Using convolutional autoencoders for precipitation nowcasting based on radar data

Andrei Mihai Babeş-Bolyai University

WeADL 2022 Workshop

The workshop is organized under the umbrella of WeaMyL, project funded by the EEA and Norway Grants under the number RO-NO-2019-0133. Contract: No 26/2020.

Working together for a green, competitive and inclusive Europe = > = :

Goal

- Radar data prediction
 - From radar data gathered at one time step predict the radar data at the next time step
 - Very short time forecasting \Rightarrow **nowcasting**
- Nowcasting as classification
 - Predict whether the values at a certain location will be higher or lower than a certain threshold

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• Create a machine learning model based on autoencoders

Radar Data

- Data collected over central Romania
- Single polarization 458 S-band Weather Surveillance Radar -98 Doppler (WSR-98D)
 - Full volume scan every 6 minutes

For AutoNowP experiments:

Base Reflectivity product (R)

- estimates the size of water droplets
- expressed in decibels relative to the reflectivity factor Z (dBZ)

only lowest elevation angle was used

Data model

15	5	10	10	15
10	25	15	5	10
20	0	10	10	10
15	10	25	15	5
15	0	15	5	0

Figure: The data matrix at time stamp *t*. In red is the value of R01 at location I = (3,3).

20	30	10	15	10 5 25 20
15	15	10	20	5
20	10	15	20	25
10	5	10	10	20
15	5	10	15	20

Figure: The data grid at time stamp t-1. In blue is the neighbourhood of the location l = (3, 3) of diameter d = 3.

Representation:

The instance corresponding to the location (3,3) at time t is the data grid with the data (15,10,20,10,15, 20,5,10,10) and is labeled with 10 (the value of R01 at location (3,3) and time t).

Data Preprocessing

• Data separated in 2 classes:

- the positive class ("+") instances having the label higher than a threshold τ
- the negative class ("–") instances having the label lower or equal to the threshold τ
- Datsets are normalized:

$$R'(l,t) = rac{R(l,t) - R_{min}}{R_{max} - R_{min}},$$

where:

- R(I, t) is the value of R at time t and location I;
- R'(I, t) is the normalized value of R at time t and location I;
- *R_{min}* is the minimum value in the domain of *R*;
- R_{max} is the maximum value in the domain of R.

Autoencoders

- Are a type of Deep Neural Networks
- Learn low dimensional representations that capture the relevant characteristics of the input data

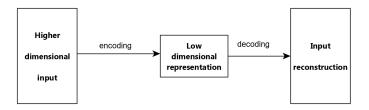


Figure: Abstract representation of an Autoencoder

 Convolutional autoencoders are able to capture spatial patterns in the input data by using convolutions as their building blocks.

AutoNowP Model

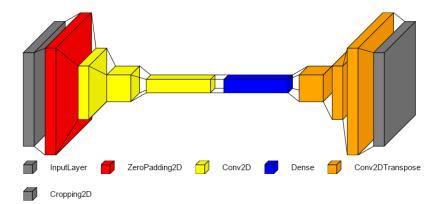


Figure: Architecture of a Convolutional Autoencoder.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Experiment overview

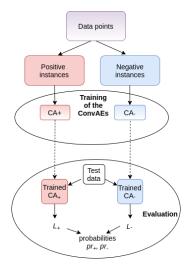


Figure: Overview of AutoNowP.

Training Loss Function

$$MSE_{greater}(x, x') = \frac{1}{d^2} \sum_{\substack{1 \le i \le d^2 \\ x_i > \tau}} (x_i - x'_i)^2$$
(1)
$$MSE_{lesser}(x, x') = \frac{1}{d^2} \sum_{\substack{1 \le i \le d^2 \\ x_i \le \tau}} (x_i - x'_i)^2$$
(2)

$$L(x, x') = \alpha \cdot MSE_{greater}(x, x') + (1 - \alpha) \cdot MSE_{lesser}(x, x') \quad (3)$$

where:

- *d* is the diameter of the neighbourhood used for characterizing the input instances x;
- x instance for which we compute the loss ;
- x' is the autoencoder output for instance x (the reconstruction of x);
- τ is the chosen threshold, that differentiates between positive and negative class;
- α is the parameter that controls prioritization of grater or lesser MSE;
- x_i and x'_i denote the *i*-th component from x and x' respectively.

