Protein-Protein Interaction Prediction using a Deep Learning Approach based on Autoencoders

> Albu Alexandra Babeş-Bolyai University

WeADL 2022 Workshop

The workshop is organized under the umbrella of WeaMyL, project funded by the EEA and Norway Grants under the number RO-NO-2019-0133.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Working together for a green, competitive and inclusive Europe

Autoencoders

- neural networks formed of an encoder and a decoder
- trained to reconstruct their input

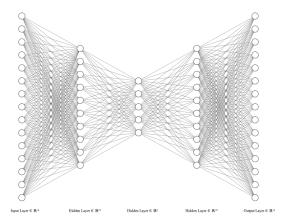
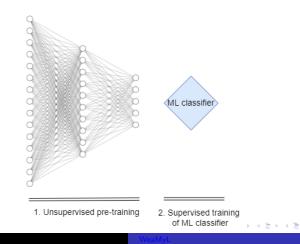


Figure: Autoencoder architecture. Created using https://alexlenail.me/NN-SVG/.

Autoencoders

Autoencoders in classification \rightarrow three main directions

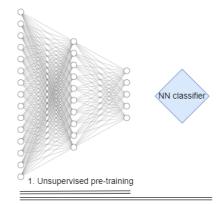
 Feature extraction: train a classifier on the learned autoencoder representations → challenge: embedding is performed independently from the classification stage



Autoencoders

Autoencoders in classification \rightarrow three main directions

• **Fine-tuning**: fine-tuning the encoder weights together with a neural network classifier



2. Supervised training

Autoencoders in classification \rightarrow three main directions

• Anomaly detection: train an autoencoder on the majority class, detect outliers

Protein Data Analysis

- Proteins: complex macromolecules
 - important role in vital biological processes in living organisms.
- Central problem: determining protein functions

Figure: 3D view of protein 1I2U. Image obtained from the RCSB PDB¹representing the protein with PDB ID 1I2U.

- The majority of proteins perform their roles in complexes
- Experimental determination of PPIs expensive and prone to false positives \rightarrow computational approaches try to overcome these limitations
- Challenges: labels are noisy, small number of known interacting pairs compared to non-interacting

Literature Review. Sequence-based Protein-protein Interaction Prediction

- Machine Learning methods: SVMs², RFs³, LightGBM⁴
- Ensembles of machine learning classifiers⁵ and ensembles of neural networks⁶

⁴Chen et al., 2019, *Predicting protein-protein interactions through LightGBM with multi-information fusion*. Chemometrics and Intelligent Laboratory Systems.

⁵Chen et al., 2018, *Protein-protein interaction prediction using a hybrid feature representation and a stacked generalization scheme*. BMC Bioinformatics.

⁶Li et al., 2020, Protein Interaction Network Reconstruction Through Ensemble Deep Learning With Attention Mechanism. Frontiers in Bioengineering and Biotechnology.

²Guo et al., 2008, Using support vector machine combined with auto covariance to predict protein-protein interactions from protein sequences. Nucleic acids research.

³Pan et al., 2010, Large-Scale prediction of human protein-protein interactions from amino acid sequence based on latent topic features. Journal of proteome research.

Literature Review. Sequence-based Protein-Protein Interaction Prediction

- Siamese Architectures: \rightarrow capture common charateristics of the two proteins in a pair
 - convolutional architecture⁷
 - residual convolutional recurrent architecture⁸
 - Inception convolutional branch and a bidirectional GRU branch⁹

⁷Hashemifar et al., 2018, *Predicting protein–protein interactions through sequence-based deep learning*. Bioinformatics

⁸Chen et al., 2019, *Multifaceted protein–protein interaction prediction based on siamese residual RCNN*. BMC Bioinformatics

⁹Zhao et al., 2020, *Conjoint feature representation of go and protein sequence for ppi prediction based on an inception rnn attention network*. Molecular Therapy-Nucleic Acids

Autoencoder-based Methods in Protein-Protein Interaction Prediction

- Autoencoders as feature extractors + probabilistic SVMs^{10,11}
- Autoencoder pretraining + fine-tuning neural network classifier¹²
- Variational graph autoencoder¹³→ learn nodes embeddings using the neighbours in the PPI graph

¹⁰Wang et al., 2017, *Predicting protein–protein interactions from protein sequences by a stacked sparse autoencoder deep neural network.* Molecular BioSystems.

¹¹Wang et al., 2018, Predicting protein interactions using a deep learning method-stacked sparse autoencoder combined with a probabilistic classification vector machine. Complexity.

