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Babeş-Bolyai University

WeADL 2022 Workshop

The workshop is organized under the umbrella of WeaMyL, project funded
by the EEA and Norway Grants under the number RO-NO-2019-0133.

Contract: No 26/2020.

Working together for a green, competitive and inclusive Europe

June 16, 2022

WeaMyL



Autoencoders

neural networks formed of an encoder and a decoder

trained to reconstruct their input

Figure: Autoencoder architecture. Created using https://alexlenail.me/NN-SVG/.
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Autoencoders

Autoencoders in classification → three main directions

Feature extraction: train a classifier on the learned
autoencoder representations → challenge: embedding is
performed independently from the classification stage
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Autoencoders

Autoencoders in classification → three main directions

Fine-tuning: fine-tuning the encoder weights together with a
neural network classifier
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Autoencoders

Autoencoders in classification → three main directions

Anomaly detection: train an autoencoder on the majority
class, detect outliers
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Protein Data Analysis

Proteins: complex macromolecules

important role in vital biological processes in living organisms.

Central problem: determining protein functions

Figure: 3D view of protein 1I2U. Image obtained from the RCSB
PDB1representing the protein with PDB ID 1I2U.

1Berman et al. 2000, The Protein Data Bank. https://www.rcsb.org/
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Protein-Protein Interaction Prediction

The majority of proteins perform their roles in complexes

Experimental determination of PPIs - expensive and prone to
false positives → computational approaches try to overcome
these limitations

Challenges: labels are noisy, small number of known
interacting pairs compared to non-interacting
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Literature Review. Sequence-based Protein-protein
Interaction Prediction

Machine Learning methods: SVMs2, RFs3, LightGBM4

Ensembles of machine learning classifiers5and ensembles of
neural networks6

2Guo et al., 2008, Using support vector machine combined with auto covariance to
predict protein-protein interactions from protein sequences. Nucleic acids research.

3Pan et al., 2010, Large-Scale prediction of human protein-protein interactions
from amino acid sequence based on latent topic features. Journal of proteome
research.

4Chen et al., 2019, Predicting protein-protein interactions through LightGBM with
multi-information fusion. Chemometrics and Intelligent Laboratory Systems.

5Chen et al., 2018, Protein-protein interaction prediction using a hybrid feature
representation and a stacked generalization scheme. BMC Bioinformatics.

6Li et al., 2020, Protein Interaction Network Reconstruction Through Ensemble
Deep Learning With Attention Mechanism. Frontiers in Bioengineering and
Biotechnology.
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Literature Review. Sequence-based Protein-Protein
Interaction Prediction

Siamese Architectures: → capture common charateristics of
the two proteins in a pair

convolutional architecture7

residual convolutional recurrent architecture8

Inception convolutional branch and a bidirectional GRU
branch9

7Hashemifar et al., 2018, Predicting protein–protein interactions through
sequence-based deep learning . Bioinformatics

8Chen et al., 2019, Multifaceted protein–protein interaction prediction based on
siamese residual RCNN. BMC Bioinformatics

9Zhao et al., 2020, Conjoint feature representation of go and protein sequence for
ppi prediction based on an inception rnn attention network. Molecular
Therapy-Nucleic Acids
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Autoencoder-based Methods in Protein-Protein Interaction
Prediction

Autoencoders as feature extractors + probabilistic SVMs10,11

Autoencoder pretraining + fine-tuning neural network
classifier12

Variational graph autoencoder13→ learn nodes embeddings
using the neighbours in the PPI graph

10Wang et al., 2017, Predicting protein–protein interactions from protein sequences
by a stacked sparse autoencoder deep neural network. Molecular BioSystems.

11Wang et al., 2018, Predicting protein interactions using a deep learning
method-stacked sparse autoencoder combined with a probabilistic classification vector
machine. Complexity.

12Sun et al., 2017, Sequence-based prediction of protein protein interaction using a
deep-learning algorithm. BMC Bioinformatics.

13Yang et al., 2020, Graph-based prediction of protein-protein interactions with
attributed signed graph embedding. BMC bioinformatics.
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AutoPPI: Binary classification using a pair of autoencoders

Approach:

two autoencoders trained to reconstruct instances belonging
to one class

classification stage: evaluating which of the two autoencoders
is able to better reconstruct the testing data point

Czibula, G., Albu, A.I., Bocicor, M.I. and Chira, C., 2021.
AutoPPI: An Ensemble of Deep Autoencoders for Protein–Protein
Interaction Prediction. Entropy, 23(6), p.643.
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AutoPPI: Binary classification using a pair of autoencoders
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AutoPPI: Binary classification using a pair of autoencoders

data samples: pairs of proteins → proposed two siamese
architectures

Figure: Siamese-Joint architecture.
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AutoPPI: Binary classification model using a pair of
autoencoders

data samples: pairs of proteins → proposed two siamese
architectures

Figure: Siamese-Siamese architecture.
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AutoPPI: Binary classification using a pair of autoencoders

baseline architecture: simple concatenation of protein features
(early fusion)

Figure: Joint-Joint architecture.
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Data representation

Conjoint Triad (CT) descriptors

group amino acids into seven classes based on their
physico–chemical properties
compute the frequencies of possible triples of amino acid
classes

Autocovariance (AC) descriptors

define a lag variable
compute correlations between amino acids situated in the
sequence at at most lag positions apart

→ combined representation
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Evaluation

Evaluation Methodology

k-fold cross-validation - same number of folds as the related
work on that data set

Evaluation metrics:

Accuracy

Precision

Recall

F1-score

Specificity

Area under the ROC curve
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Data sets