Computing Probabilities

$$p_{+}(q) = 0.5 + \frac{MSE_{-}(\hat{q}, q) - MSE_{+}(\hat{q}, q)}{2 \cdot (MSE_{-}(\hat{q}, q) + MSE_{+}(\hat{q}, q))}$$
(4)
$$p_{-}(q) = 1 - p_{+}(q).$$
(5)

where:

- p₊(q)/p₋(q) are the probabilities that the query instance q is in the positive/negative class;
- MSE_c(q̂, q) the MSE between q and the reconstruction (q̂) of q by the autoencoder CA_c (c ∈ {+, -})

Case study

• Dataset: radar data gatherd from **20** days from June 2010, 2017, 2018

Product	#	% of "+"	% of "-"	Entropy
of interest	instances	instances	instances	
R01	9003688	3.44%	96.56%	0.216

Table: Description of the data set.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Metrics Used

- Critical success index: $CSI = \frac{TP}{TP + FN + FP}$
- True skill statistic: $TSS = \frac{TP \cdot TN FP \cdot FN}{(TP + FN) \cdot (FP + TN)}$
- **Probability of detection:** $POD = \frac{TP}{TP+FN}$
- Positive predictive value: $PPV = \frac{TP}{TP+FP}$
- Negative predictive value: $NPV = \frac{TN}{TN+FN}$

• Specificity: Spec =
$$\frac{TN}{TN+FP}$$

• Area Under the ROC Curve: $AUC = \frac{Spec+POD}{2}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Area Under the Precision-Recall Curve: $AUPRC = \frac{Precision+Recall}{2}$

Results per threshold

τ	CSI	TSS	POD	PPV	NPV	Spec	AUC	AUPRC
	0.615	0.861	0.876	0.674	0.996	0.985	0.931	0.775
10	±	±	±	±	±	±	±	±
	0.018	0.012	0.012	0.017	0.001	0.002	0.006	0.013
	0.425	0.471	0.474	0.810	0.989	0.997	0.736	0.642
20	±	±	±	±	±	±	±	±
	0.072	0.091	0.092	0.015	0.001	0.001	0.046	0.039
	0.151	0.157	0.157	0.812	0.993	1.000	0.579	0.485
30		±	±	±	±	±	±	±
	0.046	0.051	0.028	0.031	0.001	0.000	0.014	0.007

Table: Experimental results for different thresholds, with 95% CI

Key takes:

- In general performance decreases when threshold increases, as imbalance increases
- Specificity and PPV increases with threshold, since the number of False Positives decreases due to fewer positive values

Results - comparison to other classifiers

Model	CSI	TSS	POD	PPV	NPV	Spec	AUC	AUPRC
AutoNowP	0.615	0.861	0.876	0.674	0.996	0.985	0.931	0.775
	±	±	±	±	±	±	±	±
	0.018	0.012	0.012	0.017	0.001	0.002	0.006	0.013
Logistic	0.672	0.752	0.757	0.857	0.992	0.996	0.876	0.807
Regression	±	±	±	±	±	±	±	±
	0.012	0.013	0.013	0.005	0.001	0.000	0.007	0.008
Linear Support	0.685	0.778	0.783	0.845	0.992	0.995	0.889	0.814
Vector Classifier	±	±	±	±	±	±	±	±
(SVC)	0.012	0.007	0.007	0.015	0.000	0.000	0.003	0.009
Decision	0.574	0.725	0.734	0.724	0.991	0.990	0.862	0.729
Trees	±	±	±	±	±	±	±	±
	0.007	0.004	0.006	0.012	0.001	0.002	0.002	0.006
Nearest	0.571	0.793	0.807	0.662	0.993	0.986	0.896	0.735
Centroid	±	±	±	±	±	±	±	±
Classification	0.006	0.013	0.013	0.015	0.001	0.001	0.006	0.003

Table: Comparative results between *AutoNowP* and other classifiers. 95% Cls are used for the results.

Thank you! Questions?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