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Chapter 1

The various equations of the line

1.1 The line defined by a point and a director vector

Suppose R{O; i⃗, j⃗} is an orthogonal Cartesian system in the plane. Let d be having the non-
zero vector d of components (p, q) ∈ R2 as director vector. On the line d we consider a fixed
point M0 of coordinates (x0, y0).

The vector form of the equation of d is

d : r⃗M = r⃗M0 + λ · d⃗, (1.1)

where λ ∈ R and r⃗M , r⃗M0
represent the position vectors of the points M and M0, respec-

tively.
The equation above should be understood as follows. A point M in the plane belongs to

the line d if and only if there exists λ ∈ R such that the position vector r⃗M satisfies (1.1).

Proposition 1.1.1. If the components p, q of d are both non-zero, the Cartesian equation of
the line d with respect to the system R{O; i⃗, j⃗} is

x− x0

p
=

y − y0
q

. (1.2)

Proof. Suppose M is an arbitrary point of coordinates (x, y) in the plane. The vector equa-
tion of the line d, namely r⃗M = r⃗M0 + λd⃗ can be rewritten as

x⃗i+ yj⃗ = x0⃗i+ y0j⃗ + λ(p⃗i+ qj⃗).

As the vectors i⃗ and j⃗ are linearly independent, the previous equality is equivalent to{
x = x0 + λp
y = y0 + λq

(1.3)

We recognise (1.3) as the parametric equations of the line d. Under the given hypothesis,
equating λ from the two relations we obtain the desired conclusion

x− x0

p
=

y − y0
q

.
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6 CHAPTER 1. THE VARIOUS EQUATIONS OF THE LINE

Remark. If one of p or q is equal to zero, then we cannot divide by it. Suppose that p = 0.
From the parametric equations (1.3) we deduce that x = x0 and y can be anything (by
varying λ ∈ R, the variable y can attain every real value). The equation of the line is in this
case x = x0 and one should notice that this is a line parallel to the Oy axis. Similarly, if
q = 0, then we obtain a line parallel to the Ox axis which has equation y = y0.

Remark. If p ̸= 0, i.e. if the line d is not parallel to Oy, then the equation of the line d can
be written as y − y0 = q

p (x− x0). Writing m := q
p , the equation of the line d takes the form

y − y0 = m(x− x0), (1.4)

where m is called the slope (or the angular coefficient) of d. Note that m = tanα, where α
represents the angle between the Ox axis and the line d.

1.2 The line defined by two distinct points

Let d be a line in the plane. We will describe its equation relative to the Cartesian system R
introduced in the previous section.

Suppose M1 and M2 are two fixed distinct points on the line d, such that their coordi-
nates relative to R are (x1, y1) and (x2, y2), respectively. Notice that

−−−−→
M1M2 = r⃗M2 − r⃗M1

can be chosen as a director vector of the line d. Using (1.1), the vector equation of d can be
written as

r⃗M = r⃗M1
+ λ(r⃗M2

− r⃗M1
).

If we write (x, y) for the coordinates of M , the previous equation can be rewritten as

x⃗i+ yj⃗ = x1⃗i+ y1j⃗ + λ(x2⃗i+ y2j⃗ − x1⃗i− y1j⃗),

which is equivalent to {
x = x1 + λ(x2 − y1)
y = y1 + λ(y2 − y1)

.

If x1 ̸= x2 and y2 ̸= y1, then the above can be written as

x− x1

x2 − x1
=

y − y1
y2 − y1

(1.5)

and the latter is often called the equation of the line d determined by the points M1 and M2.
This should be understood as follows: An arbitrary point M(x, y) belongs to the line d

determined by M1(x1, y1) and M2(x2, y2) if and only if the coordinates x, y of M satisfy the
equation (1.5).

