos
tudja olvasni, irni, végrehajtani, a csoporttagok végrehajtani és olvasni, a tobbiek pedig csak
olvasni, akkor a jogosultsagok kddolasa 4+2+1, 4+1, 4, azaz 754 lesz:

$ chmod 754 filel

4. FEJEZET OPERACIOS RENDSZEREK 115

$ 1s -1 filel
-rwxr-xr-—- 1 tsiml234 student 27 2013-03-17 15:56 filel

Specialis jogok beallitasat is tartalmazo példa:
$ chmod 4751 filel
$ 1s -1 filel
-—rwsr-x--x 1 tsiml234 student 27 2013-03-17 15:56 filel

A masik megadasi méd a szimbolikus beallitas, ennek a kovetkez6 a szintaxisa (a who, op
illetve perm kozott a szokoz csak a lathatosag miatt szerepel):

chmod [-R] who op perm file ...

ahol who a tulajdonosi kategoriat adja meg, lehetséges értékei' u' (tulajdonos, user), 'g'
(csoport, group), 'o' (egyéb, others), illetve 'a' (mindenki, all), ami az el6z6 harmat
magaban foglal6 alapértelmezés.

perm a megfelelé mivelet, 'rwxst' lehet a mar latott moédon.

op értéke +-= lehet. '+' a megfeleld jog engedélyezését jelenti, ' - ' a jog letiltasat, '="
pedig a jog abszolut értékre allitasat. Néhany példa:

$ 1s -1 filel

-rw-rw-rw— 1 tsiml234 student 27 2013-03-17 15:56 filel

$ chmod 754 filel

$ 1s -1 filel

-rwxr-xr-—- 1 tsiml234 student 27 2013-03-17 15:56 filel

$ chmod u-w filel # tulajdonosnak irdsvédett

$ 1s -1 filel

-r-xr-xr-- 1 tsiml234 student 27 2013-03-17 15:56 filel

$ chmod a+x filel # mindenkinek végrehajthatd

$ 1s -1 filel

-r-xr-xr-x 1 tsiml234 student 27 2013-03-17 15:56 filel

$ chmod u=rwxs,g=rx,o=r filel

$ 1s -1 filel

-rwsr-xr-—- 1 tsiml234 student 27 2013-03-17 15:56 filel

Katalogusfile és inode
A fizikai file-ok adatait (a név kivételével) az inode tabla tartalmazza (i-bog). Minden fizikai
file-nak megfelel egy (és csak egy) inode.

Egy katalogusallomany a katalogusban szereplé minden file-hoz tartalmaz egy bejegyzést.
Egy katalogus bejegyzés csak a file nevét és inode szamat tartalmazza, amint azt a 4.1 abra
szemlélteti:

| alloménynév (tetszéleges hosszlisign) | inode szam |

4.1 abra Egy katalogus bejegyzés szerkezete

Az inode szam kilistazhato az |s —i paranccsal. Az inode szam meghatarozza az allomanyt
leird inode-ot.
Egy inode mérete 64 vagy 128 byte (allomanyrendszerenként kiilonbozik). Egy inode az
alabbi informaciokat tartalmazza az allomannyal kapcsolatban:

e tulajdonosat

116 4. FEJEZET OPERACIOS RENDSZEREK

e csoportjat

e hozzaférési jogait

e hosszat

e [étrehozas és utolsé modositas datumat

e tipusat

e lancszamat — hany kiilonb6z0 katalogusbemenet hivatkozik ugyanarra az allomanyra
e mutatokat a file altal lefoglalt blokkokra (lasd késébb, a 4.1.3. alfejezetben

részletesebben)

Lancolas (link)

Bizonyos esetekben sziikség lehet arra, hogy az allomanyrendszer egy részét tobb felhasznalod
megosztva hasznalhassa, példaul ha egy adatbazishoz tobben is szeretnének hozzaférni. A
Unix alapt allomanyrendszerek lehetové teszik, hogy ugyanazt az allomanyt tdbb néven is
elérhessiik. Ezt nevezziikk ldncolasnak. A lancolas kitlinden hasznéalhaté néviitkdzések
feloldasara, illetve helytakarékossag szempontjabol is hasznos lehet.

Kétféle lancolast kiilonboztetink meg: merev lancolas (hard link), illetve szimbolikus
lancolas (soft link).

Merev lancolaskor egy 0j katalogus bejegyzést hozunk 1étre, amely az eredeti inode-ra mutat
¢és noveljiik az inode-ban a lancszdmot. Csak kozonséges allomanyokra alkalmazhatd. A
lancszam megadja, hogy hany helyrél hivatkozunk ugyanarra a file-ra. Az 1j file-hivatkozas
teljesen egyenértékii az eredetivel (pl. amennyiben modositjuk az allomanyt a hard linkkel
hivatkozva ra, lathatjuk, hogy az eredeti névvel hivatkozott allomany is modosult).

File torlésekor toroljiik a directory bemenetet és csokkentjiik az inode-ban a lancszamot; ha a
lancszam értéke 0 lesz, akkor az inode bejegyzést is tordljiik (a file tobbet nem elérhetd).

Pl. Hard link 1étrehozasara:

$ In regi wujlink

$ 1s -1i

total 8

2098858 -rw-r—--r—-- 2 tsiml234 student 19 2013-03-17 19:26 regi
2098858 -rw-r--r-- 2 tsiml234 student 19 2013-03-17 19:26 ujlink

Lathatjuk, hogy az allomanyrendszerben két egyenértékii allomany jott 1étre: a régi neve regi,
a létrehozott 0j allomanyé pedig ujlink. Mindkét katalégusbemenet ugyanarra az inode-ra
mutat, illetve mindkét alloméanynal lathatjuk, hogy két helyrdl torténik rd hivatkozas (a
lancszam 2).

Hard linket kizarolag ugyanazon az allomanyrendszeren beliil hozhatunk csak 1étre.

Szimbolikus lancolas (soft link) esetén az 0j katalogus-bejegyzés nem a file inode-jara mutat,
hanem egy specialis file-ra, ami tartalmazza a lancolt file nevét. 1n -s paranccsal hozhato
1étre. A létrehozott file tipusa 1 lesz.

S 1n -s filel szimbolikus

$ 1s -1

total 8

-rw-r—-r-—- 1 tsiml234 student 27 2013-03-17 15:56 filel

lrwxrwxrwx 1 tsiml234 student 4 2013-03-17 19:34 szimbolikus -> filel

4. FEJEZET OPERACIOS RENDSZEREK 117

Lathatjuk, hogy a lancszadm értéke az eredeti allomanynal valtozatlan. A legtobb miivelet a
lanc helyett az eredeti allomanyon hajtodik végre, kivéve pl. az mv és rm parancsokat.

A szimbolikus lancnak a hozzaférési jogait nem lehet modositani, mivel az eredeti allomany
jogai szamitanak.

Az eredeti allomany torlésekor a lanc megmarad, de érvénytelenné valik.

A szimbolikus lancolas lehet6vé teszi katalogus, illetve kiilonb6z6 fajlrendszerben levé fajlok
lancolasat is.

Az allomanyoknak a merev- vagy szimbolikus lancokkal egyiitt egy faszerkezet feleltethetd
meg. A faszerkezet 1ényege, hogy barmelyik allomany vagy katalogus egyetlen sziilovel
rendelkezik. Ebb6l adéddan barmelyik katalogusrol vagy allomanyrdl legyen szo, ennek a
gyokeértdl kezdédden egyetlen elérési ut (path) felel meg. A katalogus vagy allomany és
ennek sziilokatalogusa kozotti kapcesolatot természetes kapcsolamak nevezziik. Ez a kapcsolat
automatikusan 1étrejon az alkatalogus vagy allomany létrehozasakor.

4.2 dbra Alloméanyrendszer. Egyszeri példa.

A 4.2 é4bran egy egyszerli allomanyrendszerre lathatunk példat. Az abécé nagy betiiivel
kozonséges allomanyokat, kataldgusokat, illetve lancokat jeloltiink. Természetesen lehetdség
van arra, hogy ugyanazt a nevet hasznaljuk az adlloméanyrendszer kiilonb6z6 pontjain, hiszen a
katalogusszerkezeten beliil az elérési uttal egyiitt egyértelmtien meghatarozhato, hogy melyik
allomanyrol van szo.

A kozonséges allomanyokat korokkel jeloltiik, a katalogusokat pedig téglalappal.

A kapcsolatokat haromféle nyil jeloli:
e Folytonos vonal — természetes kapcsolat
e Szaggatott vonal — a sajat katalogus, illetve sziil6katalogus esetén
e Pontozott vonal — szimbolikus vagy merev lanc.

A fenti példaban 12 csomopontot (kozonséges allomany vagy katalogus) kiilonboztetiink
meg.

118 4. FEJEZET OPERACIOS RENDSZEREK

Feltételezziik, hogy a pontozott vonallal jelolt két lanc szimbolikus lanc. A kényelem
kedvéért a szimbolikus lancokat az elérési ut legvégén szerepld betii alapjan neveztiik el. A
két lanc létrehozasa pl. az alabbi parancsok segitségével torténhet:

cd /A

ln -s /B/D/G G Az elsf lanc 1étrehozasa
cd /B/D

ln -s /A/E E A masodik lanc 1étrehozasa

Feltételezziik, hogy az aktualis katalogus éppen a B. Ugy fogjuk bejarni a fat, hogy elébb a
katalogust, majd az alkatalogusait jarjuk be balrél jobbra. Az alabbi 12 sor mind a 12
csomopontot érinti. Amennyiben tobbféleképpen is hivatkozhatunk ugyanarra a csomopontra,
az egyenértékll hivatkozasok ugyanabban a sorban jelennek meg. A szimbolikus linket is
hasznal6 hivatkozéasokat aladhuztuk.

/ ;

IA JA

IA/ID .IAID

IAIE IAJE D/E JDIE

IAIEIF .IAIE/IF DIE/IE .IDIE/E
IAIEIG ./IAIEIG DIE/IG .DIEIG

/B .

/B/ID D D

/BIDIG DIG IDIG [AIG IAIG
/BIE E E

/BIF F AF

IC .IC

4.1.3. A UNIX logikai lemez szerkezete

A kiilonb6z6 Unix disztribuciok megjelenésével elkeriilhetetlenné valt a kiilonb6z6
fajlrendszerek megjelenése, melyek foképp az egyes disztribuciokra jellemzoéek. Példaul:

e A Solarisaz ufs allomanyrendszert hasznalja;

e A Linux el6szeretettel hasznalja az ext?2 illetve ext 3 fajlrendszereket;

o Az IRIX sajatja az xfs;
stb.
Minden egyes Unix alapu fajlrendszernek vannak bizonyos sajatos paraméterei (az illetd
alloméanyrendszerre jellemz6 konstans értékek), mint pl.: egy blokk mérete, egy inode mérete,
a lemezen tarolt adatokat meghataroz6 cim hossza, hany direkt cimet tartalmaz az inode és
hany hivatkozas szerepel a indirekt cimek listajaban. Ezen konstansok értékétol fliggetlentil,
egy Uj allomany bejegyzése, illetve ennek az adataihoz valo hozzaférés, hasonlo elvek alapjan
torténik.

Mount

A Unix alloméanyrendszer egységes fajlrendszer, az elérési it nem tartalmaz lemezegység
nevet. A kiilonb6z6 logikai vagy fizikai lemezen levd fajlrendszert becsatoljuk (mount) a
rendszerbe. Egy iires directory-hoz csatlakoztathatdé az 0j fajlrendszer, ennek gyokér

4. FEJEZET OPERACIOS RENDSZEREK 119

katalégusara az eredetileg iires directory nevével hivatkozhatunk. A felhasznalé szamara
észrevétlen, hogy mi melyik fajlrendszerben van.