4 public data sets: one human data set (HPRD) and three
multi-species data sets

Multi-species data sets: obtained by merging three data sets
(Caenorhabditis elegans, Escherichia coli and Drosophila
melanogaster) - all interactions, proteins filtered using 25%
and 1% similarity thresholds

Data set Number of positive Number of negative
interactions interactions

HPRD 36,630 36,480

Multi-species 32,959 32,959

Multi-species <0.25 19,458 15,827

Multi-species <0.01 10,747 8,065

Table: Data sets used in the experiments.
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Results

Data set Arch. Accuracy F1-score Precision Recall Specificity AUC

1 0.977 ± 0.0006 0.977 ± 0.0007 0.986 ± 0.0009 0.968 ± 0.001 0.986 ± 0.0009 0.977 ± 0.0006
2 0.979 ± 0.0007 0.979 ± 0.0007 0.973 ± 0.0015 0.985 ± 0.009 0.973 ± 0.0015 0.979 ± 0.0007HPRD
3 0.96 ± 0.0014 0.959 ± 0.0015 0.992 ± 0.006 0.928 ± 0.0024 0.992 ± 0.006 0.960 ± 0.0014

1 0.97 ± 0.0007 0.969 ± 0.0006 0.995 ± 0.0007 0.944 ± 0.0015 0.995 ± 0.0006 0.97 ± 0.0005
2 0.969 ± 0.0008 0.97 ± 0.0009 0.965 ± 0.0028 0.974 ± 0.002 0.964 ± 0.0025 0.97 ± 0.008Multi-species
3 0.982± 0.0008 0.982 ± 0.0008 1 ± 0 0.964 ± 0.0016 1 ± 0 0.982 ± 0.008

1 0.973 ± 0.0011 0.975 ± 0.0009 0.995 ± 0.0011 0.956 ± 0.0017 0.995 ± 0.0012 0.975 ± 0.001
2 0.976 ± 0.0007 0.978 ± 0.0008 0.974 ± 0.0011 0.983 ± 0.0008 0.968 ± 0.0013 0.975 ± 0.0008

Multi-species
<0.25

3 0.983 ± 0.0015 0.984 ± 0.0014 1 ± 0 0.969 ± 0.0027 1 ± 0 0.985 ± 0.0013

1 0.972 ± 0.0023 0.975 ± 0.0019 0.993 ± 0.001 0.958 ± 0.0035 0.991 ± 0.0015 0.975 ± 0.002
2 0.978 ± 0.0015 0.981 ± 0.0013 0.975 ± 0.0024 0.987 ± 0.0027 0.966 ± 0.0031 0.976 ± 0.0015

Multi-species
<0.01

3 0.981 ± 0.0016 0.983 ± 0.0014 1 ± 0 0.966 ± 0.0027 1 ± 0 0.983 ± 0.0014

Table: Experimental results. 95% CIs are used for the results. 1 - denotes
the Joint-Joint architecture, 2 - the Siamese-Joint architecture, 3 - the
Siamese-Siamese architecture

On each data set one of the siamese architectures provides the best
results: Siamese-Joint architecture on HPRD and the Siamese-Siamese
for the multi-species data sets
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Results. Comparison with related work

Method Accuracy F1

AutoPPI 0.979 ± 0.0007 0.979 ± 0.0007
SAE (Sun et al., 2017) 0.9719 -

PIPR (Chen et al., 2019) 0.9811 0.9803

LDA-RF (Pan et al., 2010) 0.979 ± 0.005 -

CT-SVM (Shen et al., 2007) reported by Sun et al., 2017 0.83 -

AC-SVM (Guo et al., 2010) reported by Sun et al., 2017 0.9037 -

Parallel SVM (You et al., 2014) reported by Sun et al., 2017 0.9200–0.9740 -

ELM (You et al., 2014) reported by Sun et al., 2017 0.8480 0.8477

CS-SVM (Zhang et al., 2011) 0.941 0.937

SVM (Nanni et al., 2013) 0.942 -

DNN (Gui et al., 2020) 0.9443 ± 0.0036 -

DNN-PPI (Gui et al., 2019) 0.9726 ± 0.0018 -

DNN-CTAC (Wang et al., 2019) 0.9837 -

S-VGAE (Yang et al., 2020) 0.9915 ± 0.0011 0.9915 ± 0.0012

Table: Comparison between our method and related work on the HPRD
data set.
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Results. Comparison with related work

Data set Method Accuracy F1

Multi-species
AutoPPI 0.9821± 0.0008 0.9818 ± 0.0008

PIPR (Chen et al., 2019) 0.9819 0.9817

Multi-species
<0.25

AutoPPI 0.9829 ± 0.0015 0.9842 ± 0.0014
PIPR (Chen et al., 2019) 0.9791 0.9808

Multi-species
<0.01

AutoPPI 0.9808 ± 0.0016 0.9829 ± 0.0014
PIPR (Chen et al., 2019) 0.9751 0.9780

Table: Comparison between our method and related work on the
Multi-species data sets.
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Conclusions and future directions of research

Introduced a procedure for binary classification of
protein–protein interactions

Proposed two new siamese architectures for the autoencoders

Evaluated our approach on four data sets including proteins
from different species

Our approach surpassed the majority of related work
approaches
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Conclusions and future directions of research

Challenge: Random sampling: does not take into consideration
whether the testing proteins are included in the training set →
drop in performance when testing on unseen proteins14,15

Future directions:

Improve generalization

Improve performance on imbalanced data sets

Provide interpretablity

14Dunham and Ganapathiraju, Benchmark Evaluation of Protein-Protein Interaction
Prediction Algorithms., Molecules, 2022.

15Park and Marcotte, Flaws in evaluation schemes for pair-input computational
predictions., Nature methods, 2012.
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Thank you!
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