Remark. If x2 = x1 the equation of d is x = x1 which represents a line parallel to Oy.
Similarly, if y2 = y1 the equation of d is y = y1 and d is a line parallel to the Ox axis. When
x2 ̸= x1, the equation of the line d can be written as

y − y1 =
y2 − y1
x2 − x1

(x− x1),
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and comparing this to (1.4), we observe that the slope of the line d is

m =
y2 − y1
x2 − x1

.

Remark. The equation of the line d given by two fixed points M1(x1, y1) and M2(x2, y2) can
be written using a determinant, namely

d :

∣∣∣∣∣∣
x y 1
x1 y1 1
x2 y2 1

∣∣∣∣∣∣ = 0. (1.6)

Showing that (1.6) and (1.5) are equivalent can be done by transforming the determinant:
Keep the third line constant in the determinant, subtract it from the first two lines and
express the resulting determinant after the last column. The rest is left as an easy exercise
for the reader.

Remark. Three given points M1(x1, y1), M2(x2, y2), M3(x3, y3) are collinear if and only if∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ = 0.

The latter is often mentioned as “the coliniarity condition of the points M1 , M2 and M3”
with respect to the Cartesian system R.

The equation of d given by cuts. Suppose the line d intersects the Ox axis in the point
A(a, 0) and the Oy axis in the point B(0, b). Using (1.6) we see that the equation of the line
AB is

AB :

∣∣∣∣∣∣
x y 1
a 0 1
0 b 1

∣∣∣∣∣∣ = 0,

which is equivalent to
AB : −bx− ay + ab = 0.

If a, b ̸= 0, the equation can be written as

AB :
x

a
+

y

b
= 1,

and the latter is commonly called “the equation of the line AB through cuts.”

1.3 The angle between two given lines

By definition, the angle between two lines can be taken as the angle between two director
vectors (or π minus the angle between two director vectors).

Proposition 1.3.1. Suppose the lines d1 and d2 have director vectors d1(p1, q1) and d2(p2, q2).
Then

cos(∠(d1, d2)) = ± p1p2 + q1q2√
p21 + q21 ·

√
p22 + q22

.
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Proof. On one hand, we have d1 · d2 = ||d1|| · ||d2|| cos(∠(d1, d2)).
On the other hand, using the algebraic form of the dot product we can compute d1 ·d2 =

p1p2 + q1q2. Moreover, ||d1|| =
√
p21 + q21 , ||d2|| =

√
p22 + q22 .

The desired conclusion follows easily.

Let d1 and d2 be two concurrent lines given by their reduced equations:

d1 : y = m1x+ n1 and d2 : y = m2x+ n2.

Recall that in this case the coefficients m1 and m2 represent the slopes of d1 and d2

respectively and we have that m1 = tanφ1 and m2 = tanφ2. One may suppose that φ1 ̸=
π

2
,

φ2 ̸=
π

2
and that φ2 ≥ φ1, so we have φ = φ2 − φ1 ∈ [0, π] \ {

π

2
}.

The angle φ determined by d1 and d2 can be found by first computing

tanφ = tan(φ2 − φ1) =
tanφ2 − tanφ1

1 + tanφ1 tanφ2
,

hence
tanφ =

m2 −m2

1 +m1m2
. (1.7)

and then applying the inverse tangent function.

Remark. The lines d1 and d2 are parallel if and only if tanφ = 0, therefore

d1 ∥ d2 ⇐⇒ m1 = m2. (1.8)

Remark. The lines d1 and d2 are orthogonal if and only if they determine an angle of
π

2
,

hence
d1⊥d2 ⇐⇒ m1m2 + 1 = 0. (1.9)

The parallelism and perpendicularity conditions can be easily expressed in terms of di-
rector vectors, as remarked below.
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Remark. If the lines d1 and d2 have director vectors d1(p1, q1) and d2(p2, q2), then d1 and
d2 are parallel if and only if d1 ∥ d2, which holds if and only if

∃λ ∈ R∗ s.t. d1 = λd2 ⇐⇒ ∃λ ∈ R∗ s.t. p1 = λp2 and q1 = λq2.