Logikai lemezek és blokkok

Az alébbiakban az ext2 dllomanyrendszer jellemzdit vessziik alapul.

fme néhany fontosabb jellemzd:

A lemez és memoria kozotti adatatvitel alapegysége a blokk. Azonos méretii blokkokat
hasznal a rendszer. Egy blokk mérete — ami egyébként valtozé lehet — a rendszer
generalasakor allithatd be (mke2fs). Az alloméanyok nyilvantartidsa az inode tablazat
segitségével torténik. A kataldogus a fajlok neve és inode szama kozott hoz 1étre kapesolatot.
A directory is egy f4jl.

Az ext2 fajlrendszerben a tarolohely blokkokra van felosztva, ezek pedig blokk csoportokat
alkotnak. A rendszer szamara kritikus informaciok ismétlédnek minden csoportban, amint azt
a 4.3 abra szemlélteti:

Block Block Block

Group 0 Group -1 Group T4
Super | Group Bleck Incde Incde Diata
Block | Descriptors | Bitmap | Bitwep Table Blocks

4.3 abra Logikai lemez szerkezete

Egy bizonyos allomany adatai tipikusan ugyanazon a blokkcsoporton beliil foglalnak helyet,
amennyiben ez lehetséges. Ez azért jelent6és, mivel hosszl, Osszefliggd adatsorozat
beolvasasakor minimalizalja a lemezhozzaférések szamat.

Minden egyes blokk-csoport tartalmazza az Gn. szuperblokk (super block) masolatat, egy
csoport deszkriptort (group descriptor), egy blokk bittérképet (block bitmap), egy inode
bittérképet (inode bitmap), egy inode tablat (inode table), végiil pedig a tulajdonképpeni
adatokat tartalmazé blokkokat.

A szuperblokk az operacios rendszer bootolasahoz sziikséges fontos informaciot tartalmaz,
emiatt minden blokkcsoport tartalmaz egy biztonsagi masolatot réla. Ennek ellenére tipikusan
csak a fajlrendszer legels6 blokkjaban szerepld adatokat hasznalja a rendszer bootolaskor.

A szuperblokk a kovetkez6 informaciokat tartalmazza:
* Magic Number — OXEF53 — ext2 esetén.
* Revision Level — verzi6 szam

120 4. FEJEZET OPERACIOS RENDSZEREK

* Mount Count and Maximum Mount Count — a fajlrendszer teljes ellendrzése
ajanlott, ha eléri max-ot

» Block Group Number — a blokkcsoport szama, amelyikben ez a szuperblokk van,

» Block Size — blokk mérete byte-okban

» Blocks per Group — blokkok szama egy csoportban

* Free Blocks — szabad blokkok a fajlrendszerben

* Free Inodes — szabad inode-ok a fajlrendszerben

* First Inode — els6 inode

A csoport deszkriptor minden egyes blokk csoport esetén az alabbi informaciot tartalmazza:
» Blocks Bitmap — a ,,block allocation bitmap” blokk szama
* Inode Bitmap — az ,,inode bitmap” blokk szama
* Inode Table — az inode tabla kezd6 blokkjanak a szama
* Free blocks count, Free Inodes count, Used directory count — azaz szabad
blokkok, szabad inode-ok, illetve hasznalt direktory-bemenetek szama

Egy allomanyhoz tartozo6 blokkok nyilvantartasa

Amint lathattuk, egy allomannyal kapcsolatos informaciok az illeté allomanyt leird inode-ban
szerepelnek. Az inode az allomany kiilonb6z6 jellemz6i mellett az illeté allomanyhoz tartozo
adatblokkokat azonositd mutatokat tartalmaz, a 4.4 dbran szemléltetett logika szerint:

2xf2_tnode
Mode

Cwner info
Size

Tinestamnps

Direct Elocks

0o

Indirect blocks

Double 1ndirect I 1
Triple 1ndirect

¥

i

4.4 abra Egy alloményhoz tartozé adatblokkok nyilvantartasa

Az ext2 allomanyrendszer konkrétan 12 direkt blokkra mutat6 cimet tartalmaz (az dllomany
elsd 12 blokkjara tehat kozvetlen hivatkozast tartalmaz), Ezt kdveti egy indirektald blokkra
vonatkoz6 mutatd (mely tovabbi kozvetlen adatblokkokra vonatkoz6 mutatokat tartalmaz),
majd egy kétszeres indirektald blokkra, végiil pedig egy haromszoros indirektalé blokkra
vonatkoz6 mutat6 kovetkezik.

4. FEJEZET OPERACIOS RENDSZEREK 121

Egy éalloméany tetszOleges adatblokkjdhoz vald hozzaférés legtobb 4 lemezhozzaférést
igényel. Rovid allomanyok esetében azonban ennél 1ényegesen kevesebb hozzaférésre van
sziikség (hiszen az els6 12 blokk adatai kozvetleniil elérhetéek). Mindaddig amig az
allomany meg van nyitva, ennek inode-ja be van toltve a belsé memoriaba.

4.2. Unix folyamatok

Unix folyamatok: létrehozas, fork, exec, exit, wait; kommunikaci6 pipe illetve FIFO
allomanyon keresztiil.

4.2.1. A folyamatkezelést szolgalé fontosabb rendszerhivasok

Ebben az alfejezetben a folyamatkezeléshez sziikséges legfontosabb rendszerhivasok
miikddését mutatjuk be: fork, exit, wait és exec*. Kezdjik a folyamat
létrehozasaért felelds fork () rendszerhivassal.

Unix folyamatok létrehozasa. A fork rendszerhivas.
A Unix operacids rendszerben egy uj folyamat létrehozasa a fork () rendszerhivassal
torténik. Ennek szintaxisa:

#include <sys/types.h>
#include <unistd.h>
pid t fork(void);

Sikeres végrehajtas esetén ennek hatasa a kdvetkezo:
— 1j folyamattabla bemenet jon l1étre, melynek tartalma a sziil6tdl lesz atmasolva
— az adat és veremszegmens duplazva lesz
— mindkét folyamat esetén egy-egy mutato a kozos kodszegmensre mutat
— a gyerek 6rokli a sziilot6] a megnyitott allomanyokat
— a fork utani utasitastol egymastol fliggetleniil dolgozik a sziild és a gyerek
folyamat ugyanazzal a kddszegmenssel

Az Ujonnan létrehozott folyamatot gyerekfolyamatnak, a fork () hivast végrehajtd
folyamatot pedig sziildfolyamatmak nevezziikk. Leszamitva, hogy kiilon adat-, illetve
veremszegmenssel rendelkeznek, a gyerekfolyamat csupan az aldbbiakban kiilonbozik a
szUlotol: azonositdja (PID), a sziilé azonositdja (PPID), a fork hivas visszatéritett értéke
(sikeres végrehajtas esetén ugyanis a fork a rendszerhivast végrehajto sziiléfolyamatban a
gyerekfolyamat pid-jét, a gyerckfolyamatban pedig 0-t térit vissza).

A sziilofolyamat azonositojat, illetve maganak a folyamatnak az azonositojat az alabbi
rendszerhivasok segitségével kérdezhetjiik le:

#include <sys/types.h>

#include <unistd.h>

pid t getppid(void); //PPID lekérdezése
pid t getpid(void); //PID lekérdezése

122 4. FEJEZET OPERACIOS RENDSZEREK

A 4.5 abra szemlélteti a fork miikddési mechanizmusat.
Hiba esetén a fork —1-et térit vissza, természetesen az errno valtozé megfeleloképpen be
lesz allitva, a hiba okat jelezve. Hiba léphet fel a fork hivas kapcsan, amennyiben:

e nincs elég szabad memoriateriilet, hogy a sziild képének masolata 1étrejohessen;

e a folyamatok szama meghaladja a megengedett maximalis értéket.

A fork hivas fentebb leirt viselkedése lehetové teszi, hogy a sziild, illetve gyerekfolyamat
parhuzamos miikodését a kovetkezOképpen adjuk meg:

pid = fork();
if (pid == 0)
{
/* gyerek folyamat *
}
else
{
/* szil& folyamat */

}

BEFORE pid: 12791

DATA

STACK

USER AREA

main() { TEXT

—» | if(childpid=fork() > 0) |

/* parent ¥/

]
else if (childid == 0) {

/* child */
H
]
AFTER
pid: 12791 pid: 12793
DATA DATA
STACK STACK
USER AREA USER AREA
main() | TEXT main() { TEXT
— if(childpid=fork() > 0) { — if(childpid=fork() > 0) {
/* parent */ /* parent */
H 1
else if (childid ==0) { else if (childid == 0) {
/* child */ /*# child */
} 1
1 1

4.5 abra Fork mechanizmus

4. FEJEZET OPERACIOS RENDSZEREK 123

Ugyanez hibakezeléssel egyiitt a kdvetkezOképpen néz ki:

switch (fork())
{
case -1:
perror (,fork”);
exit (1) ;
case 0:
/* gyerek folyamat */
default:
/* szulé folyamat */

A alabbi program a fork hasznalatat példazza:

finclude <sys/types.h>
#include <unistd.h>
#include <stdio.h>
#include <errno.h>
#include <stdlib.h>
int main () {
int pid,i;
printf (”“\nProgram kezdete:\n”);
if ((pid=fork())<0){
perror ("fork () hiba\n”);
exit (1) ;
}
if (pid==0) {//gyerekfolyamat
for (i=1;i<=10;i++){
sleep(2); // 2 mésodpercnyi varakozéas
printf (”\t %d SZULO %d GYEREKE:3*%d=%d\n”,getppid(),getpid(),i,3*1i);
}
printf ("GYEREK vege\n”);
}
else{// pid>0 sziléfolyamat
printf ("Letrehoztam a %$d GYEREKet\n”,pid);
for (i=1;1i<=10;1i++) {
sleep (1) ; //1 méasorpercnyi véarakozés
printf (7%d SZULO: 2*%d=3%d\n”,getpid(),i,2*1i);
}
printf (”SZULO vege\n”) ;
}

Szandékosan irtuk ugy a kddot, hogy a gyerekfolyamatnak hosszabb ideig kelljen varakoznia,
mint a sziilének (komplex szamitasok végzése kozepette gyakran megtorténik, hogy az egyik
folyamat altal végzett miliveletek hosszabb idébe telnek, mint a masik folyamat esetében).
Ennek kovetkeztében a sziilo hamarabb befejezodik. A kapott eredmények a kdvetkezok:

Program kezdete:
Lerehoztam a 30584 GYEREKet
30583 SZULO: 2*1=2
30583 SZULO 30584 GYEREKE:3*1=3
30583 SZULO: 2*2=4
30583 SZULO: 2*3=6
30583 SZULO 30584 GYEREKE:3*2=6
30583 SZULO: 2*4=8
30583 SZULO: 2*5=10
30583 SZULO 30584 GYEREKE:3*3=9

124 4. FEJEZET OPERACIOS RENDSZEREK

30583 SZULO: 2*6=12
30583 SZULO: 2*7=14

30583 SZULO 30584 GYEREKE:3*4=12
30583 SZULO: 2*8=16
30583 SZULO: 2*9=18

30583 SZULO 30584 GYEREKE:3*5=15
30583 SZULO: 2*10=20
SZULO vege

1 SZULO 30584 GYEREKE:3*6=18

1 SZULO 30584 GYEREKE:3*7=21

1 SZULO 30584 GYEREKE:3*8=24

1 SZULO 30584 GYEREKE:3*9=27

1 SZULO 30584 GYEREKE:3*10=30
GYEREK vege

Az exit és wait hivasok
Egy program befejezése az alabbi rendszerhivasok segitségével torténhet:
« ANSIC
#include <stdlib.h>
void exit (int exit code);
+ Posix
#include <unistd.h>
void exit(int exit);
* Rendellenes befejezés
#include <stdlib.h>
void abort (void);

Befejezés utan a folyamat zombie allapotba keriil mindaddig, amig a sziilé egy wait
figgvénnyel le nem kérdezi a befejezési kodot. A zombie allapotban levo folyamat esetében a
rendszer minden erdforrast felszabadit, kivéve a folyamattabla bemenetet. Amennyiben a
befejezett folyamatot létrehozd sziiléfolyamat mar kordbban véget ért, akkor az illetd
folyamat sziil6folyamata az 1-es folyamatazonositoju specialis init folyamat lesz.

