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Task presentation

Natural Language Text => Source Code
Input:
- Code Description – ambiguous
- Code Description + Test Case – less abstract
Output:
- All Program’s Code – runnable
- Code Snippet – just handles the required logic
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General translator overview

- Encoder-Decoder architecture
- Variable input and output

- Input: solved by using padding
- Output: solved by using Recurrent 

Neural Networks
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Encoder-Decoder architecture

Recurrent Neural Network



General translator architecture
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Words => Numbers

Preserves information 
from both past and 
future

Assigns importance to 
each word based on 
the context
Aligns words from the 
source language to the 
target language

Preserves information 
from the past

Puts up everything 
together

Picks the next best 
word



General translator evaluation

Metrics
- Accuracy

- Standard metric
- Does not work when there are multiple translations for the same sentence

- BLEU
- Computes how much of our generated sentence is “syntactically valid” 

when compared to valid translations
- e.g., “the cat is on the mat” vs “there is a cat on the mat”
- {“the cat”, “cat is”, “is on”, “on the”, “the mat”} vs {“there is”, “is a”, “a 

cat”, “cat on”, “on the”, “the mat”}
- Score: 2 / 5
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Mundane code generation

- Generate code word by word based on the input
- Prone to syntactic errors

- Code not runnable
- Requires manual work
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Improving code generation

- Generate code as an Abstract Syntax Tree based on the input
- Abstract Syntax Tree <=> Code
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Abstract Syntax Tree example
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while b ≠ 0:

 if a > b:

 a := a - b

 else:

 b := b - a

return a



Improving code generation

- Generate one node at a time
- Input to model:

- Description
- State
- Parent node
- Right-most left sibling
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Improving code generation
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Improving code generation
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MITRE ATT&CK

- Open source
- Globally accessible knowledge base
- Contains tactics used by attackers during cyberattacks
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MITRE ATT&CK tactics

- Describe specific methods or procedures
- Used to enhance security
- Used in international antivirus tests
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Detection rule example
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Adversaries may create a 
new process with an existing 
token to escalate privileges 
and bypass access controls. 
Processes can be created 
with the token and resulting 
security context of another 
user using features such as 
CreateProcessWithTokenW 
and runas.

[SIGNATURE]

Name = 'T1134.002'

[INFO]

Create Process with Token;

[RULES]

or {

  a = s.print('Case T1134.002 - Create Process with Token');

  forone actionProcess in ProcessAction.listFromAction(274) # 

ACT_PROC_CREATE {

    n.and(actionProcess.flags, 3) == 0; # not excepted or 

hidden

    actionProcess.process.path == 

"c:\windows\system32\runas.exe"

    actionProcess.process.cmdLine contains "/user";

  }

}



Dataset statistics
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MITRE ATT&CK technique descriptions​ 411​

MITRE ATT&CK technique implementations​ 102​

Average number of description tokens​ 62.1​

Average number of nodes in generated AST​ 462.3​



Building the solution
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1

Scrape MITRE website 
for tactics

2

Scrape Bitbucket for 
detection 
implementations

3

Pair each detection 
with its corresponding 
tactic description

4

Transform each 
detection code to 
Abstract Syntax Tree

5

Transform each 
Abstract Syntax Tree 
through a list via 
Depth First Search

6

Preprocess the 
descriptions (lower 
case + tokenization + 
prefix token + suffix 
token)



Original contribution

- Created directly nodes
- Less nodes => more efficient

- Models for internal languages
- High generalization and practical usage

- Dealt with low data entries
- Encoder – pre-trained RoBERTa

- Using 2 components
- Structure Generator + Dynamic Data Generator (variable names, strings)
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Issues

Infinite loop when generating lists
- In literature: cap the elements in a list
- Our approach: generate AST Nodes on request
BLEU
- Evaluates syntax, not meaning
- No alternative at this moment
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Results for structure generation
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​Dataset
Model

Mitre
LSTM​

Mitre
RoBERT​a

Hearthstone​
Seq2Tree

Django
Seq2Tree​

BLEU-4​ 76.3​ 81.1​ 75.8​ 84.5​

Dataset
entries​

102​ 102​ 665​ 18805​



Conclusion

Automated code still requires human supervision
- Must be used in conjunction with good programming practices

Code generation
- Great for repetitive code
- Might struggle with new attack vectors
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Future work

Generating dynamic data from code
- 100% complete runnable code
- Integrate the components together
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Demo
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