Remark. If the lines d1 and d2 have director vectors d1(p1, q1) and d2(p2, q2), then d1 and
d2 are perpendicular if and only if d1 · d2 = 0, which holds if and only if

p1p2 + q1q2 = 0.

1.4 The distance between a point and a line

Suppose M0(x0, y0) is a given point and d a line. The general Cartesian equation of the line
d can be written as

d : ax+ by + c = 0, (1.10)

where a, b, c are fixed real numbers with a2 + b2 > 0.

Remark. All the different forms in which the equation of a line was presented previously
can be reduced (using simple arithmetic) to such a general Cartesian equation.

Proposition 1.4.1. The distance between the point M0 and the line d is equal to

d(M0, d) =
|ax0 + by0 + c|√

a2 + b2
.

Proof. It is easy to deduce that the vector d(−b, a) is a director vector of the line d. Let us
write the equation of the line d′ which passes through M0 and is perpendicular to d.

We can choose d′(a, b) as director vector for d′ since clearly d′ · d = 0, so the two vectors
are perpendicular. The parametric equations of the line d′ are

d′ :

{
x = x0 + a · t
y = y0 + b · t , where t ∈ R. (1.11)

To determine the intersection between d and d′ we replace x and y from (1.11) in (1.10)
and find the parameter t. This gives

a(x0 + a · t) + b(y0 + b · t) + c = 0,

hence
t =

−ax0 − by0 − c

a2 + b2
,

which gives rise to the point Md

(
x0 + a · −ax0−by0−c

a2+b2 , y0 + b · −ax0−by0−c
a2+b2

)
∈ d ∩ d′.

The sought-after distance is

d(M0, d) = d(M0,Md) =

√
a2 ·

(
−ax0 − by0 − c

a2 + b2

)2

+ b2 ·
(
−ax0 − by0 − c

a2 + b2

)2

,

and the conclusion follows after some simple computations.
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As an application, we derive a formula for the area of a triangle determined by three
points.

Proposition 1.4.2. Let Mi(xi, yi), where i ∈ {1, 2, 3} be three distinct points. The area of the
triangle M1M2M3 is

Area[M1M2M3] =

∣∣∣∣∣∣12 ·

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣
∣∣∣∣∣∣ .

Proof. The equation of the line M2M3 is

M2M3 :

∣∣∣∣∣∣
x y 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ = 0

which is equivalent to

(y2 − y3)x− (x2 − x3)y + x2y3 − x3y2 = 0

The area of the triangle can be computed as

Area[M1M2M3] =
1

2
|M2M3| · d(M1,M2M3)

and using the formula derived in the previous proposition we get

Area[M1M2M3] =
1

2

√
(x3 − x2)2 + (y3 − y2)2 ·

|(y2 − y3)x1 − (x2 − x3)y1 + x2y3 − x3y2|√
(x3 − x2)2 + (y3 − y2)2

.

We obtain that

Area[M1M2M3] =
1

2
· |(y2 − y3)x1 − (x2 − x3)y1 + x2y3 − x3y2| =

∣∣∣∣∣∣12 ·

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣
∣∣∣∣∣∣ ,

as desired.



Chapter 2

Conic sections

2.1 The circle

A circle is a closed plane curve, defined as the geometric locus of the points at a given
distance R from a point I. The point I is the center of the circle and the number R is the
radius of the circle. We shall denote the circle of center I and radius R by C(I,R).

In order to determine the equation of the circle, suppose that xOy is an associated
Cartesian system of coordinates in the plane, and I(a, b). An arbitrary point M(x, y) belongs
to C(I,R) if and only if |MI| = R.

Hence,
√
(x− a)2 + (y − b)2 = R, or

(x− a)2 + (y − b)2 = R2. (2.1)

The equation (2.1) represents the equation of the circle centered at I(a, b) and of radius R.

Remark. In a Cartesian system of coordinates, the locus of points M(x, y) satisfying the
equation

x2 + y2 +mx+ ny + p = 0, where m,n, p ∈ R

is either a circle, a point or the empty set.

