Norway grants

Unitatea Executivă pentru Finanțarea învățământului Superior, a Cercetării, Dezvoltării și Inovării

A Machine Learning Approach for Data Protection in Virtual Reality Therapy Applications

Mircea Maria-Mădălina

WeADL 2021 Workshop

The workshop is organized under the umbrella of WeaMyL, project funded by the EEA and Norway Grants under the RO-NO-2019-0133. Contract: No 26/2020

Norway grants

Unitatea Executivă pentru Finanțarea Învățământului Superior, a Cercetării, Dezvoltării și Inovării

Introduction

- Internet
 - \rightarrow rapid development

ightarrow social media

 \rightarrow growing interest to spend time online

 \rightarrow personal information – sellable good

- Trading personal data uses:
 - Targeted ads
 - Increasing a company's revenue
 - ...
 - Changing political views
- Health information \rightarrow protected asset \rightarrow can leak to third parties
- Health applications sometimes fail to keep the data private
- 2018 → GDPR

Norway grants

Unitatea Executivă pentru Finanțarea Învățământului Superior, a Cercetării, Dezvoltării și Inovării

Introduction

- User authentication = determine a user's identity
 - Knowledge-based → most utilized (PINs, passwords, etc.)
 - Token-based
 - Biometric-based
- Virtual Reality (VR)
 - \rightarrow great potential in therapy (e.g. physical and emotional trauma, disorders)
 - \rightarrow usually used for gaming \rightarrow lower need of data security
 - \rightarrow secure identification required: medical applications, virtual presence (e.g. conferences),

access to private resources, etc.

Unitatea Executivă pentru Finanțarea Învățământului Superior, a Cercetării, Dezvoltării și Inovării

Introduction

- Utilizing user data → ethical if the user gives consent → issues occur when the user is unaware of the data that is being used
- Artificial Emotional Intelligence (e.g. Amazon's Alexa)
 - Infer emotion from voice, behaviours, etc.
 - Humane purposes \rightarrow improve mood (e.g. with jokes, music)
 - Negative purposes \rightarrow control purchasing habits, political views, etc.
- Can we use health information for research?
 - Yes, if the data is anonymised (≠ pseudonymisation !)
 - Yes, if the user gives consent (on-going process, not one time event !)
 - Provide means to remove personal data from storage !

Norway grants

Unitatea Executivă pentru Finanțarea Învățământului Superior, a Cercetării, Dezvoltării și Inovării

Background. Related work

- 2016, Yu et al
 - Compared 3 VR authentication methods (PIN, password, 3D password)
 - 2 experiments, 15 participants
 - 1. Select password \rightarrow Insert password 5 times \rightarrow record error rate \rightarrow PIN is easiest
 - Shoulder surfing → film users authenticating → show to other users → record success rate → 3D password is safest
- 2017, Lee et al
 - Lip reading for authentication
 - LSTM architecture \rightarrow analyse a sequence of images of the user's lips

Norway grants

Unitatea Executivă pentru Finanțarea Învățământului Superior, a Cercetării, Dezvoltării și Inovării

34	169a297-80c8-486e-b48 Pk	f-f39e514737f5	
	Name		
90	de81664-fe8c-4575-a7d	4-e619f56b6e7f]
	Pk		
	Name		
	Fk		

	d1e72789-2ecb-42ae-88ec-179d40646a34		
∍∞	Pk		
	Name		
	Fk		

- Database security
 - Pseudonyms for tables and table fields
 - Information encrypted
 - Encryption
 → Fernet algorithm, password computed at runtime using the user's information
 - GDPR → each user has their own ID and only has access to their own information
 - Minimal data \rightarrow records of the user's dance moves
 - Data is stored in encrypted files on the server
 - Path to data is computed at runtime

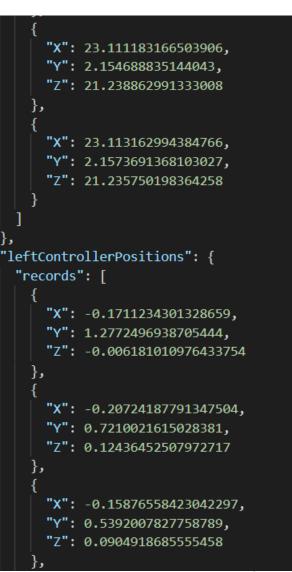
Norway grants

Unitatea Executivă pentru Finanțarea învățământului Superior, a Cercetării, Dezvoltării și Inovării