¹²Sun et al., 2017, Sequence-based prediction of protein protein interaction using a deep-learning algorithm. BMC Bioinformatics.

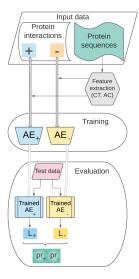
¹³Yang et al., 2020, *Graph-based prediction of protein-protein interactions with attributed signed graph embedding*. BMC bioinformatics.

Approach:

- two autoencoders trained to reconstruct instances belonging to one class
- classification stage: evaluating which of the two autoencoders is able to better reconstruct the testing data point

Czibula, G., Albu, A.I., Bocicor, M.I. and Chira, C., 2021. AutoPPI: An Ensemble of Deep Autoencoders for Protein–Protein Interaction Prediction. Entropy, 23(6), p.643.

AutoPPI: Binary classification using a pair of autoencoders



AutoPPI: Binary classification using a pair of autoencoders

 \bullet data samples: pairs of proteins \rightarrow proposed two siamese architectures

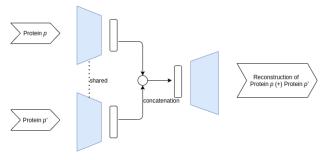


Figure: Siamese-Joint architecture.

AutoPPI: Binary classification model using a pair of autoencoders

 \bullet data samples: pairs of proteins \rightarrow proposed two siamese architectures

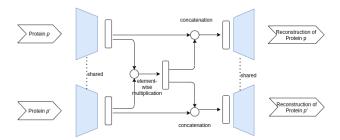


Figure: Siamese-Siamese architecture.

• baseline architecture: simple concatenation of protein features (early fusion)

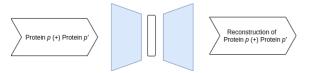


Figure: Joint-Joint architecture.

Data representation

• Conjoint Triad (CT) descriptors

- group amino acids into seven classes based on their physico-chemical properties
- compute the frequencies of possible triples of amino acid classes
- Autocovariance (AC) descriptors
 - define a *lag* variable
 - compute correlations between amino acids situated in the sequence at at most *lag* positions apart
- \rightarrow combined representation

Evaluation Methodology

• *k*-fold cross-validation - same number of folds as the related work on that data set

Evaluation metrics:

- Accuracy
- Precision
- Recall
- F1-score
- Specificity
- Area under the ROC curve

- 4 public data sets: one human data set (HPRD) and three multi-species data sets
- Multi-species data sets: obtained by merging three data sets (Caenorhabditis elegans, Escherichia coli and Drosophila melanogaster) - all interactions, proteins filtered using 25% and 1% similarity thresholds

Data set	Number of positive	Number of negative
	interactions	interactions
HPRD	36,630	36,480
Multi-species	32,959	32,959
Multi-species < 0.25	19,458	15,827
Multi-species < 0.01	10,747	8,065

Table: Data sets used in the experiments.

Data set	Arch.	Accuracy	F ₁ -score	Precision	Recall	Specificity	AUC
HPRD	1	0.977 ± 0.0006	0.977 ± 0.0007	0.986 ± 0.0009	0.968 ± 0.001	0.986 ± 0.0009	0.977 ± 0.0006
	2	0.979 ± 0.0007	$\textbf{0.979} \pm \textbf{0.0007}$	0.973 ± 0.0015	$\textbf{0.985} \pm \textbf{0.009}$	0.973 ± 0.0015	0.979 ± 0.0007
	3	0.96 ± 0.0014	0.959 ± 0.0015	$\textbf{0.992} \pm \textbf{0.006}$	0.928 ± 0.0024	$\textbf{0.992} \pm \textbf{0.006}$	0.960 ± 0.0014
Multi-species	1	0.97 ± 0.0007	0.969 ± 0.0006	0.995 ± 0.0007	0.944 ± 0.0015	0.995 ± 0.0006	0.97 ± 0.0005
	2	0.969 ± 0.0008	0.97 ± 0.0009	0.965 ± 0.0028	$\textbf{0.974} \pm \textbf{0.002}$	0.964 ± 0.0025	0.97 ± 0.008
	3	0.982 ± 0.0008	$\textbf{0.982} \pm \textbf{0.0008}$	1 ± 0	0.964 ± 0.0016	1 ± 0	$\textbf{0.982} \pm \textbf{0.008}$
Multi-species <0.25	1	0.973 ± 0.0011	0.975 ± 0.0009	0.995 ± 0.0011	0.956 ± 0.0017	0.995 ± 0.0012	0.975 ± 0.001
	2	0.976 ± 0.0007	0.978 ± 0.0008	0.974 ± 0.0011	$\textbf{0.983} \pm \textbf{0.0008}$	0.968 ± 0.0013	0.975 ± 0.0008
	3	0.983 ± 0.0015	$\textbf{0.984} \pm \textbf{0.0014}$	1 ± 0	0.969 ± 0.0027	1 ± 0	$\textbf{0.985} \pm \textbf{0.0013}$
Multi-species <0.01	1	0.972 ± 0.0023	0.975 ± 0.0019	0.993 ± 0.001	0.958 ± 0.0035	0.991 ± 0.0015	0.975 ± 0.002
	2	0.978 ± 0.0015	0.981 ± 0.0013	0.975 ± 0.0024	$\textbf{0.987} \pm \textbf{0.0027}$	0.966 ± 0.0031	0.976 ± 0.0015
	3	$\textbf{0.981} \pm \textbf{0.0016}$	$\textbf{0.983} \pm \textbf{0.0014}$	1 ± 0	0.966 ± 0.0027	1 ± 0	$\textbf{0.983} \pm \textbf{0.0014}$