Exercise. Complete the perfect squares in the equation to justify the remark above.

11
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2.2 The ellipse

Definition. An ellipse is a plane curve, defined as the geometric locus of the points in the
plane, whose distances to two fixed points have a constant sum.

The two fixed points are called the foci of the ellipse and the distance between the foci
is the focal distance.

Let F and F ′ be the two foci of an ellipse and let |FF ′| = 2c be the focal distance.
Suppose that the constant in the definition of the ellipse is 2a

If M is an arbitrary point of the ellipse, it must verify the condition

|MF |+ |MF ′| = 2a.

One may chose a Cartesian system of coordinates centered at the midpoint of the segment
[F ′F ], so that F (c, 0) and F ′(−c, 0) as in the diagram below.

Remark that, by triangle inequality, we have |MF |+ |MF ′| > |FF ′|, hence 2a > 2c.
Let us determine the equation of an ellipse. Starting with the definition, |MF |+|MF ′| =

2a, or √
(x− c)2 + y2 +

√
(x+ c)2 + y2 = 2a.

This is equivalent to √
(x− c)2 + y2 = 2a−

√
(x+ c)2 + y2

and
(x− c)2 + y2 = 4a2 − 4a

√
(x+ c)2 + y2 + (x+ c)2 + y2.

One obtains
a
√
(x+ c)2 + y2 = cx+ a2,

which gives
a2(x2 + 2xc+ c2) + a2y2 = c2x2 + 2a2cx+ a2,

or
(a2 − c2)x2 + a2y2 − a2(a2 − c2) = 0.

Denoting a2 − c2 = b2 (possible, since a > c), one has

b2x2 + a2y2 − a2b2 = 0.

Dividing by a2b2, one obtains the equation of the ellipse

x2

a2
+

y2

b2
− 1 = 0. (2.2)
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Remark. The equation (2.2) is equivalent to

y = ±
b

a

√
a2 − x2; x = ±

a

b

√
b2 − y2,

which means that the ellipse is symmetric with respect to both Ox and Oy. In fact, the line
FF ′, determined by the foci of the ellipse, and the perpendicular line on the midpoint of
the segment [FF ′] are axes of symmetry for the ellipse. Their intersection point, which is
the midpoint of [FF ′], is the center of symmetry of the ellipse, or, simply, its center.

In order to sketch the graph of the ellipse, remark that is it enough to represent the
function

f : [−a, a] → R, f(x) =
b

a

√
a2 − x2,

and to complete the ellipse by symmetry with respect to Ox. One has

f ′(x) = −
b

a

x
√
a2 − x2

, f ′′(x) = −
ab

(a2 − x2)
√
a2 − x2

.

x −a 0 a
f ′(x) | + + + 0 − − − |
f(x) 0 ↗ b ↘ 0
f ′′(x) | − − − − − − − |

The graph of the ellipse is therefore

Remark. In particular, if a = b in x2

a2 +
y2

b2 − 1 = 0, one obtains the equation x2+ y2− a2 = 0
of the circle centered at the origin and of radius a. This happens when c = 0, i.e. when the
foci coincide, so that the circle may be seen as an ellipse whose foci are identical.

Remark. All the considerations can be done in a similar way, by taking the foci of the ellipse
on Oy. One obtains a similar equation for such an ellipse.

2.3 The hyperbola

Definition. A hyperbola is a plane curve, defined as the geometric locus of the points in the
plane, whose distances to two fixed points have a constant difference.

The two fixed points are called the foci of the hyperbola, and the distance between the
foci is the focal distance.
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Denote by F and F ′ the foci of the hyperbola and let |FF ′| = 2c be the focal distance.
Suppose that the constant in the definition is 2a. If M(x, y) is an arbitrary point on the
hyperbola, then

||MF | − |MF ′|| = 2a.