- Secure authentication 3 versions advantages and disadvantages
 - 1. Username voice recording; Password dynamic movement
 - Failed voice analysis did not work
 - 2. Identify only by dynamic movement
 - Accuracy > 99%, did not perform well in practice
 - 3. Username text; Password dynamic movement
 - Accuracy > 99%, performs inconsistently in practice

Norway grants

Unitatea Executivă pentru Finanțarea Învățământului Superior, a Cercetării, Dezvoltării și Inovării



Methodology

- Dynamic movement records:
 - 1. Positions and rotations

2. Only positions

"x": 0.4135810434818268, "Y": 1.6037466526031494, "Z": 0.16181637346744537 "X": 0.4072014391422272, "Y": 1.6022557020187378, "Z": 0.1623678207397461 "X": 0.40542149543762207, "Y": 1.601191520690918, "Z": 0.17611461877822876 "headsetRotations": ["X": -0.019815094769001007, "Y": 0.14819036424160004, "Z": -0.03293139860033989, "W": -0.9882118701934814 "X": -0.02947123534977436, "Y": 0.15355893969535828, "Z": -0.026276519522070885, "W": -0.9873502850532532

Norway grants

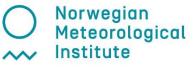
Unitatea Executivă pentru Finanțarea Învățământului Superior, a Cercetării, Dezvoltării și Inovării

Norwegian Meteorological Meteorological

"records": [0.6150910015106201, 0.7134119669596354, 0.5030754550075531, 0.6150895900726319, 0.71261994043986, 0.5030754479503632, 0.615071174621582, 0.715578556060791, 0.5030753558731079, 0.6150764770507813, 0.7147644360860189, 0.5030753823852538, 0.615080644607544, 0.7128190994262695, 0.5030754032230377, 0.6150563545227051, 0.7139293352762858, 0.5030752817726135, 0.6150056667327881, 0.7122228940327963, 0.5030750283336639, 0.6150550575256348, 0.711285670598348,

- Dynamic movement records
 - User records the same move multiple times (4 times)
 - Create augmented data \rightarrow move the positions on X and Z
 - Normalize data → between -100 and 100 on X and Z, between 0 and 3 on Y
 - Flatten array
 - Pad to the right to obtain an array of length 300

Norway grants



Unitatea Executivă pentru Finanțarea Învățământului Superior, a Cercetării, Dezvoltării și Inovării

input_1
Dense
kernel 〈300×200〉 bias〈200〉
ReLU
Dense
kernel 〈200×100〉 bias 〈100〉
ReLU
Dropout
Dense
kernel 〈100×25〉 bias〈25〉
ReLU
Dropout
Dense
kernel 〈25×1〉 bias〈1〉
Sigmoid
dense_3

- Artificial Neural Network (ANN)
 - Regression model → one neuron on the output layer (1 = true, 0 = false)
 - Input → 200-dim Dense → 100-dim Dense → Dropout 0.5 → 25dim Dense → Dropout 0.25 → Output
 - ReLU activation on hidden layers
 - Sigmoid activation on output (for [0, 1] interval)
 - Compiled with binary_crossentropy, Adam optimizer, learning rate 0.00001
 - 80% of data for training, 20% for testing
 - Trained for 150 epochs, with 25% of data used for validation

Norway grants

Unitatea Executivă pentru Finanțarea Învățământului Superior, a Cercetării, Dezvoltării și Inovării

