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CHAPTER 1

Series of real numbers

1. Defintions and Terminology

The notion of a series of real numbers is a natural extension for a finite summation.

The study of the series reduces to the study of particular sequences of real numbers, and

determining the sum o a series is equivalent to computing the limit of a certain sequence.

1.1. General notions. This section contins the definitions for the following notions:

series of real numbers, convergent series, divergent series and the sum of a series.

Definition 1.1.1 Each ordered pair of two sequences of real numbers, ((un) , (sn))n∈N,

where (un)n∈N is a given sequence, and

sn = u1 + u2 + · · ·+ un, for all n ∈ N

is called a series of real numbers. ♦

The usual notation for a series of real numbers ((un) , (sn)) is
∞∑
n=1

un or
∑
n∈N

un or
∑
n≥1

un or u1 + u2 + ...+ un + ...

and, when there is no confusion, shorter ∑
un.

The real number un, (n ∈ N) is called the general term of the series
∞∑
n=1

un, and the

sequence (un) is called the sequence of terms of the series
∞∑
n=1

un. The real number

sn, (n ∈ N) is called the partial sum of degree n of the series
∞∑
n=1

un, while (sn) is the

sequence of the partial sums of the series
∞∑
n=1

un.

1



Definition 1.1.2 The series
∞∑
n=1

un = ((un) , (sn)) is said to be convergent if the sequence

of its partial sums (sn), is convergent.

A series is called divergent if it is not convergent . ♦

Definition 1.1.3

If the sequence of the partial sums (sn) of the series
∞∑
n=1

un = ((un) , (sn)) has the limit

s ∈ R ∪ {+∞,−∞}, then this limit is caled the sum of the series
∞∑
n=1

un. Thus

∞∑
n=1

un = lim
n→∞

sn = s.

♦

Example 1.1.4 The series

(1.1.1)
∞∑
n=1

1

n (n+ 1)

having as general term un = 1
n(n+1)

, (n ∈ N) and the partial sum of degree n ∈ N, equal

to

sn = u1 + · · ·+ un =
1

1 · 2
+ · · ·+ 1

n (n+ 1)
= 1− 1

n+ 1
.

Due to the fact that the sequence of the partial sums is convergent, the series is

convergent as well, and it has the sum lim
n→∞

sn = 1. Hence

∞∑
n=1

1

n (n+ 1)
= 1. ♦

Example 1.1.5 A geometric series (of ratio q) has the following expression

(1.1.2)
∞∑
n=1

qn−1,

where q is a fixed real number. The general term of (1.1.2) is

un = qn−1,

(n ∈ N) , and its partial sum of degree n is for all n ∈ N

sn = 1 + q + · · ·+ qn−1 =


1− qn

1− q
, if q 6= 1

n, if q = 1.
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Therefore, the geometric series (1.1.2) if and only if |q| < 1. In this case, its sum is

1/ (1− q). Hence
∞∑
n=1

qn−1 =
1

1− q
.

If q ≥ 1, then the geometric seris (1.1.2) is divergent and has the sum +∞, so we write

∞∑
n=1

qn−1 = +∞.

If q ≤ −1, the geometric series (1.1.2) is divergent and does not have any sum. ♦

The study of a series reduces to two aspects:

1) Determining the nature of the series (convergent or divergnet).

2) If the series is convergent, determining the sum of the series.

In order to determine the nature of a series, there are several convergence/divergence

criteria. The second aspect, with respect to the precise sum, is restricted to limited number

of particul series, for which we can specify precisely the sum.

In the following we present some convergence/divergence criteria for series.

Theorem 1.1.6 (Cauchy’s general convergence criterion) The series
∞∑
n=1

un is convergent

if and only if ε > 0 există un număr natural nε cu proprietatea că oricare ar fi numerele

naturale n şi p cu n ≥ nε avem

∀ε ∈ R, ∃nε ∈ N s.t. ∀n ≥ nε, ∀p ∈ N, |un+1 + un+2 + · · ·+ un+p| < ε.

Proof. Let sn = u1 + · · · + un, for all n ∈ N. Then the series
∞∑
n=1

un is convergent

if and only if the sequence of the partial sums (sn) is convergent, therefore, according

to Cauchy’s theorem (with respect to fundamental-Cauchy sequnces), this is furthere

equaivalent to(sn) being fundamental, meaning that

∀ε > 0, ∃nε ∈ N, s.t. ∀n ≥ nε, ∀p ∈ N, |sn+p − sn| < ε.

Due to the fact that

sn+p − sn = un+1 + un+2 + · · ·+ un+p, ∀n, p ∈ N,

we conclude the proof.

Example 1.1.7 The harmonic seris is stated as

(1.1.3)
∞∑
n=1

1

n
.

It is divergent, and has the sum +∞.
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Solution. Assume by contradiction that the harmonic series (1.1.3) is convegent. This

means, according to Cauchy’s general condensation criterion, (teorema 1.1.6), that for the

particular ε = 1/2 > 0 there exists a natural number n0, with the property that for all n

and p natural number, such that n ≥ n0 it holds∣∣∣∣ 1

n+ 1
+ · · ·+ 1

n+ p

∣∣∣∣ < 1

2
.

By choosing p = n = n0 ∈ N, we get

(1.1.4)
1

n0 + 1
+ · · ·+ 1

n0 + n0

<
1

2
.

Moreover, from n0 + k ≤ n0 + n0, for all k ∈ N, k ≤ n0 we deduce that

1

n0 + 1
+ · · ·+ 1

n0 + n0

≥ n0

2n0

=
1

2

hence the inequality (1.1.4) does not hold. This contradiction leads us to the conclusion

that the harmonic series (1.1.3) is divergent. Due to the fact that the sequence of the

partial sums (sn) is increasing (in romanian este strict crescător), we have:

∞∑
n=1

1

n
= +∞.

Example 1.1.8 The series

(1.1.5)
∞∑
n=1

sinn

2n

is convergent.

Solution. Let un = (sinn) /2n, for all n ∈ N; then for each n, p ∈ N it hols

|un+1 + un+2 + · · ·+ un+p| =
∣∣∣∣sin (n+ 1)

2n+1
+ · · ·+ sin (n+ p)

2n+p

∣∣∣∣ ≤
≤ |sin (n+ 1)|

2n+1
+ · · ·+ |sin (n+ p)|

2n+p
≤ 1

2n+1
+ · · ·+ 1

2n+p
=

=
1

2n

(
1− 1

2p

)
<

1

2n
.

Let ε > 0 be randomly chosen. Due to the fact that the sequence (1/2n) has the limit

0, (by using the ε characterisation of the limi), there exists nε ∈ N such that 1/2n < ε,

for all n ≥ nε. Then

|un+1 + un+2 + · · ·+ un+p| <
1

2n
< ε,

for all n, p ∈ N with n ≥ nε. As a consequnce, the series (1.1.5) is convergent.
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Theorem 1.1.9 If the series
∞∑
n=1

un is convegent, then

lim
n→∞

un = 0.

Proof. Let ε > 0 be randomly chosen. Then, according to Cauchy’s general condensation

criterion (teorema 1.1.6), there exists nε ∈ N such that

|un+1 + un+2 + · · ·+ un+p| < ε, for all n, p ∈ N with n ≥ nε.

Choose p = 1. Then |un+1| < ε, for all n ∈ N, n ≥ nε, hence

|un| < ε, for all n ∈ N, n ≥ nε + 1;

therefore

lim
n→∞

un = 0.

Remark 1.1.10 The mutual theorem for 1.1.9 (in Romanian, teorema reciprocă), is not

usually true. This means that there are series
∞∑
n=1

un having

lim
n→∞

un = 0,

and being divergent at the same time. For example, consider the harmonic series (1.1.3)

which, as we have proved is divergent, event though

lim
n→∞

1

n
= 0.

Remark 1.1.11 The power of the previous theorem lies in the fact

lim
n→∞

un 6= 0 =⇒
∞∑
n=1

un is divergent .

This mean that if for a given series, it is easy to compute limn→∞ un, one should do it. If

that limit is 0, the series should be investigated by other means, but if it is different from

0 we conclude immediately that we are dealing with a divergent series.

Theorem 1.1.12 Let m ∈ N be such that m > 1. Then the sereis
∞∑
n=1

un is convergent if

and only if the series
∞∑

n=m

un is convergent.

Proof. We consider the sequnces of the partial sums corresponding to the two series: Let

sn = u1 + · · · + un, for all n ∈ N and tn = um + · · · + un, for all n ∈ N n ≥ m. Then

the series
∞∑
n=1

un is convergent if and only if the sequence (sn)n∈N is convergent, which is
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equivalent to the sequence (tn)n≥m being convergent, fact further equivalent to the series
∞∑

n=m

un being convergent.

Theorem 1.1.13 If
∞∑
n=1

un and
∞∑
n=1

vn are two convergent series and a and b are real

numbers, then the series
∞∑
n=1

(aun + bvn) is convergent and has the sum

a

∞∑
n=1

un + b

∞∑
n=1

vn.

Proof. For each n ∈ N it holds:
n∑

k=1

(auk + bvk) = a

(
n∑

k=1

uk

)
+ b

(
n∑

k=1

vk

)
,

so, according to the properties of the convergent sequences, we get the conclusion of the

theorem.

Example 1.1.14 Due to the fact that the series
∞∑
n=1

1

2n−1 and
∞∑
n=1

1

3n−1

are convergent, having the sums 2 and 3/2, respectively, we deduce that the series

∞∑
n=1

(
1

2n
− 1

3n

)
=
∞∑
n=1

(
1

2
· 1

2n−1 −
1

3
· 1

3n−1

)
is convergent and has the sum (1/2) · 2− (1/3) · (3/2) = 1/2. ♦

Definition 1.1.15 Let
∞∑
n=1

un be a convergent series having the sum s, n be a natural

number, and sn = u1 + · · ·+ un be the partial sum of degree n n of the series
∞∑
n=1

un. The

real number rn = s− sn is called the remainder of degree n of the series
∞∑
n=1

un. ♦

Theorem 1.1.16 If a the series
∞∑
n=1

un convergent, then the sequence (rn) of the reminders

of degree n, has the limit 0.

Proof. Let s =
∞∑
n=1

un. Due to the fact the the sequence of the partial sums (sn) of the

series
∞∑
n=1

un is convergent as has the limit s = lim
n→∞

sn, and due to the fact that rn = s−sn,

for all n ∈ N, we conclude that (rn) has the limit 0.
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2. Series with positive terms

Remark 1.2.1 If
∞∑
n=1

un is a convergent series of real numbers, then its attached sequence

of partial sums (sn) is bounded.

The mutual statement is not usually true, meaning that there are divergent series,

having the sequence of the partial sums bounded. Such an example is the series
∞∑
n=1

(−1)n−1

for which the general term of degree n for the partial sums is sn, (n ∈ N) equal to

sn =

{
1, if n is even

0, dacă n is odd.

Obviously, the sequence (sn) is bounded (|sn| ≤ 1, for all n ∈ N) even though the

seires
∞∑
n=1

(−1)n−1 is divergent, due to the fact that the sequnce (şirul (sn) does not have

a limit).

Remark 1.2.2 Each series with positive terms
∞∑
n=1

un has the property that its attached

sequence of partial sums (sn) is inscreasing; due to this, the boundedness of (sn) is equiv-

alent to its convergence.