Let us choose a Cartesian system of coordinates, having the center at the midpoint of the
segment [FF ′] and such that F (c, 0), F ′(−c, 0).

Note that in the triangle △MFF ′, ||MF | − |MF ′|| < |FF ′|, so a < c.
The metric relation |MF | − |MF ′| = ±2a becomes√

(x− c)2 + y2 −
√
(x+ c)2 + y2 = ±2a,

or √
(x− c)2 + y2 = ±2a+

√
(x+ c)2 + y2.

This is

x2 − 2cx+ c2 + y2 = 4a2 ± 4a
√
(x+ c)2 + y2 + x2 + 2cx+ c2 + y2 ⇐⇒

⇐⇒ cx+ a2 = ±a
√
(x+ c)2 + y2 ⇐⇒

⇐⇒ c2x2 + 2a2cx+ a4 = a2x2 + 2a2cx+ a2c2 + a2y2 ⇐⇒

⇐⇒ (c2 − a2)x2 − a2y2 − a2(c2 − a2) = 0.

Denote c2 − a2 = b2 (this is possible, since c > a). One then obtains the equation of the
hyperbola

x2

a2
−

y2

b2
− 1 = 0. (2.3)

Remark. The equation (2.3), commonly called the canonical equation of the hyperbola, is
equivalent to

y = ±
b

a

√
x2 − a2; x = ±

a

b

√
y2 + b2.

Then, the coordinate axes are axes of symmetry for the hyperbola. Their intersection point
is the center of the hyperbola.
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To sketch the graph of the hyperbola, is it enough to represent the function

f : (−∞,−a] ∪ [a,∞) → R, f(x) =
b

a

√
x2 − a2,

by taking into account that the hyperbola is symmetrical with respect to Ox.

Since lim
x→∞

f(x)

x
=

b

a
and lim

x→−∞

f(x)

x
= −

b

a
, it follows that y =

b

a
x and y = −

b

a
x are

asymptotes of f .
One has, also,

f ′(x) =
b

a

x
√
x2 − a2

, f ′′(x) = −
ab

(x2 − a2)
√
x2 − a2

.

x −∞ −a a ∞
f ′(x) − − − − | ⧸ ⧸ ⧸ | + + + +
f(x) ∞ ↘ 0| ⧸ ⧸ ⧸ |0 ↗ ∞
f ′′(x) − − − − | ⧸ ⧸ ⧸ | − − − −

and hence the graph of the hyperbola is

Remarks. If a = b, the equation of the hyperbola becomes x2 − y2 = a2. In this case, the
asymptotes are the bisectors of the system of coordinates and one deals with an equilateral
hyperbola.

As in the case of an ellipse, one can consider the hyperbola having the foci on Oy.
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2.4 The parabola

Definition. The parabola is a plane curve defined to be the geometric locus of the points in
the plane, whose distance to a fixed line d is equal to its distance to a fixed point F .

The line d is the director line and the point F is the focus. The distance between the focus
and the director line is denoted by p and represents the parameter of the parabola.

Consider a Cartesian system of coordinates xOy, in which F

(
p

2
, 0

)
and d : x = −

p

2
. If

M(x, y) is an arbitrary point of the parabola, then it verifies

|MN | = |MF |,

where N is the orthogonal projection of M on d.

Thus, the coordinates of a point of the parabola verify√√√√(x+
p

2

)2

+ 0 =

√√√√(x−
p

2

)2

+ y2 ⇔

⇔

(
x+

p

2

)2

=

(
x−

p

2

)2

= y2 ⇔

⇔ x2 + px+
p2

4
= x2 − px+

p2

4
+ y2,
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and the equation of the parabola is

y2 = 2px. (2.4)

Remark. The equation (2.4), commonly called the canonical equation of the parabola, is
equivalent to y = ±

√
2px, so that the parabola is symmetrical with respect to Ox.