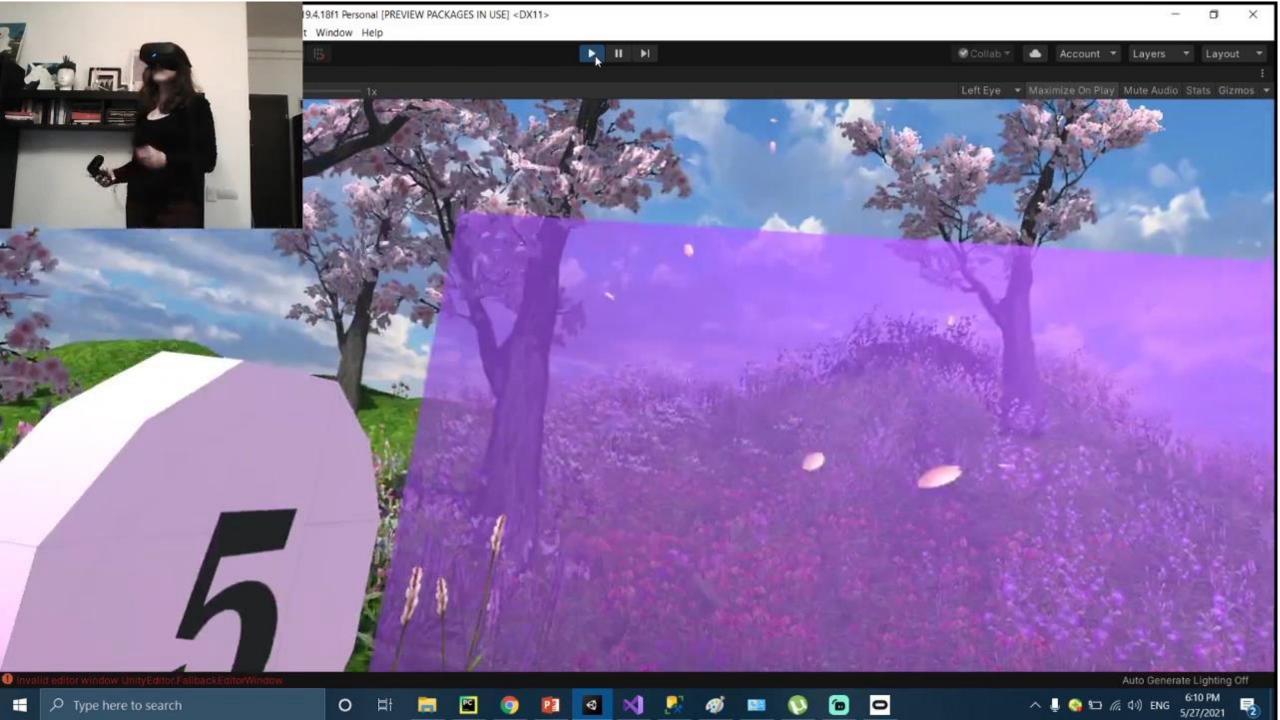
- Full flow:
 - Server receives registration data
 - Check to see if the username exists, return error if it does, create a new user in the database if it does not
 - Save the registration data into files
 - Create augmented files; create flattened files
 - Parse all of the data on the server \rightarrow mark the new user's data with 1 and all of the other users' data with 0
 - Shuffle the labeled data
 - Select a number of 0-labeled records that is equal to the number of 1-labeled records (to obtain a balanced dataset)
 - Split data into training and testing
 - Train and test the new user's model
 - Retrain all of the other users' models using the new data

Norway grants

Unitatea Executivă pentru Finanțarea Învățământului Superior, a Cercetării, Dezvoltării și Inovării

Norwegian Meteorological Institute

Experimental Evaluation


- Server \rightarrow Python (Flask)
 - Login()
 - Receives username, dance record JSON
 - Returns

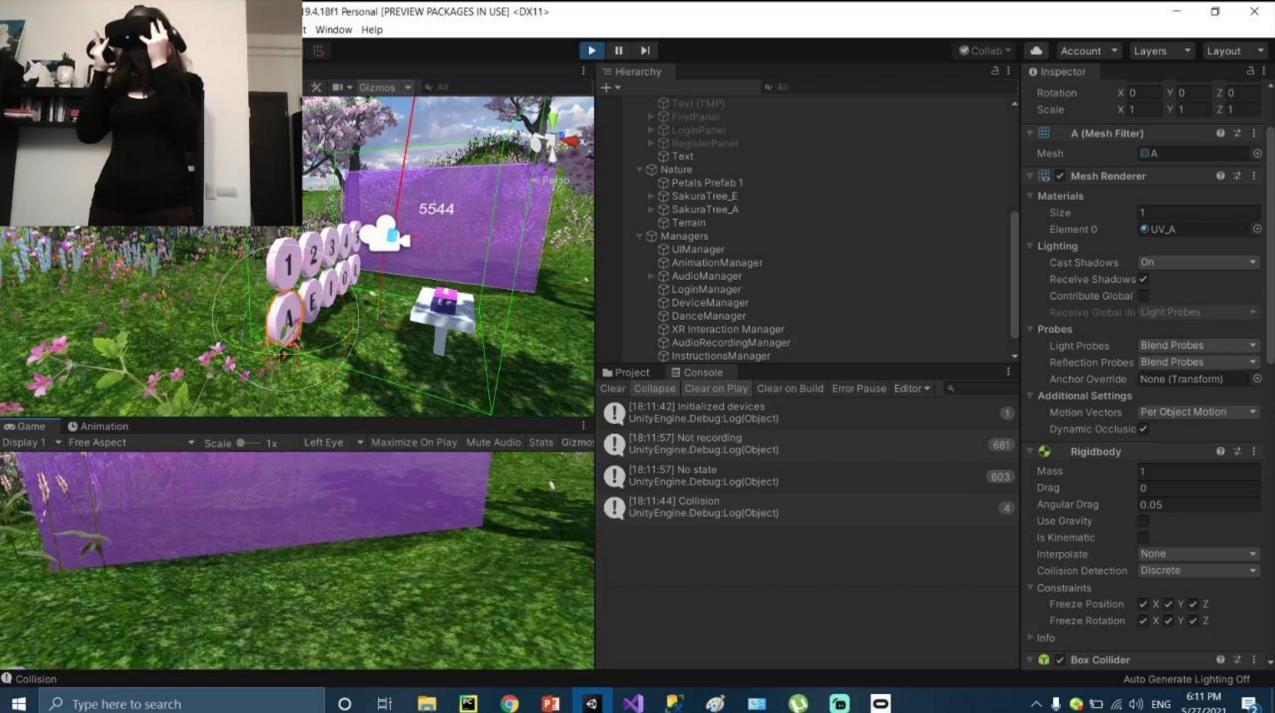
{"user_id": user_id, "code": 200, "error": ""} on SUCCESS