This sections continues with convergence criteria for series with positive terms.

Definition 1.2.3 A series with positive terms is a series
∞∑
n=1

un with the property

that un > 0 for all n ∈ N. ♦

Theorem 1.2.4 If
∞∑
n=1

un is a series with positive terms, then

10 The series
∞∑
n=1

un has a sum, and

∞∑
n=1

un = sup

{
n∑

k=1

uk : n ∈ N

}
.

20 The series
∞∑
n=1

un is convergent if and only if the sequence

(
sn =

n∑
k=1

uk

)
of the

partial sums is bounded.

Proof. For each n ∈ N we set

sn :=
n∑

k=1

uk.

10 The sequence (sn) is increasing, so, according to Weirstrass’ theorem with respect

to monotonic sequences, statement 10 is proved.
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20 If the series
∞∑
n=1

un is convergent, than the sequence of the partial sumes (sn) is

convergent, and therefore bounded. The necessity is thus proved.

For the sufficiency, we know that the sequence (sn) is bounded, (and we already know

it is monotonic). Thus, it becomes convergent, consequently the series
∞∑
n=1

un is convergent.

Theorem 1.2.5 (the first comparison criterion) If
∞∑
n=1

un and
∞∑
n=1

vn are two series with

positive terms with the property that there exists a > 0 and n0 ∈ N such that

(1.2.6) un ≤ avn for all n ∈ N, n ≥ n0,

then:

10 If the series
∞∑
n=1

vn is convergent, then the seires
∞∑
n=1

un is convergent too.

20 If the series
∞∑
n=1

un is divergent, then the series
∞∑
n=1

vn is divergent too.

Proof. For each n ∈ N, let sn = u1 + ...+ un and tn = v1 + ...+ vn; then, from (1.2.6) it

holds

(1.2.7) sn ≤ sn0 + a (vn0+1 + ...+ vn) , for all n ∈ N, n ≥ n0.

10 If the series
∞∑
n=1

vn is convergent, then the sequence (tn) is bounded, consequently

there exists a real number M > 0 such that tn ≤M, for all n ∈ N. From (1.2.7) we deduce

that for all n ∈ N, n ≥ n0 the following inequalities hold

sn ≤ sn0 + a (tn − tn0) ≤ sn0 + atn − atn0 ≤ sn0 + atn ≤ sn0 + aM,

implying that the sequence (sn) is bounded. Then, according to Theorem 1.2.4, the series
∞∑
n=1

un is convergent.

20 Assume that the series
∞∑
n=1

un is divergent. If the series
∞∑
n=1

vn were convergent, then,

according to statement 10, the series
∞∑
n=1

un would be convergent, which contradicts the

hypothesis that the series
∞∑
n=1

un is divergent. Therefore, the series
∞∑
n=1

vn is divergent.

Example 1.2.6 The series
∞∑
n=1

n−1/2 is divergent. Indeed, the inequality
√
n ≤ n true

for all n ∈ N, leads to the conclusionthat n−1 ≤ n−1/2, for all n ∈ N. Due to the fact

that the harmonic series
∞∑
n=1

n−1 is divergent, according to Theorem 1.2.4, statement 20,

we conclude that the series
∞∑
n=1

n−1/2 is divergent. ♦
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Theorem 1.2.7 (the second comparison criterion for series) If
∞∑
n=1

un and
∞∑
n=1

vn are

series with positive terms with the property that there exists

(1.2.8) lim
n→∞

un
vn
∈ [0,+∞] ,

then

10 If

lim
n→∞

un
vn
∈]0,+∞[,

then the series
∞∑
n=1

un şi
∞∑
n=1

vn have the same nature.

20 If

lim
n→∞

un
vn

= 0,

then:

a) If the series
∞∑
n=1

vn is convergent, then the series
∞∑
n=1

un is convergent too.

b) If the series
∞∑
n=1

un is divergent, then the series
∞∑
n=1

vn is divergent too.

30 If

lim
n→∞

un
vn

= +∞,

then:

a) If the series
∞∑
n=1

un is convergent, then the series
∞∑
n=1

vn is convergent too.

b) If the series
∞∑
n=1

vn is divergent, then the series
∞∑
n=1

un is divergent too.

Proof. 10 Let a := lim
n→∞

(un/vn) ∈]0,+∞[; then there exists a natural number n0 such

that ∣∣∣∣unvn − a
∣∣∣∣ < a

2
, for all n ∈ N, n ≥ n0,

implying that

(1.2.9) vn ≤ (2/a)un, for all n ∈ N, n ≥ n0

and

(1.2.10) un ≤ (3a/2) vn, for all n ∈ N, n ≥ n0.

If the series
∞∑
n=1

un is converent, then, according to the first comparison criterion

(teorema 1.2.5), which can be applied because (1.2.9) , we get that the series
∞∑
n=1

vn is

convergent.
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If the series
∞∑
n=1

vn is convergent, then, due to the fact that (1.2.10) , according to the

first comparion criterion (theorem 1.2.5) if follows that the series
∞∑
n=1

un is convergent.

20 If lim
n→∞

(un/vn) = 0, then there exists a natural number n0 such that un/vn < 1, for

all n ∈ N, n ≥ n0, implying that

un ≤ vn, for all n ∈ N, n ≥ n0.

We apply then the first comparison criterion and the conclusion follows immediately.

30 If lim
n→∞

(un/vn) = +∞, then there exists a natural number n0 such that un/vn > 1,

for all n ∈ N, n ≥ n0, implying that

vn ≤ un, for all n ∈ N, n ≥ n0.

We apply then the first comparison criterion and the conclusion follows immediately.

Example 1.2.8 The series
∞∑
n=1

n−2 is convergent. Indeed

lim
n→∞

n2

n (n+ 1)
= 1 ∈]0,+∞[,

we deduce that the series
∞∑
n=1

n−2 and
∞∑
n=1

1
n(n+1)

have the same nature. Due to the fact

that the series
∞∑
n=1

1
n(n+1)

is convergent ( see example 1.1.4), we get that the series
∞∑
n=1

n−2

is convergent. ♦

Theorem 1.2.9 (al the third comparison crieterion) If
∞∑
n=1

un and
∞∑
n=1

vn are series with

positive terms such that there exists n0 ∈ N such that:

(1.2.11)
un+1

un
≤ vn+1

vn
, for all n ∈ N, n ≥ n0,

then:

10 If the series
∞∑
n=1

vn is converent, then the series
∞∑
n=1

un is converent too.

20 If the series
∞∑
n=1

un is divergent, then the series
∞∑
n=1

vn is divergent too.

Proof. Let n ∈ N, n ≥ n0 + 1; then from (1.2.11) we obtain succesively:

un0+1

un0

≤ vn0+1

vn0

· · ·
un
un−1

≤ vn
vn−1

,
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from where, by multiplying on both sides, we obtain
un
un0

≤ vn
vn0

.

Thus

un ≤
un0

vn0

vn, for all n ∈ N, n ≥ n0.

By applying the first comparison criterion (teorema 1.2.5). the theorem is porved.

Theorem 1.2.10 (Cauchy’s condensation criterion) Let
∞∑
n=1

un be a series with positive

terms with the property that the sequence of the terms of the series, (un), is decreasing.

Then the series
∞∑
n=1

un and
∞∑
n=1

2nu2n have the same nature.

Proof. Let sn := u1 + u2 + ...+ un be the partial sum of degree n ∈ N of the series
∞∑
n=1

un

and let Sn := 2u2 + 22u22 + ... + 2nu2n be the partial sum of degree n ∈ N of the series
∞∑
n=1

2nu2n .

Assume that the series
∞∑
n=1

2nu2n is convergent; then the sequence (Sn) of the partial

sums is bounde, consequently there exists a real nuber M > 0 such that

0 ≤ Sn ≤M, for all n ∈ N.

In order to prove for the series
∞∑
n=1

un to be convergent, based on Theorem 1.2.4, if suffices

to prove that the sequence (sn) of the partial sums is bounded. Due to the fact that the

series
∞∑
n=1

un is with positive terms, from n ≤ 2n+1 − 1, (n ∈ N) we deduce that

sn ≤ s2n+1−1 = u1 + (u2 + u3) + (u4 + · · ·+ u7) +

+ (u2n + u2n+1 + · · ·+ u2n+1−1) .

Due to the fact that the sequence (un) is decreasing, it follows that

u2k > u2k+1 > · · · > u2k+1−1, for all k ∈ N

therefore sn we can conlude that

sn ≤ s2n+1−1 ≤ u1 + 2 · u2 + 22 · u22 + · · ·+ 2n · u2n =

= u1 + Sn ≤ u1 +M.

Thus, the sequence (sn) is bounded, therefore the series
∞∑
n=1

un is convergent.

Assume now that the series
∞∑
n=1

un is convergent; then the sequence of the partial sums,

(sn), of the series
∞∑
n=1

un is bounde, consequently, there exists a real number M > 0 such
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that 0 ≤ sn ≤M, for all n ∈ N. In order to prove that the series
∞∑
n=1

2nu2n is convergent,

it sufficies to prove that the sequence (Sn) is bounded. Let n ∈ N. Then

s2n = u1 + u2 + (u3 + u4) + (u5 + u6 + u7 + u8) + · · ·+

+ (u2n−1+1 + · · ·+ u2n) ≥
≥ u1 + u2 + 2u22 + 22u23 + · · ·+ 2n−1u2n ≥

≥ u1 +
1

2
Sn ≥

1

2
Sn,

consequently, the following inequalities hold

Sn ≤ 2s2n ≤ 2M.

Thus the sequence (Sn) is bounded and thus the series
∞∑
n=1

2nu2n is convergent.

Example 1.2.11 The series
∞∑
n=1

1

na
, with a ∈ R,

called the generalized harmonic series,is divergent for a ≤ 1 and convergent for a > 1.

Solution. If a ≤ 0, then the sequence of the terms of the series (n−a) does not have

the limit 0, therefore the series
∞∑
n=1

1
na is divergent. If a > 0, then the sequence of the

tersm of the series (n−a) is decreasing and has the limit zero, thus we may apply the

Cauchy’s condensation criterion, obtaining that the series
∞∑
n=1

1
na and

∞∑
n=1

2n 1
(2n)a

have the

same nature. Due to the fact that 2n 1
(2n)a

=
(

1
2a−1

)n
, for all n ∈ N, we deduce that the

series
∞∑
n=1

2n 1
(2n)a

turns out to be a geometric series,
∞∑
n=1

(
1

2a−1

)n
, which is divergent for

a ≤ 1 and convergent for a > 1. Consequently, the sereis
∞∑
n=1

1
na is divergent for a ≤ 1 and

convergent for a > 1.

Theorem 1.2.12 (D’Alembert’s quotient criterion) Let
∞∑
n=1

un be a series with positive

terms.

10 If there exists a real number q ∈ [0, 1[ and a natural number n0 such that:

un+1

un
≤ q for all n ∈ N, n ≥ n0,

then the series
∞∑
n=1

un is convergent.

20 If there exists a natural number n0 such that:
un+1

un
≥ 1 for all n ∈ N, n ≥ n0,
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then the series
∞∑
n=1

un is divergent.

