DNA classification using supervised deep learning

Szuhai Iulia-Monica Babeş-Bolyai University

WeADL 2021 Workshop

The workshop is organized under the umbrella of WeaMyL, project funded by the EEA and Norway Grants under the number RO-NO-2019-0133. Contract: No 26/2020.

イロト 不同 トイヨト イヨト

3

Working together for a green, competitive and inclusive Europe

Problem statement

• Deoxyribonucleic acid or short DNA, is the basis of how life works

< ロ > < 同 > < 三 > < 三 >

- Ancient DNA might reveal crucial information regarding past civilizations, past diseases or even extinct speecies
- Ancient DNA is subject to contamination with modern DNA
- Our aim: classify ancient and modern DNA
- Four data representation and two learning approaches

Computational approaches to DNA analysis

Challenge: find a comprehensive and robust representation for DNA.

イロト 不得 トイヨト イヨト

- One hot encoding
- Images
- Deep learning

Methodology

DNA sequence: [A,C,G,T]

Four different DNA representations :

 Nucleotides frequencies based representation

•
$$P(s) = \frac{frequence(s)}{l-s_l+1}$$

• 84 features

DNA sub_sequence	Probability of occurrence			
A	0.(2)			
C	0.(3)			
G	0.(1)			
Т	0.(2)			
AA	0			
AC	0.125			
TT	0			
AAA	0			
ACT	0.142			
CGC	0.142			
TTT	0			

Figure: DNA representation: example of features and their values for the illustrative sequence *ACTCGCTA*.

Methodology

TF-IDF based representation

• $TF - IDF(s) = \frac{frequence(s)}{l-s_l+1} * \log \frac{k}{n}$ Example of TF-IDF representation for the sequence ACGGTAACGGTG,considering the coprus ACGGTAACGGTG, TTGCCTGTGCATGA, ACCGGTTCAACGTGCAAAACGCG-CACCGC.

DNA sub_sequence	TF-IDF weight			
AA	0.0531			
AC	0.106			
AG	0.0			
CG	0.106			
GG	0.106			
TA	0.144			
AAC	0.058			
ACG	0.116			
CGG	0.116			
GGT	0.116			
GTA	0.158			
TAA	0.158			

Methodology

• Physical and chemical properties based representation

Property name	Α	С	G	Т
Molecular weight	135.13	111.1	151.13	126.11
Molecular density	1.6	1.55	2.2	1.23
Topological Polar Surface Area	80.5	67.5	96.2	58.2
Heavy Atom Count	10	8	11	9
Complexity	127	170	225	195

TABLE I: Values representing measurable physical and chemical properties of nucleotides.

• One hot encoding

DNA sub_sequence	Encoding			
ACT	[1. 0. 0. 0. 0. 0.]			
CTC	[0. 0. 0. 1. 0. 0.]			
TCG	[0. 0. 0. 0. 0. 1.]			
CGC	[0. 1. 0. 0. 0. 0.]			
GCT	[0. 0. 0. 0. 1. 0.]			
CTA	[0. 0. 1. 0. 0. 0.]			

Table 2: DNA representation: example of one hot encoding for the illustrative sequence *ACTCGCTA*. We used window length = 3 and slide value = 1.

Methodology

Classification problem

- Non linear models
- Multi-layer Perceptron
 - 2 hidden layers, ReLU, adaptive learning rate
- Convolutional neural network

Layer (type)	Output	Shape	Param #
conv2d_1 (Conv2D)	(None,	300, 62, 64)	640
max_pooling2d_1 (MaxPooling2	(None,	150, 31, 64)	0
conv2d_2 (Conv2D)	(None,	74, 15, 32)	18464
max_pooling2d_2 (MaxPooling2	(None,	37, 7, 32)	0
conv2d_3 (Conv2D)	(None,	18, 3, 16)	4624
flatten_1 (Flatten)	(None,	864)	0
dense_1 (Dense)	(None,	200)	173000
dense_2 (Dense)	(None,	2)	402
activation_1 (Activation)	(None,	2)	0

Figure: Model summary of the convolutional neural network

Dataset

• Matter collected from Capidava archaeological site

伺 ト イヨト イヨト

- 378.451 ancient sequences
- 115.218 modern sequences
- MLP k- folds cross validation, k=10
- CNN 66 % training, 33 % testing

Results

Representation	Property type	ANN			CNN		
		Accuracy	F1-score	Recall	Accuracy	F1-score	Recall
Frequency based	-	0.937	0.861	0.833	-	-	-
TF-IDF	-	0.912	0.944	0.960	-	-	-
Physical and chemical properties	Molecular weight	0.918	0.819	0.778	-	-	-
	Density	0.941	0.873	0.846	-	-	-
	Topological polar surface	0.935	0.859	0.829	-	-	-
	Heavy atom count	0.928	0.843	0.805	-	-	-
	Complexity	0.935	0.862	0.836	-	-	-
One hot encoding	-	-	-	-	0.9086	0.8697	0.8697

 $\ensuremath{\mathsf{Figure:}}$ Evaluation measures for the two supervised models and the considered representations

イロト イヨト イヨト イヨト

Conclusion

• The aim was to find suitable representation and machine learning models to the goal of distinguishing between ancient and modern bacterial DNA

< ロ > < 同 > < 回 > < 回 > .

- Obtained results are promising
- Acquire more modern DNA sequences
- Perform these experiments on other public dataset
- Other approaches

Thank you for your attention!