Norway grants

Unitatea Executivă pentru Finanțarea Învățământului Superior, a Cercetării, Dezvoltării și Inovării

Norwegian Meteorological

Nowcasting on Yr Opportunities and challenges

Thomas Nipen, Frederik De Roo, Ivar Seierstad, Christoffer Elo, and Cristian Lussana

MET Norway

WeADL 2021 Workshop

The workshop is organized under the umbrella of WeaMyL, project funded by the EEA and Norway Grants under the RO-NO-2019-0133. Contract: No 26/2020

Overview of presentation

- 1) Introduction to Yr
- 2) How does the precipitation nowcast on Yr work?
- 3) Current developments on the Yr nowcast
- 4) Future perspectives

Introduction to Yr (www.yr.no)

	Ongoing: F Yellow seve	-lood risk rity		~	
Time	Weather	Temp.	Precip. mm	Wind(gust)	m/s
10	-	12°		4 (7)	K
11	-	12°		3 (6)	1
12	2	13°		4 (6)	t

- MET Norway's official weather forecasts
- Data provided by MET, visualization by NRK
- Global coverage with a Nordic focus
- 10 million weekly users
- Fully automated forecasting pipeline since 2014 (except weather warnings)

Introduction to Yr (www.yr.no)

Yr relies on a wide variety of weather data and updates forecasts continually

Δ

Introduction to Yr (www.yr.no)

Forecast provided at nowcasting to long-range (10d) time scales in a variety of presentation modes

How does the precipitation nowcast work?

- Launched 2016
- 90 minute forecast
- Based on recent radar images
- Updated every 5 minutes
- 5 minute temporal resolution
- 1 km spatial resolution

Map format

Timeseries for a point

Supporting time-sensitive

Understanding

the situation

time-sensitive decision making

1h hour aggregation at point

How does the precipitation nowcast work? Motion is detected from two recent images (optical flow)

How does the precipitation nowcast work? The field is advected along the streamlines

How does the precipitation nowcast work? Spatial smoothing applied to optimize the use in a timeseries

How does the precipitation nowcast work? ¹⁰ Spatial filter reduces jumpiness and increases usability in timeseries form

Challenges: Systematic errors

Non-homogeneous coverage with spatially varying biases

11

ecipitation

pril-June

month

Challenges: Precipitation not reaching ground12Rain not detected by ground stations. Generates false alarms.

Challenges: Malfunctioning equipment

Challenges: Unavailable radar Radars occasionally go down for planned or unplanned maintenance

Challenges: Unavailable radar Radars occasionally go down for planned or unplanned maintenance

Handling systematic errors in radar Adjustment of systematic errors using climatology from NWP. Spatially varying quantile map.

Handling systematic errors in radar Adjustment of systematic errors using climatology from NWP. Spatially varying quantile map.

Handling systematic errors in radar Adjustment of systematic errors using climatology from NWP. Spatially varying quantile map.

Real-time adjustment of radar

Here is a precipitation event as seen by radar and Netatmo citizen weather stations

Real-time adjustment of radar Local comparison of radar and Netatmo

Real-time adjustment of radar Local comparison of radar and Netatmo

Real-time adjustment of radar Example of corrected radar field

Raw radar

1) Predictors

- 2) Targets
- 3) ML-models
- 4) Working with users

- Complement radar measurements with other data sources, such as NWP model output
- NWP models cannot accurately place cells in real-time, but contain indirect information on cell lifetimes and capacity

- NWP ensemble systems provide information on uncertainty
- 1.5 PB of high resolution NWP data on disk at MET Norway

1) Predictors

- 2) Targets
- 3) ML-models
- 4) Working with users

 Training directly using radar as the target field will give limited improvements in Norway 24

 Need high resolution gridded analyses based on radar, NWP, and in-situ observations

Lussana et al, 2021: Ensemble-based statistical interpolation with Gaussian anamorphosis for the spatial analysis of precipitation, Nonlin. Processes Geophys.

- 1) Predictors
- 2) Targets
- 3) ML-models
- 4) Working with users

- Grid-to-grid methods
- Anticipating rather than detecting
- Need to take into account non-homogenous radar coverage

- 1) Predictors
- 2) Targets
- 3) ML-models
- 4) Working with users

• How do users make decisions? What are suitable loss functions?

- What are acceptable false alarm rates for push notification?
- What information can we provide in this extreme situation?

Norway grants

UBA iscoli

Unitatea Executivă pentru Finanțarea Învățământului Superior, a Cercetării, Dezvoltării și Inovării

Norwegian Meteorological Institute

The end!