Proof. 10 We apply the third comparison criterion for series with positive terems (teorema

1.2.9, statement 10), by choosing vn := qn−1, for all n ∈ N. It holds

un+1

un
≤ q =

vn+1

vn
, for all n ∈ N, n ≥ n0,

and the series
∞∑
n=1

vn is convergent, consequently, the series
∞∑
n=1

un is convergent.

20 From un+1/un ≥ 1 it follows that un+1 ≥ un, for all n ∈ N, n ≥ n0, therefore, the

sequence (un) does not have the limit 0; thus, according to Theorem 1.1.9, the series
∞∑
n=1

un is divergent.

Theorem 1.2.13 (the consequence of the quotient criterion) Let
∞∑
n=1

un be a series with

positive terms, for which there exists lim
n→∞

un+1

un
.

10 If

lim
n→∞

un+1

un
< 1,

then the series
∞∑
n=1

un is convergent.

20 If

lim
n→∞

un+1

un
> 1,

then the series
∞∑
n=1

un is divergent.

Proof. Let a := lim
n→∞

un+1

un
. It is clear that a ≥ 0.

10 Since a ∈ [0, 1[ it follows that there exists a real number q ∈]a, 1[. Then, from

a ∈]a− 1, q[ it follows that there exists a natural number n0 such that

un+1

un
∈]a− 1, q[, for all n ∈ N, n ≥ n0.

It follows that
un+1

un
≤ q, for all n ∈ N, n ≥ n0.

By applying the quotient criterion, we get that the series
∞∑
n=1

un is convegent.

20 If 1 < a, then there exists a natural number n0 such that

un+1

un
≥ 1, for all n ∈ N, n ≥ n0.

By applying the quotient criterion, we get that the series
∞∑
n=1

un is divergent.
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Example 1.2.14 The series

(1.2.12)
∞∑
n=1

(n!)3

(3n)!

is convergent.

Solution. We have that

lim
n→∞

un+1

un
=

1

27
< 1,

thus, accordingly to the consequence of the quotient criterion, the series (1.2.12) is con-

vergent.

Remark 1.2.15 Consider the series
∞∑
n=1

un. If there exists lim
n→∞

un+1

un
and it is equal to 1,

then the consequence of the quotient criterion cannot be applies. The series
∞∑
n=1

un could

be either convergent or divergent. There are series either convergent or divergent with the

property that lim
n→∞

un+1

un
= 1. For example, consider the series

∞∑
n=1

n−1 and
∞∑
n=1

n−2. In both

cases lim
n→∞

un+1

un
= 1, but the first one is divergent ( see example 1.1.4) while the second

one is convergent (see example 1.2.8). ♦

Theorem 1.2.16 (Cauchy’s root criterion) Let
∞∑
n=1

un be a series with positive terms.

10 If there exists a real number q ∈ [0, 1[ and a natural number n0 such that

(1.2.13) n
√
un ≤ q, for all n ∈ N, n ≥ n0,

then the series
∞∑
n=1

un is convergent.

20 If there exists the natural number n0 such that

(1.2.14) n
√
un ≥ 1, for all n ∈ N, n ≥ n0,

then the series
∞∑
n=1

un is divergent.

Proof. 10 Assume that there exists q ∈ [0, 1[ and n0 ∈ N such that (1.2.13) holds. Then

un ≤ qn, for all n ∈ N, n ≥ n0.

We apply the first comparison criterion ( theorem 1.2.5, statement 10), by considering

vn := qn−1, for all n ∈ N and a := q. Due to the fact that the series
∞∑
n=1

qn−1 is convergent,

we get that the series
∞∑
n=1

un is convergent.
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20 From (1.2.14) we deduce that un ≥ 1, for all n ∈ N, n ≥ n0, consequently, the

sequence (un) does not have the limit 0. Then, according to the theorem 1.1.9, the series
∞∑
n=1

un is divergent.

Theorem 1.2.17 (the consequence of the root criterion) Let
∞∑
n=1

un be a series with

positive terms, for which there exists lim
n→∞

n
√
un.

10 If

lim
n→∞

n
√
un < 1,

atunci seria
∞∑
n=1

un este convergentă.

20 If

lim
n→∞

n
√
un > 1,

then the series
∞∑
n=1

un is divergent.

Proof. Let a := lim
n→∞

n
√
un. It holds a ≥ 0.

10 Due to the fact that a ∈ [0, 1[ we conclude that there exists the real number q ∈]a, 1[.

Then, from a ∈]a− 1, q[ it follows that there exists the natural number n0 such that

n
√
un ∈]a− 1, q[, for all n ∈ N, n ≥ n0.

It follows that
n
√
un ≤ q, for all n ∈ N, n ≥ n0.

By applying the root criterion we obtain that the series
∞∑
n=1

un is convergent.

20 If 1 < a, then there exists a natural number n0 such that

n
√
un ≥ 1, for all n ∈ N, n ≥ n0.

By applying the root criterion we obtain that the series
∞∑
n=1

un is divergent.

Example 1.2.18 The series

(1.2.15)
∞∑
n=1

(
3
√
n3 + 3n2 + 1− 3

√
n3 − n2 + 1

)n
.

is convergent.

Solution. It holds

lim
n→∞

n
√
un = lim

n→∞

(
3
√
n3 + 3n2 + 1− 3

√
n3 − n2 + 1

)
=

4

3
> 1.

15



and thus, according tot the consequence of the root criterion, the series (1.2.15) is diver-

gent.

Remark 1.2.19 Having a series with positive terms
∞∑
n=1

un for which the limit lim
n→∞

n
√
un

exists and is equal to 1, the consequence of the root criterion does not decide weather the

series
∞∑
n=1

un is convergent or divergent. There are series, either convergent, or divergent for

which lim
n→∞

n
√
un = 1. For exameple, given the series

∞∑
n=1

n−1 and
∞∑
n=1

n−2 it holds, ı̂n ambele

cazuri, lim
n→∞

n
√
un = 1. The first one is divergent (see example 1.1.4) and the second one

is convergent (see example 1.2.8). ♦

Theorem 1.2.20 (Kummer’s criterion) Let
∞∑
n=1

un be a series with positive terms.

10 If there exists a sequence of real positive numbers (an)n∈N , de numere reale pozitive,

there exists a real number r > 0 and there exists a natural number n0 such that

(1.2.16) an
un
un+1

− an+1 ≥ r, for all n ∈ N, n ≥ n0,

then the series
∞∑
n=1

un is convergent.

20 If there exists a sequence of real positive numbers (an) , such that the series
∞∑
n=1

1
an

is divergent and there exists a natural number n0 such that

(1.2.17) an
un
un+1

− an+1 ≤ 0, for all n ∈ N, n ≥ n0,

then the series
∞∑
n=1

un is divergent.

Proof. For each natural number n, we denote by

sn := u1 + u2 + ...+ un

the partial sum of degree n of the series
∞∑
n=1

un.

10 Assume that there exists the sequence of real positive numbers (an) , there exists

a real number r > 0 and there exists a natural number n0 such that (1.2.16). We notice

that the relation (1.2.16) is equivalent to

(1.2.18) anun − an+1un+1 ≥ run+1, for all n ∈ N, n ≥ n0.

Let n ∈ N, n ≥ n0 + 1; then , from(1.2.18) we obtain:

an0un0 − an0+1un0+1 ≥ run0+1,

· · ·
an−1un−1 − anun ≥ run,
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thus, by adding up, we obtain

an0un0 − anun ≥ r(un0+1 + · · ·+ un).

This leads us to the conclusion that for all natural n ≥ n0 it holds

sn =
n∑

k=1

uk =

n0∑
k=1

uk +
n∑

k=n0+1

uk ≤ sn0 +
1

r

(
an0un0

− anun
)
≤

≤ sn0 +
1

r
an0un0 ,

therefore the sequence (sn) of the partial sums of the series
∞∑
n=1

un is bounded. According

to theorem 1.2.4, the series
∞∑
n=1

un is convergent.

20 Assume that there exists a sequence of positive real numbers (an) , with the property

that the series
∞∑
n=1

1
an

is divergent and there exists a natural number n0 such that (1.2.17)

holds. Obviously (1.2.17) is equivalent to

1
an+1

1
an

≤ un+1

un
, for all n ∈ N, n ≥ n0.

Since the series
∞∑
n=1

1
an

is divergent, according to the third comparison criterion, the series

∞∑
n=1

un is divergent.

Theorem 1.2.21 (Raabe-Duhamel’s criterion) Let
∞∑
n=1

un be a series with positive terms.

10 If there exists a real number q > 1 and a natural number n0 such that

(1.2.19) n

(
un
un+1

− 1

)
≥ q for all n ∈ N, n ≥ n0,

then the series
∞∑
n=1

un is convergent.

20 If there exists a natural number n0 such that

(1.2.20) n

(
un
un+1

− 1

)
≤ 1 for all n ∈ N, n ≥ n0,

then the series
∞∑
n=1

un is divergent.

Proof. According to Kummer’s criterion (teorema 1.2.20) consider an := n, oricare ar fi

n ∈ N; then we get

an
un
un+1

− an+1 = n

(
un
un+1

− 1

)
− 1.
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10 If we take r := q−1 > 0, then, ı̂ntrucât (1.2.16) is equivalent to (1.2.19) , we deduce

that
∞∑
n=1

un is convergent.

20 Since the series
∞∑
n=1

n−1 is divergent and (1.2.17) is equivalent to (1.2.20) , we get

that the series
∞∑
n=1

un is divergent.

Theorem 1.2.22 (The consequence of Raabe-Duhamel’s criterion) Let
∞∑
n=1

un be a series

with positive terms, for which there exits the limit

lim
n→∞

n

(
un
un+1

− 1

)
.

10 If

lim
n→∞

n

(
un
un+1

− 1

)
> 1,

then the series
∞∑
n=1

un is convergent.

20 If

lim
n→∞

n

(
un
un+1

− 1

)
< 1,

then the series
∞∑
n=1

un is divergent.

Proof. Let

b := lim
n→∞

n

(
un
un+1

− 1

)
.

10 From b > 1 we conclude that there exists a real number q ∈]1, b[. Then b ∈]q, b+ 1[

the existence of a natural number n0 such that

n

(
un
un+1

− 1

)
∈]q, b+ 1[, for all n ∈ N, n ≥ n0,

thus (1.2.19) holds. By applying the Raabe-Duhamel criterion we get that the series
∞∑
n=1

un

is convergent.

20 If b < 1, then there exits a natural number n0 such that (1.2.20) holds. By applying

the Raabe-Duhamel criterion we get that the series
∞∑
n=1

un is divergent.

Example 1.2.23 The series
∞∑
n=1

n!

a (a+ 1) · · · (a+ n− 1)
, unde a > 0,

is convergent if and only if a > 2.
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Solution. We have

lim
n→∞

un+1

un
= 1

therefore, according to the consequence of the quotient criterion, we cannot state the

nature of the series Due to the fact that

lim
n→∞

n

(
un
un+1

− 1

)
= a− 1,

according to the consequence of the Raabe-Duhamel’ criterion, if a > 2, the series is

convergent, and if a < 2 the series is divergent. If a = 2, then the series becomes
∞∑
n=1

1
n+1

which is divergent. This means that the given series is convergent if and only if a > 2.