Table: Experimental results. 95% CIs are used for the results. 1 - denotes the Joint-Joint architecture, 2 - the Siamese-Joint architecture, 3 - the Siamese-Siamese architecture

• On each data set one of the siamese architectures provides the best results: Siamese-Joint architecture on HPRD and the Siamese-Siamese for the multi-species data sets

Results. Comparison with related work

Method	Accuracy	F1	
AutoPPI	$\textbf{0.979} \pm \textbf{0.0007}$	$\textbf{0.979} \pm \textbf{0.0007}$	
SAE (Sun et al., 2017)	0.9719	-	
PIPR (Chen et al., 2019)	0.9811	0.9803	
LDA-RF (Pan et al., 2010)	0.979 ± 0.005	-	
CT-SVM (Shen et al., 2007) reported by Sun et al., 2017	0.83	-	
AC-SVM (Guo et al., 2010) reported by Sun et al., 2017	0.9037	-	
Parallel SVM (You et al., 2014) reported by Sun et al., 2017	0.9200-0.9740	-	
ELM (You et al., 2014) reported by Sun et al., 2017	0.8480	0.8477	
CS-SVM (Zhang et al., 2011)	0.941	0.937	
SVM (Nanni et al., 2013)	0.942	-	
DNN (Gui et al., 2020)	0.9443 ± 0.0036	-	
DNN-PPI (Gui et al., 2019)	0.9726 ± 0.0018	-	
DNN-CTAC (Wang et al., 2019)	0.9837	-	
S-VGAE (Yang et al., 2020)	$\textbf{0.9915} \pm \textbf{0.0011}$	$\textbf{0.9915} \pm \textbf{0.0012}$	

Table: Comparison between our method and related work on the HPRD data set.

Data set	Method	Accuracy	F1	
Multi-species	AutoPPI	$0.9821{\pm}\ 0.0008$	$\textbf{0.9818} \pm \textbf{0.0008}$	
wiulti-species	PIPR (Chen et al., 2019)	0.9819	0.9817	
Multi-species	AutoPPI	$\textbf{0.9829} \pm \textbf{0.0015}$	$\textbf{0.9842} \pm \textbf{0.0014}$	
< 0.25	PIPR (Chen et al., 2019)	0.9791	0.9808	
Multi-species	AutoPPI	$\textbf{0.9808} \pm \textbf{0.0016}$	$\textbf{0.9829} \pm \textbf{0.0014}$	
< 0.01	PIPR (Chen et al., 2019)	0.9751	0.9780	

Table: Comparison between our method and related work on the Multi-species data sets.

Conclusions and future directions of research

- Introduced a procedure for binary classification of protein–protein interactions
- Proposed two new siamese architectures for the autoencoders
- Evaluated our approach on four data sets including proteins from different species
- Our approach surpassed the majority of related work approaches

Challenge: Random sampling: does not take into consideration whether the testing proteins are included in the training set \rightarrow drop in performance when testing on unseen proteins^{14,15}

Future directions:

- Improve generalization
- Improve performance on imbalanced data sets
- Provide interpretablity

¹⁴Dunham and Ganapathiraju, *Benchmark Evaluation of Protein-Protein Interaction Prediction Algorithms.*, Molecules, 2022.

¹⁵Park and Marcotte, *Flaws in evaluation schemes for pair-input computational predictions.*, Nature methods, 2012.

Thank you!