Az init folyamat mindig meghivja a wait fliggvényt.

A folyamat befejezddésekor a rendszer egy SIGCLD iizenettel értesiti a sziil6folyamatot.
A sziilé bevarhatja valamelyik gyerek befejezddését: wait, waitpid fiiggvények egyikét
hasznalva. Ezek hatasara:

— varakozhat (ha minden gyereke fut),

— érzékelheti, hogyha egy gyerek befejez6dott,

— visszatérithet hibat (ha nincs gyereke)

A wait illetve waitpid hivasok szintaxisa a kovetkezo:
#include <sys/types.h>
#include <sys/wait.h>
pid t wait (int *status);
pid t waitpid(pid t pid, int *status, int opt);

Kiilonbségek a wait ésawaitpid kozott:

+ await felfiiggeszti a hivo folyamatot, amig a gyerek befejezddik, ezzel szemben a
waitpid egy kiilon opciot kindl fel (opt), melynek hasznélataval a felfiiggesztés
elkeriilheto,

* awaitpid nem mindig az elsé gyerek befejezésé€ig var, hanem a pid valtozdban
megadott azonositdji gyerek befejezéséig,

* awaitpid az opt argumentum segitségével engedélyezi a programok vezérlését.

4. FEJEZET OPERACIOS RENDSZEREK 125

« Await fliggvény visszatérési értéke azon gyerekfolyamat azonositdja, amely éppen
befejezodott.

* A waitpid -1 értéket térit vissza, ha nem létezik a pid-ben megadott azonositoji
folyamat, vagy az nem gyereke a hivo folyamatnak.

A waitpid fiiggvényhivasnal megadhat6 pid valtozo lehet:
* pid = -1 —barmely gyerekre varakozhat; ekvivalens a wai t-tel,
» pid > 0 - a pid azonositoju folyamatra varakozik,
« pid = 0 — barmely olyan folyamatra varakozik, amelynek a csoportazonositdja
megegyezik a hivo programéval,
e pid < -1 — barmely olyan folyamatra varakozik, amelynek a csoportazonositoja
megegyezik a megadott érték abszolut értékben.

Kiils6 program végrehajtisa; az exec fiiggvénycsalad

A legtdbb mas operacios rendszerhez hasonldéan a Unix is biztosit lehetdséget arra, hogy
elinditsunk egy programot egy masikbol. Ezt a mechanizmust az exec* fliggvénycsalad teszi
lehetévé. Amint latni fogjuk, a fork illetve exec* rendszerhivasok kombinalasa nagyfoku
rugalmassagot biztosit a folyamatkezelést illetéen.

Az exec* fliggvénycsalad
+ az aktiv folyamat kodjat egy masikkal helyettesiti (betdlt egy uj programot)
* U kod, adat és veremszegmens jon létre, a régieket felszabaditja
» a folyamattabla bemenetet 6rokli az eredeti folyamattol
Az exec* utani utasitas csak hiba esetén hajtodik végre.
A 4.1 tablazat Osszegzi az exec* fiiggvénycsaladba tartoz6 rendszerhivasokat €s ezek
jellemzoit (harom kritérium szerint hat fiiggvényt kinal fel a rendszer):

Fiiggvény paraméter keresési ut kornyezet
execl lista A marad
execv tomb A marad
execlp lista PATH marad

execvp tomb PATH marad
execle lista A valtozik
execve tomb A valtozik

4.1 tablazat Az exec* fliggvénycsalad

126 4. FEJEZET OPERACIOS RENDSZEREK

Az egyes fiiggvények szintaxisa:
#include <unistd.h>
int execl (const char *path,
/* elérési ut */
const char *argQ,
/* programnév */
const char *argl,
/* paraméterek */

const char *argn,
NULL) ;

/* a paraméterek vége */
int execv(const char *path, char *argvl[]);
int execlp(const char *filename,

/* a futtathaté allomény neve */
const char *argQ,
const char *argl

const char *argn,
NULL) ;
int execvp(const char *filename, char *argv[]);

int execle (const char *path,
const char *argO,
const char *argl,

const char *argn,
NULL,
char *envpl[]):
/* koérnyezeti valtozdk */
int execve (const char *path, char *argv[], char *envpl[]):

Az egyes valtozok jelentése:
» path: mutat6 egy karaktersorhoz, amely a futtathat6 allomany keresési utvonalat jeldli,
+ filename: mutat6 a futtathaté allomany nevéhez; ha a név nem kezdddik a gyokérrel (és
nincs megadva a teljes utvonal), akkor az allomanyt a PATH valtoz6 altal definialt
katal6gusokban keresi a rendszer,
+ arg0: mutat6 a futtathatd alloméany nevéhez,
 argl, arg?, ..., argn: mutatok, amelyek a programnak atadott paramétereket jelolik,
* argv: mutat6 a paramétervektorhoz (a 0-dik paraméter az allomany neve),
* envp: mutatd az Uj kornyezeti valtozokhoz, amelyek a vektorban egyenként
valtozo=¢érték alakban jelennek meg.
Az utols6 paraméter mindig NULL (a paraméterlista végét jeloli).

4.2.2. Folyamatok kozti kommunikacio pipe-on keresztiil

A pipe mechanizmus

A pipe mechanizmus megjelenését a Unix alaptl rendszerekben az indokolta, hogy lehetové
Altaldban a sziilé folyamat atirdnyitja a standard kimenetét (stdout) egy pipefileba, a
gyerekfolyamat pedig a standard bemenetét (stdin) veszi ugyanabbdl a pipefilebol. Az
ilyen jellegti kapcsolat jelolésére shell szinten a ““|”” operatort szokas hasznalni.

Pl. who | sort| less

A pipe mechanizmus ugyanakkor C programbdl is alkalmazhato.

4. FEJEZET OPERACIOS RENDSZEREK 127

A pipefile egy specialis név nélkiili file (nem tartozik hozza directory bemenet). Mérete
korlatozott, altalaban 10 (12) blokk.

A 4.1.3 alfejezetben lathattuk, hogy az inode tablazat egy bemenete 13 (15) cimet tartalmaz,
amibél 10 (12) direkt cim, majd ezt koveti egy egyszeres, egy kétszeres, illetve egy
haromszoros indirektal6 cim.

Pipefile esetén nincs indirektdlds, emiatt az adathozzaférés (egy indirektalast is hasznald
kozonséges allomanyhoz képest) gyors.

A két folyamat (sziil6-, illetve gyerckfolyamat) kdzosen hasznalja a pipefilet: egyik ir, a
masik olvas — megnyitaskor két deszkriptort kapunk vissza, egyet irasra, €s egyet olvasasra.

N 0

olvas ir
Az adatok olvasasa/irasa a pipefileba ugy torténik, mint egy korkoros pufferbe (ha az betelt,
kezdddik az elejérdl). Az adatok olvasasa/irasa FIFO elv alapjan torténik (a legrégebben beirt
adat lesz leghamarabb kiolvasva). Egy bizonyos informaciot csak egyszer lehet kiolvasni. A
szinkronizalast a filemutatok kozt a rendszer végzi, mégpedig a termeld/fogyasztd elv
alapjan:

+ egy folyamat, amelyik irni akar a pipefile-ba (termeld) csak akkor fog tudni irni
(termelni), ha az nem telt meg (amennyiben meg van telve, varakozasi allapotba jut,
amig egy masik folyamat ki nem olvas beldle).

* a folyamat, amelyik olvas (fogyasztd) csak akkor olvashat, ha van mit. Kiilonben
blokalva lesz (wait allapot), mig egy masik folyamat adatot nem helyez a pipefile-ba.

« apipefile adataihoz csak szekvencialisan lehet hozzaférni

Pipe mechanizmus a gyakorlatban

A sziiléfolyamat hozza létre a pipefile-t (pipe). Ugyanaz a sziild 1étrehoz egy vagy tobb
gyerek-folyamatot (fork rendszerhivas). Egyes folyamatok irni fognak a pipefile-ba (write
- fd[1]1), masok pedig olvasni (read - f£d[0]). Elvileg a sziil6- ¢és gyerekfolyamat is
megkapja az ird- és olvasd deszkriptort is, egyetlen pipefile-t mégis csupan egyiranyu
kommunikaciora szokas hasznalni (a nem hasznalt deszkriptorokat zarjuk be!). Fontos, hogy
a sziilé-gyerek kozti kommunikacidt szolgdlo pipefile-t még a fork hivas el6tt hozzuk létre,
hiszen igy a fork hivast kovetden a gyerekfolyamat 6rokli a megnyitott deszkriptorokat. Az
4.6 abra szemlélteti a pipefile-on keresztiil torténd kommunikaciot.

write:pfd[1] read:pfd[0]
- e

Szulé X pipefile) X gyerek

4.6 abra Kommunikacio sziil6 és gyerek kdzott pipefile-on keresztiil

Kétiranyt kommunikacié megvalositasahoz két pipefile létrehozasara van sziikségiink.

128 4. FEJEZET OPERACIOS RENDSZEREK

Pipe létrehozasa
A pipefile 1étrehozasa a pipe rendszerhivassal torténik. Ennek szintaxisa:

#include <unistd.h>
int pipe (int pfd[2]);

A fluggvény 0-t térit vissza, ha a létrehozas sikeriilt, és -1-et, ha nem. A pfd egy két elemii
tablazat, ahol a p£d [0]-bdl olvasunk, és a pfd[1]-be irunk. A pfd[1]-be vald irds soran
(write) az adatok a pipe fileba keriilnek, mig a pfd[0]-bol olvasva (read) torlddnek onnan.
Hiba esetén az errno valtozoé a hiba kodjat fogja tartalmazni.

Pipe bezarasa
A nem hasznalt pipe végeket ajanlatos minél elobb bezarni! Ez a close rendszerhivassal
torténik, melynek szintaxisa:

#include <unistd.h>
int close(int pfd);

A fliggvény 0-t térit vissza, ha a bezaras sikeriilt, és -1-et kiilonben. A pfd argumentum egy
egész szam, tehat csak az allomany egyik végét zarja be.

Pipe irasa, olvasasa
A pipefile-ba val¢ iras, illetve a beirt adatok kiolvasasa az alabbi fliggvények valamelyikének
segitségével torténhet:

#include <unistd.h>
ssize t read(int pfd, void *buf, size t count);
ssize t write(int pfd, const void *buf, size t count);

vagy

#include <stdio.h>
int fscanf (FILE *stream, const char *format,...);
int fprintf (FILE *stream, const char *format, ...);

A masodik valtozatot foként standard fajlok esetén hasznaljuk. A pipefileok kezelésére a
read és write fliggvényeket ajanljuk. Paraméterként meg kell adnunk a pipefile egyik
végének azonositojat (pfd), a buf puffer vagy érték, mig a count valtozoba ennek méretét
adjuk meg. A fiiggvények visszatéritett értéke a pipe-bol sikeresen kiolvasott (beirt) bajtok
szama. Korabban emlitettiik, hogy amennyiben iires pipefilebol probalunk olvasni, a folyamat
blokalodik a read miiveleten mindaddig, amig valaki nem ir a pipe-ba. Fontos azonban
megjegyezni, hogy amennyiben a pipefilehoz tartozo 0sszes (!) irodeszkriptort bezartuk, a
read miivelet azonnal visszatér 0 értékkel.