3. Exercises to solve - series

Exercise 1.3.1 Compute the sums of the following geometric series:

a)
∑
n≥3

3

5n
, b)

∑
n≥4

2n−3 + (−3)n+3

5n
, c)

∑
n≥5

en, d)
∑
n≥2

(
− 1

π

)n

e)
∑
n≥3

(−3)n.

Exercise 1.3.2 Compute the sums of the following telescopic series:

a)
∑
n≥1

1

4n2 − 1
, b)

∑
n≥1

1
√
n+
√
n+ 1

, c)
∑
n≥5

1

n(n+ 1)(n+ 2)

d)
∑
n≥1

ln

(
1 +

1

n

)
, e)

∑
n≥2

ln
(
1 + 1

n

)
ln (nln(n+1))

.

Exercise 1.3.3 Determine the nature of the following series:

a)
∑
n≥1

n+ 7√
n2 + 7

, b)
∑
n≥1

1
n
√
n
, c)

∑
n≥1

1
n
√
n!
, d)

∑
n≥1

(
1 +

1

n

)n

.

Exercise 1.3.4 Determine the nature of the following series:

a)
∑
n≥1

2n + 3n

5n
, b)

∑
n≥1

2n

3n + 5n
.

Exercise 1.3.5 Determine the nature of the following series
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a)
∑
n≥1

1

2n− 1
, b)

∑
n≥1

1

(2n− 1)2
, c)

∑
n≥1

1√
4n2 − 1

, d)
∑
n≥1

√
n2 + n

3
√
n5 − n

.

Exercise 1.3.6 Determine the nature of the following series:

a)
∑
n≥1

100n

n!
, b)

∑
n≥1

2nn!

nn
, c)

∑
n≥1

3nn!

nn
, d)

∑
n≥1

(n!)2

2n2
, e)

∑
n≥1

n2(
2 + 1

n

)n .
Exercise 1.3.7 Determine, depending on the values of the parameter a > 0, the nature

of the following series:

a)
∑
n≥1

an

nn
, b)

∑
n≥1

(
n2 + n+ 1

n2
a

)n

, c)
∑
n≥1

3n

2n + an
.

Example 1.3.1 For each a, b > 0, study the nature of the series:

a)
∞∑
n=1

an

an + bn
; b)

∞∑
n=1

2n

an + bn
; c)

∞∑
n=1

anbn

an + bn
;

d)
∞∑
n=1

(2a+ 1) (3a+ 1) · · · (na+ 1)

(2b+ 1) (3b+ 1) · · · (nb+ 1)
.

Example 1.3.2 Determine the nature of the series:

a)
∞∑
n=1

(2n− 1)!!

(2n)!!

1

2n+ 1
; b)

∞∑
n=1

(2n− 1)!!

(2n)!!
; c)

∞∑
n=1

1

n!

(n
e

)n
.

Example 1.3.3 For each a : 0 determine the nature of the series:

a)
∞∑
n=1

n!

a(a+ 1)... (a+ n)
; b)

∞∑
n=1

a−(1+ 1
2
+...+ 1

n); c)
∞∑
n=1

an · n!

nn
.

Remark 1.3.4 For further detalis go to [5].
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CHAPTER 2

Taylor’s Formula

1. Taylor’s Polynomial: definition, properties

Taylor’s formula, mainly used in approxiamting functions by the means of the poly-

nomials, is one of the most important formulae in mathematics..

Definition 2.1.1 Let D be a nonempty subest of R, x0 ∈ D and f : D → R be a n times

differentiable function at x0. The (polynomial) function Tn;x0f : R→ R defined by

(Tn;x0f) (x) =
n∑

k=0

f (k)(x0)

k!
(x− x0)k

(Tn;x0f) (x) = f (x0) +
f ′ (x0)

1!
(x− x0) +

f ′′ (x0)

2!
(x− x0)2 + ...

...+
f (n) (x0)

n!
(x− x0)n , for all x ∈ R,

is called Taylor’s Polynomial of order n attached to the function f , centered

at the point x0. ♦

Remark 2.1.2 Taylor’s polynomial of order n, has the degree at most n.♦

Example 2.1.3 For the exponential function f : R→ R defined by

f (x) = exp x, for all x ∈ R,

it holds

f (k) (x) = exp x, for all x ∈ R şi k ∈ N.

Taylor’s polynomial of order n attached to the exponential function exp : R→ R, centered

at the point x0 = 0 is

(Tn;0 exp) (x) = 1 +
1

1!
x+

1

2!
x2 + · · ·+ 1

n!
xn,

for all x ∈ R. ♦

Remark 2.1.4 We notice the foolowing:

• the domain of definition of Taylor’s polynomial is R, in contrast to the domain

of definition for the function f , which sometimes is much smaller;
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• being a polynomial function Tn;x0f is indefinite differentiable on R şi, for all

x ∈ R, so it holds

(Tn;x0f)′ (x) = f (1) (x0) +
f (2) (x0)

1!
(x− x0) + · · ·+ f (n) (x0)

(n− 1)!
(x− x0)n−1 =

= (Tn−1;x0f
′) (x) ,

(Tn;x0f)′′ (x) = f (2) (x0) +
f (3) (x0)

1!
(x− x0) + · · ·+ f (n) (x0)

(n− 2)!
(x− x0)n−2 =

= (Tn−2;x0f
′′) (x) ,

· · · · · · · · · · · · · · · · · ·

(Tn;x0f)(n−1) (x) = f (n−1) (x0) +
f (n) (x0)

1!
(x− x0) =

=
(
T1;x0f

(n−1)) (x) ,

(Tn;x0f)(n) (x) = f (n) (x0) =
(
T0;x0f

(n)
)

(x) ,

(Tn;x0f)(k) (x) = 0, for all k ∈ N, k ≥ n+ 1.

This leads to

(Tn;x0f)(k) (x0) = f (k) (x0) , for all k ∈ {0, 1, · · ·, n}
şi

(Tn;x0f)(k) (x0) = 0, for all k ∈ N, k ≥ n+ 1.

Remark 2.1.5 At the point x0, not only the value of Taylors’ polynomial of order n

attached to the function f , centered at x0, but also the values of its derivatives, up to the

order n, coincide to the values of the function f , and its derivatives up to the order n,

respectivley .

2. Taylor’s Formula

Definition 2.2.1 Let D be a nonempty subset of R, x0 ∈ D and f : D → R be a function

n time differentiable at the point x0. The function Rn;x0f : D → R defined by

(Rn;x0f) (x) = f (x)− (Tn;x0f) (x) , for all x ∈ D

is called Taylor’s remainder of order n attached to the function f centered at

x0.

When the form of the reminder is given by a certain computational expression, the

following

f = Tn;x0f +Rn;x0f,
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is called Taylor’a formula of order n attaced to the funciton f centered at x0.

In this case Rn;x0f is called the reminder of order n for Taylor’s formula. ♦

Remark 2.2.2 Because f and Tn;x0f are n times differentiable at x0, it follows that the

reminder Rn;x0f = f − Tn;x0f is a n times differentiable function at x0, and

(Rn;x0f)(k) (x0) = 0, for all k ∈ {0, 1, · · ·, n}.

Remark 2.2.3 The function Rn;x0f : D → R being differentiable at x0 is obviously

continuous at x0 and thus there exists

lim
x→x0

(Rn;x0f) (x) = (Rn;x0f) (x0) = 0.

Therefore, for allε > 0 there exits δ > 0 such that for all x ∈ D for which |x− x0| < δ it

holds

|f (x)− (Tn;x0f) (x)| < ε.

As a consequnce, through the values of x ∈ D, close enough to x0, the value of f (x) may

be approximated by (Tn;x0f) (x) .

In the following we give a characterization of the reminder.

Theorem 2.2.4 Let I be an interval in R, x0 ∈ I and f : I → R be a n times

differentiable function at x0. Then

lim
x→x0

(Rn;x0f) (x)

(x− x0)n
= 0.

Proof. By applying l’Hôpital’ theorem n− 1 time, and tacking into account that

lim
x→x0

f (n−1) (x)− f (n−1) (x0)

x− x0
= f (n) (x0) ,

we get

lim
x→x0

(Rn;x0f) (x)

(x− x0)n
= lim

x→x0

f (x)− (Tn;x0f) (x)

(x− x0)n
=

= lim
x→x0

f ′ (x)− (Tn;x0f)′ (x)

n (x− x0)n−1
= · · ·

· · · = lim
x→x0

f (n−1) (x)− (Tn;x0f)(n−1) (x)

n! (x− x0)
=

= lim
x→x0

f (n−1) (x)− f (n−1) (x0)− f (n) (x0) (x− x0)
n! (x− x0)

=

=
1

n!
lim
x→x0

[
f (n−1) (x)− f (n−1) (x0)

x− x0
− f (n) (x0)

]
= 0.
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Remark 2.2.5 If we denote by αn;x0f : I → R the function defined by

(αn;x0f) (x) =


(Rn;x0f) (x)

(x− x0)n
, dacă x ∈ I\{x0}

0, dacă x = x0,

then, from theorem 2.2.4 it follows that the function αn;x0f is continuous at x0. Moreover,

for each x ∈ I it holds:

f (x) = (Tn;x0f) (x) + (x− x0)n (αn;x0f) (x) . ♦

Example 2.2.6 For the exponential function, exp : R→ R, Taylor-Young’s formula, for

x0 = 0, is:

expx = 1 +
1

1!
x+

1

2!
x2 + · · ·+ 1

n!
xn + xn (αn;0f) (x) ,

for all x ∈ R, where

lim
x→0

(αn;0f) (x) = (αn;0f) (0) = 0. ♦

According to theorem 2.2.4, if I is an interval in R, x0 ∈ I and f : I → R is a n times

differentiable function at x0, then, for all x ∈ I, it holds

(2.2.21) f (x) = (Tn;x0f) (x) + o ((x− x0)n) pentru x→ x0.

We obtain the following result.

Theorem 2.2.7 Let I be an interval in R, x0 ∈ I and f : I → R be a function. If f is

n times differentiable at x0, then for all x ∈ I, the equality (2.2.21) holds.

The relation (2.2.21) is calledcTaylor’s formula with the reminder in Peano’s form. ♦

3. Different Forms of the Reminder in Taylor’s Formula

Theorem 2.3.1 (Taylor′s theorem) Let I be an interval in R, f : I → R be a n + 1

differentiable function on I, x0 ∈ I and p ∈ N. Then for each x ∈ I\{x0}, there exists at

least one point c strictly between x and x0 such that

f (x) = (Tn;x0f) (x) + (Rn;x0f) (x) ,

where

(2.3.22) (Rn;x0f) (x) =
(x− x0)p (x− c)n−p+1

n!p
f (n+1) (c) . ♦

Proof.
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We start by proving that the reminder Rn;x0f in Taylor’s formula may be written as

(Rn;x0f) (x) = (x− x0)pK,

where p ∈ N şi K ∈ R.

Let I be an interval in R, f : I → R be a n + 1 differentiable function onI, p be a

natural number, and x and x0 be two distinct point in I. Let K ∈ R be such that it holds

f (x) = f (x0) +
f (1) (x0)

1!
(x− x0) +

f (2) (x0)

2!
(x− x0)2 + ...

...+
f (n) (x0)

n!
(x− x0)n + (x− x0)pK.

