
The workshop is organized under the umbrella of WeaMyL, project funded by the EEA and
Norway Grants under the RO-NO-2019-0133.

Contract: No 26/2020

Automatic code generation for
malware detection based on
MITRE ATT&CK techniques

Alexandru-Gabriel Sîrbu

WeADL 2023 Workshop

Working together for a green, competitive and inclusive
Europe

6/09/2023 1

Table of
contents

Working together for a green, competitive and inclusive
Europe

6/09/2023 2

Task presentation

General translation overview

Mundane code generation

Improving code generation

MITRE ATT&CK

Solution details

Original contribution

Issues

Conclusion

Future work

Task presentation

Natural Language Text => Source Code
Input:
- Code Description – ambiguous
- Code Description + Test Case – less abstract
Output:
- All Program’s Code – runnable
- Code Snippet – just handles the required logic

Working together for a green, competitive and inclusive
Europe

6/09/2023 3

General translator overview

- Encoder-Decoder architecture
- Variable input and output

- Input: solved by using padding
- Output: solved by using Recurrent

Neural Networks

Working together for a green, competitive and inclusive
Europe

6/09/2023 4

Encoder-Decoder architecture

Recurrent Neural Network

General translator architecture

Working together for a green, competitive and inclusive
Europe

6/09/2023 5

Words => Numbers

Preserves information
from both past and
future

Assigns importance to
each word based on
the context
Aligns words from the
source language to the
target language

Preserves information
from the past

Puts up everything
together

Picks the next best
word

General translator evaluation

Metrics
- Accuracy

- Standard metric
- Does not work when there are multiple translations for the same sentence

- BLEU
- Computes how much of our generated sentence is “syntactically valid”

when compared to valid translations
- e.g., “the cat is on the mat” vs “there is a cat on the mat”
- {“the cat”, “cat is”, “is on”, “on the”, “the mat”} vs {“there is”, “is a”, “a

cat”, “cat on”, “on the”, “the mat”}
- Score: 2 / 5

Working together for a green, competitive and inclusive
Europe

6/09/2023 6

Mundane code generation

- Generate code word by word based on the input
- Prone to syntactic errors

- Code not runnable
- Requires manual work

Working together for a green, competitive and inclusive
Europe

6/09/2023 7

Improving code generation

- Generate code as an Abstract Syntax Tree based on the input
- Abstract Syntax Tree <=> Code

Working together for a green, competitive and inclusive
Europe

6/09/2023 8

Abstract Syntax Tree example

Working together for a green, competitive and inclusive
Europe

6/09/2023 9

while b ≠ 0:

 if a > b:

 a := a - b

 else:

 b := b - a

return a

Improving code generation

- Generate one node at a time
- Input to model:

- Description
- State
- Parent node
- Right-most left sibling

Working together for a green, competitive and inclusive
Europe

6/09/2023 10

Improving code generation

Working together for a green, competitive and inclusive
Europe

6/09/2023 11

Improving code generation

Working together for a green, competitive and inclusive
Europe

6/09/2023 12

MITRE ATT&CK

- Open source
- Globally accessible knowledge base
- Contains tactics used by attackers during cyberattacks

Working together for a green, competitive and inclusive
Europe

6/09/2023 13

MITRE ATT&CK tactics

- Describe specific methods or procedures
- Used to enhance security
- Used in international antivirus tests

Working together for a green, competitive and inclusive
Europe

6/09/2023 14

Detection rule example

Working together for a green, competitive and inclusive
Europe

6/09/2023 15

Adversaries may create a
new process with an existing
token to escalate privileges
and bypass access controls.
Processes can be created
with the token and resulting
security context of another
user using features such as
CreateProcessWithTokenW
and runas.

[SIGNATURE]

Name = 'T1134.002'

[INFO]

Create Process with Token;

[RULES]

or {

 a = s.print('Case T1134.002 - Create Process with Token');

 forone actionProcess in ProcessAction.listFromAction(274) #

ACT_PROC_CREATE {

 n.and(actionProcess.flags, 3) == 0; # not excepted or

hidden

 actionProcess.process.path ==

"c:\windows\system32\runas.exe"

 actionProcess.process.cmdLine contains "/user";

 }

}

Dataset statistics

Working together for a green, competitive and inclusive
Europe

6/09/2023 16

MITRE ATT&CK technique descriptions​ 411​

MITRE ATT&CK technique implementations​ 102​

Average number of description tokens​ 62.1​

Average number of nodes in generated AST​ 462.3​

Building the solution

Working together for a green, competitive and inclusive
Europe

6/09/2023 17

1

Scrape MITRE website
for tactics

2

Scrape Bitbucket for
detection
implementations

3

Pair each detection
with its corresponding
tactic description

4

Transform each
detection code to
Abstract Syntax Tree

5

Transform each
Abstract Syntax Tree
through a list via
Depth First Search

6

Preprocess the
descriptions (lower
case + tokenization +
prefix token + suffix
token)

Original contribution

- Created directly nodes
- Less nodes => more efficient

- Models for internal languages
- High generalization and practical usage

- Dealt with low data entries
- Encoder – pre-trained RoBERTa

- Using 2 components
- Structure Generator + Dynamic Data Generator (variable names, strings)

Working together for a green, competitive and inclusive
Europe

6/09/2023 18

Issues

Infinite loop when generating lists
- In literature: cap the elements in a list
- Our approach: generate AST Nodes on request
BLEU
- Evaluates syntax, not meaning
- No alternative at this moment

Working together for a green, competitive and inclusive
Europe

6/09/2023 19

Results for structure generation

Working together for a green, competitive and inclusive
Europe

6/09/2023 20

​Dataset
Model

Mitre
LSTM​

Mitre
RoBERT​a

Hearthstone​
Seq2Tree

Django
Seq2Tree​

BLEU-4​ 76.3​ 81.1​ 75.8​ 84.5​

Dataset
entries​

102​ 102​ 665​ 18805​

Conclusion

Automated code still requires human supervision
- Must be used in conjunction with good programming practices

Code generation
- Great for repetitive code
- Might struggle with new attack vectors

Working together for a green, competitive and inclusive
Europe

6/09/2023 21

Future work

Generating dynamic data from code
- 100% complete runnable code
- Integrate the components together

Working together for a green, competitive and inclusive
Europe

6/09/2023 22

Demo

Working together for a green, competitive and inclusive
Europe

6/09/2023 23

	Slide 1: Automatic code generation for malware detection based on MITRE ATT&CK techniques
	Slide 2: Table of contents
	Slide 3: Task presentation
	Slide 4: General translator overview
	Slide 5: General translator architecture
	Slide 6: General translator evaluation
	Slide 7: Mundane code generation
	Slide 8: Improving code generation
	Slide 9: Abstract Syntax Tree example
	Slide 10: Improving code generation
	Slide 11: Improving code generation
	Slide 12: Improving code generation
	Slide 13: MITRE ATT&CK
	Slide 14: MITRE ATT&CK tactics
	Slide 15: Detection rule example
	Slide 16: Dataset statistics
	Slide 17: Building the solution
	Slide 18: Original contribution
	Slide 19: Issues
	Slide 20: Results for structure generation
	Slide 21: Conclusion
	Slide 22: Future work
	Slide 23: Demo