Példa: who | sort implementilasa pipe illetve exec* hivasok segitségével
Tekintsiik az alabbi 6sszetett shell parancsot:

S who | sort

4. FEJEZET OPERACIOS RENDSZEREK 129

Az alabbi példa a két parancs (who ¢€s sort) pipe-on keresztiil torténd Gsszeflizését valositja
meg. A sziiléfolyamat (mely a shell parancsértelmezdt helyettesiti) két gyerekfolyamatot hoz
létre, ezek pedig megfeleloképpen atiranyitjadk a bemenetiiket, illetve kimenetiiket. Az els6
gyerekfolyamat a who parancsot hajtja végre, a masik pedig a sort parancsot, a
sziil6folyamat pedig megvarja a befejezodésiiket. A forraskod a kovetkezo:

//whoSort.c

//a $who|sort shell parancsok osszefuzeset valositja meg pipe segitsegevel
#include <unistd.h>

finclude <sys/types.h>

finclude <sys/wait.h>

#include <stdlib.h>

int main () {

int p[2];

pipe (p);

if (fork () == 0) { // elso gyerek
dup2 (pl[11, 1); // standard kimenet atiranyitasa
close (pl[0]);
execlp ("who", "who", NULL);

}

else if (fork () == 0) { // masodik gyerek
dup2 (p[0], 0); // standard bemenet atiranyitasa
close (pl[l]):;
execlp ("sort", "sort", NULL);// sort vegrehajtasa

}

else { // szulo
close (pl0
close (pl[l

wait (NULL
wait (NULL

}
exit (0);

)I
) ;

]
]
)
)

}

Megjegyzés: a fenti példa jobb megértéséhez ajanljuk, hogy az olvasé nézzen utana a Unix
kézikonyvekben (man) a dup2 rendszerhivas miikodésének. Esetiinkben a dup2 egyik
paramétere egy pipefile deszkriptor.

4.2.3. Folyamatok kozti kommunikacio FIFO allomanyon keresztiil

A FIFO mechanizmus

A pipe mechanizmus legnagyobb hatranya, hogy csak egymassal ,,rokoni” viszonyban levd
folyamatok ko6zott hasznalhatjuk: a pipe-on keresztiill kommunikalé folyamatok a pipe-ot
létrehoz6 folyamat leszarmazottai kell legyenek, hiszen az ir6-, illetve olvasd deszkriptor
egyedi, és mindkettd a fork () hivas kovetkeztében adodik at a gyerekfolyamat(ok)nak.

Az 1985-6s év tajékan jelent meg a FIFO (néwvel ellatott csévezeték vagy pipe)
allomany (Unix System V). A FIFO allomany a kdzonséges fajl és a pipe kombinacidja. A
pipe-al szemben a FIFO allomanynak van egy szimbolikus neve, és egy katalogus, ahova
létrehozzuk, ezt leszdmitva, azonban megdrzi a pipe fajlok Osszes jellemzdit. A FIFO
alloméanynak sajat neve van, tehat barmely folyamat meg tudja nyitni, nem csak a kdzos 6ssel
rendelkez6 folyamatok. Amennyiben az 1s -1 paranccsal kilistdzzuk az allomanyt, a file
tipusat p-vel (pipe) jeldli a rendszer.

130 4. FEJEZET OPERACIOS RENDSZEREK

Egy FIFO éllomany létrehozésa az mknod vagy mkfifo fliggvények valamelyikével torténik.

Szintaxis:

finclude <sys/types.h>

#include <sys/stat.h>

int mknod(char *pathname, int mode,0);

int mkfifo(const char *pathname, mode t mode);

ahol:
« pathname — elérési ttvonal
* mode — tipus és hozzaférési jogok (pl. S_IFIFO|0666)
» visszatéritett érték:
— 0 sikeres létrehozas esetén
— -1 hiba esetén

Shell paranccsal is létrehozhatunk FIFO alloményt:
$ mknod FIFOnev p

vagy

S mkfifo FIFOnev

FIFO adlomany megnyitasa
A FIFO allomany megnyitasa az open rendszerhivassal torténik. Szintaxisa:

#include <sys/types.h>
finclude <sys/stat.h>
int open(const char *pathname, int flags);

ahol
» pathname — elérési Gtvonal
» flags — hozzaférési jogok
— O _RDONLY, csak olvashato,
— O _WRONLY, csak irhato,
— O _RDWR, olvashato és irhato.
— O_NONBLOCK, O_NDELAY - nincs varakozas (lasd a 4.2 tablazatot)
* visszatéritett érték:
— file leir6 — sikeres megnyitas esetén
— -1-—hiba esetén

Az iras, olvasas, bezards ugyanugy torténik, mint a kozonséges allomanyok esetén (read,
write, illetve close fiiggvények). A FIFO allomany torlése pedig az unlink hivassal

torténik. Szintaxisa:
#include <unistd.h>
int unlink (const char *pathname) ;

A FIFO allomany hasznalata a kovetkez6 forgatokonyv szerint torténik:

Egy folyamat a szimbolikus név alapjan létrehozza a FIFO alloményt az mknod vagy
mkfifo fliggvények segitségével. Egy folyamat, amely informaciot szeretne kozolni egy
masikkal, megnyitja a FIFO allomanyt az open fiiggvénnyel, és a write segitségével beirja
az adatokat. Egy masik folyamat, amely az adatokat szeretné kiolvasni, megnyitja a FIFO
allomanyt olvasasra az open fliggvénnyel, majd a read segitségével kiolvassa a kivant
informéaciot. Egy folyamat a szimbolikus név alapjan torli a FIFO allomanyt az unlink
fliggvénnyel. Az allomany torlése a rm shell parancs segitségével is megteheto.

4. FEJEZET OPERACIOS RENDSZEREK 131

A 4.2 tablazat 6sszefoglalja, hogy mi torténik a FIFO allomany megnyitasakor, valamint
iras/olvasaskor, attol fiiggben, hogy az O_NONBLOCK (O_NDELAY) flag be van-e allitva

vagy sem.

feltételek normal O_NDELAY
bedllitva
FIFO megnyitva | varakozik mindaddig, amig egy masik folyamat | azonnal visszatér,
csak firdsra, de | megnem nyitja irasra a FIFO allomanyt varakozas és
olvas6 folyamat hibajelzés nélkiil
nincs
FIFO megnyitasa | varakozik mindaddig, amig egy madsik folyamat | azonnal visszatér,
irasra, de olvaso | meg nem nyitja olvasasra a FIFO allomanyt hibajelzéssel: az
folyamat nincs errno értéke
ENXTIO

olvasas FIFO
vagy pipe filebdl,
de nincs

olvasnival6 adat

varakozik mindaddig, amig adatok nem keriilnek a
FIFO allomanyba, vagy amig nincs egyetlen olyan
folyamat sem, amely irasra nyitotta meg a FIFO
allomanyt. A kiolvasott byte-ok szamat tériti
vissza, ha 0j adatok jelentek meg vagy O-t, ha
nincs tobb ir6 folyamat.

azonnal visszatér és
O-t térit vissza

iras FIFO vagy
pipe fileba,
amikor az tele van

varakozik mindaddig, amig iiriil hely a FIFO
allomanyban, majd annyi adatot ir bele, amennyi
szamara hely van

azonnal visszatér és
O-t térit vissza

4.2 tablazat Az O NONBLOCK (O _NDELAY) flag hatasa

Példa: kliens/szerver kommunikacié FIFO-n keresztiil

A kliens/szerver modell gyakran hasznalt a programozasban. A kovetkezékben a
kliens/szerver modellt mutatjuk be, ahol a kommunikacio FIFO allomanyon keresztiil
torténik. A példaban a szerver nagyon egyszerli feladatot lat el, hiszen célunk a
kommunikécié bemutatasa: a kliens kiild egy szamot a szervernek, mire a szerver valaszként
visszakiildi a szam négyzetét.

Megjegyzések:

* aszerver létrehoz egy szerverfifot, amelyre az Osszes kliens csatlakozni fog,

+ minden kliensnek kiilon FIFO-ja van, amelyet a kliens maga hoz létre; ezért amikor a
kliens a szervernek elkiildi a kérést, valahogyan jeleznie kell, hogy milyen nevii FIFO-n
keresztiil szeretné a valaszt megkapni; a legegyszerlibb, ha a kliens FIFO-janak
nevében szerepel a kliens folyamatazonositoja is, igy a név egyértelmd,

* akliens el6bb megnyitja a sajat FIFO-jat olvasasra, s csak azutan kiildi el az iizenetet a
szerver felé,

» aszerver FIFO-ja csak a szerver befejezédésekor zarodik be,

» akliens FIFO-jat a szerver oldalon a szerver a valaszadas utan bezarja; ha ujabb kérés
érkezik, ujbol megnyitja,

* ha a kliens befejezte miikodését be kell zarnia a sajat FIFO-jat.

Mivel a FIFO-n kiildott adatok tipusa megegyezik a szerverben és a kliensben, a konnyebb
kezelhet6ség érdekében ajanlatos egy kozos adatszerkezetet 1étrehozni, és ezt egy kiilon
fejlécallomanyban tarolni. Esetlinkben ez a kovetkezd lesz:

132

K06z06s headerallomany (struktura.h)

typedef struct elem
{

int szam;

int pid;
} azon;

Szerver program (szerver.c):

#include <stdio.h>
finclude <sys/types.h>
finclude <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>
#include "struktura.h"

int main (void)
{
int fd, £fdl;
char s[15];
azon t;

mkfifo("szerverfifo", S IFIFO|0666);

fd = open("szerverfifo", O RDONLY);

do
{

while (!read(fd, &t, sizeof(t))):;

t.szam = t.szam * t.szam;
sprintf (s, "fifo %d", t.pid);

fdl = open(s, O WRONLY) ;
write (fdl, &t, sizeof (t));
close (fdl) ;

} while (t.szam);

close (fd) ;

unlink ("szerverfifo");

exit (0);

Kliens program (kliens.c):

#include <stdio.h>
finclude <sys/types.h>
#include <sys/stat.h>
#include <stdlib.h>
#include <fcntl.h>
#include <unistd.h>
#include "struktura.h"

int main(int argc, char *argv[])

{
int fd, £fdil;
char s[15];
azon t;

/‘k

/*
/*
/*
//
/7
/*
/*
/*
//
/*
/*

/*
/*

/*
//

/‘k

4. FEJEZET OPERACIOS RENDSZEREK

a fent megadott fejlec */

szerver—- es kliensfifo */
kliensfifo neve; pl. fifo 143 */
kuldeni kivant "csomag" */

a szerver letrehozza a sajat
fifo-jat */

megnyitja olvasasra */

amig 0-t nem kuld egy kliens */
szam kiolvasasa */

a pid segitsegevel meghat. a
kliensfifo nevet

kliensfifo megnyitasa irasra */

adatok elkuldve */

szerverfifo vege */
torli a szerverfifot */

a fenti fejlecallomany */

a szamot a parancssorban adjuk
meg

kliens- es szerverfifo */

4. FEJEZET OPERACIOS RENDSZEREK 133

if (argc !'= 2) /* nincs megadva argumentum, hiba */
{

printf ("hasznalat: kliens <szam>\n");

exit (1) ;
}
sprintf (s, "fifo_ %d", getpid()); // meghat. a fifonevet a pid
// segitsegevel
mkfifo(s, S IFIFO|0666); /* letrehoz egy kliensfifot */
fd = open("szerverfifo", O WRONLY) ;
t.pid = getpid(); /* a kuldeni kivant adatok */

t.szam = atoi(argv[1l])
write (fd, &t, sizeof (t

; /* string atalakitasa szamma */
)
fdl = open(s, O RDONLY)
)