{"user_id": "", "code": 404, "error": "User not recognized."} on FAILURE

- Register()
 - Receives username, array of JSON dance records
 - Returns

{"user_id": str(user_id), "code": 200, "error": username} on SUCCESS
{"user_id": "", "code": 404, "error": "Could not create user!"} on FAILURE

Unitatea Executivă pentru Finanțarea învățământului Superior, a Cercetării, Dezvoltării și Inovării



Experimental Evaluation

- The flow is performed using States (e.g. RecordDanceState)
- To type the username, the user touches the keys on the virtual keyboard with the VR controllers
- To record the dance move, the user needs to hold the Grip button on the right controller
- When the user releases the grip button, the flow moves on to the next State in the StateSequence
- If the StateSequence is a RegisterStateSequence, then the user has to repeat the movement 4 times
- After repeating it the 4th time, the information is sent to the server
- If the StateSequence is a LoginStateSequence, the information is sent to the server after recording one dynamic movement

H O Type here to search

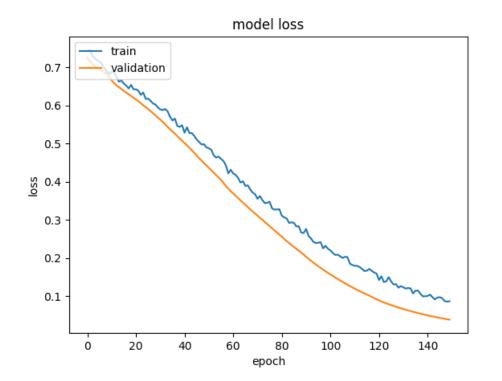
0

PC 1

5/27/2021

Norway grants

Unitatea Executivă pentru Finanțarea Învățământului Superior, a Cercetării, Dezvoltării și Inovării



Experimental Evaluation

- Validation loss ~ 0.02, Testing loss ~ 0.02
- Accuracy ~ 0.99
- The accuracy/loss did not decrease/increase when adding users (N=4)
- However, in practice, the login system fails to log any user in
 - Possible bug in code \rightarrow will debug
 - Model overfitted → unlikely, but will try crossvalidation and better augmented data
 - Data too specific → will try better augmented data

Norway grants

Unitatea Executivă pentru Finanțarea Învățământului Superior, a Cercetării, Dezvoltării și Inovării

Future work

- For login system
 - Debug; cross-validation; better data augmentation
 - More users
 - Instructions on screen
 - Full virtual keyboard & username implementation
- Use of login system
 - VR exposure therapy application for emetophobia

Norway grants

Unitatea Executivă pentru Finanțarea Învățământului Superior, a Cercetării, Dezvoltării și Inovării

Norwegian Meteorological

Thank you!

Mircea Maria-Mădălina

WeADL 2021 Workshop

The workshop is organized under the umbrella of WeaMyL, project funded by the EEA and Norway Grants under the RO-NO-2019-0133. Contract: No 26/2020