Norway grants

Unitatea Executivă pentru Finanțarea Învățământului Superior, a Cercetării, Dezvoltării și Inovării

Norwegian
 Meteorological
 Institute

Automatic code generation for malware detection based on MITRE ATT&CK techniques

Alexandru-Gabriel Sîrbu

WeADL 2023 Workshop

The workshop is organized under the umbrella of WeaMyL, project funded by the EEA and Norway Grants under the RO-NO-2019-0133. Contract: No 26/2020

Norway
grants

Task presentation]
General translation overview	
Mundane code generation	
Improving code generation	
MITRE ATT&CK	
Solution details	
Original contribution	
Issues	
Conclusion	
Future work]

Table of contents

Norwegian Meteorological

Task presentation

Natural Language Text => Source Code Input:

- Code Description ambiguous
- Code Description + Test Case less abstract
 Output:
- All Program's Code runnable
- Code Snippet just handles the required logic

Unitatea Executivă pentru Finanțarea Învățământului Superior, a Cercetării, Dezvoltării și Inovării

General translator overview

- Encoder-Decoder architecture
- Variable input and output
 - Input: solved by using padding
 - Output: solved by using Recurrent Neural Networks

 $X0 \rightarrow Y0$ $X1 \rightarrow Encoder$ network $X2 \rightarrow Y2$ Y3

Encoder-Decoder architecture

Recurrent Neural Network

Norwegian Meteorological

General translator architecture

Norwegian Meteorological

General translator evaluation

Metrics

- Accuracy
 - Standard metric
 - Does not work when there are multiple translations for the same sentence
- BLEU
 - Computes how much of our generated sentence is "syntactically valid" when compared to valid translations
 - e.g., "the cat is on the mat" vs "there is a cat on the mat"
 - {"the cat", "cat is", "is on", "on the", "the mat"} vs {"there is", "is a", "a cat", "cat on", "on the", "the mat"}
 - Score: 2 / 5

Norwegian Meteorological

Mundane code generation

- Generate code word by word based on the input
- Prone to syntactic errors
 - Code not runnable
 - Requires manual work

Norwegian Meteorological

Improving code generation

- Generate code as an Abstract Syntax Tree based on the input
 - Abstract Syntax Tree <=> Code

Norway grants

Norwegian Meteorological

Abstract Syntax Tree example

Norway grants

Norwegian Meteorological

Improving code generation

- Generate one node at a time
- Input to model:
 - Description
 - State
 - Parent node
 - Right-most left sibling

Norway grants

Norwegian Meteorological

Improving code generation

Working together for a green, competitive and inclusive

Norway grants

O Norwegian Meteorological

Improving code generation

Norway grants

Norwegian Meteorological

MITRE ATT&CK

- Open source
- Globally accessible knowledge base
- Contains tactics used by attackers during cyberattacks

Unitatea Executivă pentru Finanțarea Învățământului Superior, a Cercetării, Dezvoltării și Inovării

O Norwegian Meteorological

MITRE ATT&CK tactics

- Describe specific methods or procedures
- Used to enhance security
- Used in international antivirus tests

Norway grants

Unitatea Executivă pentru Finanțarea Învățământului Superior, a Cercetării, Dezvoltării și Inovării

Norwegian Meteorological

Detection rule example

Adversaries may create a new process with an existing token to escalate privileges and bypass access controls. Processes can be created with the token and resulting security context of another user using features such as CreateProcessWithTokenW and runas.

```
[SIGNATURE]
Name = 'T1134.002'
[INFO]
Create Process with Token;
[RULES]
or {
    a = s.print('Case T1134.002 - Create Process with Token');
    forone actionProcess in ProcessAction.listFromAction(274) #
ACT PROC CREATE {
        n.and(actionProcess.flags, 3) == 0; # not excepted or
hidden
        actionProcess.process.path ==
"c:\windows\system32\runas.exe"
        actionProcess.process.cmdLine contains "/user";
```

Norway grants

Norwegian Meteorological

Dataset statistics

MITRE ATT&CK technique descriptions	411
MITRE ATT&CK technique implementations	102
Average number of description tokens	62.1
Average number of nodes in generated AST	462.3

Norway grants

Norwegian Meteorological

Building the solution

Norwegian Meteorological

Original contribution

- Created directly nodes
 - Less nodes => more efficient
- Models for internal languages
 - High generalization and practical usage
- Dealt with low data entries
 - Encoder pre-trained RoBERTa
- Using 2 components
 - Structure Generator + Dynamic Data Generator (variable names, strings)

Unitatea Executivă pentru Finanțarea Învățământului Superior, a Cercetării, Dezvoltării și Inovării

Norwegian Meteorological

Issues

Infinite loop when generating lists

- In literature: cap the elements in a list
- Our approach: generate AST Nodes on request BLEU
- Evaluates syntax, not meaning
- No alternative at this moment

Norwegian Meteorological

Results for structure generation

Dataset Model	Mitre LSTM	Mitre RoBERTa	Hearthstone Seq2Tree	Django Seq2Tree
BLEU-4	76.3	81.1	75.8	84.5
Dataset entries	102	102	665	18805

Norwegian Meteorological

Conclusion

Automated code still requires human supervision

- Must be used in conjunction with good programming practices
- Code generation
 - Great for repetitive code
 - Might struggle with new attack vectors

Norwegian Meteorological

Future work

Generating dynamic data from code

- 100% complete runnable code
- Integrate the components together

Norway grants

SCAT

O Norwegian Meteorological Institute

Demo