The function ϕ : I → R, defined for all t ∈ I, by

ϕ (t) = f (t) +
f (1) (t)

1!
(x− t) +

f (2) (t)

2!
(x− t)2 + ...+

f (n) (t)

n!
(x− t)n +

+ (x− t)pK,

is differentiable on I.

Since ϕ (x0) = ϕ (x) = f (x) , we deduce that the function ϕ satisfies the hypotheses

of Rolle’s theorem on the closed interval having as bounds x0 and x; then there exits at

least one point c strictly between x0 and x such that ϕ′ (c) = 0. Since

ϕ′ (t) =
(x− t)n

n!
f (n+1) (t)− p (x− t)p−1K, for all t ∈ I, .

the equality ϕ′ (c) = 0 becomes

(x− c)n

n!
f (n+1) (c)− p (x− c)p−1K = 0,

from which we get

K =
(x− c)n−p+1

n!p
f (n+1) (c) .

Consequently, the reminder Rn;x0f has the following form

(Rn;x0f) (x) =
(x− x0)p (x− x0)n−p+1

n!p
f (n+1) (c) .

The general form of the reminder from (2.3.22) , was obtained independently by both

Schlömilch and Roche, this is why this form of the reminder (2.3.22) is called the

Schlömilch-Roche reminder.

Laagrange and Cauchy had obtained previously, two particular cases of the general

form.

Cuachy’s reminder was:

(2.3.23) (Rn;x0f) (x) =
(x− x0) (x− c)n

n!
f (n+1) (c) ,
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and is exactly Schlömilch-Roche’s reminder considered for p = 1.

Lagrange obtained the form:

(2.3.24) (Rn;x0f) (x) =
(x− x0)n+1

(n+ 1)!
f (n+1) (c) .

and is exactly Schlömilch-Roche’s reminder considered for p = n+ 1.

When f is a polynomial function of order n, for all x0 ∈ R,

(Rn;x0f) (x) = 0, for all x ∈ R.

This was the case studied by Tylor. By custom all the above studied cases are named

”Taylor’s formula” except the one for: 0 ∈ I and x0 = 0. This was studied by Maclaurin.

We consider the following definition

Definition 2.3.2 Taylor’s formula of order n attached to the function f , centered at

x0 = 0, with the Lagrange reminder is called Maclaurin’s formula.(1698 - 1746). ♦

Example 2.3.3 For the exponential function exp : R→ R Maclaurin’s formula is

expx = 1 +
1

1!
x+

1

2!
x2 + · · ·+ 1

n!
xn + (Rn;0f) (x) ,

where

(Rn;0 exp) (x) =
xn+1

(n+ 1)!
exp (c) , cu |c| < |x| .

It holds

|(Rn;0 exp) (x)| = |x|n+1

(n+ 1)!
exp (c) <

|x|n+1

(n+ 1)!
exp |x| , x ∈ R.

Since for all x ∈ R,

lim
n→∞

|x|n+1

(n+ 1)!
exp |x| = 0,

we deduce that the series

1 +
∞∑
n=1

xn

n!
= 1 +

1

1!
x+

1

2!
x2 + · · ·+ 1

n!
xn + · · ·,

is convergent for all x ∈ R, and its sum is expx, meaning that

expx = 1 +
1

1!
x+

1

2!
x2 + · · ·+ 1

n!
xn + · · ·, for all x ∈ R. ♦

Similarly we obtain for all a > 0, a 6= 1,

ax = 1 +
ln a

1!
x+

ln2 a

2!
x2 + · · ·+ lnn a

n!
xn + · · ·, x ∈ R. ♦
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Because in 2.3.1, c is strictly between x and x0, we conclude that there exits the

number

θ =
c− x0
x− x0

∈]0, 1[

and

c = x0 + θ (x− x0) .

Then the reminder Rn;x0f can be expressed as:

(Rn;x0f) (x) =
(x− x0)n+1 (1− θ)n−p+1

n!p
f (n+1) (x0 + θ (x− x0)) ,(2.3.25)

(Schlömilch− Roche)

(2.3.26) (Rn;x0f) (x) =
(x− x0)n+1 (1− θ)n

n!
f (n+1) (x0 + θ (x− x0)) (Cauchy)

(2.3.27) (Rn;x0f) (x) =
(x− x0)n+1

(n+ 1)!
f (n+1) (x0 + θ (x− x0)) (Lagrange).

This was exactly the proof for the following theorem.

Theorem 2.3.4 Let I be an interval in R, f : I → R be a n + 1 differntiable function

on I, x0 ∈ I and p ∈ N. Then for each x ∈ I\{x0}, there exits at least a number θ ∈]0, 1[

such that it holds

f (x) = (Tn;x0f) (x) + (Rn;x0f) (x) ,

where (Rn;x0f) (x) is given by (2.3.25) .

If p = 1, we obtain (2.3.26) , and if p = n+ 1 then (Rn;x0f) (x) is given by (2.3.27) . ♦

Example 2.3.5 For the functionf : R→ R defined by

f (x) = exp x, for all x ∈ R,

Maclaurin’s formula is

expx = 1 +
1

1!
x+

1

2!
x2 + · · ·+ 1

n!
xn + (Rn;0f) (x) ,

where

Rn;0f (x) =
xn+1

(n+ 1)!
exp (θx) , θ ∈]0, 1[, x ∈ R. ♦
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4. Exercises to be Solved

Example 2.4.1 Write Taylor’s polynomial of order n = 2m−1 attached to the function,

sin : R→ R, centered at the point x0 = 0.

Example 2.4.2 Write Taylor’s polynomial of order n = 2m attached to the function

cos : R→ R centered at the point x0 = 0.

Example 2.4.3 Write Maclaurin’s formula of order n for the function sin : R→ R.

Example 2.4.4 Write Maclaurin’s formula of order n for the function cos : R→ R.

Example 2.4.5 Write Maclaurin’s formula of order n for the function f :]− 1,+∞[→ R
defined by

f (x) = ln (1 + x) , for all x ∈]− 1,+∞[.

Example 2.4.6 Write Maclaurin’s formula of order n for the function f :]− 1,+∞[→ R
defined by

f (x) = (1 + x)r , oricare ar fi x ∈]− 1,+∞[,

where r ∈ R.

Example 2.4.7 Let f :]0,+∞[→ R be a function defined by f(x) = 1/x, for all x ∈
]0,+∞[. Write Taylor’s formula of order n attached to the function f centered at x0 = 1.

Example 2.4.8 Write Maclaurin’s formula of order n attached to the following functions,

by using when necessary the following formula for the computing the n-th derivative of a

product of functions

(f · g)(n) =
n∑

k=0

Ck
nf

(n−k)(x) · g(k) :

a) f : ]−1,+∞[→ R definită prin f(x) = x ln(1 + x), for all x ∈ ]−1,+∞[;

b) f :]−∞, 1[→ R defined by f(x) = x ln(1− x), for all x ∈]−∞, 1[;

c) f :]− 1, 1[→ R defined by f(x) =
√

3x+ 4, for all x ∈ ]−1, 1[;

d) f :]− 1/2,+∞[→ R defined by f(x) = 1/
√

2x+ 1, for all x ∈ ]−1/2,+∞[.

Example 2.4.9 Write Taylor’s formula of order n, attached to the function f , centered

at x0, for:

a) f : ]0,+∞[→ R defined by f(x) = 1/x, for all x ∈]0,+∞[ and x0 = 2;

b) f : R→ R defined by f(x) = cos(x− 1), for all x ∈ R and x0 = 1.
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Remark 2.4.10 For futher details see [5] and [2].
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CHAPTER 3

The Riemann Integral

1. Partitions of a compact interval

Definition 3.1.1 Let a, b ∈ R cu a < b. A partition of the interval [a, b] is each

ordered system

∆ = (x0, x1, ..., xp)

of p+ 1 points x0, x1, ..., xp from [a, b] with the property that

a = x0 < x1 < · · · < xp−1 < xp = b. �

If ∆ = (x0, x1, ..., xp) is a partition of the interval [a, b] , then x0, x1, ..., xp are called

the points of the partition ∆.

We denote by Div [a, b] the set of all partitions of the interval [a, b] , thus

Div [a, b] = {∆ : ∆ is a partition of the interval [a, b]}.

If ∆ = (x0, x1, ..., xp) is a partition of the interval [a, b] , then the number

‖∆‖ = max{x1 − x0, x2 − x1, ..., xp − xp−1}

is called the norm of the partition ∆.

Example 3.1.2 The systems

∆1 = (0, 1) , ∆2 = (0, 1/3, 1) , ∆3 = (0, 1/4, 1/2, 3/4, 1)

are partitions of the interval [0, 1] . They have the norms∥∥∆1
∥∥ = 1,

∥∥∆2
∥∥ = 2/3,

∥∥∆3
∥∥ = 1/4. �

Theorem 3.1.3 Let a, b ∈ R be such that a < b. For each real number ε > 0 there exits

at least a patition ∆ of the interval [a, b] with the property that ‖∆‖ < ε.

Proof. Let ε > 0 and p be a real number such that (b− a) /p < ε. If h = (b− a) /p, then

the ordered system

∆ = (a, a+ h, a+ 2h, · · ·, a+ (p− 1)h, b)

is a partition of the interval [a, b] . Moreover ‖∆‖ = h < ε.
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Definition 3.1.4 Let a, b ∈ R be such that a < b and ∆ = (x0, x1, ..., xp) and ∆′ =(
x′0, x

′
1, · · ·, x′q

)
be two partitions of the interval [a, b] . The partitio ∆ is said to be finer

then the partition ∆′ and we write this as ∆ ⊇ ∆′ (or ∆′ ⊆ ∆) if

{x′0, x′1, · · ·, x′q} ⊆ {x0, x1, · · ·, xp}. ♦

The following theorem states that the finner the norm of the partition is, the more

points the partition has

Theorem 3.1.5 Let a, b ∈ R be such that a < b and ∆ and ∆′ be two partitions of the

interval [a, b] . If the partition ∆ is finer than the partition ∆′, then ‖∆‖ ≤ ‖∆′‖ .

Proof. It follows immediately form the definitions.

Remark 3.1.6 If ∆, ∆′ ∈ Div [a, b] , then from ‖∆‖ ≤ ‖∆′‖ does not usually follow

that ∆′ ⊆ ∆. ♦

Definition 3.1.7 Let a, b ∈ R be such that a < b. If ∆′ =
(
x′0, x

′
1, · · ·, x′p

)
and ∆′′ =(

x′′0, x
′′
1, ..., x

′′
q

)
are partitions of the interval [a, b] , then the partition ∆ = (x0, x1, · · ·, xr) of

the interval [a, b] whose points are {x′0, x′1, ..., x′p}∪{x′′0, x′′1, ···, x′′q}, taken strictly increazing

is called the reunion of ∆′ with ∆′′ and is denoted by ∆′ ∪∆′′. ♦

Theorem 3.1.8 Let a, b ∈ R and a < b. If ∆′ and ∆′′ are partitions of the interval [a, b] ,

then

10 ∆′ ∪∆′′ ⊇ ∆′ şi ∆′ ∪∆′′ ⊇ ∆′′.

20 ‖∆′ ∪∆′′‖ ≤ ‖∆′‖ and ‖∆′ ∪∆′′‖ ‖∆′′‖ .