) ; /* kuldi a szervernek */

read (fdl, &t, sizeof(t)); /* a valasz */
close (fdl) ;
unlink (s); /* kliensfifo torlese */

printf ("a negyzete: %d\n", t.szam);
exit (0);

134

4. FEJEZET OPERACIOS RENDSZEREK

4.3. Shell programozas és alapvetdé Unix parancsok

Parancsértelmezé (Bourne shell - sh)

4.3.1. Egy parancsértelmezé — shell — miikodése

A parancsértelmezé (shell vagy burok) egy specialis program, mely egy interfészt biztosit a
felhasznal6 illetve az operacios rendszer magja (az Gn. kernel) kozott. Ebbdl a szemszogbol
kétféleképpen tekinthetiink a shell-re:

1.

mint parancs nyelvre, mely kozvetit a szamitogép és a felhasznald kozott. Amint egy
felhasznal6 bejelentkezik a rendszerbe és/vagy megnyit egy parancsablakot, implicit
moédon indul a shell, mint parancsértelmez6. A shell egy prompt-ot ir ki a standard
kimenetre (ami altaldban egy termindlhoz van hozzarendelve), arra varva, hogy a
felhaszndlo parancsokat irjon be vagy valamilyen parancsadllomanyt inditson el,
esetleg paramétereket is megadva neki.

mint programozdasi nyelvre, melynek alapeleme a Unix parancs (szemantikailag a
programozasi nyelvek hozzdrendelés utasitasaval tekinthetd egyenértékiinek). A
klasszikus programozasi nyelvekbdl a feltétel igazsagértékének megfeleldje itt a
parancsok sorozatabol az utolsonak a visszatéritett értéke: a 0 érték igaz-at (true)
jelent, ettdl kiilonbozo érték pedig a hamis (false) megfeleldje. Egy shell tamogatja a
kovetkezd fogalmakat: valtozo, konstans, kifejezés, vezérld szerkezetek, alprogram. A
szintaktikai kovetelményeket illetéen, ezek minimalisra lettek csokkentve: a
paramétereket hatarolo zardjelek elhagyasa, valtozddeklaracid hianya, stb.

Egy terminalablak megnyitasakor elinditott shell aktiv marad mindaddig, amig az illet6 ablak
be nem zarul. A shell gyakorlatilag az alabbi algoritmus szerint miikodik:

Amig

(be nem zarult a munkaféazis)

Kiirja prompt-ot;
Olvas a parancssorbdl;

Ha

(a sor végén '&' karakter van) akkor
Létrehoz egy Uj folyamatot, mely végrehajtja a beirt parancsot
Nem var a végrehajtas befejezésére

Kiildénben

Létrehoz egy Gj folyamatot, mely végrehajtja a beirt parancsot
Var a végrehajtas befejezésére

HaVége
AmigVége

Megjegyezziik, hogy amint az a fenti algoritmusbdl is kidertiil, egy parancsot kétféleképpen
hajthatunk végre:

elotérben (foreground) — Ebben az esetben a shell elinditja a parancs végrehajtasat,
megvarja ennek befejez6dését, majd ezutan ismét kiirja a prompt-ot. Ujabb parancsot
csak ezt kovetden vihetiink be. Barmely Unix parancs esetén ez az implicit
végrehajtasmod.

hattérben (background) — a végrehajtas a hattérben — rejtett moédon — zajlik. Ebben az
esetben a shell elinditja a folyamatot, mely a parancs végrehajtasaért felelds, de nem
varja meg ennek befejezddését, hanem azonnal kiirja a prompt-ot, ezzel felkinalva a

4. FEJEZET OPERACIOS RENDSZEREK 135

lehetdséget a felhasznaldé szamara, hogy wjabb parancsot inditson. Amennyiben a
parancsot a hattérben kivanjuk elinditani, a '&' specialis karakterrel kell lezarnunk azt.

Egy Unix parancsablakban barmennyi folyamat indithato a hattérben, de csak egyetlen egy
elétérben. Példaként tekintsiik az alabbi harom parancsot, melybdl kettét hattérben inditunk
(egy allomany-masolas -cp-, és egy forditas -gcc-), illetve egyet elétérben (allomany
szerkesztése a vi szovegszerkesztovel):

$ cp AB &

$ gcc x.c &

$ vi H

4.3.2. Shell programozas

A Bourne shell (sh) rovid bemutatasa

Az aldbbiakban a legegyszertibb Unix shell, az sh hasznalatat mutatjuk be. Kezdjiik néhany
alapvetd szintaktikai konvencidval.

Egy Unix parancs altalanos alakjat a kdvetkez6képpen adhatjuk meg:
parancsnév [opcidk] [kifejezések] [A&llomanyok]
e ahol az opcisé
— altaldban 1 betli
— az opcidk csoportja ,,- jellel kezdddik
— ki-be kapcsolas: -, +
PI.:
Az aktudlis katalogus Osszes allomanyanak kilistdzasa (beleértve a rejtett
alloményokat is), hosszu formatummal:
ls —-al
Az abc nevii allomany tulajdonosanak végrehajtasi jogot adunk az illetd allomanyra

vonatkozdan:
chmod u+x abc

* akifejezések —a parancs argumentumai
* amezOk kdzott az elvalaszto a szokoz
» az allomanynevek tekintetében az alabbi konvenciok érvényesek:
» ennek hossza max. 255 karakterre korlatozott
» ashell kiilonbséget tesz kis és nagybetii kozott
* nincs Kiterjesztés
* néhany specialis karaktert nem ajanlott hasznalni allomanynévben:
<>|&[]*?-V
« akdrhany pont ,.” szerepelhet az dllomanynévben, ¢és ezek barhol
megjelenhetnek, esetleg néhany esetben specialis jelentése lehet a pontnak:
* . anév elején — rejtett allomanyt jeldl (pl. .forward)
* . az utolso betli(k) el6tt — program forraskodja (pl. prog.C, p.cpp)
* amikor allomanynevekre hivatkozunk, hasznalhatjuk az alabbi helyettesito
karaktereket:
» ?az allomanynévben — egyetlen tetszdleges karaktert helyettesit
* *az allomanynévben — 0 vagy tobb tetszoleges karaktert jelol
PI.
a?b lehet aab; alb; axb; a_b; stb.

136

4. FEJEZET OPERACIOS RENDSZEREK

a*b lehet: ab; alb; aaaaab; a_xxxb; stb.
a?b*x* lehet: albx; a_bcdefx3; de nem lehet abcdx

A shell néhany karakternek vagy karakterkombinacionak specialis jelentést tulajdonit. Ezeket
metakaraktereknek nevezziik. Ilyen metakarakterek a kovetkezok:

> — kimenet atiranyitasa

>> — kimenet additiv atirdnyitasa

< - bemenet atiranyitasa

<<string - ,here document” — szabvanyos bemenet kovetkezik egészen a stringet

(sor elején) tartalmazo sorig

| — pipeline (cs6vezeték)

* —egyezés barmely lanccal (liressel is)

? —egyezés a filenévben egyetlen karakterrel

[...] — egyezés a file-névben barmely, a zardjelben levé karakterrel (pl. [abc]; [a-Z];
[1-9]; [A-Za-Z])

X — parancslezard

& —parancslezaro6 hattérfolyamatoknal

"..." —Dbetli szerint értelmezi a koz¢ irt karaktersort

"..." — szintén betll szerinti értelmezés, de a shell értelmezi a kdvetkezd specialis
karaktereket: $, *...", \

*..." —akdzrezart parancs helyére (a forditott aposztrofokat is beleértve) a végrehajtas
eredménye keriil. Amennyiben példaul az aktudlis katalogus a /home/userl, és a
parancssorba az alabbi parancsot irjuk

S echo Az aktudlis kataldgus: “pwd’

eredményiil a kovetkezo iizenetet kapjuk a standard kimeneten:

Az aktudlis katalégus: /home/userl

Amennyiben azonban azt irnank a parancssorba, hogy

$ echo Az aktudlis kataldgus: pwd

ezt kapnank:

Az aktudlis kataldgus: pwd

\ — levédi az utana kovetkezo6 karaktert
— a sor hatralevo része kommentar
$i - 9$0,..., $9 — a shell argumentumai

$var — a var valtozo értéke
&& - pl && p2 — futtatja a pl parancsot, ha az sikeres, futtatja p2-t
I —pl|| p2 — futtatja p1-et, ha az sikertelen volt, futtatja p2-t

A Bourne shell (sh) az alabbi shell valtozokat kinalja fel:

$# — az argumentumok szamat adja meg

$* — minden argumentum, egyetlen karakterlancként tekintve:
"$1 862 . . . $n";

$@— a parancssor 0sszes argumentuma, stringek sorozataként tekintve:
"S1" "$2"..."$n";

$- — opciok

$? — az utoljara végrehajtott parancs visszatérési értéke

$$ — a burok folyamatazonositdja

$! — az utolso hattérben inditott folyamat folyamatazonositoja

4. FEJEZET OPERACIOS RENDSZEREK 137

A shell altal 1étrehozott barmelyik folyamat 6rokol egy sor standard, meghatarozott nevii
valtozot. Ezeknek a valtozoknak az Osszessége alkotja az illeté folyamat tgynevezett
kornyezetét (environment). Ezek koziil a kdrnyezeti valtozok koziil felsorolunk néhanyat:

+ $HOME — home directory (vagy alapkatalogus)

« SIFS — argumentumszavakat elvalasztdo karakterek (implicit modon a szokdz,
<TAB>, illetve ujsor karakterek)

* SMAIL - az elektronikus postat tarold allomany nevét tartalmazza. Amennyiben
megvaltozik az adott file tartalma, a rendszer iizenetet ir ki. A SMAILCHECK valtozo
adja meg, hogy milyen idé6k6zonként figyelje a rendszer az 0j levelek érkezését.

« S$PATH —tvonal: a végrehajthato allomanyok keresési Gitvonalat adja meg. Amikor
beirunk a parancssorba egy shell parancsot, a shell a $SPATH-ban felsorolt, ,,:”-al
elvalasztott elérési utakban keres egy megadott nevii végrehajthatd allomanyt. A
keresés a SPATH-ban balrdl jobbra torténik, és amint megvan az elsd talalat, a
keresés véget ér. Megjegyezziik, hogy a keresés kizarolag a megadott elérési utakon
torténik, az aktudlis katalogusban csak akkor keres a rendszer, ha ez explicit moédon
hozzé van adva a PATH valtozohoz.

A felhasznalo tetszés szerint modosithatja a PATH értékét. Példaul ha a meglévd
értékhez hozza szeretnénk adni az aktualis katalogust, az alapkatalogust, és ennek bin
nevi alkatalogusat, ezt a kovetkezoképpen tehetjiik meg:

$ PATH=${PATH}:.:${HOME}:${HOME}/bin
« $PS1 — prompt karakterlanc, implicit modon $ kozonséges felhasznald esetén
(megj. a példakban ez a prompt jelenik meg a sor elején), illetve # a root felhasznald
esetében
« $PS2 — parancs folytatasakor hasznalt masodlagos prompt: >

» $LOGNAME - a bejelentkezett felhasznald azonositoja.
* $SHELL — a hasznalt parancsértelmezét adja meg

« $TERM - a hasznalt terminal tipusat adja meg

» $TZ — a bedllitott id6zonat adja meg

Poziciondlis shell valtozok:
Korabban —a shell metakaraktereinek felsorolasakor— emlitettiik, hogy a $i (ahol i egy
szamjegy) sajatos jelentéssel bir:

* $0 - a parancsallomany nevét adja meg

« $1-39 —segitségével hivatkozhatunk a parancssor elsé 9 argumentumara

Tegytik fel, hogy a parancssorbol a kovetkezOképpen hivtunk meg egy parancsot:
$ parancs argl arg2 ... argn

Amennyiben a fenti parancs egy parancsallomany (shell script) neve, melyet az
alapértelmezett shell fog kiértékelni, akkor a script-en beliil az alabbi moédon hivatkozhatunk
a parancs nevére, illetve az els6 9 argumentumra:

$ parancs argl arg2 ... arg9 arglO ... argn
| | | |
$0 $1 $2 ... $9

Ha tobb, mint 9 paramétert adtunk meg, nem fog elveszlddni egyik sem, azonban egy adott
ponton csak az elsdé 9-re hivatkozhatunk a megadott modon.

