Enhancing the performance of indoor-outdoor image classifications using features extracted from depth-maps

George Ciubotariu Babeș-Bolyai University

WeADL 2021 Workshop

The workshop is organized under the umbrella of WeaMyL, project funded by the EEA and Norway Grants under the number RO-NO-2019-0133. Contract: No 26/2020.

May 28, 2021

Working together for a green, competitive and inclusive Europe

Contents

Introduction

- Original Contribution
- 3 Computer Vision and Deep Learning
- 4 Data Set
- 5 Unsupervised Analysis
- 6 Supervised Analysis
 - 7 Future Enhancements

Figure: A picture taken from space

Figure: The same picture, but flipped upside down

Introduction

Figure: An illusion of depth

Research Questions and Original Contributions

- **RQ1**: How relevant are depth maps in the context of indoor-outdoor image classification?
 - Unsupervised learning based analysis on DIODE dataset for indoor-outdoor classification
 - t-SNE clustering support for further supervised investigations
- **RQ2**: To what extent does aggregating visual features into more granular sub-images increase the performance of classifiers?
 - Supervised learning based classification for supporting the unsupervised approach
 - Multilayer Perceptron (MLP) classifier tested to confirm hypothesis
- **RQ3**: How correlated are the results of the unsupervised based analysis and the performance of supervised models applied for indoor-outdoor image classification?
 - Comparative analysis on image features aggregation

Most recent work implement **Convolutional Neural Networks** (CNNs) in dense visual tasks such as *Semantic Segmentation* (SS) or *Depth Estimation* (DE).

• [ZWZ⁺20] Split-Attention Network (ResNeSt)

- efficient network that outperformed other similar models in what regards both computational costs and performance
- the model introduced a new split-attention block for dense task prediction.

• [LRSK19, RBK21] Dense Prediction Transformers (DPT)

- model that leverages visual transformers instead of convolutions.
- its results outperform ResNeSt models that have previously been considered state-of-the-art.

Vision Transformers for Dense Prediction (DPT)

Model	Image resolution	# extracted features after encoder	# extracted features after decoder	
Depth Estimation	384 ~ 384	40152	12582912	
Semantic Segmentation	304~304	49152		

Table: DPT architectures details

Figure: DPT architecture

- Data has been collected with a FARO Focus S350
- It consists of 27858 1024×768 RGB-D images
- Photos have been taken both at daytime and night, over several seasons (summer, fall, winter)

Apart from RGB-D images, DIODE dataset also provides us with normal maps that could further enhance the learning of depth and vice-versa

DIODE (Dense Indoor and Outdoor DEpth)

Figure: Sample images from DIODE dataset

DIODE Structure

Figure: Histogram of depth values frequency (%) for the whole train set

Figure: Histogram of depth values frequency (%) for the whole validation set

DIODE Structure

Figure: Histogram of depth values frequency (%) for indoor train set

Figure: Histogram of depth values frequency (%) for indoor validation set

DIODE Structure

Figure: Histogram of depth values frequency (%) for outdoor train set

Figure: Histogram of depth values frequency (%) for outdoor validation set

Unsupervised Learning Approach for Analysing the Data

- 3D t-SNE unsupervised clustering
 - used for non-linear dimensionality reduction
 - able to uncover more useful patterns in data
 - uses Student t-distribution to better disperse the clusters
- data normalization with the inverse hyperbolic sine (asinh)
 - increased sensitivity to particularly small and large values
- parameters used
 - perplexity of 20
 - learning rate of 3.0
 - for a slower converging but finer learning curve
 - 1000 iterations

Relevance

Unsupervised learning-based analysis provide useful insight about data organization and features' importance.

• • • • • • • • • • • •

aggregating RGB from sub-images

- $3 \cdot k$ dimensional vector (k = 1, 4, 16)
- average RGB values for each sub-image

aggregating RGBD from sub-images

- $4 \cdot k$ dimensional vector (k = 1, 4, 16)
- average RGBD values for each sub-image

Ifeatures from DPT encoder/decoder

- trained for SS
- trained for DE

1	2	3	4	
5	6	7	8	
9	10	11	12	
13	14	15	16	

Figure: Structure of image splits

- Indoor-Outdoor Classification
- Semantic Segmentation
- Depth Estimation

Features Extracted from DL models

DPT trained for Semantic Segmentation

features for SS

Figure: t-SNE of DPT encoder extracted Figure: t-SNE of DPT decoder extracted features for SS

- B - - B

Features Extracted from DL models

• DPT trained for Depth Estimation

features for DE

Figure: t-SNE of DTP encoder extracted Figure: t-SNE of DTP decoder extracted features for DE

(3)

Features extracted aggregating RGB and RGBD values

no splits

Figure: t-SNE for RGB without splits

Figure: t-SNE for RGB-D without splits

Features extracted aggregating RGB and RGBD values

• 4 splits

Figure: t-SNE for RGB with 4 splits

Figure: t-SNE for RGB-D with 4 splits

Features extracted aggregating RGB and RGBD values

• 16 splits

Figure: t-SNE for RGB with 16 splits

Figure: t-SNE for RGB-D with 16 splits

Features	# Splits	Accuracy	AUC	Specificity	Recall
MLP RGB	1	$0.692{\pm}0.077$	0.525±0.056	0.980±0.028	$0.070 {\pm} 0.121$
	4	$0.688 {\pm} 0.064$	0.517±0.022	0.989 ±0.014	0.046±0.049
	16	$0.669 {\pm} 0.049$	0.545±0.048	$0.912{\pm}0.068$	$0.163{\pm}0.136$
MLP RGBD	1	0.880 ±0.039	0.858±0.041	0.898±0.058	$0.817 {\pm} 0.081$
	4	0.876±0.043	0.862±0.044	0.894±0.046	0.829 ±0.063
	16	0.838±0.044	0.826±0.053	0.848±0.060	0.804±0.099
DPT encoder DE	1	$0.823{\pm}0.131$	0.831±0.076	$0.812{\pm}0.185$	$0.850 {\pm} 0.069$
DPT encoder SS	1	0.953 ±0.027	0.944 ±0.030	0.974 ±0.031	0.915 ±0.053

Table: Results of indoor-outdoor supervised classification on DIODE dataset

- Identifying features that can be used in both SS and DE
- Identifying other problems that can be solved with adapted DL models
- Architecture Transfer from SS towards DE

Thank you!

Questions?

Image: A matrix and a matrix

Bibliography I

Katrin Lasinger, René Ranftl, Konrad Schindler, and Vladlen Koltun. Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer.

CoRR, abs/1907.01341, 2019.

René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vision transformers for dense prediction. CoRR, abs/2103.13413, 2021.

 Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Zhi Zhang, Haibin Lin, Yue Sun, Tong He, Jonas Mueller, R. Manmatha, Mu Li, and Alexander J. Smola.
Resnest: Split-attention networks.
CoRR, abs/2004.08955:1–12, 2020.