Proof. Is clear

Definition 3.1.9 Let a, b ∈ R with a < b and ∆ = (x0, x1, ..., xp) ∈Div[a, b] . A

system of intermediate points attaced to the partion ∆ is a random system

ξ = (ξ1, ξ2, ..., ξp) of p points ξ1, ξ2, ..., ξp ∈ [a, b] which satisfy the realtions

xi−1 ≤ ξi ≤ xi, oricare ar fi i ∈ {1, ..., p}. ♦

We will denote by Pi (∆) the set of all systems of intermediate points attaced to the

partition ∆, thus

Pi (∆) = {ξ : ξ is a system of intermediate points attached to the partition ∆}.
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2. The Riemann Integral

Definition 3.2.1 Let a, b ∈ R with a < b, ∆ = (x0, x1, ..., xp) be a partition of [a, b] ,

ξ = (ξ1, ξ2, ..., ξp) be a system of intermediate points attached to the partition ∆ and let

f : [a, b]→ R be a function. The real number

σ (f ; ∆, ξ) =

p∑
i=1

f (ξi) (xi − xi−1)

is called the Riemann sum attache to the function f the partition ∆ and the

system of intermediate points ξ. �

Definition 3.2.2 Let a, b ∈ R with a < b and f : [a, b]→ R. The function f is said to be

Riemann integrable on [a, b] (or, simplyer integrable) if for each sequence (∆n)n∈N
of partitions ∆n ∈ Div [a, b] , (n ∈ N) with lim

n→∞
‖∆n‖ = 0 for each sequence (ξn)n∈N

of systems ξn ∈ Pi (∆n) , (n ∈ N), the sequence (σ (f ; ∆n, ξn))n∈N of the Riemann sums

σ (f ; ∆n, ξn) , (n ∈ N) is convergent. �

Theorem 3.2.3 Let a, b ∈ R with a < b and f : [a, b]→ R. The function f is Riemann

integrable on [a, b] if and only if there exists a real number I such that for each sequence

(∆n)n∈N of partitions ∆n ∈ Div [a, b] , (n ∈ N) with lim
n→∞

‖∆n‖ = 0 and for each sequence

(ξn)n∈N of systems ξn ∈ Pi (∆n) , (n ∈ N), the sequence (σ (f ; ∆n, ξn))n∈N of the Riemann

sums σ (f ; ∆n, ξn) , (n ∈ N) has the limit I.

Proof. Necessity. Let
(

∆̃n
)
n∈N

be a sequence of partitions having as general term

∆̃n = (a, a+ h, a+ 2h, ...a+ (n− 1)h, b) , (n ∈ N)

and let (ξn)n∈N be the sequence with the general term

ξ̃n = (a, a+ h, a+ 2h, ...a+ (n− 1)h) , (n ∈ N)

where

h :=
b− a
n

.

For each n ∈ N it holds:

∆̃n ∈ Div [a, b] , ‖∆n‖ =
(b− a)

n
and ξ̃n ∈ Pi

(
∆̃n
)
.

Then the sequence
(
σ
(
f ; ∆̃n, ξ̃n

))
n∈N

is convergent; let I ∈ R be the limit of the sequence(
σ
(
f ; ∆̃n, ξ̃n

))
n∈N

.

We will prove that for each sequence (∆n)n∈N of partitions of the interval [a, b] with

lim
n→∞

‖∆n‖ = 0 and for each sequence (ξn)n∈N of systems ξn ∈ Pi (∆n) , (n ∈ N), the

sequence (σ (f ; ∆n, ξn))n∈N of the Riemann sums σ (f ; ∆n, ξn) , (n ∈ N) has the limit I.
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Consider (∆n)n∈N a sequence of partitions ∆n ∈ Div [a, b] , (n ∈ N) with lim
n→∞

‖∆n‖ = 0

and let (ξn)n∈N be a sequence of systems ξn ∈ Pi (∆n) , (n ∈ N). Then the sequences

(∆n)n∈N ,
(
ξn
)
n∈N , where

∆n =

{
∆̃k, if n = 2k

∆k, ifn = 2k + 1,
ξn =

{
ξ̃k, if n = 2k

ξk, if n = 2k + 1,

have the following propertis:

i) ∆n ∈ Div [a, b], ξn ∈ Pi (∆n) , for all n ∈ N;

ii) lim
n→∞

‖∆n‖ = 0.

We know from the hypothesis that
(
σ
(
f ; ∆n, ξn

))
n∈N is convergent. Let I be its limit.

Taking into account that the sequence
(
σ
(
f ; ∆̃n, ξ̃n

))
n∈N

is a subsequence of the con-

vergent sequence
(
σ
(
f ; ∆n, ξn

))
n∈N , we deduce that I = I. Intrucât (σ (f ; ∆n, ξn))n∈N is

a subsequence of the convergent sequence
(
σ
(
f ; ∆n, ξn

))
n∈N, we obtain that the sequence

(σ (f ; ∆n, ξn))n∈N has the limit I.

Sufficiency It follows from the defintion.

Theorem 3.2.4 (the uniqueness of the integral) Let a, b ∈ R with a < b and f :

[a, b]→ R. Then there exits at most a real number I with the property that each sequence

(∆n)n∈N of partitions ∆n ∈ Div [a, b] , (n ∈ N) with lim
n→∞

‖∆n‖ = 0 and for each sequence

(ξn)n∈N of systems ξn ∈ Pi (∆n) , (n ∈ N), the sequence (σ (f ; ∆n, ξn))n∈N of Riemann

sums σ (f ; ∆n, ξn) , (n ∈ N) has the limit I. �

In conclusion, for a function f : [a, b]→ R we have one of the following situations:

a) there exists a real number I with the property that for each sequence (∆n)n∈N of

partitions ∆n ∈ Div [a, b] , (n ∈ N) with lim
n→∞

‖∆n‖ = 0 and for each sequence (ξn)n∈N of

systems ξn ∈ Pi (∆n) , (n ∈ N), şirul (σ (f ; ∆n, ξn))n∈N of the Riemann sums σ (f ; ∆n, ξn) ,

(n ∈ N) has the limit I.

In this case, according to theorem 3.2.4, the real number I is unique and is called the

Riemann integral of the function f on the interval [a, b] and it will be denoted by

I :=

∫ b

a

f (x) dx.

b) There does not exist a real number I with the property that for each sequence

(∆n)n∈N of partitions ∆n ∈ Div [a, b] , (n ∈ N) with lim
n→∞

‖∆n‖ = 0 and each sequence

(ξn)n∈N of systems ξn ∈ Pi (∆n) , (n ∈ N), the sequence (σ (f ; ∆n, ξn))n∈N of the Riemann

sums σ (f ; ∆n, ξn) , (n ∈ N) has the limti I. In this case the function f is not Riemann

integrable on [a, b] . In conclusion, a function f : [a, b]→ R is not Riemann integrable on

[a, b] if and only if for each real number I and for eacg sequence (∆n)n∈N of partitions
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∆n ∈ Div [a, b] , (n ∈ N) with lim
n→∞

‖∆n‖ = 0 and a sequence (ξn)n∈N of systems ξn ∈
Pi (∆n) , (n ∈ N), with the property that the sequence (σ (f ; ∆n, ξn))n∈N of the Riemann

sums σ (f ; ∆n, ξn) , (n ∈ N) does not have the limit I.

3. Antiderivatives

The concept of the antiderivatives makes the connection between two key con-

ceps of Calculus, namely: the derivative and the integral.

Definition 3.3.1 Let D be a nonempty subset of R, f : D → R be a function and I a

nonempty subset of D. We say that the function f has antiderivatives on I if there

exits a function F : I → R such that:

i) the function F is differntiable on I;

ii) F ′ (x) = f (x) , for all x ∈ I.
If the function f has antiderivatives on its entire domain D, we just say that f has

primitives.�

Example 3.3.2 The function f : R → R defined by f (x) = x, for all x ∈ R, has

primitives on R because the differentiable function F : R → R defined by F (x) = x2/2,

for all x ∈ R, has the property that F ′ = f. �

Definition 3.3.3 Let D be a nonempty subset of R, f : D → R be a function, and I be

a nonempty subset of D. It is called an antiderivative of the function f on the set I

each function F : I → R who satisfies the following propertis:

i) the function F is differentiable on I;

ii) F ′ (x) = f (x) , for all x ∈ I.
If F is an antiderivative of f on the entire domain D of f, then we just say that F is

an antiderivative of the function f. �

Theorem 3.3.4 Let I be an interval on R and f : I → R be a function. If F1 : I → R şi

F2 : I → R are two antiderivatives of the function f on I, then there exists a real number

c such that

F2 (x) = F1 (x) + c, for all x ∈ I.

(Each two distinct antiderivatives differ through a constant).

Proof. The functions F1 and F2 being antiderivatives of the function f, are differentiable,

and F ′1 = F ′2 = f, hence

(F2 − F1)
′ = F ′2 − F ′1 = 0.
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The differentiable function F2 − F1 having the derivative 0 on the interval I, is constant

on this interval. Consequently, there exists a real number c such that

F2 (x)− F1 (x) = c, for all x ∈ I.

Remark 3.3.5 In theorem 3.3.4, the hypothesis that the set I is an interval is funda-

mental. Indeed, for the function f : R\{0} → R defined by

f (x) = 0, for all x ∈ R\{0},

the functions F1, F2 : R\{0} → R defined by

F1 (x) = 0, for all x ∈ R\{0},

F2 (x) =

{
0, dacă x < 0

1, dacă x > 0,
,

respectively, are antiderivatives of the function f on R\{0}. We notice that there exits no

c ∈ R to satisfy F2 (x) = F1 (x) + c, for all x ∈ R\{0}. We underline the fact that R\{0}
is not an interval. �

Definition 3.3.6 Let I be an internval in R and f : I → R be a function that has

antiderivatives on I. The set of all antiderivatives of f on the interval I is called the

indefinite integral of the function f on the interval I and is denoted by∫
f (x) dx, x ∈ I.

The operation of computing the antiderivative of f is called integration.

Let I be an interval in R and F (I;R) be the set of all functions defined on I with

values in R. If G amd H are nonempty subsets of F (I,R) and a is a real number, then:

G +H = {f : I → R: exists g ∈ G and h ∈ H such that f = g + h},

şi

aG = {f : I → R: exists g ∈ G such that f = ag}.

If G has a single function g0, meaning that G = {g0}, then, instead of G+H = {g0}+H
we simply write g0 +H.

We will denote by C the set of all constant functions defined on I with values in R,

meaning

C = {f : I → R : există c ∈ R such that f (x) = c, for all x ∈ I}.

We immediately notice that:

a) C + C = C;
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b) aC = C, for all a ∈ R, a 6= 0,

meaning that the sum of two constant functions is a constant function as well, and a

constant function multiplied by a real number is also a constant function.

Let us recall that if F0 : I → R is an antiderivative of the function f : I → R on

the interval I ⊆ R, then for any other antiderivative F : I → R of f on I is of the form

F = F0 + c, where c : I → R is a constant function, therefore belonging to c ∈ C. Then∫
f(x)dx = {F ∈ F (I,R) : F is an antiderivative of f on I} =

= {F0 + c : c ∈ C} = F0 + C.