138 4. FEJEZET OPERACIOS RENDSZEREK

A burok beépitett valtozoin-, illetve a pozicionalis shell valtozokon kiviil a felhasznalo
definialhat sajat valtozokat. Egy var nevii valtozd esetében ennek értékére $var-al
hivatkozunk. A valtozok értéke karaktersor. Akkor is, ha egy bizonyos kontextusban egy
valtozot szamként interpretalunk, ennek abrazolasa a szamjegyeinek megfeleld karakterek
ASCII kddjanak sorozataként torténik.

A valtozokat nem kell deklardlni, egy valtozé definidlasa gyakorlatilag megegyezik a
valtozoénak vald els6 értékadassal, és az alabbi mdodon torténik:

$ valtozonev=karaktersor

A kiértékelés soran a shell 1étrehoz egy valtozot a megadott (valtozonev) névvel, melynek
értéke a megadott (karaktersor) karaktersor. Fontos megjegyezniink, hogy az
egyenldségjel elott, illetve utan nincs szokdz! Amennyiben azt szeretnénk, hogy a megadott
karaktersorban egy vagy tobb szokdz szerepeljen, akkor ezeket le kell védeniink.

Egy shell valtozo lokalis az 6t 1étrehozd folyamatra nézve. Ezzel egyiitt van ra lehetdség,
hogy a valtozot orokoljék az illetd folyamat gyerekfolyamatai, amennyiben a valtozot
definial6 folyamatba az alabbi deklaraciot irjuk:

$ export valtozonev

ahol valtozonev annak a valtozonak a neve, amelyet szeretnénk, hogy a gyerekfolyamatok
orokoljenek.

Egy vadltozo értékének a behelyettesitése tobbféleképpen torténhet. Tekintsiik azt a két
lehetdséget, amelyik a valtozo értékét adja vissza vagy lires stringet, amennyiben a valtozo

nincs meghatarozva:
Svaltozonev
S{valtozonev}

A masodik format akkor hasznaljuk, ha az els6 nem tenné lehetové, hogy egyértelmiien meg
lehessen hatarozni a valtozo nevét (példaul amikor az egy karaktersoron beliil talalhato).
Lassunk néhany egyszerii példat. Tegyiik fel, hogy a billentylizetr6l az alabbi harom sort

vissziik be egymas utan:
$ szol=sivatagban
$ szo2=kutat
$ echo A $szol egy csapat $szo2 as

Az echo parancs végrehajtasakor, mely egy sor kiirasat végzi el, elobb sor keriil a szol,

illetve szo2 valtozok behelyettesitésére a megfeleld értékkel, az eredmény pedig:
A sivatagban egy csapat kutat as

Ha ezzel szemben az alabbi parancsot irjuk be:
$ echo A $szol megkezdodott a $szolas

Az eredmény a kovetkezd lesz:
A sivatagban megkezdodott a

mivel a shell a sszo2as valtozo értékét probalja behelyettesiteni, az pedig nincs definialva,
azaz lres string lesz az értéke. Az ehhez hasonld helyzetek elkeriilésére hasznalhatjuk a

masodikként megadott helyettesitési format:
$ echo A $szol megkezdodott a ${szo2}as

4. FEJEZET OPERACIOS RENDSZEREK 139

A parancs végrehajtasanak eredménye ekkor:
A sivatagban megkezdodott a kutatas

Az sh 13 kulcsszoval rendelkezik. Ezek az alabbiak:
if then else elif fi
case in esac
for while until do done

Az sh altal hasznalt vezérlé szerkezetek

Az if vezérlo szerkezet szintaxisa a kovetkezo:

if utasitésok;

then utasitésok,

[elif utasitédsoks
then utasitéasoky

elif utasitéasok,;

then utasitésok,]
[else utasitasok,,:]
fi

Egy if utasitdson beliil tehat akarhany elif ... then ag szerepelhet, az utasitas végén
pedig megjelenhet (de csak egyszer) az else

Megjegyezziik, hogy az if, then, elif, fi kulcsszavak szintaktikai szempontbdl gy
viselkednek, mintha kiilon parancsok lennének, ezért vagy 0j sorba kell irnunk dket, vagy —
amennyiben valamelyik nincs kiilon sorban — a parancsokat egymastol elvalaszto ,,;”-vel kell
azt elvalasztanunk a sor tobbi részétol.

A if-et vagy elif-et kdvetd parancslistanak kettds szerepe van: egyrészt a listaban levd
parancsok végrehajtasa, masrészt a végrehajtas igazsagértékének a meghatarozasa. Egy
parancslista végrehajtdsanak értéke true, amennyiben a listdbol az utoljara végrehajtott
parancs visszatéritett értéke 0. A végrehajtas értéke false, ha a visszatéritett érték zérotol
kiilonb6z6. A then vagy else utan kovetkezd parancslista ennek az igazsagértéknek a
fliggvényében hajtodik végre vagy sem.

Az i f utasitas a kovetkezoképpen mitkddik:

e Végre lesz hajtva az if-et koOvetd parancslista. Amennyiben a végrehajtott
utasitassorozat igazsagértéke true, akkor a then agon szereplé parancsok sorozata
hajtodik végre, és az if utasitds végrehajtdsa befejezddik. Ellenkezd esetben (a
végrehajtott utasitassorozat igazsagértéke false) a kovetkez6 1épés kovetkezik:

+ amennyiben van egy vagy tobb elif &g, akkor rendre végrehajtodik az Oket kovetd
parancslista, mindaddig, amig valamelyiknek az igazsagértéke igaz (true) nem lesz. Ezt
kovetden az utdna kovetkezd then ag parancsai hatédnak végre és az if utasitds
végrehajtasa befejezddik. Ellenkezd esetben (vagy egyaltalan nincs elif vagy az
Osszes parancslista false-ra értékelddik ki), az alabbi 1épés kovetkezik:

« amennyiben van else ag, végrehajtodik az else utdni parancslista és az if
végehajtasa befejezddik. Ellenkez6 esetben (nincs else ag):

* az if végrehajtasa befejezddik és az i £-et koveto utasitassal folytatodik a végrehajtas.

140

4. FEJEZET OPERACIOS RENDSZEREK

Az aldbbiakban példaként bemutatunk — két valtozatban — egy parancsallomanyt, mely egy
szoveges allomany sorait abécésorrendbe rendezve listdzza ki. Az allomany nevét a
parancssor els6 paramétereként adjuk meg. Az elso valtozat:

if [s#

fi

then echo "Haszndlat: $0 &llomé&nynév"
else sort $1 | more

-eqg 0]

A bemutatott valtozat csupan azt ellendrzi, hogy megadtunk-e egy paramétert a
parancssorban. A kovetkez6 valtozat alaposabb ellenérzést végez (azt is megvizsgaljuk, hogy
a paraméterként megadott allomany 1étezik-e):

fi

if [S$# -eqg 0]
then echo "Hasznélat: $0 alloménynéwv"
elif [1 —f 7817]
then echo "$1 &4llomény nem létezik"
else sort $1 | more

Ismétlo struktarak

A shell négyféle ismétlo strukturaval rendelkezik: for két valtozatban, while és until.

Ezek szintaxisa:

for valtozdénév
do

utasitasok
done

for valtozdénév in szavak
do

utasitasok
done

while utasitéasokl
do

utasitasok?2
done

until utasitédsokl
do

utasitasok?2
done

A for ismétlo struktara

A shell ismétld struktarai koziil ez a leggyakrabban hasznalt. Két alakja van, mindkettd egy
valtozoénév nevil kontroll-valtozot hasznal (a valtozo neve természetesen tetszoleges lehet).

4. FEJEZET OPERACIOS RENDSZEREK 141

Az els6 forméaban a valtozoénév rendre felveszi a parancssorban megadott Gsszes paraméter
értékét: $1, $2, ..., (tulajdonképpen a $@ valtozobodl veszi a shell az értékeket). Ezek
mindegyikére végrehajtja a ciklus torzsében levo utasitasokat.

A masodik alakban az in utan kovetkezd szavak listaja szokozokkel elvalasztott egyszerii
szavakat jeldl vagy helyettesitd karaktereket tartalmazd allomanynevek szerepelhetnek ott,
melyek ki lesznek terjesztve az Osszes illeszked6 allomanynévre, igy végiil egy allomany-
listat kapunk. A valtozénév rendre felveszi a lista elemeinek értékét, és mindegyikre végre
lesz hajtva az utasitasok sorozata.

Lassunk néhany példat. Az elsé példa egyenként rendezi és kilistdzza a paraméterként

megadott dlloméanyok tartalmat:
for allomany
do
sort $allomany | more
done

Feltételezziik, hogy a parancsallomany neve rendez. Ebben az esetben a kvetkez6 parancs:
$ rendez A b C

az alabbi parancsokat fogja generélni és végrehajtani:

sort A | more
sort b | more
sort C | more

Ugyanezt a hatast érjiik el, amennyiben az allomanynevek a rendez parancsallomanyon beliil
vannak felsorolva:

for allomany in A Db C
do
sort S$allomany | more
done

a parancsallomanyt pedig a kovetkezéképpen hivjuk meg (ezuttal paraméterek nélkiil):
$ rendez

Végiil rendezziik az aktualis katalogus Osszes olyan allomanyat, melynek neve ,,adat”-tal
végzodik:

for allomany in *adat
do
sort $allomany | more
done

Az alabbi példa az Gsszes bejelentkezett felhasznalonak kiild egy mailt:

for x in “who | cut -fl1 -4 ' '

do
mail -s "Udvozlet" ${x}@scs.ubbcluj.ro <<UZENET
Elnezest a zavarasert. Ezt az uzenetet csupan a for ciklus
tesztelese vegett kuldtuk el.
UZENET
Done

142 4. FEJEZET OPERACIOS RENDSZEREK
Awhile és until ismétlo strukturak

A kétféle utasitds hasonlit egymdashoz, amennyiben mindkettd elébb az utasitasokl
utasitassorozatot hajtja végre. A végrehajtott utasitdssorozat igazsagértékétdl (azaz az utolsod
parancs visszaadott értékétdl) fiiggben végrehajtodik vagy sem a do és done kozotti
utasitasok2 utasitdssorozat, majd ismét az utasitasokl kiértékelésére keriil sor vagy
befejezddik a ciklus végrehajtasa.

A while ciklus végrehajtasa akkor fejezddik be, ha az utasitasokl utasitidssorozat utolsd
parancsanak visszaadott értéke zérotol kiilonbozé. Ezzel ellentétben az until ciklus akkor
fejez6dik be, amikor 0-t kapunk vissza.

Az alabbi

példaban a paraméterként megadott

allomanyok

megvalosito feladatot lathatjuk while majd until ciklust hasznalva:

rendezését/kilistazasat

while [$# -gt 0] until [$# -eq 0]
do do
if [-f 7”S1”] if [-f 7”S1”]
then sort $1 | more then sort $1 | more
else echo "nincs $1 file" else echo "nincs $1 file"
fi fi
shift shift
done done

A true, false, break, continue utasitasok
Egyszerii utasitasokrol van szd, de végrehajtasuknak kizardlag a ciklikus vezérld szerkezetek
kontextusaban van értelme.

