Video completion conditioned by natural language-based descriptions

Paul Orășan Babeș-Bolyai University

WeADL 2023 Workshop

The workshop is organized under the umbrella of WeaMyL, project funded by the EEA and Norway Grants under the number RO-NO-2019-0133. Contract: No 26/2020.

Working together for a green, competitive and inclusive Europe

Outline

Title

3 Related work

- Text-Video Prediction
- Multimodal Masked Video Generation
- Dreamix

Our proposal

- Theoretical background
- Intuition
- Null-text Optimization
- Full pipeline
- 5 Experimental results assessment
- 6 Limitations, challenges, future work

Text-Guided Video Completion

Output Video

Figure: TVC input and output

Applications in:

- Entertainment industry
- Gaming industry
- VR/AR
- Education and training

Text-Video Prediction

Caption: pushing something from right to left

Figure: Samples of Text-Video Prediction [SCZJ22]

Tell Me What Happened

Figure: Multimodal Masked Video Generation (MMVG) architecture overview [FYZ⁺22]

General Video Editors

Figure: Dreamix architecture overview [MHV⁺23]

Dreamix finetuning

Figure: Dreamix variation [MHV⁺23]

Prafulla Dhariwal and Alexander Quinn Nichol, Diffusion models beat GANs on image synthesis, NeurIPS 2021

Forward Diffusion

Figure: Forward diffusion process - adding noise each step

$$q(x_t|x_{t-1}) = \mathcal{N}(\sqrt{\alpha_t}x_{t-1}, (1-\alpha_{t-1})I)$$
(1)

Backward Diffusion

Figure: Backward diffusion process - removing noise each step

$$p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(\mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$$
(2)

$$\sqrt{q(x_t | x_{t-1}) = N(\sqrt{\alpha_t} x_{t-1}, (1 - \alpha_{t-1})I)}$$

 $p_{\theta}(x_{t-1}|x_t) = N(\mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$

Learning objective

$$L_{t-1} = \mathbb{E}\left[rac{1}{2\sigma_t^2}\| ilde{\mu}_t(extsf{x}_t, extsf{x}_0) - \mu_ heta(extsf{x}_t,t)\|^2
ight]$$

(3)

Practical learning goal

$$\begin{split} \widetilde{\mu}_t &= \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon \right) \\ \mu_\theta(\mathbf{x}_t, t) &= \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_\theta(\mathbf{x}_t, t) \right) \\ \|\widetilde{\mu}_t(\mathbf{x}_t, \mathbf{x}_0) - \mu_\theta(\mathbf{x}_t, t)\|^2 \to \|\epsilon - \epsilon_\theta(\mathbf{x}_t, t)\|^2 \end{split}$$

(4)

(5)

WeAD

Sampling equation

$$\boldsymbol{x_{t-1}(x_t)} = \frac{1}{\sqrt{\alpha_t}} \left(\boldsymbol{x_t} - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\boldsymbol{x_t}, t) \right) + \sigma_t \boldsymbol{z}$$

(6)

Figure: Stable Diffusion overall architecture [RBL+22]

General synthesis

Text-only conditioned synthesis No original image

Source-image conditioned synthesis

Our goal

(UBB)

Null-text Inversion

Figure: Null-text Optimization overview [MHA⁺22]

Prompt-to-Prompt Image Editing

Figure: Naive diffusion inversion vs Null-text Inversion on the left and Prompt-to-Prompt based Image editing on the right.[MHA⁺22]

Our method overview

Figure: EPIC-KITCHENS-100 dataset samples [DDF⁺22]

		Hours	Videos	Action Seg.	Unique Narr.	Verb Cls.	Noun Cls.	Action Cls.	Object Masks	Hand BB	Int. Obj
Source	Videos from [1] Extension Overall	54.6 45.4 100.0	432 268 700	39,432 50,547 89,977	11,423 11,236 20,580*	93 91 97	272 266 300	2,747 2,900 4,053	35,682,398 29,987,598 65,669,996	18,234,678 12,999,913 31,234,591	22,156,746 16,043,057 38,199,803
Splits	Train Val Test	$74.7 \\ 13.2 \\ 12.1$	495 138 67	67,217 9,668 13,092	$15,968 \\ 3,835 \\ 4,324$	97 78 84	289 211 207	$3,568 \\ 1,352 \\ 1,487$	$\begin{array}{r} 48,\!896,\!723\\ 8,\!714,\!871\\ 8,\!058,\!402 \end{array}$	$23,186,294 \\ 4,462,472 \\ 3,585,825$	28,190,446 5,513,884 4,495,473

Figure: EPIC-KITCHENS-100 dataset stats [DDF⁺22]

Quantitative evaluation

- Median 3D-SSIM (3D-Structural Similarity Index)
- Median PSNR (Peak Signal to Noise Ration)
- FVD (Frechet Video Distance)

		Kitchen				
Scenario	Resolution	3D-SSIM ↑	PSNR ↑	$FVD\downarrow$		
MMVG	128×128	0.3495 ± 0.1353	${\bf 15.6479} \pm {\bf 3.438}$	561.68		
Ours	128 imes 128	0.2479 ± 0.081	13.9159 ± 2.6998	593.04		
Ours	512×512	$\textbf{0.4542} \pm \textbf{0.078}$	13.6417 ± 2.47	600.8		

Table: Quantitative evaluation comparison between the state-of-the-art MMVG architecture and our proposed method.

Qualitative evaluation

a horse galloping on clouds

moving clouds

Limitations:

- computational resources
- pre-trained backbone

Challenges:

- long video generation
- temporal consistency
- computational complexity
- ethical concerns

References I

- Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Antonino Furnari, Jian Ma, Evangelos Kazakos, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, and Michael Wray, *Rescaling egocentric vision: Collection, pipeline and challenges for epic-kitchens-100*, International Journal of Computer Vision (IJCV) **130** (2022), 33–55.
- Tsu-Jui Fu, Licheng Yu, Ning Zhang, Cheng-Yang Fu, Jong-Chyi Su, William Yang Wang, and Sean Bell, *Tell me what happened: Unifying text-guided video completion via multimodal masked video generation*, CoRR abs/2211.12824 (2022).
- Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or, Null-text inversion for editing real images using guided diffusion models, CoRR abs/2211.09794 (2022).

- Eyal Molad, Eliahu Horwitz, Dani Valevski, Alex Rav-Acha, Yossi Matias, Yael Pritch, Yaniv Leviathan, and Yedid Hoshen, *Dreamix: Video diffusion models are general video editors*, CoRR abs/2302.01329 (2023).
- Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer, *High-resolution image synthesis with latent diffusion models*, IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, IEEE, 2022, pp. 10674–10685.
- Xue Song, Jingjing Chen, Bin Zhu, and Yu-Gang Jiang, *Text-driven video prediction*, CoRR **abs/2210.02872** (2022).