Representing the graph of the function f : [0,∞) → [0,∞) and using the symmetry of
the curve with respect to Ox, one obtains the graph of the parabola. One has

f ′(x) =
p

√
2px

; f ′′(x) = −
p

2x
√
2x

.

x 0 ∞
f ′(x) | + + + +
f(x) 0 ↗ ∞
f ′′(x) − − − − −

One obtains the graph

The tangent to the parabola in a given point. Let P : y2 = 2px be a parabola and
M0(x0, y0) be a point of P. Suppose that y0 > 0, so that the point M0 belongs to the graph
of the function f : [0,∞) → [0,∞), f(x) =

√
2px. The slope of the tangent at M0 to the

curve is

f ′(x0) =
p

√
2px0

=
p

y0
.
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A similar computation leads to the angular coefficient of the tangent for y0 < 0, which is

still
p

y0
.

The equation of the tangent at M0 to P is

y − y0 = f ′(x0)(x− x0),

or, replacing f ′(x0),

y − y0 =
p

y0
(x− x0) ⇔

⇔ yy0 − y20 = p(x− x0) ⇔

yy0 − 2px0 = p(x− x0),

hence the equation of the tangent is

yy0 = p(x+ x0). (2.5)

Theorem 2.4.1 (The optical property of the parabola). The tangent line and the normal
line to the parabola in a given point M0(x0, y0) on the parabola are the bisectors of the angle
between the focal radius M0F and the parallel line to Ox which passes through M0.

Proof. Let B
(
−p

2 , y0
)

be the intersection point between the parallel to Ox through M0 and
the director line d: x = −p

2 of the parabola.
From the definition of the parabola, it follows immediately that the triangle △M0BF is

isosceles. To prove that the tangent in M0 to the parabola is the bisector of the angle BM0F
it is sufficient to show that the tangent is the median corresponding to BF in this triangle.

The equation of the tangent in M0 to the parabola is (see (2.5))

yy0 = p(x+ x0).

The midpoint of BF has coordinates
(
0, y0

2

)
, and it follows immediately that this point

verifies the equation of the tangent. The conclusion follows.
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2.5 Proposed problems

1. Consider the points A(α, 0) and B(0, β) in a Cartesian system xOy.

a) Compute the length of the segment AB and the coordinates of its midpoint.

b) Derive the equation of the circumscribed circle of the triangle AOB, where O is
the origin of the system.

c) Suppose that the points A(α, 0), B(0, β) are variable meanwhile the length of
the segment AB is fixed. Fix a point M on the segment [AB]. Determine the
geometric locus described by M when A(α, 0), B(0, β) are varying. Describe the
particular case in which M is the midpoint of [AB].

2. Consider the parabola given by the equation y2 = 2px.

a) Write the equation of the tangent in M0(x0, y0) to the parabola, when M0 is a
point on the parabola.

b) Consider P (xp, yp) a point in the plane. Find the coordinates of the projection of
P on the tangent line mentioned in the previous item.

c) Find the geometric locus of the projections from the focus F of the parabola to
the tangents in the points on the parabola (the tangents are the ones varrying
here).

3. Consider the parabolas given by equations y2 = 2px and y2 = 2qx, where 0 < q < p.
A variable tangent to the second parabola intersects the first one in the points M1 and
M2. Determine the geometric locus of the midpoint of the segment [M1M2].

4. Consider a Cartesian system xOy and a point P situated on the first bisector of the
coordinate axes. Let P1 and P2 be the orthogonal projections of P on the Ox and the
Oy axes, respectively. A variable line d passes through the point P and intersects Ox
in M and Oy in N respectively. Prove that for any such line d, the three lines MP2,
NP1 and the perpendicular on d which passes through the origin O are concurrent.

5. Let ABC be a triangle and denote by M the midpoint of the side [BC]. Consider N ,
a point on the line AB such that A ∈ (BN). We denote by P and Q the projections of
the orthocenter H of ABC on the bisectors of the angles ∠BAC, ∠CAN . Show that
the points M , P and Q are collinear.
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Bucureşti, 2002.
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