A break illetve continue a for, while vagy until utasitasok befejezését illetve a ciklus
ujraiteralasat vonjak maguk utan. Az emlitett parancsok a C nyelvbdl lettek kolcsonozve
(ahol kizardlag a legbelsé ciklusra vonatkozik a hatasuk), és a shell altal kiterjesztve.
Szintaxisuk a kovetkezo:

break [n]
continue [

n]
A break parancs a ciklus torzsének elhagyasat kéri, ezt kovetden a végrehajtas a ciklus utani
utasitassal folytatodik. Amennyiben az n paraméter hidnyzik, akkor a break utasitast
tartalmazo legbels6 ciklus elhagyéasara kertil sor. Ha viszont az n is jelen van és a break
legalabb n egymasba agyazott ciklus belsejében van, akkor az n. ciklust kovetd utasitassal
folytatodik a végrehajtas.

A continue utasitds a kdvetkez0 iteracioval folytatja a ciklus végrehajtasat. Az n paraméter
nélkiil a legbelsé ciklus lesz Gjraiteralva, kiilonben az n. ciklus, amelybe a continue bele
van agyazva.

Az ujraiteralas a for esetében azt jelenti, hogy a ciklusvaltoz6 a kovetkezd értéket kapja
meg, while €s until esetében pedig a while vagy until Utdn kovetkezd utasitassorozat
lesz ismét végrehajtva.

4. FEJEZET OPERACIOS RENDSZEREK 143
Regularis kifejezések

A reguldris kifejezés (regular expression) egy egy mintat meghatarozd karaktersorozatot
jelent, mely akar tobb konkrét karaktersorra is illeszkedhet. A Unix altal rendelkezésre
bocsatott eszk6zok kozott szamos olyan szerepel, mely mintaillesztést hasznal, ilyen példaul
a grep vagy egrep parancs, mely a bemeneti sorok koziil kisziiri a megadott mintara
illeszkeddket.

A reguldris kifejezésekben szerepelhetnek specidlis jelentést hordozé karakterek, ezeket
metakaraktereknek hivjuk, hasonléan a shell-ben a fajlnév behelyettesitéskor hasznalt
specialis karakterekhez. Vigyazzunk azonban, mivel két, egymastol kiilonb6zd, fogalomrol
van sz0, ne keverjiik 6ssze a hasznalatukat.

A regularis kifejezésekben hasznalt metakarakterek a kovetkezok:

[IV$*

A kiterjesztett regularis kifejezésekben (extended regular expression, a tovabbiakban a ktrk.
roviditést hasznaljuk) az alabbi metakarakterek szerepelhetnek (ezeket pl. az egrep
mintailleszt6 tudja értelmezni):

OV$+0{H

Az alabbiakban megadjuk a regularis kifejezéseket meghatarozo szabalyokat.

— metakaraktereket nem tartalmazoé kifejezés csak sajatmagara illeszkedik (pl. az abc
regularis kifejezés kizardlag az abc karaktersorra illeszkedik)

— \c - ac karakterre illeszkedik (pl. * a *-ra; \\ a \-re)

— . (pont) - barmelyik (nem tjsor) karakterre illeszkedik (pl. ab. illeszkedik az aba, abb,
abc, ... abz, ab0 stb. karaktersorozatokra)

— haereg. kif., akkor e* az e regularis kifejezés 0 vagy tobbszori eléfordulasara
illeszkedik (pl. a* illeszkedik az iires stringre, a, aa, aaa,..-ra

— e+ (ktrk.) — e 1 vagy tobbszori el6fordulasara illeszkedik. Helyettesithetd ee*-al.

— [...] - illeszkedik az abban a pozicidban 1évé barmely, a zarojelben felsorolt
karakterre. (PI. [aeiou] az angol abécé barmelyik kisbetiivel irt maganhangzojara
illeszkedik)

— egymas utan kovetkezo karaktereket roviditeni lehet Pl. [0-9a-z]

— anyito zardjelet kovetd a felsorolt karakterek tagadasa. (P1. [*0-9]
illeszkedik barmely, nem szamjegy karakterre)

— a- karaktert a \- karakterparos jeloli.

— a] zargjel csak a felsorolas elso tagja lehet.

— Nevesitett karakterosztalyok. Ezek konkrét jelentése fiigghet a nyelvi lokalizaciotol.
Ahhoz, hogy a hagyomanyos interpretacié érvényesiiljon, fontos, hogy az LC_ALL
kornyezeti valtozo értéke C-re legyen allitva

— [:alnum:] — alfanumerikus karakterek barmelyikére illeszkedik (egyenértékii a
kovetkezo kifejezéssel, az ASCII kodolast tekintve [0-9a-za-21)

— [:alpha:] — barmelyik bettire illeszkedik ([A-za-z])

— [:entrl:] — vezérl6 karakterek ([\x00-\x1F\x7F])

— [:digit:] — szamjegy

— [:graph:] — lathato karakterek (minden karakter, kivéve a vezérld karaktereket
és szokozoket)

— [:lower:] — kisbetli ((a-z1)

— [:print:] — lathato karakterek és szok6zok (minden karakter, kivéve a vezérld
karaktereket)

144 4. FEJEZET OPERACIOS RENDSZEREK

[:punct:] — k6zpontozasban hasznalt jelek ([!"\#s%s" () *+, \-
L/ 1i<=>2@\[\\\1"_{[}~])
— [:space:] — tetsz6leges fehér karakter, az Gjsort is beleértve ([\t\r\n\v\f])
[:upper:] — nagybetii ((2-21)
— [:xdigit:] — hexa szamjegy ([A-Fa-£0-9])
— el\|e2 —ktrk: el|e2 —illeszkedik el vagy e2-re.
(PI [a-z]|\. - az adott pozicioban csak kisbetli vagy pont lehet)
— MNasorelejére, $ a sor végére illeszti a mintat.
PI."$ vagy " *$ - tires sor, ~["0-9]*$ - szamot nem tartalmazd sor
— \(...\) = ktrk: (...) —illeszkedik a zarojelbe tett kifejezésre, és egyben
megjeldli azt (csoportositasra is hasznalt).
— \n, ahol n szam - a zardjelezéssel kijel6lt mintara hivatkozik, a kijelolés
sorrendjében.
PL MCO\()).*\2\18$ — ktrk: ~(.)(.).*\2\1$ — olyan sor, ahol a sor els6 két
karaktere tiikorszimmetrikus az utols6 két karakterre.
— c\{m,n\} — ktrk: c{m,n} —, ahol m és n 256-nal kisebb nemnegativ egész - a
minta legalabb m-szer, ¢és legfennebb n-szer fordul el egymas utan.
— csak n - pontosan n el6fordulas
— csak m- legalabb m eléfordulas

Megoldott példafeladatok

1. Példa : egy feliigyeléprogram

Egy Unix rendszerben a gyakorlatban nemegyszer sziikség lehet arra, hogy egy bizonyos
katalogus valtozasait feliigyelet alatt tartsuk. Tegyik fel, hogy a feliigyelet a
kovetkezoképpen torténik: az elsé paraméterként (masodpercben) megadott ¢ id6kézonként
a program elvégzi a (masodik paraméterként megadott) megfigyelt katalogus tartalmanak
részletes Osszefoglalasat. Amennyiben ez az Osszefoglalas megegyezik a t masodperccel
ezelott lementettel, a program tovabbi t masodpercet var, majd ismét ellen6rzi a katalogus
tartalmat és igy tovabb. Az els6 olyan esetben, amikor kiilonbséget taldl a program a régi,
illetve 4j tartalom kozott, kiir egy megfeleld iizenetet, és befejezddik.

A feladatot a megfigyel nevii shell script fogja elvégezni, melyet a kovetkezékben
mutatunk be.

A programmal kapcsolatos néhany megjegyzés:

e A ¢t illetve katalogus valtozok a két vizsgalat kozott eltelt idéintervallumot
valamint a megfigyelt katalogust adjak meg. A ¢ valtozo inicializalasa a $1 (els0)
paraméteren keresztiil torténik. Amennyiben ez hidnyzik, a t valtozé a 60 implicit
értéket kapja. Hasonloképpen, a katalogus valtozd értékét megadhatjuk a $2
(mésodik) paraméter segitségével, ennek hianyaban pedig az alapkatalogus lesz az
alapértelmezett érték.

e Az xvaltozo6 a katalogus tartalmanak utolso el6tti 6sszefoglalojat tartalmazza, y pedig
a legutolsot jegyzi meg.

4. FEJEZET OPERACIOS RENDSZEREK 145

#!/bin/sh
katalogus=${2-${HOME} } # $2 hidnyéban az alapkataldbgus
lesz az alapértelmezett
t=${1-60} # $1 hiédnyaban t=60
x="1s -1 $katalogus" # régi osszefoglald
while true
do
sleep St # t mp.-t var
y="1ls -1 S$katalogus" # 0j Osszefoglald
if ["$x" = "sy"] # megegyeznek?
then
echo "A S$katalogus kataldégus tartalma megvaltozott."
exit O
else
echo "Semmi valtozéas. VArunk tGjabb $t mésodpercet."
fi
x=8y # megjegyezziik a legutdbbi
Osszefoglaldt
Done

Egy ilyen programot kiilonbozd helyzetekben hasznalhatunk. Egy lehetséges eset a
kovetkezo: egy tetszOleges felhasznald két terminalablakot nyitott meg, és az egyikben az
alabbi parancsot irja be:

S megfigyel 10
Amennyiben a masik terminalablakban moédositjuk a $SHOME alapkatalogus tartalmat,
példaul létrehozunk egy 1j allomanyt a cat >A paranccsal, akkor a masik terminalablakban
legtobb 10 masodpercen belill megjelenik az iizenet, mely a mddosulasrol értesit.

2. példa: break és continue hasznalata

A break és continue utasitasok haszndlatanak példazasara tekintsiik a kovetkezo feladatot:
keresslink az aktualis katalogusban egy szoveges allomanyt, melyben taldlunk olyan sort,
amiben az elsO sz6 5 karakternél hosszabb. A feladatot megold6 program a kovetkezo:

for x in *

do
if ! file -b $x | grep -gq text
then
echo $x nem szdveges &llomany. Léassuk a kovetkezdt...
continue
fi

#a szol valtozdban megjegyezzilk egy sor elsé szavat
(szbelvalasztdénak a szbkdz karaktert tekintjiik)
for szol in ‘cat $x | cut -d" " -fl1°
do
#megvizsgaljuk, hogy a sor nem-e ires, illetve az elsdé szb
#hosszat
if [! -z ”$szol”] && [“expr length $szol”™ -ge 5]
then
echo A $x fileban megtalaltuk $szol szdét, \
melynek hossza ‘expr length $szol’
#kiléptnk"®
break 2
fi
done
done

146 4. FEJEZET OPERACIOS RENDSZEREK

A szoveges allomanyok kivéalasztdsit a file és grep parancsok Osszekombindlasanak
segitségével valositjuk meg. Az elsd talalo szo esetében elhagyjuk a két for ciklust a break
utasitas segitségével. Amennyiben elhagyjuk a break paraméterét, ki lesz irva minden
allomany els6 olyan szava, mely megfelel a kdvetelményeknek, ha pedig a break-et
tartalmazo sort kikommentezziik, az dsszes talalo szot megkapjuk.

3. példa: kozonséges allomanyok dsszefiizése
Egy olyan sh script megirasara van sziikség, melyet az alabbi médon hivunk meg:
$ pall katalogus

Ennek hatasara pedig a /tmp kataldogusban hozzon Iétre egy olyan szdveges allomanyt, mely
magaba foglalja a megadott katalogusban vagy ennek alkatalogusaiban talalhatd Osszes
kinyomtathaté allomany tartalmat. Az eredményként szolgald széveges allomanyban, az 6t
alkotd minden egyes allomany elején egy, az allomanyt azonosito fejlécet helyeziink el.