Remark 3.3.7 Let f : I → R be a function that has antiderivatives on I and let

F0 : I → R be an antiderivative of f I. By considering the remark 3.3.5, we obtain∫
f(x)dx = { F : I → R : F is an antiderivative of the function f} = F0 + C.

It follows that ∫
f(x)dx+ C = (F0 + C) + C = F0 + (C + C) = F0 + C,

hence ∫
f(x)dx+ C =

∫
f(x)dx.

Remark 3.3.8 If the function f : I → R has antiderivatives on the interval I and

F : I → R is an antiderivative of the function f on I, then∫
f(x)dx = F + C

or ∫
F ′(x)dx = F + C.

3.1. Antiderivatives of Continuous Functions. In the following we prove that

continuous functions have antiderivatives.

Theorem 3.3.9 Let I be an interval in R, x0 ∈ I and f : I → R be a locally Riemann

integrable function on I. If the function f is continuous at the point x0, then for all a ∈ I,
the function F : I → R defined by

F (x) =

∫ x

a

f (t) dt, for all x ∈ I,

is differentiable at x0 and F ′ (x0) = f (x0) .
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Proof. Obviously F (a) = 0. Let ε > 0. Since the function f is continuous x0, there exits

a real number δ > 0 such that for all t ∈ I with |t− x0| < δ it holds

|f (t)− f (x0)| < ε/2,

or, equivalently,

f (x0)−
ε

2
< f (t) < f (x0) +

ε

2
.

Let x ∈ I\{x0} with |x− x0| < δ. We distinguish two cases:

Case 1: x > x0; then, for all t ∈ [x0, x] , it holds

f (x0)−
ε

2
< f (t) < f (x0) +

ε

2
,

and thus ∫ x

x0

(
f (x0)−

ε

2

)
dt ≤

∫ x

x0

f (t) dt ≤
∫ x

x0

(
f (x0) +

ε

2

)
dt,

thus is follows that(
f (x0)−

ε

2

)
(x− x0) ≤ F (x)− F (x0) ≤

(
f (x0) +

ε

2

)
(x− x0) ,

or, equivalently

f (x0)−
ε

2
≤ F (x)− F (x0)

x− x0
≤ f (x0) +

ε

2
.

In conclusion ∣∣∣∣F (x)− F (x0)

x− x0
− f (x0)

∣∣∣∣ < ε

Case 2: x > x0; then for each t ∈ [x0, x] , it holds

f (x0)−
ε

2
< f (t) < f (x0) +

ε

2
,

and thus ∫ x0

x

(
f (x0)−

ε

2

)
dt ≤

∫ x0

x

f (t) dt ≤
∫ x0

x

(
f (x0) +

ε

2

)
dt,

hence (
f (x0)−

ε

2

)
(x0 − x) ≤ F (x0)− F (x) ≤

(
f (x0) +

ε

2

)
(x0 − x) ,

or, equivalently,

f (x0)−
ε

2
≤ F (x)− F (x0)

x− x0
≤ f (x0) +

ε

2
.

In conclusion ∣∣∣∣F (x)− F (x0)

x− x0
− f (x0)

∣∣∣∣ < ε

This means that for all x ∈ I\{x0} cu |x− x0| < δ it holds∣∣∣∣F (x)− F (x0)

x− x0
− f (x0)

∣∣∣∣ < ε.
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It follows that there exist

lim
x→x0

F (x)− F (x0)

x− x0
= f (x0) ,

thus F is differntiable at the point x0 and F ′ (x0) = f (x0) .

Remark 3.3.10 If the function F from theorem 3.3.9 is differentiable at x0, it does not

follow that the function f is continuous at the point x0. Indeed, the functon f : [0, 1]→ R
defined by f (x) = bxc , for all x ∈ [0, 1] , is not continuous at x0 = 1, while the function

F : [0, 1]→ R defined by

F (x) =

∫ x

0

f(t)dt =

∫ x

0

0dt = 0, for all x ∈ [0, 1] ,

is differentiable at the point1. ♦

Theorem 3.3.11 (the theorem of existence of antiderivatives for continuous functions

) Let I be an interval in R, a ∈ I and f : I → R. If the function f is continuous on the

interval I, then the function F : I → R defined by prin

F (x) =

∫ x

a

f(t)dt, for all x ∈ I,

is an antiderivative of f on I, satisfying the property that F (a) = 0.

Proof. Theorem 3.3.9 should be applied.

Theorem 3.3.12 ( the representation theorem for antiderivatives of continuous

functions) Let I be an interval from R, a ∈ I and f : I → R be a continuous func-

tion on I. If F : I → R is an antiderivative of the function f on I with the property that

F (a) = 0, then

F (x) =

∫ x

a

f(t)dt, for all x ∈ I.

Proof. According to the existence theorem for antiderivatives of continuous functions

(teorema 3.3.11), the function F1 : I → R defined by

F1(x) =

∫ x

a

f(t)dt, for all x ∈ I,

is an antiderivative of the function f on I. Then there exits c ∈ R such that F (x) =

F1(x) + c, for all x ∈ I. Since F (a) = F1(a) = 0, we deduce that c = 0 and the theorem

is proved.
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Theorem 3.3.13 Let I be an interval from R and f : I → R is a locally integrable

function on I. If the function f is bounded on I, for all a ∈ I, the function F : I → R
defined by

F (x) =

∫ x

a

f(t)dt, for all x ∈ I,

is Lipshcitz on I.

Proof. The function f is bounded I, then there exits a real number M > 0 such that

|f (t)| ≤M, for all x ∈ I.

Therefore, for all u, v ∈ I, it holds

|F (u)− F (v)| =
∣∣∣∣∫ v

u

f (t) dt

∣∣∣∣ ≤ ∣∣∣∣∫ v

u

|f (t)| dt
∣∣∣∣ ≤M |u− v| ,

consequently, the function F Lipschitz.

4. The Leibniz-Newton Formula

Theorem 3.4.1 (teorema lui Leibniz− Newton) Let a, b ∈ R with a < b and f : [a, b]→
R be a function. If

(i) the function f is Riemann integrable on [a, b];

(ii) the function f has antiderivatives on [a, b],

then for each antiderivative F : [a, b]→ R of the function f the following equality holds:

(3.4.28)

∫ b

a

f (x) dx = F (b)− F (a) .

Proof. Let (∆n)n∈N be a sequence of partitions ∆n = (xn0 , · · ·, xnpn) of the interval [a, b]

such that lim
n→∞

‖∆n‖ = 0. According to Cauchy’s theorem applied to the function F on

the interval [xni−1, x
n
i ], (n ∈ N) we conclude that there exits for each natural number n

and for each i ∈ {1, · · ·, pn}, a point ξni ∈]xni−1, x
n
i [ with the property that

F (xni )− F
(
xni−1

)
= F ′ (ξni )

(
xni − xni−1

)
.

From the hypothesis F ′ (x) = f (x) , for all x ∈ [a, b], we get

F (xni )− F
(
xni−1

)
= f (ξni )

(
xni − xni−1

)
,

for all natural numbers n and for all i ∈ {1, · · ·, pn}.
Obviously, for each natural number n it holds ξn =

(
ξn1 , · · ·, ξnpn

)
∈ Pi (∆n) . Since

σ (f ; ∆n, ξn) =

pn∑
i=1

f (ξni )
(
xni − xni−1

)
=

pn∑
i=1

F (xni )− F
(
xni−1

)
=

= F (b)− F (a) , for all n ∈ N,
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because ∫ b

a

f (x) dx = lim
n→∞

σ (f ; ∆n, ξn) ,

we get ∫ b

a

f (x) dx = F (b)− F (a) .

Notation: Instead of F (b)− F (a) we usually denote:

F (x)|ba sau [F (x)]ba

which is read F (x) taken between a and b.

The equality (3.4.28) is called the Leibniz-Newton fromula.

Example 3.4.2 The funciton f : [1, 2]→ R defined by

f (x) =
1

x (x+ 1)
, for all x ∈ [1, 2],

is continuous on [1, 2]. Then the function f is Riemann integrable on [1, 2]. On the other

side, the function f has antiderivatives on the interval [1, 2] and F : [1, 2]→ R defined by

F (x) = lnx− ln (x+ 1) , for all x ∈ [1, 2],

is an antiderivative of the function f on [1, 2]. Acoording to Leibniz-Newton’s formula

(teorema 3.4.1), we get∫ 2

1

1

x (x+ 1)
dx = [lnx− ln (x+ 1)]21 = ln

4

3
. �

5. Computational Methods

5.1. The Side Integrations. By using the formula for determining the derivative

for the product of two differentiable functions and the result that each continuous function

on an interval has antiderivatives, we obtain the following theorem:

Theorem 3.5.1 (the side integration formula) Let I be an interval from R şi f, g : I → R.

If:

(i) the functions f and g are differentiable on I,

(ii) the derivatives f ′ and g′ are continous on I,

then the functions fg′ and f ′g have antiderivatives on I and the following equality holds:∫
(fg′) (x)dx = fg −

∫
(f ′g) (x)dx.

(the side integration formula)
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Remark 3.5.2 Briefly, the side integration formula is written as∫
fg′ = fg −

∫
f ′g.

Example 3.5.3 Compute the integral∫
x lnxdx, x ∈]0,+∞[;

Solution. We consider the functions f, g :]0,+∞[→ R defined by

f(x) = ln x, g′(x) = x, for all x ∈]0,+∞[.

We deduce that g(x) =
x2

2
, for all x ∈]0,+∞[. By applying the side integration formula

we get ∫
x lnxdx =

x2

x
lnx−

∫
x2

2
· 1

x
dx =

x2

2
lnx− 1

2

∫
xdx =

=
x2

2
lnx− x2

4
+ C, x ∈]0,+∞[.

5.2. The Variable Change in Integration. The change of variable in the integral

relies on the formula for the composition of functions.

Theorem 3.5.4 (the first variable change) Let I and J be two intervals from R and

f : J → R and u : I → R be two functions. Then:

(i) u (I) ⊆ J ;

(ii) the function u is differentiable on I;

(iii) the function f has antiderivatives on J,

and the function (f ◦ u)u′ has antiderivatives on I.

Moreover, if F : J → R is an antiderivative of the function f on J , then the function

F ◦ u is an antiderivative of (f ◦ u)u′ on I and the following equality holds:∫
f (u (x))u′ (x) dx = F ◦ u+ C.

Remark 3.5.5 Let I be an interval on R. In order to compute the antiderivatives of the

function g : I → R, more precisely, in order to compute the integral∫
g (x) dx,
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by using the variable change method, one should follow the next steps: 10 We emphasize,

in the formulation of g, a differentiable function u : I → R and a function primitivabilă

f : u (I)→ R such that g (x) = f (u (x))u′ (x) , for all x ∈ I.
20 We determine an antiderivative F : u (I)→ R of the function f on u (I) , namely∫

f (t) dt = F + C.

30 An antiderivative of the function g = (f ◦ u)u′ on I is F ◦ u, namely∫
g (x) dx = F ◦ u+ C,

or, equivalently ∫
g (x) dx = F (u (x)) + C, x ∈ I.

Example 3.5.6 Compute the integral∫
cotxdx, x ∈]0, π[.