Mikor hasznos egy ilyen alkalmazas? Tegyiik fel, hogy egy felhasznalénak egy bizonyos
katalogusszerkezetben rengeteg szoveges allomanya, shell script-je, forraskoddja, stb. van.
Ahelyett, hogy ezeket kiilon-kiilon kellene kinyomtassa, a felhasznalé hasznalhatja a fentebb
emlitett funkcionalitast megvalositd programot.

A pall program az egrep szliré segitségével beazonositja az Osszes olyan folyamatot,
melyek kinyomtathatdak, végiil egyesiti ezeket egyetlen nyomtathaté allomanyba. A pall
program forraskodja a kovetkezo:

#!/bin/sh
if [$# -ne 1]
then echo "Hasznalat: $0 katalogus" >&2

exit 1
fi
if [V -d "S1"™]
then echo "$1 nem letezik vagy nem katalogus" >&2
exit 2
fi

rm /tmp/${LOGNAME}Listazas /tmp/${LOGNAME}Listazni >/dev/null 2>&l

osszSorokSzama=0
find $1 -type f -print | sort | while read file
do
if file S$file | egrep "exec|datal|empty|reloc|cannot open" >/dev/null 2>&1
then
continue
else
sorokSzama="wc -1 <"$file""
sor=${osszSorokSzama}" a " file $file " allomanyig"
echo $sor >/dev/tty
echo $sor >> /tmp/${LOGNAME}Listazni
echo $sor >> /tmp/${LOGNAME}Listazas
pr -f $file >> /tmp/${LOGNAME}Listazas
osszSorokSzama="expr $osszSorokSzama + $sorokSzama’
fi
done
echo "Osszesites: $osszSorokSzama sor" >>/tmp/${LOGNAME}Listazni
echo "Osszesites: $osszSorokSzama sor" >>/tmp/${LOGNAME}Listazas
cat /tmp/${LOGNAME}Listazas >>/tmp/${LOGNAME}Listazni

4. FEJEZET OPERACIOS RENDSZEREK 147

| rm /tmp/${LOGNAME}Listazas

A program létrehozza a /tmp/${LOGNAME}Listazas allomanyt, melynek elején egy
tartalomjegyz¢k taldlhatd, ami tartalmazza az allomanyok nevét, illetve a sorok szdmaban
mért hosszat. A sorokSzama nevill valtoz6 az aktudlisan feldolgozott allomany sorainak
szamat tartalmazza. Az osszSorokSzama valtozOban Osszegezziikk a sorok szamat az
allomanyok osszefiizése soran.

A kinyomtathatd 4allomanyokra vonatkozd részletesebb informacioért ajanljuk az

/usr/share/magic (Linux alatt), illetve /etc/magic (Solaris) allomanyok
tanulmanyozasat, ugyanis ezeket hasznalja a file parancs az allomany tipusanak
meghatarozasara.

4. példa: bejelentkezett felhasznalé folyamatai

Olvassunk be felhasznaloneveket a billentylizetr6l, iires karaktersor beolvasasaig.
Amennyiben létezik az illeté felhasznalo, és be van jelentkezve, irjuk ki az altala éppen
futtatott folyamatok nevét, és ezek szamat (mindeniket csak egyszer vessziikk szamitasba),
kiilonben irjunk ki megfelel6 hibaiizenetet (nemlétez6 felhasznald vagy az illetd felhasznalod
nincs bejelentkezve).

Megjegyzések: egy végtelen ciklusban (: olyan utasitds, mely mindig 0-t térit vissza)
beolvasunk (read utasitas) egy felhasznalonevet. Ha a beolvasott karaktersor {ires, kilépiink
a ciklusbol (break). Megvizsgaljuk, hogy a beolvasott felhasznalonév benne van-e az
/etc/passwd allomanyban, mely a rendszer felhasznal6irél tarol informéciot (a
felhasznalonév a sor elején kell szerepeljen, utana pedig egy ,,:” kovetkezik, ez vélasztja
ugyanis el az illeté felhasznalohoz kapcsolt kiilonboz6 adatokat egymastol). Ha megtalaltuk a
felhasznalot, azt is megvizsgaljuk, hogy be van-e jelentkezve (who parancs). Ha valamelyik
feltétel nem teljesiil, kiirjuk a megfelel6 hibaiizenetet, kiillonben a flymtk valtozoba
mentjiikk az illeté folyamatait (lasd a ps parancsot. Ennek ,,—u” opcidjaval adjuk meg a
felhasznalot, akinek a folyamatai érdekelnek, illetve az ,,0” opcid segitségével formazzuk a
kimenetet. Mivel azt szeretnénk, hogy minden parancs csak egyszer jelenjen meg, ezért
rendezziik a kimenet sorait a sort parancs ,,—u” opcidjaval). A wc parancs segitségével
megszamoljuk a folyamatokat (az elmentett karaktersorban szerepld szavak szama). Fontos,
hogy a ps parancsot csak egyszer hajtsuk végre, ezért mentettik el a kimenetét egy
valtozéban, hogy ebben szdmoljuk meg a folyamatok szdmat, és ne egy ujabb ps hivas
kimenetében, ami megtorténhet, hogy més eredményt adna.

#!/bin/sh
while :
do
echo "Kerek egy felhasznalonevet (ures sor - befejezes):"
read user
if ["Suser" = ""]
then
break
fi

if grep -g ""Suser:" /etc/passwd
then
if wholgrep -q ""Suser "
then
#megjegyezzuk egy valtozoban a $user felhasznalo folyamatait
flymtk="ps -u Suser o comm=|sort -u’
#kiirjuk a folyamatokat es ezek szamat
echo "Suser felhasznalo folyamatai:"; echo $flymtk
echo " "echo $flymtk|wc -w' folyamatot futtat"

148 4. FEJEZET OPERACIOS RENDSZEREK

else
echo Suser felhasznalo nincs bejelentkezve
fi
else
echo Suser felhasznalo nem letezik a rendszerben
fi
done

4. FEJEZET OPERACIOS RENDSZEREK 149

4.4. Javasolt feladatok

l.

a. Irjuk le roviden a fork rendszerhivas miikodését, és ennek lehetséges visszatéritési
értékeit.

b. Mit ir ki a képernydre az alabbi programrész, feltételezve, hogy a fork rendszerhivas
sikeresen hajtodik végre? Indokoljuk a valaszt.

int main () {
int n = 1;
if (fork() == 0) {
n=n++1;
exit (0) ;
}
n=n-+ 2;
printf (“%d: %d\n”, getpid(), n);
wait (0) ;
return 0;

}

c. Mit ir ki a képernydre az alabbi shell script? Magyarazzuk meg az els6 harom sor
miikddését.

1 | for F in *.txt; do

2 K="grep abc S$F°

3 if [W$K” != Y 1; then
4 echo S$F

5 fi

6 | done

1.

a. Adott az alabbi kodrészlet. Adjuk meg azokat a sorokat, amelyek a képernydn fognak
megjelenni, abban a sorrendben, ahogy azok ki lesznek irva, feltételezve, hogy a fork
rendszerhivas sikerrel tér vissza. Indokoljuk a valaszt.

int main () {
int i;
for (i=0; 1i<2; i++) {
printf ("%$d: %d\n", getpid(), 1);

if (fork() == 0) {
printf ("%d: %d\n", getpid(), 1);
exit (0) ;

}

}

for (1=0; i<2; 1i++) {
wait (0) ;

}

return 0;

150 4. FEJEZET OPERACIOS RENDSZEREK

b. Magyarazzuk meg az alabbi shell script miikodését. Mi torténik akkor, ha a lista.txt
allomany eredetileg hianyzik?

Adjuk hozza az alabbi kodrészlethez az 4j lista.txt allomanyt general6 hianyzo sort (a lista.txt
a megadott kodrészlet altal generalt valtoztatdsban érintett allomanyok listajat kell
tartalmazza).

more lista.txt
rm lista.txt
for £ in *.sh; do

if [! -x $f]; then

chmod 700 S$f

fi
done
mail -s "Erintett allomanyok" admin@scs.ubbcluj.ro <lista.txt

4.5. Altalanos kényvészet

Lo

***: Linux man magyarul, http://people.inf.elte.hu/csa/MAN/HTML/index.htm

A.S. Tanenbaum, A.S. Woodhull, Operdcios rendszerek, 2007, Panem Kiado.

Alexandrescu, Programarea moderna in C++. Programare generica si modele de

proiectare aplicate, Editura Teora, 2002.

Angster Erzsébet: Objektumorientalt tervezés és programozas Java, 4KOR Bt, 2003.

Bartok Nagy Janos, Laufer Judit, UNLX felhasznadloi ismeretek, Openinfo

Bjarne Stroustrup: 4 C++ programozasi nyelv, Kiskapu kiad6, Budapest, 2001.

Bjarne Stroustrup: The C++ Programming Language Special Edition, AT&T, 2000.

Boian F.M. Frentiu M., Lazar I. Tambulea L. Informatica de baza. Presa Universitara

Clujeana, Cluj, 2005

9. Boian F.M., Ferdean C.M., Boian R.F., Dragos R.C., Programare concurentd pe
platforme Unix, Windows, Java, Ed. Albastra, Cluj-Napoca, 2002

10. Boian F.M., Vancea A., Bufnea D., Boian R.,F., Cobarzan C., Sterca A., Cojocar D.,
Sisteme de operare, RISOPRINT, 2006

11. Bradley L. Jones: C# mesteri szinten 21 nap alatt, Kiskapu kiado, Budapest, 2004.

12. Bradley L. Jones: SAMS Teach Yourself the C# Language in 21 Days, Pearson
Education,2004.

13. Cormen, T., Leiserson, C., Rivest, R., Introducere in algoritmi, Editura Computer
Libris Agora, Cluj, 2000

14. DATE, C.J., An Introduction to Database Systems (8th Edition), Addison-Wesley,

wn

O No gk

2004.

15. Eckel B., Thinking in C++, vol I-11, http://www.mindview.net

16. Ellis M.A., Stroustrup B., The annotated C++ Reference Manual, Addison-Wesley,
1995

17. Frentiu M., Lazar 1. Bazele programarii. Partea I-a: Proiectarea algoritmilor

18. Herbert Schildt: Java. The Complete Reference, Eighth Edition, McGraw-Hill, 2011.

19. Horowitz, E., Fundamentals of Data Structures in C++, Computer Science Press,
1995

4.

20

21.

22.
23.

24,

25.
26.

217.

28.

FEJEZET OPERACIOS RENDSZEREK 151

.J. D. Ullman, J. Widom: Adatbdzisrendszerek - Alapvetés, Panem kiado, 2008.
ULLMAN, J., WIDOM, J., A First Course in Database Systems (3rd Edition),
Addison-Wesley + Prentice-Hall, 2011.

Kiado Kft, 1998, http://www.szabilinux.hu/ufi/main.htm
Niculescu,V., Czibula, G., Structuri fundamentale de date si algoritmi. O perspectiva
orientata obiect., Ed. Casa Cartii de Stiintd, Cluj-Napoca, 2011
RAMAKRISHNAN, R., Database Management Systems. McGraw-Hill, 2007,
http://pages.cs.wisc.edu/~dbbook/openAccess/thirdEdition/slides/slides3ed.html
Robert Sedgewick: Algorithms, Addison-Wesley, 1984
Simon Kdéroly: Kenyeriink Java. A Java programozas alapjai, Presa Universitara
Clujeana, 2010.
Tambulea L., Baze de date, Facultatea de matematica si Informatica, Centrul de
Formare Continua si Invatdmant la Distanta, Cluj-Napoca, 2003

V. Varga: Adatbazisrendszerek (A relacios modelltol az XML adatokig), Editura
Presa Universitara Clujeana, 2005, p. 260. ISBN 973-610-372-2