Solution. We have I =]0, π[ şi g (x) = cot x, for all x ∈]0, π[. Since

g (x) =
1

sinx
(sinx)′ , for all x ∈]0, π[,

we consider u :]0, π[→ R defined by u(x) = sin x, for all x ∈]0, π[ and f :]0,+∞[→ R
defined by f (t) = 1/t, for all t ∈]0,+∞[. Evident

g (x) = f (u (x))u′ (x) , for all x ∈]0,+∞[.

An antiderivative of the function f on ]0,+∞[ is the function F :]0,+∞[→ R defined by

F (t) = ln t, for all t ∈]0,+∞[,

namely ∫
f (t) dt =

∫
1

t
dt = ln t+ C, t ∈]0,+∞[.

Then, an antiderivative of g pe ]0,+∞[ is F ◦ u, therefore, we have∫
cotxdx = ln | sinx|+ C, x ∈]0, π[.

Theorem 3.5.7 (the second method of variable change) Let I and J be two intervals

from R şi f : I → R and u : J → I be two function. If:

(i) the function u is bijective;

(ii) the function u is differentiable on J and u′ (x) 6= 0, for all x ∈ J ;
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(iii) the function h = (f ◦ u)u′ has antiderivatives on J,

then the function f has antiderivatives on I.

Moreover, if H : J → R is an antiderivative of the function h = (f ◦ u)u′ pe J, then

the function H ◦ u−1 is an antiderivative of f on I, consequently, the following equality

holds: ∫
f (x) dx = H ◦ u−1 + C.

Remark 3.5.8 Let I be an interval from R. In order to compute the antiderivatives of

a function for which we know that has antiderivatives f : I → R, namely, in order to

compute the integral ∫
f (x) dx,

by using the variable change from theorem 3.5.7, one should follow the next three steps:

10 Emphasize an interval J ⊆ R and a function u : J → I bijective, differentiable on

J and with a derivative different from zero on J ( It is said that the function u−1 changes

its x variable into the variable t).

20 Determine an antiderivative H : J → R of the function (f ◦ u)u′ pe J, adică∫
f (u (t)) dt = H + C.

30 An antiderivative of the function f on I is H ◦ u−1, adică∫
f (x) dx = H ◦ u−1 + C,

or, equivalently, ∫
f (x) dx = H

(
u−1 (x)

)
+ C, x ∈ I.

Example 3.5.9 Compute the integral∫
1

sinx
dx, x ∈]0, π[.

It holds I :=]0, π[. We consider the function u :]0,+∞[→]0, π[ defined by u (t) =

2 arctan t, for all t ∈]0,+∞[. The function u bijective and differentiable.

Remark 3.5.10 Let I and J be two intervals from R and f : J → R and u : I → J be

two functions with the following properties:

(a) the function u is bijective, differntiable on I with continuous derivative and different

from zero on I;

(b) the function f is continuous on J .

Let F : J → R be an antiderivative of the function f on J (such an antiderivative

exists because f is continuous on J).
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From the first variable change method (theorem 3.5.4), the function F ◦ u is an anti-

derivative of the function (f ◦ u)u′ on I.

Conversely, assume that H = F ◦ u is an antiderivative of the function (f ◦ u)u′ on

I. Then, according to the second method of variable change (theorem 3.5.7), the function

H ◦ u−1 = F ◦ u ◦ u−1 = F is an antiderivative of f on J .

Consequently, from (a) and (b), the function F : I → R is an antiderivative of the

functin f on J if and only if the function F ◦u is an antiderivative of the function (f ◦ u)u′

on I. Hence, under the hypotheses (a) and (b), the two methods coincide.

In fact, there exists just one method of variable change, with multiple instances.

Instance 1. We must compute∫
f (x) dx, x ∈ I.

Then:

10 We emphasize in the formulation of f , a function u : I → R and a function

g : u (I)→ R which has antiderivatives, such that

f (x) = g (u (x))u′ (x) , for all x ∈ I.

20 We make the following formal substitions u (x) := t şi u′ (x) dx := dt; and we get

the indefinite integral ∫
g (t) dt = G (t) + C, t ∈ u (I) .

30 We go back to the old variable x, by putting t := u (x) in the expression of the

antidrivative G; we get ∫
f (x) dx = G (u (x)) + C, x ∈ I.

Instance 2. We compute ∫
f (x) dx, x ∈ I.

Then:

10 We emphasize an interval J ⊆ R and a function u : J → I bijective and differen-

tiable.

20 We make the formal substitutions x := u (t) and dx := u′ (t) dt; and get the indefi-

nite integral ∫
f (u (t))u′ (t) dt, t ∈ J,

which can be computed. Let∫
f (u (t))u′ (t) dt = H (t) + C, t ∈ J.
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30 We go back to the old variable x, by setting t := u−1 (x) in the expresion of the

antidrivative H; we get ∫
f (x) dx = H

(
u−1 (x)

)
+ C, x ∈ I.

Instance 3. We compute ∫
f (x) dx, x ∈ I.

Then:

10 We emphasize in the formulation of f an injective and differentiable function u :

I → R with u−1 : u (I)→ I and a function g : u (I)→ R such that

f (x) = g (u (x)) , for all x ∈ I.

20 We make the formal substitution u (x) := t and dx := (u−1)
′
(t) dt; we get the

indefinite integral ∫
g (t)

(
u−1
)′

(t) dt, t ∈ u (I) ,

that we have to compute. Let∫
g (t)

(
u−1
)′

(t) dt = F (t) , t ∈ u (I) ,

30 Going back to the first variable x, by setting t := u (x) in the expression of the

antiderivative F ; we get ∫
f (x) dx = G (u (x)) + C, x ∈ I.

The expressions of the functions u are impose by the particular instance of the function

f .

Example 3.5.11 Compute

I =

∫
tgx

1 + tgx
dx, x ∈

(
−π

4
,
π

4

)
.

We make the substitution tan x = t, hence x := arctan t şi dx :=
1

1 + t2
. We get

I =

∫
t

(1 + t) (1 + t2)
dt =

1

2

∫ (
1

t2 + 1
+

1

t2 + 1
− 1

t+ 1

)
dt =

=
1

4

(
t2 + 1

)
+

1

2
arctan t− 1

2
ln (t+ 1) + C, t ∈ (−1,+∞) .

Then

I =

∫
tanx

1 + tan x
dx =

1

2
(x− ln (sinx+ cosx)) + C, x ∈

(
−π

4
,
π

4

)
.

Remark 3.5.12 There are computational rules for the antiderivatives, only when con-

sidering a rather restrict family of functions.
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Remark 3.5.13 For further details see [5] and [3].

6. Exercise to be Solved

Example 3.6.1 Prove that the following functions f : I → R have antiderivatives on

the interval I ⊆ R and determine one antiderivative F : I → R of the function f on the

interval I, if:

a) f (x) = x2 + x, for all x ∈ I = R;

b) f (x) = x3 + 2x− 4, for all x ∈ I = R;

c) f (x) = x (x+ 1) (x+ 2) , oricare ar fi x ∈ I = R;

d) f (x) = 1/x, for all x ∈ I =]0,+∞[;

e) f (x) = 1/x, for all x ∈ I =]−∞, 0[;

f) f (x) = x5 + 1/x, for all x ∈ I =]0,+∞[;

g) f (x) = 1/x2, for all x ∈ I =]0,+∞[;

h) f (x) = 1/x2, for all x ∈ I =]−∞, 0[.

Example 3.6.2 Compute:

a)

∫
2x− 1

x2 − 3x+ 2
dx, x ∈]2,+∞[;

b)

∫
4

(x− 1) (x+ 1)2
dx, x > 1;

c)

∫
1

x3 − x4
dx, x > 1;

d)

∫
2x+ 5

x2 + 5x+ 10
, x ∈ R;

e)

∫
1

x2 + x+ 1
, x ∈ R.

Example 3.6.3 Compute:

a) I =

∫
1√

x+ 1 +
√
x

dx, x ∈]0,+∞[;

b) I =

∫
1

x+
√
x− 1

dx, x ∈]1,+∞[.

Example 3.6.4 Compute:

a) I =

∫
1

1 +
√
x2 + 2x− 2

dx, x ∈]
√

3− 1,+∞[;
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b) I =

∫
1

(x+ 1)
√
−4x2 − x+ 1

dx, x ∈]
−1−

√
17

8
,

√
17− 1

8
[.

Example 3.6.5 Compute:

a)

∫ 2

1

1

x3 + x2 + x+ 1
dx; b)

∫ 3

1

1

x (x2 + 9)
dx;

c)

∫ 1

−1

x2 + 1

x4 + 1
dx; d)

∫ 1

−1

x

x2 + x+ 1
dx.

Example 3.6.6 Compute:

a)

∫ −2
−3

x

(x+ 1) (x2 + 3)
dx; b)

∫ 1

0

x+ 1

(x2 + 4x+ 5)2
dx;

c)

∫ 2

1

1

x3 + x
dx; d)

∫ 2

0

x3 + 2x2 + x+ 4

(x+ 1)2
dx.

Example 3.6.7 Compute:

a)

∫ 1

0

1

1 + x4
dx; b)

∫ 1

0

1

(x+ 1) (x2 + 4)
dx;

c)

∫ 3

2

2x3 + x2 + 2x− 1

x4 − 1
dx; d)

∫ 1

0

x3 + 2

(x+ 1)3
dx.

Example 3.6.8 Compute:

a)

∫ 1

−1

1√
4− x2

dx; b)

∫ 1

0

1√
x2 + x+ 1

dx;

c)

∫ 1

−1

1√
4x2 + x+ 1

dx; d)

∫ 3

2

x2

(x2 − 1)
√
x2 − 1

dx.

Example 3.6.9 Compute:

a)

∫ 3

2

√
x2 + 2x− 7dx; b)

∫ 1

0

√
6 + 4x− 2x2dx;

c)

∫ 3/4

0

1

(x+ 1)
√
x2 + 1

dx; d)

∫ 3

2

1

x
√
x2 − 1

dx.

Example 3.6.10 Prove that:

a) 2
√

2 <

∫ 1

−1

√
x2 + 4x+ 5dx < 2

√
10;
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b) e2 (e− 1) <
∫ e2

e
x

lnx
dx < e3

2
(e− 1) .
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[2] D.I. Duca şi E. Duca: Exerciţii şi probleme de analiză matematică (vol. 1), Editura Casa Cărţii de
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Index

criteriul

comparatiei

al doilea, 9

al treilea, 10

primul, 8

radacinii al lui Cauchy, 14

raportului al lui D’Alembert, 12

criteriul lui

Kummer, 16

Raabe-Duhamel, 17

diviziune, 31

mai fina, 32

formul lui Leibniz-Newton, 41

formula lui Taylor, 23

functie

care admite primitive, 35

integrabila Riemann, 33

integrala

nedefinita, 36

integrala Riemann, 34

norma a unei diviziuni, 31

polinomul lui Taylor, 21

primitiva a unei functii, 35

restul

unei serii, 6

restul lui Schlomilch-Roche, 25

restul Taylor, 22

seria

armonica, 3

armonica generalizata, 12

serie

convergenta, 2

cu termeni pozitivi, 7

divergenta, 2

geometrica, 2

serie de numere reale, 1

sirul sumelor partiale

a unei serii de numere, 1

sistem de puncte intermediare atasat unei

diviziuni, 32

suma partiala de rang n

a unei serii, 1

suma Riemann, 33

suma unei serii, 2

termenul general

al unei serii, 1
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